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Abstract

This University of Cambridge Computer Laboratory Technical Report is a revised
version of my Ph.D. thesis. The report is essentially the same as my original thesis
which was completed in July 1991, with corrections and alterations as suggested by
my Ph.D. examiners,

Dr. J.JM.E. Hyland,

Department of Pure Mathematics and Mathematical Statistics,

Cambridge,

England

and

Prof. E. Moggi,

Dip. di Matematica,

Univ. di Genova,

Italy.
I have also made some modifications which I personally think improves the presen-
tation of my original thesis. Any errors which remain are my sole responsibility.

Summary of Contents

A programming metalogic is a formal system into which programming languages can
be translated and given meaning. The translation should both reflect the structure
of the language and make it easy to prove properties of programs. This thesis
develops certain metalogics using techniques of category theory and treats recursion
in a new way.

The notion of a category with fixpoint object is defined. Corresponding to this
categorical structure there are type theoretic equational rules which will be present
in all of the metalogics considered. These rules define the fixpoint type which will
allow the interpretation of recursive declarations. With these core notions FIX
categories are defined. These are the categorical equivalent of an equational logic
which can be viewed as a very basic programming metalogic. Recursion is treated
both syntactically and categorically.

The expressive power of the equational logic is increased by embedding it in an intu-
itionistic predicate calculus, giving rise to the FIX logic. This contains propositions
about the evaluation of computations to values and an induction principle which is




derived from the definition of a fixpoint object as an initial algebra. The categorical
structure which accompanies the FIX logic is defined, called a FIX hyperdoctrine,
and certain existence and disjunction properties of FIX are stated. A particular
FIX hyperdoctrine is constructed and used in the proof of the above properties.

PCF-style languages are translated into the FIX logic and computational adequacy
results are proved. Two languages are studied: Both are similar to PCF except
one has call by value recursive function declarations and the other higher order
conditionals.

A dependently typed equational logic containing a fixpoint type and a universal
type is given together with its related categorical structure, namely a FIX category
with attributes. A representation theorem for Scott predomains is proved, which
gives rise to a concrete example of such a FIX category with attributes. Recursive
domain equations give rise to endofunctions on the universal type; using the fixpoint
type we may solve for fixpoints of such endofunctions and thus obtain a solution of
the original domain equation as the type coded by the fixpoint.
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Chapter 0
Categorical Logic in Computer Science

0.1 Introduction

During the late 1960’s and early 1970’s Scott and Strachey, researchers in the Uni-
versity of Oxford, became concerned with the methods used to define programming
languages, or perhaps we should say the lack of methods. At the time, the de-
scription of a language was essentially operational in nature and to some extent
language definitions were virtually synonymous with actual implementations. Very
little research concerning underlying mathematical theories of programming had
been undertaken. In the mid 1960’s, Landin noted connections between the A cal-
culus, a formalism developed by logicians for representing functions, and certain
constructs which appear in programming languages. Landin used the formal theory
of the A calculus to guide the construction of a machine for evaluating programs
[Lan64]. It is interesting to note that Landin comments “This paper is a contribu-
tion to the ‘theory’ of the activity of using computers.” Indeed, Landin observed
that the reduction rules of the A calculus resemble certain operational reductions of
commands and expressions in programming languages and his work was one of the
first formal treatments of the theory of operational specifications of programming
languages.

Scott and Strachey wanted to move away from operational specifications of lan-
guages and instead attempt to develop a denotational approach which concentrated
more on the intended meaning of a language. A simple example of their idea is il-
lustrated by the concept of natural number. Different languages can be used to
specify natural numbers, for example octal, decimal, roman, but in each case we
are really concerned with what is denoted (a natural number) and not how the
natural number is represented. The first examples of denotational specifications of
program fragments were worked out by Scott and Strachey; see [Sco70b], [Sco70a]
and [SS71]. In pursuing the notion of mathematical models of programming lan-
guages, the question of what constitutes such a model of the A calculus arose. The
) calculus allows syntactic expressions (which represent functions) to be applied to
themselves. It was clear that a mathematical model should interpret such function-
representing expressions as some form of set-theoretic function; and to model self
application certain sets would have to contain their own function space. Scott re-
alised that such a construction was possible by imposing certain conditions on the
kind of function which was allowed in the model; see [Sco69a] and [Sco7l]. For
further examples of denotational semantics see [Sco82], [Str74] and [SWT4].

Once the foundations of operational and denotational semantics had been laid down,




other researchers took up the task of attempting more formal treatments of pro-
gramming semantics. It became clear that formal semantics would be necessary to
ensure that programs really behaved as they were supposed to. The semantics could
be used to reason about programs; in particular to prove that a program satisfies its
specification. Plotkin investigated different kinds of operational semantics of the A
calculus [Plo75] and also the connections with denotational semantics [Plo77], and
went on to clarify many issues which had arisen from both his work and the work
of others: see [P1o80] and [Plo81].

As programs became larger and more intricate, the task of proving programs correct
became much more difficult. One solution to this problem was the idea of a pro-
gramming metalogic which is a formal logical system in which it is possible to give
meaning to other programming languages. The programming metalogic will usually
have a very rich type structure and powerful rules for reasoning and will be used to
give meaning to a programming language by translating the source code into the
metalogic. This translation should preserve the structure of the original language,
thereby allowing properties of source programs to be proven by showing the prop-
erty holds in the metalogic. A proof in the metalogic should be substantially easier
than a direct proof using the semantics of the original language.

This thesis presents three such programming metalogics and describes some sim-
ple applications. Each of the metalogics deals with recursively defined declarations
in a novel way, introducing a new type called the fizpoint type; see [CP90a). The
first of these metalogics is a simple equational logic which is an extension of the
computational let calculus [Mog89b]; the latter is a formal system for program-
ming semantics which separates the notions of computation and value. The second
metalogic is a predicate logic which subsumes the original equational logic via an
equality predicate. It is ideally suited to reasoning about languages presented in
the natural semantics style [Kah88]. The third metalogic is a dependently typed
equational logic containing a type universe: we use this to solve domain equations.
The solution of a domain equation can be regarded as a recursively defined type;
equivalently we may regard the equation as determining an endofunction on the
type universe. We can find a fixpoint of such a function using the fixpoint type and
the solution to the domain equation is the type represented by the fixpoint.

Categorical logic is the study of connections between formal logical systems and
category theory. As we have remarked, logics can be used to give meaning to
programming languages. Category theory can be used to guide the design of such
metalogics and also to give a uniform presentation of their semantics. Often it is
easier to prove a property of a metalogic by categorical means and then translate
the results into statements about the metalogic. The techniques of categorical logic
will be used throughout this thesis.

0.2 A Thesis Summary

This thesis divides into three parts.



o Part I A simple equational metalogic is described which builds upon the com-
putational let calculus. This system will form a basic core for the metalogics

described in Part IT and Part III.

¢ Part II The equational metalogic of Part I is strengthened to a predicate
metalogic and we give some simple applications.

¢ Part ITI A dependently typed equational logic containing a type universe is
given; this is used to solve domain equations.

Part I
Chapter 1

We begin by giving a brief review of some basic category theory which will be used
throughout this thesis, aiming to set up notation for monads, tensorial strengths
and let categories. We also provide a few elementary examples of let categories
which illustrate their use in computer science. For some background in categorical
logic see [Law69] and [MRT77].

Chapter 2

We review the computational let calculus and motivate both its uses and also the
form in which it is usually presented. This leads to a discussion of suitable extensions
and in particular to the fixpoint type: see [NPS90] for some background in type
theory. In the presence of a fixpoint type certain endofunctions must have fixpoints.
We introduce a categorical definition of the concept of fixpoint type, namely a
fixpoint object in a let category. In such categories, morphisms of certain kinds are
guaranteed to have fixpoints. This leads to the internal logic of fixpoint objects and
from this we describe an extension of the computational A calculus which, among
other things, contains the logic of a fixpoint object. This system is referred to as
the FIX_ logic.

Chapter 3

We define FIX categories and prove the usual categorical logic correspondence be-
tween such categorical structures and FIX_. We show that FIX categories are, in a
precise sense, the most general structures for interpreting FIX_. We discuss fixpoints
both in FIX_ and in FIX categories and move on to show that FIX categories are
functionally complete. Finally we carry out a gluing construction for let categories
which will be used to prove a result about equality of ground terms in FIX_.




Part II
Chapter 4

The language FIX_ captures certain computational features through an equational
theory: we increase its expressiveness by embedding FIX_ in a predicate logic
called FIX. We define the notion of a FIX theory and show that the pure FIX
logical system has a formulation in which some of the rules assume an adjoint form.
The chapter finishes with a number of results about FIX, some of which will be
put to use later on, together with the statements of three theorems concerning the
metalogical properties of FIX.

Chapter 5

We define a FIX hyperdoctrine, which is the categorical counterpart of the FIX
logic, and give a concrete example. The next task is to give a formal statement
of the categorical logic correspondence for FIX hyperdoctrines and the FIX logic.
With a view to using this correspondence to prove the metalogical properties stated
in Chapter 4, we define the “logical relations hyperdoctrine;” the proofs make use
of its internal logic.

Chapter 6

We investigate how well suited the FIX logic is for analysing two small program-
ming languages. Both of these languages are based on Plotkin’s PCF. We give
translations of both static and dynamic semantics into the pure FIX logic and prove
adequacy results which show that the translations we give preserve the structure
and properties of the source languages.

Part 111
Chapter 7

We extend the notion of information system to provide a representation theorem
for Scott predomains; the latter have properties similar to Scott domains but do
not necessarily possess a least element. To effect this, the classical definition of
information system is altered in a simple way, giving rise to preinformation systems.
We present canonical constructions of products, coproducts and lifting, along with
partial function space, in the category of preinformation systems.

Chapter 8

We aim to develop a logic in which there is both a universal type and a fixpoint type.
Domain equations can then be solved by considering the endofunctions which will
be induced on the universal type. The FIX_ equational logic forms the backbone of



the system introduced here, namely FIX*. We describe the syntax and logical rules
of FIX* which is a dependently typed equational logic and introduce the notion of
a FIX# theory.

Chapter 9

A general categorical structure for dependently typed equational theories is re-
viewed, namely categories with attributes. We then define a FIX category with
attributes; such structures will be used to model FIX# theories. Having done this,
we give a concrete example of a FIX category with attributes and move on to con-
sider the general categorical semantics of FIX¥. We finish this chapter with some
basic results about such semantics.

Chapter 10

We consider what has been achieved, the prospects for further research and draw
our conclusions together.

0.3 Foundation and Notation

Foundations of Category Theory

Throughout this thesis, if we say “let C be a category” we shall mean that we
have specified interpretations of the statements “A is an object of C” and “f is
a morphism of C,” along with interpretations of “identity morphism,” “domain,”
“codomain” and “composition.” There will be no assumptions as to whether the
collections of objects or morphisms of C form a set. We shall only impose restrictions
on collections when it is prudent to do so. In such cases, we shall refer to the notions
of small and locally small categories as appropriate and think of such concepts
within a given model of set theory.

Martin-Lo6f’s Theory of Arities and Expressions

We shall use the theory of arities and expressions due to Martin-Lof to present the
object level syntax in this thesis; to do this we make the following definition:

Definition 0.3.1 An abstract syntax signature ¥ is a pair of sets (GAr,Con) where
the elements of GAr are called ground arities and the elements of Con are called
constants. Regarding the ground arities as the ground types for a simply typed A
calculus, we refer to the simple types as arities. The constants are assumed to be
tagged with an arity.

With these data, we can regard the abstract syntax signature X as a signature in
the conventional sense for a (type tagged) simply typed A calculus with constants.




Definition 0.3.2 Given an abstract syntax signature ¥, an abstract syntaz is the
collection of affy equivalence classes of terms of the simply typed A calculus gen-
erated from ¥ and we shall refer to this calculus as the meta A calculus. We shall
call individual classes expressions of the abstract syntax and refer to the variables
of this simply typed A calculus as metavariables. Abstraction of an expression e
will be denoted by u.e where v is a metavariable, substitution for a metavariable
by e[e//u] and application by e(e’). A multiple application e;(e;)...(e,) will be
denoted by e;(eg,...,e,) and FV(e) is the set of free metavariables of e.

Roughly, we shall view the syntax of object level languages as certain expressions
of an abstract syntax. Usually, the set GAr will consist of elements such as TERM
or TYPE. The constants Con will consist of the function symbols arising from a
given signature for an object level language, together with a countably infinite
set of object level variables. The arity of the function symbols is specified for
the particular object level language being considered; likewise for the object level
variables. Then the raw syntax of an object level language will be defined as closed
expressions of an abstract syntax. Thus variable binding will take place only in the
meta A calculus and substitution of object level terms will become application in
the meta A calculus. An exposition of the theory of arities and expressions can be
found in [Cro90] or [NPS90].

Notational Conventions

(1) As a general convention, we shall omit typing information from morphisms,
functors etc. For example, if we speak of a natural transformation 7 (between a
pair of bifunctors) which has components T(4,8) With domain A x T'B and codomain
T(A x B), then we shall often denote these data by

Tt AXTB — T(A X B)

rather than
T(A,B)ZA xXTB — T(A X B)

When using commutative diagrams, we shall place just enough typing information
on the morphisms to make the picture unambiguous.
(2) Throughout this document, we shall use rules of the form

Hypothesis

Conclusion
where “Hypothesis” and “Conclusion” are syntactic expressions. In any such rule
we assume that both “Hypothesis” and “Conclusion” are well formed.
(3) If we are given a list of expressions Fy,..., E,, we will often abbreviate such a
list by E.
(4) When discussing object level languages presented using an abstract syntax,
we shall not introduce formal syntactic classes to distinguish between object level




variables and metavariables, but instead rely on the context of usage to make the
distinction. For example, if M and N are expressions of an abstract syntax, for an
expression of the form M[N/z] to be meaningful,  must be a metavariable.




Chapter 1
Strong Monads and Let Categories

1.1 Introduction

Chapter 1 contains a review of some of the basic category theory which will be
used throughout this thesis. The account is by no means comprehensive; it is not
intended to be. We simply define some of the fundamental concepts which are
relatively new to computer science and which form the backbone of almost all of
the categorical structures which arise in this work. A standard reference for basic
category theory is [Mac71]; additional material on monads which is particularly
relevant can be found in [Man76] and [Kel82]. Those readers who are familiar with
the original works on monads, strengths and enriched category theory will see that
some of our basic notation is different from that used in the references. However,
as our story unfolds, we hope that the choice of notation will be seen to be both
appropriate and useful.

1.2 Monads and Tensorial Strengths

Definition 1.2.1 Let C be a category. Recall that a monad over C is a triple
(T,n, 1) where T:C — C is an endofunctor, n: Id; — T is a natural transformation
called the unit of the monad, u:T? — T is a natural transformation called the
multiplication of the monad and these data satisfy the equations I'dy = p o 77,
Idy = po T (veferred to by Monadn) and o T'u = o puy (veferred to by Monadp).
We shall often speak just of the monad T

Definition 1.2.2 Let C be a category with finite products and let (7', 7, 1) be a
monad over C. The monad T is said to possess a tensorial strength if there is a
natural transformation 7 with components

74,8y Ax TB— T(A X B)

which satisfy the equational identities represented by the following commutative
diagrams, where ¢ and j denote obvious canonical isomorphisms:

11




T id xn

1xTA T(1xA) AxB AxXTB
T: T
J U]
TA T(A x B)
Tensorl Tensor?2
(Ax B) x TC ’ - T((A % B) x C)
; Tj
d X T T
Ax (BxTC) AxT(BxC)——=T(Ax (Bx())

Tensor3

T Tr
AxT?B ——T(AxTB) ——T?A x B)
id X p I

AxTB ~T(A x B)

Tensor4d

A strong monad (T',7) is a monad T for which there is a given choice of tensorial
strength 7. When no confusion can arise we refer to a strong monad 7.

1.3 The Definition of a Let Category

Two Definitions of a Let Category

We begin by making the following definition:

Definition 1.3.1 A let category is specified by a category C with finite products,
over which there is a strong monad T

We can give an alternative definition of let category, which will prove to be of great
value to us when we study the equational logic of these categories.

Definition 1.3.2 A let category is specified by a category C with finite products
which enjoys the following properties:

12




o For each object A in C, there is an object T'A,
o for each object A in C, there is a morphism n4: A — T'A, and

e for each morphism f: Ax B — T'C, there is a morphism lift(f): AxTB — TC,

such that the following conditions are satisfied:

lift(g(f x idg)) = lift(g)(f X idrp) Lifts
where f: A — Al, gt A x B - TC, ‘
Lft(f)(id4 x nB) = f LiftB

where fi1 Ax B — TC,
lift(ngmy) =, LiftH
where m: A x B — B, and
fifig) () = lifg) (s, HAP)) Liten

where f:Ax B—-TC,g:AxC —TD.
We shall refer to the operation f +— lift(f) as lifting.

It will be useful to work with a derived operation on morphisms of C which we shall
refer to as the let operation. We shall write f — let(f) for this. Take projections

il X A—A 7wplxTA—-TA

Then the let operation is specified by

A-LTB

—1 :
TA 1 xTA U
This definition leads immediately to the following lemmas:

Lemma 1.3.3 Suppose we are given a let category in the sense of Definition 1.3.2.
Then given morphisms f: A — T'B and g: B — T'C the following equational identi-
ties hold:

let(fin = f LetB
let(n) = 1id LetH
let(let(g)f) = let(g)let(f) LetA
Proof A trivial calculation. O

Lemma 1.3.4 Suppose we are given a let category in the sense of Definition 1.3.2.
Given morphisms f: A — TB and g:C x B — T'D, then

lift(g)(id x let(f)) = Lf(life(g)(id x f))

Proof Immediate from the definitions. a

13




Equivalence of the Definitions

The previous definitions of let categories are equivalent in the following way:

Lemma 1.3.5 Given a let category C according to Definition 1.3.1 (Definition
1.3.2), then C has the structure of Definition 1.3.2 (Definition 1.3.1).

Proof Suppose we are given a category C with the structure of Definition 1.3.1.
We show C has the structure of Definition 1.3.2. Definitions of the operation T and
morphisms 74 are clear. The lifting operation is defined by

AxB-L.TC
AxTB -1 T(Ax B) L4 20 -2, TC

Now we have to check that our definition of lifting satisfies the necessary equations.
Although this is essentially routine manipulation we supply the critical details; in
each case we give the recipe for transforming the left-hand side of an equation to
the right-hand side. Lift$S follows from the naturality of 7 and the functoriality of
T. LiftB follows from Tensor2, the naturality of n and Monadyn, thus

Ax B TC
d d
id X 7 n n ?
T
AxTB - TeT(Ax B) L omo " e

LiftH follows from functoriality of T', Monadn, naturality of 7 and Tensori. To show
LiftA use functoriality of T followed by Monady and the naturality of x. Then we
need commutativity of

AxTB 7 - T(Ax B)
(T4, T) (%) T(m4,1d)
(ra,Tfor) AXT(Ax B) L+ T(Ax (A x B)) T{(ra, f)
dxTf T(id x f)
Ax T T ,ﬂA;Tm

14



where the commutativity of (*) follows from

T

AxTB ~T(A x B)
A X id T(A x id)
(AxA')xTB T >T((A><;1)><B))
; Tj

A (AxTB) T 4« T(Ax B) ——~T(A x (A x B))

with the lower square an instance of Tensor3. Finally apply Tensor4 to get the
result.

Conversely, suppose we are given a category C with the structure of Definition 1.3.2.
We give the recipe for showing C also has the structure of Definition 1.3.1. The
action of the monad T' on objects and the components of the natural transformation
7 are clear. The definition of the monad T' on morphisms is given by

A-L B

74 0z 1

The component of the natural transformation p at A is let(idy,) and the compo-
nent of 7 at A and B is lift(naxp). We omit the routine details which verify that
(T,n, p,7) is a strong monad. 0

We have the following corollary:

Corollary 1.3.6 Given a category C over which there is a monad 7', then C can
be considered endowed with the following structure: for objects A and B of C and
morphism f: A — TB there are morphisms n4: A — T A and operations A — T'A,
f + let(f), where the latter operation is defined by

A-L 1B
TA*Y TR
These data satisfy equations LetB, LetH, LetA.

Conversely, given a category C endowed with such a structure, we can define a
monad T by

ftA— B
let(ngf): TA—TB

The components of 7 are clear and the component of y at A is let(idry). 0

Remark 1.3.7 The let operation arising from a monad 7' over a category C is
closely allied to the construction of the Kleisli category KI/(C) where composition in

KI(C) is given by (f, g) — let(g)f.

15




1.4 Why Let Categories?

Motivating Ideas

A fundamental slogan for the categorical semantics of programming languages is:
“types are interpreted as objects in a category and terms are interpreted as mor-
phisms.” Of course, for complicated languages this basic idea is adapted in many
ways, but it is a good starting point. It has been known for some time now that
formal systems correspond in a precise way to certain kinds of categorical structure,
for example A calculi (which are the theoretical backbone of functional program-
ming languages) are the internal languages of cartesian closed categories and the
cartesian closed categories provide a notion of syntax-independent presentations of
A calculi.

While functional languages are based on the principles of the A calculus, the basic
reduction strategies of A calculi such as # and n do not elegantly distinguish between
certain kinds of operational semantics such as call-by-name and call-by-value. For
example, there is a notion of call-by-value strategy in A calculi where we consider
values to be those expressions of the formal system which are not applications.
reduction is then restricted to instances where the operand is a value. The naive
formal system which captures this notion of call-by-value is a little ad-hoc: for an
account see [Plo75].

Thus it might be reasonable to develop a formal system which separates the notions
of computation and value: this is exactly what strong monads do for us, but in the
world of semantics. Given a let category C, if an object A models a type o then
the object T'A models computations of values of type c. This will be more clear if
illustrated by example.

Examples Of Let Categories

Our examples will be over the category Set; they are lifted from [Mog89b].

Partial Computations

Given a type a, a partial computation of type o can be thought of as a program
which either terminates yielding a value of type «, or which does not terminate. If
values of type « are denoted by the set A, then we can denote the partial compu-
tations with values of type a by the coproduct A + {*}. Thus we have:

1. Operation on objects A — A+ {*}.

2. Functionn, & i: A — A+{} the left coproduct insertion (with right insertion
7)-

16



3. Given a function f: A x B — C + {x} then we define lift(f) by

e 2 { 1D 2210

j(¥)  otherwise

Corresponding to this let category, there is a strong monad with
pas(A+ {}) +{x} = A+ {*}

defined by
NA(S)d:ef{r it s=1(r), r € A+ {x}

j(*) otherwise
and tensorial strength
a4 X (B+ () = (A x B) + (+}
defined by
def | i(a,b) if s =1(b)

(a4 8) = { 7(¥)  otherwise
The intuitive meaning of the monad multiplication 4 is that a partial computation
P! of a partial computation P is defined when both P’ and P are (with result
given by composition of P’ and P), and is otherwise undefined. The strength 7
takes a pair consisting of a value and a partial computation and returns a partial
computation, say P. If the original partial computation is defined, then so is P,
with expected value. If the original computation is undefined, then so is P.

Computations which Raise Exceptions

Let E be a set which models certain exceptions. Then if the set A models values
(of some type say «) we might consider the following (categorical) model:

1. Operation on sets A — A+ E.
2. Function n4 df ;. A — A+ F the left coproduct insertion.
3. Given a function f: A x B — (C + E) then we define lft(f) by

(o) { 79 0= 0

The intuitive explanation of this example is similar to that for partial computations.
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Computations with Side Effects in a Store S

Suppose that we are considering a model for an imperative language where the set
S is to model some set of states. One such model is:

1. Operation on sets A — S—(A x 5).

2. Function n4: A — S—(A x §) such that given « € A and s € S then
14(a)(s) € (a,5).
3. Given a function f: A X B — (S—(C x S)) then we define Lft(f) by

lfH(f)(a,t) E s fla,my(ts))(mo(ts)).

The intuitive meaning of the corresponding monad multiplication p is to say that
a computation which takes a state s and yields a computation ¢ with side effect
(i.e. new state) s’ may be regarded as a computation which takes a state s and
returns the value and state which are the result of the computation ¢ on the value
s'. The strength 7 says that a value ¢ and a computation ¢ may be regarded as a
computation which takes a state s and yields a pair of values, namely « and the
value arising from cs, together with the state arising from cs.

Non-Deterministic Computations

Given a set A modeling values of type o we might model non-deterministic com-
putations of type « via sets of possible results, namely P(A). A suitable model
is:

1. Operation on sets A — P(A).

2. Function 74: A — P(A) such that given a € A then n4(a) % {a}.

3. Given a function f: A x B — P(C) then Lft(f) is defined by
lift(£)(a, B') € U{F(a,) | 0" € B'}.

We regard the denotation of a non-deterministic computation as the collection of
all possible outputs. Any value can be trivially regarded as a non-deterministic
computation. Finally, given a value and some non-deterministic computation we
can think of the pair as a non-deterministic computation.
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Chapter 2
The FIX_ Logical System

2.1 Review of the Computational Let Calculus

The computational let calculus! was introduced by Moggi [Mog89a]. Roughly, it is
a formal system which embodies the idea of separating computations from values
and is the syntactic analogue of the notion of let category. We make a formal
distinction between the elements of a type o and computations of elements of that
type; the latter are grouped into a new type T'a. We shall refer to a type of the
form Ta as a computation type. Moggi’s computational let calculus contains the
following formation rules:

[z: o]
a type M: o E:Ta F(z):Tp
Ta type Val(M): T Let (B, F):TpB

These rules, together with the usual rules for unit type and binary product type
constitute the term forming rules for the computational let calculus, which we shall
denote by MLy. Intuitively, Val(M) is the value M regarded as a trivial computation
which immediately evaluates to itself. The term Let (£, F') denotes the computation
which firstly tries to evaluate E to some value M: o and then proceeds to evaluate
F(M). These intended meanings are captured by three equational axioms:

Let (Val(M), F) = F(M),
Let (F,z.Val(z)) = E,
Let(Let(FE, F),G) = Let(E,z.Let(F(z),G)).

2.2 Extensions of the System ML,

The Basic Formal System MLy

The reader may be wondering why the most fundamental equational logic which we
discuss, namely MLy, is assumed to contain unit and binary product types along
with computation types. When considering practical computational issues, it will
be useful to deal with algebraic terms (i.e. terms with a finite number of object
level variables). According to the basic principle of categorical semantics (for an

1What we are calling the computational let calculus, Moggi refers to as the computational
metalanguage.
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account of this see [Cro90]), we shall need a category with at least finite products
to interpret algebraic terms. However, it can be shown [Pit90a] that this is exactly
the structure which we need to interpret a unit type and binary product type. Thus
it makes little sense to exclude unit and binary product types and terms from the
logic; and we gain some uniformity when considering details of the correspondence
between the syntax of the logic and corresponding categorical structure.

The Use of ML, and its Extensions

At least one of our tasks is to push forward the development of a versatile and gen-
eral purpose metalogic for semantics of programming and computation languages.
We can view the computational let calculus (and its extensions) as a formal meta-
language in which to translate the syntax and rules of other languages; for related
work in this area the reader is referred to [Pit90b].

In this thesis we shall consider various extensions of MLy, What extensions would
be worthwhile investigating? At present, we have unit and binary product types,
together with computation types. Additionally, some notion of function type will be
essential for interpreting functional programming and computation languages. The
equational logic MLy extended by function types is usually called the computational
A calculus and denoted AMLy. We refer the reader to [Mog89a] and [Pit90b].

Some other fundamental datatypes are natural numbers, booleans and coproducts.
As discussed in Chapter 0, we shall introduce a new type called the fixpoint type.
It will be interesting to study how the fixpoint type interacts with certain other
types. For our purposes it will be convenient to study a calculus which, in addition
to the fixpoint type, contains a null type, unit type, binary (co)product types and
function type, along with a type of natural numbers. We are aiming to develop
a constructive logic for reasoning about programming languages in general and
recursive computations in particular: the logic arising from the terms and equations
associated with the types just listed provides a good foundation on which to build.

2.3 Fixpoint Objects

We define the notion of a fixpoint object in a suitably structured category. This
concept is due to Pitts; see also [CP90a] and [CP9I0b).

Definition 2.3.1 Given a category C with finite products, the C indexed category
C(-) is specified by:

¢ The objects of C° are those of C,
¢ C°(A, B) def (C x A, B) where composition of g and h in C is A{r,g) in C,
o CH(A)Y Aand C*(g) ¥ g(k x id),

where k:C" — CinCand A% B Din .
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Note that given a let category C there is an indexed endofunctor T'(=) on C (=) where
TC(A) ¥ TA and T9(g) ¥ lift(ng). With this we make the following definition:

Definition 2.3.2 In a let category C a fizpoint object is specified by the following
data

o An initial 7'(-) algebra whose structure map in the fibre C° is the morphism
CxTQSTOQ % Qin C. Thus given a morphism f:TA — A in CY, there
is a unique morphism #(f): ) — A in C¢ for which the following diagram

commutes: '
C xTQ idx o C xQ
(m, lift(n o #4(f))) it(f)
CxTA - A
f
¢ A global element w:1 — T'Q which gives rise to an equaliser diagram of the
form
w i
1 AY > TQ.
id

The definition of a fixpoint object (which we shall abbreviate to FPO) is reminiscent
of a natural numbers object (NNO). Recall that the definition of a NNO in a
category with finite products takes a particularly simple form when the ambient
category is cartesian closed. Indeed we have the

Lemma 2.3.3 In a let ccc C a FPO is specified by

o An initial T algebra with structure map o: Q) — Q.

¢ A global element w: 1 — T'Q which is the equaliser of no and idrq (exactly as
in Definition 2.3.2).

Proof See Page 48; we shall use the internal logic of let ccc’s to prove this result.
|

The usual category-theoretic considerations imply that the structure constituting a
FPO is determined uniquely up to isomorphism, within the given let category, by
the above properties. One should note also that o, being the structure morphism
for the initial algebra of an endofunctor, is itself an isomorphism.
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Some Examples of Fixpoint Objects

A domain-theoretic example of a let ccc with FPO is the category wCpo, whose ob-
jects are posets possessing joins of countably infinite chains, and whose morphisms
are Scott continuous functions. We will refer to the objects as wepos. The operation
of adjoining a least element to an wcpo D to give the lifted wcpo

Dy, ={d|deD}U{L}
gives a strong monad on wCpo. There is a FPO in wCpo, namely
N={0<1<...< T},

which is equipped with structure map o:Q, — § where o is the continuous function

0 ife=1
ole) ! n+1 ife=]n
T if e={[T]

and w & [T] € Q. Some other monads on wCpo that Moggi [Mog89b] points out

as arising in denotational semantics also possess fixpoint objects. For example the
exceptions monad T'(D) = (D+FE) (with E some fixed discrete wcpo of exceptions)
and the side-effects monad T'(D) = S—(D x S), (with S some fixed discrete wcpo
of states) both possess fixpoint objects. We illustrate for the case of the exceptions

monad when E is the terminal object 1 % {*} of wCpo. The FPO has an underlying

set
QY (T, (n,0),(n+1,b) | n € N}

with order given by T a top element, (n,a) < (n +1,0), and (n,a) < (n 4+ 1,a),
along with structure map o: (2 +1); — Q where o is the continuous function

(0,a) fe=_1
iy te=p

ole) = (n—i—l a) if e =|[(n,
(n—|—2b) ife-%(n—%

if e=[T]
def

and w = [T] € Q. This follows from the general theory for solving recursive domain
equations over wCpo enriched categories as presented in [SP82]. For suppose that T
is an wCpo enriched (strong) monad on wCpo (where wCpo is regarded as a symmetric
monoidal category via finite products and is enriched over itself) and that 7' maps
wepos to pointed wepos (1.e. wepos with least elements). To obtain a fixpoint object
for such a T, one constructs the initial fixed object for T' in the category of pointed
wcpos and embedding-projection pairs by iterating T' starting at the one element
wcpo, yielding an isomorphism o : T'(2) & Q. Then (Q,0) is an initial algebra
for T' : wCpo — wCpo, and dually (Q,0-1) is a final coalgebra for that functor:
This follows from the limit-colimit coincidence for wCpo enriched categories. The
initial algebra property gives us the the first part of the definition of fixpoint object;
and Freyd has observed that the second part of Definition 2.3.2 is implied by the
coalgebra property. We record this latter observation as a lemma.

a)]
1,0)]
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Lemma 2.3.4 Given a let ccc, suppose that o : TQQ —  is an initial algebra for
the functor T (so that in particular, ¢ is an isomorphism). Suppose further that
o-1:0Q — TQ is a final coalgebra for T'. Then there is a global element w : 1 — T'Q
making Q,o,w a fixpoint object for T'.

Proof The final coalgebra property means that for any ¢ : A — T A there is a
unique morphism § : A — § satisfying o=1§ = T'(g)g.
Define w : 1 — TQ to be o=17f;. From the defining property of 77; and the naturality
of n we get

w = o7ty = T(i)m = natiy = (nao)w.
I f: A— TQ is any other morphism satisfying f = (nqo)f, we have to see that
f=w! Butfrom f = (nqo)f and the naturality of n one has

(of) = £ = nalof) = T(o s

Hence by the uniqueness part of the coalgebra property, of = 774 and thus f =
o-1n4. The same argument applies equally well with w ! for f. Therefore f =
o-lpy =wl. O

2.4 The Internal Logic Corresponding to a Fix-
point Object

It is well known that there is a natural correspondence between let categories C
and MLy theories [Mog89b]. Given such a C, the corresponding computational let
calculus is often referred to as the (equational) internal logic of the category C. It is
possible to extend the calculus MLy to capture syntactically the notion of a FPO.
This will entail adding a type fiz, called the fizpoint type, to MLy together with
certain term forming and equality rules. We present these rules here in an informal
natural deduction style:

[z: T'a]
E:Tfix F(z):a N:fix
w:Tfix o(E): fix It (F,N):
E = Val(o(E))
w = Val(o(w)) E=w
[z: Ta]
F(z):ae E:Tfiz
It (F,o(E)) = F(Let (£, n.Val(lt,(F,n))))
[2: T« [n: fiz [e: T fiz]
F(z):a G(n):a G(o(e)) = F(Let(e,n.Val(G(n)))) N:fix
G(N) = Ita(F, N)




The type fiz is so called because in its presence we are always able to form fixpoints
of certain terms; correspondingly, in a let category with FPO, we are always guar-
anteed the existence of fixpoints of certain morphisms. We will leave the precise
details until after we have defined a formal system which contains the equational
rules for the fixpoint type.

2.5 The Equational Logic FIX_

In Section 2.2 we discussed some appropriate extensions to MLz. The most basic of
these was the addition of function types, resulting in the computational X calculus
AML7. Adding a fixpoint type fiz, coproduct types o + f and a natural number
type nat to the computational A calculus AMLp, we arrive at a system FIX_ which
extends Godel’s system T [Gir89]. FIX_ admits sound translations of Plotkin’s
PCF [Plo77] and we shall return to the topic of PCF translations in Chapter 6. We
now formally define FIX_.

Signatures for FIX_

Definition 2.5.1 A FIX_ signature, denoted by Sg, is specified by:

o A collection of types. The types are built up in the following way. We are given
a collection of basic ground types, together with the distinguished ground types
unit, null, nat, and fiz. The types are now specified by the following grammar:

an=7 |laxa | ata | ama | Ta
where v denotes any ground type.

e A collection of basic function symbols, together with the following distin-
guished function symbols: (), (—,—), Fst, Snd, Inl,, Inrg, {},, {— -}, As,
App, Val, Let, O, Suc, ItNat, w, o, It,.

o A sorting for each of the basic function symbols, which is a list of n + 1 types
and will be written:

f:ala"'aan'—)an—{-l'

In the case that n is zero, we shall write f: a. We say that f is an n-ary basic
function symbol when its sorting consists of n + 1 types.

Given such a FIX_ signature, we define from this an abstract syntax signature
¥} = (GAr, Con). The collection of ground arities, GAr, is simply the one element
set {TERM}. The collection of constants Con consists of the basic function symbols
which have arity TERM” — TERM whenever the sorting of f consists of n+1 types, a
countably infinite set of object level variables which have arity TERM, together with
the distinguished function symbols. The distinguished function symbols which will
represent the simply typed A calculus, finite products and natural numbers have
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their usual arities. The remaining distinguished function symbols have the following
arities:

1. w: TERM

2. {}a,Inly, Inrg, Val,o: TERM — TERM

3. Let: TERM — (TERM — TERM) — TERM
4. It,: (TERM — TERM) — TERM — TERM

5. {—,—}:(TERM — TERM) — (TERM — TERM) — TERM — TERM

Associated with a FIX_ signature is a collection of raw FIX_ terms. When no
confusion can arise we shall refer to these just as raw terms. The raw terms are the
closed expressions of the abstract syntax generated from ¥ with arity TERM.

Remark 2.5.2 We make the following abbreviations: Write F'M for App(F, M)
and F'N(M) for ItNat(F, N, M).

Terms in Context for FIX_
A context, T, is a finite list of (variable, type) pairs written
[5171: Qpyer ey Tyt an]

where the object level variables z4,...,, are distinct. An empty context will be
denoted by white space. We will use the (self explanatory) notation I',z: o and
I, " for the concatenation of contexts, (where of course  does not occur in I') and
will write I' C I to mean that I' is a sub-list of IV. We shall write

P'FM: o

for the judgement that given the context I, the raw FIX_ term M is well formed
and has type a. In such cases the raw term M will be referred to as a FIX_ term
in context. These judgements are generated by the following rules:

Variables

Leia,I"F2ia

Basic Function Symbols

'Myioq,..., M,
Tk f(My,...,M,):

where f is any function symbol with sorting f:ay,...,a, — «
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Unit Terms

LF(): unit

Null Terms

'FM:null
PF{}.(M)a

Binary Product Terms

'FM:a THN:S F'FPiaxp CFPiaxp
P'F(M,N):axp I'kFst(P):a T HSnd(P):p

Binary Coproduct Terms

'FM:« 'FN:p
PElnlg(M):a+p PHInrg(N):a+ 8
Dye:ab F(z):y T,y:BF-G(y):y THCia+p
PH{F,G}C):v

Function Terms

L,eiak Fz):f FFFia—=f THM:
DEA(F):a—p TFFM:3

Computation Terms

I'FM: o 'E:Ta T,z:at F(a):Tp
TFVal()): Ta TF Let (E, F): T

Natural Number Terms
I'-M:nat
I'FO:nat I'F Suc(M): nat
'FM:a T,e:abk F(z):a 'k N:nat
I'FFN(M):a

Fixpoint Terms

'+ E:Tfix Dye:Tatk F(z):a T'FN:fiz
I'Fw:Tfiz I'ko(E): fiz IT'FIt,(F,N):a

Remark 2.5.3 The usual rules for weakening of contexts, and substitution of raw
terms for object level variables, are derivable from the above rules by simple struc-
tural induction.
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Equational Theories for FIX_

A FIX_ equation in context takes the form
'FM=M:«a

where M, M’ are raw FIX_ terms satisfying I' - M:c and I' = M": a. A FIX_ theory,
Th, is specified by a FIX_ signature, together with a specific collection of equations
in context, which are called the azioms of Th. The collection of theorems of T'h is
the least collection of equations in context which contains the axioms of T'h, and is
closed under the following rules:

Function Symbol Congruence

Every function symbol is required to be a congruence

Weakening
TFM=M:«a ,
F M = M a where I' C IV,

Equational Logic

I'FM:« TFM =M« P’FM=M:a TFM=M"uq«
TEFM=M:« THFM =M:« TFM=M"«

Unit Equations

't M:unit
kM = (): unit

Null Equations

[,e:nullk- F(z):a I'FM:null
TFF(M)={}s(M):a

Binary Product Equations

'-M:a THN:p 'tM:a THN:
CFFst((M,N))=M:« I'FSnd((M,N))= N:§
'FPiaxp

L'k (Fst(P),Snd(P)) = P:a x p
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Binary Coproduct Equations

D,etab Fle):y T,y:BFG(y)ry THFM:a
IH{F,G}(Inlg(M)) = F(M): vy
Lyetak F(z):y Ty:fFG(y):y THN:B
IE{F,G}(Inrg(N)) = G(N):vy
Izia+pBFH(2):y THCia+p
I'FA{uw.H(Inlg(w)),v.H(Inry(v)) }C) = H(C): vy

Function Equations

L,e:abk F(z):f THM:«a I'FM:a—p
PFA(F)M =F(M): B A (v.Mu)= M:a—p

Computation Equations
I'FM:a T,e:ab F(z):TB I'HE:Ta
't Let(Val(M),F)=F(M): T  T'Flet(E,zVal(z)) =E:Ta

F'FE:Ta T,z:abtF():Tp T,y:f+G(y):Ty
Ik Let(Let (B, F),G) = Let (E,u.Let (F(u),G)): Ty

Mono Condition

I'FVal(M) = Val(M'): Ta
FFM=M:a

Natural Number Equations

'FM:a Ta:ab F(e)a
I+FOM)= M:a
'FM:a T,z:ak F(z):a Tt N:nat
Tk FOUC)(M) = F(FN(M)): o
{ 'FN:inat THFGO)=M:a
I,e:ab F(z):a T,n:nat k- G(Suc(n)) = F(G(n)):nat I',n:inatt G(n):a

PFG(N)=FN(M): «

Fixpoint Equations

'+ E = Val(o(E)): Tfix
I'Fw = Val(o(w)): T'fiz 'tE=wTfiz
. T,o:Talk F(e):a 't E:Tfi
PFit,(F,0(E)) = F(Let (E,n.Val(lt,(F,n)))):
{ PEN:fie T,e:Talk F(z):
D,e:Tfiz - G(o(e)) = F(Let (e,n.Val(G(n)))):a T,n:fix kG(n):
PFG(N)=lt,(F,N):a
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The usual rule for substitution is derivable from the above rules. More precisely we
have

Lemma 2.5.4 The rule
Iz:akF N(@z)=N'(z):p T-FM=M:«a
I'FN(M)=N'(M"):B

is derivable from the rules given on Page 27.

Proof Use Function Symbol Congruence to deduce I'F A (N) M = A (N') M": 8.
The result follows. o

Remark 2.5.5 The Mono Condition is the syntactic requirement which captures
the idea that values may be trivially regarded as computations which evaluate
immediately to themselves. Note also that there are no side conditions on any of
the extensionality rules due to the fact that object level variables are regarded as
constants in the meta A calculus.
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Chapter 3
Categorical Semantics of the FIX_ Logic

3.1 FIX Categories

Definition 3.1.1 A FIX category is a let ccc which is endowed with finite co-
products, FPO, NNO and for which the components of the unit of the monad are
monics.

Imposing the condition that the unit components are monic captures semantically
the idea that a value may be trivially regarded as a computation. Note also that
to specify a FIX category we take a fized choice of strong monad.

The syntax of FIX_, in particular Null and Binary Coproduct Terms and Equations,
will be interpreted in FIX categories. In order to interpret such syntax soundly, the
FIX category must have stable finite coproducts i.e. the functor C' x (—) must
preserve finite coproducts. This is automatic: any FIX category is cartesian closed
and so C X (=) has a right adjoint.

Definition 3.1.2 A FIX category morphism F:C — D is a monad morphism (F,7)
between the underlying monads for which F' preserves the categorical structure up
to isomorphism, and each 1 is a natural isomorphism.

Remark 3.1.3 Note that the operation on objects A — T'A is not a categorical
property of the FIX category; as noted above there is a fixed choice of strong monad.
Thus to be given a FIX category morphism F': (C,T) — (D, S) means for each object
A in C we are given an isomorphism 7,: FT A 2 SF A which is compatible with the
remaining structure. For example, suppose we are given a morphism f: AX B — T'C

in C. Then there is a morphism ¢: FA x F'B & F(A X B) i, pro e SFC and

a morphism h: FA x FTB = F(Ax TB) "2Y) PTC for which, by definition, the
following diagram commutes:

Iy
FAx SFB ") SFC
Z'dX'Z:B ig
FAx FI'B Frc
h
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The (categorical) isomorphisms are, of course, the canonical ones, arising from
the categorical property of “having (specified) binary products” together with the
definition of finite product preserving functor.

An example of such a FIX category is wCpo. Note that the forgetful functor from
wCpo to Set reflects monics.

3.2 Categorical Semantics of FIX_

Structures for FIX_ Signatures

Let Sg be a FIX_ signature. A structure, M, in a FIX category C is specified by
the following data:

e An object [v] for each basic ground type v of Sg, and

e for each basic function symbol f: «y,...,a, — «, a morphism in C of the form

[T: lead .o X [@n] = [

Interpretation of the FIX_ Types

Given a structure M we shall now show how to interpret the syntax of FIX_ in
a FIX category C. The types are interpreted as objects in the category, where the
interpretation of a type « is denoted by [a]. We make the following definition
Definition 3.2.1 The interpretation of a type « is given by:

o [unit] 4 1 where 1 is the terminal object.

[null] ¥ 0 where 0 is the initial object.

[nat] % N where N is the NNO.

[fie] % Q where Q is the FPO.
[ x 8] = [] x [8]-

[+ A1 % [o] + [A].

[a—8] = [a]—-15].

[Te] ¥ T[e].
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Interpretation of the FIX_ Terms in Context

Given a context T' = [zy: oy, . .., @i ) leb [T] % Jeu] X ... X [e,]. Then for each
context T', raw term M and type « for which I'F M: « is a valid judgement, we
interpret this by giving a morphism :

[T'FM:a]: [T — [e].

Note that when I' M:« is a valid judgement, because the type « is uniquely
determined by M and T', we will abbreviate [I'+ M: o] to just [I".M], and to [M]
if ' is empty.

Definition 3.2.2 The semantics of terms in context is defined by a structural
induction on terms:

o [T,z 0,"a] ¥ 7] x [of x [I] = [].

o Let fiaq,...,q, — a be a basic function symbol; then

[0.f(My, .., M)] < [T [T] = [oad x - % [@] — [a].
o [L.0]%:r]— 1.

o [I.{}a(M)] IT.M]: [T] = 0 — [a].

o [[.(M,N)] = ([T.M], [T.N]): [T] = [of x [8].

o [['Fst(P)] € #[T".P]:[[] — [o] x [8] = [o].

¢ [[.5nd(P)] & [T.P]: [T] — [e] x [6] — []-

o [LAF,GHONE AT, 2: 0. F ()], [T, y: B.G(y)]}(id, [T.CT)
- 01— [T % ([e] + [8D) — []-

o [DInlg(M)] = [0 M]: [T] — [o] — [o] + [B].

o [Cine, (V)] < G0N [1] — [6] — [l + [5].

o [PA(F]E cur([l,2: . F(@)]): [T] — ([e]—[8]).

o [M.FM]= ap([L.F], [T-M]): [T] = ([e]—16]) x [o] = [5].

o [PVal(d)] & p[r.M]: [[] - [o] = T[a].

o [[.Let(E, )] ¥ ([T, 2: o.F(2)])(id, [T.E]): [T] — [T] x Tle] — T[]
o [P.O]¥ 0l:[I]—1— N.

o [I'.Suc(N)] ¥ s[L.N]:['] - N — N.
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[C.FN(M)] % a(id, [T.N]): [T] = [T] x N — [o]

where h is the unique morphism arising from the universal property of the
NNO together with the morphism

[T, z: . F(2)](ed, [T.M]): [T] — [I'] % [«] — [a]-

[Cw] ¥ wh 1] — 1 — TQ.

[[.o(E)] ¥ o[I.E]: [I] — TQ — Q.

[Tty (5, N)] % Aid, [0.N]): [1] — [ x © — [o]

where h is the unique morphism arising from the universal property of the
FPO together with the morphism

[T,z: Ta.F(2)]: [T] x Tla] — [o].

This completes the definition of the categorical interpretations of the terms in con-
text.

Models of FIX_ Theories

A structure M in C for a signature Sg¢ satisfies an equation in context I' - M = M": «
if [T.M] and [I'.M’] are equal morphisms in C. Given a FIX_ theory, T'h, then M
is called a model of the FIX_ theory if it satisfies all of the axioms of T'h.

The Substitution Lemma

Lemma 38.2.3 The categorical semantics interprets the substitution of a term for a
variable in a term via composition in the category. More precisely, if I' - M;: o; for
i=1,...,n and also [+ N(wy,...,2,): 8 where IV = [z;: ¢y, ..., 2, @], we have

[L.N ()] = [N (@)] o ([0, .., [T.M,]).

Proof The proof is a routine induction on the structure of N. Note that in Section
3.3 we shall investigate the most general interpretation of the syntax of a FIX_
theory subject to the requirement that substitution of syntax is modelled by com-
position of morphisms; this, in essence, supplies the details of the proof for terms
N of computation or fixpoint type. a

The Soundness Theorem

The most important property of models M of FIX_ theories is that any theorem of
a theory must be satisfied by M. Indeed we have the
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Theorem 3.2.4 [“FIX_ Soundness”] Let C be a FIX category, T'h a FIX_ theory,
and M a model of Th in C. Then M satisfies any equation in context which is a
theorem of T'h.

Proof We have to check that the rules for deriving equations in context are closed
with respect to satisfaction by M. The details are omitted. O

3.3 Interpretations of Computation Types and the
Fixpoint Type

The interpretation of most of the syntax of a FIX_ theory is perfectly standard
and well understood. However, the interpretation of computation types and the
fixpoint type is relatively new. Thus we shall show that our interpretations are the
most general we could hope for, given the proviso that substitution of terms in the
syntax is to be modelled by composition of morphisms in the category theory. Let
us suppose that we are given a FIX_ signature S¢g and a FIX category C.

Modelling the Types

The interpretation of the computation types T« is forced. As noted on Page 31,
the operation A — T'A is not a categorical property of the FIX category, but is
specified as part of the definition. Thus we interpret the type T'a by the object
[Ta] 4 Tla]. As for the type fiz, we shall, for the time being, interpret it as an
undefined object ().

Modelling Terms in Context of Computation Type

Consider the rules

I'tM:«a I'FE:Ta T,z:ak F(z):Tp
I'FVal(M): Ta I'FLet(E,F):Tp

In the syntax, substitution must commute with term formation. We model substi-
tution of terms, in the syntax, via composition of the interpreting morphisms in the
category C. Thus, to interpret the first rule, we need a natural transformation

0:C(—,A) = C(—,TA).
Using the Yoneda Lemma, we have a bijection
[Copa SCt](C(—, A)7 C(_, TA)) = C(A? TA)a

and in particular the action of the components 0 arise by post-composition with
a morphism f: A — T'A. By definition, this morphism f will be n,. To summarise,

[[.Val(M): Ta] % np4[T.M].
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Similarly, to interpret the second rule, we shall need a natural transformation which
has components

0c:C(C,TA)xC(C x A,TB) —C(C,TB).
If we apply naturality to a morphism (id, g): C — C' x T A we find that
9(.% f) = 0(7"2)]0(71-1 X ZdA))<7’dag>

where 7: C' x TA — C and 7,: C' X TA — T A. Thus we can soundly interpret the
second rule with a natural transformation which has components

6c:C(C x A, TB) —C(C x TA,TB).

Given a morphism f:C' x A — T'B we shall denote the effect of the components of
g by f — f*. Combining our results, we are led to the following definition

[T+ Let (B, F)] & f+(id, e),
where by structural induction we already have

Tye:aF(z)] = f
[T.E] = e

Modelling Equations in Context of Computation Type

Proposition 3.3.1 In order to soundly model the computation type equations we
need exactly the structure of a let category.

Proof Recall Definition 1.3.1. We established above the necessity of the existence
of the function

(—=):C(Cx A, TB)——C(C xTA,TB)
which is natural in C. This amounts to asking that
(f(g xid))* = f*(g x id)

where f:C' X A — TB and ¢: C" — C. This is precisely LiftS.

The computation type equations are

'k Let(Val(M),F) = F(M) (3.1)
I'kLet(E,u.Val(u)) = FE
[FLet(Let (B, F),G) = Let(E,u.let(F(u),d))

Working through the details, in order to soundly interpret equation 3.1 we need

f(id x n)(id,m) = f(id,m) (3.4)

36




where f:C x A — TB and m:C — A. For this, it is clearly sufficient to ask that

LiftB holds. For necessity, take
T:CXA— A 70 x A—C.

Then we have

[ = f(my xid){(id,m)

using an instance of 3.4 = (f(my X id))*(¢d x n){id, 7y)

using naturality of (=)* = f*(my X id)(id x n)(id, m1)
= f*(id xn).

In order to soundly interpret equation 3.2 we need

(7777'1)*<idae) = €

(3.5)

where e: C — T'A and 7y: C x A — A. Tt is sufficient for LiftH to hold. For necessity,

take

1:CxTA—TA 1:C X TA—C
T4 (C xTA) x A— A

Then we have

(nmy)* = (nmy)*(mz x id)(id, 7y)
from naturality of (=)* = (pmy(7s x 1d))*(id, 7y)
(

777"4)*(7:‘1) 7r2>
using an instance of 3.5 = m,

as required.

Finally, in order to model equation 3.3 soundly, we need to ask that

g*(id x f*)(id, (id,e)) = ((g9(my x id))*(id, f))*(id; €)
where

. CxA—-C fiCxA—-TB
¢:CxB—-TD eC—TA.

Now consider the projection morphisms

1:CxTA—C 73:CxTA—=TA
74 (C x TA)x A — (C xTA).

Using naturality of (—)* the equation 3.6 becomes

g*(id x f*)(id, (id,e)) = (g*(m1, [))*(id, €).
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It is certainly sufficient for equation LiftA to hold. Indeed, it is also necessary, as
we now show:

(g*(m1, £)) =

using naturality of (—)*

using equation 3.7 = (g

Modelling Terms in Context of Fixpoint Type

Consider the rules

I'FE:Tfiz INe:Tak F(z):a THN:fix
I'Fw: Tfix I'to(E): fix I'Flt,(F,N): «

To interpret the first rule, we shall need a global element of T'Q2. (Remember that
for the time being, () is just some arbitrary object of a let category). So we have

[lw] ¥ wh: [[] — 1 — TQ.

To interpret the second rule, with the usual assumptions about the way we shall
model substitution, we shall need a natural transformation

6:C(—,TQ) — C(—,0).

Using the Yoneda Lemma, the effect of the components 6 arise by post-composition
with a morphism ¢: 7§ — Q. Thus we have

[T (E)] & oe,

where, by structural induction we already have [I.E] = e.
To interpret the third rule, we shall need a natural transformation with components

0o:C(C xTA,A)x C(C,Q) —C(C, A)
Applying naturality to (id,n): C' — C x Q, we get
0<fa n) = 0(f(m x id), ma)(id, n>

where 71: C' x @ — C and 7,: C x @ — . Thus we can soundly model the third
rule with a natural transformation which has components

00:C(C x TA, A) ——C(C x Q, A),
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and we shall write f — f* for the effect of this function. Thus we are led to setting
[TI(F, N)] = f+(id, ),
where we already have

[T,z: Ta.F(z)]
[T.N] = n.

I
&h

Modelling Equations in Context of Fixpoint Type

Proposition 3.3.2 In order to soundly model the fixpoint type equations, we shall
need exactly a let category C which is endowed with a FPO.

Proof The fixpoint type equations are

'Fw = Val(o(w)) (3.8)

I'E=Val(¢(E)) D TFE=w (3.9)

T,et G(o(e))=F(Let(e,n.Val(G(n)))) D T'FG(N) =l (F,N) (3.10)
TFlIt, (F,o(E)) = F(Let(E,n.Val(lt,(F,n)))) (3.11)

It is easy to see that for the sound modelling of 3.8 and 3.9 it is necessary and
sufficient that the triple (w, o, Q) forms part of the equaliser diagram of Definition
2.3.2 of a FPO.

Note that in the FIX logic, (modulo rules for which we have soundness), rule 3.10
is equivalent to

T eF G(o(e)) = F(Let(e,n.Val(G(n)))) D TI,ntG(n)=It,(F,n) (3.12)
In order to soundly model 3.12 we see it is necessary that
g(id x o) = f(my, lift(ng))
g=1r
where f:C x TA — A, ¢:C xQ — A and 71:C x TQ — C; sufficiency of the

uniqueness requirement of a FPO is immediate.

()

Finally, we look at the structure needed to soundly model 3.11. Put
. C X TQ —TQ 1O x Q) — C 74 C X — Q.
Working through the details we shall need
f*(id x o)(id,e) = [f(id, ift(n(f(ms x id))*(id, m4))(id, €)) (3.13)

where e: C — T). However, we can appeal to (x) to deduce that (f(73 x id))* =
f*(ms x id); thus 3.13 reduces to

Fldxolide) = [(dlfnfIGde).  (3.14)
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The universal property of a FPO is certainly sufficient to ensure that 3.14 holds.
To see that it is also necessary, note that

Fmy, bft(nf*)) = f(my X id)(ed, Gft(n f*(my % id)){(id, 7,))
= f(my xid)(id, Lift(n(f(my x id))*)(id, my))
d)
)

using an instance of 3.14 = (f(my X id))*(id x o)(id, 7,)
= f*(m X d)(id x 0)(2d, 7,)
= f*(id x o).

Finally note that the universal property of a FPO ensures Q) and o are determined
up to isomorphism. O

3.4 The Categorical Logic Correspondence

Now we have all the ingredients to describe the usual categorical logic correspon-
dence for FIX_ theories and FIX categories.

Proposition 3.4.1 Given a FIX category C, we can define a certain FIX_ theory,
which we denote by Th(C).

Proof The basic ground types are the objects of C. For each morphism
fiA;x...xA, — B

in C there is a basic function symbol f:A4,..., A, — B. There is clearly a
canonical structure G for this signature in C. The terms of the theory are then
generated up according to the rules on Page 27. The axioms of T'h(C) are specified
by

I'M = N:« is an axiom of Th(C) iff [["M]g=[IN]eg.

O

Proposition 3.4.2 For each FIX_ theory, T'h, over some signature, Sg, we can
construct a syntactic FIX category which we denote by C(T'h).

Proof
o The objects of C(T'h) are the types of the signature Sg.
e The morphisms with domain « and codomain 8 are specified by
C(Th)(e, B) € {M(2) | z:ok M(2): 8}/ ~,

where the equivalence relation ~ is defined by

M(z) ~ M'(y) iff 2:at M(z)=M(z):5
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Composition is given by the usual substitution of terms; it is a tedious but straight-
forward task to check that this does define a FIX category. O

Theorem 3.4.3 Given a FIX category C, then there is an equivalence of FIX cat-
egories

Eq:C(Th(C)) ~C: Eq™?
where Eq and Eqg-1 are FIX category morphisms.

Proof Define Eq and F¢-! by setting
o Fgla) & [e]g and Eq—1(A) 4 4 on objects, and
o Eq(M(z)) U [2.M(2)]q and Eq=1(f) of f(z) on morphisms.

Note that Eq is well defined by appealing to Theorem 3.2.4. That we have an
equivalence of categories via inverse FIX category morphisms is a lengthy calculation
which is omitted. O

3.5 Definability of Fixpoints

Fixpoints in FIX_

The fixpoint type is so called because in its presence one can always define fixpoint
terms at all types of the form a—T' 3. We make this precise in the next proposition:

Proposition 3.5.1 [“Fixpoint Definability”] In the presence of a fixpoint object,
one may define expressions Y, 5 of the meta A calculus with arity TERM — TERM
for which given a FIX term in context I' F F': (a—T'f)—a—Tf we may derive

IEY,s(F):a—=Tp and TFEFY,a(F)= Yo 5(F): a—TB.
Proof We define Y, 4 by giving the representative

Ya,ﬁ(f) C}i_f lta—-rTﬁ(e‘Aa(w'Let (67 yfya'))7 0‘((.4))).

It is easy to see that the first judgement is derivable. For the second let us put
G ¥ eMo(z.Let(e,y.fyz)). Then

Yo (F) = ltaorslerq(zlet(e,y . Fyz)),o(w))
= A, (z.Let(Let (w,n.Val(lt,_15(G,n))),y.Fyz))
Ao (z.Let (Let (Val(o(w)), n.Val(lt,_75(G, 1)), y.Fyz))
= M@ Flt,_7s(G,0(w)))
= FY,g(F).
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Fixpoints in wCpo

Using the categorical logic correspondence we can easily see that in a FIX category
fixpoints of certain' morphisms always exist. In order to illustrate this we apply
the categorical equivalent of Proposition 3.5.1 on Fixpoint Definability to the FIX
category wCpo.

Suppose that D is an wepo and that D is its lifting. Write [D, D, ] for the contin-
uous maps from D to D,. Then it is well known that any continuous map

QS: [D7D.L] - [D’D.L]

has a least fixpoint. Now the categorical version of Proposition 3.5.1 on Fixpoint
Definability says that a fixpoint of ¢ should be given by it(¢)(T) where we note
that in wCpo it is the case that w & [T], T =0o([T]) and () arises as the unique
‘mediating morphism of the following diagram

o

Q, 0

i(4) L i(¢)

D,D,), 25 (D, D]

It is easy to see, using the commutativity of the diagram, that given n € Q/{T} we
have it(¢)(n) = (L) and that from the continuity of it(¢)

it(g)(T) =V ¢"(L).

neN

Thus 1(¢)(T) is exactly the least fixpoint of ¢ with respect to the order on [D, D, ];
of course the argument above is really the proof that wCpo has a FPO.

A Category without a Fixpoint Object

It is not always the case that a concrete category of domains has a FPO even though
the morphisms between lifted domains may be guaranteed to have fixpoints.

Definition 3.5.2 Let OnCpo be the category which has

e objects posets possessing suprema of all chains and

e morphisms monotone set functions; (we will call them maps).

It is easy to see that this category is indeed a let ccc when we regard the lifting
functor as giving rise to a strong monad. It is the case that all maps f: D, — D,

42



have a least fixpoint. For given any such map f, define for any ordinal ¢ the element
fe(L) by

o) =1

fert(L) = f(f(L)
L) =V fo(L) where A is a limit ordinal.
oA

This is a good definition. The only thing that is not trivial is the existence of fA(.L):
the set {f*(L) | @ < A} must be a chain. But a simple transfinite induction shows
that o < o < X implies fo(L) < fo'(L). Next note that there is some ordinal g for
which f8(L) is a least fixpoint of f. Suppose this were not the case. By appealing
to Hartog’s Lemma, we can find a least ordinal (say ) whose cardinality is strictly
greater than the cardinality of the domain of f, say |D, |. Using the hypothesis, it
must be the case that the cardinality of {f*(Ll) | @ < v} is strictly greater than
|D |, a contradiction.

Proposition 3.5.8 The let ccc OnCpo does not possess a fixpoint object.

Proof As OnCpo is cartesian closed we may appeal to Lemma 2.3.3.

Let us suppose that the fixpoint object € exists in OnCpo. We write 7:Q —
Q,, n +— [n] for the (monic) component of the unit of the lifting monad at 2.
From the equaliser condition of the fixpoint object, i0: ) — €1 has a unique fix-
point (which is not bottom), say [T] € Q. From remarks above there is an ordinal
B for which (i0)#(L) = [T]; note that 8 > 1.

We write o for o(L), cot1 for o[oe] and o* for \/ <) 0%; note that each supremum
exists.

The ordinals w + 2 and w + 1 are objects of OnCpo; we take w def {1,2,...}. Define
amap f:(w+2), — w2 by setting

1 ife=1
Ldef J n+1 iz =n]
@) = w if z = [w]

w+l fe=w+1]
and a map f,:(w+1), — w+1 to be f with restricted (co)domain.

Consider the diagram
o




(l)Ncommutes using the universal property of a FPO, (2) trivially. Similarly, there
is f:Q = w+ 2 making

(w+2), —f—>w+2

commute. From uniqueness, f = jf,. We shall now consider the cases when J is
strictly less than, or greater than, w. In the latter case we obtain a contradiction
by defining a map different from f which makes (3) commute.
(Case 1 < B < w): By chasing (1) we see that for any finite ordinal k, f,(o*) = k.
From the definition of g it is easy to see that ¢f = T. Chasing (1) at [T] € 2, we
get

B=1(T)=fo(T) = £ (T) = LT =8+1
a contradiction. Hence we must have
(Case w < B): Certainly o* < ov for any finite ordinal k, and so k = f,(o*) <
fr(aw). Hence f,(0%) = w. As 0f = T we have w = f,(0%) < f.(T) and so
5(T) =w.
Define a function F: Q) — w + 2 by

F(n)@f{ wH+l £ T<n

n) otherwise

it
Note that F(T)=w+1 and f(T) = jf,(T) = w, that is F # f. It is the case that

F' is monotone:
1. On elements of Q not greater than T, F' is monotone for f is.
2. f T<n<nin Qthen F(n) = F(n').

3. f n < n'in Q where n/ is greater than T but n is not, then F(n) <w +1 =
F(n').

Finally, F' makes the square (3) commute.

1. Clearly o1 < T and ol is not T. So Fo(L) = f(o1) =1 = fF,(L).
2. Suppose [n] € Q,; and n is greater than T. Then T = o([T]) < o([n]). So
Fo([n]) =w+1= f([F(n)]) = FFL([n]).

3. Suppose [n] € ©, and n is not greater than T. Then o([n]) is not greater
than T, for if so, as ¢ is an isomorphism, [T] = o~1(T) < [n] and this is not
so. Hence,

Fo([n]) = f(o([n])) = f(FL(In]) = f(IF()]) = FIF M) = FFL([n)).

By the uniqueness criterion, we have F' = f. This is not so. Hence there can be no
fixpoint object in OnCpo, as claimed. O

44



3.6 Functional Completeness

A concept which is closely related to the correspondence between FIX_ theories
and FIX categories is functional completeness. We begin by defining the notion
of functional completeness for let ccc’s and show these categories are functionally
complete. We refer to [LS86] for a similar discussion concerning cartesian closed
categories.

Definition 3.6.1 Let C be a let ccc and let A be an object of C. The polynomial
category C[X] in variable X is specified by the following data:

o The objects of C[X] are just the objects of C and

¢ a morphism of C[X] is an equivalence class, obtained by quotienting the col-
lection consisting of the morphisms of C together with an indeterminate global
element X:1 — A by the equivalence relation ~, where ~ is the least such
relation satisfying:

1. If fg=hinC, then gf ~ h.

2. If u~u' and v ~ v/, then vu ~ v

3. uotd ~u~idou.

4. (wv)u ~ w(vu).

5. Conditions forcing (formal) cartesian closure of C[X]; see [LS86].
6. If lift(f) = h in C, then lifi(f) ~ h in C[X].

7. If u ~ ' then Lft(u) ~ lift(w').

8. Conditions forcing C[X] to be a let category; for example, this amounts to
requiring
lift(v(u X td)) ~ lift(v)(u x id),
corresponding to LiftS of Definition 1.3.2; similar conditions hold for the
other let structure equations.

Remark 3.6.2 The polynomial category in n variables, C[X; ... X, ], is defined by
iterating the construction just given.

Now we prove a version of functional completeness for let ccc’s. If we assume that
we have already the categorical logic correspondence for let ccc’s, then we may
prove the next theorem using internal languages. Alternatively, the theorem can be
proved with bare hands, and the categorical logic developed in the same way that
Lambek and Scott prove an equivalence between ccc’s and typed lambda calculus.
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Theorem 3.6.3 [“Functional Completeness”] Let C be a let category and C[X] its
polynomial category. For every morphism uw: B — C in C[X] there is a unique
morphism

A(u):AxB—C
in C such that

Alu)(X!,id) =u

where I: B — 1. In particular, each global element of C' in C[X] is of the form fX
for some unique morphism f: A — C in C. Note that we now write = for ~, that
is, for equality in the polynomial category.

Proof As there is a proof of this result for ccc’s in [L.S86], we just give details of
the proof for the let structure. Take morphisms

v @ BxB —TC,
and hence [lift(u) : BxTB' —TC,
| : (AxB)x B — Ax(BxB),
m : Ax(BxTB)— (AxB)xTH,

where [ and m are the obvious isomorphisms. By induction, we shall assume that
there is a morphism

A(u):Ax (Bx B)—TC

that satisfies functional completeness. Then we define

AGifi(u)) % Bfi(A(w))m,
and refer the reader to [LS86] for the definition of A on the ccc structure. We have
to check that this is well defined, i.e. if v = v in C[X] then A(uw) = A(v) in C[X].
This amounts to showing that A respects each of conditions (1) to (8) of Definition

3.6.1; most of these are easy to verify, but we check in detail one of the let structure
equations of condition (8), namely lift(v(ur, 7)) = lft(v)(ur,n’). We have

A(lift(v{ur, 7)) = Lf(A(v(ur, 7)) )m
by definition is = lift(A(v)(
which is = Lft(A(v)(w~, (A(u)7r 7T/>>)
(A()!'((m, A(u)) x id))m
(

g
-

(
(v)
(v)
for appropriate I! = ()I'((m,
from the let structure = LGfe(A(v)!) ({7, A(uw)) x id)m
= Lift(A())ym!{m, (A(u)(m, 77'), 7'n’))
= A(lift(v))(m, A({ur, 7))
= A(lift(v)(ur, 7))
which is what we had to show. Now that we know A is well defined we prove the
result itself. Indeed,

AGRNXYid) = ER(A(u))m(XY, id)

46



( ((X,id) X id)
which as C[X] is a let ccc = Hf((A(w)])((X!,id) x id))
=AY, id)

(

and by induction = I

Hence the proof is complete. 0

Thus we have presented a proof of the functional completeness result by direct
calculation. As remarked above, we can then use the result to derive the categorical
logic correspondence. For an explanation of the general ideas, see [LS86].

Theorem 3.6.4 Given a FIX category C, then there is an equivalence of FIX cat-
egories

Eq:C(Th(C))~C,
where Eq is a FIX category morphism.
Proof(Sketch) The types of the theory Th(C) are the objects of C and the terms of
the theory Th(C) of type A are defined to be global elements in C[X; ... X, ] of the
object A. The rules of inference for finite products and lambda terms can be found

in [LS86)]. For the let structure suppose that we are given the terms E:1 — T'A
and M:1 — TB in Th(C). Then the term Let (£, X.M) is defined to be

lif(A(M)i)(id, E): 1 — TB

where i is the isomorphism 1 x A = A x 1. Equality of terms is given by equality in
C[X;... X,

The category C(Th(C)) has objects the types of Th(C) and morphisms terms of
Th(C) with one free variable. Now define Eq by the following recipe:

o Set Eq(A) ¥ A and

o given that (X:A, M(X):B): A — B in C(T'h(C)) where of course X:1 — A
and M(X): A — B in C[X], we put

Eq(X:A,M(X): B) ¥ A(M(X)oX)0

where §: A &2 A x 1 in C and we have made use of Theorem 3.6.3. The

remainder of the proof is routine calculation.
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3.7 Further Results about FIX Categories and FIX_
Theories

The Proof of Lemma 2.3.3

Proof Suppose that C is a let ccc and that the triple (w,0,) is a FPO satisfying
the hypotheses of Lemma 2.3.3. Let f:C x TA — A. We shall use the categorical
logic correspondence and work with the internal language of C. We need to find a
unique morphism f:C x Q@ — A such that

fid x o) = flm, Lifin])). (3.15)

With a view to using the uniqueness property of the T algebra, we look for a
morphism (say g) of the form ¢g: T'(C'—A) — (C'—A). Define such a g via the term
in context

e:T(C—A)F do(c.f(c, Let (e, 2. Val(zc)))): (C—A).

' Let us write F'(e) for the raw term (in context e). From this, we can define f by
the term in context

c:Cyn: QF It(F,n)e: A.
Let u: TQ. Using the rules of the logic FIX_ we get

aCyu:TQFI(F,o(u))e = F(Let(u,y.Val(lt(F,y))))e
by definition of Fi(e) = f(c,Let(Let(u,y.Val(lt(F,y))),z.Val(zc)))
= f(c,Let (u,y.Let(Val(It(F,y)),z. Val(zc)))
= f(c, Let(u,y.Val(lt(F, y)c))).

This says exactly that the equation 3.15 holds in C, as desired, with uniqueness
immediate from the FIX_ rules.

Conversely, given the existence of a T'¢ algebra for each C, just take C to be 1 to
get the required T' algebra. 0

Elementary Domain Theoretic Features of FIX_

FIX_ has certain features which seem to be close in spirit to those of axiomatic
domain theory and some properties of the abstract categorical semantics are very
similar to those of the concrete model wCpo. We note certain results concerning
FIX_ which have well known analogues in wCpo and begin with the following lemma:

Lemma 3.7.1 Work in an arbitrary FIX category. We can define a morphism
T4 0 — T A which is unique such that le(T,) = 140.

Proof Set 1, % it(let(idr,)). Note that let(id)let(nT ;) = let(let(id)n ) = let(T 4).
Hence the result follows from the universal property of the FPO. O
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Corollary 3.7.2 Given a FIX category C and a morphism f: A — T'B then the
following diagram commutes:

Q
Ta [P

TA teilf) TB

Proof Note that let(let(f)14) = let(f)let(T,) = let(f)Tao. Then the result is im-
mediate from Lemma 3.7.1. O

For any object A of the FIX category C there is a morphism 1 4:1 — T'A which is
defined to be | ,ow. In the concrete FIX category wCpo, the morphism 1,:8 — A,
is of course the continuous function which is constantly bottom. Thus the morphism
L4:1— A, just selects the bottom element from the domain A .

A question that remains unanswered is just how like axiomatic domain theory is the
FIX_ logic? For example, how do abstract fixpoints in FIX_ relate to least fixpoints
in the category of domains wCpo? We shall return to these issues in Chapter 10.

Fixpoint Objects in Polynomial Categories

Proposition 3.7.3 Let C be a FIX category with FPO Q. Then C[X] also has a
FPO, given by i(Q), where 1 : C < C[X] is the canonical inclusion functor.

Proof We show that the category C[X] has a FPO by appealing to Lemma 2.3.3.
Consider the diagram:

o

TQ - Q)
\&w,m (X1, id)
d X o
let(nh) Ax T Ax 0 h
k #(A(f))
A 4
axre 2 p——=—p
(X!, id) N
4
TB - B
f
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where k ¥ (74, if(nit(A(f)))). We set h % it(A(F))(X!,4d), where the morphism
A(f) is defined by appealing to Theorem 3.6.3. In order to prove that ho = flet(nh)
we inspect the diagram above. It is clear all regions commute except for k(X!,id) =
(X!,2d)let(nh). To prove this it is enough to show that lifi(nit(A(f)))(X!,id) =
let(nit(A(f))(X!,id)). We appeal to Theorem 3.6.3 and note

A(let{nit(A(H))(XL4d))) = LR(A(a(A(S)))(m, A((X!,d))))
= Lift(pr!(m, ()Y (m, (x, 7))
= Lift(nit( A(f))(m,7')).

It remains to prove uniqueness. Suppose also that go = flet(ng). Note that if
A(g) = it(A(f)) then h = it(A(f))(X!,1d) = A(g)(X!,id) = g; so it is sufficient to
prove the former. For this, if we can show A(g)(id x o) = A(f){(7 4, lift(nA(g))) we
are done using the universal property of the FPO Q in C. As A(go) = A(g)(:d x o)
it is sufficient to prove A(f)(my4, lift(nA(g)))( X!, :d) = go. We have

A(F)(ma, liftnA(g)N(XYid) = ACS)(XL life(nA(g)) (X!, id))
using uniqueness of A(—) = A(f)(X,let(ng))

= flet(ng)

and so we are done. Finally, the equaliser condition is simple to verify. O

Completeness of the Models of FIX_ Theories

Theorem 3.7.4 The semantics which we have given to FIX_ theories T'% is both
sound and complete. By complete, we mean that an equation in context is a theorem
of T'h just in case it is satisfied by all models of T'h.

Proof We proved soundness on Page 35. An equation E is a theorem of the theory
Th just in case it is satisfied by the generic model G. But if E is satisfied by all
models, in particular it is satisfied by G. a

Remark 3.7.5 It is possible to check that for any FIX category D and model M
of T'h in D there is an essentially unique FIX category morphism I: C(Th) — D for
which we have I[I'"M]g = [I'.M]y. In particular, if Th is the pure FIX_ theory
(no extralogical axioms), then C(T'h) is (essentially) an initial object in the category
of FIX categories and FIX category morphisms.

3.8 Gluing for Let Cartesian Closed Categories

The technique of gluing originated with Freyd, who presented a neat method for
proving the existence and disjunction properties of certain intuitionistic type theo-
ries. His proof made use of a certain topos £ manufactured from two other toposes;
& is the so-called glued topos and for an account of this see [LS86). The essence of
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the method involves the careful application of a certain theorem from topos theory.
A simple version of the theorem just for ccc’s can be found in [Laf88). We now
prove a version of the theorem for let ccc’s.

Lemma 3.8.1 [“Let ccc Gluing”] Let I D — C be a functor where D is a let
ccc and C is a ccc. Suppose also that C has pullbacks and that I' preserves finite
products. Write GI(T') for the category (C|I') and note that there is an obvious
functor m: (C|T') — D. Then it is the case that

1. GI(T) is a let ccc.

2. m is a morphism of let ccc’s.

Proof It is a well known result that GI(T') is a ccc, for example see [Laf88]. We
shall denote a typical morphism in GI(I') by

(a,8): (4, f,X)— (B,g,Y).

Note that the property of being a let ccc is not a categorical property. By the
statement that GI(T') is a let ccc, we mean that there is an obvious canonical choice
for a let structure. We make the following definitions:

1. T(A, f,X) = (A,T(n)f, TX).
2. n(A,f,X) déf (Zd777) (Aa faX) B T(A> faX)

3.
(a,8): (A, f,X)x (B,g,Y) — T(C,h,2)

lift(a, s) % (a, Bft(s)): (A, f, X) x T(B,9,Y) — T(C,h, Z)

The first two definitions clearly make sense. We note that the third definition is
good:

X _ I'(ed x
axs Y rx Y TETr(X xY) G pox 7y
o I(s) (i)
r ,
C h 17 (n) -1'T7 « = ] I'rz

We have to verify that the equations of Definition 1.3.2 on page 12 hold. We just
check LiftA. Take morphisms

(a,8): (C,h, Z) % (A, f,X) — T(B,g,Y)

(6,8):(C,h, Z) x (B,g,Y) — T(D,k, W)

(m,7):(Coh, Z) x (A, [, X) — (C,h, Z).
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Consider the commutative diagram:

Cx A @) .Cx B b __.p
h hxf hx T(n)g
'z xIrx 'z xIx I'Z xI'TY
" wdxT'(n) ‘
= I'(n)k
& I'Z x X) =
A’Y W’\\
I(Z x TX) ~T(Z x TY) TTW
) (=, lift(s) L(Gfi(t))
4 D(Lft(lefi(t)(n’, s
. (f(lif(e) () gl

From this, it is easy to see that

Lift(lift(b, t) o (7, 7"), (a, 8))) = ULft(lift(b,t) o ({m,a),(n,s)))
and using the diagram = lift(b,t) o ((m,a), (x', lift(s)))
= 0, 1) 0 {(m, ), (0, ()

This is exactly LiftA for the glued category GI(I'). It is immediate that = is a
morphism of let ccc’s. i

Let U be the forgetful functor from the category of locally small let ccc’s to the
category of locally small categories. There is, of course, a free functor F' from the
category of locally small categories to the category of locally small let ccc’s, where
on objects we write FC for F'(C). Then F' is left adjoint to U and we write I for
the unit of the adjunction; thus there is for each locally small C a canonical functor
Io:C — FC. Now we can prove

Corollary 3.8.2 Let C be a locally small category, and FC the freely generated let
ccc. Then the canonical functor I: C « FC is full and faithful.
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Proof Consider the commutative diagram

I

C FC

o

[co”, Sed

where H is the Yoneda embedding of C into its topos of presheaves, and the functor
® arises (essentially) as the mate of H across the adjunction (F' - U) where [C*P, Se]
is regarded as a let category with the identity strong monad. H is faithful, implying
[ is too.

Let T’ be the composite
I*o H: FC — [FC, Set] — [C°P, Set].

There is certainly a natural transformation a:C(—,+) — FC(I(—=),I(4)). So, for
each A in C there is a natural transformation

C(A:HA —To I(A)C — [COP,SBt].
Thus we may define a functor
J.C — ([C?, Sef]|T)

by setting J(A) < o, and J(F) def (£, TI(f)). That J is well defined follows the
naturality of @ and that ([C°?,Sef]|T) is a let ccc follows from Lemma 3.8.1.

If 7: ([CP, Sef)|T') — [C°P, Sed] and «/: ([C°?, Sef] |T') — FC are the usual projection
functors, then clearly we have nJ = H and n'J = I.

The universal property of the category FC says that the following diagram com-
mutes up to natural isomorphism,

¢ — . (e, se|T) v FC

|/

where, say, : KI = J. Now, w/e: 7' KI & «'J = I. By the uniqueness condition of
the universal property, there is a natural isomorphism :7/'K = Idgc. It is also
clearly the case that k; = 7/¢.
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Now take objects A and B in C and a morphism g: A — IB in FC, and consider

the diagram
-1

Ly
Hy—————— 7JA TKIA
m(tgo Kgouz') nKg
iR
Hy =——1JB nKIB

The Yoneda embedding is full, thus there is f: A — B in C for which f, = n(h)

def - . .
where we set h = 150 Kg o', Now, for each object A in C, we have a natural
transformation

apHy =71JA— I'n'JA =TIA.
This leads to

apfe = agom(h)
= (Tox)(h)oay
= D(kpon'Kgon'izl)oay
I'(g) 0 ay
= HgI(“) 0y

Hence it is the case that ap 4 0 H¢ = HI4 o ay , and applying this to id, we get

I(fotdyotdy) = goidrgoidry
that is I(f) = g,

which says exactly that the functor I is full. O

The last result follows from an adaptation of Pitts’ proof of the corresponding result
for cce’s. We may derive from Corollary 3.8.2 the following

Proposition 3.8.3 Given a AMLy theory Th, any term M of ground type v con-
taining no object level variables is provably equal in the equational logic of AMLy
to a ground term M’ of type v. (A ground term is simply a raw term of AML for
which all function symbols are basic.) ’

Proof The term M corresponds to a global element of the denotation of « in the
classifying category of the theory T'h. But by Corollary 3.8.2, this global element
arises as a global element of the denotation of v in the syntactic category arising
from the ground types and terms. This says exactly that M is provably equal to a
ground term M’ in the logic of AML. O
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Presheaves on Categories with Monads

We finish this chapter with a miscellaneous result, namely:

Proposition 3.8.4 Let C be a locally small category and (7,7, 1) a monad over
C. Then the category of presheaves on C is a let category for a certain choice of
monad.

Proof We define a strong monad (.5, ¢, v,7) on [C’, Set] by setting
o SF(A)Y F(TA)and SF(f) ¥ F(T]),
¢ (Sa)A = AT 4,
¢ (GF) (77A)

o (vF), ¥ Fuy) and

o (T(FG )A &f F(UA) X 1dg(ra)

where f: A — A’ is a morphism of C and a: F — G is a morphism of [C??, Sei.
It is routine to check that that we have defined a strong monad and appealing to
Lemma 1.3.5 we are done. O
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Chapter 4
The FIX Logical System

4.1 Why Introduce the FIX Logic?

The definition of an initial T' algebra o: TQ — § for an endofunctor T' contains
both an existence and a uniqueness clause. The uniqueness requirement amounts
to a form of induction principle, which is stated precisely in the following theorem
for which a reference is [LS81].

Theorem 4.1.1 [“Initial 7' Algebra Induction Principle”] To show that a subobject
7.8 < Q is the whole of , it suffices to show that the composition ¢T%:T'S — Q
factors through i: 5 «— (. O

For the functor (—)+1 on the category of sets, the object part of the initial algebra
is the natural numbers and the above theorem is equivalent to the usual principle
of mathematical induction; this is a well known fact.

As another instance of initial T' algebra induction, we consider the case when the
category is wCpo, the endofunctor is lifting and subobjects are given by inclusive
subsets. Suppose that i: S < ) is an inclusive subset of the fixpoint object ( =
{0 <1<...< T}. Then we have that S is just the inclusive subset of {1, given
by {e € Q, | ¥n € Q.[n] = e D n € S}. Thus we can state Theorem 4.1.1 by way of
following induction principle:

YVeeQ,.(Vnen]=ednelS)Dole)e s
Q=_5

Just as least fixed points are definable using the universal property of the initial
(=)L algebra Q, so is Scott’s induction principle for least fixed points [Sco69b]
derivable from the above induction rule.

Proposition 4.1.2 [“Scott Induction”] Let P C D, be an inclusive subset, and
let f: D, — D, be a continuous function. Then we have

leP VdeD;deP>f(deP
fie(f) € P

Proof In Theorem 4.1.1 take § % {n € Q | h(n) € P} where & is the unique
mediating morphism arising from f,:(D,), — D, and the FPO Q. Then S = Q
and so fiz(f) = h(T) € P. 0
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In order to formulate this induction principle for the fixpoint type in FIX_ we
introduce a constructive logic [Bee85], called FIX, of properties of terms over FIX_.
There are similarities between FIX and the traditional “axiomatic domain theory”
of LCF [Pau87] and to Plotkin’s approach to denotational semantics using partial
continuous functions [Plo85].

4.2 The Predicate Logic FIX

The FIX propositions constitute part of a predicate logic with equality. The rules
for equality, conjunction and universal quantification (over elements of a given type)
form a fragment of first-order intuitionistic predicate calculus [Dum77]. Addition-
ally there are certain predicate constructors which implicitly contain forms of impli-
cation, disjunction and existential quantification. In order to set up a formal system
for our logic, we begin by defining an extension of the notion of FIX_ signature,
which was defined in Section 2.5.1.

Signatures for FIX

Definition 4.2.1 A FIX signature Sg is specified as in Section 2.5.1, together with
the following data:

o A collection of basic relation symbols, together with the following distinguished
relation symbols: =,, true, false, &, V,, O, O, +.

o A sorting for each of the basic relation symbols, which is a list of n types, and
will be written:
Riay,...,«ap.

In the case that n is one, we shall write R: . We say that R is an n-ary basic
relation symbol when its sorting consists of n types.

We use the signature Sg to define the propositions of our logic. Given such a Sy,
we shall define from this an abstract syntax signature Y. The collection of ground
arities, GAr, is the set {TERM, PROP} and the collection of constants, Con, consists
of all function symbols, all relation symbols, and a countably infinite set of object
level variables. The function symbols have the same arities as those designated
on Page 24 and the object level variables arity TERM. The n-ary relation symbols
are considered to have arity TERM” — PROP, the distinguished relation symbols
which will represent truth, falsity, equality, conjunction and universal quantification
have their usual arities and the remaining distinguished relation symbols have the
following arities:

1. +:(TERM — PROP) — (TERM — PROP) — TERM — PROP

2. O:TERM — (TERM — PROP) — PROP
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3. &:TERM — (TERM — PROP) — PROP

Associated with a FIX signature Sg is a collection of raw FIX terms and raw FIX
propositions. These are the closed expressions of the abstract syntax generated from
¥ of arities TERM and PROP respectively.

Propositions in Context for FIX

We shall write
I'F® prop

for the judgement that given the context I' the raw proposition @ is well formed.
These judgements are generated by the following rules, where in the case of the
basic relation symbols, the sorting of a certain symbol is used to determine the
form of the introduction rule.

Basic Relation Symbols

'-My:a,...,I'FM,:a,
L'+ R(My,...,M,) prop
where R is a basic relation symbol with sorting R:aq,...,a,

Equality Propositions

I'CM:a THM":«
I'M =, M’ prop

Truth

[' - true prop

Falsity

I' +false prop

Conjunction Propositions

I'® prop 'Y prop
I'-® & ¥ prop

Coproduct Propositions

[,o:at ®(z) prop T,y:8F ¥(y) prop THCia+f
PF(®+ ¥)(C) prop
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Universal Quantification Propositions

Iz:ak &(2) prop
I'FV,(®) prop

Universal Modality Propositions

I,z:at ®(2) prop T+ E:Ta
I'FO(E,®) prop

Existential Modality Propositions

ye:abk ®(e) prop THE:Ta
I't<O(E, ) prop

Remark 4.2.2 The usual rules for weakening of contexts, and substitution of raw
terms for object level variables, are derivable from the above rules by simple struc-
tural induction.

Propositional Theories for FIX

Now that we have the propositional syntax for the FIX logical system, we present
rules for deducing the validity of the propositions. These rules will be presented in
a sequent natural deduction style. We will use a sequent in context as our basic
judgement, which will take the form:

T,AF®.

Here, A is a finite set of propositions. The intended meaning of a judgement is
that one has a deduction of ® which involves a certain number of undischarged
hypotheses, each of which must occur in the set A. We shall write I', A, ¥ + ® for
IAU{¥}+ & and in the case that A is empty, we simply omit the symbol A from
the judgement. A FIX theory, Th, is specified by a FIX signature, together with a
specific collection of sequents in context, which are called the azioms of Th. The
collection of theorems of Th consists of the least collection of sequents in context
which contains the axioms of Th, and is closed under the following rules:

Weakening
LAF®

m (wk) where I' C TV

Identity
'® prop T'HA prop
LA, OF®

(id)
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Substitution
L, z:a,A(e)F®(z) THFM:
D, A(M)F ®(M)

sub)

Cut
IAF® IO,ANFVT

- (cut)
T,A N

Equations
Every logical rule for deducing equations in FIX_ becomes a rule in the FIX logic,
where judgements of the form I'+ M = M': o become judgements of the form
'-M=,M.

Null Type Falsity Entailment

————— (null)
z: nulll false

Truth Entailment
'+ A prop
— (T
T, A Ftrue

Falsity Entailment

I'Atfalse T'+@® prop
L
LAF®

Equality Entailment

— (= ref
m:al—m:am( )

= sym
. ey o ol e — ( ym)
ria, i, s =0 2=,

(= tran)

ea, 2o, 2o, e =, 0, ' =, " Fa =, 2"
D,aziabk M(z): B
D,e:a,2a, v =, &' F M(z) =5 M(2')
[,z:at ®(z) prop
(= sub2)
[z:a,a"ia, v =, ', 8(a) - O(2')

(= sub1)
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Conjunction Entailment

T,AF® [, AFU

&i)
T,AF®& U
[,AFO& U T,AFO& T
______(&e) —_— e
T, AF® T, AFU

Universal Quantification Entailment
Iz:a, A 3(a)

T, AV, (®)
L, AFY,(®) THM:a

T, A+ ®(M)

(Ve)

Universal Modality Entailment
Lyz:a, A, Val(z) =7, EF ®(2)

(0i)
T, A+ O(E,3)
T, AFO(E,8) T, AFVal(M) =g, E
(Qe)
A+ O(M)

Existential Modality Entailment
IyAFVal(M) =7, E T, AF®(M)

&)
T, A+ O(E,®)
Lye:a, AVal(z) =7, E,®(2)FT T, AL O(E, )
[LARY

(Ce)

Coproduct Entailment
I,AF®(M) T,y:8+9(y) prop

I AF¥(N) T,z:ak ®(z) prop

T, AR (@ + U)(Inly(M))
LLAR(® 4 0)(C)
L,zia, A, Inlg(z) =445 C, (2)F O(F(2))
P,’!/:ﬁ, A) Inra(y) “atp C’ \Il(y) F ®(G(y))
I AFO{F,G}HC))

(+e

)

L, AF(® 4 U)(Inr,(N))

+1)

Disjoint Sum Condition

(d4jsun)
Ly A Inlg(M) =445 Inty(N) F false
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Modality Condition
[, AF Let(E, F)=p, Val(M)
mo
D,AFO(E, 2. F(r) =74 Val(M)) (

d)

, Nat Induction
T, AF®(0) TI,n:nat, A,®(n)kF ®(Suc(n)) Tk N:nat

natin
[, AF®(N) ( )
Fix Induction
L,e:Tfiz, A,0(e,®)F ®(c(e)) T'k N:fiz
(fixin)

T, AF®(N)

This completes the rules for deriving sequents.

Informal Explanation of the FIX Propositions

The FIX logic has many features in common with intuitionistic predicate calculus;
for the latter see [Dum77]. However, it introduces propositions of the form O(e, @),
O(e, @), (@ + T)(2), and so we shall describe informally the intended meaning of
this syntax:

For the universal modality, O(e, @), the intended meaning is
Vz: a.(Val(z) = e D ¢(z)),

which we read as “for all & of type «, if it is the case that e is provably equal to the
value of  then necessarily ®(z) holds.”

For the existential modality, O(e, ®), the intended meaning is
Jz: aVal(z) = e & ®(z),

which we read as “it is possible that e is provably equal to Val(z) and that ®(z)
holds.”

For coproduct propositions, (® 4+ ¥)(z), the intended meaning is
(Fz: .z = Inlg(z) & () V (Jy: B.z = Inry(y) & Y(y)).

which we read as “it is either the case that z is provably equal to Inlg(z) and that
®(z) holds, or it is the case that z is provably equal to Inr,(y) and that ¥(y) holds.”

Remark 4.2.3 Each of the terms FN(M) and It,(F, N) is unique up to provable
equality in the FIX logic. In FIX_ it is necessary to impose rules which make
uniqueness explicit. However, in the FIX logic, this uniqueness is derivable from
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the rules for Nat and Fix Induction. Consider, for example, the uniqueness rule for
the fixpoint type. Set ®(n) & G(n) =, It(F,n) where n: fix. Using the FIX rules
we may deduce that
L,e:Tfiz,n: fix, A, e = Val(n),
{ O(e, @) b F(Let (Val(n),u.Val(G(u)))) = F(Let (Val(n), u.Val(lt(F,v))))
and this implies T, e, A, O(e, @) - ®(o(e)); we are done by (fixin).

4.3 Adjoint Style Formulation of the FIX Logic

The Adjoint Rules

The FIX logic can be presented using rules which are closely related to the cate-
gorical semantics given in Chapter 5. The new system is given by substituting the
following rules for their counterparts in the FIX logic.

Equality Entailment
L, 2ia, 2ta,A, 2 =, 2" F O(2)

(= ad)
[, eia, AFO(2)

Conjunction Entailment
INAF® T,ARVU
CLAFO & W

(&ad)

Universal Quantification Entailment
[, z:a,AF0(2)
[,A RV, (D)

(Vad)

Universal Modality Entailment
I, z:a,A(Val(z)) F o(2)
I, eeTa,A(e) - O(e, D)

Existential Modality Entailment
L, 2:a,A(Val(z)), ®(z)F ¥(Val(z))
Iy e:Ta,Ae), Oe, ) - ¥(e)

Coproduct Entailment

L, zia, A(Inlg(2)), ®(2)F O(F(z)) T, y:8,A(Inr,(y)), ¥(y)F O(G(y))
L, zia+ B,A(2), (2 + ¥)(2)F O{F,G}(2))

(+ad)
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Equivalence of the Systems

Lemma 4.3.1 The following are derived rules in the FIX logic, where I' - M: « is
a FIX term in context:

IAF ®(M) (65) LAM)E®
ts
Iz,A,z =M ®(z) Lz, A(z),e=MF®

(es)

Proof We omit the proof of rule (ts); for rule (es), note that the backwards
direction follows from (sub). For the forwards direction, it suffices to show the case
when A is a single proposition. Indeed, we have:

h
[,z FO(z) prop (byp)

I,z,2',0(z),z = 2'F O(a)
sub) (hyp)
I,z,0(z),e = MFO(M) I‘,:c,@(M)}—% )
cut
I'z,B(z),e=MF®

(sub2)

O

Theorem 4.3.2 The original FIX logic and the system defined on Page 66 are
equivalent.

Proof The proof of the equivalence for equality, conjunction and universal quan-
tification is well known. We give details for the remaining forms of proposition:

(Case (Di)(Qe) imply (Oad)):

(hyp)
[,e, A(e) - O(e, @)
Iz, e Ale),e = Val(z) F O(e, @) I, z,e A(e),e = Val(z) F e = Val(z)
L, z,e, Ale),e= Val(z) F ®(z) sub)
T, z,A(Val(z)), Val(z) = Val(z) - ®(z)
Iz, A(Val(z)) F @(z)

(Qe)

(hyp)
Iz, A(Val(z)) F ®(z) )
I',z,e,Ale),e=Val(z) - ®(z
(e = VAl o) =

[ye, A(e) - O(e, @)

where (es) was established in Lemma 4.3.1.
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(Case (Dad) implies (Oe)(01i)):

(hyp)
T, AFO(E, )
(ts)
Iye',A,e' = EFO(e, @)
(Dad)
I'z,AVal(z) = E+ &(z) (hyp)
b
T, AVal(M) = EF&(M) T AFVal(M) = E
t
T, AF (M) (cut)
(hyp)

I'yz,A,Val(z) = E+ &(z)
I'ye,A,e=E+ O(e, 9)
I,AFO(E,®)

(Oad)

(Case (O1)(Ce) imply (Oad)):

(hyp)
I',z, A(Val(z)), ®(z) - ¥(Val(z))
I'ye, z, Ae), ®(z),e = Va (m)i—\ll()
I'ye,z,Ale), O(e, ), ®(z), e = Val(z) - U(e) [ye,Ale), (e, @) F (e, D)

I'ye, A(e), O(e, @) F U(e)

where the last rule is (Oe).

s (hyp)
. T — (1d)(<1)
ye,2,A(e), ®(z), Val(z) = e - O(e, D) Iz, e, Ale),Oe, @) F U(e)
I'ye,z,Ae), ®(z),Val(z) = et U(e)
[, z, A(Val(z)), ®(z) F U(Val(z))
(Case (Oad) implies (O1)(Oe)):
(hyp)
I'a, A, E = Val(z),®(z) ¥
(Cad)
Ie,AVE=¢,0(e, @) F U (hyp)
VA O(E, @) - IAFO(E, D)
ARD
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(hyp)
[ye, A, Oe, @) F O(e, @) AR ®(M)
b o@) Foalen ) Y T he-Mro( (t)
Iyz,A,x = M FO(Val(z), @)
FAFoMaGn e o)
and the result follows using I', A + E = Val(M).
(Case (+i)(+e) imply (+ad)):
(hyp)
T, z,z, A(Inl(z)), ®(z) F O(F(z))
L, z,2,A(2),z = Ini(z), ®(z) - O(F(z))

T, 2,z,A(2), YR
(® + T)(2),z = Inl(z), ®(z) - O(F(=)) , 2, A(2),
{ ) and similarly for G { (@ + U)(2) F (2 + T)(2)

T,2,A(2), (2 + ¥)(2) F O({F,G}(2))
where the final rule is (+e).

(hyp)
I, 2, A(2), (@ + 0)(2) F O({F, G}(2)) L, z, A(lnl(z)), @(z) - @(x) (1)
{ Tz, { I, z, A(Inl(z)),
A(Inl(z)), (@ + ©)(Inl(z)) - O(F(z)) ®(z) F (® + ¥)(Inl(z))
I, z, A(Inl(z)), ®(z) F O(F(z))
(Case (+ad) implies (+1)(+e)):
R%A&@+WX)(@+WX@CM®
T, z,A, ) F (@ + ¥)(Inl(z)) (hyp)
DA, ®(M)F (@4 T)(Inl(M)) I,AE®(M)
DA F (D + 0)(Inl(M))
(hyp)
[, z,A,Inl(z) = C,®(z) F O(F(z)) (1ad)
DAz=C @+ W)E)FO{RGIE) (nyp)
T, A, (2 +T)(C)FO({F,G}C)) LA E (@ +T)(0)

L,AFO({F,G}C))
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4.4 FExtensions of FIX

Some Inconsistent Extensions of the FIX Logic

The induction rule for nat is just the usual principle of mathematical induction.
The induction rule for fiz can be rendered informally as: to prove that a property
®(n) holds of all elements n in fiz, it is sufficient to prove for all computations e
of an element of fiz that ®(co(e)) holds if whenever e evaluates to a value, that
value satisfies ®(z). This principle is consistent (see Section 5.1) but only because
the FIX propositions have limited forms. In fact, extending the FIX logic with
unrestricted intuitionistic negation, implication or existential quantification renders
it inconsistent.

Proposition 4.4.1 Extending the FIX logic with intuitionistic implication renders
the system inconsistent.

Proof Since FIX contains falsity (false), adding implication (® > W) means that
one also has negation (—® = (® D false)). So consider the proposition

®(n) = =(o(w) = n)

about n:fiz. From (ts) we can deduce that I',e: T'fiz, A, O(e, ®),w = et O(w, P)
and using Proposition 4.5.1 we see that T', A, O(Val(c(w)), ®) F &(o(w)). Recalling
that w is provably equal to Val(c(w)) together with the rules for intuitionistic im-
plication it is easy to see that

I'e:Tfiz,A,O(e, ®),w = e, 0(w) = o(w) I false.

But the structure map of any initial T' algebra is an isomorphism, which means that
in FIX we have I',e, A, 0(w) = o(e) F w = e. Hence

I'ye:Tfiz,A,O(e, ®),0(w) = o(e) I false

and applying (fixin) we have I', n: fiz, A F ®(n).
So the induction principle for fiz entails that ®(n) holds of all n € fiz, and in
particular of o(w), which is a contradiction. O

Proposition 4.4.2 Extending the FIX logic with intuitionistic existential quan-
tification renders the system inconsistent.

Proof This proof mimics the ideas which show that the category wCpo together with
inclusive subsets does not model standard intuitionistic predicate calculus [Dum77].
Recall that in wCpo, Beck Chevalley conditions fail for left adjoints to projections;
for if this is not the case we can deduce that such left adjoints take inclusive subsets
to inclusive subsets by unravelling Beck Chevalley at a global element in wCpo.
Then considering the wepo N x  and inclusive subset

{(m,n) |meN&neQ\{T}&n<m}
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we can deduce that {n ] n € Q\ {T}} is inclusive in §. This is not so.

Consider the term L % ItTﬁm(e Let (e, z.2),0(w)): Tfiz (recall the discussion of do-
main theoretic properties of FIX on Page 48). Set

(n) & 3,0(m.(w.o(Val(u))™(o(L))) = n

Using the usual rules for intuitionistic existential quantification together with the
FIX rules we may deduce e, n,e = Val(n), O(e, ®) F ®(n) - ®(o(Val(n))) and from
(fixin) we have n: fiz - ®(n). In particular this means that

F Jnai(m. (w0 (Val(u)))™(a( L)) =g o(w)-

Using (mono) and that o is an isomorphism we conclude + L = w. O

4.5 Further Results about the FIX Logic

The Modality Conditions

We state and prove a proposition which we shall make use of in Chapter 5 where it
will be used in establishing a categorical logic correspondence for the FIX logic.

Proposition 4.5.1 Within the FIX logical system, the following birules are deriv-
able:

T, A+ ®(M) T, A+ ®(M)
T,AF O(Val(M), d) T,AF O(Val(M), @)

IAF®(M) T, y:3, AFU(y) prop [LAFU(N) T, zia, A ®(z) prop
L,AF(®+ ¥)(Inl,(M)) Ly AR (@4 T)(Inrg(V))

Proof The forward directions of each of these birules are easy to see and thus we
omit the details. We shall give details of the backwards directions for the existential
modality and coproduct.

First, the existential modality. We have

(mono)(cut)
T,2,y,A, Val(e) = Val(y), ®(z) - 2(y) (Oad)
Iye,y, A e =Val(y), O(e, @) F O(y) (sub)

Lyy, A, O(Val(y), ©) - &(y)

from which the result is immediate. Now we move to the coproduct.
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We have

f (hyp)
LA (@ + ¥)(Inl(M))
(id)
Iz, A, Inl(z) = Inl(M), ®(z) F &((v.u)(z))
(ajsum)(L)
Ly, A dney) = WO, W) 80 0000)
LA F O({u.u, v.M}(Inl(M)))
and the result follows from the rules for Coproduct Equations. O

Frobenius Reciprocity for the FIX Logic

To prove a Frobenius Reciprocity style rule for the FIX logic, it is convenient to use
the next lemma.:

Lemma 4.5.2 In the FIX logic, if I', A, ® - ¥, then

e, A, Ole, y. @) F e, y. 7).
Proof Use (Cad) and (sub). O
Proposition 4.5.3 Within the fix logical system, the following birule is derivable:

Tye,z, A (e, y.®(2, Val(y)) & U(z,y))
Lye,z, A @(z,e) & Ole, y.¥(z,y))

fr)

Proof First we prove the forwards direction. From the hypothesis, Lemma 4.5.2,
and the rules (&ad) for conjunction, we deduce!

Ole,y.0(z, Val(y)) & U(,y)) F Ole,y.2(z, Val(y))) & Ole, y.¥(z, y)).
Also, we have

(14)(= ad)(sub)

(id)

e = Val(y),
{ P(z, Va%y))) - ®(z,e) Ole, y.9(z, Val(y))) F (e, y. (=, Val(y)))

S(e,-0(z, Val(y))) F B(a, )

(Ce)

and the result is immediate from the rules (&ad).

For the backwards direction, note that using (1) we have

O(z,e), U(z,y), Val(y) = et O(e, y.®(z, Val(y)) & ¥(z,y));

1 For sake of space we omit contexts in this proof.

72



label this sequent (). Hence

Ole,y.¥(2,y)),(*)  P(z,e), Oe,y.U(z,y)) - Ole,y.¥(w, y))
O(z,€), O(e,y.¥(z,y)) F Ole, y.2(z, Val(y)) & ¥(z,y))

(Oe)
and from (&ad) and (cut) we are done. O

The Existence and Disjunction Properties

We now give two results which witness the constructive nature of the FIX logic.
They bear some resemblance to the existence and disjunction properties of standard
intuitionistic logic [L.S80], [Pit89].

Theorem 4.5.4 [“Existence Property”] If E is a closed term of type T'e, then
F O(E, ®) is derivable in FIX if and only if there is a closed term M of type o
for which F E =g, Val(M) and + ®(M) are derivable. (In other words, a formal
proof that E evaluates to a value satisfying ®(z) necessitates the existence of a
term denoting that value.)

Theorem 4.5.5 [“Disjunction Property”] If E is a closed term of coproduct type
a+ B, ®(z) and U(y) are properties of a and B and + (@ + U)(E) is derivable in
FIX, then either F E =, 5 Inl(}M) and + ®(M) are derivable for some closed term
M of type a, or F E =, 4 Inr(N) and + ¥(N) are derivable for some closed term
N of type S.

Standardness of the Natural Number Type

The Existence Property enables one to produce closed terms of type nat from a
computation of a number (i.e. a closed term of type T'nat) together with a proof
that the computation converges. There remains the possibility that a closed term
of type nat is not a value, i.e. a standard numeral. However, this is not so:

Theorem 4.5.6 [“Standardness of nat”] Every closed term of type nat in FIX is
provably equal to a standard numeral Suc™(0O).

Theorems 4.5.4, 4.5.5 and 4.5.6 will be proved in Chapter 5.

Miscellaneous Results

Lemma 4.5.7 Modulo the remaining rules of the FIX logic, the modality condition
L, At Let(E, F) =, Val(M)
mod
I AR O(E, 2. F(z) =14 Val(M))
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is equivalent to the rule
DA b O(E, 2.0(F(2), @)
(mod)
[ AFO(Let (E, F), ®)

Proof (Case (mod) implies (mod’)): Applying (Oe) twice to the hypothesis of (mod’)
we have

T,y,2, A, F = Val(a), F(2) = Val(y) - 0(y)
and using (mod) we obtain
Iy,A, Let(E, F) = Val(y) F O(E, z.F(2) = Val(y)).

By a suitable weakening of the hypotheses of the above derived judgements, we can
apply (Ce) and (0i) to obtain the result.

(Case (mod!)implies (mod)): As this direction is not entirely straightforward we give
a full proof tree:

(id)

I z,y,A, E = Val(z), F(z) = Val(y) - £ = Val(z)
(id)

I',e,y,A, E = Val(z), F(z) = Val(y) F F(z) = Val(y)
I',ez,y,A, E = Val(z), F(z) = Val(y) F O(E, u.F'(u) = Val(y))
[LAFD(E, 2.0(F(2),y.O(E,w.F(u) = Val(y))))
A O(Let (B, F),y.O(E,u.F(u) = Val(y)))

Using this conclusion together with the premiss of (mod) as the premisses for (Oe)
completes the proof. O

(©1)

(01)

(mod’)

Lemma 4.5.8 Modulo the remaining rules of the FIX logic, the rule
I'yAFVal(M) = Val(M')
LAFM =M

(mono)

is equivalent to the rule
IVAF®(M)
I'yAFO(Val(M), )
Proof We sketch the details.
(Case (mono) tmplies (mono’)): The rule (mono) yields
I'yz,A,Val(M) = Val(z) - M = z.

Applying (ts) to the hypothesis of (mono’), cutting (cut) and using (0i) we are
done.

(mono’)

(Case (mono’) implies (mono)): The rule (mono’) yields
IAFO(Val(M),z.z = M).
Now apply (Oe) to this along with the hypothesis of (mono). a
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Chapter 5
Categorical Semantics of the FIX Logic

5.1 FIX Hyperdoctrines

For background on hyperdoctrines and indexed categories see [JP78], [See83] and
[Pit89)].

Definition 5.1.1 A FIX hyperdoctrine is specified by a FIX category C (referred
to as the base category) together with a C indexed poset, C:Co? — Poset, where
if f:A — B is a morphism in the base category C we denote the corresponding

pullback function by f*:C(B) — C(A) with the fibre at A denoted by C(A). We

adopt the following notational convention. If

A / B

g h

C D
k

is a commuting square in C then right Beck-Chevalley conditions are said to hold
(which will be abbreviated to RBC) if f*:C(B) — C(A) and k*:C(D) — C(C) have
right adjoints which satisfy the identity Vf o g* = h* o Vk. We use a dual convention
for left Beck-Chevalley conditions, LBC. The indexed poset satisfies the following

conditions:

1. The fibres are meet semi-lattices with least element, and the fibre over the
initial object is a singleton. The top element is denoted by T, the bottom
element by L, and the meet of elements z € C(A) and y € C(A) by e Ay €
C(A). The pullback functions preserve meets, top and bottom elements.

2. RBC holds for all squares of the form

s

Cx A C

fxid f

C'x A c’
7r/
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where the morphisms 7 and #’ are product projections.

3. RBC and LBC hold for all squares of the form

id X n
CxA CxTA
fxad fxad
C'x A C'xTA
id X n

Also, the hyperdoctrine enjoys a form of Frobenius Reciprocity, namely given

z €C(CxTA)and y € C(C x A) we have
A(id x n)((id x n)*(z) Ay) = = A3(id x n)(y).

These conditions ensure the soundness of the rules for Universal and Existen-
tial Modality Entailment.

4, There is an operation + on fibres
+:C(C x A) x C(C x B) — C(C x (A+ B))
which is natural in C. Suppose we are given elements

teC(CxA) uelClCx(A+B))
yeC(CxB) zeC(C x D)

and morphisms f:C' x A — D, ¢:C x B — D, Then we demand that

(1dg x i) (w) Az < (my, [)*(2) (idg x §)*(w) Ay < (7B,9)*(2)
uA(z+y) < (m{f,9})*(2)

where 1: A — (A + B) and j: B — (A + B) are coproduct insertions,

(Cx A)+(C x B) - C x (A+ B)
is the obvious isomorphism and

T4 CxA—-C 73:CxB—=C mCx(A+B)—=C
are product projections. Finally, {f, ¢} def (f,g] 0 ¢~ where [f, g] arises from
the coproduct structure of C. Note that if z+y exists, it is determined uniquely.
These requirements ensure the soundness of the rules for Coproduct Entail-
ment.
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5. LBC holds for

Cx A id x A CxAxA
TA <7TA>7r:4>
A Ax A

A

The left adjoint to 7d x A satisfies the following Frobenius Reciprocity condi-
tion,

A(id x A) o (id x A)*(z) = a A(id x A) o} (T)
where @ € C(C x A x A) and 715:C x A — C. (Recall that the pullback

function 7% preserves the top element by definition.) These conditions ensure
the soundness of the rules for Equality Entailment.

6. We demand the inequalities
(n xn)*oAA(Try) <IA(TH)
and
(4, 7y 0 AA(T 448) = L

where T4 € C(A), Ty € C(TA)and T 445 € C(A+ B) are the top elements
of the fibres and 7: A — (A + B), j:B — (A+ B) are coproduct insertions.
This guarantees the soundness of the Mono Condition and the Disjoint Sum
Condition.

7. Given a morphism f:C x TA x B x A — T'B then we demand the inequality

(), )" 0 FA(T) < 3(id x 1) o (f,nms)" 0 IA(T)
where T € C(T'A) is the top element of the fibre and
1:CXTAXBXTA—B 71 CxTAxBxA—B
are product projections. This ensures the soundness of the Modality Condi-

tion.

Finally, to complete the definition of a FIX hyperdoctrine, there are two
fibrewise induction conditions and a coherence condition. The induction con-
ditions ensure soundness of the induction rules in the logic and the coherence
condition guarantees that semantic equality of terms coincides with derivable
equality in the FIX logic.

8. Given elements z € C(C), y € C(C x N) then we demand that

z < (id,001)*(y) w*(z) Ay < (ed x s)*(y)
m™(z) <y

where m: C x N — C is a product projection and 0:1 — N, s:N — N are
given as part of the structure of the NNO in the base category.
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9. Given elements @ € C(C), y € C(C x Q) then we demand that

m*(2) AV(id X 1)(y)
*(z) <

< (id x o)*(y)
Y

where m: O xTQ — C, w:C'xQ — C are product projections and ¢: 7'Q0 — Q
is given as part of the structure of the FPO in the base category.

10. Given morphisms f,g: B — A and the diagonal A: A — A x A, then we ask

that
(f,9)0dA(T)=T

f=g inC

This completes Definition 5.1.1. A morphism of FIX hyperdoctrines C and C’ is
specified by a FIX category morphism between the base categories (referred to as
the base functor) say F:C — C', together with an indexed collection of monotone
functions, called fibre morphisms, Fiy: C(A) — C'(F'A) for each object A in C. These
monotone functions are required to preserve the structure of the fibres in a canonical
fashion. For example, the pullback functions are preserved by the fibre morphisms
in the sense that given a morphism f: A—B in C, the following square commutes

Fy
C(A) C/(FA)
f* (F(f))
¢(B) C'(FB)

Fp

Also, the structure of the fibres is preserved by the fibre morphisms; for example

o Given T € C(A), then Fy(T)=T € C'(FA),
o given z,y € C(A), then Fy(z Ay) = Fu(z) A Fy(y), and
o given z € C(C x A) and y € C(C x B) then

Foxu+) (T +y) = Foxalz) + Foyxn(y)-

The remaining structure of the fibres is preserved in a similar way; the details are
omitted.

The FIX Hyperdoctrine wCpo

The definition of a FIX hyperdoctrine is quite involved and so we must give a
concrete example. We have the
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Proposition 5.1.2 Recall that the category wCpois a FIX category. There is an
wCpo indexed poset, Z:wCpo®® — Poset, where T takes an wcpo D to the set of
inclusive subsets of D which are ordered by inclusion and Z takes each continuous
function f: D — D! to its inverse image function f-1 restricted to inclusive subsets.
This gives rise to a FIX hyperdoctrine.

Proof It is trivial to check that f-1:Z(D’) — Z(D) is well defined and indeed
monotone and that 7 is a functor. We define the operations that make wCpo a FIX
hyperdoctrine, but omit detailed verifications.

1. With meet given by intersection of inclusive subsets, it is clear that each fibre
is a meet semi-lattice with least element. It is easy to see that each pullback
function is a morphism of pointed meet semi-lattices. Finally Z(0) = {0} is a
singleton.

2. The right adjoint to projection is given by restriction of the dual image func-
tions to inclusive subsets; that RBC holds is trivial.

3. The existence of left adjoints is well known, given by restriction of the set
theoretic direct image functions to inclusive subsets. The right adjoint to

(3d x o)"2I(C' x D;) = Z(C x D)
is given by
V(id x )(I) % Gd x (U {(c, L) | c€ C}

where I € Z(C x D). It is easy to see that this is a good definition and yields
the required adjoint. Checking RBC and LBC is easy; Frobenius Reciprocity
is virtually immediate.

4. Let i: D»D+ D' and j: D' — D+ D' be coproduct insertions. Given elements
I€Z(C x D) and J € Z(C x D') we define

+:Z(C x D) x I(C x D') = Z(C x (D + D"))

by
I+ 7% 33d x 9)(1) U 3id x §)(J).

Note that the fibrewise induction conditions are satisfied because any inclusive
subset of an wcpo is an wepo. Finally note that the existence of this concrete model
implies the consistency of the pure FIX logic relative to Zermelo Fraenkel set theory.

a

5.2 Categorical Semantics of FIX

Structures for FIX Signatures

Let C be a FIX hyperdoctrine and Sg a FIX signature. Then a structure, M, in C
is specified by the following data:
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o A structure in the base FIX category C (see Section 3.2), and

o for each basic relation symbol R:ay,...,q, an element [R] in the fibre over
foa] % oo x e,
Interpretation of the FIX Propositions in Context

Given a structure M we now show how to interpret the FIX logic in a FIX hyper-
doctrine. The propositions of FIX are modelled by elements in the fibres of the
hyperdoctrine; more precisely, for each context I' and proposition ® for which we
can deriveI' = @ prop, we specify an element [I'.®] of the fibre C([I']). If T is empty
we write [®] for this. The semantics of propositions in context is defined using the
structure of the propositions:

o [[.true] & T e ().

o [[.false] & L ec([T]).

o [I.M =, N] & ([0.M], [T.N])Y* 0 JA(T).

o [0 & U] ¥ [I.0] A L. T].

o [V, (8)] % Vi ([T, 2: . ®]).

o [0.O0(E,®)] % (id, [I.E])* o ¥(id x n)([T, z: c.®(2)]) .
o [0.O(E,®)] % (id, [.E])* 0 3(:d x n)([T, z: 0. ®(2)]).

o [[.(2+T)(C)] = (id, [L.ON*(T, 2: 0. ()] + [T, y: 8.8 (y)])-

Models of FIX Theories

If A is a finite set of propositions, each of which is well formed in the context T,

then set
[T.A] % A [T.0].
OcA

A structure M in a FIX hyperdoctrine C satisfies a sequent in context I', A+ ® if
[T.A] < [I'.®] holds in the fibre C([I']). Given a FIX theory, T'h, then M is called
a model of the theory if it satisfies all the axioms of Th.

The Substitution Lemma

The next lemma tells us how substitution of terms for variables in propositions is

modelled.
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Lemma 5.2.1 Put [V = [zy:q,...,2,: @), let T+ &(ay,...,z,) prop be a FIX
proposition in context and let I' F M;: o; for ¢ = 1,...,n be FIX terms in context.

Then
[L.0(M)] = ([T.My],..., [T M) ([I.&(2)]).

Proof The proof proceeds by induction on the structure of propositions; we illus-

trate with O(E, ®) and (@ + ¥)(C).

[0 E (i), (i) (M)]
= [I.O(E(M), (M))]
= (id, [[.E(M)])*[T, e.0(e, ®(41))]
= (id, [.E(M)])* 0 Y(id x n)([T, =.9(M, 2)])
induction = (id, [[.E(M)])* o ¥(id x 7) o ([T M]) x sd)*([T", =.8(Z)(x)])
= (id, [ E(M)])* o (([T.]) x id)* 0 V(id x p)([I", 2.9(&)(=)])
= (id, [ E(@)]([L.M]))* o (([T.M]) x id)*([I", ¢".0(e', ®())])
= (({IT.M1) x id) o (id, [I".E(&))([T.M])))*([I", ".O(e’, &(&))])
= (([T.M]), [I".E(@)N(T.M]))*([T, . 0!, B())])
((id, [T".E(@)]) o ([T M]))*([T", ¢'.0(¢', &(2))])
= ([D.M])Gd, [T E@)]) ([T, e'.0(e, (2))])
= ([0.M])"([I".0(B(&), ®(&)])-
[T.a.(®(@) + ())( ())( 1]
= [D.(@(I) + W (8))(C(1))]
= (id, [[.C(MDT, #/.(B(M) + T(M))(2)]
= (id, [[.C(MY*(IT, = (M) (2)] + [T, 3. 9 (M) (y)])
induction = (id, [[.C(M)])*((([T.M]) x id)*
[, w<I>( 2)]) + ([T M) x id)*([T, 3.9 (2)(y)]))

(
)
[, 2.9(&)(2)]) + ([T M) x id)*([T",5-¥(Z)()]))
o (id, [I".C(@)N([I", 2. 2(&)(«)] + [I", 5. ¥(Z) (y)])
(@

[T 44])* 9(
(@) + ¥(@))(C(@ ))1])

{

(

( r) ) x id)X(

= (id, ([T M]))* o (id x [I.C(&)])*((([T-1]) x id)*
( ) x id)*(

(

([T M) ([

The Soundness Theorem

The categorical semantics of the FIX logic is sound; indeed we have:
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Proposition 5.2.2 [“Soundness for FIX Theories”] Let C be a FIX hyperdoctrine,
Th a FIX theory and M a model of Th in C. Then M satisfies any sequent in

context which is a theorem of Th.

Proof We need to check that the collection of sequents in context which are satisfied
by M is closed under the rules for generating sequents in context. We give just one
example of this, by checking the soundness of Existential Modality Entailment. We
have

A [T, 2.0(Val(z))] A [T, 2.9(2)] < [T, 2.9 (Val(z))]

iff
A (id x )T, e.0(e)] A [T, 2.8(x)] < (id x )*IT, e ¥(e)].

O€eA

Pullback functions preserve meet, so this is iff
(id x 1)° [T, e.A@] A [, 2.8(2)] < (id x )T, e.U(e)].
Using adjointness, this holds iff
3(id x n)((id x 7)°IT, e. A A [T, 2.8(x)]) < [T, e. ()]
and from Frobenius Reciprocity iff
[T, e.A(e)] A 3(id x )L, 2.8(2)] < [T, .V (e)]

ift
[T, e.A(e)] A [T, e.0(e, 8)] < [T, e.¥(e)]

which is what we want. 0

5.3 The Categorical Logic Correspondence

Proposition 5.3.1 For each FIX theory Th over some FIX signature Sg, we may
construct a syntactic FIX hyperdoctrine, which we shall denote by C(T'h) or some-
times F.

Proof The objects of the base FIX category are the types of Sg. The morphisms
are equivalence classes of terms in a single variable context. We set

Fla, f) € (M () | w:at M(2): 8}/ =

where M(z) = M'(y) iff z: o M(z) =5 M'(z) is a theorem of T'h. We now define
an J indexed poset. For each object @ € F the underlying set of the partial order
F(«) consists of equivalence classes of propositions in a single variable context,
z:a b ®(z) prop. We shall often omit the context itself; with this convention we
impose a preorder by asking that

O(z) < U(y) iff O(z)F U(z).
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The required partial order is the poset reflection of the preorder. Given a morphism
F:a — B in F, the pullback function F*: F(§) — F(«) is defined by substitution:

F*(®(y)) def ®(F). We check that the conditions defining a FIX hyperdoctrine are
satisfied. For condition (1), it is obvious that that the fibres are meet semi lattices
and that the pullback functions preserve the structure. For condition (2), the right
adjoint to Fst(z)*: F(y) — F(y x a), will be written Vr: F(y x o) — F(vy) where

Vr(@(2)) & Vo(2.2((y, ).

That this is the required adjoint is well known; RBC is simple to check. We check
condition (3) with some care. The right adjoint to

(Fst(u), Val(Snd(u)))": F(y x T'e)) = F(y X )
will be written O: F(y x ) — F(y X T'e) where

O(®(u)) £ O(Snd(2), 2. 8({Fst(2), 2))).

We check that this definition gives a right adjoint, that is

®(2) F O(¥(w))
(Fst(u), Val(Snd(u)))*(®(2)) F ¥(u)
We have w, ®((Fst(u), Val(Snd(w)))) F ¥ () o)
z,y, 2((y, Val(z))) F ¥((y,=)) (@)

ey, ®((y, €)) - O(e, 2. ¥((y, ¢)))
2, ®((Fst(2), Snd(2))) - O(Snd(2), z. ¥ ({Fst(z), z)))

The converse direction is equally easy; we omit the remaining details for condition
(3). For condition (4) we define an operation

+: F(y x @) X F(y x o) = Fy x (a+ )).
For elements ®(v) € F(y X a) and ¥(w) € F(y x o) we set
B(v) 4+ U(w) ¥ (& + ¥)(P(w)),

where P(u) is the isomorphism P(u):y X (o + o) = (7 X &) + (7 x &’). To see that
this satisfies condition (4), take morphisms M(v):y X @ — ¢ and N(w):y x of — §
together with elements ©(z) € F(y x §) and II(u) € F(y x (o + o/)). Then it

remains to show that
{ (Fst(v), InI(Snd(v)))*H(u)&@(v)l-(Fst( v), M(v))*0(2)
(Fst(w )|n|(5nd(w))>*H u) & U(w) - (Fst(w), N(w))*O(z)
W) & (@ + U)(P(w) F (Fst(u), (M, N}(P(@)}-0()

N N
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which follows from careful application of the rule (+ad) and the Coproduct Equa-
tions rules. Conditions (5) and (6) are easy to verify. Moving on to condition (7),
the left adjoint to (id x A)*: F(y x a X a) — F(vy X «), is defined by

A(id x A)(P(u)) ¥
®((Fst(z), (Fst(Snd(2)),Snd(Snd(2))))) & Fst(Snd(z)) = Snd(Snd(z)).

We have now given all the structure needed to specify F; the remaining details are
routine and omitted. Note that condition (10) is immediate from the construction

of F. |

Proposition 5.3.2 Given a FIX hyperdoctrine C, then we can define a FIX theory
which we denote by Th(C).

Proof The basic ground types and basic function symbols for the base FIX category
are exactly those defined in Section 2.5. For each object Ay x ... x A, in C there
are relation symbols R: A4,..., A, which are copies of the elements in the fibre
C(A; x ... x A,). This gives us data for a FIX signature; there is an obvious
canonical structure for this signature in C which we denote by G. Then the axioms
of the theory Th(C) are exactly those sequents in context which are satisfied by the
canonical structure; the theorems of Th(C) are generated by the usual rules of the
FIX logic. 0

Now we can state the categorical logic correspondence:

Theorem 5.3.8 Let C be a FIX hyperdoctrine; then there is an equivalence of
hyperdoctrines (i.e. an equivalence of indexed posets)

Eq:C(Th(C))~C: Eq71,

where Eq is a FIX hyperdoctrine morphism. Thus there is a categorical equivalence
of base categories, together with an isomorphism of posets

Eq, : C(Th(C))(a) = C(Eq(a)) : (Bq™)By(a)-

Proof For the definition of Fq and F¢-! see Theorem 3.4.3. Define Eq,(®(z)) 4
[2.2(2)]e and (Eq1)[4q(R) ' R(z) where R € C([a]g). We omit the routine
details of the proof. O

5.4 The Logical Relations Hyperdoctrine

Now that we have formalised the correspondence between FIX theories and FIX
hyperdoctrines, we define a new FIX hyperdoctrine and use it, together with its
corresponding theory/logic, to prove Theorems 4.5.4, 4.5.5 and 4.5.6. We shall
write F for the FIX hyperdoctrine constructed from the pure FIX logic.
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Definition 5.4.1 Let I': ¥ — wCpo denote the functor which assigns to each object
a € F its set I'(a) of global elements equipped with the discrete partial order. We
construct a new FIX hyperdoctrine, denoted by Lr, using a construction that is
closely allied to the theory of logical relations. An object of Lr is a triple (D, <, «),
where D € wCpo, a € F and < is an inclusive subset of D x I'(). A morphism
(D,<,0) = (D', <,a) in Lr is a pair (f,F), where f:D — D’ in wCpo and
F:a— o in F, satisfying the following condition:

Vd e D.M €T(a).d <« M > f(d) < FM.

It remains to define a Lr indexed poset. We shall denote the fibre at an object
(D, <, @) by Lr(D, <, ). The elements of the fibre consist of all triples (S, 4, ®(z)),
where

1. S €Z(D),i.e. S runs over the inclusive subsets of the wcpo D.
2. ®(z) € Fla).

3. e I([S x Tg(q)(@)]N <) where Ly () (M eT(a)| F®(M)}; note that
(S X T (a)]N < is an wepo.

The order is given by inclusion in the first and second coordinates, and by entailment
in the third. Given a morphism (f, F): (D', <', /) — (D, <, ) in Lr, we define the
pullback function

(f, F)*: Lr(D,<,e) = Lr(D', <, o)

by
(f, F)*(S, <, 8(z)) & (£71(S), <%, B(F))

where <*% {(d, M) € [f-1(S) x Lom ()N <] f(d) S FM}.

This completes the definition of the logical relations hyperdoctrine, Lr. Clearly we
need to see that Lr really is a FIX hyperdoctrine:

Proposition 5.4.2 The construction of Lr detailed in Definition 5.4.1 gives rise
to a FIX hyperdoctrine.

Proof It is a simple exercise to verify that this definition makes sense. We check that
each (f, F')* is indeed monotone. Suppose that (57, <y, ®;(x)) < (Sy, Jg, P(2)) in
the fibre Lr(D, <, «).Then,

° Sl C S«z and so f_l(Sl) C f_l(SQ).
o O,(z)F @y(z) and so &, (F) F O,(F) by substitution.
o To see that <I*C <% note that ®;(F M) &, (FM).
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We also need to see that given
(D, <, 0) 25 (D1, <1, 00) B2 (D, 4, )

it is the case that (f/, F)*o (f, F)* = (ff', FF")*. The details are tedious but easy
and so they are omitted. Now we have to check that the definitions of objects and
morphisms yield a base FIX category, and that the £r indexed poset does indeed
constitute a FIX hyperdoctrine. Firstly we check that we have a FIX category; most
of the details are simple calculations, once it is clear how one defines the various
categorical constructs.

The terminal object is (1, <y, unit) where * <y tdy,;. The binary product is
given by
(D, <,0) x (D', <t', o) ¥ (D x D', < x <ty % &),

where (putting <1, %« x <),
(d,d) <, Niffd < Fst(N) and & < Snd(N).

It is clear that <1, is inclusive, and easy to check the remaining details. Exponentials
of objects are defined by

(D', <, !, )=(D, <, a) def (D'—D, < — 4, d/—a),
where
f< —<F iff VdeDVLel(d)d < LD f(d)<apo (F,L"
and ap is the evaluation morphism in 7. The transpose rule is given by

(f,F): (D x D', <y, a x o) — (D", <", o)
(cur(f),cur(F)):(D,<Q,a) — (D'—D", ' — <", o/ =)

and the evaluation morphism is (ap,ap). Finite coproducts are also defined in the
same (hopefully now familiar) coordinatewise/logical relations manner. The NNO
of Lr is specified by (N, <,,;, nat), where n <,,; N iff N = Suc™(0),! and the zero
and successor morphisms are the expected coordinatewise ones. We now show that
for a particular choice of monad, the category Lr does indeed become a let category.

The action of the monad on objects is specified by T'(D, <, &) def (Dy, <, Ta),
where

e<dr E iff YdeD.[d=e>IM eT(a)d <M &n,M=E,

and 7(p,q,a) df (t,14): (D, ,) = (Dy,<,Ta), with ¢: D — D, the canonical
inclusion. Finally the lifting rule is
(f, F): (D x D', <y, x of) — (D, <4, T'a)
(fi, Gft(F)): (D x D, < x <, a x Tal) — (DU, <4, Ta)

1'We shall often drop the sequent symbol F from equalities such as F N = Suc"(0O)
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where of course f, (d,[d']) = f(d,d') and f,(d, L) = L.

Now we show that Lr does indeed possess a FPO. This will be determined up to
isomorphism; thus as for the previous constructs we exhibit a candidate and show
that it satisfies the required properties. The expected candidate for the FPO would
be (€, <, fir), with structure morphism (o, o). By definition of the action of the
monad on objects, in the relation <t¥ one has L <ff M, for any M € I'(Tfiz).
As (o,0) must preserve the relation, then 0 <z, ¢ M must hold, and the action of
the monad yields [0] < no M. Once again (o,0) preserves this, so we must havé
1 g, onoM. In general we are forced to have n <z, (on)"0 M. Finally, considering
that the relation <z, has to be a certain inclusive subset, we are led to the following
definition:

(Q, <y, fiz) is a FPO for T over Lr, where
o n g, N iff IM € I'(fiz).N = (on)"M, and
o T g Niff VneQ\{T}hn <, N.

We check that the relation <, is inclusive. Take a chain in <, say {n, <
N | r € N} where N € I'(fiz). We need to check that \/{n, | » € N} <z, N. If
V{n, | r € N} is not T we are done. Otherwise, given any n € Q\ {T}, we can
choose r € N such that n, > n. As n, <z, N, we get

N = (on)~M = (on)“(on)* "M,

and so n <z, N. As n was arbitrary, we are done. Now we check that (o,0) is a
morphism in Lr, where (0,0): (Q, < Tfiz) — (Q, gy, fiw). We have three cases
to cover.

1. If L <% E then o(L) =0 <, oF.

2. If [n] <f¥ E note that E = y(on)»M for some M.

3. Suppose that [T] <} E. Then T <z, N and hence ¥n € 2\ {T}.n <z, N. In
particular, we have n — 1 <z, N, and so there is some M € I'(fiz) for which
N = (on)n-1M, giving onN = (on)»M. So we haveVn € Q\{T}.n <z, onhN,
that is T g, oF.

Finally, we have to verify that our definition yields an initial T algebra in Lr. Take
(f,F): (D, <7, Ta) — (D,<,a). The unique mediating morphism for (o, o) has
to be (f, F) def (it(f),t(F)) whose coordinates are the mediating morphisms in
wCpo and F. Firstly we check that it is a morphism in Lr. Suppose that n <z, N.
Then for some M we get N = (on)*M. From the definition of the <ir relation, we
get L <p let(nF)o=1M and so f(L) < Flet(nf)o—1M = FM. Now suppose that
fr(L) < F(on)—1M, where r < n — 1. Clearly [fr(L1)] <ip nﬁ‘(an)":ll\/[, and so

~

frHi(L) < F(on) M. Inductively we have fr+1(L) < F(on)*M = F'N, which is
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what we had to prove. Finally, if T <z, N we need V f*(L) < F'N, which follows
from inclusivity of <t . We omit to verify that the morphisms

([T]aw): (17 <]u;zita um:t) - (Q_La qu,Tﬁw) (07 0): (QJ.’ qu, Tﬁlv) - (Qa <]ﬁ:c>ﬁm)

constitute a FPO in Lr.

We now verify conditions (1) to (10) of Definition 5.1.1. It is easy to see that
condition (1) holds. We check condition (2) in detail. Firstly we define the right
adjoint to

(m,Fst(2))*: Lr(C, <!, v) = Lr(C x D, <! X <,7 X )
which we denote by

Vr: Lr(C x D, <y ,y x a) = Lr(C, <, y)
where we set V7 (S, ., ®(2)) o (V7 (S), Do, Vr(®(2))) with

<o L {(e,N) € [Vr(S) X Dyngaay (NN <]
Vd e DYM €T(a).d < M D (¢,d) <y (M, N)}.

This makes sense. For certainly Vr(S) € Z(C) and Yr(®(2)) € F(v). Let us see that
o€ Z([V7(S) X Dyr(azy (1)IN ). With the obvious notation, let {(c;, V) | 7 € N}
be a chain in <9 and so ¥d € D.VYM € T(a).d < M we have {((¢;,d), (N, M)) |1 €
N} in < . But <, is inclusive, so the supremum of the latter chain lies in <, for
all d and M such that d <« M. But this is exactly that (\{c; | ¢ € N}, N) €<,
Finally, it is clear that V7 is monotone. Now we verify that (7, Fst(z)) 4 Vn. Take
(U, 2, 9(y)) € Lr(C,<,7) and (S, <y, ®(2)) € Lr(C x D, <,y X a). Then we
need to check that

(m=1(U), (27, U(Fst(2))) < (S, dx, 8(2))
(U, &, %(y)) < (Vx(S), s, Vr(2(2)))

) —x?

It is clear that all is well in the first and third coordinates, as both wCpo and F are
FIX hyperdoctrines. All we need to do is examine the second coordinates.

Suppose that (<)* ¢4, . Hence it remains to show 'Cde . Let ¢ < N. Thus we
need

1. ce Vr(9),

2. N € Dyia(wan) (1),
3. ¢’ N,
4. Yd € DVM € I'(a).d 9 M D (c,d) <y (M, N).

We check each of these in turn.

1. Cleatly c € U C V= (95).
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2. We are given ¥ (N) and ¥(y) F V,(z.2((y,2))), hence FV,(z.®((N,z))).
3. Immediate.
4. By definition

(<) = {({eyd), (N, M)) € [=2(U) X Tagrao(y x )l <] ¢ < Y.

Suppose that d <« M. We have ¢ € U, so (¢,d) € #=1(U) and + ¥(N)
implying (N, M) € Dy(ra((y X @). Also ¢ </ N and so (c,d) <y (N, M).
With these facts, we see that (¢, d)(<)*(N, M) and using the hypothesis we

are done.

Now suppose that <'C<9; it remains to show (<')* C<. Let (¢, d)(L)*(N, M).
Then from the supposition we get ¢ <9 N, which means that (¢, d) <y (N, M). So
we do get the required right adjoint.

We must verify that RBC holds, namely that the square

Lr(C x D,<' x <1,y X ) V—W+£7‘(C, <,7)
(f x 1d, F' x id)* (f, F)

Lr(C'x D, <" x <,v' x o) — Lr(C', <",4')
V#

Of course, we already know that everything is fine in the first and third coordinates.
We just need to check the second coordinate. We have that

< = {(¢,N) € [V(S) X Ty (1IN | VAYM.d Q M D (c,d) Iy (N, M)}
L= {((¢,d),(N', M)) € [(f x id)™(S) X T(miay (@ (7' X )]0 <" x |
(f x id)(c,d) <y (F xid)(N', M)}
() = {(¢,N) € [f7 o Va(S) X Tpeovm(aay (V)N <] £(¢) L5, FN'}

(<) = {(¢,N') € Vo (f x id)™(S) X Dymomxigyr(a(z)) (¥)IN <’
VANM.d < M > (¢, d) <% (N', M)}

Suppose that ¢/(<9)*N'. We show /(< )°N'. Hence we need to see that d << M
implies (¢/,d) <%, <N’,M). This amounts to showing

1. (¢,d) € (f x1id)~1(S).
2. (N', M) € To(p(Fst(z)) snd(z)p) (1 X ).
(e, d) @ x < (N', M).
(

f(e),d) Sy (FN', M).

w

4.
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We check each of these:
1. Note that ¢/ € f~1 o V7 (S) = Vr o (f x id)=1(S5).
2. We have N’ € Iy, (,.0((Fy)) and hence = ®((FN', M)).
3. Immediate from ¢’ < N'.
4. Immediate from f(c/) Jo FN'.
Thus (ﬂ;)* C (_<_]">‘<)°; the reverse inclusion is similar.
We move on to condition (3). The right adjoint to
(2d X 1,3d x n)*: Lr(C x Dy, <’ x Ap,y X Ta) = Lr(C x D, <" x 1,7 % a)
which we shall write as

0:Lr(C x D, <Ay,y x a) = Lr(C x D, <%,y x Ta)

is defined by O(S, <1x,<I>( ) = def (0(5), <3, O(®(u))) where O(S) and O(®(u)) have

the expected meaning, and where
< E {((c,e), (N, B)) € [O(S) X Ty (v x Ta)ln <Z|

VANM.d < M & e = [d] & E = Val(M) > (¢, d) Iy (N, M)},

We omit to check that the definition of O makes sense, and that it is the required
adjoint. We shall just check that RBC does indeed hold, i.e. the following square
commutes:

|
Lr(C x D,<dy,v X @)

Lr(Cx Dy,<t,yxTa)
((f x id), (F x id))* ((f x id), (F x id))*

Lr(C'x D, <" x Q,9' X a) ——D—>£T(Ol X D, <" X Ap,v' x Ta)

Once again, all we need to do is check things work in the second coordinate. We
have:
<5 = {((c,e), (N, E)) € [O(S) x Fa@) (1 X Ta)lN <]
VdYM.d A M & e =[d] & E = Val(M) D (¢,d) Iy (N, M)}
L = {((¢,d),(N',M)) € [(f x id)™(5) X Cixiap @y (¥ x @)lN <" x
(f(e),d) S (FN', M)}

(L) = {((¢,e), (N, E)) € [(f x id)~* 0 B(S) X T (xiayone(wy (v X Ter)]
n<" x <]T|( (¢);e) <5 (F'N', E)}

(<2)° = {((¢,e), (N, E)) € [D 0 (f x id)="(S) X Taogrxigr(o(u) (7' X Tet)]
N X Qp| VdYM.d QM & e =[d] &E = Val(M)D(c,d) It (N', M)}
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Suppose that (¢!, €)(<2)*(N, E). Then it remains to prove (¢/, e)( % )°(N', E). This
means given any d € D and M € I'(a) for which d < M, e = [d] and E Val(M)
we must show

¢,d) € (f x id)=1(5).
N', M) € F(ind)*(@(u))('yl X a).
d,d) <" x Q(N', M).
f(e),d) <y (FN', M).

1.

(
2. ¢
3. (
4. (
Using the hypothesis, we have (f(c/),e) <2 (F'N', E) and hence

daM&e=[d & E =Val(M) D (f(),d) Ay (FN',M).
We check each of 1 to 4:
1. (¢,[d]) € (f xid)~10O(S) = Do (f x id)~1(S) and so (¢/,d) € (f x id)~(S5).
2. (N', E) € Do(sad(z)z.0((FFst(z)2))) (¥ X T'et), which means that
FO(E,2.®((F'N', z))).
But E = Val(M), thus appealing to Proposition 4.5.1 we have = ®((F'N’, M)).
3. By hypothesis.

4. Tmmediate.

Suppose that (¢/, €)(<J% )°(N', E). It remains to prove (¢/ye)(L2)*(N, E). Thus given
d € D and M € TI'() for which e = [d], E = Val(M) and d <t M, we need to show

f(¢),e) € B(S),

FN',E) € Taw)(y x Ta),
f(e),e) <% (FN', B),

(¢),d) S (FN', M).

L (
2. (
3. (
4. (f
Using the hypothesis, we get
d<aM&e=[d & E=Val(M) > (f(c),d) Iy (FN', M).

We check each of 1 to 4:

1. (¢,[d]) € Do (f x1d)=1(S) = (f x id)~1 0 O(S).

2. We have (N, E) € Tq(snd(z)z.0((FFst(),e))) (7 X T'at), and so

FO(E,z.9((FN', z))).
But E = Val(M) and so F ®((FN’, M)) by appeal to Proposition 4.5.1.
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3. Trivial.

4. Immediate.
We now define the left adjoint to

(¢d x t,3d x )*: Lr(C x Dy, <" X Ap,y x Ta) = Lr(C x D, <’ X 4,7 X a).
Denote this by

C:Lr(C x D, g,y xa) = Lr(C x D, <%, v x Ta)

where we set O(S, dy, @(u)) &of (&(5), 22, O(@(u))) with
< E {((er0), (N, E)) € [O(S) X Toauy(y x Ta)ln <7
dd.IMd <A M & e=[d] & E =Val(M) & (¢,d) <y (N, M))}

We omit to check that this is well defined and that LBC is satisfied, but give brief
details of the Frobenius Reciprocity condition. Take

(U, 2L, ¥(2)) € Lr(C x Dy, <f, v x Ta)

and
(5, L, @(u)) € Lr(C x D, <y, v X ).

Observe that U N O(S) = O((ed x ¢)~1(U) N S) and

U((y, ) & Ole, 2.0((y, 2))) 4 = (e, 2. ¥({y, Val(2))) & &((y, ).

We require ((JT)*N <y )e =<T N o . Suppose that (¢,e)((JT)*N <y )o(N, E).
Then there exist d and M for which (¢, d)((4T)*N L, )(NV, M). Unravelling the sup-
position and appealing to the above observation, we conclude that (¢, e) € UNO(S)
and FU((N,E)) & O(F,2.®((N,z))). Using Proposition 4.5.1 we may deduce
FY((N,E)) and F ®((N,M)). So we can conclude that (c,e) <7 (N, F) and
(c,e) <5 (N, E).

Suppose that (¢, e)(JT N <9 )(N, E). We need to find d and M for which (¢, d)(<T
)*(N, M) and (c,d) <y (N, M). Now (c,e) <o (N, E) implies that there are d and
M for which d <« M, e = [d] and FE = Val(M). From the observation above, we de-
duce that (¢,e) € O((id x ¢)=1 N S) and + O(E,z.¥((N,Val(z))) & ®((N,z))).
Thus (¢,d) € (id x ¢)=1(U) N S and appealing to Proposition 4.5.1 we deduce
FU((N, E)) & ®((N, M)). Using these conclusions along with the supposition we
are done.

Now for condition (4). We define the operation +

+:Lr(C x D, g x <,y x a)X Lr(C x D' <dg x <,y X o) —
Lr(C x (D + D), <l (< + <),7 X (a + )
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by sending the elements
(I,<,,®(v)) € Lr(CxD,<g X <,y X a)
(J, <5, ¥(w)) € Lr(Cx D, g x <,y xd)
to (I + J, <5, ®(v) + ¥(w)) where
I = {((c,€), (N, E)) € [(I +J) X Tgpypuy (v X (e + a))IN <S¢ x (< + <) |
3d.IM.d <9 M & e = i(d) & E = Inl(M) & (¢,d) <y (N, M)
or
A AM A <! M & e = j(d') & E = Inr(M") & (¢, d') <y (N, M")}.

We omit to check that condition (4) is satisfied and move to condition (5). The left
adjoint to

id X Ayid X A Lr(C X D XD, </ Xx AX <,y Xaxa)—
v
Lr(C x D, <" x <, X a)

denoted by
J(id x A): Lr(C x D,<y,y X a) = Lr(C x D x D, <,y X a X a)
is defined by setting
3(ed x A)(S, Dy, B(u)) ©(3(id x A)(S), <2, 3(2d x A)(D(u))),
where

< ¥ {((c,e), (N, E)) € [3(id x A)(S) X Tagiaxay@) (¥ X a x )] <
JAMA <9 M & e = Ad) & E = AM & (¢, d) Dy (N, M)}.

Let us check that we have defined the required adjoint. Take an element
(U, <, ¥(z)) € Lr(C x D x D, <,y X a xa).

Of course we only need to check details in the middle coordinate. The action of
(¢d x A, id x A)* on this element gives

(ﬂ'x)* = {((c,d), (N, M)) € [(3d x A)~HU) X Tgaxayw(z) (7 x a)]N <]
(c,d,d) <! (N, M, M)}.
So we need to verify that
Ly C (L)
ol

We check one direction. Suppose <2 C<V/, and take (¢,d) <, (N, M). Then (c,d) €
S c (id x A)-Y(U) and F ®((N,M)) hence FU((N,M,M)). It is clear that
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(c,d) <y (N,M). So it remains to show that (c,d,d) < (N, M, M). Tt will be
enough to show (¢,d,d) € 3(id x A)(S) and F®((N,M)) & M = M. But this
is clear, for we have (¢,d) € S and (N, M) € Ig,)(y X a). Finally, for Frobenius
reciprocity, write (C' x D, d+, T) for the greatest element in Lr(C x D, <1,y x «).
Then it is easy to see that
(€)= {((e;d,d),(N, M, M)) € 3(id x A) o (id x A)~}(U) x
P3tiaxayo(idxay (@) (¥ X @ x a)N < | (¢,d,d) < (N, M, M)}
= @0

We have now shown how to define all of the adjoints and operations needed to verify
that Lr is a FIX hyperdoctrine; we omit the remaining details. O

5.5 Proving Existence and Disjunction Properties

We shall soon prove the Existence Property, Disjunction Property, and Standard-
ness of nat; these results were stated in Section 4.5.

The Initial Model of the FIX Logic

Proposition 5.5.1 The FIX hyperdoctrine F, arising from the pure FIX logic, is
(essentially) initial amongst all FIX hyperdoctrines.

Proof This is immediate from the definition of FIX hyperdoctrine morphism. O

We shall need the following observations: Using the initiality of 7, we see that there
are FIX hyperdoctrine morphisms [—] and I, together with obvious projections =
and 7/ where

[-]): F — wCpo 7: Lr — wCpo
LF— Lr ' Lr — F.
These FIX hyperdoctrine morphisms satisfy the following commutative diagrams:
]._'
id I -]
F Lr wCpo
! gl
F(e)
ida Ia [[—]]oz

.7‘-(0() I 'CT([[O‘]]: Loy 0./) —"Z([[a]])

! Ve
ﬂ-a o
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The Disjunction Property

We prove Theorem 4.5.5. First note that the closed term E:« + f corresponds to
a morphism E: unit — a + f in F. The action of the base functor component of
I: F — Lr on this morphism, using the above commutative diagrams, is

I(E) = (H:E]IVE) (17 Lunits 'u’nZt) - ([[a]] + ﬂﬂ]]) <a+ﬁ>a + ﬂ)

Also, the following square commutes:
I0t+/3
F(o+ B) —— Lr([e] + [8], Qarg @+ F)
B (I=], E)*

F(unit) Lr(1, <yniy, unit)

Iunit

The theorem follows by observing the effect of the two possible routes of the square.
Let z be a variable of type o + 3, and consider (® + ¥)(z) € F(a + §). Then we

have

Lit(B*((2 + ¥)(2))) = (2 +¥)(E))
= ([(@+ )(E)], Lunir, (2 + V)(E))

where because - (® + U)(E) by hypothesis and L,,;; preserves greatest elements,
the relation <,,; must be non-empty. Also, we have

([EL, E)*(Ls (2 + 0)(2))) = (L] E)*([2.(2 + ¥)(2)], Lasps (2 + ¥)(2))
= ([E]7'([2-(2 + ©)(2)]), L1 (B + T)(E2))

where
s = {(nidyi) € [[E]"([2.(® + ©)(2)]) X T(4wym) (unit)|N <upidl
[E1(+) Suyp o id),

But this relation is exactly <., hence is non-empty, yielding [E](x) <445 £ which
implies [E](*) <q4p B. By definition of the relation <l,,4 this means without loss
of generality there is a global element M € I'(a), that is a closed term M, for which
b E =,.p Inl(M), and from this we may derive - ®(M) using Proposition 4.5.1.

95




The Existence Property
We prove Theorem 4.5.4. Take a proposition &(e, @) € F(T'e) and use the square

e
F(Ta) e, Lr([a]L, <ro, Te)

B (I£], E)*
F(’U/I’L’lt) - 'CT(l) Lunits un?'t)
Iunit
As above, this yields

< ==

, *
—untt — T

= {(x1d) € [[E]~'([e.-C(e, @)]) % Lo,y (unit)lN Lunis] [E](*) <7 B}
This has to be non empty and so [E](x) 47, E, which implies [E](*) <7 E. By
assumption we have - O(F, @) and therefore {x} = [E]-1n([z.®(z)]) implying that
[E](*) is not bottom. Hence there is some closed M for which + E =4, Val(M)
and using Proposition 4.5.1 we have F ®(M).
A Formal Adequacy of the FIX Logic

We finish this section by remarking that the Existence Property expresses a formal
adequacy of the FIX logic. Indeed, we have the following

Corollary 5.5.2 Given a closed term FE of type T'«, it is provably equal to a value
Val(M), where M is a closed term of type «, if and only if the wCpo interpretation
[F] € [Ta] =[], is not L.

Proof Immediate from the proof of the Existence Property. a

5.6 Proving Standardness of the Natural Number
Type

We prove Theorem 4.5.6. Let N be a closed term of type nat. Using the square
Inat
F(nat) — Lr(N, <, nat)
N~ (IvD, )

f(umt) E— ET(la DLunit umt)
I

unit
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and arguing the same way as in the previous section, we conclude that [N](*) <.,
N and from this we deduce + N =,,, Suc™(0), using the definition of the <,
relation in the NNO of Lr.
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Chapter 6
Applications of the FIX Logic

6.1 Introduction

In this chapter we shall define the syntax and operational semantics of two little
programming languages, both of which are closely allied to Plotkin’s PCF. PCF is
an acronym for Programming Computable Functions. In essence, the syntax of PCF
is that of simply typed lambda calculus (with ground types just the natural numbers
and booleans) which has been enriched with explicit operations for arithmetic, a
conditional at ground types and fixpoint operators. This syntax is then equipped
with a call by name operational semantics, giving rise to the language PCF. PCF
was first investigated by Plotkin and the results appear in [Plo77].

The two languages we investigate here, which we call QL and HPCF, resemble PCF
in that their syntax consists essentially of simply typed lambda calculus with extra
arithmetical, procedural and fixpoint features. They differ in having conditionals at
higher types. The syntax of QL, while similar to that of PCF, makes use of higher
order metaconstants. QL has recursive function declarations instead of fixpoint
operators and the operational semantics is call by value. HPCF has a call by name
operational semantics and apart from conditionals at higher types is identical to

PCF.

We shall specify the syntax and semantics of these languages, then give a translation
into a suitable FIX theory. For each language we state two adequacy results, one for
static semantics and one for dynamic semantics, which shows that the translation
preserves the structure of the original language. We emphasise that both QL and
HPCF are no more than very simple adaptations of Plotkin’s PCF. The intention
of this chapter is just to investigate how well suited the FIX logic is for interpreting
and reasoning about two quite standard languages. The FIX logic can be viewed as
a metalogic in which we interpret both QL and HPCF'; for an account of this style
of programming language analysis see [Plo85].

6.2 The Language QL

We define the language QL by specifying the basic syntax of types and raw expres-
sions; this syntax will then be given a static and dynamic semantics.
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The Types and Expressions of QL
The types of QL are given by the grammar:
o 1= bool |nat | oc—o

The (raw) expressions of QL are given by the grammar:

m o= X variables
| tt truth
| f£f falsity
|k, natural numbers
| C,(b,m,n) conditional
| S(m) successor
|  P(m) predecessor
| Z(m) zero test
| mn application
| Aziom  function definition
|

R,,(m,n) recursive functions

The Static Semantics of QL

The static semantics assigns types to expressions in context. Each judgement takes
the form I' - m:o. The rules for deriving these judgements are given below. The
context I' consists of a list of typed variables (the variables are assumed distinct).
Variables are bound in the usual way by lambda abstractions and recursive function
declarations. Given a QL expression in context, I' - m: o, it is easy to see that the
free variables of m all occur in I', and that the type o assigned to the raw QL term
m is unique. The types nat and bool will be referred to as ground types.

Variables

Fez:o,'F2i0

Constants

I'Ftt:bool ['Ff£f:bool 'k, :nat

Conditional

I'Fb:bool T'Fmio Thknio
I'FC,(b,mn): o

Arithmetic

I'Fm:nat I' Fm:nat I' -m:nat
I'F S(m): nat I'F P(m):nat I' + Z(m): bool
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Functions

'Fmio—r T'Fnio Deiobmr
I'Fmn:7 PFAziomo—T

Recursive Functions

L, fio—o',ziokFme’ Thnio
It Ry o (myn): o’

The Dynamic Semantics of QL

We call a QL expression m closed if +m: o is derivable for some (necessarily unique)
type o. The canonical QL expressions comprise the subset of closed expressions
given by the grammar:

c u= tt|ff |k, | Aziom
We now give the syntax of QL a call by value dynamic semantics via an evaluation

relation, which will take the form m = ¢, where m and c are closed QL expressions
and ¢ is canonical. The rules for generating the evaluation relation are given below:

Canonical Forms

¢ canonical
c==c

Conditionals

b= tt m==c¢ b= ff n==¢

Co(b,m,n) == ¢ Co(b,m,n) ==> ¢
Arithmetic
m=——r kn m == kn+1 m —=> ko
m—=p ko m == kn+1
Z(m) == tt Z(m) == £f
Functions

m==Az:om n==c wc/z]==c
mn == C

Recursive Functions

n==>c¢ m[/\w:a.Ra’U,(m,w)/f, [a]==c¢
Rg,o(m,n) ==> ¢
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It is easy to see that the dynamic semantics is deterministic and if m = ¢ then m
and ¢ have the same type.

6.3 Translation of QL into the FIX Logic

We shall give a translation of QL into a theory over FIX. We aim to give an inter-
pretation of the language QL which will preserve all of its structure and properties.
In fact the pure FIX logic will interpret QL; more formally, the FIX theory we
consider consists simply of the FIX signature with no basic function symbols or
relation symbols, together with no extralogical axioms. We shall not be too formal
and simply refer to the FIX logic. The first step is to translate the static semantics
of QL into suitable judgements in the FIX logic.

Interpretation of the Static Semantics

For each expression in context, z;:o; Fm:o, we give a a term in context of FIX,
and we think of this process as a translation of QL into FIX. The static typing

judgement z;:04,...,2,: 0, F m o is translated to
Lyt lIO'll]”, ceey Tyt [[Un]]v a ﬁﬂm]]”({') TIIO'IIU,
where for any term m in a context of n variables {z4,...,z,}, [m]? is an expression

of the abstract syntax generated from the pure FIX logic with arity TERM and for
which FV([m]v) = {uy,...,u,}. Given a closed QL expression (in context) Fm: o,
this is of course translated to a judgement  [m]v: T'[c]v. Note that the superscript v
on the semantic bracket [—]v refers to the fact that we are specifying a translation
of a call by value language. We shall often refer informally to a call by value
translation. In order to specify the translation, we shall define expressions of the
abstract syntax generated from the object level signature of FIX which have arity
TERM — TERM and which we shall denote by Pred and Zero. The (representatives
for these) expressions are (using 7 equality in the meta A calculus) defined by

Pred(n) % Snd((z.(Suc(Fst(x)), Fst(z)))*((O, 0)))
Zero(n) ¥ (@.Inryi(0))" (Inlrie ()

Note that the judgements n: nat - Pred(n): nat and n: nat - Zero(n): unit+ unit are
FIX terms in context; moreover, it is not difficult to see that Pred and Zero have
the properties we would expect of them. We also make the definition

Fixe(f) % It (e.Let (e, 2. f2), o(w))

for which it is immediate that f:Ta—Tat Fix,(f): Ta is a FIX term in context.
The translation of QL into FIX is given below:

o [nat]v ¥ nat
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o [bool]w % unit + unit

o [o=r] ¥ [o]—T[r]

o [2]* ¥ Val(u) where u is a meta variable.
o [tt]e = Val(Inlyii(())

o [££]* = Val(Inryni(()))

o [k,]o = Val(Suc™(0))

o [, (b,m,m)]* = Let ([6]*, @ {y.[n]", y.[n]"}(2))
o [5(0)]* % Let ([n]", z.Val(Suc(z)))

o [P(@)]* % Let ([n]?, z.Val(Pred()))

o [Z()]* % Let ([n]?, . Val(Zero(x)))

o [mo]» = Let ([n]", f-Let([n]", 2. f2))

o [he:on]r ¥ Val(\pge (2. [0]*))

o [Roor(mm)]* = Let ([0]7, - Ypope ope (A (A2 [0]*))))y)

Interpretation of the Dynamic Semantics

Clearly the minimal requirement of an interpretation of the dynamics semantics
of QL is soundness, namely that if m = c then we have  [u]* = [c]* where the
latter equality holds in FIX. Further, it would be pleasing if whenever + [n]v = [c]v,
there is a canonical ¢/ for which m = ¢’ and F [¢/]* = [c]?, that is to say that
FIX is computationally adequate for interpreting QL. We shall soon see that this
is indeed the case, and in order to do this we shall need a little additional notation.
For canonical closed terms ¢ of QL, note that the interpretation takes the form
[c]v = Val([c]) and we shall take this as an informal definition of [c]. We translate
the dynamic semantics of QL into judgements in FIX simply by taking each instance
of the evaluation relation m = c to the judgement F [m]v = [<]®.

6.4 Adequacy Results for QL

Static Adequacy for QL

Proposition 6.4.1 [“QL Static Adequacy”] The interpretation of the static se-
mantics of QL in FIX is adequate, in the sense that z;: o; Fm: o is a well formed QL
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expression in context iff
& o]0 F . [m]*(2): T[e]?
is derivable in FIX.

Proof Both directions proceed by structural induction. We give one example, for
the backwards direction.

(Case m is R(m,n)): From the definition of [R(m,n)]?, the FIX logic rules and the
induction hypothesis, we have

z; 0y fro'—o,e:0'Fmio and z;i0;Fniol,

from which z;: o; - R(m,n): ¢ is immediate. O

Dynamic Adequacy of QL

We shall require a Lemma based on Plotkin’s methods given in [Plo85]. We write
D(—) for the composition [—] o @.[-]*(): QL — FIX — wCpo where [—] is the
standard domain theoretic semantics of FIX. We define a relation <, between el-
ements d € D(o) and canonical forms F c:o by induction on the structure of o.
In the definition which follows, <, is the relation between elements e € D(o),
and closed QL terms Fm:o defined in terms of <, by asking that e <, m iff
Vd € D(o).e =[d] D Jem = c & d <, c. We define:

o () poo1 tt and j(*) <poor £f where 7,7:1 — 1+ 1 are coproduct insertions.
o n <. k, where n € N.
o f <y, Aeiomiff Vd € D(o)Veio.d <, ¢ D f(d) 4, (Az:om)c.

With this, we have

Lemma 6.4.2 Let zy:0q,...,2,:0, Fm o be a QL term in context and suppose
that fori = 1,...,n we have d; € D(0;), - ¢;:0; and d; <, c;. Then the continuous

function D(T Fm): D(oy) X ... x D(0,) — D(0), satisfies D(I' F m)(d) <, n[/4].

Proof The proof proceeds by induction on the structure of m. We illustrate the
proof with two cases

(Case m ts Az: o.m): Suppose that the conditions of the lemma are satisfied. Then
we need to show that D(T'F Ae: om)(d) <,_,, Az:o.n[&/&]. Using the definition of
D(—) we can show that D(I'F Az:o.m) = v o cur(D(T, z: 0 Fm)) where

t:D(0)—=D(1) — (D(o)—=D(7),),.

Hence D(I'F Az: o.n)(d) = [cur(D(T, z: o Fm))(d)]. By definition of the < relation
we show that cur(D(T,z:0 Fn))(d) <,_, Az:o.m@/F]; thus if d <, c it remains
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to show cur(D (I‘ F Az:o.m)) J} (Az: o.m&/&])c. By the induction hypothesis,
D(P,:c:a?*m)(d, d) 4, m[E/&,c/a ] and so m[C/Z,c/z] = ¢ for some <’ provided
that D(T l—)\m:a.m)(cﬁ(d) is not L. But then (Az:o.m[€/&])c == </ and we are
done.

(Case n is mn): We need to show that D(T Fmn)(d) <, n[@/Z]n[e/#] where, say,
I'mo—r and P'Fn:o. Suppose that D(T’ l—mn)(cf) is not L. One can check

that neither are D(I'Fm)(d) or D(T't-n) (f) let us write [f] and [d] for these.
By the induction hypothesis we have [f] <,_,, n[¢/Z] and [d] <, n[¢/&]. Hence
n[2/&] => Az:oa and n[¢/&] = c. This leads to f(d) <, (Az:ow)c and from
the original supposition there is some ¢’ for which (Az: o )c = ¢/, Thus we may
deduce w[c/z] = ¢’ and conclude n[€/Z]n[c/F] == ¢. ]

We shall also need the following Lemma:

Lemma 6.4.3 With the call by value interpretation of QL, and z:obm:i7, Fcio
QL terms in context with ¢ canonical, we have

- [mfe/2]]” = [m]*([<]/4],

where [z]v % Val(u) and [[c]/«] means substitution in the meta A calculus.

Proof N.B. Recall Section 0.3 of Chapter 0. The proof is a trivial structural
induction on m. We illustrate with one example.

(Case m 1s R(m,n)):
F[R(m,n) [e/y]l* = Let([n[e/y]l*,uw.Y(A(S- (A= [mlc/y]]"))))w)
which by induction is = Let ([n]?, w.Y(A(S.(A(2.[m]*))))w) [[<]/y]
[B(m, n)[*[[<]/y].

l

]

Theorem 6.4.4 [“QL Dynamic Adequacy”] The interpretation of QL in the FIX
logic is computationally adequate; more precisely, given closed QL terms m and c for
which c is canonical, then m = ¢ implies F [m]v = [c]v, and F [n]* = [c[* implies
there is some canonical ¢’ for which m = ¢/,

Proof The proof in the forwards direction proceeds by induction on the derivation
of m = c; we give details for the cases of application and recursive function terms.

(Case mn = c): Using minimality of => and the induction hypothesis, we obtain

P = Vel DY)
F]* = Val([<')

[
e /]]v = Val([e]).
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Thus we have

F [mo]”

i

Let ([al, /.Let ([s]", .f))
Az [m]*)[<']
= [w]*[[<']/=]
which by Lemma 6.4.3 = [c]?,
as required.
(Case R(m,n) = c): Using minimality of = and the induction hypothesis, we
obtain
Fn]e = Val([<¢)
F [m{Az:oR(m,2)/f, /2] = Val([c]).
Let us put M % A\(f.A(z.[n]?)) and note that

F[Az:oR(m,z)]* = Val(A(z.Y(M)z))
= Val(Y(M)).

Thus we have

FRmn)]" = Let([n]*,y.Y(A(S.(A(z.[m]?)))y)
A (A(z.[n]))) Y(M) [<]
= Mz.[n]")[Y(M)/f] [<']
= Ma.[n]’[Y(M)/f]) [<']
= [m[*[Y(M)/f1[[<"/]
= [n]*[[Az: o.R(m,2)]/f, [<']/2]
which by Lemma 6.4.3 = [c]?,

and so we are done,

For the converse direction, suppose that F [mv =, [c]*. We have [m]* = Val([c])
and hence it is the case that D( Fm)(*) is not L, say [d]. Appeal to Lemma 6.4.2
to deduce that [d] <, m and hence there is some canonical ¢/ for which m = ¢’ by
the definition of <. 0

6.5 A Further PCF style language, HPCF

We define the language HPCF by specifying the basic syntax of types and raw
expressions; this syntax will then be given a static and dynamic semantics.

The Types and Expressions of HPCF

The types of HPCF are given by the grammar:

o = bool |nat | c—0o

106



The (raw) expressions of HPCF are given by the grammar:

dz:o.m function definition

m o= variables
| tt truth
| ff falsity
|k, natural numbers
| ¢, conditional
| s successor
| P predecessor
| Z zero test
|y, fixpoints
| mn application
|

The Static Semantics of HPCF

Variables

Lo, Voo

Constants

'k tt:bool '+ ££:bool 'k k,:nat

Conditional

['FC,:bool—(o—(0c—0))

Arithmetic

I'F S:nat—nat I'F P:nat—nat 'k Z:nat—bool

Fixpoints

T'kY,:(oc—0)—0o

Functions

F'Frmio—r Tknio FeiobFmr
T'Fmm:r I'FAz:omo—T
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The Dynamic Semantics of HPCF

The canonical HPCF expressions consist of the subset of closed expressions given
by the grammar:

c u= tt|ff|C, |k, |S|P|Z]|Y,|Az:iom|C,b]|C,bm

We now give the syntax of HPCF a call by name dynamic semantics. Apart from
conditionals at higher types, HPCF is in every respect identical to Plotkin’s lan-
guage PCF. The dynamic semantics will be presented using an evaluation relation
just as for QL:

Canonical Forms

¢ canonical

¢ == C
Conditionals
m == C, m == C,b
mb == C,b mn == C,bn
m==C,bn’ b=—=1tt m' == ¢ m==C,bm’ b==ff n==>c
mn == ¢ mn == c
1==C, b==tt m==>c 1==C, b==ff n==c¢
lbmn == c lbmn == ¢
Arithmetic
m==35 n=xk, m=="P n==Xk,4 m==P n== kg
mn == k,, 14 mn == k, mn ==> kg
m==>27Z n=x>Kk, m==-Z n==pKk,14
mn == tt mn == ff
Fixpoints
m==Y, n¥,n=c
nm == ¢
Functions

m== A:om mw'[n/z]==c
mn == ¢

Remark 6.5.1 Plotkin originally specified the operational semantics of PCF via a
single step reduction relation of the form m — n where m and n are closed terms.
Clearly HPCF could be given an operational semantics in the same way: for details
of the original specification of Plotkin’s PCF in this style of semantics see [Plo77].
We omit the details, but remark that presenting HPCF in this style would lead to:
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Proposition 6.5.2 Let m and ¢ be closed HPCF terms with ¢ canonical. Then
n = c iff m —* ¢, where ——* is the reflexive transitive closure of . O

This can be proved succinctly through:

Lemma 6.5.3 If m — n then for all closed canonical ¢, we have n = c implies
m == C. 0O

6.6 Translation of HPCF into the FIX Logic

Interpretation of the Static Semantics

For each expression in context, z;:o; - m:o of HPCF, we give a translation into
a term in context of FIX. The static typing judgement zq:0y,...,%,:0, Fmo is
translated to

2y Ty, ., 2n: Tlog]™ b . [m]™(&): T'o]"
The translation of HPCF into FIX is given below:

o [nat]r % nat

o [bool]® & unit + unit

o [o=r]r ¥ Tlo]r—T[r]"

o [2]r % u where u is a meta variable.

o [et]» = Val(Inlie(()))
o [££]" = Val(Inryn(())

o [i,]" = Val(Suc(0))

o [C,1" % Val(Agpooryr (b-Val(Agpgn (2. (Val(Agpopa (/. Let (b, 2. {y.2, y.2'}(z) . ..)

o [SI* = Val(Arguaegs (y-Let (y, @ Val(Suc(2)))))

o [P]" % Val(Appuasgs (y-Let (y, @.Val(Pred(2))))

o [Z]* = Val(Xrpuasge (v-Let (y, 2. Val(Zero(2)))))

o [%,Im & ValOrpnorpoam (0-Fixpps (e (@ Let (v, £.£2))))

o [ma]" < Let ([, f.f[2]"))

o [Az:om]r ¥ Val(Aroge(z.[n]"))
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Note that this interpretation is one of a number of possibilities. Of course, for
most of the syntax of HPCF there will only be one sensible translation. However,
in the case of the fixpoint constants Y,, there are two reasonable translations and
(as we shall see) they have quite different properties. This said, the important
requirement of any translation is that it preserves the structure and properties of
the original language. In Section 6.8 we shall give an alternative translation of Y,
and investigate its properties.

Interpretation of the Dynamic Semantics

This is the same as for QL: see Page 103

6.7 Adequacy Results for HPCF

Static Adequacy for HPCF

We prove the following Proposition, establishing that the translation of the static
semantics of HPCF is, in a sense to be made precise, information preserving.

Proposition 6.7.1 [“HPCF Static Adequacy”] The interpretation of the static
semantics of HPCF in FIX is adequate, in the sense that z;:0;Fm:io is a well
formed HPCF expression in context iff

z;: Tlo] F d. [m]™(&): T[]

1s derivable in FIX.

Proof The forwards direction is an induction on the structure of the term m; we
illustrate one case.

(Case m is Y,m): By induction and the definition of the translation, we have
z;: Tl b d. [n]™(&): T(T o] —T[e]")
and thus (using the fact that the raw terms (represented by) @.[n]*(Z) and [m]?[Z/4]

are the same)

z;: Tlo ] F Let ([m]™, z.Fix(z)): T o]

From the definition of [Y,m]|* we are done. Clearly the reverse direction is equally
€asy. (N

Dynamic Adequacy for HPCF

We shall need the following Lemma:

110



Lemma 6.7.2 With the call by name interpretation of HPCF, and z:obm: 7,
tn:o HPCF terms in context, we have

F [m[n/2]]* = [n]*{[n]"/u],
where [2]° ¥ u.

Proof Trivial induction. A

Theorem 6.7.3 [“HPCF Dynamic Adequacy”] The translation of HPCF into the
FIX logic is computationally adequate; more precisely, given closed HPCF terms m
and ¢ where ¢ is canonical, then m = ¢ implies F [m]* = [c]” and if F [m]? = [c]~
then there is a canonical ¢’ for which m = ¢’

Proof The “only if” uses rule induction on the derivation of the evaluation relation.
We shall just give two cases, namely for application and fixpoint terms.

(Case Functions): Using minimality of = and the induction hypothesis, we obtain

F [m]* = Val(\(e. [w]"))
F [wn/z]] = [e]

Hence we get

F ] < Let ([u]", f.f[0]")
= e W
= [w]"{[xn]"/]
which via Lemma 6.7.2 = [¢]”

as required.
(Case Fixpoints): Using minimality of =, the induction hypothesis and the trans-
lation of application terms, we have

- [l = v, ]
- Let ([al", g.9[¥,n]") = [e]".

Hence we get

[l = Let([¥,]", £./Tal")
= Fix(A(e.Let ([, £.f2)))
= Let([a]" £-F[%,]")
= [d,

which is what we had to prove.

To prove the converse direction we could use a method similar to the one used in
the proof of QL Dynamic Adequacy. The details are omitted. O
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6.8 An Alternative Translation of Fixpoints

All of the results of Sections 6.6 and 6.7 remain true for a slightly different transla-
tion of the fixpoint constants Y,. However, the proof of computational adequacy of
the translation is not so straightforward as before. We present a proof which uses
the Existence Property of the FIX logic which was stated on Page 73.

The translation of the fixpoint constants Y, now takes the form

I[Ya]]n déf Va|(>\T(T[0]|n_,T[U]n) (y. Let (y, z. FiX[o-]]n (:L))))

In order to prove a computational adequacy result which uses this new translation,
we shall need

Lemma 6.8.1 Suppose that
I' m BT«
e B Fz)Tp
Iyy:8 F  @®(y) prop

are well formed judgements in FIX. Then we have

I, A FO(Let (E, F),d)
T,AF O(E, ¢.0(F(x), ®))

ProofThe labelling of steps in the prooftrees is informal and for guidance only. We
have

(C1)
Iz, y: B, A, O(y), F(z) = Val(y) F O(F(z), D) »
Dyy: B,A, O(E,2.9(y) & F(z) = Val(y)) F O(E, 2. O(F(z), @) (2)
Loy:B,A,0(y) & O(E,z.F(z) = Val(y)) F O(E, z.O(F(z), ®))

and

(mod)( & ad)
Ly: B,A, Let (E, F) = Val(y), ®(y) - @(y) & O(E,z.F () = Val(y))

where the step () follows from Lemma 4.5.2 and rule (fr) is proved Proposi-
tion 4.5.3. Applying (cut) to the above conclusions we have

I y: B,A, Let (E, F) = Val(y), ®(y) - O(E, 2. O(F (), D)).

Using this together with the hypothesis I', A, - O(Let (E, F), @) and (Oe) we are
done. 0

Now we can prove computational adequacy:
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Theorem 6.8.2 Theorem 6.7.3 remains true if we replace the translation of the
constants Y, given on Page 109 with that given on Page 112.

Proof Clearly the change to the original proof will only involve the fixpoint con-
stants. Indeed, for the “only if” direction:

(Case Fixpoints): Applying minimality of =, the induction hypothesis, and the
translation of application terms, we have

E ]~ = [Y,]"
F Let ([n]7, f.f[Y,n]?) =[],
and thus
+ O(Let ([=]", ffl¥on]™), e = [CD
Applying Lemma 6.8.1 we obtain

FO([n]™, y.O(y[Yon]™ o = [c])).

Appealing to the Existence Property (Theorem 4.5.4), there is a closed term N for
which F [n]* = Val(N) and + O(N[Y,n]r 2.2 = [c]), that is E N[Y,n]* = [c].
Via the definition of [Y,]» we see that  [Y,n]* = Fix(N), yielding

] = Let([¥,]", f-f[n]")
= Let([n]", z.Fix(z))
= NFix(N)

S

as required. The details for the converse direction are omitted; the proof uses a
technique similar to that adopted in proving QL Dynamic Adequacy. O
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Chapter 7

Representations of Scott Predomains

7.1 Scott Domains and Information Systems

It is well known that the class of Scott domains together with Scott continuous
functions form a category which is equivalent to the category of information systems
together with approximable maps. Note that here the Scott continuous functions
are those set functions which preserve filtered colimits (i.e. directed suprema). For
details see both [Sco82] and [WL83]. Of course, it is by definition that a Scott
domain has a least element. We now extend Scott’s results to structures which
are just like Scott domains but which do not necessarily possess a least element;
we shall call these Scott predomains. The literature describes many different kinds
of domain and a number of the definitions are non-standard. For this reason we
elaborate on precisely what we mean by a Scott predomain.

7.2 Scott Predomains and Preinformation Systems

The Category of Scott Predomains

Definition 7.2.1 If P is any poset then a subset S is bounded iff S is non-empty
and we have Ip € P.S < p. We write Bd(S) for this. We say that P is bounded
cocomplete if every bounded subset has a supremum.

An w cocomplete partial order is a poset which possesses suprema (colimits) of w
diagrams. We refer to these as wcpo’s and often call w diagrams w chains.

A directed cocomplete partial order D is a poset which has suprema of directed
diagrams (recall that a directed diagram is a functor f: F' — D where F is a poset
which is a filtered category). We refer to these as dcpo’s. The image of such a
directed diagram will be referred to as a directed subset of D. If S is a directed
subset of D we shall write \/°.S for its supremum; we shall suppose that part of the
force of this notation is that S is directed. For other subsets we write \/ S for the
supremum. Finally, note that any dcpo is an wcpo.

An element d € D is finite iff d < \/2S implies 3s € S.d < s for all directed S. The
set of finite elements of D will be written as D°. A dcpo D is algebraic if for every d
in D we have d = \/?{e | e € D° & e < d}; note that by definition, for any element
d of D there is a finite element below d.

A Scott predomain is a bounded cocomplete algebraic dcpo. We shall say that a set
function between Scott predomains which preserves suprema of directed subsets is
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Scott continuous. (Note that as a functor between categories, this coincides with
the categorical notion of continuity as preservation of filtered colimits).

Proposition 7.2.2 Scott predomains and Scott continuous functions form a cate-
gory, Spd. a

Definition 7.2.3 Let C be a let category. Suppose that for all objects B and C

the functor C((—) x B,T'C):C°? — Set is represented by an object B— C. Then we
shall say that C has T'-ezponentials.

Proposition 7.2.4 The category Spd is a let category with respect to lifting of
domains, which has (finite products), stable finite coproducts, L-exponentials, NNO
and FPO.

Proof We just sketch the details. The forgetful functor U: Spd — Set creates stable
finite (co)products in Spd. Given a Scott predomain D we define the lifted Scott
predomain D, as expected. There is an obvious inclusion 7: D — D, and for a
Scott continuous function f:D x D’ — D" there is f*: D x D — D sending
(d, L) to L. It is easy to see that this gives rise to a let category. Now we show
that Spd((—) x B, C,) is representable, say by a Scott predomain B—C. We define
the underlying set of B— C to be the set of Scott continuous functions from B to
C'; which is a poset ordered pointwise. B— (' is a dcpo: For let FF € B—C be a
directed subset. Then setting (\/2F)(b) 4t \/2 F'b yields the supremum of F'. Now
let F' be non-empty and bounded by f. Then we have F'b < fb for any b € B; as
C is bounded cocomplete \/ F'b exists in C'; and hence we have V F' in B — C.
Finally we have to show that B— (' is algebraic. Consider the set function defined
by

CEEER R

1 otherwise

where b € B°, c € (3 and & € B. Then it is easy to check that every [b, c] is Scott
continuous and finite; indeed all finite elements of B — C' arise in this way and it
is the case that if f € B—C then f = \/?{[b,c] | [b,c] < f}. We omit details: the
essence of the proof can be found in [Sco71]. Recall that the category C of dcpo’s
and Scott continuous functions is a ccc. Of course Spd is a full subcategory of C
and thus the natural isomorphism

Spd((=) x B, ) = Spd((~), B—C)

is immediate. Finally, the expected candidates for the NNO and FPO are easily
seen to work. a

Remark 7.2.5 Note that the category Spdis not cartesian closed. For more details
about cartesian closure of categories of domains see [Jun88].

118



The Category of Preinformation Systems

Information systems provide a form of representation theorem for Scott domains.
In essence, every such domain corresponds in a natural way to a set of sets which is
ordered by inclusion. We shall describe a version of the original information systems
from which we may derive a similar representation theorem for Scott predomains.

Definition 7.2.6 The category of preinformation systems, pInS consists of ob-
jects A% (A, ], ) triples which are either (§,0,0), or else A is a nonempty set, |
is a nonempty set of finite subsets of A, and F is a subset of | x A. The three co-
ordinates of the triple are respectively known as the tokens, the consistent sets and
the the entailment relation. Note that we shall confuse the preinformation system

A with the token set A. These triples satisfy the following data:

1.0¢|.

2. X cf Y] implies X|, where C/ denotes non-empty finite subset and X|
means X € |.

3. a € Aimplies {a}|.

4, X Fa implies X U {a}].

5. X| & a € X implies X F-a. |

6. X FY F o implies X I a where X Y means X -y for eachy € Y.

Note that part of the force of the judgement X F a is that X is consistent. We refer
to the objects as preinformation systems and (0,0,0) as the empty preinformation
system.

The morphism sets pZnS(A, B) are empty if B =0 and A # 0, {0} if A =0 and
otherwise consist of all those r C | 4 X |5 which satisfy

1. Ya € A3Y |z.{a}rY.
2. XrY & XrY' implies Xr(Y UY7).
3. X'F 4XrY F gY’ implies X'rY".

We refer to a morphism r: A — B as a preapprozimable map; the identity on A is
just F 4 and composition is the usual composition of relations.

Remark 7.2.7 This definition is clearly very similar to that of an information
system as given in [Sco82] and [WL83]. In Scott’s original paper, the token sets
contain a distinguished element A which plays the role of a least element in the
corresponding domain. However, if this requirement is removed, the resulting infor-
mation systems still represent Scott domains as is noted in [WL83}; the (consistent)
empty set plays the role of a bottom element. Thus in [WL83] there are simply
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more information systems in any equivalence class which represents a particular
domain than is the case in Scott’s paper [Sco82]. However, if the requirement that
the empty set be consistent is removed, then the resulting structures will, as we
shall see, represent Scott predomains.

However, if this step is taken, the original definition of approximable map must
be altered in order that the category of preinformation systems be equivalent to
that of Scott predomains. Condition (1) imposes a direct “total functionality”
condition on the preapproximable maps. If the definition of approzimable map is
inspected, where say r: A — B is an approximable map, then for any {a} € A there
may not be Y|z for which {a}rY. If this is the case, then the continuous function
|r| between domains |A| and |B| corresponding to r: A — B would map a to L.
Working with Scott predomains means that there may not be a least element to
absorb this inherent partiality in the definition of approximable map

Proposition 7.2.8 Definition 7.2.6 does indeed yield a category pZnS.

Proof This is essentially routine. We just look at condition (1) for the compo-
sition A & B % C between non-empty preinformation systems. Let « € A.
As r and s are preapproximable maps there is Y|z such that {a}rY and Vy €
Y.3Z,|c{a}rY & g{y}sZ,; hence {a}rYsZ,. But Y is finite and thus YsU{Z, |
y € Y} implying {a}srU{Z, | y € Y'}. The details of conditions (2) and (3) for
preapproximable maps are essentially as in [Sco82]. O

7.3 Equivalence of the Categories pZnS and Spd

Scott Families

Our aim now is to prove that the categories pZnS and Spd are equivalent. In order
to do this we introduce the auxiliary notion of Scott family of sets.

Definition 7.3.1 A Scott family of sets is a set of non-empty sets F where
1. For directed S ¢ F we have |2 S € F.

2. For non-empty U C F we have NU € F whenever U is non-empty.

Remark 7.3.2 We shall often refer to Scott predomains as domains, Scott contin-
uous functions as continuous functions and preinformation systems as presystems.

Proposition 7.3.3 There is a functor | — |: pZnS — Spd given by the following
prescription:

On objects, |A] is the empty domain when A is the empty presystem and otherwise
consists of the non-empty subsets U C A such that

(i) X ¢/ U implies X|.
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(i) X ¢/ U & X I a implies a € U.
On morphisms, |r|:|A] — |B| is given by

Ir|(U) ¥ {be B|3X cf UXr{b}}.
We shall refer to an element U of |A| as a point of A.

Proof The following Lemma will prove useful:

Lemma 7.3.4 Let (4, ], F) be a non-empty presystem, X | and Y’ Cf A. Then
(i) XFY implies X UY | and Y.

(ii) If X| then X © {a| X+ a} is a point of A.

Proof (i) is a simple induction on the cardinality of the (finite) set Y. (i) is a
consequence of (i). O

We have to show that |A] is a domain; this has only to be checked when A is non-
empty. First we prove that |A| is a Scott family of sets and then show every such
family is a domain.

By construction |A] is a set of non-empty sets. We check it is a Scott family:

1. Take S C |A| directed. Certainly J°S is a non-empty subset of A. (i) Let
X cf [°S. X is finite so X ¢f S € S and thus X|. (ii) Let X I q; then
aeSclfs.

9. Take non-empty U C |A| for which NU # . By hypothesis there is U € U:
(1) X ¢/ NU c U implies X|. (ii) If also X - a then a € U for any such U,
ie. a € NU.

Obviously |A] has a poset structure when ordered by inclusion; that it is a Scott
family says immediately it is a dcpo.

|A| is bounded cocomplete: Take U C |A| bounded, say by U’ € |A| and set
VYV e|A||U cV};as U €V, V is itself non-empty. By hypothesis there is a
non-empty set U € U; then any element v € U will be an element of every V € y
and hence (1) is non-empty. As |A| is a Scott family, this means UU = NV € |4]
and this is certainly the supremum of U.

Finally, we show that the dcpo |A| is algebraic: It will be convenient to have the

Lemma 7.3.5 The finite elements of the dcpo |A| are given by the collection {X |
X}

Proof (Suppose U € |A] is finite): Clearly U = UP{X | X cf U}; this makes sense,
for any such X is consistent in A. As U finite, U C X, for some X, cf U. As U is
entailment closed, we have also X, C U, as desired.

(Suppose X € |A| for X|): Let X c U?S. X is of finite cardinality and so X C S
for some S € S. By entailment closure X C S € |A| showing X is finite. ]
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Let U € |A|. Then certainly we have U = |J2{X | X cf U} and it is easy to see
using Lemma 7.3.5 that the directed set consists precisely of the finite elements
below U i.e. |A] is algebraic.

Thus we have shown that |A| is a domain; it remains to demonstrate that | — | is
well defined and functorial on morphisms.

Let m A — B be a preapproximable map. Then |r| is well defined: Take U €
|A| and we show |r|(U) € |B|. Let Y cf |r|(U). Then for any y € Y we have
31X, </ UX,r{y} and it follows from the properties enjoyed by U and r that

WX, |y € Y} F 4 X,r{y} F p{y} implying U{X, | y € Y}r{y}. But y is arbitrary
in the finite set Y giving U{X, |y € Y}rY and so Y|g. If also Y I b then it is
immediate that U{X, | ¥ € Y}r{b} and we are done.

7| is a continuous function: To see this take {U; | ¢« € I} C |A]| directed. It is
easy to see that {|r|(U;) | ¢ € I} is directed and hence | {|r|(U;) | 1 € I} exists
in |B|. Certainly U? {|r|(U;) | ¢ € I} C |r|(UP {U; | i € I}). For the converse take
belr|(WP{U; |i€I})and so 3X cf P {U; | i € I}.Xr{b}. But X is finite and so
X I U, ie be|r|(Ty,) c U {Ir|(Ui) | i € T}

| — | is functorial on morphisms: | | = id|4 for any U € |A] is entailment closed.
Now take A = B % C between non-empty presystems and let U € |Al; we omit to
check the degenerate cases involving empty presystems. We have

ls7|(U) = {c|IX cf UAY | 5. XrY & Vs{c}}
and
|sl|r|(U) = {e|3IY cf {b| 3IX cf UXr{b}}.Ys{c}}.

Take c € |s||r|(U) so that Yy € Y.3X, cf UX,r{y} where Ys{c}. Y is finite and
so we have U{X, | y € Y} F 4X,r{y} leading to U{X, | y € Y}r{y} and thus
U{X, |y € Y}rY. Thus ¢ € |sr|(U). The reverse inclusion is trivial and so we may

deduce from this that |sr| = |s||r|. This completes the proof of Proposition 7.3.3.
O

Now we show that there is a functorial construction of presystems from domains.
More precisely we have the

Proposition 7.3.6 There is a functor Z: Spd — pInS given by the following pre-
scription:

On objects define ZD to be the empty presystem if D is empty and otherwise
=D & (De, |, k) where

1. De is the set of finite elements of D.
2. X|iff X cf Do & Bd(X).
3. XFdifft X| &d<VX &de Do,
On morphisms, Zf:ZD — ZF is specified by the relation Ef C |zp X |=5 given by
XzfY it \/Y < f(\/ X).

122




Proof We have to show that =D is a presystem; we just sketch the details when D
is non-empty. D is algebraic so there must be at least one finite element, implying
0 # | C Pin(D°). Wehave b C | x D° by definition. The conditions (1) to (6) of
Definition 7.2.6 are easy to verify. For (1) the empty set is not consistent for it is
not bounded. For (6) suppose that X Y F d; it is immediate that d <VY <V X,
Le. X Fd.

Now we need to see that = is well defined and functorial on continuous functions; we
just sketch the former. Take f: D — E a continuous function between non-empty
domains. We look at condition (1) of Definition 7.2.6. Let d € =D and so by
algebraicity of E there is a finite e € E with e < f(d). Thus {d}Zf{e}; conditions
(2) and (3) are equally trivial. Confirming functoriality on continuous functions is
a routine calculation. 0

Proof of the Equivalence

With the machinery just set up we can now prove the next theorem:

Theorem 7.3.7 The functors | — |: pZnS — Spd and =: Spd — pInS give rise to
an equivalence of categories.

Proof Let D be a domain and A a presystem. It will be convenient to write

=D & (De, ], F). Of course we simply check that we have an isomorphism which
is natural on components D and A; we consider D first.

There is an isomorphism natural in D, 8 : D & |ZD| : ¢, given by

0(d) ¥ {eeD°|e<d}
s(U) = VU,

on non-empty D and by the empty continuous function when D = 0.

0 is well defined: U % {e € D° | e < d} is a directed hence non-empty subset of
De. To see that U € |[=D| let X c/ U. Then

1. X is bounded by d so X|.
2. f XFethene<VX <VU=dandsoecU.

Now for continuity: Take S C D directed. Then 6(S) is certainly directed and that
U2 6(S) = 8(V2S) is easy.

¢ is well defined: Take U € |ZD|; we show that U is directed. U is non-empty by
definition and if {e, e’} Cf U we have {e, e/} consistent in =D implying Bd({e, e'}).
Hence s ¥ \/{e, e’} exists in D and s will clearly inherit finiteness from e and ¢,
showing s € U on noting {e, e’} I s.

¢ is continuous: Take U C |ED| directed. ¢(Uf) inherits directedness from U.
Clearly ¢(U) < #(°U)) and U < \?$(U); this is all we need. That the pair (¢, )
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yields an isomorphism of domains is virtually immediate; we omit the verification
of naturality.

Now we write A & (A, ], F) and Z|A4| e (|A]e,|’, F'). We show that there is a
natural isomorphism r : A & =|A| : s given by the empty preapproximable map
when A is empty and otherwise

Xr{X;|iel} if X;]&X|&ViclX,cX

{X;liel}sX iff X;|&X|&Xc/U{X;|iel}.
This definition makes sense. To see this recall Lemma 7.3.5 and also note that the
supremum exists for {X; | ¢ € I'}]" implying that Bd({X; |7 € I}) in |A].
r is a preapproximable map: For (1) {a}r{{a}}. Condition (2) is easy. For condition
(3) suppose that X'F Xr{X; |1 €I} F "{XI|j €J}. The only thing not clear is
that for any 7 we have—X’; C X'; but it is easy to see that 1’;" cU{X;|iel}cX
and X C X'.
s is a preapproximable map: For (1) note that {X}sX. Condition (2) is easy. For
(3) suppose that {X’Z |7eJIF{X;|i€I}sXF X'. We need to see that X' Cf
U{X7 | j € J}; but it is the case that X <f U{X; [i e I} C U{X]|j € J}and we
are done by entailment closure.
Checking that sr = F is easy. We sketch the details for rs = F’. Suppose that
{Xi |i€Itrs{X]|j € J} and so for some X| and for each j we have X7 C X C
U{X; |7 € I} implying that {X;|:€ I} + '{A_’J’ | 7 € J}. Conversely suppose that
{X; |4 GI}F'{A_’J’. | j € J}. We see that

UiXilie Nyt UK l5edy cUXiliel} €4

implying |J {XJ’ | 7 € J}]. Finally we can conclude that {X; |7 € I}sU {X]’ |jelJ}
and U{X] |j € J}T{X]’-. | 7 € J} so we are done.
To finish, we give one case of naturality, namely given a preapproximable map

m: A — A’ we check that the following diagram commutes:

S

| Al A
Zlm| m
) '

Suppose that {X; |7 € I'}s=|m|X’. Then for some {3;7 | 7 € J} we have X/ Cf
U{X;|jeJ} C Im|(U{X;]|:€I}). Recall that X’ is non-empty and using the
definition of |m| we see that Vo' € X'.3Y,, ¢/ U{X; |i € I}.Y,m{a'}. As X' is a
finite set we deduce U{Y,: | ' € X'}| because {Y, | 2/ € X'} cf U{X;|ie I}
and thus J{Y,, | 2/ € X'} FY,ym{a'}. Collecting our conclusions together we see
that U{Y,, | 2’ € X'}mX" and {X; |7 € [}sU{Y, | 2’ € X'} ie. {X; |7 € I}msX'.
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Conversely let {X; | 7 € I}msX'. Then there is some X | for which {X; | i € I}sX
and XmX'’ and taking o/ € X' we have Xm{a'}. Hence we deduce that X' C
|m|(U{X; | € I}) € |A’| using the definition of |m| and entailment closure of points
of | A’|; but this says that {X; | 1 € I}E|m|{X'}. Of course {X"}sX’, so we are done.

0

7.4 The Large wcpo of Presystems

Here we shall be a little more precise about set-theoretical conventions. Let us work
with Zermelo Fraenkel (ZF) set theory and assume the existence of a universe of
sets U. Then a class will be a (meta)-subset of the universe U. This can be made
more precise by defining a class to be an equivalence class of ZF-formulae identified
under universally quantified bi-implication, but we omit all formal details. We now
show that the collection of all presystems forms an w cocomplete partially ordered
class under a suitable ordering.

Definition 7.4.1 Given presystems A and B we define an order relation < on the
class PS of all presystems where (§,0,0) is a least element and for non-empty A
and B, A < B iff

1. AC B.
2. X[, X CA& X]|p.
3. Xt aiff XCA&ace A& XFpa.

Lemma 7.4.2 If A < B and the token set A equals that of B then A = B. O

Theorem 7.4.83 The class PS of presystems with the above ordering is an w co-
complete partially ordered class with a least element.

Proof It is easy to see that the order < is indeed a partial order. Suppose that we
have a chain {4; | 7 € w} of presystems. Then the supremum exists and is given by
the presystem (U{4; | 7 € w},U{l; | € w},U{F: | 7 € w}). The least element is
the empty presystem. 0

Definition 7.4.4 The category wCPO has objects which are w cocomplete partially
ordered classes and morphisms which are Scott continuous function classes. Thus
the category wCpo is a full subcategory of wCPO.

Proposition 7.4.5 The category wCPO is a let category with respect to lifting of
domains which has (finite products), stable finite coproducts, L-exponentials, NNO
and FPO.

Proof The only thing in doubt is the existence of L-exponentials; it is possible
to check that wCPQ® is closed under the formation of L-exponentials in the chosen
formulation of set theory. a
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Our aim is to see that the object PS in the category wCPO can be used to play the
role of a type universe. The precise details of how this can be done will emerge in
Chapter 9. Clearly the essence of the idea comes from the fact that the categories
pInS and Spd are equivalent, but as we have just seen, the class of all presystems
can be seen as a (large) wcpo. We saw in Proposition 7.2.4 that Spd has finite
(co)products and L-exponentials. Thus so does pZnS. With a view to using PS as
a type universe, we give constructions of these categorical structures directly, and
show that their formation is continuous with respect to the order on PS. We will
need the following observations:

For each finite ordinal n € w there is a large wcpo PS» o pSx...x PS enjoying the
obvious pointwise order. Then it is easy to see that any morphism f: PS® — PS is
continuous iff it is so in each coordinate. This observation, together with the next
lemma will be found useful in later work; we need the

Definition 7.4.6 Let f: PS — PS be a function class on the the underlying class
of PS. Then f is said to be continuous on token sets if given a chain of presystems
{A, | n € w} we have f(U{A4, |n €w}) c U{f(A,)|n € w} where the contain-

ment is between token sets.

Lemma 7.4.7 Let f: PS — PS be a morphism. Then f is continuous iff f is

monotonic and continuous on tokens.

Proof The “only if” case is immediate. Conversely let {A, | n € w} be a chain of
presystems. Then J{f(A4,) |n € w} < f(U{A, | n € w}) and by Lemma 7.4.2 we
are done. O

7.5 Categorical Constructions in pZnS

We give explicit (canonical) constructions of finite (co)products and L-exponentials
in the category pZnS. These constructions are continuous in the following sense:

Lemma 7.5.1 There are morphisms in the category wCPO

07:1— PS 11— PS TL™mPS — PS
Fx1: P52 — PS T+"PS?2— PS -1 pPS2 - PS

which give rise to the canonical initial object, terminal object, liftings, binary
(co)products and L-exponentials in the category pZnéS.

Proof Throughout the proof let A and B be non-empty presystems; the effect of
the morphisms which involve empty presystems will be clear, although we do make
this explicit for the L-exponential construction. We omit all details concerning well
definedness and continuity, except for ™7,

Put 707(x) & (0,8,0) and "17() O (), {{#}), {*} F %); it is clear these definitions
work.

Now we prescribe " L™ PS — PS; this will take the empty presystem to the one
point presystem and take A = (4, |, F) to (Ay,],, F 1) where
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o A, ¥ AU{L) where L ¢ A.
o X|, if X\ {L}] or X ={L}.
o Xt aiff X\{L}Faora= L.

Given presystems (A, | 4, I 4) and (B, | 5, I ) define A”x "B to be (P, |, I- ) where

o« P AXB.
[ ] Zl iﬁ W].ZlA & 7T2ZJ,B.

o Ztpiff 7 Z ¢ 4mp & 7,7 b gmyp where 7y and m, are the projections of the
product A x B in Set.

We define A + B to be (C, |, ) where
o C % A+ B where weshall put A+ B % {1} x AU{2} x B.
o Z1if3X|,.Z={1} x X or3Y|p.Z = {2} x Y.

o ZFeciff 3o € AIX| 47 = {1} x X & ¢ = (1,a) & XF 4a or b €
BAY|p.Z = {2} xY & c=(2,b) & Y I gb.

The morphism "™ PS? — PS is defined by

((0,0,0),(0,0,0)) = ({x}, {{x}},{*} F=)
(4,(0,0,0)) = (U e () B )
((0,9,0), 4) = ({*} {{*}} {x} F )
(4, B) = (£ F)

where
F® {Xwb|X]|, &be B}U{x}.

o Z|iff Z CF Pyn(F) and it is either the case that Z = {} or we have
Z\{x} # 0 & VI cf n.U{X; |t € I}], implies {b; | i € I[}|p where n =
{0,...,n—1} and Z \ {x} = {X;»b; |1 € n}.

o 7+ fiff Z| andeither f =% or f# % & Z\{x} # 0 & U{b; | X b 4X;} I gb.

First we see that F really is a presystem. As A and B are non-empty the basic
criteria of Definition 7.2.6 are satisfied. Further:

1. 0 ¢ | by definition.
2. If Z' cf Z| then Z'| is immediate.

3. Let f € F. If f = * then {¥}| by definition and if f = X»b just note that
X4 and {b}] .
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4. Let ZF f. If f = * then Z U {x}] is immediate. Otherwise let f = X»b
and write {X;»b; | ¢ € n} for the non-empty set Z \ {*}. Let I cf n.
Suppose that J{X; |t €I} U X],. Using Lemma 7.3.4 we may deduce that
U{X;|ie ITUU{X; | X+ 4X;}] 4 and as Z| this means that |J{b; | i € T}U
U{b; | X+ 4X;}|p. Finally note that J{b; | X - 4X;}  gb from which we
can deduce that J{b; |7 € I} U{b}|p.

5. Let Z| and X»b e Z. Write Z \ {*} = {X;»b; | i € n} where X, = X and
bO = b. Then it is trivial that U{bz I XF AXz} + Bb'

6. Suppose that Z'F Z | f. The result is trivial if f = * and so let f = X»b.
Checking the definitions we may safely put Z \ {*} = {X;»b; | 1 € n} and
Z'\ {x} = {Xi»¥. | j € n'} and deduce that U{b; | X F 4X;} F gb and U{e; |
X+ AX]'.}  gb;. (Note that we have X I X; for at least one i). Obviously
X U{X] | XF 4X;} and so by Lemma 7.3.4 we have {X; | X F X H a4
Hence U{t; | XF X/}|p and from U{¥; | X; FaXih c U{b; | XE X}
we can deduce that U{b | XX} b pb. Thus U{e; | X FaXi}t pb as

required.

It remains to show that "—™ PS? — PS is a morphism in wCPO. We have only to
see continuity in each coordinate, and appealing to Lemma 7.4.7 we may simply
verify that "—7is continuous on token sets in each coordinate. We verify this for
the first coordinate of "™,

Take A < A’ and B in PS. We show F ¥ A7 < pr & gm_0p,

1. J,AC.J,A/ SOFCF’.

2. Note that Z| implies Z C F. We need 7| iff Z C F and Z|'. This is clear
unless Z \ {*} is non-empty, say Z \ {*x} = {X;»b; | i € n}. Using the note we
see U{X; |tel}|,if {X;|iel}], andso Z| iff Z|'.

3. We need to show that Z+ fiff Z Cc F & f € F & Z\'f. This is only non
trivial if f is not * and @ # Z \ {x} = {X;»b; | ¢ € n} with f = X»b.
Note that Z - f implies Z C F and as X F 4 X; iff X F 4 X; we have Z I f iff
ZF'f.

Take a directed set {A; |i € I} in PS. We need to prove (V?{A; |i € I})™—'B c
VP{F; |1 € I}. Take f € (V?{4; |i € I})"="B. Certainly we are okay if f is ; let
[ =Xwb. Then X|y o, icrys 50 X Cf A; for some ¢ and hence X| .. Therefore
Xwbe A"="Bc VF,|icl}. m

Definition 7.5.2 Suppose that A and B are Scott predomains. A continuous func-
tion m: A — B is called an embedding if there is a (necessarily unique) continuous
partial function r: B — A for which rm = id4 and mr < idg. r is referred to as
a partial-projection. The class of Scott predomains together with embeddings (and
specified partial-projections) forms a category which will be denoted by Spd°?. We
shall write 7(a){} to mean that r is defined at a € A.
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Lemma 7.5.3 Thereis a functor | — |: PS — Spd®. Moreover, the effect of | — | on
objects commutes up to isomorphism (in Spd) with the functors g™ and g where g
runs over 0, 1, L, x, 4+ and — .

Proof | — | is defined on objects by taking points. Given A < A/, U € |A| and
U € |A’| we define an embedding partial-projection pair (m,r) where

m: |A > A
by setting

m(U) ¥ {a'e A|3X cf UXF 4a},
") def ANU! if this is non-empty
" undefined otherwise

We omit the routine details verifying that (m, ) is a well defined embedding partial-
projection pair. We give the definitions of the isomorphisms and check details for
—., We begin by noting that all is clear for 0 and 1.

Define 9 : |[A|, = |TL(A)|: ¢ by
§U) { UU{L} i U£L oy {V\{L} if V#{L}

- {L} otherwise L otherwise

Define 9 : |A| % | B| 2 |ATx"B| : ¢ by 9(U, V) € U x V and (W) & (r, W, 7,W).
Define ¥ : |A|+ |B| = |A"+"B| : ¢ by
def {1}XU1fO:(1,U)
() = { 2} xV if C=(2V)
{ (L,U{Xz | 2 cf W}) where Z = {1} x Xy

or

(2,U{Yz | Z cf W}) where Z ={2} x Yy

o) =

where the definition of X, and Y; and well definedness of ¢ can be seen from
inspection of the construction of A"47B in the proof of Lemma 7.5.1.

Define 9 : (JA|—|B|L) = |A™"B|: ¢ by
dg) £ {(X»blbeg(X)}U{s)

def b|3IX cf U.Xwbe V} if this is non-empt
e = { G } bty

(Recall that |A|—|B] 4 | A|—|B|.; see Proposition 7.2.4). 9 is well defined: Take
7Z cf 9(g). ¥ Z = {+} then Z|. Suppose not; take Z \ {*} O (Xpb; |1 € nl,
I cfnandlet J{X; |7 € I}|,. From the definition of 9 and the monotonicity of
g we see that

{bi|iely ! U{X) lie Iy cg(U{Xi[ie1}) € [B|L.
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Thus Z| as required. Now suppose also that Z+ f. If f = % then f € 9(g).
Suppose not. We have J{b; | X F X;} I gb where f = X»b and so X F X; for at
least one 4: let I index such X;. Note that X - J{X; |: € I} so by Lemma 7.3.4
U{Xi|iel}], Of course J{X; |7 €I} Cc X and arguing as above we conclude
{b; | e I} ¢/ g(X) € |B| . implying that b € g(X). Hence f € ¥(g).

¢ is well defined: Take V € |A"—"B|, U € |A| and show ¢(V)(U) € |B|,. For the
non trivial case take ¥ Cf o(V)(U) and let y € Y. Then 3X, cf UX,py € V.
Noting that U{X, | y € Y} ¢/ U and {X,py | y € Y} cf V along with the
definition of | we have J{y |y € Y} = Y| 5. Now suppose that Y F gb. Noting that
Y=U{y|U{X, ly €Y} 41X, } F gbwehave (X, py |y € Y} U{X, |y € Y}»b
which implies that (J{X, | y € Y}»b € V and thus b € o(V)(U). Finally we have
to see that ¢ is a continuous function; we omit the simple details.

(9, ) is an isomorphism: Suppose that ¢(9(g))(U) is not L. Then we have
e(W(g)(U) = {b|IX T UXwbe {X»b|be g(X)}U{x}}
= {b|3IX cFUbey(X)}
U{g(X) | X </ U}

= 9(U)

where the final step follows by continuity of g. For the converse, note that
(V) ={X»b|3IX' cf X.X'»be V}U {x}.

Certainly V' C dp(V). Now take X»b € d¢p(V). We can find some X’ for which

X F 4X" and hence U{b | X F 4 X'} F gb implies {X'»b} F Xp»b. Thus X»b e V,
completing the proof. a

Remark 7.5.4 Note that the construction of the product A"x B in pZnS is quite
different from the usual construction of products of information systems; for a dis-
cussion of products of information systems see [Sco82]. Note also that we have not
given the full details of the categorical constructions, for example the preapprox-
imable maps which are the projections of |A"x"B|. The details are easy to fill
in.

7.6 The Small wcpo of Presystems

We can avoid the set-theoretical complications of the last section by restricting the
cardinality of the sets which underly our constructions.

Definition 7.6.1 A Scott predomain is countably based if its set of finite elements
is countable. Such Scott predomains give rise to a full sub-category Spd,, of Spd. A
presystem is countably based if its token set is countable. Such presystems give rise
to a full sub-category pZnS, of pInS.

With this definition, it is not too difficult to verify the following results, which will
be put to use in Chapter 9.
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Theorem 7.6.2 The functors | — |: pZnS — Spd and Z: Spd — pInS defined in
Section 7.3 restrict to an equivalence Spd, ~ pInS,,. a

Lemma 7.6.3 The set PSy of all presystems whose token sets are subsets of N is
an wcpo with least element.

Proof Suprema in PSy are given by unions and the least element is the empty
presystem. The details are easy to verify. O

Lemma 7.6.4 There are morphisms in the category wCpo

r07:1 — PSy r1%:1 — PSy 17 PSy — PSy
"x7: PS% — PSy m47: PS2 — PSy 7 PS2 — PSy

which give rise to the canonical initial object, terminal object, liftings, binary
(co)products and L-exponentials in the category pInS,,. a

Lemma 7.6.5 There is a functor | — |: PSy — Spd®. Moreover, the effect of [ —[ on
objects commutes up to isomorphism (in Spd,,) with the functors "¢ and g where
g runs over 0, 1, 1, x, + and — . O

7.7 Some Miscellaneous Results

While it is not central to out main concerns, we note a pleasing relationship be-
tween Scott families of sets and presystems, namely that there is a one to one
correspondence between them.

Definition 7.7.1 Given a Scott family of sets F define Ax = (Ax, |, ) to be
the empty presystem if F is empty and otherwise put

1. Ap ¥yr.
9 X| i X+40&3IVeFXCIU.
3. Xtaif X| &acUF & (YU € F.X CU implies a € U).

Proposition 7.7.2 For a Scott family 7, A is a preinformation system. 0
Proposition 7.7.3 Let F be a Scott family. Then |Ar| = F.

Proof We sketch the details. Showing F C |Ax| is easy. To prove the converse
take U € |A x| (we assume that F is non-empty). The proof goes by approximating
U via appropriately chosen sets; in particular that U = J°{X | X c/ U} € F. To
do this, set V MV eF|XclV} Itis clear that NV is non empty and so
X =NV e F; hence {X | X cf U} C F. Note that this latter set is directed
({X,Y} c X UY); showing U is its supremum is easy. ]
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Proposition 7.7.4 Let A= (A, ], ) be a presystem. Then A = Ay

Proof The empty case is trivial so let A be non-empty. We need to show the
following facts:

2 Xy, i X #£0&3U € |A].X /U
3. Xk, M Xy, &acU|Al& (VU € |Al.X Cf U implies a € U),

The easy details are omitted. O
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Chapter 8
The FIX* Logical System

Our goal is to define a logic in which we are able to solve recursive domain equations
with the aid of the fixpoint type. The approach we adopt is to set up a logic in which
there is a universal type [Car86]. The elements of this type act as codes for the
external or observable types. Thus a recursive type can be realised by considering
the corresponding fixpoint of the universal type. In order to make things precise,
we shall define a dependently typed equational logic called FIX* . This is essentially
the same as FIX_ but has T-exponentials and a universal type.

8.1 The Dependently Typed Equational Logic FIX*

Signatures for FIX*
A FIX* signature Sg is specified by

o A collection of basic type valued function symbols which are tagged with an
arity t: TERM™ — TYPE.

A collection of distinguished type valued function symbols denoted by unit,
null, nat, fiz, dom, EL

o A collection of distinguished type valued type constructor symbols X, +,—, T

o A collection of basic term valued function symbols which are tagged with an
arity f: TERM"™ — TERM.

A collection of distinguished term valued function symbols which consists of
the distinguished function symbols from a FIX_ signature augmented with
Cpull, Tunit?, Tx 7, T4, =TT p, Jp, e, Je, If, Jf, Ret.

We now define an abstract syntax signature X = (Gar, Con) where we shall set
Gar={TYPE, TERM} and Con consists of the function symbols, type constructor
symbols and a countable number of object level variables of arity TERM. The
distinguished symbols have the following arities:

o unit, null, nat, fix, dom : TYPE.

e Fl: TERM — TYPE.
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® X, +,—:TYPE2 — TYPE.

e I': TYPE — TYPE,

o "null", Tunit" : TERM.

o "T7 Ip, Jp, lc, Je, If, Jf, Ret : TERM — TERM.
o "x, T4 7 TERM2 — TERM.

The raw FIX" types are closed expressions of the abstract syntax generated from ¥
which have arity TYPE and the raw FIX* terms closed expressions with arity TERM.

Judgements in FIX*

The logic FIX" is a dependently typed equational logic. The forms of judgement
which we use involve contexts I', raw terms M, raw types o and finite lists of raw
terms x. A context

I'= [33110./1, v ')mn:an]

is a finite list of (variable,type) pairs where the variables are distinct and OV(e;) C
{z1,..., 2,1}, with OV(«a) the finite set of object level variables in a. We use the
notation LEN(L) to denote the length of a list L. The judgements that we consider
are

1. T’ ctxt.

9. T'F a type where OV(a) C OV(T).

3. ' M:a where OV(M) U OV(a) C OV(T).

4. x:T'— I where OV(x) c OV(I).

5. T = I" where LEN(T") = LEN(I").

6. I' o = o where OV () UOV(e) C OV(T).

7. Tk M = M': o where OV(M) UOV(M") UOV(a) C OV(I).

8. x = x":T' — I where OV(x) UOV(x") ¢ OV(T') and LEN() = LEN(y/) =
LEN(T).

Equational theories for FIX*
A FIXZ theory T'h over a signature Sg is specified by the following data:

¢ For each basic type valued function symbol an introductory aziom of the form
Iy F (&) type.
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¢ For each basic term valued function symbol an introductory aziom of the form
e A collection of judgements of the form I' F M = M": « called the term equality

azioms.

o A collection of judgements of the form I' o = o called the type equality
azioms.

The theorems of Th are exactly those judgements which are provable from the
following rules:

Equational Logic: Contexts

I'Fa type =0 Thra=p(()
[] ctxt (1=1] I,2:a ctxt Tz =T, y:6(%)

Equational Logic: Types

'k a type l'Fa=d

F'rFa=a I'Ho =«
'ta=d Tho =a" x=x:T—=1" I'ta(y) = (9

'Fa=a I'Fa(x) = o/(X)

Equational Logic: Terms

Iye:a, TV ctxt 't+M:ia TFa=d [FM=M:a TFa=d

Iae:olVFa:a I'-M:o 'EM=M:d
I'r-M:a 'FM =M« 'CM=M:a TtFM =M"«a

I'-M=M:0o 'CM'=M: o 'tM=M"«

X=x:T =T I'F M@ =M@ i)
TFM(x)= M (X): alx)

Equational logic: Context Morphisms

I' ctxt x:I =T I'FB(Y) type T'FM:5(x)

[:T -] X, M:T — TV, y: 8(7)

[ ctxt x=x:T—=T" I"FB(J) type THM=M"p(x)
[(1=[:T—=1] X, M =x',M"T — I",y: B(¥)

Equational Logic: Axioms 1

x:T — T, x:I'—=T; Tyl a,(F) type
I'Hi(x) type Lk f(x): as(x)

provided ¢ has introductory axiom I'F¢(&) type and that f has introductory axiom
Ty F f(&):a; type.
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Equational Logic: Axioms 2

F'FM:ia THFM:« F'Fa type TFo type
'FM=M:a« FFa=ao

provided that T+ M = M': « is term equality axiom and that TFa =o' is a
type equality axiom.

Elementary External Types

[:T—1]
'+t type

where t is one of the types unit, null, nat, fiz, dom.

External Binary Product

I'Fa type T'FJB type
I'Faxpg type

External Binary Coproduct

'kFa type TFJ type
I'Fa+p type

External T-Exponential

'Fa type TFQG type
F'Fa—0 type

External Computation

I'Fa type
F'FTa type

External Decoding

[k D:dom
'+ EI(D) type

Terms in Context
The rules for term formation in FIX_ are part of FIXZ with the rule for Function
Terms (see Page 25) replaced by the rule for T-exponentials.
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T-Exponential Terms

[,z:ab F(z): T I'tM:a—p THN:S
TF A(F): a—f3 TFMN:TB

Internal Elementary Types

L' Tunit': dom T "null: dom

Internal Binary Product

TED:dom Tk D':dom
TFD™xD'":dom

Internal Binary Coproduct

TFD:dom I'tD':dom
THD+D" dom

Internal T-Exponential

LkD:dom TV D':dom
'FD™—="D": dom

Internal Computation

T'kD:dom
TH"D:dom

Product Externalisation Terms

T+ M:El(D™x1D') I+ P:EI(D) x EI(D')

T F Ip(M): EI(D) x EI(D") T+ Jp(P): EI(D" x D)

Coproduct Externalisation Terms

T+ M:E(D™+D') T+ C: El(D) + EI(D")

TF Ic(3): BI(D) + Bi(D') TFJc(C): EI(DT +D')

T-Exponential Externalisation Terms

T+ M: El(D™—"D") I'+ F: El(D)— Ei(D')
T FIf(M): Ei(D)— EI(D') T F Jf(F): B(D™—"D')

137




Universal Type Retraction Terms

'+ E:Tdom
I'F Ret(E): dom

Computation Externalisation

I'FD:dom
I'FEN("T'D) = TE_l(D)

Equations in Context
The rules for equation formation in FIX_ are part of FIXZ with the rule for
Function Equations (see Page 27) replaced by the rule for T-Exponential Equations.

T-Exponential Equations

F'FM:a—p Ieiak F(e): T THFM:«
PEXN(eMa)=M:a—f THFA(F)M =F(M):Tp

Product Externalisation Equations

T+ M:EI(D"x"D) T+ P: EI(D) x EI(D')
I'Flp(lp(M)) = M: El(D"xD’") '+ Ip(Jp(P)) = P: EI(D) x EI(D")

Coproduct Externalisation Equations

I'F M: BI(DT D) I'+C: BI(D) + E(D)
I'Fle(le(M)) = M: El(D"+7D’) 'k le(Je(C)) = C: El(D) + EI(D")

T-Exponential Externalisation Equations

T+ M: Ei(D™—="D") T+ F: El(D)— EI(D')
T F (M) = M: E(D"—"D") T F f(Jf(F)) = F: EI(D)— EI(D')

Universal Type Retraction Equations

T'tD:dom
I'F Ret(Val(D)) = D:dom

Substitution and Weakening

There are particularly useful rules concerning substitution and weakening which
may be derived from the rules for deducing theorems of FIX* theories. Indeed, we

have the following lemmas:
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Lemma 8.1.1 The following rules are derivable, where we write J for any one of
the expressions e type, e = ¢/, e:e/ or e = eli e,

x:I =T TVFJ(Y) I'a type IN'IVEJ
' J(x) oo, I'FHJ
I'FM=M:a T,z:q,l"(z)F N(z) = N'(2): B(z)
I, T(M)FN(M) = N'(M"): B(M)
I'EM=M:a I,z:a,l"(z)F B(z) = p'(x)

L, IV(M)F B(M) = /(M)

Proof Proceeds by an induction on the derivation of judgements. O

8.2 Recursive Types via Fixpoint Objects

We have seen how to interpret types of languages as objects in categories. It is well
known that the type of natural numbers can be represented as the recursive type
1 X. X + unit. If we are interpreting formal typing statements in, say, a category
C, then a sensible denotation of such a recursive type would be a solution to the
equation X = X +1. More generally, recursive types can be thought of as fixpoints
of assignments A — F(A) on objects A. The type is denoted by an object Ao such
that F'(Ay) & Ag and the operation F' will usually be a functor satisfying properties
which ensure that A exists [SP82]. '

The basic categorical notion of a type of types in a category C is that there is a
category object U in C which is externally equivalent to C indexed over itself, i.e.
there is an equivalence C(—,U) ~ C/—. With this, an endofunctor F' on C will
give rise to an internal functor F:U — U. Thus with the above interpretation of
recursive types as a fixed point of such endofunctors F' we may equivalently solve
for a fixed point of F. With this motivation, we prove the following proposition:

Proposition 8.2.1 There is an expression of the abstract syntax, Fix, for which
given a recursive typing judgement of the form T',z: dom  D(z): dom one may
derive the judgements

[ FFix(D):dom and Tk D(Fix(D)) = D: dom.

Proof Set Fix & d. Mt gom (y-d(Ret(y)), o(w)). Then the claim is immediate from the
FIX* rules. o

139




140




Chapter 9
Categorical Semantics of the FIX* Logic

9.1 Categories for Modelling Dependent Type The-
ories

We review a categorical structure which can be used to model dependent type theo-
ries. Some of the earliest work in this area was undertaken by Cartmell [Car86] with
additional work by Taylor [Tay86]. Here we shall give a presentation of “categories
with attributes” which is based on on Pitts’ account in [Pit90a]. Further useful
information can be found in [Str89], [HP89], [CGW89] and [Ben85].

Categories with Attributes

Definition 9.1.1 A category with attributes is specified by a category C with termi-
nal object (called the base category) which is equipped with the following structure:

o For each object X in C, a collection of fibrations over X, Fib(X). We write
T XoF — X for the projection from the total object to the base object of F'.

¢ For each morphism f:Y — X in C and fibration F' over X, there is a fibration
f*F over Y called the pullback of F along f for which there is a pullback
square in C of the form

foF
Yef*F —» Xeo '

T+p T
Y / X
such that we have
Wy F =F tdyoF = tdxp

g (f*F) = (fg)F (foF)o (gof*F) = (fg)oF

WhereZiYLX.
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Notation for Categories with Attributes

It will be convenient to adopt some notational conventions which will be useful
when presenting the categorical semahtics of dependent type theories.
Given a fibration F' € Fib(X) we shall write a €x F to indicate that « is a section
of 7r. Note that given f:Y — X in C, there is a section f*a €y f*F' arising from
the universal property of pullbacks.
Fibration lists L and their associated total objects I are defined inductively. The
empty list [] is a fibration list with [] % 1. If L is a fibration list and F' € Fib(T),
then L, F is a fibration list with I, F % TeF.
Section lists | and their associated morphisms [ are defined inductively. The empty
list [] is a section list []: L — [] (where L is a fibration list) with [] €!: T — 1.
If . L — I/ is a section list, F' € Fib(T/) and o’ €3 T'FY, then l,a": [ — L/, F" is a
section list with i

Tad ¥ T 2 Tel'F “L Tier,

Given a fibration list L, L’ the associated projection morphism np.: L, L' — I is
defined by induction on the length of L/. We put

8y def T _i, I,
L F « LI F =T, DeF T 1 I T,

Finally, we complete our notational conventions with the definition of generic sec-
tions. Given a fibration list L, F, L’ the generic section §(L, F, L") €rF Thp L s
defined by appealing to the universal property of the pullback square

- WF,L’.F .
L, F, L’ow;,‘L,F LeF
A
Ww;‘,L’F :6(L,F, L/) Tr
LA TF.L! —
LF T - T

together with the observation that 7p = mpmp,.

9.2 FIX Categories with Attributes

We have seen that the logical systems FIX_ and FIX correspond in a precise way
to FIX categories and FIX hyperdoctrines respectively. We shall now define the
categorical structure which corresponds to FIX*: such structures will be called FIX
categories with attributes. Useful background information can be found in [Pit87]

and [Joh77].

Definition 9.2.1 Let C be a category-with-attributes where for each object X of C,
Fib(X) is regarded as a category with objects the fibrations over X and morphisms
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given by Fib(X)(F, F) def C/X(mp,mp). Then C is a FIX category-with-attributes
if it satisfies the following conditions:

o Each Fib(X) is a let-category with (finite products), stable finite coproducts
and T-exponentials. For a fibration F' over X and a morphism f:Y — X we
have T'f*(F) = f*(TF), and the pullback functions preserve the categorical
structure of the categories Fib(X).

¢ There are distinguished fibrations 1, 0, N and Q) over 1 such that the fibrations
obtained by pulling back along the unique morphism !: X — 1 (for any object
X) are the canonical terminal object, initial object, natural numbers object
and fixpoint object of the category Fib(X).

o There is a specified distinguished fibration U over the terminal object for
which U is a retract of TU in Fib(1). There is a specified distinguished
fibration 7 over 1o which gives rise, via specified internal type constructor

morphisms
071 — lelJ F17:1 — lelJ
CT: 16l — 1ol Fx 10l x 1oU — 10
F 1o0 x 1617 — 1eU/ T 1ol x Lol — 1ol

to certain specified canonical type decoding isomorphisms, where we write
pr;: 1ol X 1eU — leU for projection:

1. "1™ =1 in Fib(1).

2. T0™r = in Fib(1).

3. "T™r=T7in Fib(loﬁ).

4, Tx T Z prr7 X pri7in Fib(loU X 1of]).
5. T+™7 = pri7 4 pri7 in Fib(1eU x 1e0).
6

. "7 2 e —prar inFib(LeU x LeD)).

The FIX Category with Attributes wCpo

The results from Chapter 7 will enable us to give a concrete example of a FIX
category with attributes. It will be convenient to have the following lemmas:

Lemma 9.2.2 Given a continuous functor A: X — wCpo® where X is an wcpo and
wCpo® is the category of embedding partial-projection pairs over wCpo, applying
the (covariant) Grothendieck construction to A yields a morphism 74: G(A) — X
in wCpo.

Proof By definition,

G(A) ¥ 5, x4, ={(2,U) | U A, &z € X}
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with a partial order structure given by (z,U) < (2, U") iff & < @' and 4,,,,(U) C U’
where i, ;1 A, — A, is the embedding determined by the functor A. We omit the
details which check that G(A) is an wcpo with the above order in which suprema
of chains is given by

\/ {(wm Un) | ne w} S (\/ {wn | ne w}, \/ {imn,\/{xnlnEw}(Un) | ne w})

It is trivial that 74 is continuous. O

Lemma 9.2.8 Let Z be a filtered category, C a cocomplete category and D: ZxZ —
C a functor. Then we have

lim lim D(I,J) 2 lim Um D(I,J) ¢ lim D(I,I).
TTIer” Jer rer T Iet ~Ier

Proof Routine application of the definition of colimit and filtered category. O

Lemma 9.2.4 Let A: X — wCpo® be a continuous functor. Let {z, | n € w} be
a chain in X and write & for the supremum of this chain. Then we have id,, =

VA{le, oTone | 7 € W}

Proof This result follows from unravelling the construction of filtered colimits in
the category wCpo®. Details of a similar result for the category of embedding
projection pairs over the full subcategory of wCpo of pointed wcpo’s can be found
in [SP82]; the proof for embedding partial-projection pairs over wCpo is virtually
identical. O

Lemma 9.2.5 Let A and B be as in Lemma 9.2.2. Then f € wCpo/X (74, 7p)
corresponds to an X-indexed family (f,: A, — B, | z € X) of continuous functions
for which given ¢ < &’ and a chain {z, | n € w} C X we have

jac,a:’fa: S f:z:’im',:v’ (91)
Fo = V{enafonTone | n €w} where 2 ¥ \/{z, |ncw}  (9.2)

where we write ¢ and j for embeddings, r for partial-projection. Thus for example,
Z'w,m/: Az‘ - Aaz"

Proof Note that the underlying set-theoretic function of f € wCpo/X (7 4,75) cor-
responds to a family (f, | ¢ € X) of set-theoretic functions which have the required
form. It is easy to see that f is monotone just in case each f, is monotone and 9.1
holds. Now take an arbitrary directed set in G(A) of the form {(z,,U,) | n € w}
and assume the continuity (and monotonicity) of f. This leads to the requirement
that

\/ {]mn,a:fa:n(Un) | ne w} = fm(\/ {Zz‘n,m(Un) l ne LU}) (93)
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where 2 & \/{z, | n € w} and the set on the left hand side of equation 9.3 is a
chain due to equation 9.1 (itself a consequence of the monotonicity of f). By taking
an instance of equation 9.3 in which z,, = z,,, for each n, we see that each f, is
continuous. To see that 9.3 implies 9.2 take a chain {z, |n € w} C X. It is the
case that {(z,,7s,-(U)) | n € w & ry, ,(U) U} is a chain in G(A) where U € A,.

We can apply an instance of equation 9.3 to this directed set and deduce:

Vanefon(Tane(U)) | n € w & 1o, o(U) U}

= fo(Miona(renz(U)) In €w &y, o(U)V})
by Lemma 9.2.4 = f,(U).

Conversely, suppose we are given a family (f, | = € X) of continuous functions which
satisfy 9.2. It remains to prove that the corresponding morphism f is continuous,
that is 9.3 holds. Indeed we have

Fo\V LonaUn) In€w}) = V{onofomTome(V {te,s(Un) | n €w}) [m € w}
= VAV UsnisfomTomaiane(Un) | 1 € W} | m € w}
by Lemma 9.2.3 = \/ {Jo,ofenonalones(Un) | 7 € w}
=\ {onofon(Un) | 7 € W}

We can now prove the main result of this section, namely

Proposition 9.2.6 The category wCpo is a FIX category with attributes.

Proof The base category is of course wCpo and this certainly has a terminal object.
The collection of fibrations over a Scott predomain X is given by the collection
of continuous functors of the form A: X — wCpo®. Recall Lemma 9.2.2: Given a
fibration A over X the total object and projection are given by 74: G(A) — X. If

f:Y — X is a morphism in wCpo we set f*A 4t Af. It is simple to check that
G(f*A) ¥ T ey Af, =Y xx G(A)

and hence that we get a pullback square in wCpo of the required form, where
foA:G(f*A) — G(A) is given by feA(y,V) ' (f(y), V). The functoriality condi-
tions are satisfied, and we have shown that wCpo is a category with attributes.

Now we need to see that each Fib(X) is a let category with (finite products), stable
finite coproducts and T-exponentials. This structure arises pointwise. For example,
given fibrations A and B, their product object A x B is defined by setting

A X B(CL < {B,) c‘l‘i‘f i:z:,:z:’ X jw‘wl: Aw X Ba:: 2! X Bz/l Tgz! X 8z ot
and (for example) the projection morphism on A is specified by the family of projec-
tions (7, Ay X B, — A, | ¢ € X), which are easily checked to satisfy Lemma 9.2.5.
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We sketch the details of the let category structure, which arises by pointwise ap-
plication of the properties of the let category wCpo (with the lifting monad): The
operation on objects is given by A +— LA, where LA is defined by

J—A(x < wl) déf (iw,a:’).l_: (Aa:)J_:(Aa:’)J.: (Irw,w’)J.'

Morphisms n4: A — LA are specified by the continuous family ((74)s: Az — (Ag) L |
z € X) with (n4).(U) © [U]. Given f: Ax B — C we define lifi(f): Ax B, — C
by specifying the family (Lft(f,): Ay X (By)r — (Cp)L | @ € X). We omit the
remaining details, but note that the structure preserving conditions are immediate.
Now we need to define the fibrations 1, 0, N and €. Let us write {*} for the terminal
object of wCpo. Then set 1(x) ¥ 1, 0(x) & 0, V() & N and Q(+) & Q where N and
Q) are the NNO and FPO of wCpo. We consider the details for the FPO in Fib(X).
Thus we need to see the existence of w: 1! — LQ! and ¢: LO! — (! which give rise
to a FPO Q) in Fib(X). Using Lemma 9.2.5 we need to define a family (w,: {1, —
10, |z € X) that is (w,:1 — O, |z € X) and also (0,0 LOI, — Ql, |z € X)
that is (0,0, — Q| 2 € X). We take these to be the constant families given by
the FPO (2, 0,w) of wCpo. We omit to check the equaliser diagram requirement;
however we shall give all the necessary details for the universal property of the
FPO. Thus given a morphism f: LA — A in Fib(X) we need a unique h: Ol — A
for which flet(nh) = ho. Using Lemma 9.2.5 this amounts to defining a unique
continuous family (h, | z € X) which satisfies equations 9.1 and 9.2 and for which
the following diagram commutes:

fa )

(Aw)_L

The existence of a candidate for the family (k, | ¢ € X) is immediate from the
existence of a FPO § in wCpo. We need to check that the h, satisfy the conditions
9.1 and 9.2.

(Satisfaction of 9.1): Take ¢ < @/ and consider the diagram

T

an, 4 qr,
h, by
jm,m’
A, o

together with i, .t (A;)L — (Ap)y. Condition 9.1 demands that j, b, < hyid.
Indeed,

; — 4 -1
Ja:,m’h:v - Jw,w'hmaa
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= jm,w’fw(hx).l_o-_l
fa:’ia:,a:’(ha:)J_a_l
= fm’(jw,m’)_!_(hx)ia_l
fm/(haE,)Lo"l

(Satisfaction of 9.2): Take a chain {z, |n € w} in X and set ¢ = V{2, | n € w}.
Put j,, o Ay, — Ag, j;mw: (Ag,)L — (Ay)L and ry 4: (Ay)L — (Ag,) L. Then
(V Uonhan IR €wH)o =\ {s,aho,0 | n €w}
=\ {Jonofon(ba,)1 | 7 € W}
=\ UensfonTansil, (he) 1 | 1€ 0)
by Lemma 9.2.3 = \/{jo, o fe,Tane |7 €W}V {7 (hs,)1 |n € w}

= fo \V{Uzne)(hs,)r | 0 € w}
= [fo VA{Uznphe,)L [0 € w}
= foV {Jznghon |0 €W}

IN

il

Appealing to the universal property of the FPO in wCpo, it must be the case that
he =V {Jopchay, 1d | 7 € w} which is what we wanted to prove.

We define the fibration U:1 — wCpo®® by setting U (%) 4l pSy. The retract con-
dition in Fib(1) is immediate from Lemma 7.6.3. Of course 1o/ = 1 x PSy, but
we shall take this to be just PSy in the remainder of this proof. The continuous
functor 7: PSy — wCpo is given by using Lemma 7.6.5 and regarding Spd’” as a
full subcategory of wCpo®. It remains to verify the existence of certain canonical
isomorphisms; we only verify "—™r & prrr—(pri7), in Fib(PSy x PSy) where
pr;t PSy x PSy — PSy. Unravelling the definitions, we have to see that we have a
diagram of the form

[

Y (a,B)epsy| A "B = Ya,m)epslAl = |BlL

Tre Wpri*T—»(pr;’r)L

PSZ
To do this we define a family of isomorphisms in wCpo which satisfy Lemma 9.2.5:
(pa,p) : |A™"B| = |A|=|B| L : 9(a,5) | (A, B) € PS)

and to do this we use Lemma 7.6.5 (Lemma 7.5.3). We shall only check that the
morphism ¢4 p) satisfies equation 9.2. Take a chain {(A,, B,) | n € w} in PSZ and
set (A, B) to be the supremum. Unravelling the details, if we write

Tnt IA'-—;IB| - IAnr_\-an| Pr 1Anr~_ﬂBn| - |An|__>|Bn|J_

Snt IAI - |An| (Zn).l. IBnIJ_ - 1B|.L

147




def

for the obvious morphisms, and set F,, = A,"—"B, then explicitly we have

ro (V) def F, NV if this is non-empty
" undefined otherwise

p(V0)

undefined if A, N U is non-empty, else
(¢n)L 0 fos,(U) def Lif f(A,NU)is Lelse
{b|3Y cf f(A,NU).Y F b}

def { {6|3X c/ UXw»be V} if this is non-empty

and we need to prove that ¢ = V{i, .7, |n €w}. In order to show this we
introduce some notation. Put

F ¥ 4B
en Z (in)1 0 pa(ra(V)) 0 5,(U)
§ € (M)
T ¥ View | el
Then we need to show that S = T where

undefined if F;, NV =Por A, NU = @ else
Lif{b]3X cf A, NUXwbe F,NV} =0 else
W, & {b]3Y c/ {b]|IX cf A, NUXwbe F,N VLY | b}

3}
I

We begin by noting that e, | for at least one n. Suppose that S = L. Then
whenever e, || we must have e, = L. Therefore T = V{L | e, |} = L. Now
suppose that 7' = L. Then whenever e, |} there can be no X cf A, NU and b € B,
for which X»b e F, N V. Suppose for a contradiction that S is not L, which is to
say there is X Cf U and b € B for which X»b € V. Then we must have X»b € F,_
for some ng which implies X Cf A, and b € B,,. These data imply that e, |,
which is contradictory. Hence S = L.

It follows that S is not bottom just in case T is not bottom. Thus it remains to
show if S is not bottom then S = J{W, | n € w}. Let b € S. Then there is some
X 4 U for which X»b € V and so X»b € F, NV for some ng. This implies AlA
and so X Cf A, NU. Trivially {0} F 5b and so b € W,,,. Conversely, suppose that
b € W,, for some ny. Then there are X, Y for which Y+ gb, X cf A, N U, and
XpyeF, NV foreachy €Y. HencebEBnO and Uf{y | X F 4, X B, bWthh
implies {be |lyeY}h Fny X»b and hence X»be V., Therefore b € S.

We leave all remaining details of the type coding isomorphisms to the reader; with
this, the proof is complete. O
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9.3 Categorical Semantics of FIX*

Structures for FIX" Signatures

A structure M for a FIX* signature Sg in FIX category with attributes is specified
by:

e For each basic type valued function symbol ¢, a fibration list L; and a fibration
F, € Fib(L,).

o For each basic term valued function symbol f, a fibration list L, a fibration
F; € Fib(L;) and a section a; e; Iy

It is assumed that the length of the fibration lists match the arities of the function
symbols.

Interpretation of FIX" Expressions

Let us suppose that we have a structure M in a FIX category with attributes C for
a FIX* signature Sg. We define relations between the forms of judgement given on
Page 134 and appropriate structure in C. These relations are of the following kinds
where it is assumed that the FIX* judgements are well formed:

1. [I' ctxt] » L where L is a fibration list with LEN(L) = LEN(T).
2. [T+ a type] » L+ F where LEN(L) = LEN(T) and F € Fib(L).
3. [CFM:a] » LFa: F where LEN(L) = LEN(T), F' € Fib(L) and a € F.

4. [x:T — T"] » I: L — L' where LEN(L) = LEN(T) and I: L — L' is a section
list with LEN(!) = LEN(x).

The relations are defined inductively by the following rules:

e Contexts

[[' ctxt] » L [T'Fa type] » LEF
[[] ctxt] » (] [T,z: ctxt] » L, F

o Types :
el —=Tw» L — L,
[T +t(x) type] » LET F,

o Terms
[T,z:e, "« type]| » L, F, L'+ g F
[l ctxt]» L [TFa type]» LEF [T, @017 ctxt] » L, F, I/
IT,z: e, T Faia] » L, F, L'+ 6(L, F, L'): wp F
:T—=Tw» L —L; [TFa type] » L+TF,
[CHfO):a] » LT ap T F,
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o Term Lists

[T ctxt]» L
[[1:T = [ [ L =]
{ [CEM: o' (x)|» LEa: T F
[x:T = T]»l: L — L' [T"Fa!(y) type]» L'+F!
[x, M:T = I'",y: (P> l,a: L — L', F"

¢ Elementary External Types

[ T=(0» [ L=0]  _ [0:T={0» [J: L—(] [: T=(11 » [}: L—{]
[Tt unst type] » LE1*1 [TFnull type] » LE1*0 [I'Fnat type] » LEI*N
[(J: T=[11 » [J: L[] [0: T={10 » []: L—(]

[CHfiz type] » LE*Q [T+dom type] » LEI*U

where I: L — 1.

¢ External Binary Products

[T'Fa type] » LEF [T+ B type] » L+ FY
[TFoxp type] » LEF x F

e External Binary Coproducts

[T'H o typel » LEF TR B type] » L+ F!
[TFa+ 8 type] » LEF + F!

¢ External T-Exponentials

[I'F o« type] » LEF [T+ B type] » LE F
[['Fa—8 type] » L+ F—F'

¢ External Computations

[TFa type] » L F
[T'FTa type] » LETF

¢ IIxternal Decoding

[T+ D: dom] » LF (id,d): '*(0)
[['+ El(D) type] » Lt d*r

where ! T — 1 and d: T, — 1e0J.
¢ Unit and Null Terms

[T ctxt] » L [CHM:]w» LFab
[T+ (): unit] » L+ (id, o!): 1 [TF {3a(M):a] » L lka: F
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where 1T — 1, 12 1el, k: 1602 0 and 1: 0 — Le F.
¢ Binary Product Terms
[TFM:a]» LFa:F [I'FN:B]» LtaF'
[CH{M,N):ax B]» Lt (a,a’): F' x F

[CHP:axp]» LEaF xF [THPiaxpB]w» LiEaF xF
[Tk Fst(P):a] » Lt ma: F [TFSnd(P): B] » Lt myal: IV

where 7, and 7, are the projections arising from the product F' x F” in the category
Fib(L).

e Binary Coproduct Terms

[THM:a]» LFa:F [THN:B]» LEaF"
[CEInlg(M):a+B]» Ltia: F+ F [TFInl(N):a+ B]» Lt ja": F + F
{ [T,e:ab F(z):y]» L, FFa: 75 B

[T,y: B G(y):y]» L, F'-aimg, BV
[TFC:a+pB]» LEa” F + F
[CH{F,G}C):q]» Lt [rpeF" o a,mpeF" o alla: F"

where we note that a:TeF — (LeF)e(rtF"), o' LeF' — (LeF")e(n%,F") and
[—, 4] denotes the abstraction of unique mediating morphisms arising from the
coproduct F' + F' in Fib(L).
¢ T-Exponential Terms

[CFFia—pB]» Lbta:F—F [['FM:a]» LEa'F

[+ FEM:TB]» ap(a,a’): TF
[T,z:ak F(z): TB]» L, F+ a: Ty b
[CFA(F):a—B]» Lt cur(rpeTF'oao prju F—F'

where we recall that 731 F" = T'n3F" by definition and we have ©: T = Tel* and
pr: Lel*l x TeF — TeF.
¢ Computation Terms
[THM:a]» LEaF
[CFVal(M):To]» LtFna:TF

[CHE:Ta]w» Lta:TF [Ia:ab Fz): T w» L, Fta: T F"
[T+ Let(E,F): TA]» Lt let(npeTF'oa’)oa:TF!

¢ Natural Number Terms

[[:T = [}» [ L— ] [T+ N:nat] » LE (id,n): *N
[T+ 0:nat] » LE!*0:1*N [['F Suc(N): nat] » L (id,sn): *N
[TFM:a]» LFa:F
{ [[,e:ak F(z):a] » L, Fta:7pF [LF N:nat] » L (id, n): I« N
[THEN(M):a] » LEg(id,n): F
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where : I, — 1, 0:1 — loN, sileN — 10]\2 and g¢ is the unique morphism arising
from the universal property of the NNO *N € Fib(L):

Lel*] id x 0 Tel*NV id x s Tel*N
prg g g
L a4 LeF @ - LoF
¢ Fixpoint Terms
MET—=[Iw (L -] [TFE:Tfiz] » Lt (id, e): T+

[T Fw:Tfiz] » L F *w: *T6) [TFo(E): fir] » Lt (id,ce): 1*Q
[CFN:fiz] » LF(id,n):*Q [I',e:Tat F(z):a]» L, TFFa m5,F
[Tk (F,N):a]» Lt g(id,n): F

where |: I, — 1 and ¢ is the unique morphism arising from the universal property

of the FPO 1*) € Fib(T):

LeT!*Q) id x o Tel*()
let(ng) g
LeTF LeF
a
where ng: Te!*() — Lol — TeTF.
¢ Internal Elementary Types
[0: T = (> []: L =[] [:P={I» [ L—=1]
[Tk "unit™ dom] » LE !X 07: I+ [T "null™ dom] » LE W17 15U

where I: I — 1.
¢ Internal Binary Product

[T+ D:dom] » L+ (id,d):'*U [T'F D': dom] » L (id,d): xU
[T+ D™ xDr: dom] » L+ (id,” x(d, d')): *U

¢ Internal Binary Coproduct

[T+ D:dom] » Lt (id,d):!*U [T+ D': dom] » Lt (id,d'): *U
[T+ DT ++7D: dom]) » L+ (id, +{d, d')): *U
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o Internal T-Exponential

[T+ D: dom] » L+ (id,dy:*U [T+ D': dom] » L (id,d'): *U
[CF D™—="D: dom] » L F (id,—(d, d")): *U

¢ Internal Computation

[T F D: dom] » L+ (id, d): *U
[T+ TT7D: dom] » Lt (id, T7d): *U

¢ Product Externalisation
L+ M:E(D™xD)]w» LFa:("xd,d))*r
[T EIp(M): EI(D) x EI(D")] » Lt pa:d*t x d*t
[['F P: EI(D) x EI(D")] » Lt a:d x d*r
[T+ Jp(P): EI(D™x D] » Lt p=ta: ("x7(d,d))*r

where p: Lo("x(d,d'))*7 & Le(d*r x d™*T).
¢ Coproduct Externalisation
[C+M: E{(D™+"D)N]» Lt a:("+d,d))*r
[T Flc(M): EI(D) + EI(D")] » Lt pa:d T + d*r

[T C:EU(D)+ EI(D)]» Lta:dr+d*r
[TF Jc(C): EI(DT+DN] » Lt p=ta: ("+7(d, d'))*r

where p: Lo(T+7(d, d'))*7 & Le(d*T + d*7).
¢ T-Exponential Externalisation
[+ M: E(D™—"D))] » Lt a:("—d,d))*T
[T+ f(M): EI(D)— EI(D")] » Lt pa:d*r—d™t

[C+ F: EI(D)—EI(D)] » Lt a:dr—d*r
[T+ J(F): B(D™—"D)] » Lt p~ta:("—=d,d))*r

where p: Lo(™—d,d'))*r = Le(d*r —d'*7).
¢ Universal Type Retraction

[T+ E:Tdom] » Lt (id,e): T*U
[k Ret(E): dom] » Lt (id, rete): *U

where ret: TU — U is the retraction morphism in Fib(1).
By inspecting the above relations we can see that they give rise to partial functions
in the following way. Given a judgement J and “semantic sequents” S and 57, if
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[J] » S and [J] » S’ then S = S’ in C. Thus if we are given a structure Sg in C
the assignments

I' = [T ctxt]
I'a — [['Fa type]
I''M,aa — [I'+M:d]
LT = [T = D]

give rise to partial functions. If one of these partial functions is defined at an
argument J then we write [J]{.

Models of FIX’_i_ Theories

The notion of satisfaction of judgements arising from FIX* signatures is complicated
by the type dependency. We give the definition of judgement satisfaction next,
where it should be noted that in each instance of “J is satisfied iff S” the categorical
structure S is unique.

1. T' ctxt is satisfied iff [I" ctxt] Y.
2. I'F « type is satisfied iff [I'F « type] | .
' M: « is satisfied iff [T'F M:a]{.

Ll S

x:T' = I" is satisfied iff [T ctxt]{ and [I7 ctxt] ).

I' =TV is satisfied iff [I" ctxt] » L and [TV ctxt] » L.

I['Fa = o is satisfied iff [I'+ « type] » L+ F and [T'F o type] » L+ F.
I'tM = M"«ais satisfied iff [[FM: o] » LFa: Fand [T FM":a]» LFa: F.

Sl B

x = x'T' — I" is satisfied iff [x:[' — I'] » &: L — L' and [x:T — I'] »
ILL— L.

Given a FIX® theory T'h and a structure M, then we say that M is a model of T'h
if it satisfies the rules for introducing the T'h axioms; (these rules can be found on
Page 135).

The Substitution Lemma

The following lemma describes how the substitution of types and terms in the syntax
of a FIX* theory is modelled by the categorical structure of a FIX category with
attributes.

Lemma 9.3.1 Suppose that [x:I' — I'] » I: L — L/. Then it is the case that

o [I"ta/(¥) type] » L'+ F' implies [T F o/(x) type] » LT F.
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o [Tk M/(§): o!(§)] » L' F a: F* implies [I'F M*(x): o (x)] » Lt Tan: T F.

o [x:T" — T w I L' — L" implies [x' o x:T' = IT"] » l'o I: L — L".

Proof The proof proceeds by induction on the derivation of the various judgements.
O

The Soundness Theorem

Theorem 9.3.2 [“FIX* Soundness”] Suppose we are given a FIX* theory T'h over
a FIX* signature Sg. The collection of judgements of the theory T'h which are
satisfied by a structure in a FIX category with attributes C is closed under the rules
(see Page 135) for derivation of judgements in T'h. Consequently a model M of T'h
satisfies all the judgements which are theorems of T'h.

Proof Once again, the proof proceeds by an induction on the derivation of the
various judgement forms; the previous Lemma will be used throughout the proof.
]
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Chapter 10
Prospects for Further Research

10.1 Loose Ends and Future Tasks

We give a concise review of what has been achieved; in particular we highlight
loose ends and indicate possible further lines of research. The following comments
coincide roughly with the order of presentation of material in the thesis.

Modular Approaches to Program Semantics

Each of the logics FIX_, FIX and FIX* builds upon the computational let calculus.
The fundamental notion underlying the let calculus is the separation of compu-
tations from values. The extensions we have considered provide expressive logics
which allow us to reason about one particular notion of computation. The devel-
opment of metalogics which combine different kinds of computation is clearly an
important issue; for related work in this area see [Mog90b] and [Mog90a]. Most
of the work to date concerns the combining of various monads (representing dif-
ferent forms of computation, such as those presented at the end of Chapter 1) at
an equational level rather than at the level of predicates. The investigation of
monadic predicate logics where one is able to vary the underlying monad is yet to
be undertaken.

Domain Theoretic Properties of FIX_

In a FIX_ theory we always have fixpoints of terms at the higher order type
(a—TB)—a—T . All concrete models presented in this thesis are domain theo-
retic, thus by definition objects and morphisms have an associated order. When
we consider fixpoints arising from the properties of FPO’s in these categories, it is
always the least such which is delivered. As we saw in Chapter 3, FIX categories
(and hence FIX_ theories) have properties reminiscent of concrete categories of do-
mains and axiomatic domain theory. The precise relationship between FIX_ and
axiomatic approaches to domains needs to be established. One line of investigation
is to consider what formal orders can be imposed on FIX_ and their connection to
formal fixpoints.

An example of a formal order is the following; we give the merest sketch of details.
We shall need the notion of canonical and non canonical terms. These arise from
the introduction and elimination rules in the FIX_ logic. More precisely, the (raw)
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canonical terms are given by the grammar
C ii= () | (M, N) | Il (M) | Into (M) | A(F) | Val(M) | O | Suc(N) | | o(E)
and the non canonical terms by
NC == Fst(P)|Snd(P) | {F,G}(C) | FM | Let (E, F) | FN(M) | It(F,N)

We can define an operational reduction scheme where C = C, Fst({M, N)) =
M and so on. Write M[CL/&| for the substitution of closed terms C'L for the
object level variables in M and XYM for the ordered list of subterms of M (e.g.
M is a subterm of (M, N)). Then define the simulation ordering by the following
fixpoint: Say that M < N iff VCL, M[CL/&] = M’ implies N[CL/y] = N’
and YM'’ < ¥ N'. Some work along these lines has been carried out by Smith
for the simply typed A calculus augmented with surjective pairing and natural
numbers. In [Smi89] Smith shows that the formal fixpoint obtained from iterating

the term L % (Az.z(z))(Az.z(x)) coincides with that arising from the usual fixpoint
combinator Y, where the coincidence is defined up to the equivalence generated
by a simulation ordering rather like the one sketched above. However, the proof
techniques are a little unwieldy. It might be possible to obtain similar results for
the FIX_ logic via a logical relations argument. Using the above ordering on terms
of FIX_, a partial order could be imposed on the collection of global elements of a
type a. The definition of the category Lr could be changed so that the relation <
of an object (D, <, a) satisfies

d<d &d<aM&d M >M<M.

With such a relation it should be possible to see that the selection of a least fixpoint
by a FPO in the first coordinate will force a proof of the same fact for the third
coordinate.

Categorical Semantics of FIX

The semantics of FIX is in a rather unsatisfactory state. The definition of a FIX hy-
perdoctrine is complex and one would prefer more of its properties to be deducible
from others. Originally a semantics which mimics the domain theoretic model of
FIX was pursued, modelling FIX propositions via a distinguished class of subobjects
in a suitable category (c.f. the hyperdoctrine model with fibres composed of inclu-
sive subsets of wepo’s). In order to set up a categorical logic correspondence one has
to manufacture a FIX category together with a distinguished class of subobjects
from the FIX logic (this is essentially the Grothendieck construction applied to the
initial FIX hyperdoctrine). However, the category arising from such a construction
is not cartesian closed; and it is not clear how to alter the FIX logical system in
a consistent way to ensure cartesian closure. If this could be achieved one would
hope that some of the conditions ensuring FIX soundness would come for free: con-
sider the fibrewise induction conditions of a FIX hyperdoctrine (imposed) and the
result which shows that Peano’s axioms hold in a topos (toposes model predicates
by subobjects).
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The Existence and Disjunction Properties

The results about existence and disjunction in the FIX logic work only for closed
terms. It is possible to envisage relativised versions of these theorems, for example
one could investigate for which propositions ®(z) a judgement

D,z:0,®(z) - O(E(z),y.Y(z,y))

in the FIX logic entails that there is a term in context I',z:aF M(z) for which
T ak E(z) = Val(M(z)) and T, 2: o, ®(z) - (2, M(z)).

Computational Adequacy Results for PCF

The results of Chapter 6 concerning computationally adequate translations of PCF
into the FIX logic were proved using a technique due to Plotkin [Plo85]. It would
be nice to see such results proven by a gluing argument. A skeleton of ideas for
such a proof might be as follows: Define an operational semantics on the terms of
the FIX logic with judgements of the form I' E — M:a where I' E:Ta. This
would be defined inductively by rules such as

I'E—»M:a T,o:ab F(a):Tp I'FF(M)—» M3
Tk Let(E,F)—» M":f

The operational semantics of FIX would be set up to ensure that m = c iff [m]~ —»
[c]; moreover if '+ [m]m — V, then V' = [c’] for some unique c’. The idea is then
to use the equality F [m]» = [c]* to deduce that [m]* - [c’/] and hence m = </,
by way of a logical relations gluing argument. For example, recall the category Lr
‘of Chapter 5. If the definition of the relation <1 of an object (D, <, @) had a clause
of the form
e<re B iff e=[d]D>3IM:a.E » M (%)

we could use this (together with the formal adequacy of the FIX logic which shows
that if F [m]* = [c]» = Val([c]) then the wcpo interpretation of [m]” is not bottom)
to show that [m]» —» [¢’]. The major obstacle here is that the terms E and M above
are equivalence classes up to FIX logic equality. This problem could, perhaps, be
surmounted by working at a 2-categorical level. Thus the initial FIX category F
would be replaced by an initial “FIX 2-category”. The latter would have types
as objects, pure FIX terms as morphisms and 2-cells given by suitable reductions
in the FIX logic, for example Let (Val(M), F) — F(M). The notion of a FIX 2-
category morphism would have to be formulated carefully, together with a proof
that a category similar to Lr but defined using the clause (*) is indeed a FIX
2-category.

Semantics of PCF

The full abstraction problem for PCF has been investigated by a number of re-
searchers [Plo77], [Sto88]. The FIX logic semantics given to PCF in Chapter 6 may
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throw some light on the intricacies of full abstraction and possibly simplify known
results; this is just speculation at the time of writing.

Adequacy Results for Languages with Recursive Types

We have not presented any applications of the FIX* logic. A first step would be to
state and prove adequacy results for a PCF style programming language with re-
cursive types. For example, if @; - o were a type in context of the programming lan-
guage, it would be translated to a judgement of the form z;: dom t [[o]: dom. In par-
ticular, a recursive type «; - pz.o would be translated as z;: dom - Fix(z.[o]): dom.

Synthetic Domain Theory

Little is known about the exact links between the work of this thesis and similar
ideas from synthetic domain theory. It is the case that complete Y-spaces form a
(constructive) model of the FIX_ logic; for material relevant to synthetic domain
theory see [Hyl82] and [Pho90]. One could perform a routine inter-translation of
the systems to gain further incites into how they relate.

10.2 Final Conclusions

We have presented three logical systems which can be used to interpret program-
ming languages. These logics can be used to give meaning to both call by name and
call by value languages in a uniform way. Each logic has a clean categorical seman-
tics together with a domain theoretic model. We have seen that one of these logics
can be used to give computationally adequate interpretations of small programming
languages. In essence, immediate future work consists of trying to simplify some
of the categorical semantics, giving more extensive examples illustrating the use of
the logical systems as program logics and in particular extending the applications
to languages with recursive types.
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