Technical Report A

Number 245

Computer Laboratory

System support for multi-service traffic

Michael]J. Dixon

January 1992

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1992 Michael J. Dixon

This technical report is based on a dissertation submitted
September 1991 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Fitzwilliam
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Preface

Except where otherwise stated in the text, this dissertation is the result of my own
work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for a degree
or diploma or any other qualification at any other university.

Acknowledgements

I would like to thank my supervisor, Jean Bacon, for her encouragement and advice
during my time as a research student. Special thanks are due to Mike Burrows,
Mark Hayter, Derek McAuley, Cosmos Nicolaou and many other members of the
Computer Laboratory for helpful discussions over the years. I would like to thank
Roger Needham, Head of the Computer Laboratory, for his support, and for allowing
me time to spend one summer as an intern at the DEC Systems Research Centre,
Palo Alto. Thanks are also due to Sape Mullender and his colleagues at CWI for
providing access to the Amoeba source code. The starting point they provided has
been invaluable. The WANDA system as presented is the result of contributions by
many people. However, Mark Hayter, Glenford Mapp and Tim Wilson deserve spe-
cial mention. I am grateful to Andy Hopper for encouraging the close ties that exist
between the Computer Laboratory and Olivetti Research Limited. In particular,
David Greaves at Olivetti has been a source of help on all matters concerning the
Cambridge Backbone Network. The dissertation has benefitted from inspection by
the careful eyes of Jean Bacon, Richard Black, Andy Gordon, Andy Harter, Mark
Hayter, Derek McAuley and Cosmos Nicolaou. The work was supported by a stu-
dentship from the Science and Engineering Research Council. Finally, I am grateful
for support from the Fairisle project in my final year.

ii

Summary

Digital network technology is now capable of supporting the bandwidth requirements
of diverse applications such as voice, video and data (so called multi-service traffic).
Some media, for example voice, have specific transmission requirements regarding
the maximum packet delay and loss which they can tolerate. Problems arise when
attempting to multiplex such traffic over a single channel. Traditional digital net-
works based on the Packet- (PTM) and Synchronous- (STM) Transfer Modes prove
unsuitable due to their media access contention and inflexible bandwidth allocation
properties respectively. The Asynchronous Transfer Mode (ATM) has been pro-
posed as a compromise between the PTM and STM techniques. The current state
of multimedia research suggests that a significant amount of multi-service traffic will
be handled by computer operating systems. Unfortunately conventional operating
systems are largely unsuited to such a task. This dissertation is concerned with the
system organisation necessary in order to extend the benefits of ATM networking
through the endpoint operating system and up to the application level. A locally
developed micro-kernel, with ATM network protocol support, has been used as a
testbed for the ideas presented. Practical results over prototype ATM networks,
including the 512 MHz Cambridge Backbone Network, are presented.

iii

Contents

Glossary of Terms

1

2

9

Introduction

The Multi-Service Network Architecture
WANDA MSNA Implementation

The Cambridge ATM Backbone

Quality of Service Issues

Quality of Service Extensions

Experimental Programme

Related Work

Further Work

10 Conclusion

Bibliography

iv

17

33

39

51

67

87

93

99

101

Glossary

AAL
ANSA
ATM
B-ISDN
CBN
CBR
CCITT
CDCS
CFR
COW
DAN
DARPA
DMA
EOF
FCS
FCFS
FIFO
FIQ
FPC

FTP
FQ

ATM Adaptation Layer

Advanced Networks Systems Architecture
Asynchronous Transfer Mode

Broadband Integrated Services Digital Network
Cambridge Backbone Network

Constant Bit Rate

Comitée Consultatif International Télégraphique et Téléphonique
Cambridge Distributed Computing System
Cambridge Fast Ring

Copy On Write

Desk Area Network

Defence Advanced Research Projects Agency
Direct Memory Access

End Of Frame

Frame Check Sequence

First Come First Serve

First In First Out

Fast Interrupt reQuest

Fairisle Port Controller

File Transfer Protocol

Fair Queueing

HOL Head Of Line

IMAC Integrated Multimedia Applications Communications architecture
I0P Input/Output Processor

IP Internet Protocol

IPC Inter-Process Communication

IPI Inter-Processor Interrupt

IRQ Interrupt ReQuest

ISDN Integrated Services Digital Network
ISO International Standards Organisation
IPL Interrupt Priority Level

ISR Interrupt Service Routine

LAN Local Area Network

MAC Media ACcess layer

MS-Access Multi-Service media Access
MSDL Multi-Service DataLink

MSN Multi-Service Network

MSNA Multi-Service Network Architecture
MSNL Multi-Service Network Level

MSSAR Multi-Service Segmentation And Reassembly

NAK Negative AcKnowledgement
NCS Network Computing System
ORL Olivetti Research Limited
OSF Open Software Foundation
OSsI Open System Interconnection
PDU Protocol Data Unit

PTM Packet Transfer Mode

vi

QOS
RPC
SAP
SAR
SAS
SDU
SOF
STM
TAS
TCP
TDM
TLB
VBR
vC
VeI

VPI

Quality Of Service

Remote Procedure Call
Service Access Point
Segmentation And Reassembly
Single Address Space

Service Data Unit

Start Of Frame

Synchronous Transfer Mode
Test And Set

Transmission Control Protocol
Time Division Multiplexing
Translation Lookaside Buffer
Variable Bit Rate

Virtual Circuit

Virtual Circuit Identifier

Virtual Path Identifier

vii

Chapter 1

Introduction

The last decade has seen the emergence of the Integrated Services Digital Network
(ISDN): a network based upon digitally switched, fixed capacity, narrowband cir-
cuits. Whilst still being only partially deployed, it is apparent that the original
ISDN will be unable to support many future broadband customer requirements.
The Broadband ISDN (B-ISDN) [CCITT88] is envisaged as an extension to the
original network in order to meet such needs.

The Asynchronous Transfer Mode (ATM) is the transfer mode selected by the
CCITT for implementing the B-ISDN. ATM represents a compromise between the
Packet- (PTM) and Synchronous- (STM) Transfer Modes of operation. An ATM
network is concerned with the transfer of fixed sized data units called cells. It is
asynchronous in the sense that the recurrence of cells containing information from an
individual user is not necessarily periodic. If ATM is to be a successful compromise
then it must be able to meet the demands of both traditional STM and PTM clients.
In particular STM networks offer guarantees regarding the Quality of Service (QOS5)
that a client can expect, typically in terms of bounded jitter, delay and bandwidth.
For an ATM network to accept such a call requires that all network elements, par-
ticularly switching nodes, should be able to support the requested QOS for the call
path and duration. The situation is complicated by the fact that an ATM network
has to support calls with different QOS attributes simultaneously.

This dissertation is concerned with the design and construction of systems compo-
nents, in particular endpoint and router software, for ATM networks which provide
guarantees regarding QOS to users on a per call basis. The work has been carried out

over a set of heterogeneous ATM network implementations, all initially developed
at the University of Cambridge Computer Laboratory.

1.1 The Cambridge ATM Environment

Much of the work described in the dissertation is of a practical nature. This was
made possible by the production of ATM hardware by related projects in the Com-
puter Laboratory. In addition, Olivetti Research Limited (ORL), Cambridge, shared
an active interest in ATM network and applications research. A summary of the
major active projects is given below.

The Pandora project [Hopper90] is a joint undertaking between ORL and the Com-
puter Laboratory. The project aim is to provide multimedia facilities integrated into
the workstation environment. It uses an ATM network, the Cambridge Fast Ring
(CFR) [Hopper88], for voice and video transport. By late 1990 Pandora worksta-
tions were deployed and in everyday use at three sites in Cambridge connected by
a single CFR.

The Cambridge Backbone Network (CBN) [Greaves90], a slotted ring system like
the CFR, was designed to interconnect CFR networks in the metropolitan area, and
consequently shares the same cell format. By late 1990 a five station CBN with
a 512 MHz line rate was operational, though inter-connectivity with other ATM
networks had yet to be demonstrated.

The Fairisle project [Leslie91] is a joint undertaking between the Computer Labora-
tory and HP Laboratories, Bristol. The initial project aim is to build an experimen-
tal ATM network based on the Cambridge Fast Packet Switch [Newman89]. The
network architecture is based on the Multi-Service Network Architecture (MSNA)
[McAuley90]. The aim of MSNA is to support multi-service inter-network applica-
tions, particularly over ATM style networks. By late 1990 the first Fairisle hardware
was built and being debugged.

The early Pandora infrastructure was incapable of operation outside a single CFR.
Whilst this was enough for many useful applications and experiments to be per-
formed, the benefits of inter-networking had yet to be realised. It was clear that the
project would soon outgrow the original ring both in terms of aggregate bandwidth
required and geographical area covered. As a result early 1990 saw the adoption of
the MSN architecture by the project. Although the architecture defined an inter-
networking facility there was no support for QOS. In order for Pandora applications
to inter-network properly it was apparent that routers would have to be constructed
that both defined and implemented QOS. The desire to have system servers handle

media produced by Pandora leads to the examination, in the next section, of the
systems environment then available.

1.2 The Cambridge Systems Environment

WANDA is an experimental kernel being developed at the Computer Laboratory in
part by the author. It evolved from experience gained with the Amoeba operating
system [Tanenbaum87] by the Computer Laboratory Systems Research Group.
The kernel is intended primarily for use as a systems research vehicle. It is not
envisaged that it should support a conventional operating system environment, e.g.
UNIX, or that program development take place over WANDA.

Both kernel and user programs are built on UNIX systems using GNU C cross-
compilers. Each WANDA machine contains a set of ROMs which allow it to boot
a kernel image from the UNIX file system. Once the kernel is started mechanisms

exist to run user applications dynamically, with the executable binary again being
downloaded from UNIX.

The kernel was initially developed on the VAX architecture, in particular the DEC
SRC Firefly [Thacker87] multiprocessor. By late 1990 it had been ported to 68000,
68020 and 68030 series VME systems and all generations of the Acorn ARM proces-
sor [VLSI87]. For each processor at least one of Ethernet, CFR, CBN or Fairisle
type host interfaces exist.

The Advanced Network Systems Architecture Testbench [ANSA89], which is avail-
able for the UNIX, VMS and MS-DOS operating systems, provides support for dis-
tributed programming. In particular it is available on most Computer Laboratory
UNIX machines. The Testbench has been ported by the author to run over WANDA.
The SUN Remote Procedure Call (RPC) [SUN86] protocol is also supported over
WANDA.

Recent systems research at Cambridge [Nicolaou91] suggested that many clients
requiring QOS from the network would be software elements in a distributed com-
puting environment. If such clients were to be satisfied then QOS would have to be
extended from the network, through the endpoint operating system, to the applica-
tion.

Given that the WANDA kernel already supported the MSN protocol suite (with
drivers for the Ethernet, CFR and CBN already written) and that the Fairisle
project had selected WANDA as the basis for their control software it was natu-
ral that it be chosen as the vehicle for research into the system requirements for
handling multi-service traffic. The ability to support a sophisticated distributed
computing environment on elements inside the network promised to be useful if the
implementation of complex control and management algorithms proved necessary.

1.3 OQutline

Chapter 2 reviews the MSN architecture and examines its relationship to the OSI ref-
erence model. The draft B-ISDN architecture is described. It is argued that results
derived from experimentation with either architecture are applicable to the other.
Subsequently the dissertation concerns itself primarily with the MSN architecture.

Chapter 3 begins with a description of the WANDA system architecture and phi-
losophy. The WANDA networking architecture and the associated MSNA protocol
suite implementation, prior to the incorporation of any QOS functionality, is then
discussed in detail. Of particular interest is the MSNL router implementation.

Chapter 4 describes the construction of a prototype ATM network. The Cambridge
ATM Backbone is used to switch voice, video and data traffic between ORL and the
Computer Laboratory. The implementation is based on the work described in the
previous two chapters.

Chapter 5 looks at the issues surrounding the incorporation of QOS into a network
architecture. The support of multi-service traffic, with QOS guarantees, over ATM
style networks is emphasised. Techniques for providing QOS in both the endpoints
and routers are examined. It is shown that these techniques display a marked
overlap.

Chapter 6 presents the extensions made to the WANDA interface that enable differ-
ent QOS policies to be supported. The chapter concludes with a discussion of the
interface implementation over the networks described in Chapter 2.

Chapter 7 examines the behaviour of the extended WANDA system when handling
delay-sensitive traffic. A series of experiments is performed using the CBN and CFR
networks. Proposals are made concerning the structure of future ATM network host
interfaces.

Chapter 8 places the work described previously in the context of current research.
Chapter 9 outlines some areas of further research necessary before building pro-
duction ATM networks able to provide QOS guarantees. In addition future ATM
research planned at the Computer Laboratory and ORL is outlined. Concluding
remarks are presented in Chapter 10.

Chapter 2

The Multi-Service Network
Architecture

The aim of the Multi-Service Network Architecture (MSNA) [McAuley90] is to
provide a complete architecture which allows multimedia applications to use the full
facilities of ATM networks in an inter-networking environment. The architecture is
based upon the virtual circuit model, and so shares many characteristics with the
proposed B-ISDN. This chapter describes MSNA and its realisation over a set of
heterogeneous networks.

2.1 The Virtual Circuit Model

Both B-ISDN and MSNA define a virtual circuit (VC) model of operation. Each
packet or cell comprises:

Header Information Field

Figure 2.1: Generic virtual circuit cell format

At the very least the header contains a virtual circuit identifier (VCI) which enables
the receiver to establish which circuit an incoming cell belongs to. Since a VCI is
unidirectional a single hop circuit is described by a pair of VCIs. As the VClis only
interpreted locally it can be made small, an important consideration given the small
sizes of ATM cells. An n-hop VC may be formed by the concatenation of n single
hop VCs through (n — 1) VC gateways.

It is not necessarily the case that the same header encoding is used on heterogeneous
networks. However, the contents of the information field must be preserved. The
primary function of a VC gateway is header (i.e. VCI) re-mapping on a per cell basis,
illustrated in Figure 2.2. A small VCI enables a gateway to use simple techniques,
such as table lookup, when performing the translation. Likewise processing in the
end system is simplified.

Header (IN) Information Field
Re-map Header Data Copy
Header (OUT) Information Field

Figure 2.2: Virtual circuit gateway

The simplicity of cell forwarding makes implementation of a hardware router an
attractive possibility.. The computational part (i.e. not including any queueing
delays) of cell processing can be implemented in constant time and therefore a host
(end system/router) can gauge its capacity effectively. This is important if it is to
make guarantees concerning QOS.

2.2 The MSN Architecture

The MSN architecture defines three layers which contribute to the inter-networking
service:

e MSDL and MS-Access (datalink level),
e MSNL (network level).

2.2.1 The MSDL Layer

The multi-service datalink layer (MSDL) defines lightweight virtual circuits, referred
to as associations, over heterogeneous networks. MSDL addressing is in terms of
VCls. Each cell or packet transmitted is accompanied by a VCI which uniquely
identifies an association in the context of the receiving MSDL entity. A VCI pair

6

defines an association over a particular datalink. The MS-Access layer deals with the
encodings necessary to transfer MSDL service data units (SDUs) over heterogeneous
networks (e.g. VCI format). The header format is guided by the characteristics of
the underlying network. The MSDL SDU size bears historical dependencies on the
Cambridge Fast Ring (CFR) [Hopper88], upon which it was first defined. Although
the MSDL SDU is fixed sized, multiple SDUs (all for the same association) may be
presented in a single MS-Access request. The maximum number of SDUs which
can be presented is defined by the instance of MS-Access being used. Similarly an
MS-Access indication may represent the arrival of several MSDL SDUs (all for the
same association).

MSDL on the CFR/CBN

Start bit
Full/Empty bit
Monitor Passed bit
Spare bit
Destination Source CRC and response (12 bits)
2 octets 2 octets User Data (32 octets)
Header (4 octets) MSDL Information Field (32 octets)

Figure 2.3: Encoding of MSDL in a CFR slot

Over the CFR the MSDL header is encoded in the Media Access (MAC) -layer source
and destination addresses (Figure 2.3). The first 16 bits of the header comprise the
destination VCI. At first sight this would seem to allow only one association per
interface. However, when operating in bridge mode a CFR interface can accept cells
on multiple dynamically assigned addresses. On initialisation each interface is allo-
cated a disjoint portion of the MAC-layer address space from which it can assign
VClIs. Intra- and inter-node multiplexing is thus achieved using the same 16 bits
of address information. A maximum of 32 octets remains in the CFR slot; this be-
comes the MSDL SDU size. The Cambridge Backbone Network (CBN) [Greaves90]
comprises a fibre optic ring whose bandwidth is partitioned into a number of Time
Division Multiplexed (TDM) channels (currently four). Stations of varying cost and
bandwidth may be constructed, parameterised by the number of channels they can
use concurrently. Media access control is through the empty slot technique, with

7

transmitting stations able to fill multiple slots each ring revolution. Since the CBN
has the same slot structure as the CFR, the format of Figure 2.3 was used to define

MSDL on the CBN also.

CFR Interface

The CFR chip set includes an ECL repeater and CMOS station chip. The repeater
chip serialises and de-serialises data from the ring so that the station chip may
handle it at an appropriate speed. The station chip contains a single transmit and
a single receive FIFO each with a one cell capacity. It is possible to program the
station chip to generate an indication of both when the receive FIFO contains a
cell and when the transmit FIFO is empty. No interface supporting Direct Memory
Access (DMA) has yet been built so all data must be moved between the station
chip and host memory using processor cycles.

CBN Interface

So far only a single type of CBN interface has been built, which is for the VME bus
[Greaves91]. The interface consists of four transmit (one for each CBN channel)
and one receive FIFQ. Unlike the CFR each FIFO has a capacity of 256 cells. The
FIFO RAM array is shared by both the receive and transmit sides of the station and
so the interface is limited to a half-duplex mode of operation. The receive interrupt
condition is programmable on a per VCI basis. It can be set to interrupt on every
cell received or only when a cell with an end of frame bit set is received. Later
versions of this interface include support for DMA.

MSDL on the Ethernet

Preamble Destination Source Type Frame Check Sequence

8 octets 6 octets 6 octets 2 octets User Data (46-1500 octets) 4 octets

Upto 41 MSDL PDUs

Figure 2.4: Encoding of MSDL in an Ethernet frame

The Ethernet [Metcalfe76] shares few characteristics of the CFR/CBN. In particu-
lar it allows variable size packet transmission. In order to use the network effectively
multiple MSDL protocol data units (PDUs) must be sent in a single Ethernet packet
(Figure 2.4). The peer MSDL host is identified by the 43 bit Ethernet MAC-layer
address. The peer MSDL entity is identified by a 16 bit VCI (chosen for convenience
to be the same size as the CFR/CBN VCI). The number of MSDL PDUs, all for
the same association, can be ascertained from the length of the Ethernet packet.

Ethernet Interface

Due to the commercial success of the Ethernet much effort has been expended on
producing high performance interfaces. Both the DEQNA [DEC86] and LANCE
[AMDS5] interfaces are used by WANDA systems in the Computer Laboratory.
These interfaces use a ring of transmit and a ring of receive descriptors in main
memory. Transmission and reception is done by DMA to and from the regions
defined by the descriptor rings. An interrupt may be generated upon the emptying
or filling of a buffer by the interface. A protocol is defined to allow concurrent
access by the host and interface to the descriptor rings. By using large packets
and a suitable memory system a host may achieve close to 100% utilisation of an
Ethernet with one of these interfaces.

MSDL on the Fairisle network

Header (4 octets) Information Field (48 octets)

Figure 2.5: Initial Fairisle Cell Format

The Fairisle network [Leslie91] is an ATM network based on fast packet switching.
Before a cell is injected into the switching fabric a routing tag must be prepended.
Each stage in the fabric strips the first octet from the tag and forwards the cell
according to the route specified in it. Upon arrival at the destination port the entire
routing tag has been removed. The tag is analogous to the Ethernet MAC-layer
address except that the same output port may have a different tag dependent upon
which input port it is referenced from. The Fairisle design and hardware allow great
flexibility in choosing the cell format. The initial layout is shown in Figure 2.5. As
the information field is neither variable size nor an integral number of MSDL SDUs,
the initial implementation of MS-Access over Fairisle assigns the first 32 octets of the
information field to be the MSDL SDU (the remaining bytes being unassigned). The
33% loss in maximum throughput that this represents is addressed in Section 5.7.

9

Fairisle Interface

The Fairisle Port Controller (FPC) [Hayter91a] is attached to an input and output
port on a Fairisle Switch Fabric. The port controller also has input and output
interfaces to a transmission system. Cells received from the transmission system are
buffered in the FPC cell buffer: thus a Fairisle switch is input buffered. The FPC
control processor, an ARM3 [VLSI90], may arrange to be interrupted on receipt of
a cell. The processor performs VCI re-mapping (implemented in hardware in later
versions) determining which output port (if any) the cell is destined for. The cell is
then linked into an appropriate transmit queue in the cell buffer. At no point does
the processor need to manipulate the data portion of the cell.

Transmission Interface Fabric Interface

FIFO

Cell Buffer

FIFO

Processor Subsystem | >
I/O Bus

Figure 2.6: Fairisle Port Controller Schematic

Cells received from the fabric are either looped back into the cell buffer (typically
for management) or passed through to the transmission system depending on a bit
in the port controller portion of the routing tag.

A VME host interface has been designed and built [Beeler91] which attaches to
the FPC transmission interface. The interface is half duplex and is only capable
of VME slave operation. It supports 32 bit memory mapped accesses on a set of
transmit and receive FIFOs. An interrupt is generated when data is received from
the port controller and also when either of the FIFOs overrun. In an alternative
mode of operation the VME interface is able to attach directly to the synchronous
fabric interface.

10

2.2.2 The MSNL Layer

The previous sections have discussed MSNA at the datalink layer as defined by the
MSDL and MS-Access layers. The multi-service network layer (MSNL) extends asso-
ciations into an inter-networking environment. An MSNL liaison is a concatenation
of MSDL associations. Liaisons are not multiplexed over associations. MSNL adds
no protocol overhead to the data stream: the MSNL PDU and SDU are equivalent
and defined to be the size of the MSDL SDU (32 octets). Once a liaison is estab-
lished, an MSNL gateway is concerned with the forwarding of MSDL SDUs (although
logically this is performed at the MSNL layer). To provide the inter-networking func-
tion MSNL defines both MSNL addresses and connection establishment procedures.
An MSNL address, representing a service access point (SAP) comprises:

o a 4 octet MSNL identifier,
e a 4 octet MSNL port.

Typically there is a one-to-one mapping between an MSNL identifier and a single
host. However, it is possible for several hosts to share the same MSNL identifier or,
more commonly, for a single host to have multiple MSNL identifiers. An MSNL port
identifier is allocated to an MSNL client either when a client registers an interest in
listening for liaisons, or when it requests establishment of a liaison (Section 2.4).

2.3 B-ISDN

The ATM layer in the B-ISDN architecture provides functionality similar to that of
MSNL. Figure 2.7 shows the format of the B-ISDN ATM cell. The Virtual Circuit
Identifier above has been split in B-ISDN terminology into the Virtual Path Identifier
(VPI) and Virtual Channel Identifier (VCI). The cell loss priority bit (CLP) if not
set by the user identifies a cell which could be dropped (in preference to one which
has the CLP bit set) during times of congestion. The payload type (PT) field is
used to provide an indication of the information field content type. The hardware
error control (HEC) field provides single- or multiple-bit error detection capabilities
on the cell header.

The B-ISDN definition represents a set of interfaces; it does not specify the imple-
mentation of an ATM network. So long as a network conforms to that interface it
can be part of a B-ISDN. The MSN architecture should therefore be regarded as
complementing rather than competing with B-ISDN. An MSNA network should be
able to carry B-ISDN traffic and vice-versa. Chapter 5, in particular Section 5.7,
describes some of the issues associated with such an undertaking.

11

)
GFC (4 bits) VPI (bits 0..3)
VPI (bits 0..7) VCI (bits 0..3)
VCI (bits 4..11) Header
VCI (bits 12..15) PT (2 bits) R | CLP
HEC ‘
Information Field (48 octets) Payload

Figure 2.7: B-ISDN Cell Format

A router at the centre of an ATM network will be expected to handle the cells for a
large number of connections. This does not imply that a router has to maintain state
on each connection. Cells with the same source and destination, but for different
circuits, may be multiplexed over a common channel. In B-ISDN this channel is
termed a virtual path, and is the reason for the VPI in the cell header.

R1 R2 R3

velr —— _— V1

vop —— VPl VP2 — vC2

Figure 2.8: Virtual Path Call Multiplexing

The concept is illustrated in Figure 2.8. The virtual circuits VC1 and VC2 utilise a
common virtual path (VP1-VP2) for part of their route (R1-R2-R3). R2is a VPI
router, it re-maps the VPI for an incoming cell and forwards it on that basis. The
Virtual Channel Identifier is left untouched. The VP approach allows fast connection
establishment as the routers internal to any VP used are effectively by-passed. It
also has the benefit of simpler network management. For example, if a VP router
fails then it may only be necessary to re-route each active VP rather than each

12

circuit. A virtual path has certain synchronisation properties since it maintains cell
sequence integrity across all connections that are multiplexed over it.

2.4 Call Establishment

In a virtual circuit network dynamic call establishment requires a mechanism for
VCI exchange on a hop by hop basis. The MSN architecture defines the promiscu-
ous association mechanism for this purpose. A promiscuous association comprises
a well known (public) VCI with which is associated a specific service. It is directly
analogous to the pre-assigned virtual circuits of the B-ISDN. Any node on a network
may send cells, using a promiscuous VCI, to any other node on the same network.
One such promiscuous association is defined to be used for MSNL connection man-
agement.

\ Server MSNL Id
: Server MSNL Port
Client VCI REQUEST
Connection Identifier \
WAIT |
L, Connection Identifier
 ———
"-’RE_K_____ Server VCI
Connection Identifier
——— /
L, Connection [dentifier —
KILL KILL
\]
Time Time

Figure 2.9: MSNL Liaison Establishment and Tear Down

The types of message used in MSNA connection management are illustrated in
Figure 2.9. The terms client and server are used to refer to the connection initiator

13

and acceptor respectively. The protocol considerations are similar to those found in
remote procedure call systems. A multi-hop connection will require the connection
establishment procedure to be repeated on each intermediate network. The wait
facility informs a retrying initiator that a connection is still in the process of being
established. This is typically used by routers when setting up a multi-hop liaison.

2.5 Higher Levels

Additional functionality on top of the streamed cell interface that B-ISDN and
MSNL provide is required to accommodate various services. The protocol to be
used over a particular circuit is agreed upon during call establishment. Any further
negotiation required is protocol dependent and in-band. Early implementations of
the MSN architecture assumed only a single higher level protocol: the multi-service
segmentation and reassembly (MSSAR) protocol. MSSAR is concerned with the
transfer of variable sized blocks over MSNL liaisons and is a typical example of a
higher level protocol.

MSSAR Header (2 octets) MSSAR SDU (32 octets)

Start of block bit

Part Full Bit = = F==eemeemessmeemoeeene veenensenasennanan

S | P | Block Identifier (6 bits) | Sequence Identifier (1 octet)

Figure 2.10: MSSAR PDU encoding

Figure 2.10 shows the encoding of the MSSAR header. The start of block bit defines
the beginning of a new block. The sequence number, which counts down to 1,
indicates the total number of SDUs remaining in the block. The block identifier
requires at least all the cells for 63 consecutive blocks to be dropped before there is
the possibility of a block being incorrectly assembled. If the block is not an integral
number of MSSAR SDUs then the last header will have the part-full bit set, in which
case the final octet of the MSSAR SDU indicates the number of valid SDU octets
present. The B-ISDN architecture defines the ATM adaptation layer (AAL) above
the ATM layer. A set of higher level protocols are defined one of which, AAL Type
3, offers similar functionality to MSSAR.

14

The MSSAR protocol is heavyweight considering that the MSNL interface defines
that cell re-ordering or duplication does not occur on a connection. Of course an
implementation cannot guarantee that such events do not occur and so any higher
level protocol must be robust in their presence. Rather, their occurrence is viewed
as extremely unlikely and so recovery from them should not dictate the design of any
higher level protocol. A simpler block assembly protocol is illustrated in Figure 2.11.

MSNL SDU

et ——————

Data Pad FCS

Figure 2.11: Simplified Block Assembly Protocol

A block is transmitted as a sequence of MSNL SDUs. The final cell, recognised by
having an End-Of-Frame (EOF) indicator set, contains the Frame Check Sequence
(FCS) field. The FCS is a check on the data octets. In most cases a lost cell
will only cause the assembly of a single datagram to fail. If however the cell lost
contains the EOF indicator then cells will continue to be assembled until the next
EOF indicator, at which point the FCS check should fail. In this way a subsequent
block although correctly received will be discarded. The protocol could be made
more robust (and complex) by the addition of a Start-Of-Frame (SOF) indicator.
No length field is necessary as it is believed that most higher level protocols already
encode such information in the data field. If they did not then it could be added.
In this way redundancy is avoided.

A protocol similar to the above has been proposed for B-ISDN AAL Type 5. The
Simple and Efficient Adaptation Layer (SEAL) [SUNB91] is a reaction to what is
seen as the unnecessary complexity and overhead of AAL Type 3. SEAL requires
the provision of an EOF bit, which does not currently exist, in the B-ISDN header.
The proposal is to use PT 10 to signify EOF (values 00 being already assigned and
01 under consideration for other purposes). By eliminating the AAL Type 3 headers
from the information field of the B-ISDN cell an additional four bytes of user data
are available in each cell. This may reduce the total number of cells required per
block by up to 9%. The SEAL FCS comprises a 32 bit CRC (the same computation
as in IEEE 802.5). The proposal argues that the frame level checksum is more
reliable than the per cell CRC present in AAL Type 3; the belief being that a single
strong error check is better than a long series of weaker checks.

15

2.6 Relationship to OSI

The ISO Open System Interconnection (OSI) reference model [Day83] provides a
useful framework in which to compare and contrast network architectures. The seven
layer model is only intended as a guideline, a fact that becomes apparent when trying
to describe most real architectures. An attempt is made to illustrate the relationship
of the MSN architecture to OSI in Figure 2.12. The main observation to make is that
no multiplexing above that at the datalink layer is necessary when using MSNA.
If multiplexing at multiple layers, as allowed by the OSI model, is performed, then
higher level guarantees may be compromised. A detailed discussion of the issues
surrounding layered multiplexing may be found in [Tennenhouse89).

ISO OSI Model MSSAR / MSN
Application
Presentation
Session
Transport MSSAR
Network MSNL
Datalink MSDL / Ms-Access
Physical Physical

Figure 2.12: Relationship of MSNA to the OSI Reference Model

2.7 Summary

The Multi-Service Network Architecture (MSNA) has been described, and its rela-
tionship to OSI has been established. The draft B-ISDN definition has been out-
lined. Although differing in detail and complexity, both B-ISDN and MSNA display
many similarities at and below the network level (where they are both most fully

defined); experimental results derived using MSNA should be directly applicable to
the B-ISDN, and vice-versa.

16

Chapter 3

WANDA MSNA Implementation

This chapter begins with a statement of the WANDA system philosophy and design.
The features that make WANDA suitable for building high performance dedicated
systems are discussed. The WANDA Inter-Process Communication (IPC) interface
is then described in detail. A comparison is made with similar support available in
other systems. The MSNA protocol suite has been implemented as a WANDA kernel
protocol stack and support for building MSNL routers is available. An initial router
supported MSSAR block forwarding in user space. The second router supports
MSNL cell forwarding in kernel space. In both cases the connection management is
controlled by a user space application.

3.1 WANDA

One traditional view of an operating system is as a monolithic piece of code run-
ning in a privileged mode, functions such as device drivers and the file system being
part of the monolith. Inevitably, with logical separation of unrelated components
un-enforced, interdependencies arise which make the system difficult to maintain
and develop. Distributed systems research is concerned with the operation of phys-
ically separated, possibly heterogeneous, interconnected computers. As a result
designers have been forced to decompose the single processor monolithic system
into separate components which communicate via message passing. The WANDA
philosophy represents a continuation of that found in the Cambridge Distributed
Computing System (CDCS) [Needham82]. The CDCS has perhaps been the most
highly decomposed distributed system attempted to date. The system comprised
heterogeneous hardware and operating systems but made progress through a set
of homogeneous interfaces. Note that for some applications, such as fault tolerant
computing, it can be desirable that such heterogeneity exist in a single system.

17

Recent years have seen the widespread deployment of distributed systems tech-
nology [SUNB86, Scheifler86, Sandberg85]. Unfortunately most such systems
comprise nodes running operating system kernels whose design was dictated by the
demands of time-sharing. A large amount of research [Accetta86, Tanenbauma?,
Herrmann88] has been aimed at finding lightweight replacements for such kernels.
Lightweight is used to refer to the smaller code size and the higher performance
exhibited by such kernels. Two of the most attractive features of lightweight kernels
are the relative ease with which they are ported and maintained.

There is a broad range and rapid evolution in the type and capability of processor
hardware. This situation has been exacerbated by the emergence of Reduced In-
struction Set Computing (RISC) [Patterson80]. It is important that a system be
readily ported in order to take full advantage of new hardware. A smaller kernel (it is
hoped that the kernel forms the basis of most of the work) helps to ensure a simpler
port. The code that has to be altered per port must be well defined and kept to a
minimum. Some pieces of code may be implemented in a machine independent, but
less efficient, manner. In this way an initial port is made easier. Subsequently they
may be re-worked in a machine dependent fashion for performance improvements. A
successful example of this approach may be found in the device dependent interface
of the X Window System sample server [Angebranndt88]. A further example is
that the WANDA kernel is capable of functioning on machines without support for
virtual memory (Section 3.1.4). If a quick port to a particular hardware configura-
tion is required, then the code necessary to implement virtual memory may initially
be left out.

The WANDA system was perceived as a high performance, lightweight kernel upon
which system servers could be run. The WANDA programming interface is not a list
of system calls (traps into the micro-kernel) even though a particular kernel imple-
mentation might choose to interpret it as such. For example, the user library code
for a thread (Section 3.1.1) to determine its own identifier may, on a uniprocessor,
simply read a well known location maintained by the micro-kernel thread switching
implementation. On a shared memory multiprocessor the same code might involve
a system call. Subsequent sections discuss the structure of the WANDA system
as currently implemented at the University of Cambridge Computer Laboratory.
Whilst not a primary aim, the WANDA interface has been designed so as not to
preclude the implementation of a general purpose operating system environment.
One possible route to achieving this would be the emulation of another micro-kernel

based interface, such as MACH, for which an operating system environment already
exists [Golub90].

Subsequent sections describe the support for concurrency and communication in the
WANDA kernel. These are the areas most relevant to the dissertation. A detailed
account of the virtual memory management system may be found in (Mapp91).

18

3.1.1 Concurrency

Distributed system servers exhibit natural concurrency due to the fact that a single
server will typically handle the requests for multiple clients. Threads [Birrell89,
Swinehart85) provide a mechanism for expressing this concurrency. On a unipro-
cessor they are a convenient structuring technique, but offer no gain in performance
over a suitable non-threaded implementation. On a multiprocessor, where threads
can be executed concurrently, they offer performance improvement compared to the
non-threaded case.

A WANDA domain, or process, consists of a set of independently schedulable threads
which all share a common address space. On a multiprocessor each thread, unless
constrained, may be scheduled on any processor. Reasons for constraint might be the
accessibility of a specific piece of hardware (possibly local memory) on a particular
processor only. The basic synchronisation mechanism for WANDA threads is the
counting semaphore [Dijkstra68]. The traditional P(sem) and V(sem) operations
and a facility for waiting on a semaphore subject to a time out are provided. The
kernel itself is multi-threaded; for example, in addition to kernel background threads,
such as device driver watchdogs, the kernel must be prepared to handle concurrent
system calls from multiple user level threads.

The efficiency of the thread switching and synchronisation facilities determines the
grain of concurrency that an application will attempt. The WANDA thread switch-
ing implementation on a multiprocessor offers the possibility of fast synchronisation.
When there are no runnable threads for a processor one approach would be to sched-
ule a kernel “idle” thread which simply executes a dally loop with interrupts enabled.
Instead, in WANDA, the last thread to block on a processor spins in the scheduler
on its wake up condition. A thread that removes the blocking condition is able to
wake the blocked thread by setting the memory location upon which it is spinning.
There is no need to invoke a heavyweight inter-processor interrupt (IPI) operation.
This technique works best if the threads for a domain are scheduled concurrently on
separate processors (so called co-scheduling [Ousterhout82}). However, if there are
multiple domains to be scheduled, such an approach may in fact reduce throughput
due to the increased percentage of virtual memory context switches necessary upon
a re-schedule.

Execution of a process on a multiprocessor is a stringent test of the concurrency
correctness of the program. Although semantically the same as uniprocessor execu-
tion, subtle differences exist. In many cases the thread pre-emption interval is long
enough such that a thread when scheduled will run until it blocks. Even if very fine
grain time slicing is enabled most architectures will preserve instruction atomicity
in the presence of interrupts (e.g. the timer). On a multiprocessor the execution
stream of two threads may be interleaved at the sub-instruction level.

19

3.1.2 Communication

The WANDA IPC facility supports communication between threads in different
domains on the same machine (Section 3.3.2) and on different machines connected
by a network (Section 3.3.1). There is no reason why threads in the same domain
cannot communicate with each other using the IPC facility. Typically, however, they
would use a shared memory paradigm. The WANDA IPC interface (Section 3.2) is
at a level unpalatable to most distributed applications programmers. A distributed
computing environment, the ANSA Testbench [ANSA89], has been ported to run
over WANDA. The Testbench can be viewed at the application level as having the
following components:

¢ Capsule: the run-time system for a Testbench application, including support
for threads and communications. A capsule is single instance of this run-time
system.

o IDL: the Interface Definition Language which is used to define an ANSA
interface. An associated compiler, STUBC, generates C language client and
server stub code from an IDL definition. An example IDL specification is
presented in Section 3.4.3.

o PREPC: a preprocessor which scans C language source programs for embed-
ded DPL (Distributed Programming Language) statements. These are con-
verted into calls on either the capsule library or the stub procedures generated

by STUBC.

e Trader: a capsule which provides the mechanism for separate capsules in a
distributed ANSA application to rendezvous. A server exports an interface
reference to the trading service to make it accessible to other programs. An

import operation is provided so that clients may extract interfaces from the
Trader.

The provision of a distributed computing environment enables easy access t0 many
traditional operating system components. For example, the demands placed on the
file system by the WANDA applications discussed in this dissertation are relatively
light (e.g. a process reading a file for configuration information). An ANSA interface
to the UNIX file system provides sufficient functionality and performance.

20

3.1.3 Process Management

Figure 3.1 illustrates the steps involved in creating a process dynamically to run
on a WANDA system. A typical WANDA machine contains a version of the kernel
and a single user process in PROM. Upon reset this process will load the current
boot file for the machine from a boot server using a simple transport protocol built
over MSNL. The WANDA machine will initially have been booted with an image
containing a kernel and single user level “loader” process. The loader is an ANSA
application and, upon starting, exports an interface to the ANSA Trader. A party
interested in creating a process on a WANDA machine first imports the appropriate
loader service offer from the Trader.

- > TRADER

UNIX
2
s 1. Import Loader service offer for the selected machine.
. NEW ‘ 2. Inform the Loader of the attributes of the program to run.
LOADER ' ' 3. Import File System service offer.
{ DOMAIN i

4. Read the binary image from the File System.
5 Use local WANDA primitives to build the domain.

Figure 3.1: WANDA Domain Creation

The loader interface to create a process is then invoked, one of the parameters being
the file name of the image to be executed. The loader imports the appropriate file
system offer from the Trader and invokes it to read the contents of the executable

21

file. The domain is then built using privileged WANDA process creation primitives.
There is nothing to prevent multiple loaders being run on the same machine. Typ-
ically this would be the case if different interfaces were being employed, e.g. one
which was implemented to use SUN RPC.

The loader process assumes local responsibility for the management of the new
domain. It is possible for the loader to stop the execution of a domain it has
created. More typically the domain will stop due to an error, e.g. virtual memory
protection violation, or natural program termination. In either case all threads
for the domain are stopped in user space. This involves waking all threads for
the domain in question which are blocked inside the kernel. The system call exit
code contains a test to see if the current domain is stopping. Depending upon the
system call that was attempted the thread stops itself with state such that if it were
re-started it would either:

e return an error indication for the system call result, or

e re-attempt the system call with the same arguments.

When the domain is fully stopped the creator receives an event notification. Local
primitives are available to query and alter the state (e.g. thread registers or memory
locations) of the stopped domain. The ability to stop a process and query the state
enables implementation of the following techniques to be considered:

¢ remote debugging [Cooper88, Redell88|,

e process migration [Powell83, Theimer85, Zayas87].

It is not suggested that process migration be transparent at the system call level.
Rather an application that is re-started on a different machine would experience
errors upon trying to use kernel level resources which it had allocated on its original
machine. If it is a properly coded application then it will handle such errors by
re-trying at a higher level. However, the usefulness of a process migration facility
for the types of application considered for implementation over WANDA is dubious.
This is because many server instances display an affinity for a single machine, e.g. a
file server for the disks on a particular machine.

3.1.4 Building Dedicated Systems

The WANDA system is designed primarily as a substrate for dedicated high perfor-
mance servers. When writing an application it should be possible to develop much

22

of the code in a traditional program development environment, such as UNIX. The
next phase is to complete the development and debugging on a WANDA machine
that provides as much aid to the programmer as is feasible; examples include:

¢ virtual memory protection from others and yourself,

e comprehensive kernel checking of user arguments.

Once the developer is happy with the application it can be installed. Many of the
above kernel features, desirable during development, now represent runtime overhead
for the service. By removing them performance will be improved. This is analogous
to turning on compiler optimisation and procedural inlining when building a program
for installation. In a kernel which completely disables the memory management unit
(and so is capable of running on a machine without one), termed a single address
space (SAS) system, further improvements are possible. The overhead of using traps
for users to link with the kernel can be avoided by using simple procedure calls. Upon
initialisation the package containing assembler stub routines for trapping into the
kernel would query the kernel for their procedural entry point replacements. Such
an arrangement requires that user space programs run in kernel mode. Savings,
depending upon the architecture involved, can include:

e no copying of arguments from user to kernel stack,
e system call entry dispatching eliminated,

e no switching between user and kernel mode.

In a similar fashion it is possible to translate same-machine cross domain remote
procedure calls into simple procedure calls. This is similar to Lightweight RPC
(LRPC) [Bershad90] except there is no need for passage through the kernel to
change virtual memory context. Of course, with memory management disabled, an-
other sink of performance when crossing domain boundaries, Translation Lookaside
Buffer (TLB) faults, are eliminated. The penalty to be paid is the loss of virtual
memory. This is not a major problem since most dedicated systems will have been
written to avoid paging. However some system software techniques, such as asyn-
chronous garbage collection [Ellis88], depend upon virtual memory being enabled.
None of the applications described in this dissertation are so constrained.

3.2 The WANDA IPC Interface

The WANDA IPC interface is based upon the Berkeley UNIX socket abstraction
[Leffler89]. In particular the need to support multiple protocol domains is recog-

23

nised. The important operations are listed below:

buffer: WandaIOBuffer
socket: WandaIPCDescriptor
address: WandaIPCAddr

socket := WandaIPCSocket(PROTOCOL_TYPE)
WandaIPCBind(socket, address)
WandaIPCConnect (socket, address, timeout)
WandaIPCOffer(socket, timeout)
WandaIPCAccept (socket)
WandaIPCSend(socket, buffer)

buffer := WandaIPCRecv(socket, timeout)

All of the above operations are synchronous. As the interface is multi-threaded
there is no requirement for the equivalent of the UNIX select operation. Incoming
connections are established in a two phase process. Firstly, a thread registers an
interest in receiving a connection request by invoking the Offer interface. A matching
connection request will result in a successful return for the call. The connection is not
yet established. The application has available information concerning the embryonic
connection e.g. the peer endpoint address. This information is typically used to aid
deciding whether or not to Accept the connection. Some call establishment protocols,
such as the one for MSNL (Section 2.4), provide mechanisms which may be used to
prevent the connection request timing out whilst this decision is being made.

The interesting part of the interface, that concerning buffer management, is elabo-
rated in Section 3.3.3. Lightweight kernel philosophy [Tanenbaum87, Cheriton88]
is to have a single IPC facility within the kernel. Additional protocols are imple-
mented in user mode and accessed by interested applications via the kernel-provided
protocol. Whilst acceptable for many applications, optimal performance for a par-
ticular protocol will always be provided by a kernel implementation. The main
performance limitation in supporting multiple protocols in this way is the indirec-
tion involved in per socket control structures during the send and receive operations.
This is minimal and could always be removed by the addition of a protocol specific
interface alongside the generic one.

24

3.3 0O/S Support For IPC

Distributed systems cannot exist without communication; its efficiency is one of the
major factors determining the performance of the overall system. Many applications
find difficulty in realising even a small fraction of the available network bandwidth. It
has typically been thrown away by a combination of the host-network interface, sys-
tem bus, communications protocol and user/kernel networking interface employed.
The dominant factor affecting IPC performance is usually the cost of data copying.
Approaches to minimising the cost are discussed below. Two classes of IPC can
be distinguished, moving data between user space domains across a network and
moving data between user space domains on the same machine.

3.3.1 Inter-Machine Communication

Many network interfaces contain DMA hardware which works on contiguous regions
of physical memory. Application data however is presented as a linear region of
virtual memory which in the general case will not be physically contiguous. If the
DMA hardware supports chaining of data then it is possible to avoid copying into
a contiguous buffer although at the cost of some software complexity. In a paging
system the real pages which comprise the user’s message must be marked unpageable
whilst the operation is in progress, and unmarked when the transfer completes. The
above complexity has forced many systems, in particular UNIX, to copy user data
into intermediate kernel buffers before presenting it to the network interface for
transmission.

Other systems, such as Amoeba [Tanenbaum87], rely on the backing of contiguous
segments of virtual memory by contiguous equivalent arrays of real memory, and
the absence of paging, in order for network drivers to access user virtual memory
easily. Of course this requires that the user be informed when the transfer operation
is completed so the application can re-use the virtual memory. Making the interface
synchronous with respect to the transfer or providing some form of upcall into the
application both represent additional overhead. Yet another technique, found in the
V system [Cheriton88], is to treat small messages as special and arrange for them
to be passed into the kernel using registers. This yields limited speedup over copying
and introduces a test of message length into the main line code. Finally, a technique
used in the Topaz environment [Thacker87, Schroeder89], is to map (with both
read and write access) a set of physically contiguous buffers into the address space
of each user domain. A lock, shared between the kernel and all users, controls buffer
acquisition and release. The problem associated with this interface is that malicious

or erroneous clients can overwrite data in buffers allocated to other users, including
the kernel.

25

3.3.2 Intra-Machine Communication

Trends in structuring distributed systems are making the performance of intra-node
IPC increasingly important. Consider the case of a domain dedicated to maintaining
the client side cache of a remote file system. All file system requests from any
domain on that node will go through the domain containing the cache. If the cache
is functioning correctly most requests will be satisfied without the need for an inter-
node operation.

When moving data between domains on the same machine several techniques are
available. One method is to copy from the sending to the receiving domain. This is
non-trivial as the two regions will be in different virtual memory contexts on most
architectures. Many implementations copy into an intermediate kernel buffer. When
the receiver is woken it copies data from the kernel buffer into its address space. An
alternative is to arrange that all physical pages on a machine are always accessible
using a fixed range of kernel virtual addresses. Whoever performs the copy, sender
or receiver, accesses their own region with normal user space virtual addresses. To
access the other region the relevant physical addresses are determined which may be
accessed in the current context using the appropriate kernel virtual addresses. As
the user page tables no longer protect the copier from page-outs a certain amount
of care must be taken when performing this operation.

A second method is to use a virtual memory technique termed copy on write (COW)
[Trevanian87, Abrossimov89|. The physical pages representing the message in
the sender’s address space are marked read only. The physical pages representing the
destination region in the receiving domain are replaced by the sender’s physical pages
marked read only. If either side subsequently attempts to write one of these pages,
generating an access control violation, it is replaced by a different physical page
which is a copy of the original. Changing the virtual memory management tables is
an expensive operation. In addition to the computation involved the TLB must be
flushed. This impacts the performance of the processor due to increased subsequent
TLB faults. On a shared memory multiprocessor the TLBs of all processors must
be flushed. Unfortunately the same thought that has gone into cache coherence
protocols for the memory system has not been directed at the TLBs. On most
architectures flushing the TLBs requires an IPI to each processor.

3.3.3 The WANDA I/0 Buffer System

The WANDA I/0 buffer system is similar to the DEC SRC Topaz scheme (Sec-
tion 3.3.1). A stylised version of the interface is given below:

26

buffer: WandalOBuffer
buffer := WandaIOBufferAcquire(length, timeout)

WandalOBufferRelease(buffer)

An I/O buffer is realised as a contiguous region of physical memory; it is uniquely
identified by an easily verifiable handle. The attributes of each buffer, such as ad-
dress and length, are described by a per-buffer structure. In a secure implementation
of the interface, an allocated I/O buffer is mapped with read and write access into
the acquiring domain’s address space. If a domain attempts to access an /O buffer
it does not own then it will address fault.

In addition to the above interface an I/O buffer may be acquired upon receive
and released upon send. Thus, the semantics of the IPC and I/O buffer interface
dictate that, once sent, data in a buffer is no longer accessible. This means that a
client wishing to maintain a copy of any transmitted data, e.g. for re-transmission,
must perform a copying operation before transmission; a kernel space copy has been
swapped for one in user space. The situation is not so bleak when it is realised
that other stages are usually required in the preparation of data for transmission
e.g marshalling or encryption. The marshalling code in a remote procedure call
runtime system could arrange to marshall directly from client arguments into an
I/0 buffer. If re-transmission is necessary the arguments are re-marshalled; a small
penalty considering this action is only necessary if a time-out occurs. Note that
this re-marshalling could be initiated before the time-out if the application has no
other work to perform. The important point is that intelligent clients have the
opportunity to avoid copying. Not all implementations will adhere to the strict
semantics of the interface. In particular, a secure machine supporting dedicated
servers may choose to neglect all virtual memory operations. However, client code
which depends on this is illegal. Other techniques for building such kernels were
discussed in Section 3.1.4.

3.4 MSN Architecture Implementation

In an inter-network environment it is important to have rich connectivity [Braden87],
this implies many networks having multiple gateways. In the initial WANDA MSNA
implementation there was no code that enabled a WANDA machine to act as an
MSNL gateway. The requirement for such functionality became apparent with the
desire to place machines on the first Pandora CFR.

While the MSN architecture has been designed such that gateways can be built in
27

hardware it is not the case that all will be. New networks are more quickly supported
in software. Not all routes are performance critical, e.g. one used for a mail feed
only. Therefore solving the problem with a cheap general purpose processor can be
more cost effective than using dedicated hardware. Such software gateways would
be configured with downgraded quality of service attributes so that they are only
used in response to failure or overload conditions on the primary routes. Even in a
hardware gateway it is not envisaged that the hardware understand much more than
header re-mapping and simple cell queueing. All protocol control packets would be
handled in software and the hardware instructed when a liaison is established or
terminated.

The use of a connection oriented protocol enables optimisations to be made at
connection set up time. The code to implement intra-node MSNL quickly diverges
from that implementing the inter-node case. The dispatch vectors for send and

receive in each socket control block are accordingly adjusted when a connection is
established.

3.4.1 MSSAR User Space Gateway

One approach would have been to put the gateway code into the kernel. This was
rejected on the grounds of:

¢ implementation complexity,
o difficulty of debugging and maintenance,

o limited configurability.

A technique for enabling protocol implementation in user level processes, the packet
filter, is described in [Mogul87]. However, moving functionality out of the kernel
is not a panacea. The design described below attempts to balance the requirement
for high performance with that of moving complex code into user space.

The MSNA user space interface already offered the ability to accept incoming and
establish outgoing connections. A wildcard MSNL port was defined upon which con-
nection requests for specific destination networks could be accepted. A connection
so established has the liaison initiator as the peer address and the intended recipient
as the local address of the socket. The gateway process then attempts to establish
a connection to the intended recipient, making it look as if the connection request
came from the initiator. Data received on the former socket should be forwarded on
the latter, and vice-versa. As the receive interface is blocking, two threads will be

28

required to listen for incoming packets and data received on one socket is forwarded
on the other. The code for this is extremely simple:

in, out: WandaIPCSocket

forever do

WandaIPCSend{out, WandaIPCRecv(in))
end
except: error handling logic

Note that no lookup is required to determine the incoming or outgoing socket indices,
it is all part of the thread state. The overhead is in the scheduler thread switching
implementation but this is just one piece of code and a candidate for optimisation.
No user space synchronisation is required ezcept in handling exceptional error condi-
tions, where the two threads have to agree whose responsibility it is to free user level
resources associated with the connection, primarily the two sockets. Consider the
code to achieve a similar function over an asynchronous, single threaded interface
such as that found in UNIX. Upon reaching the idle condition the process would
block inside the kernel, using the select system call, with a list of all I/O descriptors
it was interested in. Upon return, for all descriptors that are indicated as having a
receive pending, the process makes a receive system call, looks up the outgoing I/0
descriptor and does a send system call.

Having a gateway in user space is not cheap in terms of system resources. Each
through connection requires two threads and two sockets to be allocated. A typical
gateway will consume hundreds of threads although, as can be seen, their user space
stack demands are not great. If kernel data structures are not extensible the gateway
will have to be configured with large defaults or be forced to refuse connections when
not necessarily heavily loaded. The WANDA kernel implementation described here
provides extensible thread and socket tables.

When receiving notification of an incoming connection the gateway can adopt one of
two strategies. In the first, an incoming connection is not accepted until the outgoing
one is established. If all gateways follow this strategy then there is a full round trip
delay before the initiator can transmit on the liaison. In the second strategy, an
incoming connection is optimistically accepted before the outgoing one is established.
The initiator may begin transmitting after the round trip delay between it and the
first hop gateway. The danger here is that the data will catch up with the connection
establishment request, what happens in such a case is implementation dependent
(data may be discarded or buffered). Data transmitted over a multi-hop optimistic
liaison can arrive at the destination in the same order of time as if it had been sent
over a datagram network. It is feasible to envisage a liaison being established, used
and then deleted by the initiator before the destination received any indication.

29

Performance measurements for the user space gateway yielded an interesting result.
It would be expected that the ping delay (time to send a cell and receive a return
reply) across a gateway would be the sum of the ping times between the endpoints
and the gateway. For the case involving no router a scheduler optimisation ensures
that the source processor is idling in the context of the receiver thread when the reply
returns. Therefore, no context switch is necessary. In the gateway case the same
optimisation ensures that the gateway processor is typically in the context of the
thread that received the cell from the source. A context switch is necessary resulting
in the ping time through a gateway being longer than might be predicted. In the
case of a blast protocol traversing a user space gateway the scheduler optimisation
ensures that very little thread switching occurs. Such interactions are an example
of the difficulties encountered when attempting to extend QOS from the network up
through the endpoint operating system to a user level application.

3.4.2 MSNL Cell Forwarding

The user space gateway described above suffered from two problems. Firstly, as
the WANDA MSNA user interface only dealt with the transmission and reception
of MSSAR blocks the gateway was an MSSAR, and not MSNL, router. Secondly,
although adequate for Ethernet type interfaces (large packet size and DMA) the user
space implementation would have severe performance and/or jitter problems when
forwarding cells between ATM networks. In addition, if QOS was to be provided in
user space then real-time support would have to be added to the WANDA thread and
IPC systems. As a result of these considerations it was decided to add support for
MSNL cell forwarding in the kernel with forwarding taking place in network driver
interrupt routines. Connection management was still maintained in user space. The
IPC interface was extended so that two established liaisons could be joined together:

a, b: WandaIPCSocket

WandaIPCJoin(a, b) except: error handling logic

Incoming cells on liaison @ are forwarded on liaison b, and vice-versa. Forwarding
of MSNL cells in the kernel is relatively straightforward. The easiest situation is
when forwarding between homogeneous networks. A single incoming CFR cell maps
onto a single outgoing CFR cell. A single incoming Ethernet packet (possibly a
collection of cells) maps onto a single outgoing Ethernet packet. The same ease
applies to forwarding between similar networks such as the CFR and CBN.

Forwarding from an Ethernet to a CFR/CBN involves invoking the cell forwarding
machinery once for each cell in the Ethernet packet. Forwarding cells in the oppo-

30

site direction is more complicated. Assigning each incoming ATM cell to a single
Ethernet packet would exhibit miserable performance. Assigning multiple cells to
an Ethernet packet raises the problem of when to forward a partially filled Ethernet
packet. Such a decision is dependent upon the higher level protocol involved, of
which an MSNL router should be unaware. However fixed bits in the MSDL header
are allowed to be set by higher level protocols and may be interpreted by routers.
One of these is the EOF bit (Section 2.5) which is used to trigger forwarding. It
is interesting to note that the B-ISDN cell header (Section 2.3) includes no such
facility. Two threads are still required in user space to wait for either side of the
through connection to close (and take the appropriate action).

3.4.3 ANSA Interface

The implementation of gateway management in user space enabled a trivial ANSA
control interface to be provided (there is no RPC implementation within the WANDA
kernel).

Router : INTERFACE =
BEGIN

MSNLAddr : TYPE

RECORD [host, port: CARDINAL];

MSNLConn : TYPE

RECORD [client, server: MSNLAddr];

ConnList : TYPE

SEQUENCE OF MSNLConn;
ListConnections : OPERATION [] RETURNS [ConnList];
DeleteConnections : OPERATION [ConnList] RETURNS [];

END.

Figure 3.2: ANSA Interface to MSNL Router

The initial interface to the router (Figure 3.2) simply supported a query on the state
of all active connections. In addition, it allowed a client to close a connection(s)

remotely. It is expected that the majority of network management software will be
built using an RPC paradigm.

31

3.5 Summary

Some of the features which make WANDA a suitable vehicle for building high per-
formance distributed systems components have been discussed. These are:

easily portable (SAS systems),

e concurrency through threads,

multiprocessor operation,

high speed networking (I/O buffer system),

ability to configure stream-lined versions.

Kernel techniques for the support of high speed networking have been discussed
within the framework of the WANDA IPC interface. The WANDA MSNA imple-
mentation prior to incorporation of any QOS related functions has been described.
The MSNL router connection management code has been implemented in user space
without impacting data forwarding performance. In addition to ease of program-
ming, a major benefit is the availability of a sophisticated distributed computing
environment (ANSA) at this level.

32

Chapter 4

The Cambridge ATM Backbone

This chapter describes the Cambridge ATM Backbone network which has been built
using infrastructure described earlier in the dissertation. At the time of writing this
network is used to transport voice, video and data traffic between two sites in the
Cambridge area. ‘

4.1 Pandora Interworking

Pandora [Hopper90] is a joint project between Olivetti Research Limited (ORL),
Cambridge and the University of Cambridge Computer Laboratory. The project is
investigating the use of multimedia workstations in a working environment with par-
ticular emphasis on digital video. A Pandora workstation (see Figure 4.1) comprises
a standard workstation to which has been attached a multimedia peripheral, called
Pandora’s Boz. The control interface to the box enables most application and man-
agement software to run on the workstation. The X11 window system [Scheifler86]
is used (with protocol extensions) to provide a programming interface to the video
capabilities of the Pandora Box.

The Pandora Box acts as a switch between a set of multimedia input and output
devices. The handling of video presents the greatest technical challenge. A video
stream is typically sourced from the local camera device or network (CFR). Video
stream sinks are typically the workstation monitor or the network. An analogue
mixer, under workstation control, is used to display video on the workstation mon-
itor. The network is used to provide a real-time communication path for voice and
video streams between boxes. Pandora network protocols are built as an adaptation
layer over MSNL virtual circuits. Both video and voice streams are constant bit
rate. Popular applications include video-phone and video-mail. A video file server

33

Camera) Audio Input/Output

O QL

Video-In
Monitor
Video-Out /
Ethernet CFR
Workstation Control Pandora’s Box \

Figure 4.1: The Pandora Multimedia Workstation

is accessible over the CFR.

The initial network configuration comprised a single CFR, running between the two
sites, to which all Pandora boxes were attached. Such a configuration has well known
drawbacks:

e a single network failure can disable both sites,
e many management decisions are not local,
e ring bandwidth limits the number of active boxes,

¢ a single CFR has geographical limitations.

In response to these problems the CFR was split into two rings, one at each site.
These were connected using a single CBN. The initial MSNA router hardware com-
prised one 68030 processor, with a single CFR and CBN interface, at each site.
While solving the problems described above it has introduced new considerations
concerning component placement. A video file server is required to handle a larger
number of concurrent streams than any of the workstations it serves. The fairness
properties of the CFR prevent it from acquiring the “unfair” share of the bandwidth
it might justifiably desire. In practice the situation is worse due to the poor perfor-
mance of most CFR network interfaces. Solutions can involve adding more than one
interface to a particular file server or having multiple file server instances. The CBN
exhibits properties more suitable for the support of a video file server. By moving
the video file server to the CBN the threshold above which such solutions have to
be considered is raised.

34

4.2 IP/MSNL Protocol Gateway

In addition to MSNA interworking between CFRs, the Pandora system also re-
quired Internet Protocol (IP) [Postel81a] connectivity between the Pandora host
workstation Ethernets. Three options for connecting the Pandora Ethernets over
the backbone were identified. Firstly, an IP gateway could be built that fragmented
IP datagrams over ATM cells. This has the disadvantage that most of the informa-
tion field of each cell would be consumed by the large IP header. In addition IP
routers would be required within the ATM network. Secondly, all IP applications
could have been rewritten to use MSNL. This is impractical in the amount of effort
required and because for many applications the source code is not available.

ETHERNET
IP / MSNL T P e I 'I IP/ MSNL
GATEWAY " S omsne L] msnL] eaTEWAY
N ROUTER ROUTER |
i3
..... L.-’
IP HOST MSNA BACKBONE IP HOST
MSNL | | MsNL
IP / MSNL peeeey | ROUTER | roveeevrery | ROUTER | goeeeeey IP/ MSNL
HOST A :) 4 vt L9 .I HOST
ETHERNET

Figure 4.2: Sample IP over MSNL Configurations

Finally, a protocol gateway between IP and MSNL could be built. This was the
option selected and is illustrated in Figure 4.2. An incoming IP datagram (1) is
forwarded over an MSNL circuit (2) to a peer protocol gateway. If a circuit between
the two gateways does not exist then it must be established. The peer gateway will
then forward the datagram (3) as appropriate. It is possible to envisage several con-
figurations of switching elements. If each Ethernet had a single IP/MSNL gateway
then all IP traffic from one Ethernet to another could use a single virtual circuit.
The gateway might attach to the Backbone directly, or use some other mechanism
such as an Ethernet/Backbone MSNL router. Any Ethernet host with both IP
and MSNL implementations is capable of routing its own IP packets onto outgoing
MSNL circuits (4). This involves fewer switching elements between endpoints.

35

Upon opening an MSNL circuit for carrying IP traffic between sites a QOS should
be supplied!. This is difficult as IP provides only limited information as to what
sort of service is expected. A QOS equal to the most stringent required by Ethernet
traffic could be allocated. This would be expensive in terms of Backbone resources
and certainly undesirable if the Backbone was a charging network. Work on dy-
namic bandwidth management [Harita91| carried out within the Unison project
[Tennenhouse87] would apply directly here. Control on the capacity allocated
between two sites could be accomplished by either QOS re-negotiation, opening and
closing of multiple circuits or a combination of both.

The IP/MSNL gateway was implemented? within the UNIX (specifically Ultrix)
kernel. Use was made of the existing IP and MSNL implementations and support
for IP gatewaying. In addition to presenting a socket interface the MSNL code was
altered to register itself as another IP datalink interface. System administration
was possible using existing UNIX network management tools. The MSNA router
hardware comprised one 68030 processor, with a single CBN and Ethernet interface,
at each site. A large number of Ethernets may be switched using a single CBN,
particularly if it is true that most traffic stays local to a single Ethernet.

4.3 XNS/MSNL Router

Although a large percentage of traffic between ORL and the Computer Labora-
tory consisted of IP datagrams a significant fraction also comprised Xerox Network
Systems (XNS) [Xerox81] datagrams. In order to achieve XNS inter-operability
a MAC layer forwarding solution was adopted®. Each XNS router instance was
implemented as a single WANDA application domain. A WANDA socket interface
was available supporting the transmission and reception of “raw” Ethernet packets.
This enabled the XNS router domain to promiscuously receive all XNS type packets
on a specific Ethernet interface. By inspecting the source and destination Ethernet
addresses of the packet the backbone XNS routers are able to construct a database
mapping Ethernet addresses to an XNS router instance. Packets to be forwarded
are exchanged by XNS routers over an MSNL connection. This type of bridging is
limited in the number of nodes it can support due to the need to propagate broadcast
packets to all co-operating networks. Each XNS router node presently comprises a
68030 processor with an Ethernet and CBN interface. This configuration is able to
handle the promiscuous receptions from the Computer Laboratory main Ethernet
of over 250 nodes.

1 As yet not implemented.
*Implemented by Simon Kelley (Computer Laboratory).
3Implemented by Derek McAuley (Computer Laboratory).

36

4.4 Limitations

Whilst sufficient for most voice and data applications the software routers were of
limited use in handling video streams. Only two concurrent Pandora video phone
conversations (four voice and four data streams) could be supported with sufficient
quality. The bottleneck was determined to be the cost of software data copy when
forwarding from the CBN to the CFR (note the forwarding costs are asymmetric).
However, a faster CPU would soon have run into the limitations of the CFR inter-
face cf. video file server (Section 4.1). It is apparent that the bottleneck in modern
networks is the switching nodes and not the transmission medium. The aggregate
bandwidth in and out of a subnet may be increased by adding more routers. This
adds no complication to the routing function which in any realistic implementation
must cope with multiple routes to the same destination. For large network con-
figurations the exchange of routing information becomes a serious sink of network

and router resources. It would seem that lessons learnt from the telephone system
[Ash90] would be applicable here.

4.5 Pandora Media through UNIX

The availability of a UNIX MSNL socket interface enabled the processing of Pandora
media at the UNIX application level to be considered. Since none of the Computer
Laboratory UNIX machines currently have CFR interfaces such media must be re-
ceived on the Ethernet after passage through at least one router. A simple UNIX
application* was written to display Pandora video using the bitmap painting prim-
itives of the X protocol. This is contrasted with the hardware approach typically
associated with the display of Pandora video (Section 4.1). Using the remote dis-
play capabilities of the X protocol it was possible to display video on workstations
throughout the Internet with varying degrees of success. The problems experienced
included:

¢ network congestion: The Computer Laboratory Ethernet is prone to periods
of high activity when the probability of packet loss due to collisions becomes
significant. Similarly, the bandwidth available to other sites depends on the
capacity of often highly utilised links and routers.

e X transport protocol: An X client communicates with an X server us-
ing a protocol which requires to operate over a reliable byte stream. In
many instances this is provided by the Transmission Control Protocol (TCP)
[Postel81b]. Such a protocol is unsuitable for the transmission of real-time

“Implemented by Tim Glauert (ORL) and Timothy Roscoe (Computer Laboratory).

37

video paint requests. A lost packet (which requires re-transmission) will
cause the entire stream to hang. One solution would be to define a separate
unreliable channel for such requests. The User Datagram Protocol (UDP)
[Postel80] would be a suitable substrate.

o UNIX scheduling: The UNIX scheduling algorithm meant that the appli-
cation (or the X server) receiving Pandora video could, in the presence of
competition for the CPU, be de-scheduled for appreciable intervals (in prac-
tice up to several seconds). This is enough to cause an observable discontinuity
in the display of video on the workstation.

If the UNIX application was running on the same host to which the destination
display was attached then it attempted to paint using the shared memory exten-
sion [Corbet91] to the X protocol. In this manner an otherwise unloaded DEC
3100 workstation running Ultrix 3.1 was able to display a Pandora video stream
at 25 frames per second. The result of this simple experiment was to highlight
the flexibility of handling multi-service traffic in software and the unsuitability of
current operating systems and networks for such an undertaking (other than for
demonstration purposes).

4.6 Summary

The feasibility of switching multi-service traffic over ATM networks has been demon-
strated. The Ethernets and CFRs at the Computer Laboratory and ORL are linked
using a single CBN. Traffic exchanged between the two sites includes:

e Pandora voice,

Pandora video,

XNS datagrams,

IP datagrams.

Of particular interest was the ease with which IP was able to be implemented over
MSNL circuits. For the length of the MSNL connection no IP switching is required.
MSNL routers enjoy an inherent performance advantage over their IP counterparts
[McAuley90]. There is a point where the cost of the IP/MSNL gatewaying function
is outweighed by the switching time saved in the network.

38

Chapter 5

Quality of Service Issues

This chapter discusses some of the issues involved in providing performance guar-
antees to multi-service traffic. Some of the more important issues concern:

e architectural model i.e. virtual circuit or datagram based,
e granularity of guarantees,
o QOS specification parameters,

e implementation over ATM networks.

5.1 Introduction

Most communication systems are not designed to handle all the traffic that could
possibly be offered. There is contention for resources between the endpoints. The
telephone network has a switching capacity far below that necessary to support si-
multaneous trunk communication between all its customers. The network reacts
to overload by refusing connections, probably after it has tried various congestion
control schemes such as dynamic call routing [Ash89]. Note that congestion does
not produce a degradation in the service experienced by existing connections. Un-
fortunately the STM technology upon which the current telephone network is based
is ill suited to the demands of multi-service traffic.

A packet switched network, such as the DARPA Internet [Postel81la)], has very
different characteristics. There is no concept of a call at the network switching
level. An endpoint may inject traffic, addressed to any other endpoint, into the
network constrained only by the speed of its interface. Congestion can occur at

39

network routers, links and endpoints. No guarantee can be made regarding the
service experienced by a particular packet. This fact permeates upwards to the
application level so that successfully carrying traffic with performance guarantees
is impossible in the general case. One particular example of an attempt to carry
real-time traffic over a packet switched network is the Etherphone [Swinehart83]
project. By using a dedicated Ethernet and having management software limit the
number of concurrent calls each active endpoint receives satisfactory service.

A virtual circuit based network experiences both types of congestion found in STM
and PTM networks. Firstly, a host on a virtual circuit based network is architec-
turally limited to accepting only as many connections as defined by the VCI field in
the cell header. This is analogous to switches in the telephone network. By making
the VCI large enough this form of congestion is typically not an issue, at least not
for end systems. Secondly, each host has a limited forwarding and buffering capac-
ity. If a source is unconstrained in the traffic it may send then congestion analogous
to that experienced in a packet switched network can occur. By constraining the
offered traffic, as in the Etherphone system, this form of congestion may be avoided.

The necessary constraint may be achieved by forcing each endpoint to describe
the nature of its offered traffic using a QOS specification. The virtual circuit is
the natural unit with which to associate a QOS. It is already the unit in which
clients request network resources. It is the unit for which state is maintained in the
endpoints and routers. Associating a QOS with each packet or cell sent on a virtual
circuit is infeasible in the general case as the network has no a priori knowledge of
the offered traffic. In addition to the size of the cell header, processing overhead
would also be increased. A limited form of QOS may however be attached on a per
cell basis. An example of this is the cell loss priority (CLP) bit in the B-ISDN cell
header (Section 2.3).

As part of connection establishment, in addition to addressing information, a QOS
specification must be supplied. The routing mechanism must reconcile these two
parameters with current network load and topology. Each host examines the re-
quested QOS. A connection request may be refused if its associated traffic would
cause the QOS of any previously established connection to be potentially unsustain-
able. This process is termed edmission control and is discussed in Section 5.3.2.
Alternatively a currently established circuit with sufficiently “low” priority may be
deleted to provide enough resources for the new request. The connection establish-
ment process should return as a result the QOS of the connection established. This
is not necessarily the same as that requested. A large number of applications will use
the returned QOS to alter their subsequent behaviour e.g. initialise re-transmission
timers, set transmission rate. Once a connection is established the network must
ensure that the QOS contract is not broken by the user. This function is termed
traffic control, or policing, and is discussed in Section 5.3.3.

40

5.2 Traffic Characterisation

The QOS requested by an application is dependent upon its traffic characteristics.
A large amount of work has been done in establishing mathematical models to
describe various types of traffic. A good survey may be found in [Jungok91]. The
suitability of some of these models for describing real traffic has been contradicted by
experimental data [Caceres91|. Therefore, only a general discussion of the features
common to all such models is attempted here. At its source a stream of cells may
be described in terms of:

e bandwidth,

e burstiness.

Bandwidth defines the maximum number of cells that may be sent in a particular
time interval. Burstiness is a measure of how the cells sent are distributed in time.
Table 5.1 shows the relationship between mean and peak service bit rates for some
representative multi-service traffic examples.

Service Class Coding | Transfer Rate (bps) Example Service
Mean Peak
Standard Audio CBR 64K 64K Telephony
CBR 106K 106K | Pandora Audio !
VBR 12K 24K Telephony
High Quality Audio CBR 2M 2M HI-FI Distribution
Low Quality Video CBR 2M 2M Videophone
CBR | 1.56M 1.56M | Pandora Video ?
Standard Quality Video | CBR 34M 34M TV Distribution
VBR 10M 34M TV Distribution
High Quality Video CBR 140M 140M | HDTV Distribution
VBR 70M 140M | HDTYV Distribution
Low Speed Data VBR - 64Kbps | Remote Login
VBR 0.3K 64K Teletex
High Speed Data VBR - >10M | LAN Interconnection
VBR 2M 10M CAD/CAM

Table 5.1: Characteristics of Sample Multi-Service Traffic

18K frames/sec (40% framing overhead).

225 frames/sec at 256x240 resolution (2% framing overhead).

41

A distinction is made between constant- (CBR) and variable- (VBR) bit rate sources.
A CBR source will submit a single cell for transmission a fixed time after the last
cell was transmitted - any stream not sharing this attribute is termed VBR. An
example of CBR traffic is an uncompressed video stream; a VBR example would be
its compressed (depending upon the type of compression used) counterpart. There
is a wide range in the burstiness displayed by VBR streams. For example, a voice
stream with silence suppression shares all the characteristics of a CBR source except
that it does not necessarily transmit a cell on every interval expiration. The traffic
profile of a stream may be altered upon passage through the network. A QOS
specification will include parameters which specify the limit of any such alteration.
Three values of particular importance to multi-service traffic are:

o delay,
e jitter,

e cell loss.

The end-to-end delay is a combination of transmission, forwarding and queueing
delays. The transmission and forwarding components may be fixed (as is the case
for WANDA MSNA cell routing) and depend on the route between endpoints. The
queueing component is affected by concurrent activity in the network. Jitter is a
measure of the variation in cell delay time for a particular connection. The cell
loss parameter specifies a probability that a particular cell will be dropped by the
network. Different applications display a wide variation in their delay, jitter and
cell loss requirements. Real-time streams, such as voice and video, often require
tight jitter specifications and are tolerant of a limited amount of cell loss. If two
way personal communication is involved then the round trip time is also significant.
In general the greater the amount of compression the more sensitive a stream is
to cell loss. Most protocols involving reliable data transfer will be affected by cell
loss as any data lost must be re-transmitted. The cost involved in this case is
dependent upon the round trip time for the connection. Some reliable data transfer
applications, such as an interactive terminal session, may have a delay bound on
successful transfer.

This dissertation is not concerned with the details of QOS specification but rather
the mechanisms that are required for its support. At the application level there will
be a rich specification language which allows clients to express their requirements
independent of a particular network protocol or architecture [Nicolaou91]). The
selection of the attributes that are used to parameterise QOS should be such that
all higher level protocols are able to express their requirements adequately. This

specification is transformed into an appropriate network level description for the
protocol and architecture selected.

42

5.3 ATM Considerations

The MSN architecture (and indeed B-ISDN) is defined independently of any par-
ticular switching or transmission technique. Although oriented towards ATM style
networks, implementation over different network types is not precluded. For in-
stance it is likely that a sizeable fraction of multi-service connection requests will
be for telephone grade service. There is no reason why such traffic should not be
carried on STM based networks internally.

5.3.1 Statistical Multiplexing

The discussion concerning traffic characteristics has established the statistical nature
of multi-service traffic. A fundamental result is that the peak-to-average bandwidth
ratio is greater than one for many traffic instances. If link capacity is allocated such
that the sum over all connections of the peak input rates does not exceed the output
link rate then high bandwidth utilisation may not be achieved. A good example is
the support of telephony type services. In one STM implementation each circuit is
allocated a 64Kbps channel. This is not fully utilised due to the silence periods in
normal conversation [Bellamy82].

a, Four Channel STM Multiplex

1 2 2 3 4
m m es]
B g B
g / g 3

Ldwg

Aydurg

b, Possible ATM Multiplex of equivalent Traffic

Figure 5.1: Comparison of STM and ATM multiplexing

An ATM implementation might multiplex 4 such channels on a link with a capacity
of only 3 x 64Kbps. This is illustrated in Figure 5.1. By assuming that the traffic

43

flows in a network are independent of each other then statistical techniques can
be applied to predict, within confidence limits, the behaviour of the network as a
whole. Bounds for the delay, jitter and cell loss associated with a particular stream
may be calculated. The larger the number of streams, the greater the significance
that can be attached to such bounds. For the example, if the probability of any
particular voice channel being in silence is 0.25 then the output link is capable of
supporting the average bandwidth requirement. However, statistical variations will
mean that the instantaneous load may sometimes exceed the outgoing link capacity.
Depending on the duration of the overload and the amount of buffering, traffic
may be lost. This technique of multiplexing streams, dependent on their traffic
distributions, is referred to as statistical multiplezing. Examples of its application
to ATM traffic streams may be found in [Maglaris87, Dittmann88, Hirano89).
The assumption of traffic flow independence is not wholly valid. One example being
a multicast facility implemented using separate streams. In this case we must adjust
our first assumption to state that the dependencies between flows are not significant.
This is reasonable when considering the behaviour of a large number of streams.

5.3.2 Admission Control

Admission control is defined to be the process of accepting or rejecting a connec-
tion establishment request based upon the associated QOS and the current network
utilisation. There is a tradeoff between the bandwidth utilisation gain and the in-
creased complexity in the call admission and cell processing algorithms which must
ensure that the QOS for a circuit is satisfied. Consider an endpoint or router which
processes cells in strict FIFO order. The simplicity of the scheme precludes the
acceptance of calls with strict delay requirements in the presence of bursty traffic.
Consider a system which defines two classes of circuit, specified at connection es-
tablishment. The cells from the high priority class are processed in preference to
low priority cells. Delay-sensitive traffic assigned to the high priority class may be
isolated from traffic assigned to the low priority class. Within delay-sensitive traf-
fic some streams may have different delay requirements. In such cases more than
two priority classes may be required to achieve efficient statistical multiplexing. A
survey of admission control schemes may be found in [Jungok91].

For many applications the QOS requested from the network is negotiable. Whilst
the application may prefer to be given the QOS it requested it could adapt to
operate with one of lower grade. The ability to specify a range of acceptable service
characteristics should be a part of any QOS interface. The actual QOS achieved is
returned as the result of successful connection establishment.

44

5.3.3 Traffic Control

So far the source has been viewed as a benign entity which promises not to exceed
the QOS agreed at connection establishment. If the client breaks the agreement
then the extra trafic may cause the QOS guarantees made to other clients to be
broken. In addition to being caused by a malicious client the excess traffic may
be generated by a software or hardware fault. This situation may be prevented by
bandwidth enforcement, often termed policing, at the user-network boundary. The
policing function is aware of the QOS which has been negotiated with the network.
A violating cell is defined to be any which causes the agreed QOS envelope to be
exceeded. Such cells may either be dropped at the network access point or specially
marked. It is argued that if the network approaches congestion due to an influx of
marked cells then by dropping such cells the situation may be retrieved.

5.4 Charging

The full benefits of a multi-service network may only be realised if users select a QOS
appropriate for the application involved when requesting a circuit be established.
In a private network, with no charging, the pressure to make a responsible selection
comes out of a sense of peer co-operation. In a public network charging is the
mechanism used to force clients to be responsible in making their selection. Any
realistic charging strategy may be divided into call establishment, holding and usage
components. There must be a holding charge as a circuit consumes resources in the
sense that its existence may cause denial of service to other establishment requests.
The holding charge will be dependent on the QOS of the allocated circuit. In
addition to the holding charge there may be a usage charge. A study of charging in
multi-service networks is made in [Cocchi91].

It is likely that in moving to a charging environment the communications demands
of many applications will be reviewed. Consider an application such as file transfer
implemented in a charging environment. In an initial phase the size of transfer
and endpoint throughput limits are determined. If the user requires the transfer to
complete in minimum time then a channel consisting of the minimum of the two
endpoint throughput limits is requested. The size of the transfer and bandwidth
of the channel allocated dictate whether the channel delay significantly affects the
total transfer time. If the transfer is to take place over a charge network then
performance may be traded for reduced cost. An application such as FTP, when
asking the network for a channel with a particular QOS, is able to specify with
reasonable accuracy a bound on the duration of the call if that QOS were granted.

Such information could be useful to the network which may offer charge discounts
for its provision.

45

File transfer is an application whose bandwidth requirements are readily predicted.
Many other types of computer traffic do not share this characteristic, a popular
example being remote interactive terminal access. In a charging environment it may
be economical to close down the underlying communication channel during periods
of inactivity and open it up again on demand. Modern workstations are breeding
grounds for idle connections; a typical user will have many remote windows open of
which only a fraction will be concurrently active. Shutting down inactive circuits is
desirable even in a non-charging environment. Since the network can only support a
finite number of circuits, holding open an inactive circuit may deny service to other
network users. Of course when re-opening a closed circuit there exists the possibility
that the request will be refused due to current network loading.

5.5 Simplex or Duplex

Traditional data communication virtual circuits implement a duplex channel, one
popular example being the Transmission Control Protocol (TCP) [Postel81b] from
the DARPA Internet suite. However, in practice, the application traffic demands
made on a connection are not always the same in each direction {Caceres91]. In
some cases they will be radically different, for example, a connection used to retrieve
images from a video file server. The fundamental unit provided by the network
should therefore be a simplex circuit with a single associated QOS. The abstraction
of a duplex connection (comprising two simplex connections) may still be easily
provided. In many situations this abstraction simplifies application programming,.
By decreasing the granularity of requests to the network, overall performance may
improve because the management function has been given greater flexibility. For
example, a duplex connection may require resources beyond the remnant capacity
of any single router. However, when split into its simplex components the stream
may be allocated across two routers.

With connections defined to be simplex it is possible to construct gateways which
are also simplex. In some cases such gateways enjoy a throughput advantage over
their duplex counterparts. Consider forwarding from one interrupt driven interface
to another. It is possible for the processor to dally in the receiver interface waiting
for incoming cells to forward. Due to less interrupt entry and exit overhead the
throughput of the router may be increased. If cells are incoming in both directions
then dallying can lead to increased jitter and cell loss, especially if the interface is
not multiply buffered (as is the case with the CFR station chip). Of course, multiple
receive interfaces could be polled but this leads to extra delay and complexity on the
critical path of the cell forwarding code. In many instances a single duplex gateway
will suffice between two networks. However, if more bandwidth is required it may
prove desirable to install multiple simplex gateways.

46

5.6 Resource Allocation

For each connection multiple components will contribute to the overall QOS. When
a connection is established each component agrees to place a limit on the amount
it will alter the characteristics of the stream. This process is referred to as QOS
negotiation and is discussed in [Ferrari90, Nicolaou91]. A zero hop connection is
that between two hosts attached to the same network and thus involving no router.
When an attempt is made to set up such a connection the state of both endpoints
and the network may need to be examined to see if the requested QOS can be
granted. Some networks, such as the CFR, guarantee a maximum access delay and
hence minimum bandwidth available to any node. In such cases global state on
network resource allocation need not be maintained, although this may lead to a
request being rejected gratuitously. For a connection requiring multiple routers each
will contribute a share to achieve the overall QOS. In many situations dividing the
load equally may not be the optimum approach for the network. By giving one
router freedom to introduce a larger delay component than others its capacity to
accept subsequent connections is higher than it would have been otherwise. This
may be important if it is already heavily loaded or if some higher level mechanism
knows this will be the case in the near future. Time dependent routing based on
predicted demand is already a component of the telephone system [Ash90].

5.7 Heterogeneity Issues

Independent ATM implementations may define different payload sizes. For example,
both the CFR and CBN have a cell payload of 32 octets, whereas the B-ISDN and
Fairisle define a payload of 48 octets. Several approaches can be taken in providing
a virtual circuit which crosses such heterogeneous networks. The first option is to
define the cell size for a connection to be the minimum of all the networks making
up the connection path. This requires that the terminal equipment at either end
of the connection, and routers, be capable of handling streams of different cell size
i.e. only a certain fraction of the interface payload field is defined to be useful. A
second option is to use the maximum cell size of the circuit’s constituent networks.
In this case network routers may have to implement some form of Segmentation-and-
Reassembly (SAR) protocol when carrying cells over a network with a smaller cell
size. This is undesirable as the ATM philosophy is to remove such protocol overhead
from the network routers. The optimistic establishment technique (Section 3.4.1)
breaks down in an internet with constituent networks of differing cell size. The cell
size on the initiating network may not be the minimum for the entire connection.
One solution is to declare a global minimum cell size (in the same style as the
minimum IP fragment size) which is used on all optimistic connections.

47

5.8 Synchronisation

A multi-service network will be expected to carry a large amount of jitter-sensitive
traffic. A typical ATM network implementation will introduce jitter into a submitted
cell stream. The receiver endpoint is complicated by requiring extra buffering to
remove the jitter introduced. By specifying tight QOS constraints on the jitter
associated with a particular stream it is possible to reduce the amount of buffering
required at the receiver. However, the tighter the constraints, the greater the cost
in network resources and hence any associated charging function.

One approach being investigated at the Computer Laboratory [Sreenan90] is for
such QOS constraints to be relaxed beyond the ability of the sink to cope with the
resultant jitter. A dedicated synchronisation server is placed between the incoming
stream and the sink in order to remove the jitter. A high grade QOS channel is used
by the synchronisation server in forwarding cells to the sink. Since this channel
is on the local network it is not subject to internet charging®. As the non-local
network is not, in effect, being asked to perform full stream synchronisation, it is
able to offer a higher aggregate service. There is additional traffic in and out of the
synchronisation server on the sink network but this should not have inter-network
ramifications. The total buffer requirements on the receiver network may also be
reduced as the synchronisation server can be shared by multiple clients.

Some applications require the creation of multiple related streams. An example
would be reading video mail where the video and voice are transmitted using sepa-
rate circuits. In addition to each stream requiring jitter correction the streams must
be synchronised with respect to each other in order to achieve “lip synch”. Overall
synchronisation is achieved by trading tight source synchronisation and QOS con-
straints for receiver complexity. An extended synchronisation server, which copes
with multiple streams, may be used to smooth and synchronise the arriving streams
on the sink network.

The Virtual Path (VP) concept discussed in Section 2.3 may, in some cases, aid the
provision of synchronisation between streams. Since the cell sequence integrity is
maintained across all circuits in a VP, circuits which are synchronised upon entry to
a VP will be synchronised on output. A similar result may be achieved if the network
provides a call bundling mechanism. If two connections are in the same bundle then
they traverse the same set of routers. Each router maintains cell sequence integrity
between all the circuits for each bundle. This can be simply achieved by assigning

each of the circuits in a bundle to a common forwarding queue. Call bundling
imposes additional constraints on the network, thus a higher blocking factor for
such requests will be exhibited.

31t is assumed that local networks charge either little or not at all.

48

5.9 Summary

This chapter has examined some of the issues involved in providing guarantees when
handling multi-service traffic, some of the main conclusions are that:

e the virtual circuit model with a QOS specified at connection request provides
a suitable framework for the support of multi-service traffic,

e the network primitive should be a simplex virtual circuit; this is not necessarily
the abstraction presented to an application programmer,

e statistical multiplexing is necessary in order to achieve high utilisation of ATM
networks,

¢ admission control and policing are the mechanisms by which the network pro-
tects itself from congestion and malicious or errant clients respectively,

e the connection establishment procedure provides a convenient time to reconcile
the difficulties of communication over heterogeneous networks.

49

Chapter 6

Quality of Service Extensions

This chapter is a description of the extensions, driven by the issues detailed in the
previous chapter, that have been added to WANDA in order to support QOS in
the MSNA protocol suite. Many algorithms for providing QOS have been proposed
in the literature. For some [Mankin90], an implementation exists and practical
results are available. For others [Demers90, Zhang90], only simulation or analytic
results have been produced. The approach taken is not to choose or propose a single
algorithm and implement it. Instead, a common set of mechanisms is identified
which may be used to implement a variety of cell handling strategies. The extensions
discussed are those which require kernel modifications and so particular emphasis is
given to:

¢ queueing mechanisms,
¢ buffer management,
¢ policing mechanisms,

e statistics gathering.

By having a flexible interface it is possible to compare different strategies for pro-
viding QOS in a common environment. Issues of implementation complexity, not
considered in many of the proposed algorithms, may now be considered. A host may
easily be configured to reflect high level management decisions. For example, in the
case of a router, the forwarding strategy to provide a traditional LAN-LAN service
is different from that required in order to provide equal service across all clients.

51

6.1 Queueing Mechanisms

A cell which is to be transmitted, subject to buffer availability (Section 6.2), is added
to an output queue (whilst preserving per virtual circuit cell sequence integrity).
When a transmission slot becomes available a cell is selected from an appropriate
queue (still preserving per virtual circuit cell sequence integrity). There is a tradeoff
between queue insertion and removal complexity. All of the queueing strategies
described below have analogies in operating system processor scheduling. An ATM
cell processor experiences many of the conflicting goals of a processor scheduler.
Different queueing strategies will fulfill, to some extent, a certain subset of these
goals. Processor scheduling is a mature subject [Coffman73] and it is hoped that by
drawing such analogies lessons learnt from that field may be applied. Different levels
of scheduling can be identified. Low level processor scheduling may be compared to
the per cell decisions made by an ATM router. High level processor scheduling (job
initiation) is analogous to the call admission function. Intermediate level scheduling
refers to the adjustment of a job’s scheduling attributes in response to fluctuations
in system load.

6.1.1 First Come First Served (FCFS)

The FCFS policy maintains a single transmit queue; cells are added to the end of
the queue in order of request. When a transmission slot becomes available the cell
from the head of the queue is sent. Often referred to as First In First Qut (FIFO),
the FCFS policy is easy to implement and is found in many PTM network routers.
Due to its implementation simplicity FCFS exhibits the best performance in terms
of cells processed per second when the bottleneck is the CPU. However, an outgoing
cell may be subject to a large queueing delay variation and so a pure FIFO scheme
is limited in providing QOS. A comparison can be made with the poor response
times that can be experienced by interactive users with a FIFQO CPU scheduler.
Poor response times have been traded for increased system throughput due to the
elimination of all unnecessary context switching.

In a network which provides the appropriate indication of transmission failure (such
as Fairisle or the CFR), a failed cell may be re-transmitted. Reasons for transmission
failure can include:

o full destination receive FIFO (CFR/Fairisle),

e switch fabric contention (Fairisle),

e fault in the destination interface hardware or software.

92

Cells which are queued behind the one that failed will be held up until it is suc-
cessfully re-transmitted. This phenomenon is referred to as Head-Of-Line (HOL)
blocking. Several techniques may be used to alleviate this problem. Firstly, a retry
limit may be associated with each cell. If the limit expires then the cell is discarded.
Secondly, instead of retrying the same cell straight away a different cell is selected.
Care must be taken that it is not for the same circuit as the failed one, in order to
preserve the cell ordering invariant. The usual approach is to search in preference
for a cell which is for a different destination.

6.1.2 Fair Queueing (FQ)

A Fair Queueing (FQ) [Nagle87, Demers90] scheme allocates a separate queue for
each virtual circuit. Depending upon buffer availability an outgoing cell is added to
the end of its respective queue. The virtual circuit queues are themselves ordered by,
for example, circuit creation time. When a transmission slot becomes available a cell
is taken from the next non-empty queue succeeding the one from which the last cell
was transmitted. A source sending cells too quickly only increases the length of its
own queue. Note, however, that in the case of a router, other cells are delayed as the
incoming errant cells consume router network interface bandwidth and processing
cycles.

The FQ strategy is ideally suited to handling a number of streams each with identical
QOS requirements, e.g. traditional STM traffic. It is not suitable for situations
in which some streams require priority over others. A comparison can be made
with Round Robin (RR) CPU scheduling. Interactive users will experience longer
response times as the number of compute-bound processes in the system is increased.
Note however that, depending on the number of jobs in the system, there is a
bound on the response time. The FQ strategy easily lends itself to techniques which
alleviate HOL blocking. The next cell to send after a failure is selected from the
head of the next queue (checking for the same destination is again an implementation
option). All multiple queue schemes share this property.

6.1.3 Weighted Queues

The FQ scheme is constrained in the sense that each queue receives an equal and
fixed number of transmission opportunities per unit time when all queues are fully
occupied. By arranging that selected queues receive multiple transmission opportu-
nities relative to others some of the limitations of FQ when handling multi-service
traffic are removed. A comparison can be made to a round robin scheduler which
allocates disparate time slices. A high priority job is allocated a large time slice.

53

However, starvation cannot occur as a low priority process is guaranteed to receive
some CPU time after a fixed interval.

Cell Queue Queune Header Queue Schedule

VC4 VC4 [+ VC9 [*] VC4 Queue Ptr

Ptr

VC8 [*] VC3 [+ VC3

FIF]

Ptr

ver [vea F-Jver P ver -fver

Figure 6.1: Weighted Queue Assignment Schedule

Figure 6.1 shows a weighted queue assignment schedule for a three queue system.
A mark is kept of the current position in the queue schedule. Upon a transmission
slot becoming available the cell to send is given by the head of the next non-empty
queue in the schedule. Note that Q1 does not receive successive transmission slots
but rather they are spaced evenly over the entire schedule. Consider a situation in
which cells from VC4 (allocated to Q1), VC3 (allocated to Q2) and VC1 (allocated
to Q3) are always available for transmission. By separating the two transmission
opportunities that Q1 receives the output traffic profile for VC4 is made smoother. In
addition, the probability of having to transmit to the same destination immediately
after a transmit failure is reduced.

6.1.4 Multi-Level FCFS

Upon call establishment each virtual circuit is assigned to a particular queue, each
such queue has a FIFO mode of operation and is allocated a priority. When a
transmission slot becomes available the cell to be sent is selected from the head of
the highest priority non-empty queue. This scheme can lead to the starvation of low
priority queues in the face of unconstrained high priority transmission.

54

6.1.5 Priority Queueing

All of the above FIFO ordered schemes may be replaced by a priority ordered equiv-
alent. Such a mechanism requires that a cell have an associated priority. This
priority may be a per virtual circuit constant, in effect merging the separate queues
of the Multi-Level FCFS scheme into one. Alternatively a cell’s priority may be
calculated dynamically. An example of this is the VirtualClock [Zhang90] traffic
control algorithm (Section 6.3). The insertion of a cell into the middle of a queue is
not a fixed-time operation. The time taken has a dependency on the current length
of the queue. By setting bounds on the length of a queue, a limit can be obtained
for the insertion time.

6.1.6 WANDA Queueing Extensions

The WANDA queueing extensions attempt to provide mechanisms which subsume
the above and other queueing strategies. One design aim was that the cell process-
ing machinery be capable of making fixed-time decisions regardless of the load on
the host. This, and a desire that at least a partial hardware implementation be
possible, dictated simplicity in the design. The discussion which follows concerns
the semantics of the interfaces provided and hints at a particular implementation.

A queue is associated with a network interface instance. Queues may be created
dynamically and are referenced by a per interface unique integer handle. Also main-
tained with each network interface is a program which controls the selection of a
particular queue to use when a transmission slot becomes available. The program
consists of a set of tables each of which selects a queue to use given the global
queue state. The global queue state (i.e. whether each queue is full or empty) may
be described by a bitmask. When a transmission slot becomes available the queue
from which to take the next cell is selected by indexing the current program table
with the bitmask describing the state of all the queues. The current program table
pointer is then moved on to point to the next table in the program.

A two queue system is illustrated in Figure 6.2. If both queues never reach the
empty state then twice as many cells will be forwarded from Q1 as Q2. In the
example given the transmission order will be VC3,VC4,VC9,VC3,VC4 provided that
no new cells arrive which may get inserted ahead of those already present. The host
management code, running in user space (described in Chapter 3), is supplied with

interfaces which enable it to:
e create a queue associated with a specific network interface,
¢ change the attributes associated with a queue,

%)

0 0 0 Cutrent Program
Q1 Ql Ql Table Pointer
2 2
@ Q Index Q

Ql Ql " """" > Q2

Q2 Q1

—] Global Queue
vC4 VC9 [* vCc4 smg

vC3 [+ ves3 @

Figure 6.2: Example Two Queue Transmission Program

e assign a circuit to a particular queue,

e set the control program for an interface.

Associated with each queue is a method for inserting cells. For example, many
types of traffic are susceptible to cell loss in the sense that losing one cell out of
a frame makes any others received of no value. This is typically the case with
data-type traffic. One type of insert procedure might be defined which upon cell
loss would drop successive cells received on a circuit until the next end of frame
marker. Of course this facility means that, at the very least, the transmission code
is complicated by having to detect cell loss. On networks which provide a response
mechanism, such as the CFR and Fairisle, detection may be done in the transmitter.

In addition, each queue has a network priority field. This is intended for use in
networks which support priority. For example, each routing byte in a Fairisle cell
header has a priority bit assigned. If there is contention at a switching element
within the network then cells with the priority bit set take precedence over those in
which it is unset.

A significant problem is that as the number of queues for an interface increases
the size of the control program tables becomes prohibitive. For this reason most
interface drivers in the current implementation limit the number of queues to eight.
Support for more queues may be envisaged in a slightly modified interface. Only
a subset of the queues are assigned to be tracked by the bitmask, say eight. The

36

assigned queues can be regarded as a cache of the active connections. Queues are
moved between the assigned and un-assigned state according to their activity levels.

In practice the queue assignment of a virtual circuit, or queue attributes, may have
to be adjusted dynamically in response to events, such as:

¢ connection QOS re-negotiation,

e re-balancing the host after circuit creation or deletion.

When dynamically changing the configuration care must be taken that per circuit
cell sequence integrity is maintained. For example, if the insertion strategy of a
queue is changed then all the cells in the queue are first discarded. If a circuit is
moved from one queue to another then all the cells for that circuit are first discarded
from the original queue.

6.2 Buffer Management Extensions

Buffer space is a fundamental resource of an ATM host. It is required in order to
absorb peaks in the incoming and outgoing traffic streams. Buffer management is
concerned with how the buffer pool is partitioned and the actions that are taken
when a buffer allocation request cannot be satisfied. It is possible to use buffer
allocation controls in order to achieve some form of QOS. Consider the case of a
FQ scheme with unconstrained traffic sources. If one stream consistently sends at a
rate above the available transmission capacity then that stream’s buffer allocation
requests will exhaust the pool. Cells generated on other streams will have to be
discarded due to unavailable buffer space. By placing a limit on the length of a
stream’s associated queue such an unfair situation can be avoided.

Buffer controls in WANDA are associated with transmission queues rather than
individual circuits. If required, per circuit buffer controls may be provided by map-
ping a circuit one-to-one with a queue. The attributes of a queue relating to buffer
management are illustrated in Figure 6.3.

Each network interface driver has an associated buffer pool. This is further parti-
tioned into a reserved and a common pool. The partition is usually affected under
management control when the host is booted. Each queue has a limit (possibly in-
finite) to the number of reserved buffers it may contain. When this limit is reached

1t may request buffers from the common pool up to a total limit (again, possibly
infinite).

37

Insert Procedure
(FIFO, Priority) ~* Insert Policy
(First, Last, Marked, Discard, Random) - Discard Policy

Reserved Limit

Total Limit
VC2 [*1 VC7 1 VC2 [*] vC2 [* Cell List

Queue Length —T——™ 4

Figure 6.3: Transmit Queue Attributes

If a buffer allocation request cannot be satisfied from idle resources then the possi-
bility exists of reclaiming a buffer that has already been allocated. This is controlled
by the discard policy of a transmit queue. Note that reclamation is only attempted
from the queue to which the allocation request was made. Options for specifying
which buffer to reclaim are:

first - the buffer from the head of the queue is reclaimed.

o last - the buffer from the tail of the queue is reclaimed.

marked - any illegal cell in the queue may be reclaimed.

discard - the incoming cell is dropped.

random - a random buffer from the queue is reclaimed.

6.3 Policing Extensions

A policing mechanism (Section 5.3.3) identifies whether an incoming cell on a vir-
tual circuit is outside its negotiated parameters. It is typically employed at the
user/network interface and may be regarded as a router which applies an extra
mapping to the cell stream. Indeed the same software that is used to implement the
routers may run in the policing nodes.

The cell switching rate required of a policing node at the network periphery is not
as great as that of a router internal to the network. In this case it may be feasible to
implement the policing function as a user space forwarding gateway (Section 3.4.1)

58

Application Level Policing

/\ APPLICATION LEVEL

\ 7\ _ L
ST

Endpoint Node Policing Node Routing Node

"

Kernel Policing

~<——USER —™ NETWORK

Figure 6.4: Policing Function Placement

in the policing node. A network configuration with a user space policing node is
illustrated in Figure 6.4. User space implementation greatly increases the complexity
of the policing function that may be considered and allows for ready experimentation
with such techniques as traffic shaping. However it was still thought advisable to
add support for policing within the kernel. An interface was added which enabled
a virtual circuit to be assigned a policing mechanism. The action to be taken upon
receipt of a illegal cell can include:

o forwarding the cell but marked as illegal.
¢ forwarding the cell as if it was legal.

¢ dropping the cell.

Given below is a summary of some common policing mechanisms. Nearly all of them
depend on the manipulation of per cell arrival time stamps.

e Null: The simplest policing mechanism is none at all, every cell is by default
legal. This is the operating mode of many endpoints and gateways on packet
switched networks and may be useful when handling predominantly LAN type
traffic. The null mechanism may also be employed by hosts relying upon buffer
allocation and queueing controls to curtail flows. The null mechanism is also
employed by internal network routers which are not concerned with policing.

o Illegal: At the other end of the spectrum from the null mechanism is the
“mark every cell as illegal” scheme. This is useful as a mechanism for halting
the cell flow for a circuit without breaking it.

59

Leaky Bucket: The Leaky Bucket (LB) mechanism [Turner86] consists
of a counter which is incremented by one each time a cell is presented for
transmission and is decremented at a fixed rate so long as the counter remains
positive. Associated with the counter is a threshold, a cell is deemed illegal if
it causes the counter to exceed the threshold value.

Moving Window: The Moving Window (MW) mechanism limits the number
of cells accepted from a source within a fixed time. The time interval is applied
continually. This mechanism requires the counter times for up-to-threshold
cells to be stored.

Jumping Window: A variation of the MW mechanism, with implementation
complexity similar to the LB scheme, is the Jumping Window (JW) mecha-
nism. The maximum number of cells accepted from a source within a fixed
time interval is limited to a threshold. The time interval during which a par-
ticular cell can influence the counter value ranges from zero to the window

width.

VirtualClock: In the VirtualClock mechanism [Zhang90] each circuit, VC;,
has an associated virtual clock which is initially set to be equal to the real-time.
Also maintained per circuit is its average interval VTick; between arriving
cells, established at connection set up. When a cell arrives the appropriate
VC; is incremented by VTick; and the cell’s priority is set to the result. A
single transmit queue is maintained ordered by cell priority. The difference
between VC; and the real-time indicates how closely a circuit is adhering to
its average transmission rate. Each virtual clock is periodically reset to the
real-time to prevent a circuit from storing up credit. If the virtual clock is
running ahead of real-time by a certain threshold then control action, such as
cell discard, may be taken. In this way VirtualClock acts as both a policing
and transmission ordering mechanism.

6.4 Statistics Gathering

There is a demand for traffic statistics from the higher level management software.
Statistics are required to enable reaction to variations in traffic patterns. In addition,
they are required as input to most proposed charging functions (see Section 5.4).
The two main issues involved are what statistics should be kept and when should they
be sampled. Statistics, in WANDA, are kept on a per circuit basis within the kernel.
If desired, statistics at the transmission queue or per network interface level may
easily be produced by summation of the statistics gathered at circuit granularity.
An application level interface is available to read (and as a side effect reset) the
current statistics for a circuit. The information returned includes the number of:

60

o cells successfully transmitted,

o cells rejected by the network or destination (NAKs),
e cells discarded because of successive NAKs,

¢ cells discarded because of buffer exhaustion,

o cells which had to be marked as illegal.

How often this information is sampled (if at all) is a management level decision.
Two approaches to gathering the information may be identified. In the first, a single
thread can block on a timer set to the shortest pending sample deadline across all
circuits. The second approach is for the kernel, in response to events registered
by the user, to “trigger” user level sampling. The trigger mechanism is simply an
exceptional return from the receive interface. Trigger events can include:

e trigger after receiving n cells,

o trigger after receiving n marked cells.

The ability to monitor traffic on a stream provides sufficient mechanism for certain
kinds of dynamic bandwidth management techniques to be considered. For exam-
ple, if it was detected that an application was increasing its demands on a circuit
(preferably before any policing function took effect), then management software
could re-negotiate the QOS for that stream.

6.5 Implementation Concerns

The small cell size usually associated with ATM networks has ramifications for the
host software. A host must deal with potentially very high cell arrival rates. If the
per cell processing cost is too high then the host will suffer from poor performance.
The heterogeneity of network interfaces (see Chapter 2) affects the structure of
the low level networking software. The low level cell processing operation may be
considered in three parts:

e interrupt dispatching,
e data transfer,

e protocol processing.

61

6.5.1 Interrupt Dispatching

The hardware interrupt dispatching mechanism will place the processor in an as-
sembler level handler stub. This will save any volatile state before calling the ap-
propriate “C” language interrupt service routine (ISR). When the ISR returns, the
volatile state must be restored and exceptional operating system conditions, such
as thread pre-emption, handled. The stub entry code, i.e. that which contributes to
the interrupt latency, does not suffer any performance loss over that which would be
found in a dedicated system. Software latency could be improved by the re-design
of current hardware to interrupt at the start of a reception rather than after it com-
pleted. Some mechanism is required for the ISR to ascertain that the reception has
completed (or that it is permissible to read the cell header); a polled interface would
be suitable.

For a lightly loaded host, the interrupt entry cost contributes significantly to the
average operation latency. For a host under load, multiple cells may be processed
by a single interrupt. This is achieved by using interfaces that can fill a sequence
of receive buffers, optimistic dallying in the receive ISR for incoming data, or a
combination of both.

Latency may be further improved on vectored interrupt systems by using different
vectors to encode cell header information. An example would be to employ one
vector for cells with the EOF bit set and one vector for those in which it was
clear. Another example would be to allocate a separate vector to each VCI. A more

complex scheme would be a combination of the above; this would require two vectors
for each VCI allocated.

Certain hardware architectures include special support for high speed interrupt pro-
cessing. The ARM architecture, in addition to a conventional interrupt request
(IRQ) system has a fast interrupt request (FIQ) line. An IRQ handler can be in-
terrupted by a FIQ (if enabled). Significantly the FIQ handler has a set of private
registers available. If a single device uses the FIQ line then its ISR may use these
registers for storing state between interrupts or as a scratch pad.

6.5.2 Data Transfer

The network interfaces described in Section 2.2.1 differ both in the manner of trans-
ferring data to and from the host (DMA or memory mapped) and in the size of
transfer supported: cell or block. The CFR, CBN and Fairisle are cell based net-
works. A block is defined to be a sequence of cells. For efficiency purposes a network
such as the Ethernet must be considered to be block based. The operation of trans-
ferring data from the host to the network has an obvious implementation for all

62

types of interface. The data transfer operation for incoming cells is more compli-
cated. The low level receive software attempts to leave the incoming data in a FIFO
or DMA buffer until it has been decided where it should be moved (if at all). Higher
level data copying software can be written in an interface independent manner (if
FIFOs are contiguously re-mapped for the length of the maximum transfer unit).
The only requirement is that the higher level code:

e read the data at most once for a cell,

e return an indication if the data was not accessed.

In this way the low level driver for a FIFO based interface is able to track the
receive FIFO state. The receive FIFO on the CFR station chip is only one cell deep.
Receptions from the network are impossible whilst the FIFO is full. Thus, even
though the processor may be capable of handling multiple streams, their arrival
distribution (e.g. back-to-back) can lead to dropped cells. The situation can be
alleviated by immediately emptying the FIFO before computing what to do with
the cell. This has the drawback of increasing operation latency and decreasing
throughput.

The CFR FIFO on the ARM interface presents a special difficulty. Since the ARM
I/O bus only supports 16 bit accesses the address of the FIFO cannot be passed
to the processing routine (which expects to access a contiguous array of store). A
callback interface to do the copy is possible but introduces a cost comparable to
simply copying the data out of the receive FIFO in the driver. A similar problem
arises with the CBN DMA interface (see below).

Later versions of the CBN interface have a DMA capability. A single cell may
be copied to/from an address written into the interface at an operation dependent
location by the VME host processor. Completion of the DMA operation is not
signalled by the interface. Since the VME bus is locked while the copy is taking
place any attempt to access the interface will hang until the operation completes.

Therefore, no explicit synchronisation is required. DMA access to the FIFO has two
direct benefits:

e data copy is faster due to implementation in hardware,

e overlap is possible between protocol processing and data copy.

As with the ARM CFR interface the higher level software is unaware of the correct

(optimum) protocol for accessing the hardware. Again a callback interface could be
used but with the same caveat as before.

63

Some networks provide a MAC-layer hardware indication of transmit success or
failure. On the CFR, due to contention for the destination receive FIFQ, it is quite
common for the transmitter to see a Thrown-On-Ground (TOG) response in the
returned cell. Depending upon the QOS of the cell’s stream it may be necessary
to re-transmit the cell. This requires that a copy of the cell has been maintained
in the source host. In contrast, the CBN VME interface includes sufficient receive
buffering that maintaining copies in the source host memory is not required.

6.5.3 Protocol Processing

When a cell/block is received the driver examines the header to determine the VCI.
This indexes a table which, if the VCI is active, yields a record describing the virtual
circuit. One of the fields in this record indicates what is to be done with the data:

pass up to a thread on this host,

forward on an interface of the current type,

forward on a different cell interface,

or forward on a different block interface.

If the data is to be forwarded then the record also contains a reference to a valid
queue structure. This structure includes two generic insert methods: one for cells
and the other for blocks. The queue and appropriate cell/block reference are passed
as arguments when a method is invoked. The queue insert procedures are driver
implementation dependent. For instance, the VME CBN driver insert routines do
not implement any in memory queueing. Instead the data is copied directly into the
transmit FIFO.

The cell insert interface uses a lightweight representation of a cell. The data portion
is defined by a pointer, in this way the cell data may be left in a reception FIFO prior
to final movement. The block insert interface is more heavyweight but will be called
less often than the cell interface. The block interface in addition to consuming
a buffer will also return one. Consider forwarding from one Ethernet network to
another. The data buffer will be moved from the receive to the appropriate transmit
DMA queue by adjusting pointers; no data copying is involved.

When forwarding between block and cell based networks care must be taken to
achieve maximum throughput. Consider an Ethernet block being forwarded to the
CBN. One approach would be for the Ethernet driver to invoke the CBN cell inter-
face once for each cell in the block. However the invocation cost is large relative to

64

the small amount of work done by the procedure (copy/DMA into CBN FIFO). By
calling the block interface the cells can be fragmented within the destination driver
yielding a performance improvement. Since the contents are no longer needed the
buffer can be returned immediately reducing requests to the buffer pool. Con-
sider cells being forwarded from the CBN onto the Ethernet. To achieve sensible
throughput multiple cells must be encapsulated in a single Ethernet frame. If they
are assembled in the CBN driver prior to passing to the Ethernet block forwarding
interface, then a set of per-cell procedure calls is saved. It can be seen that a block
based network, such as the Ethernet, does not need to implement a cell transmission
interface.

The network dependent interface includes a call to inform the driver when the state
of a particular circuit has changed. In this way the driver can, if desired, shadow
the generic data structures using a layout more suited to the particular network
concerned.

6.6 Summary

Extensions have been made to the WANDA kernel in order that a broad range
of QOS policies, under management control, may be supported. Such an organi-
sation permits easy comparison of the implementation complexity involved in dif-
ferent strategies. The interface applies equally well to both endpoint systems and
inter-network routers. It is likely that in the latter case much of the low level im-
plementation will be in hardware. The policies supported by the kernel mechanisms
are not exhaustive. However, the interfaces are defined in a manner that is easily
extensible e.g. adding a new queue insert strategy.

Despite the heterogeneous nature of the network interfaces concerned a large amount
of the networking code is implemented in an interface, network and architecture
independent manner. For some interfaces, such as the CBN, quite large perfor-
mance improvements are possible at the cost of moving (and hence duplicating)
code down from the network independent to the driver level. At present, due to the
the greater maintenance effort such improvements cause they have for the most part
been avoided.

65

Chapter 7

Experimental Programme

This chapter examines the performance of the WANDA MSNA implementation over
some of the ATM networks described in Chapter 2. It has long been the case that
protocol performance figures are quoted in terms of throughput and delay. Lit-
tle attempt has been made to break such figures down into individual component
contributions, [Schroeder89)| being a notable exception. [Jacobson88] is a good
example of how detailed knowledge of a protocol’s behaviour in a working environ-
ment can be used to improve performance. In the subsequent experiments absolute
measures of delay are reported but with the emphasis on attributing any jitter so
highlighted to a specific system component. The experiments are divided into three
groups examining the delay response of:

e a single cell stream over an idle network and otherwise idle hosts,
e a router in both the presence and absence of contention traffic,

e a host handling Pandora audio and video simultaneously.

In each case any source of intrinsic (i.e. unavoidable) jitter is identified. Lessons for
kernel and device driver structuring in order to minimise the jitter on time critical
streams are detailed. The CBN and CFR network interfaces are contrasted in their
suitability for the support of multi-service traffic. Proposals are made concerning
the design of future network interfaces that aid the host in meeting application
level communication requirements. The chapter concludes with a comparison of the

startup latency, i.e. connection establishment followed by single byte transfer, for
the TCP, UDP and MSNL protocols.

67

7.1 Experimental Apparatus

The experimental system, illustrated in Figure 7.1, comprised five processor nodes
attached to two networks. Two of the processors were equipped with CBN interfaces
whilst a further two had CFR only interfaces. The final processor had an interface on
each network and was therefore capable of acting as a router. Some of the machines
were also attached to the Computer Laboratory main Ethernet.

........ Global Clock [™™™
.......... 68030
om0 20 MHz
20 MHz
68030
R 2 MHz CBN
50 Mhz C 20 MHz 512 MHz
68030
20 MHz 68030
20 MHz

Figure 7.1: Experimental Configuration

Selected processors in the system were supplied with memory mapped counter
cards'. A single oscillator, in this instance 5 MHz, was used to drive all of the
counters at the same rate. A reset bus was provided between all cards so that the
counters could be started together from zero to a tolerance which was dependent?
upon the bus geometry. This hardware provided a cheap method of generating
time stamps which was fairly unobtrusive. It would have been possible to use the
68030 local clock to generate time stamps. However, this would have required com-
plex (and obtrusive) protocols [Lamport78, Mills89, Ofek89] to synchronise the
clocks initially and correct for drift. In addition, the resolution of the local clocks
on the 68030 boards available was only 6us. The procedure to read the global clock
value takes approximately 15us to execute on a testbed 68030.

1Designed and constructed by the author,
2Approximately 30ns for the configuration described.

68

The CBN geometry comprised a five station ring running at 512 MHz. The latency
of the ring (time for a bit to complete a single revolution) was 10.4us with approxi-
mately 79% of this comprising delay in the fibre. This provided the bit delay for a
3 frame ring with a gap of 1.44us (the frame delay thus being 2.99us). On an idle
network the maximum theoretical delay in accessing the CBN is therefore 4.43us
(the CBN VME interfaces being capable of transmitting in only one of the four slots
(Section 2.2.1) in each frame).

The CFR geometry comprised a four station (the testbed machines and a monitor
station) ring running at 50 MHz. The delay in the ring comprised a single 6.08us
slot and a gap of 2.24us. On an idle network the maximum theoretical delay in
accessing the CFR was therefore 8.32us®.

I 3
Next Time Stamp 3
Time Stamp 1 49667020
Time Stamp 2 49667241 ;.:%
B 3
Time Stamp 3 - 2
Time Stamp 7 {

Figure 7.2: Time Stamp Cell Format

Part of the QOS specification “turned on” the generation of time stamps for a
stream. On streams to be measured time stamps were placed in all cells at selected
points in the network. The format of a time stamp cell is illustrated in Figure 7.2.
A time stamp is produced by writing the current value of the global clock (32 bits)
into the cell payload at a position given by an index at the start of the payload.
The index is then incremented. The sink system would typically compress this
information and write it, at the end of the run, to a remote file system for subsequent
analysis. All code (application and kernel level) was written in “C”, and compiled
using GCC with optimisation enabled. Performance could have been improved by
re-coding segments in hand crafted assembler but was rejected on the grounds of
maintainability. All bootfiles included a WANDA SAS kernel (Section 3.1.4) with
debugging checks disabled.

3The CFR was never totally idle as the monitor station (an ORL Metrobridge) would send a
management cell once every second. For all practical purposes this cell may be ignored.

69

7.2 CBN Delay Response

This section details the performance of the CBN as perceived by WANDA user level
applications running on the testbed hardware. The initial experiment was designed
to determine the causes of the delay variation experienced by an application to
application level stream of cells on a CBN with no contention traffic. The rate of
transmission was set such that the results for each cell (32 octets of user data) could
be regarded as an independent experiment.

16
144 Mean: 278 usecs
95th Centile: 80 usecs
124 86th Centile: 123 usacs
10+
2
8
o
o
B-
4-
2+
0 U | 1 ¥ 1 1 L]
0 50 100 150 200 250 300 350 400 450 500

Delay (usecs)

Figure 7.3: CBN Delay: Initial Experiment

Figure 7.3 shows the variation in delay for a sample run of 10000 cells. The nth
centile is defined to be the minimum interval in which n% of the sample distribu-
tion may be found. Immediately apparent is the large difference between the CBN
latency (10.4ps) and the minimum application to application level delay (252us).
The theoretical CBN jitter (4.43us) is also insignificant when compared to that in
the stream when it reaches the sink application (99th centile of 123us). The two
obvious sources of jitter in the endpoints are due to contention from:

o threads (other than the source and sink) (Section 7.2.1),

o ISRs (other than the CBN) (Section 7.2.2).

70

7.2.1 Thread Contention

The WANDA scheduler used would only pre-empt a thread if one of higher priority
became runnable. In the previous experiment both the source and sink threads ran
at the default user priority. Higher priority threads existed at both the kernel and
application level. In particular, each ANSA capsule included background threads
running at priorities between the default user and kernel levels. The kernel included
threads to handle domain termination and MSNL connection establishment. Device
drivers typically utilise kernel threads. For instance, the CFR driver uses a thread to
handle outages and check the sanity of the ring. In the next experiment the source
and sink threads were created with priority greater than any other thread in each
of their respective hosts. This ensured that in each of the endpoints neither thread
could be pre-empted once running.

20

18+ Mean; 252 ysecs
95th Centile: 44 usecs
1684 98th Centile: 44 usecs
144
12+
S
8
€ -
§ 10
(3
[N
8 -
6 -
4
2 -
0 1 1 1 | 1 1] 1
0 50 100 150 200 260 300 350 400 450 500

Delay (usacs)

Figure 7.4: CBN Delay: High Priority Source and Sink

Since the source thread generated a CBR stream by dallying on the global clock
counter this meant that it was the only thread scheduled on the source host for
the duration of the experiment. The situation on the sink host is different. As the
receiver thread blocks on a semaphore within the kernel the scheduler is given the
opportunity to run other threads. When the receiver thread becomes runnable the
thread switch can take one of two paths. If another thread is running then its state
must be saved and that of the receiver thread re-loaded. The second case, which
will take less time, is when the receiver thread is spinning in context on its wake

71

up condition (Section 3.1.1). Figure 7.4 illustrates the result of this experiment. It
is argued that any contention present is a result of the processor having CBN level
interrupts masked at the time a cell is received. This can be because of a higher
level ISR executing (i.e. the clock) or because a thread has raised the interrupt level
of the processor.

7.2.2 ISR Contention

By disabling clock interrupts, both of the above sources of jitter should be elimi-
nated. The timer interrupt code has the task of maintaining the system clock and
inspecting the timer event queue. It may also call into the scheduler if time slicing is
enabled. The timer event queue is a list of blocked threads each with a specific time
of when they wish to be made schedulable. The queue is ordered by time out value.
Thus the interrupt code need only inspect the head of the queue to see if any calls
into the scheduler are necessary (the common case is that no calls are required).

Mean: 268 usecs

95th Centile: 8 usacs

g9th Centile: 9 usecs —
154

Percentage

c [T

240 245 250 255 260 285 270
Delay (usecs)

Figure 7.5: CBN Delay: Timer Interrupts Disabled

The timer on the testbed 68030s was programmed to interrupt once every 10ms.
The timer hardware found on many processors is not ideal. For instance, both
WANDA and UNIX maintain the system time as two 32 bit quantities (secs and
psecs). Implementation of this in hardware would be trivial. A second set of 32 bit
registers could be used to indicate the time when software desired the next timer

72

interrupt. Thus there would be no need to have periodic clock interrupts. The
WANDA “C” level timer interrupt code takes approximately 14us to execute in
the common case. For each thread that is required to be woken, the call into the
scheduler may consume an additional 45us. If, as a side effect of these calls, the
scheduler decides that a re-schedule is required, this will occur on return from the
(possibly nested) ISR. Figure 7.5 shows the result of disabling timer interrupts for
the duration of the experiment. It can be seen that the jitter on the stream has been
reduced to very nearly that expected from the CBN. Additional experiments were
performed with an oscilloscope to determine the remaining sources of jitter. These
were found to be:

¢ DRAM refresh cycles on the 68030 memory,
e synchronising global clock counter reads,

o synchronising CBN VME interface accesses.

The result of the same experiment using the CFR instead of the CBN yielded a
mean delay of 314us and a 99th centile of 12us. The delay difference between the
CFR and CBN is mainly due to the more complex interface to the CFR station chip
and also the requirement to maintain a copy of the transmitted cell in the source
host until notified of successful transmission (Section 6.5.2). The difference in delay
on the network is, by comparison, small.

7.2.3 Kernel Structure Implications

From the initial experiments it is possible to draw some conclusions regarding the
structuring of the kernel, and its associated device drivers, for handling multi-service
traffic. For incoming network traffic to be handed to an application in a timely

fashion requires, at the very least, that the processor be in a regularly pre-emptable
state 1.e.

e network level interrupts are enabled,

e thread pre-emption is allowed.

The reasons why the processor may not be in a pre-emptable state concern ker-
nel synchronisation requirements. The kernel must protect itself from activations
concurrently executing critical regions of code. An activation is defined to be the

instruction sequence of a thread or ISR. Two mechanisms are provided for synchro-
nisation within the WANDA kernel, they are:

73

e semaphores,

e locks.

A semaphore provides the mechanism to limit the number of threads concurrently
executing within a critical code region. Most of the WANDA kernel critical regions,
which are guarded by a semaphore, specify a maximum of a single activation within
them at any one time. A thread executing within a semaphore region, unless it
has arranged otherwise (this can only be done for kernel critical regions at present),
may be pre-empted. In many instances this can lead to undesirable consequences.
Consider a low priority thread pre-empted by a higher priority thread whilst exe-
cuting within a semaphore region. If the new thread tries to access the same critical
region then it must block until the lower priority thread is scheduled and releases
the semaphore. This phenomenon is called priority inversion.

A lock protects a region of kernel code to be executed by one thread only. The most
efficient implementation, on a uniprocessor, is to disable interrupts on entering and
restore them on exiting the critical region. On a multiprocessor this protocol must be
extended slightly. The lock is further defined by a bit in memory. After interrupts are
disabled an atomic instruction, such as Test-And-Set (TAS), is used repeatedly until
it succeeds. The critical code segment is executed and the bit cleared with another
atomic instruction before the IPL is restored. Such locks are often described as
spin locks. A lock system could be envisaged which allowed interrupts but disabled
pre-emption. The lock entry code would set a boolean value to disable pre-emption.
Scheduler code, if called by an ISR to wake a thread, would set a re-schedule pending
flag if it decided to pre-empt the current thread. The spin lock exit code would check
this flag and if necessary call the scheduler. Such an organisation also requires that
interrupt code should not call into the critical region unless it can be guaranteed
that no thread would ever execute the critical region on the same processor that
fields the interrupt.

Of course, on a multiprocessor, there will be lock contention that leads to wasted cy-
cles. One theoretical problem is that, certainly on the Firefly hardware [Thacker87],
the spin locks as implemented in WANDA are unfair. In brief, if there are n proces-
sors and a critical region takes time ¢ to execute then it is not the case that a thread
may be spinning on a lock for maximum time (n — 1) x ¢. However, since the critical
regions should be designed to be small (as pre-emption is disabled within them) and
contention minimised, this problem is typically not an issue. Techniques such as
calling the scheduler to run another thread on TAS failure should not need to be
considered. The subsequent section considers the structure, in particular relating
to synchronisation, of device driver code. This is important as one poorly written
driver can cripple a systems ability to handle multi-service traffic.

74

Device Driver Structure

A typical device driver has a requirement to synchronise between thread and inter-
rupt level code. Thread code that requires to protect itself against interrupts must
raise the processor IPL above that of the device. This is not sufficient as a thread
switch could occur (e.g. because of timer expiry) to a thread executing at an IPL
below that of the device. In many cases the thread level code resorts to disabling
both pre-emption and interrupts. The areas of the kernel which are affected by such
concerns can be large due to overloading the amount of processing done in ISRs (in
order to increase performance). Writing device drivers in such a manner requires
much careful thought as the environment available within an ISR is different than
that at the thread level. For example, it is not sensible to block on a semaphore
within an ISR. This is not an argument against structuring systems using upcalls
[Clark85], rather that their pervasive use can have detrimental effects in certain
environments.

One technique is to only perform enough processing in the ISR to kick a device han-
dler thread. Unfortunately for most architectures this cannot be done by generic
code. Each ISR must contain device specific code to negate the interrupt condition.
If all devices on receiving an interrupt acknowledge proceeded to de-assert the in-
terrupt condition, until programmed to do otherwise, then a single simple ISR would
suffice for all devices. Care must be taken on a multiprocessor that the thread to
handle an interrupt is not scheduled on an unsuitable processor. For example the
I/0O architectures of some processors are asymmetric. On the Firefly hardware, de-
vices may only be accessed from a single processor: the I/O processor (I0P). Either
a device handler thread must be scheduled on the IOP or some form of mailbox
protocol must be implemented between the device handler thread and the IOP. The
WANDA thread creation interface includes a parameter constraining a thread to be
scheduled on a single nominated processor if desired.

Application requests requiring I/O arrive at the driver interface via a downcall
through the kernel (certainly for network drivers). The downcall thread may have
acquired kernel lock(s). For many types of request (most importantly that for the
transmission of data) the amount of work to be done on the call return path is null
(save freeing of the lock(s) acquired). It is advantageous to make the release of any
locks the responsibility of the driver. If a driver can arrange to release the lock(s)
quickly, whilst still preserving correctness, then the lock contention jitter experienced
by other threads may be reduced. Correctness will usually entail acquiring a driver
level lock before releasing the higher level lock(s). Such techniques have the effect
of increasing the latency of an individual operation in the absence of contention. A
good discussion may be found in [Birrell89] on the trade-offs associated with the
use of single vs. multiple locks.

75

7.3 Router Effects

The purpose of the next set of experiments is to analyse the behaviour of a stream
when a router is interposed. In all cases the source and sink are on the CBN and
CFR respectively. It is argued that the software router will show jitter effects of
similar distribution to that of a hardware implementation. However, the absolute
variations will be amplified. The router low level transmit and receive code is the
same as that for an endpoint host. By examining router performance the response
of this particular subsystem can be determined in isolation from higher level effects.
The first experiment (Section 7.3.1) examines the basic router response with no
contention traffic. The subsequent experiments show the effect of contention traffic
combined with different router forwarding policies on the delay experienced by a
single cell stream. In all cases the stream on which measurements are made consists
of a single cell pulse. The minimum interval between each successive single cell
pulse was set such that for an idle router no interference between successive cells is
observable.

7.3.1 Basic Router Response

25

Distribution at Router
Mean: 134 usecs

204 95th Centile: 10 usecs
98th Centile: 35 usecs

Distribution at Sink
Mean: 395 usecs

15+ 95th Centile: 15 usecs
99th Centile: 38 usecs

Percentage

104

0 50 100 150 200 250 300 350 400 450 500
Delay (usecs)

Figure 7.6: Single Cell Stream: CBN/CFR Router

76

The jitter of a single stream, through the CBN to CFR router, was measured.
Figure 7.6 shows the result of the experiment. The timestamp at the router was
taken just before the cell is added to the CFR output queue. As expected, the jitter
experienced by a single stream is increased over the CBN only case (Section 7.2.2).
This is due to the cumulative effect of jitter due to the CBN and CFR. The maximum
theoretical jitter for the connection is that of the two networks combined i.e. 12.75us.
The experimental jitter (95th centile) is slightly greater than this due to the sources
of contention detailed in Section 7.2. The 99th centile (38us) is much larger due to
timer interrupts being enabled in the router.

7.3.2 Contention Traffic

The previous experiment was repeated in the presence of contention traffic. Fig-
ure 7.7 shows the results for three types of contention traffic and transmission
strategies:

¢ 1. Single Cell FIFO: A contention stream of 1 cell per msec was generated.
The QOS field of each stream was such that the router placed both streams
on a single queue which used a FIFO strategy.

¢ 2. Two Cell FIFO: A contention stream of 2 cells each msec was generated.
The cells were sent in a back-to-back burst which gave a gap of 18us. The
router adopted a FIFO queueing strategy.

¢ 3. Two Cell Priority: An identical contention stream of 2 cells each msec
was generated. The QOS selected was such that timestamp cells would always
be forwarded in preference to those from the contention stream.

In all experiments the contention stream was run for 100,000 impulses (single or
double cell). The maximum impulse delay does not show a linear increase with the
number of cells in the contention burst. This is due to periodic clock interrupt con-
tention. When using priority forwarding it might be hoped that the impulse delay
be reduced to something approaching that of the single cell contention experiment.
Whilst the third experiment shows a reduction in the impulse delay, nothing ap-
proaching the ideal has been achieved. This may be explained by considering the
nature of the CBN VME interface. The CBN receive interface is implemented as
a FIFO. An incoming cell can experience jitter due to the FIFO not being empty.
Even though the cell might have a higher priority than any before it in the FIFO,
it will have to wait until all of the the former have been processed. The maximum
impulse delay reduction of 26us (189 - 163) represents the cost of placing the second
cell of the burst stream into the CFR transmit FIFO and waiting for the FIFO to
become available again.

7

Single Cell

FIFO

Two Cell

FIFO

Percentage

Two Cell

Priority

Distribution at Router

Mean: 141 usecs

95th Centile: 74 usaecs

98th Centile: 113 usecs

]
300

Distribution at Sink

Mean: 400 usecs

95th Centile: 80 usecs

98th Centile: 118 usecs

800

8
74 Distribution at Router Distribution at Sink
6 Mean: 154 usecs Mean: 414 usacs
5 85th Centile: 150 usecs 95th Centile: 153 usecs
4+ §8th Centile: 189 usecs g9th Centile: 180 usecs
3-
2+
1 -
3 100 200 300 400 500
8
7 Distribution at Router Distribution at Sink
6 Mean: 149 usecs Mean: 409 usecs
54 95th Centile: 118 usecs 95th Centile: 122 usecs
4 98th Centile: 163 usecs 99th Centile: 167 usecs
3-
2.
1 -
o 100 ook
Dslay (usecs)

Figure 7.7: Router Contention

78

7.3.3 Network Interface Design

The contention experiments of the previous section suggest that some form of pri-
ority be incorporated into the interface hardware. This requires a mechanism for
the hardware to determine which are priority cells. It is natural to associate this
information with the VCI. One approach would be to statically partition the VCI
space. A more sensible approach is to allow software to dynamically set the prior-
ity attributes associated with a VCI. The simplest improvement on the base CBN
hardware would be to implement multiple receive FIFOs, the priority attribute for
a VCI simply encoding the FIFO into which the cells for a stream are placed. By
providing a status register which encodes the state of all the FIFOs, the host soft-
ware is able to perform expedited cell processing. As with the basic interface only
a single interrupt is generated for all conditions. Such an interface still presents an
end system with difficulties in handling multi-service traffic.

Consider two end system threads; one attempting to receive a high priority stream
the other a low priority one. The high priority cells will be read out of the inter-
face in preference to the low priority ones. The thread receiving the high priority
stream will be scheduled in preference to that for the low priority stream. However,
incoming cells for the low priority stream will cause application level jitter due to
interrupt processing costs. One solution is to provide multiple FIFOs each with an
independent interrupt level which may be set by host software. By arranging for
the high priority thread to execute at an IPL above that of the FIFO for the lower
priority stream, jitter is reduced.

The cost of per cell processing exhibits a considerable burden on the host. In many
cases the provision of an intelligent host interface is suitable [Garnett83]. Such
an interface will typically only involve the host at the frame (block) level. This is
achieved by using DMA techniques. Associated with each circuit will be a list of
receive buffer(s) cf. Ethernet interfaces (Section 2.2.1). Incoming cells are placed in
priority order into their associated buffers. An interrupt at the appropriate priority
level is generated upon either:

¢ no buffer space being available for an incoming cell,

e an EOF cell being received.

It is possible for the DMA operation on a low priority stream to be overlapped
with the application level processing of the frame from a higher priority stream.
Depending upon the organisation of the memory system and the resolution policy
between conflicting processor and I/O device memory requests, this might introduce
jitter into the high priority stream. A memory interleaving scheme which placed the
buffers for high and low priority streams in different banks would appear suitable.

79

7.4 Pandora Streams

The purpose of the next set of experiments is to examine some of the issues involved
when multiple streams with performance constraints are handled at the application
level. The experiments comprise of a WANDA machine processing a videophone
connection from a Pandora box. An example of such processing might be removing
noise on the audio stream and performing compression on the video stream. The
experimental apparatus is illustrated in Figure 7.8.

Pandora Host
Box Workstation E
o
R
g
g’
Audio and -
udio an 50 Mhz CFR _§
Video streams g
8
:
e,
68030 ~

20 MHz

Figure 7.8: Video Phone Experiment

The sink WANDA machine simply emulates a Pandora box. This was easily achieved
as Pandora applications use ANSA for their control channel. In fact the control soft-
ware was run on a machine different than the sink WANDA host. Such flexibility
is important as it means the endpoint terminals may be made simpler, cheaper and
more reliable without the requirement to run complex management software. All
Pandora multimedia streams currently use the MSSAR block protocol (Section 2.5).
Each block includes a microsecond timestamp which is generated in the source Pan-
dora box and represents the time since the stream was created. The video and audio
arrives at the sink WANDA machine as two separate MSNL streams. The times-
tamps are used to aid intra-stream synchronisation. Unfortunately the timestamps
for voice and video streams are generated by separate clocks within the Pandora
box. This limits their application for inter-stream synchronisation.

80

Inter-arrival gaps are measured in the subsequent experiments as the Pandora box
timer and global clock are not synchronised. It would have been preferable to extend
the global clock system into the Pandora box for the experiment, however, given the
limited time available this was not feasible. The Pandora source rates were set such
that a single 96 byte audio packet was generated every 4ms and a 4192 byte video
packet was generated every 40ms. Two threads were allocated on the sink WANDA
machine for the reception of data from the two streams. The audio thread performed
a simulated 8ms processing on each packet before discarding it, for the video thread
this figure was 0.5ms. Each experiment was run for the duration of 100,000 audio
samples.

100 100 -
Audlo Stream Video Stream
i Mean: 4 msecs : Mean: 40 msecs
80+ 95th Centile: 34 msecs 80+ 95th Centile: 1 msecs
i 98th Centile: 34 msecs g9th Centile: 3 msecs
604 €0
[
g
<
8
[\
o :
40+ 404:
20 20+
0 T
0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45
Inter-Artival Gap (msecs) Inter-Arrival Gap (msacs)

Figure 7.9: Equal Priority Threads / CFR Dally

Figure 7.9 shows the inter-arrival gaps of the audio and video streams at the appli-
cation level on the sink WANDA machine. The two receiving threads executed at
the same priority, which was above that of any other thread on the sink machine.
Immediately apparent is the substantial jitter on the audio stream. This is beyond
that expected, due to the processing time of the video thread (8ms). The audio
distribution represents, on average, a single large inter-arrival gap followed by a
sequence of back-to-back packets. Since the network was otherwise idle, the only
source of contention which could cause such jitter must be in either the Pandora
box or WANDA machine. The obvious source of contention at the sink which would
cause this is the reception of the video at the network interface.

81

The contention was traced to an implementation detail in the CFR driver code. The
CFR driver upon receiving a cell, if the EOF marker is not set, will dally on the
expectation of receiving subsequent cell(s) for the same frame. This is due to the
high cost of many interrupt entry and exits for a single frame. Associated with the
dally is a time out which may be set on a per stream basis. Such a structure has
possibly dire consequences. If the dally time is too small then latency may actually
be increased due to the processor being in a non-interruptable state, returning from
the dally loop, when the expected cell is received. If however dallying is successful
then it offers optimal latency for both reception and transmission.

100 100
Audio Stream ! Video Stream
i Mean: 4 msecs i Mean: 40 msecs
80+ 95th Centile: 14 msecs 80 95th Centile: 1 msecs
i 9Gth Centile: 15 msecs i 98th Centile: 2 msecs
80! 80
g s =
8 :
< :
8 ;
3 :
o .
404: 40
20+ 20-
0 l| I|I...n|| 0 I

0 5 10 15 20 25 30 35 40 45 0 5 10 156 20 25 30 35 40 45
Inter-Arrival Gap (msecs) Inter-Arrival Gap (msecs)

Figure 7.10: Equal Priority Threads / No CFR Dally

Figure 7.10 shows the result of repeating the previous experiment with no dallying in
the CFR receiver ISR. There is a large reduction in the jitter of Figure 7.9. However,
the sink audio stream still differs significantly from the distribution at source. The
jitter attributable to video thread processing may be discovered by increasing the
scheduling priority of the audio thread over that for the video thread. The result
of such an experiment is shown in Figure 7.11. Whilst the jitter has been further
reduced it is still substantial. Figure 7.12 shows the jitter on the audio stream
when the video stream is sinked by a separate machine. The result indicates that a
significant fraction of the audio stream jitter is produced at the source Pandora box.
This is entirely due to contention with production of the video stream (a separate
experiment showed a Pandora box able to produce a uniform CBR audio stream).

82

Percentage

100 100~

Audio Stream

' Mean: 4 msecs :

804 95th Centile: 7 msecs 80
88th Centile: 9 msecs

60-: 60:

404 a0

204 204

0 ;l !llh; LI U 1 1 1 1 c ;

0 6 10 16 20 25 30 35 40 45 0

Video Stream

Mean: 40 msecs

95th Centile: 1 msecs
88th Centile: 3 msecs

Inter-Arrival Gap (msecs)

5 10 15 20 25 30 35 40 45
Inter-Arrival Gap (msecs)

Figure 7.11: Priority Audio Thread / No CFR Dally

100

Percentage

go:

Audio Stream

Mean: 4 msecs

96th Centile: 8 msecs
98th Centile: 9 msecs

[t
1 1

0 5 10 15 20 25 30 35 40 45

Inter-Arrival Gap (msecs)

Figure 7.12: Video to Separate Sink

83

The Pandora box implementation comprises a set of INMOS transputers. Both the
audio, video capture and video mixer devices are handled by their own transputer.
A fourth processor handles the CFR interface. A final transputer, called the server,
is responsible for communication between the above. The jitter on the audio stream
(Figure 7.12) is due to contention in the server transputer and the fact that audio
cells may not receive priority transmission in the CFR transputer. The production of
a bursty audio stream increases the probability of cells being dropped by the network
and also the jitter removal complexity necessary in the sink. The jitter on the audio
stream could be reduced by giving it priority processing in the transputer controlling
the CFR. Alternatively, each device could be allocated a separate network interface.
The economics of such an approach may be acceptable as each interface need not
be as complex as the current general purpose implementation.

In many respects the handling of audio presents a greater challenge due to the
higher sample rate when compared to video. In an ATM environment an endpoint
is forced to implement a degree of jitter removal (by provision of an elastic buffer).
The presence of such functionality may be exploited in certain situations by batched
processing of media sequences. For example, when replaying an audio recording
from a repository ten samples may be sent together every 40ms rather than one
sample every 4ms. Thread switching costs in the server for this component will be
reduced by a factor of ten. In this way the repository can be engineered to handle
significantly more traffic than if it were naively designed.

As can be seen it is a function of the program structure and scheduler policy as to how
application threads handle network traffic. It is often heard that a real-time thread
scheduler is necessary in order to support multimedia traffic. A real-time thread
scheduler is best described as one which is able to make guarantees to its clients
regarding the amount and distribution of CPU time that they will be allocated. The
thread creation interface includes parameters to describe the scheduling demands of
the thread. A management function will see if the thread’s schedule, when combined
with that of all the other threads in the system, is satisfiable. This process is
analogous to the virtual circuit call admission procedure.

It is not necessary to employ a real-time scheduler to achieve real time performance.
If an application programmer has knowledge of the underlying scheduling policy,
for example that a fixed priority non-pre-emptive policy is employed, then an ap-
plication may be structured accordingly. However, problems arise when there is
other activity on the machine of which the programmer is unaware, if the underly-
ing scheduling algorithm changes or if the code is ported to a different machine. A
real-time interface enables an application to express it’s requirements explicitly. In
this way it is isolated from changes in the underlying implementation.

84

7.5 Startup Latency

An oft stated disadvantage of the virtual circuit model is the latency required to
establish a connection before any data may be sent. The optimistic establishment
mechanism (Section 3.4.1) enables the initial data latency for a long haul connection
to approach that for datagrams over the same path. However, many connections
are limited to the local area where such techniques yield smaller gain. There is
a marked lack of performance figures concerning connection establishment in the
literature. This is analogous to the situation found in the measurement of RPC
system performance. The RPC bind time is ignored or at best amortised over a
large number of invocations on the bound interface. It is not the case that all styles
of communication will justify such a simplification. [Caceres91] gives results on
the frequency and usage patterns of typical TCP connections.

Protocol/ Establishment (usecs) Single Byte Ping (usecs)
Operating System Min Max Mean Min Max Mean
UDP/UNIX 4 N/A N/A N/A 4636 7744 4856
TCP/UNIX 4 5184 11780 5619 4580 12940 6377
MSNL/UNIX 4 3356 4168 3505 4084 8776 4309
MSNL/WANDA ® [2139 5603 3763 1604 4235 2423

Table 7.1: Call Establishment and Data Exchange Latency

Table 7.1 gives some results for call establishment and data latency (single byte
exchange) for various protocol and operating system combinations. The timings
were taken at periods of low network activity on the Computer Laboratory main
Ethernet. Each machine, except for the normal complement of system applications,
was otherwise unloaded. For each protocol/operating system combination the ex-
periment consisted of 10,000 trials. Connection tear-down measurements were not
attempted as they do not directly affect data latency. In addition, the system call
to close a connection may return indicating successful termination before the kernel
attempts to perform the close over the network. No QOS negotiation took place
during connection establishment. Such negotiation would increase the latency of
connection establishment (dependent upon the QOS algorithm considered).

¢ MSNL/UNIX connection faster than TCP /UNIX: The MSNL connec-
tion establishment protocol requires only two messages. In contrast TCP, since
it is a duplex protocol, requires three messages to establish a connection.

“HP/UX 7.0 over HP Series 9000/375 with 4us timer resolution (50 MHz 68030).
SWANDA 1.1 (20 MHz 68030 with global clock hardware).

85

¢ TCP/UNIX connection faster than ping: This is also the case for MSNL/
UNIX. Since connection management is performed wholly by the kernel it is
not necessary to schedule the receiving process before the client is notified of
connection establishment.

¢ WANDA connection/ping faster than UNIX: The performance of MSNL
JUNIX vs. MSNL/WANDA is indicative of the poor UNIX networking struc-
ture (particularly considering that the UNIX CPU was 2.5 times faster). The
anomaly of seeing faster connection than ping timings is not repeated over
WANDA. This is because the server process is given the opportunity of refus-
ing a connection request after inspecting the QOS parameters.

If the time for the server application to receive the first byte of data is approximated
to be half the ping time then it can be seen that the minimum startup data latency
for MSNL/UNIX is 5398us (3356 + 4084/2) vs. 2318us for UDP/UNIX. Even for
relatively short conversations such a small difference may be regarded as insignif-
icant, especially when it is considered that MSNL data transfer outperforms that
for UDP. In certain circumstances latency may be further reduced by maintaining
a cache of frequently used connections to peer applications. This technique is used
in both the UNIX and WANDA implementation of the ANSA runtime system.

7.5.1 Summary

The flexible nature of the interface to the WANDA QOS extensions was particularly
useful when performing the experiments described. In most cases no re-compilation
of the kernel or application programs was necessary. The global clock boards proved
invaluable in instrumenting the experimental system. The use of such hardware for
taking performance measurements on local area distributed system configurations is
advised.

All sources of jitter in an application level connection over the CBN have been
identified. One outcome of the experiment was that it was found to be easy for a
user thread, on an otherwise idle machine and by use of a high resolution timer,
to generate a well defined false traffic load. Such a facility is useful as a source of
experimental network contention traffic.

A combination of both poor kernel/device driver structure and network interface
design was found to contribute significantly to the application level jitter associated
with a stream. For a host handling multiple streams the CPU scheduler is a key
component in deciding the order of processing. Finally, a performance analysis was
made on the startup latency of some representative protocol and operating system
combinations.

86

Chapter 8

Related Work

This chapter surveys recent related work. A small number of the more important
projects and results are detailed. In each case the relationship with this dissertation
is emphasised.

8.1 Internet Stream Protocol

The Internet Stream Protocol (ST) [Forgie79] is an IP-layer protocol that attempts
to provide an end-to-end guaranteed service across an internet. ST defines the con-
cept of a stream which exhibits all the properties of a virtual circuit. ST represents
a departure from original Internet switching philosophy in that each ST gateway
is required to maintain connection state. This state includes data on the network
resources allocated to each stream.

8.1.1 Terrestrial Wideband Network

The Terrestrial Wideband Network (TWBNet) is a DARPA testbed for research
into high-speed protocols and applications. It was built by BBN STC as a part
of the initial phase of the Defense Research Internet (DRI). The network consists
of Wideband Packet Switching nodes (WPS) connected to form a serial backbone
using T1 trunks. The switching nodes pass traffic using the TWBNet Dual Bus
Protocol (DBP) [Edmond90]: a link level Distributed Queue Dual Bus (DQDB)
type protocol which has been extended for wide area use and bandwidth reserva-
tion. Sites connect to the backbone via IP and ST gateways. An ST host specifies
connection requirements as part of stream set up. The ST gateways translate these
requirements into appropriate TWBNet bandwidth reservations.

87

8.1.2 The DARTNET Testbed

ST-II [Casner90] is a re-working of the ST protocol based on experience with the
TWBNet testbed. ST-II will operate in the DARTNET testbed: a multi-site network
comprising a backbone of T1 lines interconnected by Sun 4 SPARC systems acting
as routers. Host nodes are attached to the SPARC routers across LANs. The ST-II
kernel software that will run in both the host and router nodes will be structured
for easy experimentation. This is indicative of the current state of protocol research
concerning support for multi-service traffic. Some of the software approaches applied
in this dissertation could usefully be employed in ST-II routers and endpoints.

8.2 IMAC

Developed at the Computer Laboratory, the Integrated Multi-media Applications
Communication architecture (IMAC) [Nicolaou91], provides a framework which
facilitates the construction of multimedia applications. IMAC recognises that most
such applications will be of a distributed nature. Consequently IMAC is based on
the existing Advanced Networked Systems Architecture (ANSA). IMAC has been
implemented as an extension to the ANSA Testbench [ANSA89)] (an implementa-
tion of the ANSA architecture). Of particular interest are the extensions necessary
to support QOS. ANSA already provided a limited form of QOS. Associated with
each instance of an ANSA service is a set of properties. When binding to a service
a client supplies a constraint specification. This is applied to the property lists of
all active service instances of the requested type. The result is a list from which a
particular service instance may be selected. An example of its use may be found in
Section 3.1.3. Each WANDA “loader” process exports the machine name on which
it is running as part of the property list. In order to run a process on a specific
machine an import request is made specifying the appropriate machine name as a
constraint. However, no mechanism was available which enabled ANSA applications
to influence the characteristics of the underlying communication channel.

IMAC provides a mechanism for the specification of communication oriented QOS
on a per-operation basis. Interface operations may specify a set of QOS options with
which they are prepared to be invoked. Although QOS appears in the specification
of an interface it does not contribute to the type of that interface. The QOS options
are expressed as constraints on the underlying communication system. A method
of mapping from application (IMAC) level QOS to communications level QOS is
provided. IMAC is complementary to the work detailed in the dissertation. The
RPC paradigm has been found useful in the production of a large amount of dis-
tributed software. It is likely that a large amount of network management software
(Section 9.1.1) will benefit from using RPC as a basis for communication. Network

88

management will make use of the same communication facilities, i.e. virtual circuits,
as does application code. IMAC provides the mechanism for network management
code to request the high QOS it requires.

8.3 The Flow Network

The Flow Network [Zhang89] aims to provide users with guaranteed performance
by requiring explicit resource reservation and by employing rate based traffic control.
The Flow Protocol (FP) is a network level protocol that provides a simplex commu-
nication channel, flow, between two end users. The Flow Control Protocol (FCP)
is an auxiliary protocol that assists in connection management. FCP performs flow
set up and tear-down, while FP carries out the transmission phase in between. A
separate control protocol alleviates the need to overload the data packet format
with control information hence reducing the per packet processing overhead. This
is the approach taken by MSNA and B-ISDN, i.e. specific VClIs being allocated for
management purposes. The VirtualClock mechanism (Section 6.3) is used to control
packet transmission in Flow Network switches.

The Flow Network architecture is able to describe the provision of real-time cir-
cuits over an ATM network. The fixed size cells of an ATM style network being
a degenerate case of the variable size packets the architecture defines. In an ATM
environment the VirtualClock mechanism is able to act as a policing function. Cells
which cause the VirtualClock for a stream to overtake real-time by a certain thresh-
old may be marked as illegal. The VirtualClock mechanism for a stream is reset
after the arrival of a stream specific number of cells. This is an appropriate time
to inform higher level management if the VirtualClock for a stream is in advance
of real-time. However, the use of VirtualClock at internal network switching nodes
where policing is not required (but high switching rates are) is doubtful due to the
per packet processing costs. At the time of writing no implementation of the Flow
Network architecture exists.

8.4 The Aurora Host Interface

The Aurora project is one of the five DARPA gigabit testbeds. It will include ATM
switches that are capable of handling traffic at speeds of 622 Mbps. [Davie91] de-
scribes an ATM host-network interface aimed at connecting workstation class hosts
to the Aurora network efficiently. The interface is targeted initially for attachment
to the turbochannel bus [DEC90] on a DEC 5000 workstation. Data transfers are by
DMA in order to take full advantage of the bus architecture. The lessons described

89

in this dissertation concerning the system support for ATM interfaces, albeit at far
lower data rates, should be applicable. The developers are aware of the requirement
that the interface support expedited transfer of cells and will structure the host and
interface software accordingly.

At the time of writing prototype host interfaces are in the final stages of construc-
tion. Some simple experiments have been made concerning the software which will
run in the interface itself. If, as seems likely, the project selects Ultrix as the oper-
ating system to run in the host, a radical kernel re-structuring will be necessary for
application programs to benefit from the interface design.

8.5 DASH

The DASH [Anderson88] project aims to produce an experimental distributed
system with support for real-time communication. It addresses the lack of support
found in general purpose operating systems for the handling of continuous media.
The DASH resource model decomposes the system components that handle contin-
uous media into resources. For example, a CPU and its scheduler can be considered
a resource. Work is given to resources in units called messages. A workload is de-
scribed by a so called linear bounded arrival process (LBAP). Resources provide a
standard interface allowing clients to create sessions with the resource. In return for
specifying a LBAP, upon session establishment, a client is returned a bound on the
message delay it will experience within the resource. Sessions can be combined to
form end-to-end sessions spanning multiple resources.

Much of the early project work involved the construction of a kernel that supported
the DASH resource model. Current work is more oriented towards applications in
the UNIX environment. A discussion of how an operating system can be made to
conform to the DASH resource model may be found in [Anderson89]. The Mach
operating system (Section 8.7) is used as an example. Included in the same paper
is the Continuous Media Extensions to X (CMEX) design.

8.6 B-ISDN

The B-ISDN (Section 2.3), based upon ATM switching, is proposed as the basis
for the future public carrier network. The draft B-ISDN specification [CCITT88]
defines an interface (which supports the establishment of connections with perfor-
mance guarantees) to an ATM network. Techniques for extending these guarantees
through user systems are outside the scope of the specification. Given the time

90

consuming nature of the standards process, the fact that B-ISDN/ATM is still an
area active of research and also the inertia of the currently installed STM system,
the widespread deployment of ATM technology is at least several years distant.

It is doubtful whether the inherent complexity of B-ISDN is appropriate in the local
area. However, the same reasons that make ATM suitable for wide area multi-
service traffic also apply in the local area. It is possible to envisage a single site
running simple protocols similar to those of the MSNA suite over its own ATM
networks. Wide area access is achieved by the purchase of B-ISDN interface(s)
of the appropriate capacity. Traffic between the public and private networks goes
through what is essentially an ATM router. The QOS parameter of each connection
provides the mechanism for controlled sharing of this resource.

8.7 Mach

The Mach system [Accetta86], developed at Carnegie Mellon University (CMU),
is aimed at providing a lightweight micro-kernel foundation for the UNIX operating
system. Mach has been selected to form the basis of the Open Software Foundations
(OSF) operating systems offering: OSF/1. Mach has evolved from the earlier RIG
and Accent projects [Rashid86]. Mach release 2.5 has many UNIX services still
integrated at the “pure” Mach micro-kernel level. The current release (3.0) has all
UNIX functionality moved up to the application level. Two approaches have been
attempted in implementing the user level UNIX environment:

e as a single server process.

e as a set of (distributed) processes.

A Mach process is referred to as a task. A task may have multiple threads associated
with it. The micro-kernel is capable of functioning on multiprocessor architectures,
threads being independently schedulable on any processor. Mach provides interpro-
cess communication between threads through constructs called ports. All services,
resources and facilities within the Mach micro-kernel and between Mach tasks are
represented as ports. The address space of a Mach task is represented as a collection
of mappings from linear addresses to offsets within Mach memory objects. The pri-
mary role of the micro-kernel in virtual memory management is to manage physical
memory as a cache of the contents of memory objects.

91

It is likely that Mach will be the micro-kernel of choice for many future systems.
The level of support it provides for multi-service traffic is therefore of particular
interest. The tight integration of the Mach IPC and VM systems gives high perfor-
mance for large intra-node messages. Small messages are costly due to the large VM
manipulation overhead. This has been identified as an area of further study by the
Mach developers. Messages destined for ports on a different machine suffer a level
of indirection through a network server. This penalty may be reduced by placing
such servers within the micro-kernel.

The popularity of Mach has resulted in several attempts at providing real-time
extensions to the micro-kernel. CMU’s ART (Advanced Real-Time Technology)
group is developing a real-time version of the Mach micro-kernel in addition to a
real-time toolset for system design and analysis [Tokuda90]. The new micro-kernel
includes an integrated time-driven scheduler, real-time synchronisation and memory
resident objects. Nakajima [Nakajima91l] describes real-time extensions to the
micro-kernel specifically in order to support multimedia applications. A significant
part of the work aims at providing support for the development of multimedia device
drivers in user space.

8.8 Summary

Multimedia research is increasing the demands for the support of multi-service traf-
fic on both the computer and communications industries. The same networking
technology, ATM, is suitable for fulfilling the requirements of both. This represents
a further strengthening of the marriage between the two industries. A good example
may be found in the Aurora gigabit network testbed. In addition to using ATM in
the backbone network its use has been extended all the way to the workstation.
A more conservative example is found in the TWBNet. The backbone network
supports service reservations but the LANs via which most hosts connect do not.

The amount of networking and protocol research activity is not matched by that
concerning support for multi-service traffic in the endpoint operating systems. The
DASH system at Berkeley is perhaps the most advanced attempt to date. Since
most computer generated traffic has involved mainly data applications, of which
few demand transmission guarantees, this is not surprising. The approach has been
that transient peaks in the demand on network and host capacity, leading to poor
response, can be tolerated by the system users. If such transient peaks persist then

more capacity must be installed. This pragmatic approach is no longer tenable when
multi-service traffic is concerned.

92

Chapter 9

Further Work

The realisation of an ATM service quality network offering QOS guarantees is still
in the future. The work described in this dissertation is only in partial fulfillment of
such a goal. However, the infra-structure which has been developed is stable enough
that it is being used as the basis for future research. Some of the work outlined
below will be continued within the MSNA framework at Cambridge. A division is
made between future network and applications research.

9.1 Network Research

The physical hardware represents a fraction of the total effort necessary to build a
service network. Whilst a great deal of work will continue in improving the per-
formance of ATM hardware the principles upon which the controlling software is
built should not change. The controlling software will be built using the products
of distributed systems research. Properly designed, it will emphasise properties of:

e scaling to large configurations.

¢ fault tolerance.

e lack of centralised dependencies.

e flexible component placement.

¢ remote operation and upgrade.

93

9.1.1 Network Management

The comparatively small network described in Chapter 4 demands a significant
amount of maintenance time from experienced personnel. A larger network would
dictate the total or partial automation of most of these management functions. Some
of the issues involved in network management are:

o fault management - fault detection and correction, trouble reports.
e configuration management - topology and routing changes.

e capacity management - identification of trends in the network.

e security management - intrusion identification, secured access.

e accounting management - billing reports.

Network management, akin to electronic mail, is a naturally distributed application.
A significant amount of network management software will be developed within the
framework of a distributed computing system e.g. ANSA/IMAC or Network Com-
puting System (NCS) [Kong90]. A large amount of experience exists with simple
Network management systems, an example protocol being the Simple Network Man-
agement Protocol (SNMP) [Case90] from the DARPA Internet family. It is an open
question as to how much of such research can be applied to the management of ATM
networks offering QOS.

9.1.2 Routing

The interaction of QOS and routing is an interesting area for future research. A
knowledge of network topology allows a set of candidate paths to a given destination
to be computed. A knowledge of the link and router capacity along each path in
conjunction with the QOS requested allows the set of paths to be refined. So far
the only information which has been used is of a slow changing nature and can be
cached close to the connection originator. Of the candidate paths not all may be
available due to lack of spare capacity or failed components.

One useful observation is that a large percentage of connection requests will be for
the local area. In this case algorithms which make use of the full local configuration
and state may be more applicable [Snyder89]. The Desk Area Network (DAN)

(Section 9.2) is a good example where maintaining the full global state of the network
is practical.

94

9.1.3 Fault Tolerance

A large amount of effort can be expended in making the probability of individual
component (both software and hardware) failure in the network small. However, in
a large network, failures will occur regularly. The effects of any such failure should
be minimised. One basic mechanism for implementing network fault tolerance is
call redirection. Call redirection is here defined as the ability to alter the route of a
connection without causing a connection fail indication to either of the endpoints.
Some scenarios in which it may be useful are:

e re-routing of calls established through a failed router.
e migrating all calls of a router prior to taking it down.

e network management may wish to alter the call distribution.

GATEWAY D
JOIN5
vCs VC8
GATEWAY A GATEWAY B GATEWAY C
JOIN 4 '_./ .JOING&
" JOINT JOIN 2 JOIN3

VvCi vGC2 VC3 \ VC4

Figure 9.1: Single Hop Call Re-routing

In the general case the replaced part of a call will consist of one or more hops, the
replacing path will also consist of one or more hops. The replacement path should
have a QOS consistent with the original, unless QOS contributions are re-negotiated
at other components along the call path. To perform a single hop redirect on the
established call (VC1-4) through gateway D as illustrated in Figure 9.1 the following

steps must be taken:
1. establish VC5, VC6 and JOIN 5
2. establish JOIN 6 (breaking JOIN 3)
95

3. establish JOIN 4 (breaking JOIN 1)
4. delete VC2 and VC3

Steps 2 and 3 may be performed concurrently. If step 2 is performed before step 3
then cells arriving on VC3 will be forwarded to sink. If step 3 is performed before
step 2 then cells arriving on VC6 will be forwarded to sink. In either case, cells may
be lost. If such cell loss is not consistent with the QOS for the call then the circuit
may have to be closed and the terminal points notified.

In the case of a scheduled redirect the above process is made simpler by gateway
B being alive. Gateway A is able to query gateway B for the location of the next
hop gateway (C). In the case of a redirect being initiated because of gateway B’s
failure, gateway A is unable to easily ascertain the list of gateways downstream from
B which support the call. One solution is for this information to be returned as part
of connection establishment. Another is for the query process to begin once the call
has been established.

9.1.4 Hardware Implementation

One of the advantages of the simplicity involved in ATM cell processing is the
possibility of implementation in hardware. Research is needed to determine what
the functional interface to such hardware should be. The Xilinx programmable gate
array [Xilinx89)] in the Fairisle Port Controller allows easy experimentation with
new interface designs. Already experience with the prototype has dictated changes
to the Xilinx configuration.

96

9.2 Application Research

No matter how much care has been taken in the design of an interface its utility can
only be determined by active use. The development of an ATM network offering
QOS is driven by applications development. If an application is unable to perform
an operation it thinks natural then it is perhaps a candidate for integration into
the network architecture e.g. the provision of a multicast facility. The migration of
existing applications to use ATM in an optimal manner will be gradual. Section 4.2
showed how a large portion of existing data (IP) traffic can immediately be carried
over an ATM network. The widespread installation of optical fibre in the Cambridge
area, as part of Project Granta [Cook91], offers the promise of constructing more
realistic testbeds. ATM application research at Cambridge will continue through a
number of major projects.

Pandora 2

The Pandora 2 project at Olivetti Research Ltd. aims to build a second generation
multimedia workstation based on the lessons learnt from Pandora. The multimedia
devices and network interface will be inter-connected by a standard workstation
bus: the turbochannel [DEC90]. The desire to support higher quality media has
necessitated using the CBN, instead of CFR, as the local distribution network.

The Desk Area Network

The Desk Area Network (DAN) [Hayter91b] is a proposal to build a multimedia
workstation using an ATM switch to inter-connect the various workstation compo-
nents. The interface between the DAN and a high speed ATM network is simply
a cell router. The ATM switch will be constructed from Fairisle port controllers
(Section 2.2.1) running the WANDA kernel. One device of particular interest is a
HDTYV frame buffer that has been developed at the Computer Laboratory.

Video File Server

Applications such as video mail require the permanent storage of real-time media
i.e voice and video. [Jardetzky92] is an attempt to build a file server capable of
handling the requirements of these media, WANDA being used as the base kernel for
the file server. It will be interesting to see what further system support, particularly
concerning stream synchronisation, this project may require.

97

Chapter 10

Conclusion

This dissertation has examined the systems issues associated with supporting multi-
service traffic in an ATM environment. Practical work has been carried out over
a testbed comprising heterogeneous ATM network implementations including the
512 MHz Cambridge Backbone Network. The testbed has demonstrated experi-
mentally the ability of an ATM based network to concurrently handle the different
requirements of multi-service traffic: voice, video (Pandora) and data (IP/MSNA).
In addition to dedicated multimedia source and sinks, the network included hosts
running a locally developed micro-kernel (WANDA). The virtual circuit model was
shown not to compromise the operation of a comprehensive distributed program-
ming environment (ANSA). Attempts to handle multi-service traffic at the WANDA
application layer demonstrated shortcomings in the design of the kernel and its as-
sociated ATM interfaces. Such shortcomings are also apparent in current general
purpose operating systems, e.g. UNIX. The amount of delay and more importantly
jitter introduced by the host can be orders of magnitude greater than that of the
physical network. All major sources of jitter inside the host have been identified. In
some cases these can be removed by a simple re-working of the kernel structure. Sug-
gestions leading to further jitter reduction have been made concerning the design of
current host network interfaces. As CPU performance improves, traffic previously
handled by dedicated hardware will more often be processed by application soft-
ware. This move will be driven both by the high cost of dedicated hardware and
the flexibility offered by a software solution. A large percentage of multimedia pro-
cessing is likely to take place in the workstation environment. Unless the operating
system kernels for such machines are implemented with a view to handling multi-

service traffic, then hybrid solutions such as that evident in the Pandora system will
pre-dominate.

99

Bibliography

[Abrossimov89]

[Accetta86]

[AMDS5]

[Anderson88]

[Anderson89]

[Angebranndt88]

[ANSAS89]

[Ash89]

[Ash90]

V. Abrossimov, M. Rozier, and M. Gien. Virtual Memory
Management in Chorus. In Proc. of the European Workshop,
Lecture Notes In Computer Science, Berlin, FRG, April 1989.
Springer-Verlag. (p26)

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A New Kernel Foundation
For UNIX Development. In Proc. USENIX Summer Confer-
ence, August 1986. (pp 18, 91)

Advanced Micro Devices. Local Area Network Controller
Am7990 (Lance), 1985. (p9)

D. P. Anderson and D. Ferrari. The DASH Project: An
Overview. Technical Report, Computer Science Division. Uni-
versity of California, Berkeley, February 1988. (p90)

D. P. Anderson, R. Govidan, G. Homsy, and R. Wahbe. Inte-
grated Digital Continuous Media: A Framework based on Mach,
X11 and TCP/IP. Technical Report, Computer Science Divi-
sion. University of California, Berkeley, March 1989. (p90)

S. Angebranndt, R. Drewry, P. Karlton, and T. Newman. Defi-
nition of the Porting Layer for the X V11 Sample Server, March
1988. (p18)

Architecture Projects Management. The ANSA Reference Man-
ual, March 1989. (pp3, 20, 88)

G. R. Ash and E. Oberer. Dynamic Routing in the AT&T
Network - Improved Service Quality at Lower Cost. In Proc.
IEEE Global Telecomm. Conf., November 1989. (p39)

G. R. Ash. Design and Control of Networks with Dynamic Non-
hierarchical Routing. IEEE Comm. Magazine, October 1990.
(pp37, 47)

101

[Beeler91]

[Bellamy82]

[Bershad90]

[Birrell89]

[Braden87]

[Caceres91]

[Case90]

[Casner90]

[CCITTSS]

[Cheriton88]

[Clark85]

[Cocchifl]

[CoffmanT3]

[Cook91]

R. Beeler. Fairisle VME Interface. Technical Report 219, Cam-
bridge University Computer Laboratory, April 1991. (p10)

J. Bellamy. Digital Telephony. Wiley, 1982. (p43)

B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight Remote Procedure Call. ACM Trans. on Com-
puter Systems, 8(1), February 1990. (p23)

A. Birrell. An Introduction to Programming with Threads. Tech-
nical Report 35, DEC Systems Research Centre, January 1989.

(pp 19, 75)

R. Braden and J. B. Postel. Requirements for Internet Gate-
ways. RFC-1009, June 1987. (p27)

R. Caceres, P. B. Danzig, S. Jamin, and D. J. Mitzel. Charac-
teristics of Wide-Area TCP/IP Conversations. In Proc. ACM
SIGCOMM, September 1991. (pp41, 46, 85)

J. D. Case, M. Fedor, M. L. Schoffstall, and C. Davin. Simple
Network Management Protocol (SNMP). RFC-1157, May 1990.
(p94)

S. Casner, K. Seo, W. Edmond, and C. Topolcic. Ezperimental
Internet Stream Protocol Version 2 (ST-1I). RFC-1190, October
1990. (p88)

CCITT Study Group XVIII Draft Recommendation 1.121.
Broadband aspects of ISDN, February 1988. (pp1, 90)

D. R. Cheriton. The V Distributed System. Comm. of the ACM,
31(3), March 1988. (pp24, 25)

D. Clark. The Structuring of Systems using Upcalls. In Proc.
ACM SIGOPS, December 1985. (p75)

R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Study of
Priority Pricing in Multiple Service Class Networks. In Proc.
ACM SIGCOMM, September 1991. (p45)

E. G. Coffman and P. J. Denning. Operating Systems Theory.
Prentice-Hall, 1973. (p52)

A. Cook et al. Report of the Computer Syndicate. Cambridge
University Reporter (published by authority), 5481, August
1991. (p97)

102

[Cooper88]

[Corbet91]

[Davie91]

[Day83]

[DECS86]

[DEC90]

[Demers90]

[Dijkstra68]

[Dittmann88]

[Edmond90]

[Ellis88]

[Ferrari90]

[Forgie79]

[Garnett83]

R. C. B. Cooper. Debugging Concurrent and Distributed Pro-
grams. Technical Report 128, Cambridge University Computer
Laboratory, February 1988. Ph.D. dissertation. (p22)

J. Corbet. The MIT Shared Memory Extension. X11 Release 5
Documentation, September 1991. (p 38)

B. S. Davie. A Host-Network Interface Architecture for ATM.
In Proc. ACM SIGCOMM, September 1991. (p89)

J. Day and H. Zimmerman. The OSI Reference Model. In Proc.
of the IEEE, December 1983. (p16)

Digital Equipment Corporation. DEQNA FEthernet: User’s
Guide, 2nd edition, September 1986. (p9)

Digital Equipment Corporation. Turbochannel Developers Kit
Version 2, September 1990. (pp 89, 97)

A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation
of a Fair Queueing Algorithm. Internetworking: Research and
Experience, 1(1), 1990. (pp51, 53)

E. W. Dijkstra. The Structure of the THE Multiprogramming
System. Comm. of the ACM, 11(5), May 1968. (p19)

L. Dittmann and S. B. Jacobsen. Statistical Multiplezing of
Identical Bursty Sources in an ATM Network. In Proc. IEEE
Globecomm 88, November 1988. (p44)

W. Edmond, K. Seo, M. Leib, and C. Topolcic. The DARPA
Wideband Network Dual Bus Protocol. In Proc. ACM SIG-
COMM, September 1990. (p87)

J. R. Ellis, K. Li, and A. W. Appel. Real-time Concurrent
Collection on Stock Multiprocessors. Technical Report 25, DEC
Systems Research Centre, February 1988. (p23)

D. Ferrari. A Scheme for Real-Time Channel Establishment
in Wide-Area Networks. IEEE Journal on Selected Areas in
Communications, 8(3), April 1990. (p47)

J. W. Forgie. ST - A Proposed Internet Stream Protocol. IEN
119, September 1979. (p87)

N. H. Garnett. Intelligent Network Interfaces. Technical Re-
port 46, Cambridge University Computer Laboratory, Septem-
ber 1983. Ph.D. dissertation. (p79)

103

[Golub90]

[Greaves90]

[Greaves91]

[Harita91]

[Hayter91a]

[Hayter91b]

[Herrmann88]

[Hirano89]

[Hoppera88]

[Hopper90]

[Jacobson8&8]

[Jardetzky92]

D. Golub, R. Dean, A. Forin, and R. Rashid. Uniz as an Appli-
cation Program. In Proc. USENIX Summer Conference, August
1990. (p18)

D. J. Greaves, D. Lioupis, and A. Hopper. The Cambridge
Backbone Ring. Technical Report 2, Olivetti Research Ltd.,
Cambridge, February 1990. (pp2, 7)

D. J. Greaves. Cambridge Backbone Ring Half-Duplex VME
Station. Olivetti Research Ltd., Internal Documentation, 1991.

(p8)

B. R. Harita. Dynamic Bandwidth Managemeni. Technical
Report 217, Cambridge University Computer Laboratory, April
1991. Ph.D. dissertation. (p 36)

M. D. Hayter and R. J. Black. Fairisle Port Coniroller: De-
sign and Ideas. Technical Report 219, Cambridge University
Computer Laboratory, April 1991. (p10)

M. D. Hayter and D. R. McAuley. The Desk Area Network.
Technical Report 228, Cambridge University Computer Labo-
ratory, May 1991. (p97)

F. Herrmann et al. Chorus: A New Technology for Building
UNIX Systems. In Proc. EUUG Autumn 88 Conference, Octo-
ber 1988. (p18)

M. Hirano and N. Watanabe. Characteristics of a Cell Multi-
plexer for Bursty ATM Traffic. In Proc. IEEE ICC 89, June
1989. (p44)

A. Hopper and R. M. Needham. The Cambridge Fast Ring
Networking System. IEEE Trans. Computers, 37(10), October
1988. (pp2,7)

A. Hopper. Pandora - An ezperimental system for multimedia
applications. ACM Operating Systems Review, 24(2), April
1990. (pp2, 33)

V. Jacobson. Congestion Avoidance and Control. In Proc. ACM
SIGCOMM, August 1988. (p67)

P. W. Jardetzky. Network File Service Design for Continu-
ous Media, 1992. Cambridge University Computer Laboratory,
Ph.D. thesis in preparation. (p97)

104

[Jungok91]

[Kong90]
[Lamport78]

[Leffler89]

[Leslie91]

[Maglaris87]

[Mankin90]

[Mapp91]

[McAuley90]

[Metcalfe76]

[Mills89]

[Mogul87]

[Nagle87]

J. Jungok and T. Suda. A Survey of Traffic Control Schemes
and Protocols in ATM Networks. In Proc. of the IEEE, February
1991. (pp4l, 44)

Kong et al. Network Computing System Reference Manual.
Prentice Hall, 1990. (p94)

L. Lamport. Time, Clocks, and the Ordering of Fvents in a Dis-
tributed System. Comm. of the ACM, 21(7), July 1978. (p68)

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.3BSD UNIX Op-
erating System. Addison-Wesley, Reading, Ma., 1989. (p23)

I. M. Leslie and D. R. McAuley. Fairisle: An ATM Network for
the Local Area. In Proc. ACM SIGCOMM, September 1991.
(pr2, 9)

B. Maglaris. Performance Analysis of Statistical Multiplez-
ing for Packet Video Sources. In Proc. IEEE Globecomm 87,
November 1987. (p44)

A. Mankin. Random Drop Congestion Control. In Proc. ACM
SIGCOMM, September 1990. (p51)

G. E. Mapp. An Object Oriented Approach to Virtual Memory
Management, 1991. Cambridge University Computer Labora-
tory, Ph.D. thesis in preparation. (p18)

D. R. McAuley. Protocol Design For High Speed Networks. Tech-
nical Report 186, Cambridge University Computer Laboratory,
January 1990. Ph.D. dissertation. (pp2, 5, 38)

R. M. Metcalfe and D. R. Boggs. FEthernet: Distributed packet
switching for local computer networks. Comm. of the ACM,
19(6), July 1976. (p9)

D. L. Mills. Internet Time Synchronization: The Network Time
Protocol. Network Working Group RFC 1129, October 1989.

(p68)

J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet Filter:
An Efficient Mechanism for User-Level Network Code. Techni-

cal Report 2, DEC Western Research Laboratory, November
1987. (p28)

J. Nagle. On Packet Switches with Infinite Storage. IEEE Trans.
Comm., 1987. (p53)

105

[Nakajima91]

[Needham82]

[Newman89]

[Nicolaou91]

[Ofek89]

[Ousterhout82]

[Patterson80]

[Postel80]

[Postel81a]

[Postel81b]

[Powell83]

[Rashid86]

J. Nakajima, M. Yazaki, and H. Matsumoto. Multime-
dia/Realtime Ezxtensions for the Mach Operating System. In
Proc. USENIX Summer Conference, June 1991. (p92)

R. M. Needham and A. J. Herbert. The Cambridge Dis-
tributed Computer System. Addison-Wesley, Reading, Ma.,
1982. (p17)

P. Newman. Fast Packet Switching for Integrated Services.
Technical Report 165, Cambridge University Computer Lab-
oratory, 1989. Ph.D. dissertation. (p2)

C. Nicolaou. A Distributed Architecture for Multimedia Com-
munication Systems. Technical Report 220, Cambridge Uni-
versity Computer Laboratory, May 1991. Ph.D. dissertation.
(pp 3, 42, 47, 88)

Y. Ofek. Generating a Fault Tolerant Global Clock in a High
Speed Distributed System. In Proc. 9th Int. Conf. on Distributed
Computing Systems, June 1989. (p68)

J. K. Ousterhout. Scheduling Techniques for Concurrent Sys-
tems. In Proc. 3rd Int. Conf. on Distributed Computing Sys-
tems, October 1982. (p19)

D. A. Patterson and D. R. Ditzel. The case for the reduced
instruction set computer. ACM Computer Architecture News,
8(6), October 1980. (p18)

J. B. Postel. User Datagram Protocol. RFC-768, August 1980.
(p38)

J. B. Postel. The Internet Protocel. RFC-791, September 1981.
(pp 35, 39)

J. B. Postel. Transmission Conirol Protocol. RFC-793, Septem-
ber 1981. (pp37, 46)

M. Powell and B. Miller. Process Migration in DEMOS/MP.
In Proc. 9th ACM SOSP, October 1983. (p22)

R. F. Rashid. From RIG to Accent to Mach: The Evolution
of a Network Operating System. In Proc. of the ACM/IEEE
Computer Society, Fall Joint Computer Conference, November

1986. (p91)
106

[Redell88]

[Sandberg85]

[Scheifler86]

[Schroeder89]

[Snyder89]

[Sreenan90]

[SUNS6]

[SUN91]

[Swinehart83]

[Swinehart85]

[Tanenbaum87]

[Tennenhouse87]

D. D. Redell. Ezperience with Topaz TeleDebugging. In ACM
SIGPLAN and SIGOPS: Workshop on Parallel and Distributed
Debugging, May 1988. (p22)

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and Implementation of the Sun Network Filesystem. In
Proc. of the USENIX Summer 1985 Conference. USENIX As-
sociation, July 1985. (p18)

R. W. Scheifler and J. Gettys. The X Window System. ACM
Transactions on Graphics, 5(2), April 1986. (pp 18, 33)

M. Schroeder and M. Burrows. Performance of Firefly RPC.
Technical Report 43, DEC Systems Research Center, April
1989. (pp 25, 67)

J. M. Snyder. A Routing Architecture For Very Large Networks
Undergoing Rapid Reconfiguration. In Proc. ACM SIGCOMM,
September 1989. (p94)

C. J. Sreenan. Synchronised Retrieval of Multi-Media Data. In
First Int. Workshop on Network and Operating System Support
for Digital Audio and Video, November 1990. (p48)

Sun Microsystems Inc. Remote Procedure Call Protocol Specifi-
cation, February 1986. (pp3, 18)

Sun Microsystems Inc. ANSI T1S1.5 / Simple and Efficient
Adaptation Layer (SEAL), August 1991. (p15)

D. C. Swinehart, L. C. Stewart, and S. M. Ornstein. Adding
Voice to an Office Computer Network. In Proc. IEEE Global
Telecomm. Conf., November 1983. (p40)

D. C. Swinehart, P. T. Zellweger, and R. B. Hagmann. The
Structure of Cedar. In Proc. of the ACM SIGPLAN 85 Sympo-

sium on Language Issues in Programming Environments, June
1985. (p19)

A. Tanenbaum and S. Mullender. An Overview of the Amoeba
Distributed Operating System. ACM Operating Systems Re-
view, 15(3), July 1987. (pp3, 18, 24, 25)

D. L. Tennenhouse. Ezploiting Wideband ISDN: The Unison
Exchange. In Proc. IEEE INFOCOM 87, April 1987. (p 36)

107

[Tennenhouse89] D. L. Tennenhouse. Layered Multiplexing Considered Harmful.

[Thacker87]

[Theimer85]

[Tokuda90]

[Trevanian87]

[Turner86]

[VLSI8"]
[VLSI9O0)]
[Xerox81]

[Xilinx89]

[Zayas87]

(Zhang89]

[Zhang90]

In Protocols for High Speed Networks, IBM Zurich Research
Lab., May 1989. IFIP WG.1/6.4 Workshop. (p16)

C. Thacker, L. Stewart, and E. Satterthwaite Jr. Firefly: A
Multiprocessor Workstation. Technical Report 23, DEC Sys-
tems Research Centre, December 1987. (pp3, 25, 74)

M. Theimer, K. Lantz, and D. R. Cheriton. Preemptable Re-
mote Erecution Facilities for the V System. In Proc. 10th ACM
SOSP, December 1985. (p22)

H. Tokuda et al. Real-Time Mach: Towards a Predictable
Real-Time System. In Proceedings of USENIX Mach Work-
shop, Burlington, Vermont. USENIX Association, October
1990. (p92)

A. Trevanian, R. Rashid, M. Young, D. Golub, R. Baron,
D. Black, D. W. Bolosky, and J. Chew. Machine-Independent
Virtual Memory Management for Paged Uniprocessor and Mul-
tiprocessor Architectures. In Proc. of the Second Symposium on

Architectural Support for Programming and Operting Systems,
October 1987. (p26)

J. S. Turner. New Directions in Communications (or Which
Way to the Information Age ?). IEEE Comm. Magazine, 24(10),
October 1986. (p60)

VLSI Inc. ARM Datasheet, 1987. (p3)
VLSI Inc. ARM3 Datasheet, 1990. (p 10)

Xerox Corporation. Internet Transport Protocols, December
1981. (p36)

Xilinx Inc. The Programmable Gate Array Data Book, 1989.
(p96)

E. Zayas. The Use of Copy-On-Reference in a Process Migration
System. PhD thesis, CMU, January 1987. (p22)

L. Zhang. A New Architecture for Packet Switching Network
Protocols. PhD thesis, MIT, July 1989. (p89)

L. Zhang. VirtualClock: A New Traffic Control Algorithm
for Packet Switching Networks. In Proc. ACM SIGCOMM,
September 1990. (pp 51, 55, 60)

108

