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Summary

Advances in computer technology are being pooled together to form a new computing
environment which is characterised by powerful workstations with vast amounts of mem-
ory connected to high speed networks. This environment will provide a large number of
diverse services such as multimedia communications, expert systems and ob ject-oriented
databases. In order to develop these complex applications in an efficient manner, new
interfaces are required which are simple, fast and flexible and which allow the program-
mer to use an object-oriented approach throughout the design and implementation of an
application. Virtual memory techniques are increasingly being used to build these new

facilities.

In addition, since CPU speeds continue to increase faster than disk speeds, an I/O bot-
tleneck may develop in which the CPU may be idle for long periods waiting for paging
requests to be satisfied. To overcome this problem, it is necessary to develop new paging
algorithms that better reflect how different objects are used. Thus a facility to page ob-
jects on a per-object basis is required and a testbed is also needed to obtain experimental

data on the paging activity of different objects.

Virtual memory techniques, previously only used in mainframe and minicomputer archi-
tectures, are being employed in the memory management units of modern microprocessors.
With very large address spaces becoming a standard feature of most systems, the use of
memory mapping is seen as an effective way of providing greater flexibility as well as

improved system efficiency.

This thesis presents an object-oriented interface for memory-mapped objects. Each object
has a designated object type. Handles are associated with different object types and the
interface allows users to define and manage new object types. Moving data between the
object and its backing store is done by user-level processes called object managers. Ob ject
managers interact with the kernel via a specified interface thus allowing users to build their
own object managers. A framework to compare different algorithms was also developed
and an experimental testbed was designed to gather and analyse data on the paging activ-
ity of various programs. Using the testbed, conventional paging algorithms were applied
to different types of objects and the results were compared. New paging algorithms were

designed and implemented for objects that are accessed in a highly sequential manner.
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Chapter 1

Introduction

At present, computer technology is evolving at a rapid rate. The processing power of
modern microprocessors is greater than the mainframes of the Sixties, and with the emer-
gence of RISC technology, processors are likely to continue getting faster. In addition,
continuing improvements in VLSI techniques will ensure that the cost of producing these
units continues to fall. This phenomenon has already made possible the widespread use

of workstations and personal computers.

With cheaper processors becoming widely available, multiprocessor architectures are being
built using different interconnection networks. These configurations attempt to exploit
parallel computing to achieve improved performance which could be sustained as the
number of processors is increased. These systems are providing a serious challenge to

mainframe architectures in the area of large-scale scientific computing.

Another dramatic development has been the declining cost of random access memory
or RAM. New techniques will soon make four Megabyte (MB) RAM chips a commonplace
item. Hence, in the near future, most machines will have large amounts (i.e. 64-128 MB)
of main memory. Non-volatile memory, though more expensive than RAM, also continues
to fall in cost and provides an effective alternative to disk storage in certain computer

environments.

Computer networks are also increasing in speed. The standard 10 Megabit-per-second
(Mbps) Ethernet local area network or LAN of the Eighties will soon be superseded by
100 Mbps Token Ring systems. In addition, with the appearance of fast packet switching,

1



wide area networks or WANs are being built to run at speeds of 500 Mbps to one Gigabit
per second (Gbps) using Asynchronous Transfer Mode (ATM) techniques. These networks
will carry new services, e.g. voice and video, and provide a large number of high bandwidth

channels.

Based on these developments, the new computing environment will comprise a multitude
of powerful machines, having large amounts of memory connected to fast networks. The
software requirements for this new environment are radically different from the computing
models of the last three decades. This is especially true in the area of operating systems.
For example, Unix, one of the most popular operating systems for the last two decades,
was developed for the time-sharing environment of the early Seventies. At that time
networking was minimal, large amounts of primary memory was a rare occurrence, and

disk storage was also limited.

Within the operating systems environment, one of the areas that will be affected is the
memory management system. This is because the memory management algorithms for
current operating systems are based on the assumption that memory is a scarce resource.
With large amounts of cheap RAM becoming readily available, it is possible to adopt a
more flexible approach. Perhaps, the most significant influence will come from the faster,
more sophisticated memory management units or (MMUs) of modern microprocessors.
These MMUs now use sophisticated virtual memory management techniques, which were

previously only found on mainframe and minicomputer systems.

Virtual memory techniques will therefore play a major role in delivering the benefits of
the new environment to its users. New virtual memory management systems must be
designed to give users greater flexibility by providing simple yet powerful user interfaces.
At present, users on most systems use one interface when accessing conventional program
segments which is defined by the programming language and another interface when ac-
cessing objects residing in secondary storage which is defined by the operating system.
If these two interfaces can be harmonised then the programmer can access objects in a
unified manner, without worrying about the need to move objects to and from secondary
storage. These new interfaces should also be designed with the intention of supporting per-
sistent storage for object-oriented languages, such as C++, and object-oriented databases

systems since they are becoming important facilities in many computing environments.

The use of the memory-mapped technique, in which objects are mapped into the user’s
address space on demand, is a key requirement since it hides the existence of the memory
hierarchy and makes the system, not the programmer, responsible for the movement of data
between main memory and secondary storage. Though memory mapped interfaces have

been implemented on several operating systems, they do not give added functionality to the
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user as they do not provide the facilities for users to easily implement logical abstractions.

The microkernel approach to operating system design, in which most of the services pre-
viously done by a monolithic operating system are now implemented using user-level
processes, is also becoming very popular as it enhances the flexibility, portability and
modularity of the system. This approach has been adopted in the design of a number of
operating systems including Mach and Chorus. It should also be used in this effort since
it emphasizes minimal changes to the microkernel with most of the work being done by

other user-level processes.

Paging, the movement of the pages of a process between main memory and secondary
storage as the process executes, is an important service of virtual memory management
systems. Since program sizes are increasing, support for paging will remain an essential
function of these systems for some time to come. However, as CPU speeds are increasing
much faster than disk speeds, an I/O bottleneck may develop where the CPU spends a

significant amount of time waiting for page requests to be satisfied.

To address this problem, it is necessary to review traditional paging techniques including
conventional paging algorithms with a view to developing better analytical models of
program behaviour. Previously, the development of paging models has been hampered by
a poor framework with which to compare different paging algorithms and a lack of data
on the paging activity of programs running on modern operating systems. This requires

the development of a testbed from which experimental data can be obtained.

To improve overall efficiency of the system, an examination of the use of conventional
paging algorithms on different types of objects is needed. It is essential to develop new
paging algorithms that better reflect the different access patterns of various ob jects. Thus,
it is necessary to implement paging on a per-object basis in which different objects may
be paged using different paging algorithms. This will also facilitate the development of

new paging algorithms for objects whose access patterns are well understood.

This thesis explores the issues discussed above. A new user interface is proposed and
implemented on Wanda, an experimental operating system developed at the University
of Cambridge. A new framework for comparing different paging algorithms is described
and is used to analyse the performance of traditional paging algorithms using the GCC
Compiler Suite. New paging algorithms are designed and implemented for objects that
are accessed in a highly sequential manner.



Outline

An outline of this dissertation is presented below.

Chapter 2 reviews various memory management units highlighting features that affect

operating system design.

Chapter 3 outlines the virtual memory management system of several operating systems,
ranging from Multics, the ancestor of most present-day operating systems, to 0S/2, the

new operating system for Intel microprocessors proposed by IBM.

Chapter 4 examines the microkernel approach to operating system design using two

prominent microkernels, Mach and Chorus.

Chapter 5 explores the issues in the design, implementation and analysis of paging algo-

rithms and shows the need for a new framework.

Chapter 6 outlines the design of the new user interface while Chapter 7 details its

implementation.

In Chapter 8, a new framework for the analysis of paging algorithms is developed and
results for different paging algorithms on the GCC Compiler Suite are presented and

compared.

Chapter 9 explores the design and implementation of new paging algorithms to support

objects that are accessed in a highly sequential manner.

Finally, Chapter 10 details the conclusions and future work that can be derived from
this effort.



Chapter 2

Memory Management Units

2.1 Introduction

Different approaches to virtual memory management are clearly reflected in the design
of various memory management units. This chapter investigates the features of several
MMUs, and in particular, aspects of their design that influence the virtual memory man-

agement system.

2.2 Virtual Memory Techniques

2.2.1 Virtual to Physical Translations

Virtual memory is based on a simple concept. The programmer is given a large, linear
set of addresses, commonly called an address space. These addresses, known as virtual
addresses, are generated irrespective of the physical addresses at which the information
is actually stored. The translation from a virtual to a physical address is done as the

program is being executed.

Both physical and virtual addresses are divided in small partitions called pages, typically
from 256 bytes to 8 Kilobytes (KB) in size. A page is the unit of translation between

physical and virtual addresses. Each individual page in an address space is represented
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by a virtual page number, vpn, while each physical page is represented by a physical
page number, ppn. Translation, therefore, involves taking the virtual address obtaining
the vpn and finding the corresponding ppn. Pagetables are structures that contain the
mapping between the vpn and the ppn and are usually stored in main memory. However,
since access to main memory is slower than accessing other parts on the CPU chip, the
most recent virtual to physical translations are stored in a fast Translation Lookaside
Buffer or TLB usually located on or near the CPU chip. When a virtual address is
generated, the TLB is first searched. If the translation is found in the TLB, called a TLB
hit, the corresponding physical address is put out on the address bus.

If the translation is not found in the TLB, called a TLB miss, the pagetables in main
memory are consulted to obtain the corresponding ppn. Translations in the pagetable are
valid if a valid bit is set in the corresponding pagetable entry or PTE. If a physical
page has not been assigned to the vpn, this condition is known as a pagefault and the
operating system assigns a new page and transfers the data from secondary storage to
the page. This activity is called paging and forms an integral part of virtual memory

management.

The proportion of TLB hits for a given process is called the hit ratio. A very high
ratio means that most of the virtual to physical translations are found in the TLB. Thus
improved performance can be obtained by increasing the hit ratio of the TLB. In addition,
since virtual to physical translations take place while the process is executing, it is possible
that a process with a very large address space can be executed on machines with small
amounts of physical memory. This is because most processes execute in relatively small
regions of their address spaces for relatively long intervals.

This behaviour is referred to as locality of reference. A program spends long periods
of time within a locale and shorter periods moving from one locale to the next. The time
in a given locale may be represented as a phase in the execution cycle of the program.
Thus the amount of physical memory that the process requires to continue execution is
small and can be assigned as it executes rather than satisfying its entire requirements
beforehand. The working set of each phase comprises the set of pages that the program
accesses while in that phase. The resident set is defined as the set of pages in main
memory that can be accessed by the program. The same principle can be extended to
support a multi-tasking environment where different processes are concurrently executing

in different address spaces.



2.2.2 Control Mechanisms

Multi-tasking also requires protection mechanisms which prevent processes from accessing
or changing information that would damage or corrupt the system. The need for these
mechanisms was realised in the early development of operating systems to protect the
supervisor or executive program against unauthorised access by user programs. So, in
addition to a physical page number, pagetable entries usually contain bits that govern
access to the page. These include the supervisor/user bit, which, when set, indicates
that the page could only be accessed in supervisor mode. There are bits to indicate read,
write and sometimes execute access modes. Control mechanisms have been extended to
cover several aspects of operating system design, including the global sharing of pages by
all processes, represented by a global bit, as well as a bit to indicate whether data from
the page may be cached by external caches. The reference bit indicates that an address
on a page has been accessed while the modified bit indicates that an address on the page
has been modified. These bits provide the hardware support for many paging algorithms

used in modern operating systems.

2.3 Implementation Strategies

The different approaches to implementing hardware support for virtual memory are pri-
marily related to the partitioning of the address space and how the virtual to physical
translation is performed. The simplest approach is the paged approach in which the ad-
dress space is divided into pages. There is only one pagetable per process and translation
is done by using the vpn as an index into the table. This technique is simple and fast.
However, the size of the pagetable is proportional to the size of the address space. In
addition, the entire pagetable must be kept in main memory thus limiting the amount of

multi-tasking that is possible due to a large amount of memory being used as pagetables.

Another method, which has been employed, is the segmented architecture. Here the
address space is divided into large sections called segments. The main advantage in
using this approach is that since segments are very large and only a few are needed in
memory at the same time, the virtual to physical address translations for active segments
can be held in special registers on the CPU. There is no need for a TLB. In addition, an
entire segment can be paged in a single operation. However, since segments are associated
with large amounts of physical memory, processes that do not use most of the segment
will cause the corresponding physical memory to be under-utilised. This phenomenon is

known as fragmentation and can severely reduce the performance of the overall system.



The segmented-paged architecture combines the two above approaches. In this scheme,
segments are divided into pages so that each active segment has an associated pagetable.
This architecture has several advantages. Firstly, paging reduces the fragmentation prob-
lem of the segmented architecture as there is no need to reserve physical memory for an
entire segment. If a segment is accessed and the corresponding physical page is not there,
a pagefault will be generated. In addition, only segments that are currently active in
memory, must have pagetables assigned to them. Thus pagetables may be built as re-
quired. Finally, since it is possible to provide access control mechanisms for segments as
well as pages, a greater degree of sharing can be obtained. Using different access control
settings in the segment descriptors, it is possible for different users to share the same

object (i.e. same pagetable) with different access rights.

The next approach to be considered is the Inverted Page Table (IPT) technique. With
this method, shown in Figure 2.1, a hash function is performed on a virtual address to
yield an index into a hash table. The corresponding value in the table is a physical page
number referred to as a pagetable index or PTI. The PTI is used to index into an
inverted pagetable to yield a virtual address. If the vpn in the IPT matches the vpn of the
virtual address, the PTI is the ppn for that translation. This appears to be the reverse
of normal translation — hence the term inverted pagetable. The main advantage of this
technique is that the size of the IPT is proportional to the amount of physical memory

the system supports.

However, different virtual addresses may hash to the same PTI. This is known as a col-
lision. One way to resolve this is to keep the relevant virtual addresses in a linked list in
the IPT so that the system follows the chain until it finds the correct virtual address or
the chain ends which indicates a pagefault.

The main disadvantages of the Inverted Page Table approach are that the hash table
and the IPT must be resident in main memory and two accesses are required for one
translation. These effects can be reduced by using a sizeable TLB. In addition, only a
limited amount of global sharing, in which an object is located at the same virtual address
for all address spaces, can be easily supported. This is because the hash function makes

it very difficult to map the same physical address onto different virtual addresses.

The methods described above are typically executed by the hardware once the relevant
tables are set up and the corresponding registers are loaded. Another option, which is
becoming increasingly popular, is to allow TLB misses to be managed entirely in software.
Instructions are provided to obtain the faulted address and load the virtual to physical
translation into the TLB, but exactly how the translation is done is a matter for the

operating system designer not the hardware engineer. There are obvious advantages to
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Figure 2.1: The Inverted Page Table Technique

this approach. Namely, the operating system designer is free to implement unique and
specialised solutions to meet the specifications of his system while the amount of hardware
design and silicon needed for the MMU may be severely reduced. This scheme may perform
worse than a solution implemented in hardware if a significant number of TLB misses

occur, thus a high TLB ratio is essential for good performance.

2.4 Specific Architectures

In this subsection, we examine several memory management units that use techniques
described above giving a detailed description of a design based on each of the above

approaches.

2.4.1 The Vax Architecture

The Vax is an example [Dig86] of a paged virtual memory architecture with some unique
characteristics. The system uses a large pagetable as the system pagetable or spt. The

physical address and length of the spt are kept in special registers known as the System
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Figure 2.2: The Vax Address Space

Branch Register (SBR) and the System Length Register (SLR) respectively. All

virtual address translations are done via the spt.

The address space of a process, shown in Figure 2.2, is divided in four fixed-size regions.
PO and P1 are regions that are specific to the individual process while system space is
shared by all processes. The P0 region grows linearly upwards and is used to map the
text and data segments of a process. The P1 region grows downwards. The stack as
well as other control information are mapped in this region. The Vax supports a four
Gigabyte address space in which the PO and P1 regions occur in the first two Gigabytes
with one Gigabyte used for system space and the other Gigabyte reserved for future use.

The architecture employs a page size of 512 bytes.

PO and P1 regions are represented by pagetables which are assigned from the spt. The start
of these regions in the spt are indicated by the pObr and p1br registers while their lengths
are placed in the pOlr and pllr registers respectively. To translate a virtual address in
the PO region, the virtual page number is added to the pOlr register. The result is used
to index into the spt to get the pagetable entry which contains the physical page number.
Thus two memory accesses are required to do a translation in the P0 or P1 region. For
an address in system space, the spt is used directly. This means that all processes see the

same data in system space.

This scheme has a number of drawbacks. Firstly, to support a large virtual address space,
the system pagetable must also be large. Secondly, to have small pagetables for the P0
and P1 regions, logically independent segments must be placed very close to each other,
making it difficult to dynamically grow segments. Finally, though system space allows

processes to share common utilities, it is difficult to provide some form of limited access

10



control where a small number of processes are required to have access to data, possibly with
different access rights. The data has to be mapped into the address space of each of the
processes involved using different pagetables. This introduces problems in keeping track
of modification to pages since a number of pagetables must be simultaneously consulted,

resulting in poor performance.

The Vax supports four different modes of privilege, namely, kernel, executive, super-
visor and user. The kernel mode is the most privileged followed by the executive and
then supervisor modes respectively. The user mode is the least privileged. By combining
these privilege modes with read and write controls, it is possible to support a wide range

of access control levels. The system works via the following rules:

1. The access modes supported by the system are read/write, read-only and none.
2. Whichever level has read access, all more privileged levels also have read access.

3. Whichever level has write access, all more privileged levels also have write access.

For example, the access mode, supervisor-read-only and kernel-write, means that in kernel
mode the page may be read from or written to, in executive or supervisor modes the page is
read-only, while in user mode, it is not accessible. The access control modes are represented
by four bits in each pagetable entry. There is also a valid bit as well as a modified bit.
The Vax 11/780, the first implementation of this architecture, employed a TLB consisting
of 128 entries, with a reported hit ratio 98% [Hennessy90, pages 441-444].

2.4.2 The Intel 80286

The segmented approach is seen in several architectures including the Burroughs B5000,
PDP series and more recently the 80286 microprocessor [Ciminiera87], [Hennessy90,
pages 445-449]. The 80286 supports a one Gigabyte address space and offers a maximum
physical size of 16 MB. Segments are 64KB long. A virtual address is comprised of two
components, a segment offset, which is 16 bits long, and a segment selector. The

address resolution scheme is shown in Fig. 2.3.

Each process has two segment descriptor tables, the local descriptor table or (LDT) and
the global descriptor table or (GDT). The T1 bit in the segment selector indicates which
table must be accessed to obtain the relevant segment descriptor. Like the Vax, global
segments are seen by all processes. The privilege level of a segment is represented by two

bits in the segment selector called the RPL field. Segment selectors are loaded into four
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Figure 2.3: Address Resolution on the 80286

registers in the CPU. These include the code, data and stack segment registers. The fourth
segment register can be used to access another segment. When a context switch occurs,

these registers are loaded with the code, data and stack selectors for the next task.

An interesting feature of the 80286 MMU design is its access control mechanism. There
are four levels of privilege with level 0 being the highest and level 3 being the lowest. The
current privilege level or CPL of a process is the privilege level contained in its stack

and code segment selectors. The access rules may be summarised as follows:

1. Data segments are accessible only by tasks at the same or higher level of privilege.

2. Subroutines can only be called by tasks at the same or lower levels of privilege than

the called routine.

Each segment descriptor contains an access control byte which includes a valid or present
bit, a read/write bit as well as an executable bit, which is set for code segments. There are
bits which indicate the direction segments are expected to grow and an access or reference
bit which is set by the hardware when the segment descriptor is accessed. This can be reset
periodically by the operating system and hence be used as an indication of how frequently
a particular segment is referenced.
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In addition, there is a two-bit field in the access control byte that indicates the descriptor
privilege level or DPL for that segment. When a segment register is loaded with a new
value, access control checking is invoked on the DPL field to ensure that unauthorised
access does not occur. When a data segment is loaded, the hardware checks that the CPL

is the same or less than (i.e. greater privilege) the DPL of the segment.

Transfer of control to other segments is carefully checked to ensure that the transfer address
is accessible by the task, the constraints of the privilege level are met, and the transfer
destination address is the correct entry point for the routine. This is done using a gate
mechanism which handles the transfer of control to another routine via a call-gate. A
task gate handles the transfer of control to another task. In addition, an interrupt gate

handles interrupts while exceptions are fielded via a trap gate mechanism.

2.4.3 The MC68851

The complexity of the segmented-paged architecture is reflected in the design of the MMUs
adopting this scheme. These MMUs therefore require a larger amount of silicon and
depending on the number of features that the designers want to support, an off-chip MMU
is sometimes built. We examine one such MMU: the paged memory management unit chip
of the 68020, the MC68851, also known as the PMMU [Mot86], [Milenkovic90, pages
81-82] . This chip supports a total address space of 32 Gigabytes which is subdivided
into eight 4-Gigabyte regions. Each region is associated with a task number or alias and
contains the address space of an individual task. A complete virtual address comprises a

task alias and the virtual address generated within the address space of that task.

Translations are done using a multi-level translation tree starting from a designated root
pointer. The tree may be up to five levels in depth, each level containing a pointer to
the next table until the pagetable is reached. At each level of the tree, access control
mechanisms can be applied. This allows different tasks to share the same segment with
different access control privileges. There are bits in each descriptor table at each level to
indicate supervisor/user access as well as read-only access which signifies that the segment

or page is protected against writing in both supervisor and user privilege modes.

An interesting feature of the MC68851 is that it supports both long and short segment
and page descriptor formats. Essentially, the short descriptors are 2 bytes long and access
control is governed by the mechanisms already mentioned above. The long descriptors
are 4 bytes long and contain two additional 3-bit fields for various read and write access
privileges. This allows the operating system designer as well as application engineers to

build very sophisticated access control mechanisms.
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The page descriptor also has several control bits including a lock bit, which locks the
translation in the TLB, a modified bit and a reference bit. There is also a cache inhibit
(CI) bit which, if set, specifies that addresses on the corresponding page may not be
stored by external caches. A global bit, which indicates that the translation is shared by
all running tasks, is also present.

Another distinguishing feature of the MC68851 is that a page descriptor in one pagetable
can point to another descriptor in a different pagetable. This indirection allows the same
translation to be shared by all tasks using the page and thus the state of the modified and
used bits reflect the use of the page by all the tasks. The PMMU also supports several
page sizes, from 256 bytes increasing in powers of 2, to 32 KB. This allows the operating

system designer to choose an appropriate page size.

The Address Translation Cache or (ATC), another name for a TLB, contains 64
entries and is fully associative. The logical address part of a TLB entry contains the tag,
the logical address and a bit which indicates if the entry is shared globally (SG) by all
tasks. If the global bit is set in a page descriptor, then the SG bit is also set in the ATC.
When the SG bit is not set, a match occurs if both the task alias and the virtual address
match the logical address in the ATC.

However, when the SG bit is set, only the virtual address field is examined and comparison
of the task alias field is suppressed. Thus the match will be found by every task and only
one entry in the ATC is sufficient. Moreover, since entries in the ATC are replaced
using a modified Least Recently Used or (LRU) policy, globally shared entries that
are frequently accessed will remain in the ATC for long periods, substantially improving

performance.

Transfer of control to other routines with different access privileges is achieved using the
CALLM instruction. This instruction is executed using special module descriptors or
gates. The address of the module descriptor is passed during the CALLM call and is
checked to ensure that the corresponding page descriptor has its gate bit set. This bit
indicates that the module is valid and prevents a user from maliciously or erroneously
using an invalid module descriptor. The instruction may also specify that a stack change

must occur. This forces the arguments to be copied onto a separate stack.

2.4.4 The HP Precision Architecture

The inverted pagetable approach is gaining popularity because of its simplicity and its

ability to efficiently support very large sparse address spaces. The Precision Architec-
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ture (PA) is a RISC architecture announced by Hewlett-Packard (HP) in 1986 [Hew87],
[Mahon86]. The MMU supports three different configurations. Level 0, which uses ab-

solute addressing while Level 1 and Level 2 provide virtual addressing.

The virtual memory system is structured as a set of different address spaces, each com-
prising 4 Gigabytes. Level 1 contains 21¢ address spaces while level 2 supports 232 address
spaces. The individual address spaces are specified using space registers and are divided
into 2 KB pages. There are eight space registers labelled 0 through 7. There are also two
TLBs, an instruction TLB (ITLB) and a data TLB (DTLB) - though it is possible to
combine the two to form a single TLB. Each TLB entry has a 15-bit access ID field as

well as an access type field which forms part of the protection mechanism of the system.

The system uses an inverted pagetable which may have negative offset values. These values
are used to indicate the mapping of virtual I/0 devices. The PA also has an elaborate
access control mechanism. There are four levels of privilege ranging from level 0 to level 3,
with level 0 being the most privileged. Access bits for read, write and execute operations
are also provided. There are four control registers that contain protection identifiers
associated with the current process. These contain 15-bit fields and one of them must

match the access ID field in the TLB before access to the page is granted.

The access type field is subdivided into three fields, a type subfield, privilege level 1 (PL1)
and privilege level 2 (PL2). The type subfield contains the access bits mentioned above,
but the PL1 and PL2 subfields qualify access. For read access, the current privilege level
(CPL) must be at least as privileged as PL1. For write access, the CPL must be at least
as privileged as PL2. For execution access, the CPL must be as least as privileged as PL1

but no more privileged than PL2.

Other features of the MMU include reference, valid, and modified bits. There is also a
page reference trap bit which, when set, causes a page reference trap interrupt when
a data reference is made to the page. This is used for debugging. In addition, there is a
break bit which also causes a data memory break trap interrupt when instructions that

modify data use this translation.

2.4.5 The MIPS Architecture

As previously mentioned, many operating system designers are beginning to favour the
software TLB approach as it allows for greater flexibility. The MIPS R2000/R3000 archi-
tecture employs such an approach [Kane88].

The architecture supports a 4-Gigabyte address space of which two Gigabytes can be
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Figure 2.4: A TLB Entry for the MIPS Architecture

accessed in user mode. When a process is executing in kernel mode, three regions can
be accessed. Firstly, there is a 512 MB cached, unmapped segment. This is used to map
the first 512 MB of physical memory into the kernel address space. References to this
region can be cached but no entries are stored in the TLB. This is normally used for the
operating system. Secondly, there is another 512 MB segment which is both uncached
and unmapped. This is typically used for I/0 registers, read-only memory (ROM) and
disk buffers. Finally, there is a 1-Gigabyte virtual address space that is mapped and is
used for setting up pagetables as well as allocating memory for stacks and dynamic data

structures. This region allows mapping on a per-page basis.

The system supports a page size of 4KB and a TLB containing 64 entries. As shown in
Figure 2.4, each entry includes a vpn and a six-bit process identifier (PI) field, which allows
multiple processes to share a TLB. The other part of the entry comprises the ppn and
bit fields to indicate constraints on the use of the page. The N bit specifies whether data
on the page can be cached and the dirty bit indicates whether data has been modified.
The valid bit indicates whether the entry in the TLB is valid and the global bit indicates
whether the page is globally shared. There are two registers that are used to read, write
and probe the TLB. These registers are referred to as the Entry Hi and Entry Lo
registers and correspond to the two parts of each TLB entry. When an address translation
exception occurs, these registers are loaded with relevant information about the address

that caused the exception.
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Exception Handling Using the Software Approach

Two additional registers are used in handling TLB misses. They are the index and
random registers. The architecture provides the exception handler with four instructions

to manipulate the TLB. These are:

Translation Lookaside Buffer Probe (tlbp) — this probes the TLB to see if an entry
matches the Entry Hi register contents. If a match occurs, the index of the entry is

loaded into the index register.

Translation Lookaside Buffer Read (tlbr) — this instruction loads the Entry Hi and
Entry Lo registers with the contents of the TLB entry specified by the contents of

the index register.

Translation Lookaside Buffer Write (tlbw) — this instruction loads the TLB entry
which is specified by the index register, with the contents of the Entry Hi and Entry

Lo registers.

Translation Lookaside Buffer Writer Random (tlbwr) — this instruction loads the
TLB entry which is specified by the random register with the contents of the Entry
Hi and Entry Lo registers.

When a TLB miss occurs, the exception handler first invokes the tlbp instruction to find
out if there is a TLB entry for the faulted address. If a TLB entry exists, it checks the
state of the bit fields to determine why the translation was not executed. If an entry does
not exist, it must replace an entry in the TLB if the TLB is full. To do this, it loads
the index register with the TLB entry it is going to replace and then invokes the tlbr
instruction. If the TLB entry is being replaced randomly, then the value of the random
register is used.

The exception handler stores the contents of this entry in its software data structures. It
then puts the contents of the correct translation into the Entry Hi and Entry Lo registers

respectively and performs a write index or write random instruction to load the translation

into the TLB.

2.5 Summary and Conclusions

In this chapter different approaches to the design of MM Us were surveyed and implementa-

tions based on each approach were examined. The paged approach has several deficiencies
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including large pagetables, its inability to manage logically different entities efficiently as
well as inadequate mechanisms for sharing objects with different access rights. The seg-
mented scheme has the advantage of not requiring TLB support. However, the problem

of fragmentation associated with this scheme represents a serious drawback.

The segmented-paged approach combines the benefits of both the paged and segmented
architectures. The added complexities associated with this design are outweighed by the
advantages of smaller pagetables, no segment fragmentation problems, and the ability to
share objects with different access rights. Improved VLSI techniques now allow these
MMUs to be on the CPU chip as seen in the 68030’s and 68040’s. It is interesting to note
that Intel, the manufacturer of the 80286 microprocessor, has switched to the segmented
paged-architecture for the 80386’s and 80486’s.

The inverted pagetable technique allows the total pagetable size to be proportional to the
size of physical memory and not the size of the virtual address space. Thus it manages large
sparse address spaces with great efficiency and since the size of an address space continues
to increase (e.g. 64 address bits for the Precision Architecture), this approach will be
increasingly adopted. However, the inability of this scheme to easily support an object
that is mapped into several address spaces at different virtual addresses with different

access rights is a severe hindrance for systems using the memory-mapped approach.

The software-managed TLB approach is the most flexible of all the schemes. It also re-
quires minimal hardware and allows the system designer to implement software data struc-
tures to support new features for building advanced virtual memory management systems.
As CPU speeds increase, the cost of handling TLB misses in software will fall and thus this
approach will be more frequently used. At present, however, the cost of a TLB miss when
using this approach is still about 10 times slower on some architectures [Edenfield90]
when compared with the other techniques that use hardware mechanisms to find the cor-

rect translation.

In addition to providing sophisticated access control mechanisms, most MMUs have fea-
tures which aid the implementation of virtual memory management systems. These include
reference and modified bits for paging algorithms, TLB support for multi-tasking and the
cache inhibit line for cache coherency. There is also support for the global sharing of
objects as well as debugging as seen in the Precision Architecture. Given the continuous

improvements in VLSI techniques, more features will continue to be introduced.

Using these features, virtual memory management systems can be designed to provide
efficient and flexible interfaces that contribute significantly to the design of modern op-

erating systems. The virtual memory management systems of a diverse set of operating
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systems are examined in the next chapter.
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Chapter 3

Virtual Memory Management in
Operating System Design:

An Historical Perspective

3.1 Introduction

From its introduction on the Atlas computer system in 1961 [Kilburn62], virtual memory
has been employed in the design of the memory management of various operating systems.
Initially, the cost of hardware support for virtual memory limited its use to large mainframe
environments. However, with the continuous improvements in VLSI design, it has been
introduced in minicomputers and, more recently, on microprocessor architectures. This
chapter examines virtual memory management in seven operating systems and the facilities

provided by these systems using virtual memory techniques.

3.2 Multics

Multics was developed as a joint project between MIT, Bell Labs and General Electric
(GE) and was conceived of as a computer utility providing support for hundreds of time-
sharing users [Organick72]. It was developed in the Sixties on the segmented-paged
architectures of the GE635 and GE645.
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This hardware supported a virtual address space of 236 36-bit words using a page size of
1024 words. The address space was divided into segments, which had a maximum size
of 64 Kilowords (KW). Each process had a Descriptor Segment Table (DST), which was
indexed by a segment number. The segment descriptor of an active segment also contained
the address of the associated pagetable [Bensoussan72]. With such a large address space,
the approach adopted was that each segment would represent a logical entity such as a
file, procedure or an array. These segments were dynamically mapped into the address

space of the process as the process was being executed.

Each segment contained a number of attributes including an access control list, which
indicated the users authorised to access the segment. Supervisor calls were used to create
a segment, delete a segment, change its access rights or its entry name as well as list its
attributes. The name of each segment and its attributes were placed in a catalogue or
filing system which was implemented in a hierarchical tree structure, beginning with a
root directory. The path name of a segment was specified relative to this directory, while
its entry name, the name by which a segment was usually referenced, was the last name
in the path name. The current directory was first searched when a process accessed a
segment and the path mechanism governed search rules when trying to locate a segment

in the catalogue.

When a program first referenced a segment, a dynamic linker routine was invoked to find
its path name. The segment was then assigned a unique number in the segment descriptor
table. In addition, each known segment was kept in a per-process structure called the
Known Segment Table (KST). When the path name and the segment number were
obtained, a (path name, segment number) entry was made in the KST. Further references
to the segment were resolved using its segment number. The pagetable associated with
a segment was actually mapped in by the segment fault handler after a missing segment

fault was generated when the segment was first accessed.

The Multics system used ring protection mechanisms to support access control [Saltzer74].

This system comprised a set of concentric rings representing different levels of privilege.
Ring 0 was the most privileged and contained essential kernel code, like the interrupt
handlers, scheduling routines, etc. Processes executing segments in this ring were non-
interruptible until they were finished. Access privilege decreased as one moved further
away from the centre. Sixty four rings were supported on the GE645 hardware with user
processes usually executing from ring 33 onwards. Each segment descriptor also contained
the ring or more commonly a group of rings in which the corresponding segment must be
executed. If it was necessary to execute a segment in a more privileged ring, an inter-

ring access fault was generated and the operating system invoked access control routines
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before the faulting process resumed execution.

Multics introduced many seminal ideas in operating system design which are still adhered
to today. It was used at MIT and at approximately 100 other sites. However, because it
depended heavily on the GE645 architecture, which was expensive and proprietary tech-
nology, it was outside the financial reach of most other computing research environments
and universities. In addition, the concept of a general computing utility was increasingly
being challenged by the arrival of minicomputers. These were less powerful but also much
less expensive than the mainframe systems. They also had good interfacing facilities to nu-
merous devices. Perhaps the most famous minicomputer series is the PDP series developed
by Digital Equipment Corporation (DEC) .

3.3 The Cap Computer System

The Cap Computer System was developed at the University of Cambridge in the Seventies
to explore memory protection using hardware mechanisms [Wilkes78]. The design used a
segmented architecture with a process having a list of active segments. Unlike conventional
systems, where the loading of the base segment registers must be done when the machine
is in a privileged mode, with the Cap system, loading of the segment registers was done
in any mode, but the hardware carefully restricted the entries that could be loaded. Valid
entries were associated with capabilities and access to a segment required a capability

for that segment.

The creation and the checking of capabilities was done by a Capability Unit which was
controlled by a section of the microprogram [Needham77b]. Capabilities were divided
into two types. The D-type or data-type capability was used to access data with read,
write and execute. A C-type or capability-type capability was used to access a segment
containing a list of capabilities and the access privileges were read capability and/or
write capability.

Like Multics, segments and files shared a close relationship and the virtual memory system
interfaced directly with the Cap filing system to manage segments being brought into or
leaving main memory [Needham?77a). The virtual memory management system com-
prised a number of system processes namely, the real store manager, the virtual store
manager and the System Internal Names Manager, known as SINMAN.

The real store manager was responsible for bringing segments into memory when needed
and deciding which ones should be swapped out when memory was required by other

segments. When a segment was not in memory the associated capability had a special
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form known as an outform capability. If a process attempted to access the segment,
a trap would occur. The system would then check the capability for the segment and
would discover that the segment was not in memory. It would then contact the real store
manager to bring it into memory. On accomplishing this task, the real store manager
would convert the outform presentation of the capability into a normal one. The real
store manager handled single segments no larger than 32 KW. Accessing larger segments
or files was done using windowing techniques. It also provided facilities like flushing
updates on a segment to disk and allowing users to swap out segments that were no longer

in use.

The virtual store manager was involved in detecting whether the segment in memory
was no longer in use. The number of processes having a capability for a given segment
was reference-counted. This count was incremented when a process was issued with a
new capability for the segment and was decremented whenever the virtual store manager

received a message from a process indicating that it was no longer interested in the segment.

SINMAN was responsible for permanent storage and was the primary interface between
the virtual memory system and the Cap filing system. An integer was associated with
every object in the system and was referred to as the system internal name for that

object. Cap supported three types of virtual objects:

Segments: treated as a linear sequence of bytes.
Directory Segments: related text names to System Internal Names.

Procedure Description Blocks (PDB): templates to construct protected procedures.

SINMAN had the responsibility of keeping track of all the objects in the system that should
be kept in existence and marking all objects that should be deleted from the disk. Objects
in the former category were either kept in directory segments or procedure description
blocks or were being used by current processes. SINMAN deleted a segment once its
reference count fell to zero. Directory segments and procedure descriptor blocks were only
deleted if the objects they contained were also not referenced. Another duty of SINMAN

was to issue capabilities for particular objects to authorised programs.

3.4 UNIX

Unix, developed at Bell Labs by Ken Thompson and Dennis Ritchie, has been one of the
most popular operating systems of the last two decades [Bach88]. It was first built for
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the PDP series but has since been ported to many other architectures. The success of
Unix can be traced to many factors including the fact that it was written in C, making it
very portable. In addition, it ran on the PDP series which most computer departments
could afford and Unix was, for a long time, freely distributed to various university sites

along with its source code.

Another design factor that made Unix easily portable was that it had a relatively simple
virtual memory management system. A Unix process is composed of three regions: the
text region which is fixed, the data region which grows upwards and the stack region which
grows downwards. There are system calls to extend the data region and the operating

system will extend the stack as required.

Unlike Multics, the original Unix system does not support the idea of memory-mapped
files or the dynamic linking of segments. The file system, though it employs the same hier-
archical scheme as Multics, is implemented using a buffer cache and disk block structures
and is independent of the memory management system. In fact, some physical memory
must be allocated exclusively for the buffer cache when the system is booted.

Unix provides an integrated I/O interface in which operations on files as well as devices
use the same system calls. Devices such as the monitor and keyboard, are regarded as
special files by the file system. This is an elegant abstraction that makes I/O operations
easy to perform from the point of view of the end-user since there is no need to be familiar

with the actual physical device.

This I/0 interface supports two calls that involve the movement of data, namely:

read (fd, buffer, n)

write (fd, buffer, n)

where:
£d is a file descriptor.
buffer is the address of a buffer in the caller’s address space.

n is the number of bytes to be transferred.

The read call involves locating the data on disk, copying it to a buffer in the kernel, then
copying from the kernel into the user’s address space starting at buffer. This scheme has
several disadvantages.

Firstly, two copies are required to move data from the disk into user space, which is

expensive. Secondly, since each user has a private copy of the data, it is difficult to share
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files concurrently because there is nothing to stop users from simultaneously updating
private copies of the same part of the file. In addition, changes made by a user would have
to be flushed back to the disk immediately to allow other users to see them and they can

only do so by invoking the read operation again!

The file interface in Unix is character-oriented, where a file is basically viewed as a linear
sequence of bytes. There are calls to read from and write to a file as well as to move to
a given position in a file, thus providing limited random access. Since most users require
sequential input, and output data sequentially as well, this abstraction will suffice for most
applications. However, for users needing a different data abstraction, (e.g. viewing a file
as a set of records), it is necessary to build this abstraction on top of the Unix abstraction

or to use the I/O interface directly, which are both inconvenient.

Another feature of Unix is the fork and exec system calls. The fork call creates another
process called the child, which is an exact replica of the process invoking the call, called
the parent. Early implementations of fork involved copying the data and stack regions
of the parent into those allocated for the child while the text segment, which is read-only,
is shared. Such copying is time-consuming and later versions of Unix used the copy-on-
write (cow) technique for managing the stack and data regions. These regions are now
remapped read-only with the operating system setting a bit in each PTE to indicate copy-
on-write sharing. When a child or parent attempts to write to a given page, an access
violation fault occurs. The fault handler notices that the region is mapped copy-on-write
and the faulted process receives a private copy of the page before continuing. This reduces

the amount of copying since only pages that are modified in each region are copied.

The exec call replaces the segments of the calling process with the segments of the process
whose name is passed as an argument to the call. This allows the programmer to implement
a multi-tasking environment by first forking off the child process and then doing an exec
call to start another program. If the parent has opened files before invoking the fork call,
these descriptors will also be available to the child. Thus, before the exec call, it is possible
to close files which will not be used by the new process as well as redirect its input and
output.

3.5 BSD Unix

The most influential group outside Bell Labs that has contributed new ideas to the Unix
evolution has been the Computer Science Department at the University of California,

Berkeley. Contributions include the first Unix implementations of virtual memory, demand
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paging and page replacement as well as the IPC socket mechanism and the TCP/IP
networking protocol suite [Leffler89]. The BSD Unix memory management system was
influenced by Tenex [Bobraw72] as well as Multics and an interface was specified to

support memory-mapped files in the 4.2 BSD reference manual.

The original interface, known as the mmap interface, allows a user to map a file or portions
thereof into the address space of a process. This interface supports options of read, write
and execute permissions, while sharing may be specified as private or shared. If sharing
is private, indicated by the MAP_PRIVATE option, changes made to the file by the user
are seen only by that user. However, if the MAP_ SHARED option is used, all changes
will be seen by other processes sharing the file. There is also a getpagesize call which
returns the system pagesize. A process can move pages within its own memory using the
mremap call. In addition, protection of a region can be controlled using the mprotect
call.

The madvise call is used to advise the system on how a process intends to utilise a region

of its address space. The options include:-

MADV-NORMAL: no special treatment.

MADV-RANDOM: expect random references.
MADV-SEQUENTIAL: expect sequential references.
MADV-WILLNEED: will shortly require the pages in this region.

MADV-WILLNOTNEED: pages associated with this region are no longer needed and

may be removed.

A process can obtain information about whether the pages of a given region are in memory
using the mincore call. This returns the current core residency of the pages in terms of a
character array with a value of 1 indicating that the page is in core. Finally, the munmap

call will unmap a region of pages from a given address space.

The mmap interface was revised and implemented on SunOS, the operating system created
by Sun MicroSystems (SUN) [Gingell87]. The protection options have been increased to
include MAP _NONE which indicates that pages of a given region cannot be accessed. The
MAP _FIXED option is used to tell the virtual memory management system that the new
region must start at the specified address. If MAP_FIXED is not set, this address is used
as hint to the operating system, but the system may return a different starting address. If
MAP FIXED is set, and the system cannot map the region at the specified address, then
the call fails.

27




MAP_RENAME causes the pages currently mapped into a region to be assigned to the
pages of a file at a given offset and length. The relevant pages must be mapped pri-
vately using the MAP_PRIVATE option. MAP_INHERIT indicates that a mapping will
be passed onto a child process and is present after the child does an exec call to start
another program. MAP_NORESERVE tells the system not to reserve any swap space for

a given region.

Another call was added by the SunOS team. The msynec call causes all modified pages
within a specified region to be flushed to backing store and may invalidate these pages
in the local cache causing further references to be obtained from the backing store.
The flags options are MS_ASYNC, which allows the caller to return immediately, and
MS_INVALIDATE which tells the system to flush caches. The mremap call was not im-
plemented.

A new interface has been proposed [McKusick87]. One of the reasons for this attempt
was the desire to use memory-mapped files for high speed interprocess communication.
The motivation is to improve the performance of synchronisation mechanisms by avoiding
the overhead associated with using system calls to achieve synchronisation. This is done
by mapping the semaphore that controls access to the shared region as part of the shared

region itself.

New options for the mmap call include MAP _FILE, which specifies that the object is a
regular file or character-special device memory. MAP_ANON is used to indicate that the
object concerned is a private, zero-filled region which cannot be flushed to backing store
and will be discarded after it is used. The MAP_HASSEMAPHORE option is used to
indicate that a region may contain semaphores. Another option for the madvise call was
the MADV SPACEAVAIL flag which forces the system to allocate physical pages for that

region.

New calls have also been added to deal with synchronisation. The mset call will test
and set a given semaphore. Another argument specifies whether the process will wait if
the semaphore is not free. If it is non-zero, the process relinquishes the processor until
notified to retry the call. The mclear call releases the lock. If processes are waiting on

the semaphore, they are advised to retry for the lock.

3.6 VMS

VMS is an operating system developed by DEC to run on the Vax hardware [Kenah84].

This VAX/VMS arrangement forms quite a popular computer environment. The system
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supports a sophisticated memory management interface and gives users greater control

over the memory usage of their programs compared with other operating systems.

Since VMS was designed for the Vax, its virtual address space for a process is identical
to that of the VAX architecture. The PO region is called the program region while the
P1 region is called the control region. Pages can be added to the program or control
regions via the SEXPREG call which returns the range of virtual addresses of the new
pages. The $SCRETVA system service creates a separate segment in the P0 or P1 region.
Arguments to this call include whether the region should be read/write or read-only, and
the level of privilege, i.e. kernel, executive, supervisor or user, associated with the region.
Regions created by the SCRETVA and $EXPREG may be deleted using $DELVA call.
This call deletes pages beginning with a specified address. However, the caller must have
the same or higher privilege than that associated with the region.

The $SCRMPSC call is used by a process to associate or map a section of its address
space with a specified region of a file or another region in memory. The $MGBLSC
call is used to map a global section that has been created by another process. A process
can map a part of a section into a particular address space and subsequently remap a
different part of the section into the same virtual address space giving a windowing effect.
A process unmaps an object from its address space via the $DELTVA system call. A
temporary global section is deleted when all processes sharing the section have unmapped
it from their address spaces. Permanent global sections must be explicitly deleted using
the $DGBLSC system service. Modifications are written back to disk by the SUPDSEC
call.

The VMS memory management system also provides facilities to control both the paging

and swapping operations on certain regions. The interface includes:
SADJWSL: which increases or decreases the maximum number of pages the process
can have in its working set.
$PRGWS: removes one or more pages from the working set.
S$LKWSET: will lock the current working set into physical memory.

$ULWSET: will unlock the pages of the working set which has been locked SLKWSET.

Process swapping, the removal of the resident set of a process to secondary storage in one
operation, is usually triggered by low activity or large delay (e.g. waiting for I/0), and
is normally applied to all processes in VMS. A privileged process, however, can prevent
swapping using a $SETSWM call. This mode can also be set when a process creates
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another process provided that the creating process has the required level of privilege.
These privileges also allow a process to lock pages into memory using the SLCKPAG
system service. A page that is locked in memory, remains in memory even when the
rest of the working set has been swapped out. These pages may be unlocked using the
$ULKPAG service.

Finally, the memory management system also allows protection variables to be set on indi-
vidual pages. This is done using the $SETPRT system call which changes the protection
of a page or a group of pages. The arguments to the call specify the type of access (none,
read-only or read /write) for which each of the four access modes (kernel, executive, super-
visor and user). Only the owner or a more privileged process can change the protection

on a page.

3.7 Pilot

The operating systems described above support multi-user time-sharing computer environ-
ments. However, with the emergence of less expensive hardware, the personal computer
and workstation environments have evolved in the last decade to replace time-sharing sys-
tems as the dominant computing models of the future. Pilot [Redell80] is an operating
system developed for a workstation environment and is a successor to the Alto operating
system [Thacker82]. Like Multics, Pilot supports an intimate coupling between its file
system and its virtual memory management. Virtual memory is the only way to access

files and files are the only backing store for virtual memory.

The virtual memory management system supports a total linear address space of 2%¢ 16
bit words. Pilot divides this homogeneous address space into contiguous sets of pages
called spaces, which are managed via an interface called SPACE. Spaces can be used in

three primary functions:

Allocation Entity: allocates a region of virtual memory which has been requested by

a client.
Mapping Entity: associates a region of virtual memory with part of a file.

Swapping Entity: transfers pages between primary memory and the backing store.
Thus the system allocates a new space to move data from the disk into memory.

Spaces are managed using a nested approach. So a new space is always a subset of a

previously existing space. The resulting tree structure has as its root a predefined space
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consisting of all the virtual memory in the system.

The calls provided by the space interface are outlined below. The Space.Create call
allocates a space of a given size which may be further subdivided into smaller regions.
There is also a Space.Map call which associates the space with the contents of a file.
Swapping involves removing an entire space to backing store. A client program can thus
optimise its mapped spaces by dividing them into subspaces, each containing items whose

access patterns are known to be strongly correlated.

In addition, the Space.Activate call is used by the client to advise Pilot that a space
will soon be needed and should be mapped in as soon as possible. Conversely, the
Space.Deactivate call informs Pilot that a space is no longer needed in primary memory.
The Space.Kill indicates that the contents of the space is no longer of interest and will
be overwritten shortly. This prevents useless swapping back to memory. Finally, there is
a Space.ForceOut call which causes the contents of a space to be written to its backing
store and does not return until the operation is completed. This call was added to support

crash recovery algorithms that clients may want to implement.

3.8 Operating System/2

Operating Systems/2 or OS/2 was developed by IBM as the successor to the widely pop-
ular Disk Operating System or (DOS) which was introduced for the IBM PC. 0S/2 was
specified to run on the 80286 and 80386 Intel microprocessors [Cook88a]. While the
80286 is a purely segmented architecture as discussed in Chapter 2, the 80386 supports
both segmentation and paging. However, OS/2 utilises a segmented approach to remain
compatible with the 80286 architecture. An additional constraint involves the need to
support the large amount of DOS software that is in existence.

0S/2, therefore, can run in both a real mode, in which the virtual memory is turned off
and memory access is constrained to 640 KB, that of the DOS environment, or protected
mode which uses the virtual memory hardware. The system also supports a number of new
facilities including physical memory access up to 16 MB, multiple concurrent applications,
multi-tasking, system and user-level semaphores, dynamic linking of processes and the
demand loading of code and data segments. Good support also exists for writing device
drivers [Mizell88].

The memory management system draws heavily, some [Shammas88] would argue too
heavily, on the architectural design of the 80286. All memory ob jects are stored in a single

system-wide table called a Handle Table which is used to map objects to segments. As
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indicated previously, segments that are shared by all processors are stored in the global
descriptor table (GDT) while local process segments are stored in the local descriptor
table (LDT). However, to permit a more controlled form of sharing, the LDT in OS/2 is
divided into public and private sectors. If a segment is designated as sharable in the LDT,
then it is placed in the public sector and that slot is reserved in every other LDT in the
system. This allows programs to pass pointers to shared data since it is mapped in the

same position of every address space.

Segments in OS/2 are directly visible to application programs and system calls are used
to perform operations on them [Cook88b]:
DosAllogSeg: allocates a memory segment ranging from lbyte to 64 KB.
DosGiveSeg: indicates the segment is sharable.
DosGetSeg: flags a segment to indicate that it can be discarded.

DosReallocSeg: this call changes the size of a segment. Sharable segments are only
allowed to increase in size.

DosFreeSeg: frees an unshared memory segment. If the segment is shared then the

usage count is decremented and the segment is freed if the count is zero.
DosMemAvail:- returns the largest available region of free storage.

DosLockSeg: this call prevents a segment that can be discarded from being removed

by the system.
DosUnlockSeg: reverses the action of DosLockSeg.
DosAllocShrSeg or DosGetShrSeg: these calls are used to allocate a shared segment.
DosAllocHuge: this is used to allocate a number of 64 KB segments.

DosGetHugeShift: this is used to address the individual selectors obtained from the
DosAllocHuge system call when a large object is mapped into the address space

using a number of segment selectors.

DosReallocHuge: changes the size of the segments.
Routines are also provided to deal with the sub-allocation of segments:

DosSubSet: initialises a segment for sub-allocation.
DosSubAllocate: allocates intra-segment memory.

DosSubFree: frees a region of intra-segment memory.
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3.9 Summary and Conclusions

In this chapter, the virtual memory management features of several operating systems were
examined. Multics used memory-mapped files as part of its virtual memory management
system. Cap was an interesting system, but the success of the Vax architecture and Unix
resulted in the dominance of paged virtual memory systems over segmented architectures.
In addition, interest in the use of capabilities as an integral part of a computer architecture
has steadily declined [Hennessy90, pages 465-466).

The designers of Unix did not use an integrated memory-mapped approach. Instead,
program segments are managed by the virtual memory management system while the file
system uses a buffer cache located in the kernel. Thus a separate interface, based on the
Unix file data structure, is needed to move data between secondary storage and main
memory. This results in a degradation in performance since data must be copied from the
buffer cache into user-space. It also complicates programming at the user level since the

user must explicitly invoke operations to move the data.

The mmap interface was designed to overcome the shortcomings of the original Unix sys-
tem and, like Pilot, uses advisory calls to inform the system about future access patterns.
However, this may not be an easy exercise since many program modules may be concur-
rently accessing an object. Thus it is sometimes difficult, if not impossible, to be aware of

the future access patterns on an object.

In addition, it is debatable whether present operating systems can fully make use of this
information. For whereas it is relatively easy to lock and unlock pages in memory as
well as swap segments to disk, in order to use the information on new access patterns to
maximise system performance, it may be necessary to change the paging algorithm being
used on a mapped entity. Since the paging algorithms are usually fixed by the operating
system designer and cannot be easily changed, the corresponding gain in performance is
not normally realised. In addition, some systems like BSD Unix employ a global algorithm
which does not directly take the access patterns of individual processes into account. To
maximise the use of information on future access patterns, a paging system in which

objects are paged on a per-object basis is required.

While the VMS/VAX arrangement as well as OS/2 provide powerful memory mapping
facilities they are difficult to use because the interfaces provided are concerned with the
management of pages, in the case of VMS, and segments in the case of OS/2. These are
architectural entities which most users would not like to manage directly and therefore

puts a strain on the programming of complex applications.
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For the interfaces described above, user processes have to manage the information about
all the objects they have mapped into their address spaces. This also discourages the
use of memory-mapped interfaces. In addition, it should be pointed out that memory
mapping is a low-level abstraction in which the logical entity envisaged by the user is
represented as just a linear sequence of bytes in his address space. There is no inherent
mechanism — like the file structure in Unix — with which to navigate the data. Certain
types of applications provide their own abstractions and routines for accessing the data,
e.g. a database system. However, the ordinary user is left to build these facilities himself.
This hampers the effectiveness of the memory mapping mechanism since the user is forced
to think of the data in a more physical manner than the logical abstraction he would like

to use.

The cumulative effect of these observations is that the ordinary user sees memory-mapping
as a complez technique, best left to the ezperts, e.g. application programmers.

The development of modern operating systems, e.g. Mach and Chorus, as well as the
abundance of cheap but sophisticated MMUs have resulted in renewed interest in memory-
mapping techniques. However, the lack of simple, powerful user interfaces severely hinders
its widespread use. This highlights the need for a more object-oriented approach to the
design of virtual memory interfaces, where, like object-oriented languages, the user is
allowed to think on a more abstract level while the programming environment handles the
details of actual implementation.

These facilities must be provided without too much cost in system performance and with-
out the need to rewrite entire operating systems. Fortunately, in the Eighties, a new
approach to the design of operating systems has evolved which adopts a more modular
approach. This is the subject of the following chapter.
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Chapter 4

Virtual Memory Management In

MicroKernel Operating Systems

4.1 Introduction

In the Sixties, operating systems were usually designed based on specific hardware archi-
tectures. This was acceptable since a large proportion of the operating system was written
in the assembly language of the processor. However, with the development of system pro-
gramming languages such as BCPL and C, the porting of operating systems to various
architectures has become an easier proposition. Portability, therefore, is now an important
issue in operating system design. In addition, with the explosion in network communica-
tions in the Seventies, the design of a network operating system with the primary goal of
supporting heterogeneous machines in a loosely coupled environment is increasingly seen

as a normal undertaking.

Modern operating system designs also seek to exploit parallel or concurrent applications
running on multiprocessors or other tightly-coupled arrangements. A number of multi-
processor operating systems have been developed [Ousterhout88], and it remains a very
active area of research [McJones87]. However, today it is undesirable to design systems
without taking into account the need for compatibility with existing operating systems
— notably, Unix. Without such support, one is faced with the task of writing numerous

applications to encourage end-users to use the system [Tanenbaum90].
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The need to provide the same functionality to the end-user over a wide range of diverse
architectures has led to a move away from the monolithic systems of the Sixties and
Seventies. Instead, many services, traditionally provided by the kernel of the operating
systems, are now implemented by a set of user-level servers running on a very small
kernel. The approach, called the microkernel approach, is becoming widely used because
possible losses in performance are easily outweighed by benefits of clarity, modularity and

portability.

Since most of the functionality of the system is implemented in user-space, in order to
achieve good performance, it is necessary to have powerful user interfaces. Increasingly,
the application of virtual memory techniques is seen as a way of achieving these goals.
This chapter examines two microkernel operating systems, exploring in detail their virtual

memory management systems.

4.2 MACH

Mach [Tevanian Jr.87b)] is a portable, multiprocessor operating system developed at
Carnegie-Mellon University (CMU) in the late Eighties. It is the successor to Accent
[Fitzgerald85], a communications-oriented operating system whose main goal was the
integration of a paged virtual memory management system with interprocess communi-
cation (IPC). Other goals were simple access to data using memory mapped techniques,
allowing greater sharing between processes and the transfer of large objects into different
address spaces. Accent was implemented as part of the CMU SPICE project and in 1985,
it was supported on two hundred personal computers and commercially installed on a
thousand systems. A commercially-available version of Unix system V has been built on
top of the Accent kernel.

Mach incorporates the facilities developed in Accent and also provides new features. There

are six basic abstractions supported by the Mach kernel:

task: an execution environment and the basic unit of system resource allocation. This
includes a paged virtual address space and access to the system resources such as

processors, ports, capabilities and virtual memory.

thread: the basic unit of execution. A thread executes in the virtual memory of a single
task.

port: a simplex communication channel implemented as a message queue managed by
the kernel.
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port set: a group of ports that are treated as a logical unit. Messages for individual

ports are placed on a single queue.
message: a collection of data objects used in communication between threads.

memory object: an object usually residing in secondary storage that is mapped into

the address space of a task.

Message passing is the essential service of the system, as communication between different
tasks as well as with the kernel take place by sending messages. Operations on objects
are requested by sending messages to the ports which represent them. In order to use a
port, it is necessary to have the proper access rights. The send access right indicates that
a thread may send messages to a port while the receive access right allows a thread to
dequeue messages from the port. Only one task may have receive access rights to a given

port at any time but any thread in that task may use the port to receive messages.

4.2.1 IPC Mechanism

Like Accent, Mach uses virtual memory techniques to transmit large amounts of data
being sent as messages. When a task sends a long message, the data is remapped into a
special address space used by the kernel called the ipc_map. The data is also remapped
copy-on-write in the sender’s address space so if the sender now attempts to write to it,
new pages will be generated, leaving the original message intact. When a task performs a

receive operation, the data is mapped into the receiver’s address space.

4.2.2 The Virtual Memory Management System

The virtual memory management system in Mach provides several facilities. A virtual
address space is divided into fixed-size pages and a region in an address space is a set
of contiguous pages. Some regions in an address space may be associated with memory
objects which are used as its backing store. These objects are used to satisfy page-in and
page-out requests on behalf of the region. Regions may also be inherited by child tasks
by specifying the inheritance property of a region. This may be set to shared, copied or

absent.

A task may protect regions in its address space by specifying a current protection level
required to access a region. In addition, there is a maximum protection level associated
with a given page. The interface used by Mach [Walmer89)] is shown in Table 4.1.
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vm_ allocate Allocates a region of memory in the
address space of a specified task.

vm. deallocate Deallocates a region of a virtual
address space.

vm_read Allows a region of the
virtual memory of the specified
task to be read by the calling task.

vm_write Allows a region of the virtual memory
of the specified task to be written
to by the calling task.

vm_copy Causes a region of memory in the
specified task to be copied to a region
in the calling task.

vm_map Maps a region into the caller’s address
space specifying the memory object
which will be used to satisfy pagefaults
on the region.

vi_region Obtains the characteristics
of a region including, its
starting address, its size, the
current protection level, its maximum
protection level, its inheritance attribute
and the name of the memory object associated

with the region.

vm_protect Changes the protection attribute of a region.

vm.inherit Specifies how a region in a task’s address space
is to be shared with a child task.

vm_statistics Returns the kernel usage of virtual memory since

the kernel was booted. This includes the number
of free, active and inactive pages,
the number of page-in and page-out

operations and copy-on-write faults.

Table 4.1: The Memory-Mapping Inferface in Mach
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memory_ob ject_init The kernel is requesting that the
memory manager accept requests for
data associated with a given
object.
memory._object_data_request Requests data for a
region with the desired level
of access. The memory manager
should return with the specified
data or inform the kernel to
supply zero-filled pages for
this region if required.
memory_object_data_write Provides the memory manager
with data that has
been modified in the cache.
memory_object_data_unlock Requests the memory manager to
permit at least the desired
access on an object.
memory_ob ject_copy Notifies the memory manager that
a new copy of a region of an original
object has been made.
memory_object_terminate Indicates that the

memory manager can deallocate its

resources for that object.

Table 4.2: Kernel-Memory Manager Interface in Mach
4.2.3 External Pagers

An important feature of Mach is the interface to support memory managers which are
user-level processes. The system has a default memory manager that is part of the kernel
and is used to manage files as well as temporary objects. However, the system provides
an interface between the kernel and external memory managers to carry out page-in and
page-out operations as well as cache coherency mechanisms. The kernel calls that are
made to the object manager are shown in Table 4.2 while calls by the memory manager

to the kernel are shown in Table 4.3.
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memory_ob ject_set_attributes Sets the attributes on an ob ject.
memory.object_get_attributes Retrieves the current attributes
associated with the memory ob ject.
memory.ob ject_lock_request Allows the memory manager to make
requests concerning the management
of the object cache.
memory_ob ject_data_provided Supplies the kernel with data
requested for a specified object
and an indication of the kind of
access that is prohibited from
using the cache. Data is copied from
the memory manager into the object.
memory.object_data_unavailable Indicates that the memory manager
does not have data for a given
region and that the kernel should
provide the required memory.
memory_object_data_error Indicates that the memory manager
cannot return the data requested.
memory.object_destroy Tells the kernel to shut down a

memory object.

vm_set_default_memory_manager Sets the default memory manager.

Table 4.3: The Memory Manager—Kernel Interface in Mach

4.2.4 Copy-On-Write Sharing in Mach

When objects are shared using copy-on-write attributes, special management routines are
used to keep track of pages modified by individual tasks [Tevanian Jr.87a). Mach creates
special memory objects to hold these modified pages called shadow objects. The shadow
object points to the original memory object where the unchanged data is held. A shadow
object may itself be shadowed as a result of a subsequent copy-on-write operation creating
a list or chain as shown in Figure 4.1. When the system attempts to find a page in the

shadow object, it journeys up this chain until it is successful.

In Mach, if a memory object is mapped into a task and another task needs to share this
memory object with copy-on-write access, e.g. by invoking the fork system call, two new
memory objects are created and the original memory object is mapped read-only. These
shadow objects will contain the pages of the memory object which were modified by each

task while the unmodified pages remain in the original mapping. The mapping in the
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Figure 4.1: Management of Copy-On-Write Sharing in Mach

first task must therefore be changed to point to one of the shadow objects instead of the

original mapping.

Since shadowing is transparent to user tasks, it is also transparent to an external pager.
Thus when a page is modified in a shadow object, the external page has no knowledge of

this and cannot write it to the backing store.

To solve this problem, it is necessary to create another type of object called the copy
object. This object contains all the original pages which are managed by the external
pager. When a copy-on-write fault occurs on an object with a copy object the original
page is moved to the copy object. A new page is allocated and data from the original
page is copied into it. Thus the external pager can access the original object as well as

associated copy objects to get modified pages.

The original object may now hold modified pages since unmodified pages are now stored in
the copy object. Thus, there is a bidirectional link between a copy object and its original.
A copy object, like shadow objects, must consult the original object for pages it does not
have. These pages would have been read but not yet written to; so that they would not

be in the copy object.

The complexity of the Mach virtual memory management system lies in the need to prevent
the buildup of large chains of shadow objects and copy objects. This can be caused by a
Unix process that repeatedly forks. Mach runs an automatic garbage collection routine

that collects and deletes intermediate shadow ob jects which it detects are no longer needed.
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4.2.5 Unix File Interface

The Unix file abstraction is supported by Mach [Tevanian Jr.87c] using memory-mapped
files. The map_fd call takes as its arguments: the Unix file descriptor of the open file, the
offset within the file at which the mapping occurs, a pointer to the address in the address
space at which the mapped file should start, a boolean variable that informs the kernel to

select an unused region, and the number of bytes to be mapped in.

Mach also implements the standard Unix I/O package for the C environment using memory
mapped techniques. When a file is opened, it is mapped into the caller’s address space.
The stdio buffer, in effect, has been enlarged to the size of the file. The copying of data
using fread and fwrite routines is replaced by the fmap system call. So after opening a file,
the fmap routine is called with arguments of the open file descriptor and the size of the data
wishing to be accessed. This call returns the start of a region in the virtual memory which
corresponds to the location of the buffered file contents. The results show improvements of
over 20% in speed was achieved on the VAX 8650 while other systems were of 10-15% faster
compared with the BSD implementation of the UNIX stdio interface [Tevanian Jr.87c].

4.3 Chorus

Chorus was started as a research project at INRIA in France in 1979. It was conceived
as a small communications-oriented kernel or Nucleus with both system and application
services exchanging messages via relevant ports. Presently, four versions of Chorus have
been produced and key ideas from other distributed systems have been incorporated into
these designs. An implementation of Unix System V, called Chorus/MIX, has been built

on top of the Chorus architecture.

In Chorus, an address space is referred to as an actor. The kernel distinguishes between
two types of actors, system actors and user actors. Some kernel services can only be
executed by threads belonging to system actors and system actors may be created so that
they use the kernel address space instead of a separate address space. These actors are

referred to as supervisor actors.

A thread is the unit of execution and Chorus supports multi-threaded actors. A port
is a region associated with an actor where messages for that actor are received. Any
thread having knowledge of a port can send messages to it and ports may migrate from
one actor to another. Ports may also be grouped together dynamically to form port

groups. Actors, ports and port groups all have unique identifiers (Uls), which are global,
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location-independent and unique in time and space.

The use of resources is controlled by using capabilities which are issued by different servers
while actors and ports have protection identifiers which are used to authenticate incoming
messages. A host is referred to as a site and a node comprises a number of sites connected
together by a physical medium.

The Chorus Nucleus is divided into four major components namely:

The Chorus Supervisor: dispatches interrupts, traps and exceptions delivered by the

hardware.

The Chorus Real Time Executive: controls processor allocation and provides syn-

chronisation as well as scheduling.

The Chorus Interprocess Communication Manager: provides asynchronous mes-
sage exchanges and remote procedure call (RPC) facilities.

The Chorus Virtual Memory Manager: is responsible for managing memory re-

quirements of the system.

4.3.1 The IPC Mechanism

The TPC Mechanism is used to transport messages between different users as well as from
the system and is decoupled from the Chorus memory management. The scheme uses a
special segment known as the IPC buffer segment which is managed as a pool of fixed-
size 64 KB slots. A message is therefore limited to 64 KB in length. When a message is
sent, the kernel copies its contents to one of these slots and when the message is read, it

is transferred from the IPC buffer to the context of the receiving thread.

4.3.2 The Virtual Memory Management System

The virtual memory management system [Abrossimov89b] includes a number of system

calls that manipulate different regions of an actor. The interface is is shown in Table 4.4.

Chorus also has an interface that manages segments which are represented using capabil-
ities. This is shown in Table 4.5.

Like the external pager in Mach, segments are managed outside the kernel by external
servers called mappers. Mappers are responsible for synchronising access to, and main-

taining the consistency of, segments which may be mapped into different actors on several
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rgnAllocate

Allocates a new region in the actor.

rgnFree Deallocates a region in an actor.
rgnlnit Initialises the contents of a region
using part of a segment.
rgnInitFromActor Initialises the region of an actor
using a region from another actor which is
specified by its capability.
rgnMap Allocates a new region in an actor
mapping parts of a segment starting
from a given offset into this region.
rgnMapFromActor Similar to rgnMap, but instead of
using a segment, a memory region from a
different actor is used.
vmGetPhysAddr Returns the physical address of
the virtual page.
vmLock Locks part of an address space in memory.
vmPageSize Returns the system pagesize.
vmPhysCap Builds an I/O segment and returns
its capability.
vmStat Returns information about the
state of the memory management system
such as the amount of physical memory available.
vmUnLock Unlocks part of the address space of an actor,
allowing its physical pages to be swapped out.
Table 4.4: The Memory-Mapping Interface in Chorus
sgCopy Copies data from one segment to another.
sgRead Copies data from a segment to a region.
sgWrite Copies data from a segment to a region.

sgLockInmemory Locks a part of the segment

in physical memory.

sgUnLock Permits a fragment of a segment to be swapped out.

Table 4.5: The Segment Interface in Chorus

44




mpUsed Associates a local cache with a given segment.
mpPullln Reads a fragment of a segment.

mpGetWriteAccess Requests write access to a segment or region.

mpPushOut Writes back data to a segment.
mpCreate Creates a segment and associates with a local cache.
mpRelease Terminates access to a given segment via the cache.

Table 4.6: The Mapper Interface in Chorus

chSync Forces all modified blocks to be written
back to secondary storage.
chlnvalidate Destroys a local cache with no
write back operations on modified blocks.
chFlush Destroys the cache but writes to modify pages
back to secondary stages beforehand.
chLockInMemory Fixes the local cache in memory and ignores
flushing requests.
chUnlock Permits flushing.

chRelease Releases and destroys an unmapped cache.

Table 4.7: The Local Cache Control Interface in Chorus

sites. There are routines to allocate and initialise segments including copying data from
another address space or another segment. The mapper calls are shown in Table 4.6 while
the Local Cache Control Interface is shown in Table 4.7.

4.3.3 Copy-on-Write Mechanisms in Chorus

Like Mach, Chorus implements copy-on-write sharing techniques [Abrossimov89a]. How-
ever, Chorus employs a different scheme in which history objects are used to contain
pages of the unmodified source. If an actor is required to share a given segment, called
the src, which is currently mapped into another actor, a new segment, cpyl, is created.
cpyl is the descendent of src and also its history object. All the pages in the src are made
read-only.

When a user attempts to write to the copy object, a write violation occurs and a new page
frame is allocated for the copy. If a page has already been allocated for the src, then its
contents are copied to the new page. If the page is not in the src, a pagefault occurs and

the page is fetched from secondary storage and placed in the src. Its contents are then
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Figure 4.2: Copy-On-Write Sharing in Chorus

copied to the page allocated for the copy object.

When a write violation occurs in the src, if the copy already has allocated its own page,
then it will suffice to make the page in the src cache writable by changing its page descrip-
tor. Otherwise, a new page is allocated in the copy and the contents of the src are copied

to it after which the page in the src cache is made writable.

If another actor is now required to share the source copy-on-write, two new history ob jects
are created; another cache, which we call cpy2, and an intermediate or working cache,
wl. wl is inserted between the src and both cpyl and cpy2 as shown in Figure 4.2. The
src cache is again remapped read only. When data is modified in src, cpyl or cpy2, the
original pages are placed in w1, where it can be obtained by the other actors. A pagefault
in cpyl or cpy2 causes the wl cache to be searched and then the src cache to be examined.
If a third copy-on-write sharing call is requested of the src then another working cache
w2, will be created and inserted between the src cache and the new copy object cpy3.

Like Mach, a large number of inactive history objects can exist.

4.4 Summary and Conclusions

In this chapter, the features of two microkernel operating systems were examined. Both
these systems support multiprocessor and multi-threaded environments and use advanced

virtual management techniques. The microkernel approach is becoming the preferred
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approach among operating system designers and a number of operating systems are being

developed using this approach.

The external memory manager interface allows users to implement their own page-in
and page-out mechanisms. In addition, paging algorithms and cache coherency protocols
may be selected based on the type of data being accessed. This fits in well with the
microkernel philosophy. However, data must be passed between the address spaces of
the object manager and that of the user to service pagefaults. The efficiency of these
operations will affect overall system performance. The need here is to prevent excessive
copying, as seen in Mach. However, if memory objects are also mapped into the address

space of the memory manager, then its address space may soon be overloaded.

Both interfaces also provide good support for copy-on-write sharing. As was shown,
these mechanisms can complicate the virtual memory management. The copy-on-write
mechanisms in Chorus appear to be simpler but also more efficient than those used in
Mach [Abrossimov89b].

There is no doubt that the success of Mach and its predecessor, Accent, as well as Chorus
has generated renewed interest in the memory-mapped approach since they clearly have

a better overall system performance when compared with traditional Unix systems.

While the memory mapping interfaces of Mach and Chorus provide good features, they
are not easy to use. Users must keep track of where different objects are mapped into
their address spaces and the relevant access rights. Conceptually, the user must translate
between a region in an address space, which is represented by a starting address and
a length — the level at which most of the interface calls are invoked — and the logical
abstraction that is required. Thus, it is not easy for users to build and manage their own
abstractions. A simpler mechanism is needed.
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Chapter 5

Paging Algorithms:
The Need for A New Framework

5.1 A Historical Perspective

The study of paging increased with the development of multiprogramming and the time-
sharing computer environment where several programs are competing for memory simul-
taneously. The main goal of these studies was to prevent thrashing. This occurs when
too many programs are executing concurrently resulting in an extremely high pagefault
rate. Thus the CPU spends most of its time waiting for page requests to be satisfied.
Most studies sought the optimal multiprogramming level [Denning75a], of a system

which kept CPU utilisation high while preventing thrashing.

The part of the disk that is reserved for moving data to and from secondary storage during
paging is referred to as swap space. Since the movement of data between primary and
secondary memory is slow, i.e. tens of milliseconds, the CPU is switched to another process
while waiting for the pagefaults of other processes to be serviced. The slower the disk, the
larger swap space requirement for a given level of multiprogramming. However, since a
large number of users are supported on a time-sharing system, the CPU will always have
jobs to run while waiting for the pagefaults of other jobs to be serviced. The optimal
multiprogramming level determines the maximum number of users that could be serviced

simultaneously before thrashing occurred. It is important to realise that since time-sharing
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systems are dedicated to supporting a large number of users, throughput, measured in
terms of the number of interactions completed per second, is the dominant criterion of

performance.

There exists a large body of literature on paging in a time-sharing environment and a
number of related issues [Smith78a] that affect the memory management of the system

have been examined.

5.1.1 New Motivation

Time-sharing is no longer the dominant model of computing having been replaced by the
workstation/personal computer environment. The approach to paging in this environment

differs from the time-sharing model in several ways.

Firstly, in a workstation environment, response time is the dominant criterion of perfor-
mance. The user ezpects a fast response time. This is usually translated into higher user
productivity. Thadani [Thadani81] showed that user productivity in an interactive sys-
tem is greatly affected by the response time of the system. For example, he found that
user productivity, measured in interactions per user per hour, more than doubled when
going from a response time of 3 seconds to a response time of 0.5 seconds on a system
supporting engineers and programmers involved in manufacturing operations. He also
reported a 67% increase for a more powerful system used by program developers. Other
studies support these findings [IBM82].

Secondly, the level of multi-tasking is lower, so that there are fewer runnable tasks while
the CPU is waiting for a pagefault to be serviced. Thus as CPU speeds continue to increase
much faster than disk speeds, an I/O bottleneck may develop with the CPU being idle
during paging requests. Hence, the corresponding increase in the response time of the

system will be less and user productivity also will not increase accordingly.

One solution to the problem is to banish paging and/or virtual memory altogether. With
physical memory getting cheaper, it may seem logical to assume that a machine will always
have enough physical memory to run any program. However, while it is true that the cost
of memory continues to fall, the average program size is also increasing. There are several
reasons for this. Firstly, programs are becoming more sophisticated and contain more
features and functionality than ever before. Secondly, user interfaces have also become
sophisticated with graphical user interfaces (GUIs) becoming the norm. The interfaces

have large memory requirements.

In addition, ob ject-oriented languages tend to produce larger programs than those of tra-
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ditional languages [Wu]. So with the trend towards this kind of programming increasing,
program sizes will also increase. All these factors suggest that program size will continue
to exceed physical memory. This highlights the need to re-examine the use of virtual

memory techniques, especially paging algorithms, to provide greater system efliciency.

Another development is the use of faster auxiliary memory for swap-space. Since the level
of multi-tasking is less in the workstation environment, the amount of swap space need not
be very large. Thus an intermediate storage device which has less storage capacity
than disks but a faster access time is required. A Cambridge company called Anamartic has
developed an intermediate storage device based on the Wafer Scale Integration (WSI) of
memory chips. Instead of making discrete chips from a wafer containing several memory
chips, the chips are connected together on the wafer with the bad ones being noted and
ignored. The system is interfaced to a SCSI controller and thus can be accessed by the
CPU via the SCSI interface. This arrangement has been found to be about 10 times
faster than the fastest disks presently on the market and would make an appropriate swap

device.

An interesting solution is to use main memory on idle machines as swap space [Felten91].
Since network speeds are increasing, accessing main memory on a remote machine will
be faster than getting data from the local disk. This involves a radical change in the
management of swap space since swap space in traditional systems refers to some form
of secondary storage and not primary memory located on another machine. Preliminary
studies show that significant performance gains may be possible. An extension of this
concept is the use of memory servers which primarily consist of large volumes of volatile
and non-volatile memory. These servers have powerful network interfaces and are used by

clients to store and retrieve pages of data.

Observations on virtual memory interfaces which support the memory mapping of indi-
vidual objects indicate that access patterns of some objects may differ considerably from
those of conventional program segments. Conventional paging algorithms may not be ap-
propriate for such objects. A key issue is whether different ob jects exhibit the locality of
reference phenomenon seen with program segments. In fact, some objects, e.g. files and
databases [Smith78b] are known to have highly sequential rather than localised access
patterns. This requires a facility to implement and test various paging algorithms on a
per-object basis where different paging algorithms may be used on different objects to
achieve better overall performance. A main goal is to provide a platform for the analysis

of paging activity without having to modify large parts of the kernel when new algorithms
are introduced.

51



page frame

hand

Figure 5.1: Clock Algorithm

5.2 Traditional Paging Algorithms

Paging algorithms are used to manage the allocation of physical pages to different tasks.
These algorithms may be divided into two categories. Demand paging only allocates
pages as they are required (i.e. when a pagefault occurs). Other paging systems implement
some kind of pre-paging or prefetching. When a pagefault occurs the system will not

only get the faulted paged but other pages of the object as well.

Demand paging algorithms concentrate on a page replacement policy. While fetching
the faulted page, it may remove pages from the resident set to make room for this new page.
The replacement policy decides which page(s) should be replaced. These algorithms can
be divided into two types: global and local. Global algorithms manage all the primary
memory as a single entity, while local algorithms manage the resident set of the individual
tasks.

Global LRU (GLRU) is a global algorithm in which all the page descriptors in the system
are kept on a linked list with the least recently used pages at the head of the queue and
the most recently used at the tail. When a pagefault occurs, the system checks each page
descriptor to see if the page has been referenced. If so, it is moved to the back of the
queue. Global LRU has been found to be a good replacement policy but is normally very
expensive to implement as the LRU list must be frequently updated.

An approximation to GLRU is the CLOCK algorithm [Carr81]. For this algorithm, all

the page descriptors are linked together to form circle as shown in Figure 5.1. A designated
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frame pointer moves around the circle like the hands of a clock. When a pagefault occurs
the hand moves to the next page descriptor. The paging routine examines the used bit
to determine if the page has been referenced. If so, it clears the bit and moves on to
the next page descriptor until it finds a page whose used bit is not set. This page is
replaceable. However, if the modified bit has been set, the page is queued to be written
back to secondary storage. The routine continues until it finds a page that has not been
referenced and also not modified. It uses this page to satisfy the pagefault. The CLOCK
algorithm approximates to a LRU policy with significantly lower overhead.

Local paging algorithms are used to manage the resident set of a process in a more direct
manner. For example, local LRU (LLRU) is similar to global LRU but is used on a
fixed number of pages that have been assigned to a process. Another local algorithm is
the Working Set (WS) algorithm [Denning80] in which the working set of a program
is defined as the pages that have been referenced in the last # time units of program
execution. At the end of each reference, all the pages in the resident set are examined.
Pages that have been not referenced within @ units are removed. If all the pages have
been referenced within this time, then another page is added to the resident set. Thus the
resident set size changes dynamically and sometimes drastically as the program executes.
WS is an expensive policy since it must keep track of the time of the last reference for every

page in the resident set and to perform such operations for every reference is impractical.

The Sampled Working Set (SWS) [Ferrari83] policy samples the resident set at fixed
intervals in the virtual time of the process. At the beginning of a sampling interval, the
used bit of all frames in the resident set are reset. At the end of the interval, pages that
have not been referenced are removed from the resident set. If a pagefault occurs during
the interval, the page is added to the resident set. The SWS policy is less expensive to
implement than the WS policy since there is no need to keep information on the last time

a page was referenced.

Another algorithm using the working set technique, but in a different manner, is the
VMIN algorithm [Prieve76]. This is a look-ahead algorithm and thus cannot be
realized in practice. It can however be used on program traces. On every reference, the
algorithm looks ahead to the next time the corresponding page will be referenced. If this
is greater than 8, the page is swapped out. In this situation, @ is usually represented by a
fixed number of instructions. The comparison of WS with VMIN reveals some interesting
results during transitions from one phase of the program to another. Whereas VMIN can
determine that a page in the former phase is not needed and can be removed before the
transition occurs, WS has no such ability. As a result, during a transition with WS, the

working set expands to accommodate the new pages, while the old pages are only swapped
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out 6 units after the start of the transition.

The Damped Working Set (DWS) policy [Smith76] was developed to improve the WS
policy during abrupt transitions. DWS is a algorithm that reduces the size of the resident
set by removing the least recently used page when the pagefault rate gets larger than a
given threshold. This ensures that during a transition from one phase to the next, pages
of the old phase that are not referenced in the new phase will be swapped out quicker
than in WS. Though it has proved effective in reducing peak resident set size, it is as

computationally expensive as WS itself.

Another variable-size policy which is easier to implement than WS is the Page Fault
Frequency (PFF) policy [Chu76]. When a pagefault occurs, pages may only be removed
if the last pagefault occurred at § or more time units before the present fault. If the time
is less than #, the frame is added to the resident set. If the time is greater than 8, then
pages whose used bits are not set, are removed. 1/ therefore serves as a threshold of

the pagefault fault rate below which pages may be removed from the resident set.

While it does detect transitions and adjusts well, PFF depends on pagefaults occurring
frequently to work in a proper manner. For example, consider a program moving from a
phase with many pages to a phase with few pages. The PFF will detect the new phase
and expand its resident set, but because the transition is short and the next pagefault
may occur a long time after the transition, old pages may remain in the resident set for
a prolonged period. To overcome this deficiency, a time limit using interrupts has been
proposed on the interpagefault interval [Sadeh75]. If a pagefault has not occurred and

the time limit is reached, then the algorithm is invoked.

A variation of the SWS policy, known as the Variable-Interval Sampled Working Set
Policy (VSWS) [Ferrari83] , has also been implemented. This algorithm is described
below. The parameters L and M are the minimum and maximum durations of the sampling
interval. Q is the number of pagefaults after which the used bits are scanned.

o If the virtual time since scanning the use bits > L, then suspend the process and
scan the used bits.
e At the Qth pagefault, implement the following action:-

If the virtual time since the process was last scanned < M, then the process is
resumed until M.

If the elapsed time is greater than or equal to M, then scan the used bits while
processing the Qth pagefault.
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Compared with SWS, it was found that VSWS was more responsive to the dynamic sit-
uations. In addition, the number of suspensions of the process in VSWS was normally
less than SWS. However, obtaining a desirable value of Q for a given program can be
difficult and a way of adjusting the value of Q as the program executes has been investi-
gated [Pizzarello89).

Both PFF and Working Set algorithms have been shown to exhibit anomalous behaviour
in a number of cases [Franklin78], specifically:

The pagefault rate increases even though the mean resident set size increases.
The pagefault rate increases when the control parameter of the algorithm is also increased.

The mean resident set size decreases even though the control parameter of the paging

algorithm is increased.

These anomalies are noted more frequently for PFF than WS [Ferrari83]. PFF is also

said to be more sensitive to variations in its control parameter than WS [Denning80].

5.2.1 Combination of Local and Global Policies

Overall, global paging policies are easier to implement. However, they are more prone to
thrashing and are difficult to analyse. Local paging policies tend to be more expensive,
but are also more robust. An algorithm known as the WSClock algorithm [Carr84] tries
to obtain the benefits of both types of policies.

This algorithm uses the general Clock arrangement described earlier. However, each frame
is associated with an owning task. When a pagefault occurs the frame pointer is advanced
to point to the next frame. If the used bit is set, then the time of last reference, (LR),
for the page, p, is set to the task’s virtual time (VT). If the used bit is not set and
VT — LR(p) > 0, then the page is removed from the resident set. A page is replaceable
if it is not part of the resident set or the task concerned is not active. If the replaceable
page is dirty, it is queued to be written back to disk and the algorithm continues until a
clean, replaceable page is found. It is claimed that WSClock performs as good as pure
WS with much less overhead.
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5.3 Analytical Paging Models

Paging models can generally be divided into two broad categories. There are models which
try to model program behaviour, i.e. how an individual program behaves, while other
models attempt to model entire computer systems. We will concentrate on the former,
since it is more relevant and is not tied to a given model of computing. It should be

stressed however, that to accomplish the latter, one must also model program behaviour.

5.3.1 Reference String Models

Since program traces are expensive to generate, both in terms of the CPU time as well
as requiring a large amount of storage, another way of representing the behaviour of real
programs was sought. The reference string model is a sequence of numbers derived

from the program trace which gives the number of the page being referenced at time t.

A number of models have been proposed using reference strings. The simplest is the
Independent Reference Model (IRM) which regards the reference string as a strict-
sense stationary process, i.e. the distribution of the variable does not vary with time. Thus
for all ¢, the probability that the address referenced at time t, r(¢), is on page i is a;, as

shown in Equation 5.1.

Prlr(t) =1] =a; (5.1)

A more sophisticated model [Spirn76] is the LRU Stack Model (LRUSM) as shown in
Figure 5.2. The LRU stack, s;, is an ordering of all the pages in a program by how recently
they have been accessed. The pages are arranged in a stack with the most recently used
page residing at the top of the stack. When a page is referenced at time t, it is taken from
its position and placed at the top of the stack. The distance of a page from the top of
the stack serves as an indication of how recently a page has been referenced. The distance
probability, a;, is the probability that the next reference will come from the page located
at the i** position in the stack. The occurrence of locality leads us to expect that distance

probabilities would decrease as 7 increases, thus:

A1 > A3 > G3eeeennnnnens > ay (5.2)
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Figure 5.2: The LRU Stack Model

While this model holds true when the program is in a phase, it is not valid when the
program is in transition between two successive phases. An additional component is
required to handle phase transitions. A number of Markovian models have been put
forward to address this issue [Shedler72].

Another problem is that this model assumes that the values of the different a;’s are in-
dependent of each other. However, for real programs this is not so since locality implies
clustering. Using LRUSM, Spirn [Spirn77] asserted that the pagefault rate under LRU is
lower than that for a dynamic algorithm having the same average memory size. He claimed
that the problem with the performance of LRU was that while the size of the favoured
locality varies with time, in LRU this is assumed to be fixed. Dynamic algorithms (such

as WS) perform better than LRU since they are able to track changes in program locality.

5.3.2 Phase Transition Models

Phase transition models attempt to divide program behaviour into distinct states. These
states form a macromodel with IRM or LRUSM being used as the micromodel. Kahn
[Kahn76] explored a two-state macromodel which contained a phase state and a transition
state. When the program was in the phase state, locality of reference was assumed to be

dominant while in the transition state it was assumed to be less influential.
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Figure 5.3: The lifetime curve

The most important issue with phase transition models is which of the two models
dominates the overall model. Kahn’s work indicates that the macromodel dominates
[Denning80, pages 71-72]. His results showed that variable-size algorithms, e.g. WS,
were better than fixed-size algorithms such as LRU.

5.3.3 Markov Models

A few Markov models of program behaviour have been proposed. Sekino [Sekino72]
employed a first-order Markov chain to model program behaviour in a multiprogramming
system. Each page in the program was represented as a state in the Markov chain. The
transition matrix contained elements p;; which represented the probability of the next

reference being on page j given that the current reference was found on page ¢.

Franklin and Gupta [Franklin74] also used a first order Markov chain to calculate the

pagefault probability for a general system using different memory sizes and different paging
algorithms.

5.3.4 Lifetime Curves

Perhaps the most frequently used model of program behaviour is the lifetime curve as

shown in Figure 5.3. This is a graph that gives the mean time between pagefaults L(m)
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against the mean resident set size m, and a constant value denoted by a. One feature of

these curves is the existence of a primary knee [Denning75b)].

Various formulae have been put forward to explain the knee of the curve, including:

L(m) = am* (53)

where k is dependent on the locality of the program and is normally in the range of 1.5
to 3 [Belady®69].

L(m) = a2*™ (5.4)

used by Alderson et al. [Alderson72].

L(m) = a/[1+ (b/m)’] (5.5)

where b is the number of page frames that provides the process with half of its largest
possible lifetime. This curve gives the desired convex-concave shape and was used by
Chamberlain et al. [Chamberlain73}.

From the concept of locality of reference, the lifetime curve has a logical shape. When the
mean size of the resident set is small, numerous pagefaults occur so that the interpagefault
time is small. As the number of allocated pages increases, the interpagefault time also
increases. However at a critical point, the resident set size is large enough to hold the
entire working sets of most phases of the program. Thus further increases in the size of

the resident set do not result in significant increases in the interpagefault time, hence the
knee.

The knee of the curve is also associated with the optimal programming level of the pro-
gram since it represents the point at which the program is able to make maximum use
of the pages that are assigned to it. Attempts to keep programs operating at the knee
of the curve and thus achieve maximum utilisation of the overall memory have been re-
ported [Denning78].
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5.3.5 Criticisms of the Lifetime Curve

There have been a number of criticisms about the lifetime curve model [Carr84, pages 47-
48]. First, some of the curves have been produced using page sizes that are not representa-
tive of page sizes used in real operating systems. For example, models by Kahn [Kahn78]
and Simon [Simon79)] depend on lifetime measurements which use a pagesize of 64 words
(i.e. 128 bytes).

Another issue is the extent to which the position of the knee is dependent on the execution
time of the program. The same programs, if run for longer or shorter intervals, would
produce different lifetime curves. Perhaps the most important issue is the inclusion of
initial pagefaults (i.e the first time a page is referenced) in lifetime curves. Most of these
faults occur when the program is in its initial phases. For a demand paging policy, the
number of these faults are fixed for each program and are independent of the replacement
algorithm that is being used. These faults should therefore be eliminated from results for
page replacement policies. Carr [Carr84, pages 47-48] claims that if this were done, then

lifetime curves would be kneeless.

In addition, the application of particular lifetime curves to a general program model is
questionable. This is because the parameters of the lifetime curve (i.e the mean inter-
pagefault time and the mean resident set size) are very program specific. It is difficult to
see the paging activity of small interactive programs as well as large computational ones
having similar lifetime curves. Since lifetime curves are used both in simulation and ana-
lytical models, it is necessary to gauge how well they represent the behaviour of different
programs. The obvious attraction of lifetime curves is that they can be easily generated

from a program trace and thus are derived from real data.

General Criticisms of Paging Models

The usefulness of the results obtained from paging models to the operating system designer
has also been an issue of great debate within the computer research community. As
outlined by Saltzer [Saltzer76], paging models sometimes contain assumptions about
operating systems that are not valid. Also, issues that are of interest to the operating
system designer may be ignored in paging models. For example, while designers of new
paging algorithms report results which clearly show improvements in the overall system
efficiency, they do not measure the computational cost of implementing a given algorithm.

To the operating system designer, this is a key issue that is often neglected.

In the context of memory management, traditional paging models have not provided suf-
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ficient data on the demands of paging activity on the primary and secondary storage
systems. For example, transitions from one phase to the next play an important part
in the overall system performance. These transitions, though short, can generate an ex-
tremely high pagefault rate. Paging algorithms, in an attempt to detect and remove old
pages during or just after a transition, will increase the demands on the memory hierar-
chy at these critical moments which may result in the swapping device being saturated.
Though the benefits of paging algorithms are given in terms of the mean interpagefault
time and mean resident set size, it is also necessary to give the amount of deviation or
jitter of the resident set size that different paging algorithms generate to get a better

estimation of the demands being placed on the system.

In any virtual memory system, a large amount of effort is spent moving data between
primary and secondary storage as pages are moved in and out of resident sets. For good
overall performance, it is essential that a high throughput is maintained. An attempt to
improve this throughput lies behind increases in the pagesize of modern operating systems.
Today 4 KB and 8 KB pagesizes are quickly becoming the norm. Paging algorithms also
play an important part since they determine the rate at which paging traffic is generated

and thus must be considered.

5.83.6 Simulation Models

A number of simulation models of paging behaviour have been attempted. The main
problem with the use of simulation is the large amount of computational time required
to get a reasonable result. The other problem is deciding the parameters of the model
that will drive the simulation. Some simulation models use the lifetime curve to generate
pagefault events for objects having a certain resident size. A number of efforts in the
simulation of program behaviour are briefly described below.

Alderson et al [Alderson72] used the lifetime curve in Equation 5.4 to compare paging
algorithms as well as load strategies. Grit [Grit77] used a simple two-program model with
global LRU. He used a stochastic stack distance model to generate memory references. Ma-
suda [Masuda77] modelled an entire computer system. He employed a phase-transition
model to represent overall program behaviour. The program behaviour in each phase was
simulated using a stack distance model. Gomaa [Gomaa79] modelled the IBM VM/370
system using different models of program behaviour. First he used the lifetime curve sug-
gested by Belady in Equation 5.3, then another lifetime curve and finally he assumed that
paging rates of the program are precisely known. He concluded that lifetimes curves are

very crude models of program behaviour.
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A detailed simulation of paging models was carried out by Carr [Carr84, pages 65—
100]. In this model, Carr attempted to simulate in detail various aspects of a computer
system including main memory, the I/O subsystem and the task models. The task model
dealt with program execution and Carr used an Inter-Reference Interval Model or
IRIM [Carr84, pages 77-83] to represent program behaviour. The IRIM model was used
to determine the resident set of a program at any point in the simulation. To simulate
locality of reference, IRIM divides all the pages into busy and idle subsets, the busy set
being those pages referenced at least every w references where w is a control parameter,
similar to 6 for WS.

Thus, if this technique is applied to a program trace, the resulting IRIM string can be used
to explicitly represent the behaviour of the program. At the operating system level, Carr
simulated the scheduler, virtual memory management, including different page replace-
ment policies, and the swapping to and from disk. Carr used the simulation to examine
different page replacement policies for various programs including:

LKED: the IBM 370 Linkage Editor.

SYNCSORT: a sorting routine.

FORC: the IBM Fortran H compiler. The compiler was compiling 210 statements using
the highest optimisation level.

WATF: the University of Waterloo Fortran IV compiler. The compiler was measured
compiling 1800 statements.

ASMC: the IBM Assembler H. It is measured while translating a 575 statement program
into 370 Assembler Language.

SCRP: the University of Waterloo Script text processor.
PASC: the Stanford Pascal compiler compiling a 1100 line section of its source code.
DRAW: a graphics utility written in Fortran.

Carr obtained lifetime curves based on different paging algorithms including LRU, WS and

VMIN algorithms. His results suggest that traditional lifetime curves do not adequately
represent program behaviour.

5.3.7 Empirical Results

Perhaps the most disturbing thing about research into paging activity and virtual memory

systems is the lack of data on the behaviour of real programs running on common operating

62



systems. This lack of real data brings into question the validity of many analytical models
that have been developed and has, in turn, led to operating system designers ignoring the

results of these studies.

Coffman et al. [Coffman68] examined a number of programs running on the IBM Sys-
tem/360 Model 50 computer including a WATFOR Fortran compiler and a program for
computing Fourier transforms. These programs were used to study the performance of
two algorithms: local LRU and the Belady Optimum Replacement or BOR algorithm.
The BOR algorithm is based on a knowledge of the program execution cycle and finds
the optimal resident set that minimises the degree of swapping during program execution.
Data on the performance of these algorithms using pagesizes of 64, 256 and 1024 words

were obtained.

Rodriguez-Rosell [Rodriguez-Rosell73] published experimental data on the Working Set
algorithm employed on the IBM System/360. Results were presented for the University
of Waterloo’s G-level assembler as it assembled a program of about 300 instructions long.
The mean working set size and its standard deviation as a function of § were published.
The reentry rate, the number of pages entering the resident set per unit time, was also
examined. These results were published for page sizes from 1 to 8K. It is interesting to

quote part of the conclusion of this paper:

It is hoped that experimental computer scientists will provide similar mea-

surements to compare and ascertain patterns in program behaviour.

Boyse [Boyse74] presented data for the IBM Fortran IV compiler as well as a line editor
program. He noted the lack of empirical data and its effect on the modelling on program
behaviour. Saltzer [Saltzer78] also highlighted the need for a more experimental approach
to the modelling of program behaviour.

5.4 Summary: New Framework and New Tools

The workstation/personal computer environment, rather than the time-sharing environ-
ment, is now the dominant model of computing. In this environment, the response time is
taken as the most important criterion of performance. Reduced multi-tasking and faster
CPUs are making this environment more susceptible to thrashing.

While this issue may be partially addressed by advances in hardware, including the devel-

opment of sophisticated MMU’s as discussed in Chapter 2, or the use of faster devices as
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swap space, a study of paging activity with the aim of devising new techniques and new

paging algorithms that will improve system performance is required.

In order to achieve this goal, it is necessary to develop paging models that adequately
reflect all aspects of program behaviour based on experimental data from modern operating
systems. This in turn requires a proper framework in which paging activity may be
analysed that isolates the essential characteristics of paging behaviour and their effects on
overall system performance. A testbed must therefore be developed which can monitor
the paging activity of objects which are accessed as programs are executed. For greater
efficiency the use of paging algorithms on a per-object basis should be investigated. Thus
different objects may be paged using different paging algorithms.

An object-oriented virtual memory system that supports memory-mapped objects is a

basic requirement of this plan. The design of such a system is the subject of the next
chapter.
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Chapter 6

The Design of an Object-Oriented

Virtual Memory Interface

6.1 Motivation

As stated in the previous chapters, there is a need for a more flexible approach to virtual
memory management which provides users with the ability to use large amounts of data
in an object-oriented manner. The motivation behind this approach is similar to that
behind the use of object-oriented languages in which the user is allowed to define entities
called objects and specify the operations that may be performed on them. This allows
the programmer to think about the object using abstractions which reflect how the object

is used while reducing the need to worry about the details of the implementation.

In this chapter, the design issues are first discussed. Next the user interface is specified.

The concept of an object manager is then introduced and its interface is outlined.

6.2 The Design Issues

In discussing the design of any system it is necessary to define the terminology that will be
used. An object is defined as a logical entity that can be mapped into an address space.

There may be certain operations that are associated with different objects which we call
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object routines or methods. The data abstraction that the user invokes to access the

data within an object is called a handle.

6.2.1 Typed Objects

The introduction of the concept of an object type seems to be a natural way to embody
the concept of objects as logical entities. Instances of different logical abstractions may be
viewed as objects of different types. A process manipulates objects by mapping them into
its address space and invoking operations on them by using the relevant handles. A handle
may be associated with an object of a given type. For example, if an object mapped into
the a user’s address space is of type file, then the associated handle may be called a file
handle.

In order to use memory mapping effectively, it is necessary for a process to know about
objects in its address space including how and where they are mapped. In most systems,
this information is kept in the process map for that process which resides in the kernel
and is normally inaccessible to the user. Such information should also be readily available
to the process. However, a key issue involved here is how to protect such a facility from

erroneous or even malicious use by user-level processes.

An interesting solution to this problem is to protect the process map using virtual memory
techniques. Thus the relevant process map is mapped read-only in the address space of
the process. This allows the process to easily read its process map, if required, but not to
modify it except with the authorisation of the system, thus protecting it against malicious
use. Each entry in the table, known as a map._entry, contains the name of the object,
the type of object, the starting address and length of the object, the access rights of the
user, the index or virid of the map_entry in the process map and the number of threads
accessing the object in the same address space. The structure is shown in Figure 6.1. This

is a simple mechanism since the process map is protected by the virtual memory system.

6.3 The User Interface

The interface must provide at least a minimal set of facilities: the ability to map and
unmap objects in an address space, to create and delete objects, and to flush updates
to disk. The ability to grow or shrink objects is also needed. However, the issue of

synchronisation as well as the ability to lock objects into memory for better performance
are also addressed.
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address space object

Figure 6.1: The process map

We now define a prototype interface. The following calls are provided:

location = GetMyProcTable: gets the process map for that process and maps

it read-only into the address space returning its location.

vir-id = MapObject(type, name, access): maps the object specified by the
name and type into the caller’s address space. The vir-id represents an index into
the process table which contains the map_entry information. The access argument
specifies the access rights desired by the user. The type argument is used by the
system to contact another user process that will manage the object. This is expanded

on later in the chapter.

result = UnmapObject(vir-id, flen): unmaps the object specified by the vir-id
from the caller’s address space. Flen specifies the final size of the object while result

is set to 0 if successful and -1 if failure occurs.

vir-id = Create(type, name, access, size): similar to the MapObject call but
this call specifies a given size with which the object should be created. In addition,

the address space that created the object is designated the owner of the object.

result = Destroy(vir-id): destroys an object that has been created. The invoker
of this call must be part of the address space that owns the object. The object is
reference-counted and it is destroyed once its reference-count is zero. The object

cannot be reused.

result = Flush(vir-id, flen): flushes the object to backing store. Flen again
denotes the final size of the object. This system checks for all the modified pages,

then marks them read-only and queues them to be written out. If however, a user
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attempts to write to one of these pages before the write-out is finished, he is blocked

until it is completed.

e result = Discard(vir-id): prevents all modifications to the object made on the

local machine from being written to backing store.

¢ new._size = Extend(vir-id, new_size, reloc): increases the size of an object to
new_size. If new.size is less than the current size, the size of the object is shrunk
if no other thread is sharing the object. The reloc variable indicates whether the
kernel can relocate the object in the user’s address space if it cannot be extended at

its present location.

¢ result = LockInMem(vir-id): disables paging on an object. This call was in-
cluded to support time-critical situations where system resources may be in use for
long intervals. For example, when copying a large amount of data from an object to
network buffers, locking the object in memory before proceeding will improve overall
system performance since these buffers will be freed in a shorter time interval.

e result = UnlockInMem(vir-id): causes the paging algorithm for that object to

be invoked on future pagefaults.

e result = AcquireLock(vir-id, offset, len, which): it was decided to support
many-readers-one-writer synchronisation with one write lock being associated
with the entire object. The call attempts to acquire a read lock or the write for an
object. This is indicated by the value of the which argument. It is acknowledged that
objects such as databases will require locking mechanisms of much finer granularity,
so it was decided to include the offset and the length of the region for which locking
is sought. By extending the design, it is possible to pass this information to a lock
manager.

¢ result = ReleaseLock(vir-id, which): releases the lock specified by which on an
object given by vir-id.

¢ sys_type = GetObjType(name): allows users to find out if an object type given
by name is supported by the system. If the object type is supported, then the system
associates a number with this object type. The value of this number is returned in

sys_type. If the object type is not supported, sys_type will have a value of -1.

In the MapObject and Create calls, the access desired by the caller must be specified.
The access variable in these calls contains numerous bit fields that instruct the system to

perform certain operations on objects:
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MAP_TYPETEXT or MAP_.TYPEDATA - specifies the type of information being

mapped whether text or data. This indication is useful for debugging purposes.

MAP_GROWUP, MAP_GROWNOT or MAP_GROWDOWN - indicates the

direction in which the object is expected to grow.

MAP_READONLY, MAP READWRITE or MAP_COPYONWRITE - speci-

fies the type of access desired, whether read/write, read-only or copy-on-write.

MAP_ZEROFILL - indicates that an object must be supplied with zero-filled pages

from the system when a pagefault occurs.

MAP_SAVE - indicates that the object should be saved when it is no longer in use. This

will ensure fast restarts if a process must be executed again without any modification.

MAP_DISCARD - indicates that changes made to this object cannot be flushed to
disk.

MAP_MEMLOCK - this bit field informs the system that the caller wants the object
initially locked in memory.

MAP_RECORD - the record indicator tells the system to record information about
the pagefaults associated with the ob ject.

MAP_INPLACE - indicates that an object must be mapped into an address space at
a specified virtual address. If this is not possible the call fails.

6.3.1 Other Issues

The MapObject call maps an entire object into the user’s address space. However, it
would also be a useful feature to map parts of an object as well. For example, a user may
desire to examine certain parts of a file. In addition, sometimes objects must be mapped
at specific addresses in an address space, for example, when starting a new process. It
should also be possible to load data into an object from an external source, e.g. a list of

physical pages.

To solve these problems, a structure that associates a physical segment with an object and
indicates the part of the object to which the mapping is related was introduced. So when
a pagefault occurs on an object, the exception routine checks the physical segment to see

if it contains the page.

These requirements detailed above also require an additional call to be added to the

interface:-
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Figure 6.2: The CreateProcObject Call

vir-id = CreateProcObject(asid, type, name, pr_info)

where: asid is the address space into which the object should be mapped.
type is the type of object being mapped.
name is the name of the object.
pr-info is a structure containing the relevant information.

The pr-info structure contains the following fields:-

size: indicates the size of the object being created or mapped.

access: the access required.

startinobj: indicates where the object should start in the address space.
startinfile: the starting address in the remote file associated with the mapping.

pid: the physical segment associated with this object.

In addition, another bit field was added to the access variable. The MAP PRELOAD
field indicates whether the caller wants the data in the physical segment to be loaded into

the object before it is accessed as shown in Figure 6.2.
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Figure 6.3: The Architecture

6.4 The Architecture

The user interface specified above would normally be implemented as system calls from
user-space or as messages exchanged between the user’s address space and the address

space of the kernel.

It is also important to note that the kernel does not have any knowledge of the data struc-
tures used to implement the handle associated with a given object. The user is therefore
free to implement any handle that is appropriate. However, in a working environment it
is likely that there will be a number of installed handles which manage objects that are
frequently used, e.g. files.

The routines associated with these handles may be kept in a number of object libraries
which are linked with the user’s program. These libraries are similar to the class libraries
associated with object-oriented languages, for example, C++. Like class libraries, these
routines may be written by other programmers and are merely invoked by the user. These
routines will in turn invoke calls in the user interface to map and manage objects. The

setup is shown in Figure 6.3.

6.5 Building An Object Library : A Simple Example

In this section, routines associated with the management of files are implemented and may
form part of an object library for managing file objects.

Let us propose a simple file data structure as follows:-
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Figure 6.4: ProcMap after the MapObject call

typedef struct file {

int _cnt; — the number of bytes to be accessed.
char *_ptr; — next character to be accessed.
char *_base; — the base address of the file.
short flag; — the access control indicator.
short file; — the file number.
} FILE;

When a process begins execution, it invokes the GetMyProcTable call to map the process
table into its address space. The pointer to this table is given by Proc_Map.

We now detail the implementation of the fopen Unix call

as part of an object library.
fopen(filename, mode);

From the mode we get the access variable, whether read/write or read-only,
and can invoke the MapObject call in the user interface to map the ob ject

into the user’s address space.
vir-id = MapObject(“file”, filename, access);
This mapping will be indicated by a new map_entry in the process map.

New_Entry is a pointer to a map.-entry and is set to point at the file that
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has just been mapped in as shown in Figure 6.4.
New._Entry = &Proc_Map[vir-id];
We now initialise the file data structure.
fp->_cnt = New_Entry->len;
fp->_base = fp->_ptr = New_Entry->st.addr;
fp->_flag = New_Entry->access;
Finally, we set the file number to point to the index of the new entry in the process map.
fp->_file = New_Entry->virid;

Routines similar to those used for the Unix file system can be developed based on this file

data structure.

We can also include routines for the file object library that are not found in the Unix File Interfa
LockFileInMem(fp) = LockInMem(fp->_file);
UnlockFileInMem(fp) = UnlockInMem(fp->_file);
GetReadLock(fp) = AcquireLock(fp->_file,0,0,LREAD_LOCK);
GetWriteLock(fp) = AcquireLock(fp->_file,0,0,WRITE_LOCK);
ReleaseReadLock(fp) = ReleaseLock(fp->_fille, READ_LOCK);

ReleaseWriteLock(fp) = ReleaseLock(fp->_file, WRITE_LOCK);

6.5.1 Benefits

There are several benefits to using this interface as compared with others presented so
far. First, the interface refers to objects as logical entities and does not deal in terms

of pages and segments or other architectural features. This helps the user to realise his

73




logical abstraction without having to be aware of the architecture of the system. Secondly,
it uses a simple protection mechanism, i.e. the virtual memory system, to protect against

changes in the process map.

The interface also frees the programmer of having to manage the information on memory
mapped objects. This information is readily available by reading the process map. In
addition, since the user must use the map_entries in the process map to invoke calls on

the interface, the system can easily check his access capabilities.

6.6 Using Different Handles

Sometimes it may be necessary to use a different handle on an object other than the one
normally associated with its type. This may be as a result of an object being composed of
smaller objects each with a different handle, or there may be a better handle to navigate
the data at a certain point. Thus, it is necessary to build a type interface that can be
used to specify the relationship between handles associated with the different object types.

Four relationships may be declared:

SYSTYPE: a handle is of this type if its object type is known to the system. This
means that the GetObjType call will return a valid sys_type number.

ALIAS: indicates that a handle x can be substituted for a handle y.
SUBTYPE: indicates that a handle x is a subtype of handle y.

UNIVERSAL: indicates that a handle x is a subtype of every other handle. However,

to limit the amount of book-keeping required, it was decided not to allow subtypes
of a universal handle.

6.6.1 The Type Interface
The interface supports two interface calls, namely:

¢ Declare (a,b,rel)

This call declares the relationship between handles of types a and b where rel

is one of the relationships above. For relationships of types SYSTYPE and
UNIVERSAL, a = b.
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Figure 6.5: The Modified Architecture

¢ pseudo.entry = GetPrimHandle(vir-id, start_addr, len, p)

A pseudo.entry is a pointer to a map._entry structure that is not part of the process
map. This call is used to associate a pseudo_entry with an object of type p,
starting at start_addr and of length len in another object which is represented by
the map_entry specified by the index vir-id. The type-checking routine checks
to see if there is a declared relationship between p and the object. It then
checks that the starting and ending addresses of the new object are within the

larger object.

6.6.2 A New Layer

The type interface forms part of the user’s environment and should be implemented as a
library which is linked along with the user’s program. It may be represented by a layer
between the user and the object libraries as shown in Figure 6.5.

6.6.3 A Brief Example

Let us imagine we would like to read our mail which is located on a remote fileserver. A
mail message has both a header and data which is the actual message. The size of the
data is given in the mail header. We would like to invoke routines to read the mail on our
machine which has an installed mail handle.
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We can define the handle as follows:

typedef struct message_reader {

int n; — the number of lines read.

char *newline; — a pointer to the first character in the new line.
int totalcount; — the total number of bytes in the message.
control chars; — control characters.

char mh; — to use the process map.

} MessReader;
There is also a routine to set up the MessReader from a map_entry.
We define this routine as follows:

MessReader *SetMessReadHandle(New_Entry){
mh = (MessReader *) malloc(sizeof(MessReader));
mh->n = 0;
mh->newline = New_Entry->st.addr;
mh->totalcount = New_Entry->len;
mh->mh = New_Entry->virid;

}s

We first declare the MessReader type to be a subset of the type file.
Declare(MessReader,file, SUBTYPE)

We now open the file with the mail message get back the file descriptor. Using the file
descriptor, we read the mail header to obtain offset in the file at which the data starts
and length of the message. We then invoke the GetPrimHandle call to get a pseudo.entry
representing the message.

pseudo.entry = GetPrimHandle(fp->file,(fp->_base + offset),len,MessReader)

We now call the SetMessageRead Handler routine with pseudo_entry as the argument. The
mh returned can be used to read the message.

There are several advantages to this scheme. First, a handle is implemented as though the

system directly supports objects of its type. It is the user’s responsibility to use the type
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interface to obtain the relevant handle at any point in time. Secondly, there is a small
amount of code required to integrate a new handle into the system. All that is required
is for the user to specify how to set up the handle from a map.entry. Once this is done,
it is easy to use the handle either as a subtype of another handle or an alias to another
handle. However, it is important to note that each handle data structure has a variable
which is set to the index (i.e. New_Entry->vir-id) of the map_entry in the process table

to which it is related. This allows the user to invoke the user interface directly.

There are limitations: the most severe being that the type checking to ensure that handles
are properly related is done at run time. It would be much better to do this at compile time
so the user can quickly correct any errors without having to run the program. Secondly,
this interface would greatly benefit from facilities of an object-oriented language like C++.
This would make it easier to define new interfaces using the inheritance facilities of the

language.

6.7 Object Managers

To manage the paging of objects, additional support is needed. In keeping with our
microkernel philosophy, it was decided that these functions should be done by user-level
processes which we call object managers. An object manager is responsible for one or

more object types. Its main task is to move data between an object and its backing store.

One of the major issues in the design of object managers is the need to minimise overhead
with regard to moving data from the object manager to the relevant process. For example,
it is essential to eliminate the need to copy data involved in servicing a pagefault from a
buffer in the object manager to the page where the data should go since this limits the
throughput of the system. One way of achieving this is to map the object into the address
space of the object manager as well. This, however, places a critical load on the address

space of the object manager and complicates the virtual memory management system.

In this design, a simpler mechanism is employed. All the physical pages that are on the
free-list after the kernel has been initialised are mapped into the address space of an object
manager. Each free page has an index relative to the first free page in the system. These
pages are initially mapped non-accessible. The page data structure for every page contains
an index relative to the first free page. When a pagefault occurs a free page is taken off the
list and made accessible to the object manager. Given the index of the page, the object
manager locates the page in its address space and writes the required data directly into it.

When the object manager is finished, the page is again made non-accessible to the object
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manager as it is mapped into the virtual address space of the object.

Object managers register with the kernel, stating their willingness to handle events on
objects of a given type. When events, such as pagefaults occur, they are directed to the

respective object manager.

6.7.1 Object Manager Interface

The interface for the object manager must support a number of functions. These include
the ability to map the free pagelist into its address space, to register with the kernel about
managing an object of a given type, to get the relevant characteristics of the object from
the remote fileserver as the object is being mapped into an address space and to get the
relevant data from the system to service pagefaults and return the results. The interface

calls are given below:

¢ location = MapFreePgTable: maps all the free page data structures into the
address space of the object manager returning the virtual address.

¢ sys.type = RegObjHandler(objname): informs the kernel that the caller is
willing to be the object manager of objects of the type given by objname. The
kernel returns a number which is then associated with objects of that type.

¢ result = ConstructPageTable (obj_num, size): invokes this call to construct
the pagetables for the object specified by the obj_num whose size is given by size.
This is usually done after the object manager has obtained the size of the object
from a remote server.

¢ result = Investigate (obj_num, os): the object manager uses this call to obtain
information about the object specified by objnum. The os argument points to a
structure that contains the required information for the object manager to handle

the pagefault from its own address space.

e result = ReturnResult (obj-num, os): returns the result of an operation that

the object manager has initiated in response to an event on an object.

6.7.2 Using Default Object Managers

In a distributed environment, the system would support a number of default object man-

agers. For a Unix environment, these object managers would manage file, text, data, bss,
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stack and environment objects. A user can use these object managers directly by specifying
the corresponding type in the MapObject or Create call. However, users are encouraged
to build their own object managers for objects (e.g. voice or video) that may have totally
different characteristics to the types supported by the default object managers. The layers

associated with an object manager are shown in Figure 6.6.

6.7.3 Benefits

The key advantages of this interface is that it is small and fairly easy to use. In addition,
object managers are free to implement their own mechanisms for moving data to and
from secondary storage. This is vital when factors such as the Quality-of-Service or
QoS associated with the object must be taken into account. Finally, the interface uses

virtual memory techniques to avoid excessive copying across address spaces.

6.8 Summary

This chapter has detailed the design of an ob ject-oriented virtual memory interface high-
lighting different design issues. This interface is built on the idea of the protected process
map which is protected by the virtual memory system and maintains information about
objects that are mapped into the user’s address space. It also allows the programmer to
use logical abstractions without worrying about how data is moved to and from secondary
storage.

Object managers are user-level processes that manage the movement of data from an
object in main memory to and from its backing store. A standard interface is provided

allowing users to build their own object managers. Virtual memory techniques are used
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to avoid copying from the object manager to the object pagetables without overloading
the object manager’s address space. Examples of how the proposed interface may be used
have been demonstrated, showing its flexibility and its simplicity. An implementation of

the interface is discussed in the next chapter.
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Chapter 7

Implementation

7.1 Introduction

This chapter details the implementation of the virtual memory management interface
outlined in the previous chapter. The hardware and relevant aspects of Wanda, an ex-
perimental operating system being developed at the University of Cambridge, are first
described. Subsequently, new algorithms and data structures required to implement the

interface are investigated.

7.2 Hardware

A single board computer system containing a 68020 CPU with a paged memory manage-
ment unit (PMMU) and 1 MB of RAM running at 16MHz was used. This arrangement
is rated at 2 MIPS [Ratzer87]. Other cards included an 8 MB RAM card, an Ethernet
controller VME card and two other cards each containing 1 MB of non-volatile memory.

The cards were placed in a crate.
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7.3 Wanda

Wanda is a micro-kernel operating system under development at the University of Cam-
bridge since 1988. It is being used as a vehicle for research into a number of different areas
including fast packet switching [Leslie91]. Wanda supports a multiprocessor environment
and was first implemented on the Firefly, a prototype multiprocessor developed at DEC
SRC [Thacker87]. In the summer of 1989, Wanda was ported to the 68020 machines with
PMMU’s and subsequently to the 68030’s. Versions of Wanda for 68020’s with no mem-
ory management facilities have also been implemented. The kernel has also been recently
ported to the ACORN RISC Machine (ARM) and 68000’s systems. Components of Wanda
that are relevant to this implementation including scheduling, the event mechanism and

the virtual memory management system are briefly described below.

Wanda has a preemptive scheduler which supports scheduling in a multiprocessor environ-
ment. Threads are scheduled based on their priorities which include a kernel priority, a
user priority and an idler priority for threads that are run when no user or kernel threads
are running. The system also provides both kernel and user-level semaphores. Threads
waiting on semaphores are allowed to spin on idle processors waiting to be unblocked,
providing low latency.

Low-level events, including hardware exceptions, may be communicated to the relevant
process via an event mechanism. When each address space is started, an event-waiter
thread is created. Using the Wait-for-Event system call, this thread is notified of
different events. When an event occurs, the event type and event-specific data structures

are placed on the event queue of the process and its event-waiter thread is signalled.

Wanda supports a pagesize of 1024 bytes, a maximum segment size of 4 MB and a virtual
address space of 128 MBytes on the 680x0’s. The virtual memory interface provides calls
which allow user processes to obtain physical memory as a list of pages and map it into
their address spaces. A privileged user process called the Process Server or ProcSvr uses
this interface to start other user processes. All the physical memory is allocated before

the process is started and the system does not support the paging of objects.

7.3.1 The ANSA Testbench

In order to build a distributed system, the ANSA Testbench [Arc90] has been ported
to Wanda. The Testbench allows servers to export interfaces via a matching service known
as the Trader. The interfaces are imported by client programs and a client obtains service

by remotely invoking operations on the interface. The invocation and the associated data
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structures are made into a message which is transmitted to the server. The results are

communicated back to the client.

7.4 New VM Structures

Virtual memory structures in Wanda were designed to manage pagetables and physical
pages allowing them to be mapped in and out of address spaces. Access control protection
was implemented using only the access control bits in the page descriptors. For segmented-

paged architectures like the 68020, no protection was enforced using segment descriptors.

My Changes

To allow users to share the same object with different access rights, it was necessary
to implement more protection using segment descriptors. The other issue concerned the
direction in which segments are grown. This is also specified in the segment descriptor to
minimise the size of the associated pagetables. It was decided that two objects which are
growing in different directions would not be placed in the same segment since this would
result in large pagetables. This meant that a more sophisticated access control checking
mechanism had to be implemented which took these factors into account.

It was also necessary to build another facility to associate a region of an address space
with an object reference so that it would be possible to translate an address in the user’s
address space to an object number and a page number. This information was placed in a
data structure and queued on a linked list associated with the address space. It included
the object number, the page in the address space at which the object starts and the length
of the object in pages.

Each object has its own pagetable. When an object is mapped into the address space, the
pagetable allocated for the object in that address space uses indirect page descriptors, as
described in Section 2.4.3, to point to the corresponding page descriptors in the pagetable
of the object. Thus the page descriptors in the ob ject pagetable reflect the access patterns
of all the address spaces that are sharing the object.
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Figure 7.1: The Overall System

7.5 Object Management

Object managers interact with users via an Object Table. The object table resides in
the kernel but may be mapped into the address spaces of object managers. The overall

system is shown in Figure 7.1.

Active objects of a given type are also linked together in a type list. The data structure

used to represent an object contains a number of characteristics:

name: the name of the object.

obj_type: its sys_type number.

handler: the object manager responsible for the object.
pgtable: the pagetables of the object.

PageBit_Map: this is an array containing page-specific data.
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Figure 7.2: The Object Monitor

obj.locktype: the type of locking permitted on the object.

owner: the address space that owns the object if the object was created locally.
addrlist: the list of address spaces into which the object is mapped.

page-info: information on the paging algorithms to be used on this object.

monitor data structures: a monitor structure used to synchronise access to the object.

object routines: routines that are associated with the management of the object.

7.5.1 The Monitor Structure

Each object has data structures to implement a monitor, including a gate semaphore and
condition variables as shown in Figure 7.2. The variables associated with the monitor
are the state variable, which indicates the state of the object, and the event_pending
variable. The event_pending variable is used to indicate actions or events which must
occur before particular threads can proceed. Threads waiting on events are queued on a
single queue within the monitor. Threads waiting on a given event are unblocked when
this event has occurred.

The Wanda event mechanism is used to notify an object manager of events occurring on
an object which require its attention. The object manager does an Investigate call to

examine the state of the object and get the necessary information to deal with the event.
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It then returns to user space. After servicing the event, it does a ReturnResult call to

return the results of the call and unblocks threads waiting on the event.

7.6 The Interaction Protocol

The interaction between a user thread and the object manager is based on a simple pro-
tocol. The rules are:

1. User threads obtain service by setting event_pending indicators.

2. Once an object is created, only the object.manager can change the state of an object.
This simplifies the protocol and allows the object manager to refine it. For example,
errors detected by the object manager are indicated by setting the object to an
ERROR state.

A state machine of the protocol is shown in Figure 7.3. To demonstrate the protocol, we
suppose that a user has just invoked the MapObject call on the interface. The type list
containing ob jects of that type is first searched to see if the name matches the name of any
object in the type list. If not, a new object data structure is created with its initial state
set to NASCENT. The object manager is then signalled to get the pagetables for the
object. To do this, the user thread sets the event_pending variable to PHY PENDING
and sends a message to the object manager. The object manager must first obtain the size
of the object. This is done by querying the remote storage server using an ANSA RPC.
It then issues a ConstructPage Table call.

When this is completed, the object manager sets the state of the object to PHY _-
ALLOCATED and unblocks all the threads waiting on the PHY _PENDING event. The
user thread may now map the object into its address space. After this operation, the
object manager is again signalled by the user thread using a MEM_PENDING event
notification. The object manager looks at the object to see if any further service is needed
before the object is accessed. For example, if data from a physical segment needs to be
preloaded into the object, it may be done at this stage. The object manager changes the
state of the object to MEM_ALLOCATED and unblocks all the threads waiting on
the MEM_PENDING event. The user thread now returns to user-space and can begin to
access the object.

Once in the MEM_ALLOCATED state, certain events do not cause a change in state:

for example, when a pagefault occurs or when a flush operation is invoked on an object.
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When the user has finished using an object, the UnmapObject routine is called. If no other
thread in the user’s address space has opened the object, it is unmapped from the user’s
address space. If no other address space is using the object, and it is mapped read/write
with no discard indicator being set, the system attempts to write the modified pages back
to memory. It queues the list of modified pages onto the object data structure and signals
the object manager using the WRITEOQUT_PENDING event indication.

The object manager then proceeds to write out the modified pages. It will then check
to see if another user has attempted to reuse the object. This is indicated by setting the
REUSE_PENDING event indication. If this event is not pending, the object manager then
checks to see if the save indicator is set. This is set in response to the MAP_SAVE option
which tells the system to keep a local copy around as long as possible. If this is not set,

then the object manager proceeds to deallocate the resources associated with the object.

If the discard bit on an object is set, or the object is mapped read-only then there is no
need to set the WRITEOUT_PENDING event indication, instead the user thread sets the
REMOVAL_PENDING event indication which causes the object manager to remove the
object. If, however, the save option is set, then this action is not initiated and the call

terminates.
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7.6.1 Created Objects

The entire sequence outlined above need not be followed by objects that are created using
the Create call. This is because the Create call specifies the size of the object to be created.
This means that the system can create the pagetables and map the object into memory
without the assistance of the object manager so these ob jects are normally put in the initial
state of MEM_ALLOCATED. Created objects also have their MAP_ZEROFILL indicator
set so that when a pagefault occurs, only a zero-filled page is ever required. There is no

need to contact an object manager.

Temporal objects which are created for the lifetime of a process, for example, the bss
region of a process, are created with the MAP _DISCARD option being set in the Create
call. Flushing is disabled and the object is deleted after it is used. No backing store is

ever allocated for such an object.

7.6.2 Benefits

One of the major benefits of this design is the clear separation of the interaction protocol
and the monitor/event concept. This permits us to change the interaction protocol, the
policy, without having to change the mechanism, the monitor/event technique. Hence if

the interaction protocol is changed, the monitor code will not be affected.

7.6.3 Pagefault Handling

Extra support is needed to handle pagefaults. This is because there may be any number of
pagefaults occurring on an object at any one time, either on the same page or on different
pages as ob jects may be shared among different address spaces. When a pagefault occurs
it is necessary to know which page of the object is involved. This is done by the low-level
virtual memory management system which translates the faulted address in user’s address

space to an object number and a page number.

Given these parameters, the exception routine then jumps into the monitor of the object.
The PageBit_Map is an array that is indexed using the page number of the faulted region
of the address space. Each element of the PageBit_Map contains a variable that indicates
the state of the corresponding page.

Page states are:
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PAGENOT_PRESENT: the page is not present.
PAGE_REQUESTED: the page has been requested but not yet brought into memory.

PAGE_IN_MEMORY: the page is in memory. This is set once the page has been
mapped into the object.

PAGE_ON_SWAPQUEUE: the page is waiting to be paged out.
PAGE_ON_RECLAIM._QUEUE: the page is waiting to be reclaimed by the system.
PAGE_SWAPPED_OUT: the page has been paged out.

PAGE_ON_QUEUE: the page is about to be written out.

PAGE_WRITEOUT_PENDING: the page is being written out.

If the page is not present, the faulted thread first gets a page from the free list. This page
is then made accessible to the object manager. The thread then sets the event_pending
variable to PAGEFAULT .PENDING and then signals the object manager. Threads wait-
ing on pagefaults are not placed on the monitor queue because it will be necessary to
kick not only the threads waiting on a particular pagefault to be serviced. So the page
number of the fault must also be known and this information is not part of the monitor
and thus the PageBit_ Map is used. A threadlist, another structure in each element of
the PageBit Map, is used to queue threads waiting on pagefaults for that particular page

to be serviced.

When an object manager gets the data from the remote server to service a pagefault, it
issues the ReturnResult call. This call first maps in the assigned page into the resident set
of the process and then unblocks all the threads waiting in the threadlist for the pagefault
to be serviced. The page is now mapped into the pagetables for the object. It is also made

inaccessible to the object manager.

7.6.4 Copy-On-Write Mechanisms

It was decided to use a scheme similar to the copy-on-write mechanism used in Chorus as
this appeared simpler to implement than the Mach copy-on-write mechanisms. Unmodified
pages are placed in a structure called an archive. An object primarily has two archives
associated with it. The first archive is called its source archive. When a pagefault occurs
in an object, the source archive is first searched. An object cannot modify the pages in

its source archive. Hence, if other users wish to share the original object, this archive is
used.
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The other archive is called its copy archive. All the pages that are changed by the user
when the object is mapped copy-on-write are placed in this archive. Thus if other users
wish to share the object, incorporating the most recent changes, a new object is created

such that its source archive is the copy archive of the previous object.

Copy and source archives may be joined together so that a chain develops and when a
pagefault occurs lower down in the chain, archives are recursively searched, each step going
to a higher archive in the chain until the page is found or a pagefault is signalled. When
the pagefault is satisfied the page is also placed in the uppermost archive (called the root
archive) so that other archives in different parts of the overall structure will also have

access to it.

7.6.5 Paging
Swap Device

The swap device was 2 MB of non-volatile RAM. It was decided to use non-volatile RAM
rather than disk to experiment with faster swap times and compare them with disk access
times. When the system is booted, the kernel counts the number of non-volatile pages
that are available and puts them on a free list. The swap area is managed on a per-ob ject
basis with each swap ob ject having a list of pages that have been paged out. When a list
of pages from an object must be paged out, the contents of these pages are copied to swap

pages which are then queued on its swap object.

It should also be pointed out that, for this implementation, there is no inherent advantage
in using non-volatile RAM as compared with RAM. When the system was being configured
a few Megabytes of non-volatile RAM was available so this was used. RAM was scarce
because it was needed for other Wanda machines. The use of non-volatile RAM may be
relevant in the context of integrating the management of swap space with that of a general
filing system but this issue is not addressed here.

The Pager

Pages that are removed from the resident set are placed on a special queue in the ob-
ject data structure call the swap queue. The page state for the page is changed to

PAGE_.ON_SWAPQUEUE. The pages are paged out by a kernel thread designated as the
Pager.
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The Pager operates on a list of requests using a PageSemaphore. When pages from an
object need to be paged out, a request is sent to the Pager and the PageSemaphore is
signalled. The Pager waits on the semaphore and when unblocked, dequeues the request,

finds the respective object and moves the pages to the swap device.

An interesting operational issue is the priority at which the Pager should execute. If it is
set at kernel priority, the Pager would be invoked every time pages are removed from the
resident set since the Wanda scheduler is preemptive and the priority of the Pager would
be higher that than of the object manager servicing the fault!

It was therefore decided to run the Pager at user-priority to allow several pages to accumu-
late before the Pager pages them out in a single operation. This increases the throughput
at which pages are moved to secondary storage. In addition, if a page has been previously
paged out and is needed very shortly afterwards, then it can be easily reclaimed from the
swap queue. This would avoid the need to consult the swap space of the object, thus
increasing the throughput of the user process. The effect of this policy was tested and

experimental results were obtained.

The PageStealer

Rather than place pages that have been paged out back on the system free pagelist, the
Pager places these pages on another queue in the object data structure. This queue is
called the page-reclaim queue and the page state is altered to PAGE_ON_RECLAIM -
QUEUE. The system runs a kernel thread called the PageStealer which is responsible

for, among other things, reclaiming pages from ob jects.

When memory on the freelist reaches a lower threshold, about 15% of the total, the
PageStealer is invoked. It examines each type list in turn. For each object in the list, it
checks if any address spaces are referencing the object. If not, the object has been saved
at the request of a user. It frees all the physical pages associated with the object placing
them back on the free pagelist. If the object is in use, the PageStealer deallocates pages
that are on the reclaim list. It continues this operation until it has finished going through
the type list.

The motivation behind this approach is to keep pages in the vicinity of the object for as
long as possible. If a page fault occurs on a page and its page state indicates that is on
the reclaim queue, then the page is retrieved and brought back into the resident set, the
copy of the page on the swap space is invalidated and the associated page on the swap

device is freed. This saves the extra copy from swap device back into memory.
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7.6.6 Object Routines

The mechanisms detailed above are implemented by routines that form part of the defini-
tion of an object. This allows the virtual memory management system to be implemented

in an object-oriented manner. The routines are:

¢ ObjSatisfyFault: This routine is invoked when a pagefault must be serviced and

the object manager must be contacted to obtain the page from the remote fileserver.

o ObjZeroFill: This is called when a zero-filled page is required to satisfy a pagefault.

This occurs when the object has been created or is being extended on the local site.
e ObjPageAlgol: This is the paging algorithm associated with the object.

e ObjReclaim: This routine is invoked when it is necessary to retrieve a page that

is on the reclaim queue.

o ObjSwapOut: This is called by Pager to move the pages on the swap queue of an
object to its backing store.

¢ ObjSwaplIn: This routine is invoked when a page on the swap device is required in

main memory.

o ObjPrefetch: This is invoked as part of the implementation of prefetching paging
algorithms which are discussed in Chapter 9.

7.6.7 Synchronisation

To implement the many-readers-one-writer synchronisation defined by the interface spec-
ification, another monitor structure was used. There are four event_pending indications
associated with this monitor. They are:

REQUEST_READLOCK_PENDING: indicates that there are users waiting to read
the ob ject.

REQUEST WRITELOCK_PENDING: indicates that there are writers waiting to
write.

RELEASE_READLOCK_PENDING: indicates that there are users presently read-
ing the object.
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RELEASE_WRITELOCK_PENDING: indicates that a user is presently writing to
the object.

There are also variables which show the number of threads associated with each event.
These form part of the lock data structure which also contains a gate semaphore and a

single event queue. Let us suppose that the synchronisation policy is as follows:
1. Writers are favoured over readers.

When a process wants to read an object, it invokes the AcquireLock call with the lock
indication set to Read_Lock, enters the monitor and checks the event.pending variable.
If no event is pending, it sets that variable to RELEASE_.READLOCK_PENDING, in-
crements the corresponding variable and returns to user-space. In addition, if the RE-
LEASE_READLOCK_PENDING indication is the only indication that is set, then it
is safe to read the object as other users are currently reading. If, however, the RE-
LEASE_WRITELOCK_PENDING or REQUEST_WRITELOCK_PENDING flag is set,
then the user process increments the REQUEST_READLOCK_PENDING variable and is

then queued on the event queue.

When a process wants to write to the object, it invokes the AcquireLock call with the lock
indication set to Write_Lock. If no event is pending, then the RELEASE_-WRITELOCK -
PENDING indication is set and the corresponding variable incremented. The user then
returns to user-space. However, if any event_pending indication is set, the writer sets
the REQUEST.WRITELOCK_PENDING, increments the number of writers waiting and

queues on the event queue.

When a user process has finished reading, it decrements the variable which indicates the
number of other processes currently reading the object. If this is non-zero, it indicates
that some processes are still reading and the call terminates. However, if the process is the
last reader, then it first checks to see if there are any writers waiting and if so, decrements
the number of writers waiting and unblocks the first one in the queue before returning to

user-space.

When a writer has finished a write operation, it first checks to see if there are any others
writers are present. If so, it decrements the number of writers waiting and unblocks the
first writer. If there are no other writers, it then checks to see there are any users waiting
to read the page. If so, they are all unblocked.

The synchronisation policy here will always ensure that readers are accessing the most

current version of the object. Other policies can also be implemented using this model.

93




For example, there could be serialisation, in which reads and writes occur in the same

order as the interface calls are invoked.

It is very easy to build an interface for a lock manager using the same techniques used
to build the interface for object managers. Thus, where necessary, an event is generated
and sent to the lock manager. The lock manager takes the necessary steps, giving access
to portions of the object as required. Such a scheme would be applicable in database

environments where fine-grain locking is essential.

7.6.8 TUnix File Handling Routines

Part of the Unix file interface was ported using the interface. The followinglibrary routines
were supported:-

fopen (filename, mode) ~ Uses the MapObject call to map the file into the user’s ad-
dress space. Presently read-only, read-write and copy-on-write modes are supported.

fcreate (file, mode) — This call will Create a file using the create call with a default

size.

fclose (fp) — closes the file whose structure is given by fp. This uses the UnmapOb ject
call to unmap the file from the user’s address space.

fllush (fp) — causes a file to be flushed. The FlushObject call is invoked to cause the
object to be flushed to the permanent storage space.

fseek (fp, offset, whence) — positions a file at a given location.

freopen(filename, type, stream).
Calls based on the Unix I/O interface are also supported for memory mapped files:

fd = open (name, flag, mode)
bytes_read = read (fd, buffer, n)
bytes_written = write (fd, buffer, n)

position = fseek (fd, offset, whence)

Reading characters from a file is similar to the Unix library call, however writing is a bit

different, since if the file goes beyond its allocated size, it must be extended using the
Eztend call.
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7.7 Object Managers

As previously indicated, object managers service requests on objects and once an object
is created only its object manager can change its state. The system has a default object
manager called the PageSvr. The Wanda event mechanism is used to signal to the object
manager that an object requires service. The event_waiter thread of the object manager
uses this event notification to compose a task for which the attention of the task manager
is required. The task is then queued onto a task queue as shown in Figure 7.4. The
event_waiter then signals a Work semaphore. When the object manager has no work
to perform, it is blocked on the Work semaphore. When it is unblocked it dequeues the
respective task. It does an Investigate call to determine the true state of the object and
to obtain more information to deal with the request. When the object manager receives
a REMOVAL_PENDING or WRITEOUT_PENDING event indication, it flushes the task
queue, removing other tasks related to that object.
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Parameter Value

Time between a pagefault and waiting on the object manager 0.8842 (msecs)

Time to service a zerofill fault 1.250 (msecs)

Time for the ProcSvr to create all the objects for a new process | 81.450 (msecs)

Maximum sustained throughput of the PageSvr 38.6 (pages/sec)

Table 7.1: Preliminary Performance Results
7.7.1 Logger

One of the functions assigned to the default object manager is to log information about
the creation and deletion of objects. A thread known as the logger is spawned off when
the PageSvr is started up. This thread invokes a GetLog call that blocks in the kernel
waiting on events to occur. When an object is created the information is placed in a log
data structure. The Log Table is mapped into the address space of the PageSvr.

The logger writes the information about objects that are created or deleted into pre-
allocated buffer. An ANSA RPC is then used to append this information to an NFS
file. Information stored by the logger when an object is created comprise the name of the
object, its type, the paging algorithm to be used on the object, its object manager and
its size. When an object is deleted, additional information on the paging activity of the

object may also be recorded.

7.8 Preliminary Performance Measurements

Though the interface has not been tuned for optimum performance, some results are now
presented to show how well the system performs. These results were obtained from five

runs of the GCC Compiler Suite, and represent average readings. The results are shown
in Table 7.1.

The first reading measures from the time a pagefault occurs to when the faulted thread
is blocked on the threadlist waiting for the object manager to service the fault. This
involves entering the object monitor, checking the page state, sending a message to the
object manager and then blocking on the threadlist. The second measurement involves

the time it takes to service a zero-fill pagefault.

To create a new process, the ProcSvr first gets a new address space and then maps each of

the objects needed into that address space using the CreateProcObject call. Each process
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contains one object of the following types; text, data, bss, stack and environment. The
environment object is used to map the environment variables for the process. Arguments
for the stack as well as environment variables are contained in the corresponding physical
data segments. The arguments for the stack are preloaded when it is mapped into the
address space. It then creates the initial thread and starts the address space. The average
time for these routines is shown in the above table. This result is satisfactory because the

ProcSvr is operating in user-space.

Finally, the rate at which the PageSvr gets pages using an ANSA RPC to another process
called the ReqSvr was also measured. Since this operation uses the network, the efficiency
would vary according to the instantaneous traffic on the network. These measurements

represent the maximum sustained throughput measured over a period of twenty seconds.

The results show the PageSvr operation to be relatively slow. There are several rea-
sons for this, the most significant being the relative slowness of the ANSA RPC mecha-
nism [Nicolaou90, pages 148-149]. It should also be noted that the ReqSvr has not been
tuned for optimal performance. In RPC mechanisms, the marshalling and unmarshalling of
arguments in the remote invocation are time consuming. While such facilities are needed
for sophisticated applications with complex interfaces, the entire RPC mechanism is a
heavyweight operation when used for such a low-level operation as the servicing of page-
faults. A less complicated transfer mechanism was suggested and shown to significantly
improve the throughput of low-level services such as paging and file transfers [Wilson91].

7.9 Summary: The New World

In this chapter, the implementation of the interface specified in Chapter 6 on a 68020
configuration running the Wanda operating system was described. Changes to the Wanda

memory management were detailed and new data structures were introduced.

Co-ordination between object managers and users wanting service is achieved via an Ob-
ject Table with a monitor being used to synchronise access to object data structures.
An interaction protocol specifies the different states and events associated with object
management. This arrangement results in the clear separation between the policies and
the mechanisms used in the management of objects. Another monitor is used to syn-
chronise user access and a many-readers-one-writer synchronisation mechanism has been

implemented. Some features of the Unix file interface have also been ported to the system.

The boot image of the new system comprises the kernel image and the images of the

ProcSvr and the PageSvr. The PageSvr manages objects of types file, text, data, bss,
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stack and env. However, users are free to build their own object managers to manage

different types of objects.

Pagefaults that occur in address spaces are handled by the PageSvr. It uses the ANSA
RPC mechanism to get the data. The PageSvr also spawns off the logger thread when it
starts up which logs the creation and deletion of objects. Preliminary results indicate that

the system performs well though it has not been tuned to achieve optimal performance.

As shown in this chapter, it is relatively easy to extend the interface to provide support
for additional servers, e.g. lock managers for database systems. One such extension is
discussed in the next chapter.
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Chapter 8

Performance of Traditional

Paging Algorithms

8.1 Introduction

In this chapter, the performance of three local paging algorithms, the local LRU algorithm,
the Working Set algorithm and the Page Fault Frequency algorithm are examined. These
algorithms were chosen because they, or some of their variants, have been implemented in

several operating systems.

A new framework for comparing algorithms as well as describing program behaviour is
first developed. Its main objective is to highlight the essential nature of replacement al-
gorithms [Carr84]. Secondly, an experimental testbed is set up to investigate the perfor-
mance of different paging algorithms operating on different types of objects. The testbed
is an extension of the interface described earlier and incorporates the necessary data struc-

tures to record the parameters of paging activity specified by the new framework.

The GCC Compiler Suite was examined using the testbed and experimental results for

different paging algorithms are presented.
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mean resident set size

Figure 8.1: Paging Activity

8.2 A Framework For Paging

The following view of paging, as shown in Figure 8.1, is used to develop a new framework.
Pagefaults on an object are divided into two types: initial faults or iy and reclaim faults
or 7. An initial fault is generated when a page is first referenced while reclaim faults are
generated on pages that were previously in the resident set but have been paged out by the
paging algorithm. Initial faults are therefore independent of the paging algorithm being

employed while reclaim faults are entirely caused by the paging algorithm.

Let the ratio called the reclaim ratio, rr, be defined as follows:

=1
rr = y (8.1)

This ratio serves as a basis of comparison between two algorithms:

A paging algorithm X is better than a paging algorithm Y for a given object if for the

same mean resident size, m, the reclaim ratio of X is lower than that of Y.

The lifetime curve can also be related to the reclaim ratio. The average interpagefault

time, ¢p, can be expressed as a function of the mean resident size, m:

Tez

S

(8.2)
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where: T., is the total execution time of the program and ry(m) is the relationship

between the number of reclaim faults and mean resident set size.

By dividing the numerator and the denominator by 44, ip can be expressed in terms of rr:

L=
ip(m) = 1—+;'T(Lm§ (8.3)

The numerator of Equation 8.3 represents the average interpagefault time when no paging
algorithm is used. This can be represented by a constant for a given object, giving the

equation:

& = Co (8.4)
tf
Thus we can represent ip(m) as:
. Co
ip(m) = T rr(m) (8.5)

where rr(m) is the reclaim ratio as a function of m.

From Equation 8.5, it is apparent that ip(m) is dependent on rr(m). Thus rr(m) can
be used as a reflection of program behaviour. This is good for two reasons. Firstly, it
is possible to measure rr with greater accuracy than it is possible to measure ip since
measuring a large number of very small time differences is disruptive and is likely to be
less accurate. Secondly, there is a simple relationship between rr and ¢p since ip for a
given object is directly proportional to 1/(1 + rr).

It is easy to differentiate between reclaim faults and initial faults using the interface devel-
oped in the previous chapters since, as indicated in Section 7.6.3, each page of an object
has an associated state. The PAGENOT_PRESENT state indicates that the correspond-
ing page has never been in memory and thus was never part of the resident set. A page
that has been removed from the resident set may be in one of three states depending on

the stage it has reached in attempting to get onto the swap device.
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8.3 Design and Implementation of the TestBed

8.3.1 PageData Structures

The main goal of the testbed is to be able to specify different paging algorithms to be used
on various objects and to record and analyse the subsequent paging activity. A special
data structure called the pagedata structure is used to specify information on paging

algorithms. It comprises:

pag-algol: the paging algorithm being employed.

limit: specifies the maximum number of pages that the object can have in its resident

set.

window: specifies a time factor beyond which pages are removed from the resident set.

This is used by working set algorithms.

n_pages: specifies the number of pages that should be brought in when a pagefault

occurs. For demand-paging algorithms this is set to one.

8.3.2 Paging Interface

Information on the paging algorithms for different objects may be passed to the kernel
using two different mechanisms. First, the object manager, when it registers with the
kernel to handle events associated with a given object type, may also specify the paging
algorithm to be used when an object of this type is paged. The other mechanism involves
the building and management of a paging database which contains information on how
individual objects are to be paged. The database consists of a set of pdata structures,
each containing the object name and its object type as well as a pagedata structure with

the paging information. The interface to manipulate the entries in the database comprises:

e AddPg.Base (pdata): adds an entry to the database.

¢ CheckPg Base (pdata): returns the paging information about the object specified
by the object name and object type contained in the pdata structure.

e ChangePg_Base (pdata): changes the paging algorithm associated with an ob ject
specified by its object name and object type.

¢ DeletePg.Base (pobject, ptype): deletes the entry associated with the object
specified by the object name, pobject, and the object type denoted by ptype.
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When an object is being created, the database is checked to see if it contains any infor-
mation about the object. To speed up this operation, the database is partitioned into
subsections based on the number of object types supported by the system. If a match is
found, the corresponding algorithm is used. If not, the paging algorithm specified by the
corresponding object manager is employed.

8.3.3 Remote Paging Specification

To simplify the testing of paging algorithms, a remote paging specification was devel-
oped. Paging information about objects of interest is placed in a remote file. When the
system is started, the logger maps the file into the address space of the PageSvr and reads
its contents. It then adds this information to the paging database using the AddPg.-Base
call. Thus, if these objects are created, they are paged in the manner specified by the
remote file. This mechanism was used during the testing of paging algorithms. To change
the paging algorithm associated with an object, the remote specification for this object
was changed. This was much quicker than embedding paging information in individual
programs or libraries since they would have to be recompiled and relinked every time a

change was made to the paging algorithms.

8.3.4 Recording Information

When paging information about an object is required, the MAP_RECORD bit field is set
in the access variable as the object is being mapped in. Information on the pagefaults of
all the objects that are mapped into an address space is placed in a single file.

Pagefault data structures are used to record the following information about the object

when a pagefault occurs:

object-number: the object number of the faulted object.

block or page number: the number of the page within the object which contains the

faulted address. Thus it is possible to examine the order in which an object was
accessed.

virtual process time: the process time at which the pagefault occurred. This can be
used to calculate the rate at which pagefaults are occurring in different phases of the

program as well as the interpagefault time.

103




service fault time: the time taken to service the pagefault. This serves as a clear basis

for comparing the overhead involved in using different paging algorithms.
initial faults: the number of initial pagefaults.
reclaim faults: the number of pages that have been re-introduced into the resident set.

swapped-out pages: the total number of pages that have been removed from the

resident set.

resident set size: the number of pages in the resident set at the time of the pagefault.
This allows us to calculate both the mean and standard deviation of the resident set

size.

8.3.5 The Recorder

Information on the paging activity of a process is kept in pagefault structures and as an
object faults into the address space, a list of pagefault structures is generated. After the
process has finished executing, a message is sent to the process server. The process server
checks to see if any pagefault structures are associated with the address space. If so, it
sends a message to the recorder. The recorder is a special thread that transfers the
information from the pagedata structures to a remote file so that it can be analysed in

the Unix environment.

The recorder is part of the address space of the PageSvr as shown in Figure 8.2. The
pagefault data structures are mapped into its address space, so the recorder can access
them directly. It then creates an output file of the appropriate size to which it writes the

data contained in the pagefault data structures.

8.4 The Page Fault Algorithms

Three local algorithms were selected for investigation. Firstly, the Modified LRU or
MLRU algorithm was chosen. This algorithm is similar to pure LRU but uses a counter
for each page to indicate how recently a page has been used, rather than manipulating
the linked list of resident pages. When the algorithm is invoked, the routine examines the
pagetable entry for each page in the resident set. If the used bit is set, it is cleared and
the page counter is reset to zero. If the used bit is not set, the counter is incremented.
Hence, the page with the highest count will be the least recently used page and will be
replaced if necessary.

104



Message from
the ProcSvr

Writing to
the Remote File
pagefault

structures
recorder mapped in

user space

kemel

pagefault structures

Figure 8.2: The Recorder

Secondly, the Working Set or (WS) algorithm was chosen. In this arrangement, the
algorithm is invoked after every pagefault. An integer associated with each page records
the virtual time at which the page was last referenced. The algorithm examines each page
descriptor in the resident set. If the used bit is set, the time variable for the page is set
to the virtual process time of the present pagefault. If the bit is not set, then the virtual
process time of the present fault is subtracted from the last recorded time that the page

was accessed. If this result is greater than 8, the page is removed from the resident set.

Finally, the Pagefault Fault Frequency or (PFF) algorithm was examined. This is the
classic implementation as described in Section 5.2. When a pagefault occurs, if the time
of the last pagefault is greater than #, then all the unused pages are removed otherwise
the used bit of the pages that have been referenced are reset and a new page is added to
the resident set.

8.5 The Program Suite

To test paging algorithms, it is necessary to decide the set of programs to which these
algorithms may be applied. The GCC Compiler Suite (Version 1.37) was chosen as the

main benchmark. The suite is composed of four programs.

At the top level there is gce88k. This is the program that is invoked by the user to start
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the compilation. gcc68k checks the argument list associated with the call. It then invokes
the preprocessor, gcc88k-cpp or cpp. This program checks the source and include files
and produces a file with a .cpp extension. When the preprocessor is finished, gcc68k
invokes the main compiler gcc88k-ccl or ccl. This program takes the .cpp file and
produces an assembly language file with a .s extension. Next the assembler gec88k-as or
as is then invoked. The assembler translates the .s file to produce a corresponding ob ject

file with a .0 extension.

The GCC Compiler Suite was chosen because the characteristics of the four programs are
very different. gcc68k is the front end of the system and acts very much like an interactive
job, i.e. it issues commands and waits for responses before proceeding. The preprocessor
is I/O intensive especially if several include files are involved since each file must be parsed
and the .cpp file must be assembled. The main compiler, ccl, is the most computationally
intensive of all the programs. It is also the largest. The assembler is also a mixture of
computation and I/O as it translates the assembly language file into the object file.

It was difficult to decide which input file to use in testing the compiler since there is no
such thing as a typical compilation. The criteria for choosing were: firstly, the file had
to include a substantial number of header files to make the preprocessor behave in a very
I/O intensive manner. Secondly, it had to be large enough to make the main compiler,
ccl, run for several seconds so that paging activity could be measured over a substantial

period.

The file user.type.c was chosen. It is the code for the type interface mentioned in Chapter
6. It contains 14 header files, ranging in size from 600 to 21,350 bytes, and has 461 lines
of C code. The main compiler, ccl, used approximately 19.36 seconds of CPU time in the
compilation effort, while the assembler took approximately 5.35 seconds and produced a
user_types.o file that was 7,055 bytes in length.

8.6 The Analysis of the Results

When the file containing all the pagefaults of a process was obtained, it was processed
by several awk routines [Aho84]. Some routines extracted data that could be plotted
immediately, while other routines were embedded in programs that performed detailed
calculations. When calculating the mean and standard deviation of the resident set of a
program, pagefault calculations were only started after a page was first removed from the
resident set by the paging algorithm. Thus the resident set size was calculated without
including initial faults that occurred before any page was actually paging out.
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Figure 8.3: The Interpagefault Time vs 1/(1 + rr) for the text segments of the Compiler Suite using
the WS algorithm

i Program | 5 | Co (msecs/fault)
gcc68k | 33 8.59
cpp 58 41.06
ccl 401 48.37
as 92 58.68

Table 8.1: Values of Cp for the GCC Compiler Suite

8.7 Results

Equation 8.5 indicates that ip, the interpagefault time, is directly proportional to 1/(1 +
rr) with Cp, the average interpagefault time when no page algorithm is used, as the
gradient of the line. Figure 8.3 shows the graph for the text segments of different programs
operating under the WS algorithm. It shows straight lines for the assembler, compiler and
preprocessor, while an approximate straight line was obtained for the gcc68k program.
The small interpagefault times and the small number of pagefaults for gcc68k accentuate
the errors in measuring the interpagefault times. The values of Cy for the text segment of

the individual programs are shown in Table 8.1.
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Figure 8.4: 1/(1 + rr) vs Normalised mean resident set size for gcc68k and cpp

However, whereas the equation predicts a straight line passing through the origin, the
measurements show a very small intercept on the y-axis of approximately 372 usecs on
average. This is probably due to the time taken to calculate the virtual time at which
the pagefault occurred and as this was included in each reading. An easy way to obtain
the value Cy is to measure the values of ip and rr for any points and find the gradient
between them.

8.7.1 A New Criterion for Lifetime Curves

The results obtained have demonstrated that the mean interpagefault time, ¢p, is directly
proportional to 1/(1 + rr). Thus by plotting 1/(1 + rr) versus the mean resident size, m,
it is possible to obtain a curve that is more representative of program behaviour since it
is independent of the particular value of Cy. Objects with the same curves can be said to
have similar program behaviour. In the subsequent discussion these curves are referred to
as lifetime curves.

The results presented in Figure 8.4 show the lifetime curves for the text segments of each
program of the Compiler Suite operating under the WS algorithm. For proper comparison,
the mean resident set size is divided by the total number of initial faults, iy, for each

program. Curves for cpp and ccl have the shape of the traditional lifetime curve but they
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Figure 8.5: Comparing 1/(1 + rr) and 1/(rr)

are very different from each other while those for as and gcc68k are not at all similar to
the traditional lifetime curve. This result suggests no two lifetime curves are identical and

while some are similar there are also large differences.

8.7.2 An explanation

Figure 8.5 shows the comparison between the lifetime curve and 1/(rr) for ccl. It can be
seen that for small values of the mean set size, i.e. when rr is large, the corresponding
values are almost identical since in this region, 1/(1+ rr) = 1/(rr). As the mean resident
set size increases, rr begins to fall. However, when rr is small, a sudden drop in rr may

produce a large change in 1/(7r) causing a steep rise in the lifetime curve so 1/(1+rr) — 1.

Both the change and value of rr at which the change occurs are necessary to produce
the traditional lifetime curve. This can be seen by looking at the lifetime curve for the
preprocessor as well as plotting the values of rr divided by a factor of one hundred as
shown in Figure 8.6. The most significant drop in rr occurs between the normalised mean
resident sizes of 0.2 and 0.3. But at the end of that change rr is sufficiently large to
dominate the lifetime curve and thus only a small change is seen. However, at a lower

value of rr, a smaller change produces a much sharper rise in the lifetime curve.
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8.7.3 Comparison of Different Paging Algorithms

This section compares the results for different paging algorithms operating on the text
segments of the programs in the GCC Compiler Suite using the criterion of Section 8.2.
The results for gcc68k are displayed in Figure 8.7 and show WS and PFF algorithms
performing better than the MLRU algorithm. At the knee of the curve, PFF performs
better than the WS algorithm, however, above the knee, both algorithms are identical.

The results for the preprocessor as displayed in Figure 8.8 again show that PFF and WS
give better performance than MLRU, however, the knees of these curves are fairly deep
with PFF performing significantly better than WS in this region. Unlike the previous
graph, WS and PFF cross each other at a high value of rr. This suggests than the WS
algorithm may perform better than PFF at very low values of the mean resident set size

for some programs.

Figure 8.9 shows the results for the main compiler, ccl. Like the previous graph, WS and
PFF cross at a high value of rr. PFF does better than WS above and below the knee of
the curve. There is a sharp drop in reclaim ratio for WS between 200-250 pages. This

accounts for the steep rise of its lifetime curve in this region.

The results for the assembler are shown in Figure 8.10. This graph is different from the
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others. Firstly, the curves are further apart. Secondly, all the curves have fairly high
gradients and finally, WS appears to perform better than PFF. The curves for WS and
PFF have no “knee”: very abrupt changes in the value of rr occur between the mean
resident set sizes of 20-27 pages. This suggests that the assembler spends most of its
time executing in a small number of phases. If the number of pages allocated is not
sufficient to contain these phases, a high reclaim ratio rr is obtained. If however, the
phases are contained within the resident set, then a much lower reclaim ratio is obtained.
An examination of the curve for PFF reveals the anomalous behaviour of the algorithm
at lower values of 7r. At these points, a higher value of rr and thus a higher pagefault

rate is observed for a greater mean resident set size as discussed in Section 5.2.

8.7.4 Conclusions

In the light of these results, several inferences can be made. Firstly, there is no universal
model for traditional lifetime curves. A more useful lifetime curve can be obtained by
plotting the 1/(1+4rr) against m. For some programs the shape of this curve may resemble
traditional lifetime curves but the exact shape is determined by the relationship between
the reclaim ratio, rr, and the mean resident set size, m. Traditional lifetime curve shapes
are associated with sharp falls in rr with respect to the mean resident set size when the
value of rr is small.

Few general trends can be observed. In all the situations explored, WS and PFF perform
better than MLRU. In some situations, WS performs better than PFF and in others the
reverse is true. Overall, the results highlight the need for paging models and descriptions
of paging behaviour to be based on the observed behaviour of the programs to which they
will be applied. This in turn points to the need for the paging information about programs
running on different architectures and different operating systems to be widely available
to those wanting to model program behaviour.

8.8 Other Issues

When choosing a paging algorithm, other aspects of paging activity should be investigated.
One of these is how different paging algorithms affect the overall memory management and
in particular the paging traffic as pages are moved between swap space and main memory.
In this regard, it is beneficial to examine the relationship between the standard deviation
and the mean of the resident set size for different paging algorithms. Figure 8.11 shows

the standard deviation of the resident set size for the the text segment of ccl. The graphs
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Figure 8.11: Standard Deviation vs Mean resident set size for ccl

show that the PFF algorithm has a higher standard deviation for the same mean resident
set size than the WS algorithm. MLRU has a standard deviation of zero throughout. This
suggests that PFF generates more paging traffic than WS or MLRU as the mean resident
set size is changing in a more dynamic manner. Curves for gcc68k and cpp also show the

same trend.

However, as shown in Figure 8.12, the curves for the assembler do not follow this pattern.
The curve for WS drops sharply as the mean resident set size decreases from 24 to 19
pages. This corresponds to the sudden rise in the reclaim ratio when it was plotted
against the mean resident set size for the assembler as shown in Figure 8.10. The low
values of the standard deviation for small values of the mean resident set size indicate
that the assembler operates in phases with high locality. This result suggests that the
standard deviation may be affected in a complementary way to the reclaim ratio for PFF
and WS.

8.8.1 Service Time Issues

A major issue in choosing a paging algorithm is the time required to service a pagefault.
In this implementation, this is the time taken to execute the paging algorithm, queue the

pages that have been paged out on the swap queue, signal the Pager, get the required page
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Figure 8.12: Standard Deviation vs Mean resident set size for as

and add it to the resident set. If it is an initial fault, then the PageSvr must fetch the
page. However, for a reclaim fault, the page is retrieved by the user process. This involves
taking the page from the reclaim queue, mapping it into the pagetables, and adding it to
the resident set. The service time for reclaim faults are of particular interest since these
faults are caused by the paging algorithm. This serves as a good basis for comparison
between the cost of different paging algorithms.

Figure 8.13 shows the service time for reclaim faults for the text segment of ccl. A straight
line for MLRU and the curves for PFF and WS show a straight line for a large region of the
mean resident set size. Similar results were obtained for gcc68k, cpp and as. The reason
for these results is that as the working set gets larger, more time is spent in the paging
algorithm since the list of resident pages is longer and each page descriptor is examined.

The parameters of the service time are presented in Table 8.2.

MLRU has the highest gradient which suggests that the algorithm is expensive to imple-
ment. PFF was found to be the least expensive, performing better than the WS algorithm.
The fact that the service time is found to be proportional to the size of the working set is
significant since paging models have not shown any relationship between the service time

and the mean resident set size.

The result is also significant for choosing the optimal operating point on the lifetime curve.
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Figure 8.13: Service Time Distribution for reclaim faults for ccl

Algorithm | Cost per page (usecs) | Constant Overhead (usecs)
MLRU 28.54 1161
[ ws 23.79 1100
| pFF 20.48 976

Table 8.2: Service Time Parameters for Different Paging Algorithms

Since the optimal resident set size is usually chosen using a point on the knee of the curve,
the mean resident set size is likely to be large. Thus as the graph shows the service time
is likely to be high, e.g. a few milliseconds. Traditionally, this did not matter since the
cost of moving data to and from the disk, e.g. 25-40 msecs, far outweighed the cost of
any paging algorithm. However, if the movement to and from swap space is now much
faster, then the cost of the paging algorithm at a given point of operation becomes a key
parameter that must be considered since it may be possible to operate at points where
the reclaim ratio is high if the service time is also significantly smaller and get better

performance than operating at the knee of the curve. Hence the service time must be

taken into account in determining the optimal resident set size.
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Figure 8.14: Pager Throughput vs Mean Resident Set Size

8.8.2 Performance of the Pager

The above discussion indicates the importance of accurately determining the throughput
of the paging operation. Information on the paging operation was gathered on a per ob ject
basis and comprised the total time that the Pager spent moving pages to swap space, the

total number of pages actually moved to swap space and the total number of visits the
Pager made to the object.

From these parameters, the throughput of the Pager on a given object and the average
number of pages that the Pager paged out per visit were derived. Figure 8.14 shows the
throughput maintained by the Pager for all three paging algorithms for the text segment
of ccl. It shows that the PFF algorithm gives the highest throughput, with an average of
about 2180 pages/sec. This represents an average time of 458.7 usecs to move a page to
the non-volatile swap area and compares favourably with swap times of 25—40 msecs per
page for disk. Thus using RAM (volatile or non-volatile) as swap space can result in a
speedup of between 55-88 times compared to using disk storage.

WS, though having a slightly lower throughput than PFF, maintained an average of 2128
pages/sec. The MLRU curve is different since it drops sharply as the mean resident set
size increases. This is because the Pager is running at user priority. Thus the user program

invokes the paging algorithm several times before the Pager is allowed to execute.
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Figure 8.15: Page Per Visit vs Mean Resident Set Size

MLRU benefits most from running the Pager at user priority since only one page is re-
moved every time the algorithm is invoked. However, when its paging limit is small, the
algorithm is invoked more frequently and thus the Pager finds more pages on the swap
queue, resulting in an increase in throughput. This can be seen in Figure 8.15, where the
number of pages per visit as seen by the Pager increases for MLRU as the limit on the
number of pages in the resident set is lowered. This result validates the idea that running

the Pager at user priority can improve the throughput of the paging operation.

8.9 Other Objects

The results presented so far are concerned with the text segments of the programs in the
Compiler Suite. Results presented in this section concern the data, bss and file object
types. Text segments are usually the biggest segments of most programs, this is also true
for the GCC Compiler Suite, and bss, and data segments are usually smaller in comparison,

so results also reflect the paging of smaller objects.

8.9.1 Data Objects
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Figure 8.16: Results for the data segment of ccl

Figure 8.16 shows the results of paging algorithms on the data segment of ccl. Firstly,
extremely high values of rr are involved. This is because data segments, though smaller
than text segments, are referenced just as frequently. There is no difference between the
results of the WS and PFF algorithms. This suggests the small sizes of the data objects

and their access patterns reduced the performance differences between WS and PFF.

The results for cpp are displayed in Figure 8.17. It shows higher values of the reclaim
ratio for MLRU when compared with the results for the text segment. Both PFF and WS

are represented by the same co-ordinate on the graph, i.e. (3,0).

Whereas it is right to assume that these pages were always in use when the algorithm
was invoked, it should be noted that the algorithms were only invoked on three occasions
because the size of the segment was 3 KB. As a result, it is possible that the pages in the
resident set will always have their used bits set when pagefaults occur. This is particularly
true for very small objects that are frequently accessed, like data segments. Since PFF
and WS only remove pages when they are not in use, if the number of pagefaults is small,
it is likely that all the pages will remain in memory without any page ever being swapped
out, hence the value of the co-ordinate. This represents a limitation in the use of paging
algorithms, like PFF and WS, on very small objects. In these circumstances therefore it
is best not to implement any paging algorithm on these objects since the effect will be
negligible for algorithms like PFF and WS, or bad, e.g. MLRU.
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Figure 8.17: Results for the data segment of cpp
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Figure 8.18: Truncated Results for the data segment of as
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Figure 8.18 shows the results for the data segments for the assembler. The values of
reclaim ratio, rr, for MLRU at lower values of the mean resident set are not shown in
order to highlight the value obtained for WS and PFF. The reclaim ratio for MLRU
remains constant for most values of the resident set size and only begins to increase as
the mean resident set size falls. The results for PFF and WS are represented by a single
point which is obtained over a wide range of the control parameters.

To investigate this result further, the block distribution or bd curve of the data segment
of as at various points was obtained. The bd curve indicates the order in which the pages of
an object are accessed and is obtained from the data acquired using the testbed. The block
distribution curve for MLRU with page limits of 4 and 6 as well as WS with 6 = 3msecs
and PFF with @ = 2msecs are shown in Figure 8.19. MLRU-6, WS-3 and PFF-2 are
represented by the same curve. This curve indicates that only two blocks are reclaimed.
These are block 18 and block 0.

The degree of sequential access displayed by the curve is surprising. This curve may be
compared with that obtained for MRLU-4. In the latter, blocks 19 and 17 are continuously
reclaimed as the program executes, which suggests that most accesses to the segment are
made to these blocks. Under PFF and WS, these two blocks would not be paged out
because they are continuously used. Blocks 18 and 0 are referenced again after a long

time, so would have been paged out and must be brought into memory. This explains why
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Figure 8.20: Results for the bss segment of cpp

WS and PFF are represented by the same point in Figure 8.19 and why the curve is also
constant for MLRU over a large region of the mean resident set size. The reclaim ratio is

0.1 since only two reclaim faults occur for an object of 20 pages.

8.9.2 Bss Objects

The size of bss objects can be smaller or greater than the size of data objects thus bss
segments may display the same characteristics of data segments. Firstly, the results for
the bss segment of cpp, the preprocessor are shown in Figure 8.20. The reclaim ratios
are extremely high and are comparable to those obtained for the data segment of cpp in
Figure 8.17. The results are for bss segment of ccl are shown in Figure 8.21. The reclaim
ratios for the bss segment of ccl are much lower than those of the data segment as shown

in Figure 8.16. This suggests that the access patterns of the two objects are very different.

8.9.3 File Objects

It was decided to monitor the paging activity of several files that were accessed during

compilation: the source file, user_types.c, the intermediate files test.cpp and test.s and the
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Figure 8.21: Results for the bss segment of ccl

object file, user_types.o. Figure 8.22 shows the results for the source file user.types.c. It
shows that all algorithms and all control parameter values yield a reclaim ratio of zero.
Similar results are obtained for the output file, user_types.o. The shape of the graph may
be explained by plotting block distribution curves for the two files. These are shown in
Figure 8.23. The graph shows that both the source and output files are accessed serially.
So once pages are referenced they are not referenced again, hence the rr is always zero.

This is independent of the paging algorithm being used.

The results for the intermediate file, test.cpp, are shown in Figure 8.24. The graph shows a
reclaim ratio of 1 for MLRU, PFF and WS and for all the mean resident set sizes. Similar
results are also obtained for test.s. This is because the intermediate files are accessed by
two programs. The file test.cpp is created by the preprocessor and then accessed by the
main compiler, ccl; while test.s is created by the ccl and passed to the assembler. Each

file is kept in memory until it is requested by the second program.

Both programs have the same sequential access pattern as shown in Figure 8.25. Hence it
can be inferred that the preprocessor wrote to the file sequentially. The paging algorithms
deallocated pages of lower block numbers as the file grew longer. When the compiler
started to read the file, the pages with the lower block numbers were reclaimed while the
higher block numbers were removed only to be reclaimed again as the compiler reached
to the end of the file. This led to all the blocks in the file being reclaimed once hence the

123




Reclaim ratio, rr

Block Number

08 |

[ XN

>

MLRU -»—
WS
PFF o -

A

A

A

14 r

' S

Figure 8.22: Results for user_types.c

8
Mean resident set siz:

10
Gl

16

10 |

user_types.o -e—
user_types.c ——-

Figure 8.23:

8
Pagefault Number

10

12 14

Block Distribution Curves for user.types.o and user_types.c

124

16




Redlaim ratio, i

Biock Number

1‘1 L) L] T L] L] 1]
MLRU -o—
WS ——-
PFF & -
105 | "
1F S+— o - . o
085
0‘9 L '] 1 L 1 L
] 5 10 18 20 25 30
Mean resident set size
Figure 8.24: Results for the intermediate file, test.cpp
35 L] L T L L L)
test.cpp/cpp ——
test.cppicct ——-
30}
25 -
2}
15
10 |
5 -
o L ] L L 1 L
[} 5 10 25 30

15 20
Pagefault Number

Figure 8.25: Block Distribution Curves for test.cpp

125




value of the reclaim ratio, rr.

8.10 Summary and Conclusions

In this chapter, several aspects of the implementation and evaluation of conventional
paging algorithms were examined. It was shown that more useful lifetime curves could be
obtained using 1/(1 + rr). This approach is superior to traditional lifetime curves. The
reclaim ratio, r7, can be measured more accurately and the result eliminates the need to

measure the interpagefault times.

The paging interface is an extension of the interface described in Chapter 6. It allows
users to specify the paging algorithm that can be used on an object before that object
is created. This allows users to experiment with different paging algorithms for a given
object until they find one that they think is most suitable.

As mentioned previously, the remote paging facility was extremely helpful in the testing
of various paging algorithm on objects. It is also relevant in the microkernel context
where many services are implemented by user-level processes. It may be possible to page
several of these servers using paging algorithms which are specified in a remote file that
is read as the system is started. An object manager may also be paged if its operation is
not dependent on object(s) for which it is responsible. For example, it is not possible to
page the PageSvr since it manages text, data and other objects which are needed to start
any process including PageSvr itself. However, it may be possible to page a video object

manager since it is unlikely to use video objects as part of its operation.

The testbed developed in this chapter provides a number of features which make it a
powerful tool in the analysis of paging algorithms. For example, it can accurately measure
the service time for pagefaults and thus gives us a direct method for comparing the cost of
different algorithms. Features like the block distribution curve can be used to investigate
the order in which objects were accessed and thus provide more detailed information on

how different paging algorithms behave.

The GCC Compiler Suite was used to investigate the validity of paging models and to
obtain data on the performance of MLRU, WS and PFF. The results invalidated the
claim of a universal paging model. They also indicated that the standard deviation, the
service time and the paging throughput should be also be considered when evaluating
the performance of a paging algorithm. Faster swapping times would affect the operating

parameters of paging algorithms and have a beneficial effect on overall system performance.
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Of the algorithms examined, WS and PFF performed better than MLRU in all cases.
PFF was also better than WS in most, but not all, cases involving the paging of text
segments. It also showed anomalous behaviour in some of the curves that were presented.
Data segments and bss segments generally have higher reclaim ratios than text segments.
MLRU performed particularly badly compared to WS and PFF for data and bss segments.
For very small segments, WS and PFF had very little impact since pages were not swapped
out. However, since these segments were frequently accessed, no paging algorithms should

be used on small data and bss objects.

All the algorithms examined had very little impact on file objects because the files were
being accessed sequentially. This result could be expected since these algorithms were
developed for program segments. New algorithms are therefore required to optimise the
memory use for other types of objects. The design of new paging algorithms for objects
with highly sequential access patterns is the subject of the next chapter.
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Chapter 9

New Paging Algorithms

9.1 Introduction

As shown in the previous chapter, conventional paging algorithms, while performing well
on traditional program segments, have little impact on objects whose access patterns are
radically different from program segments. Some files, for example, have access patterns
which show a very high degree of sequential access. Access patterns of database systems
are also characterised by high sequential access and weak locality [Rodriguez-Rosell76],
[Smith78b]. Some common devices may only be accessed in a sequential manner, for
example, reading input from a keyboard or writing output to a display. Voice and video
devices also produce large amounts of data that are usually processed in a sequential

manner.

In Unix System V, [Bach86, pages 344-354] devices may be accessed using a stream
interface. A stream [Ritchie84] is a full duplex connection between a device driver and
the file descriptor which represents the device to the user. It consists of two unidirectional
queues which move data in opposite directions. When the user wishes to read data from
the device, the Unix I/O read call is invoked since Unix treats physical devices as special
files. This causes data to be moved from the device into the input queue. When the
program writes to the device, data is placed in the output queue where it eventually
reaches the head of the stream and is written onto the device. This arrangement is shown
in Figure 9.1.
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Figure 9.1: A Unix Stream

Streams have several advantages over other access mechanisms including the fact that it
can easily be applied to support a large number of diverse devices. They are also useful
since they buffer data between the file interface and the device driver. Thus, more data
than that requested by the user may be placed in the input queue so that the user would
not block until the stream is empty. Another important advantage of streams is that a
number of modules may be placed in the path of the stream to implement features like
line disciplines for terminal management, or protocol processing. These modules therefore

can be readily tailored to specific computing environments.

From a memory-management context, one of the main disadvantages of the stream in-
terface is that, like the Unix file interface, it is not integrated into the virtual memory
management of the system. This integration is desirable for ob jects that are usually larger
than the system pagesize, e.g. files. Such integration would require designing paging algo-

rithms which differ from conventional ones.

With traditional paging schemes, when a pagefault occurs the user is blocked until the
page or page(s) are brought into memory. Modified pages are written back to secondary
storage when all users are finished using the object or a user invokes flush operations on
the object.

In this chapter, new paging algorithms are designed that incorporate some of the ideas
behind the stream concept. These algorithms are tested and results are presented and

compared with traditional paging systems.
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9.2 Design Issues

Prefetching

Since the objects concerned are accessed in a highly sequential manner, prefetching several
pages when a pagefault occurs would increase the overall system performance [Lau82].
This gives an even greater performance improvement in a distributed context since only
one RPC is required to fetch several pages rather than one RPC per page. Prefetching is
also beneficial where a large quantity of data is involved and the unit of access is much
greater than the system pagesize so several pages must be mapped in before any useful

work can be accomplished.

Buffering

Buffering may be readily applied to highly sequential access. The main advantage of
buffering is to allow the user to continue execution while new pages are being fetched. To
implement this using object-oriented virtual memory, it is necessary to associate a queue
of pages called a buff queue with the object data structure.

When an object is opened, the buff queue is filled with the first few pages of the object.
When a pagefault occurs as the object is first accessed, pages in the buff queue are mapped
into the resident set. The user then invokes a routine that causes the object manager to
refill the buff queue and returns to user-space.

Two main side-effects of this scheme must now be considered. The first occurs when the
user consumes pages faster than the object manager is able to bring them into memory.
Thus it is possible for the user to find that the buff queue is empty. The solution adopted
here is that the user blocks by invoking a WaitOnStream routine. This routine queues
the user on the threadlist associated with the page that caused the pagefault. The user is
unblocked by the object manager after the buff queue is filled.

The other problem occurs when the user jumps to another place in the object. For example,
if a file is rewound. Here, pages in the buff queue are immediately deallocated and the
user invokes a routine that forces the buff queue to be filled starting from the page that
caused the pagefault. When this is done, these pages are mapped into memory and the
user then calls the object manager to refill the buff queue before returning to user space.
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Quick Deallocation

For pages that are being accessed sequentially, once they have been referenced, they may
not be referenced again for some time or not at all. These pages can therefore be im-
mediately removed from the resident set. Since the paging algorithm is invoked when a
pagefault occurs or when prefetched pages are added to the resident set, it is necessary
to differentiate between the need to deallocate all the pages and to take no action since

pages representing another part of the object are being loaded.

To distinguish between these two situations it is necessary to check the page descriptors
of the resident set. If any of the used bits are set, it indicates that some pages have
been referenced and thus the entire resident set is deallocated. If no used bits are set this
indicates that the resident set is being filled with new pages.

Immediate Writeback

Once a process has written to a set of pages associated with sequentially accessed objects,
they are rarely written to again. Thus the changes can be immediately written back to
secondary storage in addition to being put on local swap space. This eliminates the need
for most applications to continuously use flush operations to force data to the disk since

if the site crashes only changes to the pages in the resident set will be lost.

A key issue here is the need to stop the PageStealer from removing the pages from the
reclaim queue before pages are written out. Thus a streamind variable was added to the
object data structure which, when set, indicates that a stream write-out is taking place
so the PageStealer would not remove pages from the reclaim queue until the respective
pages are written out.

We can therefore represent this sequence of events graphically as shown in Figure 9.2.
Pages are read from secondary storage into a buffer queue where they are held until loaded
into the resident set when a pagefault occurs. Once the pages have been deallocated they
are immediately written back to secondary storage. It is easy to link the writeout queue
of one process with the buff queue of another to produce a cascading effect, thus allowing
other modules to be inserted into the stream.
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Figure 9.2: Paging for objects with highly sequential access patterns

9.3 Classification and Testing

In order to test the benefits of the individual components of this scheme, it is necessary
to groups different aspects into different paging algorithms. Also, some aspects may be
relevant to some objects and not to others. For example, a read-only object will not have

any modified pages to write out. The proposed algorithms are:

SimpleStream Paging Algorithm or SSPA — this includes prefetching and dealloca-

tion.

BufStream Paging Algorithm or BSPA - this comprises prefetching, deallocation and
buffering.

WriteStream Paging Algorithm or WSPA - contains all four features.

Testing

A database program was used to test these algorithms. SSPA, BSPA and WSPA are com-
pared with the conventional algorithms whose operations have been enhanced by allowing
them to prefetch a given number of pages when a page is first referenced, i.e. when an ini-
tial fault occurs. When a reclaim fault occurs, these algorithms operate in their traditional
manner. The control parameters of these algorithms are set to ensure a quick deallocation
of pages. For example, consider MLRU: if the total number of pages to be acquired when

a pagefault occurs is set to n and the maximum number of pages allowed is also set to
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n, this means that all the pages that were previously accessed will be deallocated as the
prefetched pages are added to the resident set. For PFF and WS, it suffices to set the
control parameters to very small values, e.g. 5 usecs, forcing pages that were recently

accessed to be deallocated.

The database accessed during testing is 189,812 bytes long and contains 10,799 records. It
was built by one of the analytical routines for the analysis of paging results obtained from
the experiments in the previous chapter and is used to calculate the average interpagefault
time for all the pagefaults on an object as well as the average interpagefault times for initial
faults and the reclaim faults separately. Hence calculations are performed using all the

records in the database.

The test program first opened the database and copied it to a temporary file. This
generated initial faults on both the database and the temporary file. When this phase
was completed, the database file was closed, the temporary file was rewound and the
calculation of the required parameters was performed. In this operation, only reclaim
faults were generated since the entire file had been referenced during copying. So it is
possible to analyse the performance of the prefetching component of the algorithm by
analysing the service time of the initial faults for a different number of prefetched pages
and to compare the normal replacement policies with the stream algorithms by examining
the reclaim faults generated as calculations are being performed. All other objects in the
address space had no paging algorithm assigned to them making the paging algorithm for
the files the only variable quantity. The results for the temporary file were analysed.

9.4 Results

Figure 9.3 shows the average service time for a pagefault against the number of pages
fetched when an initial fault occurs. The service time increases for all the curves as
the number of pages fetched increases since more pages must be taken off the free-list
and placed in the resident set. When an initial fault occurs and the paging algorithm is
invoked, new pages are obtained. The paging algorithm is also invoked as each prefetched
page is added to the working set.

These results show that SSPA, BSPA and WSPA perform better than the traditional
paging algorithms for initial faults. The BSPA algorithm performed best since it benefits
from having pages assigned initially as the object was mapped into the address space.
The difference between the WSPA and BSPA algorithms reflects the cost of queueing the

pages to be written out as they were removed from the resident set. However, WPSA still
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Figure 9.3: Service time for initial faults

performs much better than the traditional paging algorithms.

Figure 9.4 shows the average service time to service a reclaim fault against the number of
pages that are fetched. Since it is a reclaim fault, no prefetching is done in the traditional
algorithms. In the case of the SSPA, BSPA and WSPA, the entire resident set is discarded
and are placed on the swap queue. Pages from the next part of the stream are swapped
back into memory. This accounts for the significant reduction in the service rate for these
faults for the SSPA, BPSA and WSPA algorithms while WS, PFF and MLRU all increase.

Finally, Figure 9.5 shows the throughput achieved by the Pager for different paging algo-
rithms. Again the stream algorithms perform better. This was primary due to their quick
deallocation policy.

9.5 Summary and Conclusion

These results in this chapter support the theory that new paging algorithms can be de-
signed which perform better than conventional ones in certain circumstances because they

better reflect the way in which the objects are being used.

The development of the these algorithms was motivated by the results obtained in the
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previous chapter which showed that conventional paging algorithms have little impact on

files or objects that are accessed in a highly sequential manner.

These algorithms are especially applicable in the new computing environments since they
will directly benefit from multiprocessor configurations where buffering, execution and
writeout may be performed on separate processors thus ensuring big real-time improve-
ments and thus they can be used to support new services such as voice and video appli-

cations.
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Chapter 10

Conclusions and Further Work

10.1 Conclusions

This dissertation has explored an object-oriented approach to virtual memory manage-
ment. This was done by first building an interface based on the protected process map.
This novel approach allowed users to build or specify appropriate handles by which ob-
jects should be accessed. It provides the user with greater flexibility and the capability of
programming in a more object-oriented manner. A type interface was also built, allowing
users to decompose complex objects into their various subtypes and access these objects

using their appropriate handles.

Using this interface, different paging algorithms were investigated and traditional ways
of modelling program behaviour were critically examined. The results showed that the
reclaim ratio, 77, had a significant impact on program behaviour and that a more relevant
lifetime curve can be obtained plotting 1/(1+ rr) versus the mean resident set size. It was
also shown that there was no universal lifetime curve. Other aspects of paging activity
were also shown to be significant when assessing the behaviour of paging algorithms.
These factors are the standard distribution of the resident set size, the service time and

the throughput at which paging operations can be achieved.

This investigation also highlighted some practical issues in the memory management area
of operating system design including the use of faster swap space to improve overall system

performance. Devices to meet these requirements would be faster than disk but may also
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have a smaller capacity. New technologies including Wafer Scale Integration (WSI) and
flash memory systems [Pashley88)] are being targeted to fill this niche. Thus as CPU
speeds increase, there will be a greater need to improve the memory hierarchy of the

system to obtain better overall performance.

Paging on a per-object basis showed that while conventional localised paging algorithms
like the Working Set and Page Fault Frequency algorithms perform well on text objects,
their impact on data and bss segments was minimal because of the small size of these ob-
jects. With file objects, these algorithms had little impact because of the highly sequential
access pattern associated with files. New algorithms were proposed and were shown to
perform better than conventional paging algorithms for objects with highly sequential
access patterns.

A virtual memory management system based on the support for objects of different types
that can be mapped into different address spaces is an efficient system that can be easily

extended. There are a number of reasons for making this assertion.

First, this approach allows paging to be done on a per-object basis. Second, most of the
work of managing objects is done by object managers, freeing the kernel from having to
know everything about the characteristics of different objects. A standard interface is
provided to allow users to implement their own object managers. Object managers are
free to implement mechanisms that would meet the Quality-of-Service or QoS requirements
associated with particular objects.

The study of traditional paging algorithms clearly showed the need for providing a facility
for acquiring data on real systems in order to develop a model that reflects how ob jects are
actually used. A testbed was developed and can be used to generate data on the paging
activity of various types of programs.

10.2 Further Work

10.2.1 Paging Issues

This dissertation shows that there is scope for work to be done in the area of the design
and implementation of paging algorithms. It is also desirable to study in detail programs
that are commonly used to optimise their performance since a lot of time is usually spent
running these programs. These programs include compilers, linkers, text editors, mail
handlers. Improvements in the way these programs are paged will have a proportionally
greater impact on the overall productivity of end-users.
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The archiving of information on how particular objects should be paged is also a possible
extension to this area of research. This specification will allow the system to use paging
algorithms for programs whose paging behaviour have been previously analysed to give

optimal performance.

Another area for further work is an investigation into adaptive paging algorithms based
on values of the reclaim ratio, rr. A program may be allowed to operate within certain
values of rr denoted by two thresholds. If rr gets above the upper threshold, the resident
set size is increased, while if rr moves below the lower threshold, the mean resident set
size is reduced. This will reduce the need to obtain the parameters that will give optimal

paging performance before the program is executed.

Finally, another way in which this work could be extended would be to investigate the
need for other characteristics that can be defined on a per-object basis. For example, the
ability to define the QoS parameters is particularly relevant in the multimedia environment
where different streams, managed by different object managers, must be synchronised
and managed in a time-related manner. This may result in specified actions by object
managers, e.g. using a low-level RPC, or by the operating system, e.g. applying a fast

paging algorithm, in order to meet the QoS requirements associated with a given ob ject.

This issue is also relevant in a distributed storage system where the user should be able to
specify parameters that indicate the QoS related to the storage and availability of a given
object. For example, it should be possible for the user to specify a 99% availability on an
object or that a given object should be replicated, etc. These issues are currently being
addressed [Lo89], [Wilkes89].

10.2.2 Extending the User Interface

Perhaps the most interesting and obvious extension of this work is to provide support

for persistent objects in object-oriented languages such as C++ as well as object-oriented
databases.

Interfacing with Object-Oriented languages

The goal here is to allow object-oriented languages such as C++, to use the interface
outlined in the previous chapters to manage objects. Thus the programmer can use a
single interface as specified by the resultant system to access any type of object.
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Objects that require persistent support may include the user interface calls as part of the
definition of the object. These objects are therefore created by calling into the interface
and the object may be initialised using the corresponding map.entry. Other interface calls

may be invoked as part of the virtual methods associated with the object.

Support for Databases

As indicated previously, the interface presented in this dissertation can easily be extended
to provide support for a lock manager which is able to provide a finer granularity of access
than the synchronisation mechanism specified in the interface. To implement a database
manager, it is also necessary to provide disk management routines. This can be easily

achieved since Wanda already has a user interface to the disk driver.

Thus, the database manager also acts as the object manager for objects of type database.
When a request to open a database is received, the kernel passes the request to the database
manager which causes the relevant database to be mapped into the address space of the
caller.

When a process wants to write to the database, the call AcquireLock is invoked, specifying
the offset and length of the region for which access is required. If another process is
using this region then the process is blocked. If not, it receives the write lock and returns
to complete the transaction. Pagefaults on the database will result in requests to the
database manager to satisfy faults on relevant pages accordingly. The database manager
can then check to see whether the access that generated the pagefault is in accordance

with its synchronisation policy and will take corrective measures if it is not.

When the user commits the transaction, the relevant pages are flushed to disk by the
database manager and the user releases the write lock. For added security, it will be
necessary to also unmap the relevant pages of the object from the user’s address space

when the write lock is released, preventing from further access to the region by the user.

10.2.3 Evolution to a Distributed System

Finally, we look at the issues involved in using the interface described in this dissertation
to build a distributed system. An important issue in this regard is the need to implement a
distributed cache coherency protocol between ob ject managers of the same type that reside
on different machines. In addition, if the system intends to support process migration and

since a process is made up of a number of objects, it must also support object migration
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Figure 10.1: A Distributed System

as well as global naming and location transparency.

Figure 10.1 shows how the interface might evolve to provide a distributed environment.
Object managers manage access to passive objects stored on various storage systems,
including file, voice and video servers. They also implement cache coherency and syn-
chronisation algorithms allowing passive objects to be shared among processes on various
sites. Support will exist to integrate persistent support for object-oriented languages and
databases. In addition users will also communicate with other distributed servers for

example, printers, plotters, CPU servers, etc.

10.3 Final Word

In this dissertation an object-oriented virtual memory management system has been imple-
mented and shown to be efficient, flexible and easily extensible. The modelling of program
behaviour was also examined and a new framework for accessing various algorithms has
been suggested. A powerful testbed was developed to gather data on the paging activity
of various programs. Experimental results have been presented. New paging algorithms

to handle objects that are accessed in a highly sequential manner have been designed and
implemented.
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