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Abstract

Autonomous robots must be able to operate in complex, obstacle cluttered envi-
ronments. To do this the robots must be able to focus on the important aspects
of their environment, create basic strategies to carry out their operations, gen-
eralise these strategies and finally learn from successful experiences.

Based on simulated dynamic biped robot walking, this thesis investigates
these issues. An algorithm is given which analyses the state space of the robot
and orders the dimensions of the state space by their importance relative to
the task of the robot. Using this analysis of its state space, the robot is able
to generate a set of macros (gaits) which enable it to operate in its immediate
environment. We then present a control algorithm which allows the robot to
control the execution of its gaits.

Once the robot has learned to walk on an obstacle-free horizontal surface, it
uses its knowledge about gaits in order to derive obstacle crossing gaits from
existing gaits. A strategy based on the qualitative equivalence between two
behaviours is introduced in order to derive new behavioural patterns from
previous ones. This enables the robot to reason about its actions at a higher
level of abstraction. This facilitates the transfer and adaptation of existing
knowledge to new situations. As a result, the robot is able to derive stepping
over an. obstacle from stepping on a horizontal surface.

Finally the robot analyses its successful obstacle crossings in order to generate
a generic obstacle crossing strategy. The concept of a virtual evaluation func-
tion is introduced in order to describe how the robot has to change its search
strategy in order to search successfully for obstacle crossing behaviours. This
is done by comparing how the successful obstacle crossing of the robot differs
from its normal behaviour. By analysing and operationalising these differ-
ences, the robot acquires the capability to overcome previously unencountered
obstacles. The robot’s obstacle crossing capabilities are demonstrated by let-
ting the robot walk across randomly generated obstacle combinations.




Chapter1

Introduction

Human and animal walking have been the focus of scientific interest for more
than 100 years, and while great advances have been made they are still not
understood completely. One of the greatest mysteries is exactly how walking
is controlled, and furthermore, how it is learned. Recent advances in robotics
and artificial intelligence have made it possible to formulate computational
models which describe how a robot can learn to perform a task such as walk-
ing, without resorting to complex mathematical models as used in control the-
ory. In this thesis algorithms will be presented which enable an autonomous
dynamic biped robot to learn how to walk and negotiate simple obstacles.

1.1 The Problem

The desire to build autonomous robots poses a set of challenging problems
for research in artificial intelligence. Autonomous robots are, on a physical
level, complex dynamic systems which are hard to describe using a mathe-
‘matical model. Their autonomy is based on their ability to interact with their
environment and to learn from environmental responses. They must be able
to learn from payoffs without the assistance of a teacher and their learning
must not lead to catastrophic failures. The interpretation of environmental
data relies heavily on robust and reliable sensor information.

Clearly many of these problems are still research topics, far from immediately
becoming usable in everyday industrial applications. The complexity of each
of these problems also makes it impossible to consider all of them at the same
time. We shall therefore concentrate on some aspects of the control of such a
robot, assuming from the start that the sensor data are available and suffi-
ciently robust. This still leaves us with many open questions.




Robot systems represent complex dynamic systems Standard control theory o

~ is only usable if there is a mathematical model at hand from which a control
strategy can be derived. This is generally only the case if the system can be
linearised, its dynamics are understood, and the system parameters do not
change drastically over time. There are many instances where this is not the
case: unknown properties of the physical system can make it impossible to cal-
culate a mathematical model, system characteristics can change due to wear
and tear, and an unknown environment can make it necessary to develop ac-
tivities that go beyond simple physical stability.

1.2 Learning to Control a Dynamic SySte‘m_

In this the51s we look at simple ways to learn to control complex dynamic sys-
tems. We consider a simulated dynamic bzped robot in an environment full of
information, both useful and irrelevant. We make the assumption that any
sensor data requlred are directly accessible and do not have to be deduced.
Indeed, we assume that there is so much information that much of it is re-
dundant or irrelevant. The robot inhabits an environment that also contains
many obstacles, and we will expect the robot to learn how to walk successfully
in such an environment.

In order to achieve this, several problems have to be solved by the robot. First,

- ithas to be able to focus on parameters in the state space that are immediately

relevant. Irrelevant and redundant information has to be ignored. Using this

reduced version of the state space the robot has to learn how to accomplish its

task in simple, ordinary situations. For the biped robot this means walking on.
a planar surface. The result will be basic behavioural patterns or sequences
of motor activities, which in the case of walking we will call gaits.

We assume that increasingly more complex situations can be negotiated by
- the robot by using modifications to solutions for less complicated situations.
Thus, the robot modifies the gaits it has learned so far when it comes across
an obstacle. Using these modified gaits it is then able to cross this obstacle.

- Having successfully crossed an obstacle by using a modified gait the robot
must analyse the gait modification to determine why it was successful. The
robot does this by analysing the difference between the successful modified be-
haviour and the unsuccessful standard behaviour. Using this understanding
of where to change the robot’s behaviour and how to change it, we expect the
robot to be able to cross previously unencountered obstacles.



1.3 Contributions

The goal of this thesis is to develop techniques for the learning of complex,
incremental behaviours in a large state space. This thesis makes the following
contributions to the understanding of artificial intelligence-based control of
dynamic systems:

e An efficient algorithm to structure large state spaces is presented. Given
a robot operating in a large state space the algorithm orders the param-
eters depending on their impact on the robot’s ability to survive. The al-
gorithm produces a hierarchy of parameters, ranging from those which
always influence the performance of the robot down to those considered
irrelevant to the robot. This enables a search program to consider only
those parameters which are relevant to the current problem. Irrelevant
parameters are detected and ignored. Additionally this technique pro-
duces a weighting of the dimensions of the state space which can directly
be used to search the state space.

e A program has been written that was able to learn to control dynamic
biped walking.

e The search for qualitative equivalence between gaits leads to a very sim-
ple and efficient set of heuristics which allows us to modify gaits system-
atically to create new, incremental behavioural patterns. This provides

. a systematic way to increase the complexity of regular behavioural pat-
terns. :

o A representational mechanism is introduced which allows the compari-
'son of different behaviours. The result is a description of when and how
a successful non-standard behaviour differed from an unsuccessful stan-
dard behaviour. Thus, it becomes possible to extract the essential differ-
ences between two similar behaviours.

¢ Putting all these results together a program has been developed and im-
plemented that enabled a dynamic biped to learn to walk on an obstacle-
cluttered plane.




14 Structure of the Dissertation

Chapter 2 discusses relevant previous work before Chapter 8 introduces the
main ideas of this thesis; whenever the simulated dynamic biped robot (de-

- scribed in Chapter 4) finds itself in a new and complex environment, it has
to be able to select a strategy that enables it to survive in this environment.
This can be done by selecting the most important dimensions describing the
environment (Chapter 5) and then searching for basic activities (walking on
an obstacle free horizontal surface) which enable the robot to ensure its imme-
diate survival based on this reduced representation of its environment (Chap-
ter 6). These basic activities are then improved and-a controller for their exe-
cution is developed (Chapter 7). Using systematic incremental modifications
of these basic activities (Chapter 8) enables the robot to generate new activi-
ties which allow it to deal with more complex situations like obstacle crossings. -
Finally the ability to generalise and test obstacle crossing strategies (Chap-
ter 9) allows the robot to deal with an environment of increasing complexity.
As aresult a generic capability to cross random obstacles can be demonstrated
(Chapter 10). Chapter 11 concludes and points out future work.



Chapter 2

Learning Complex Behaviour:
The Issues and Related Work

2.1 Learning Complex Behaviour: The Issues

Imagine an autonomous robot in a complex environment. The robot will be
given some sort of goal to achieve, a state space describing the environment
and the robot, a set of actions which the robot can perform, and sensor data
describing the effect of these actions - the feedback. The robot searches or
Dplans complex activities in order to obtain its goals. The robot monitors the
execution of these plans and adapts to a changing environment.

This scenario is very general, and to treat it comprehensively would almost be
equivalent to finding the Holy Grail of artificial intelligence. Therefore it will
be necessary to give a more precise definition of the sort of scenario which will
be dealt with in this thesis.

The following listing will take a look at the individual tasks of an autonomous
robot and describe how these tasks are treated in this thesis. We will look at
autonomous robots from an artificial intelligence point of view, which means
that we will not be concerned with engineering aspects such as mechaniecs and
sensor systems or communication and real time computing questions. That is,
we assume that we already have a robot where such questions are solved, and
we will concentrate on the development of a set of basic behaviours (also called
operators) which will enable the robot to survive in an unknown environment.
The robot will do this in about the same way in which we would expect an
animal to learn to survive in its environment. Therefore we will also exclude
higher level “intelligent” behaviour which uses a lot of domain knowledge and
sophisticated reasoning and planning algorithms.




- The autonomous robot problem

¢ Goal: In this thesis we will look at robot motion planning and control,
and apply the results to dynamic biped walking. The goal of the biped
robot is to be able to “survive” in increasingly complex situations. The
final goal will be to be able to cross an obstacle littered surface.

e State Space: We assume that the robot has an abundance of processed
sensor data and environmental information available. In fact, we as-
sume that any directly measurable environmental data which the robot
might need at some point are readily available. Thus the problem is to
identify the important parameters and to discard all other redundant or
irrelevant parameters.

. ¢ Operators: Originally the robot is only able to send simple signals (like
- on, off or force to its motors. These simple signals will be the operators
‘which allow the robot to change from one state to another. Later the robot
will generate macro operators which describe entlre behaviours like a
step forward.

e Search: The robot is given a search procedure which is reasonably pow-
erful at achieving what is expected from it. We will allow the use of
domain specific knowledge in the search in order to guarantee the neces- ,

- sary power of the search algorithm. Domain specific knowledge refers to
some problem specific heuristic which will allow the robot to search more
efficiently. An example of domain specific knowledge for a bicycle riding
robot would be to tell it to pedal. The use of domain specific knowledge
appears to be justified since we do not expect the robot to detect “riding -
on a bicycle” as such, instead we want the robot to learn how to ride on a
bike. (However it has to be mentioned that this domain specific knowl-
edge is not necessarily easy to encode: for instance one could imagine
learning to shift gears in a car, based on an instruction manual.)

¢ Planning: In this thesis we will look at planning from two different an-
gles. Initially we will regard planning as macro generation. This will en-
able the robot to develop small repeatable activities. We will also include

- adomain specific planning module which has the main task of combining
the various algorithms.

¢ Plan Execution and Monitoring: Here we will limit ourselves to the

simple comparison of the current state of the robot to its goal state.

If states are represented as points in some (numerical) Euclidian state

space, then the comparisons won’t be any more complicated than com-

- puting the Euclidian distance between two states. Thus we will ignore

most of the problems of plan execution and monitoring. The only sort of
additional feedback we allow is a simple failure message.
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e Adaptation: In this thesis we expect problems to have an incremental
nature. For example once the robot has learned how to walk in a straight
line, we expect a step over an obstacle to be an adaptation of the original
action, rather than a completely new activity with very little resemblance
to the original action. Thus adaptation will be used as a high level search
heuristic.

¢ Learning: We will investigate how the robot can learn from a success-
ful manoeuvre and apply this to new situations. Thus the robot has to
analyse the current successful behaviour and find out what made it suc-
cessful. Based on this knowledge we expect the robot to be able to use a
successful solution in new, previously unencountered situations.

In the next sections we will discuss how the various aspects of this task can
be treated and how they have been solved in previous work. We will roughly
follow the issues listed in the present section and briefly present how they
have been approached by other researchers.



2.2 RQbQI.,MQtiQn ,Conti'ol, o ,

'2.2..1 Conventional Robotics

Robot control normally refers to the application of “conventional”, i.e. mathe-
matical models of a robot’s kinematics and dynamics for its motion planning
and control. Consider the mampulator in Figure 2.1. 'We see a two link arm
operating in a plane. The end-effector of the arm is at position (z,y). The
robot arm is controlled by adjusting the joint angles 6, and 6,. The problem
of finding joint angles §; which make the position of the end-effector coincide
with a specified position (z, y) is called the inverse kinematics problem. Inverse
kinematics specifies where to move the manipulator joints.

When the manipulator (or robot) moves from one position to another this move-
" ment is described by a trajectory. The position, velocity and acceleration of
some part of the robot, normally the end-effector, describe the trajectory. Given
a trajectory as well as the forces exerted at the manipulator tip, the inverse dy-
namics of the robot describes which joint torques need to be applied at which -
moment in time in order to move the robot along this trajectory. Thus the
tnverse dynamics describe how to move the manipulator joints. :

Normally the robot will not stay within the precomputed trajectory. Due to
various errors or external influences the robot might behave differently from
the expected behaviour. A control system will have to be designed to keep the
robot within a specified trajectory.

Finally the robot can interact with forces from its environment. When the
robot lifts an egg then it should use forces different from the forces it would
use to lift a car. Similar problems arise when it needs to put a peg into a hole or
follow a path along a surface. This problem is called compliant motion control.

Conventional robotics has the advantage of using an explicit and well under-
stood mathematical approach to control the robot. Once the robot is accurately
described one only needs to deduce the relevant equations and program the
robot accordingly. The disadvantages are equally obvious: the mathematics of
multi-joint bodies are non-trivial, and the correctness of the formula is based
on the correctness of the underlying model of the robot. A new model has to be
computed if the robot model becomes inaccurate due to reasons such as wear
and tear or reconfiguration. -

Good introductory papers to the various aspects of robot motion planning can
be found in M.Brady (et.al.): “Robot Motion: planning and control” [Bra82].
Good text-books on conventional robotics are the one by Asada and Slotine
[AS86], as well as the one by Paul [Pau81].

8
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A -

Figure 2.1: A two link manipulator

2.2.2 Legged Locomotion

Various successful attempts have been made to apply conventional robotics
to the problem of legged locomotion. Legged locomotion offers the possibil-
ity of crossing a terrain where wheeled or traction driven vehicles would fail.
Research into legged locomotion can roughly be divided into three different ar-
eas: Static Multilegged Walking, Dynamic Walking and Dynamics of Human
-and Animal Motion. For a good historical survey see Raibert’s book “Legged
Robots That Balance”[Rai86b].

Static multilegged walking machines are stable at any time during the exe-
cution of a gait. This is normally achieved by using at least four legs, and
designing the gait in such a way that at any moment at least three legs have
contact to the ground. The centre of gravity has to remain within the bound-
aries of the polygon described by these legs. The advantages of such a gait are
its guaranteed stability, the disadvantages are the slow speed and redundancy
of legs.

Research on static multilegged walking started with General Electric’s walk-
ing truck. This was a four legged vehicle, with each of the legs individually
controlled by a human operator. Later Robert McGhee and his group built the
Automatic Suspension Vehicle (ASV), where the operator is partially replaced
by a computer [BWP89]. The ASV still has a “driver”, but all the driver does
is to point a joy stick into the direction into which the ASV shall move. The
ASYV has been successfully used to cross complex terrains, and in a feasibility
study Choi and Song [CS88] show fully automated obstacle crossing gaits for
hexapod walking machines.




"~ An interesting variant of a static walkmg machine is the Ambler prOJect at
Carnegie Mellon University [BHK+89]. Most static walking machines are
built more or less like insects. Usually four or six legs emerge from a longitu-
dinal body, and thus all legs have fixed relative positions. Unlike such designs
the Ambler robot is designed in a completely symmetric way such that all legs
‘revolve around a central shaft. Thus the robot looks from above like a modern
office chair.. ,

Dynamic walking has been an ongoing research topic, and one of the most re-
markable results has been the work of Marc Raibert [Rai86b, RBM84, HR90,

RCB86, RBC84, Rai86a, HR91] His work ranges from a one legged hopping
machine to a four legged robot that can run, as well as two legged robots which
are able to somersault [HR90]. Alternative work on dynamic blpeds has been
~ carried out in Japan, with the emphasis on various control, sensor and me-
chanical questions. For a discussion of biped robotics see Fushuro and Sano’s
- article [FS90]. All these approaches use conventional robotic control together
with precomputed trajectories or a fixed control law. Apart from Raibert’s
robots none of them deals with obstacle crossings, and in Raibert’s case the
obstacle crossing is controlled by a human operator or via fixed control algo-

rithms [HR91].

Human and animal motion has been studied as early as 1872 [Muy99, Muy01].
Research focusses on various aspects such as a precise description of the move-
ments, a description of the nervous system generating and coordinating these
movements as well as an understanding of the sensory input from the mus-
cles (Pearson [Pea76], page 79). For a detailed treatment of the dynamics of
human movements see Hemami’s (et.al.) work [Hem85, CHHS86, HZHS82] as
well as work by Pandy and Berme [PB88b, PB88a] and Yang et.al. [YWW90a,-

YWW90b].

2.2.3 Learningand Planning to Walk
Planning to Walk: Step Selection in Rough Ter_rain

Most of the work published on walking robots uses conventional control en-
gineering to control the executlon of pre-determined trajectories of the legs.
These trajectories (or gaits) are usually computed by the programmer. ‘Alter-
natively a fixed control law can be given which governs the robot’s behaviour. v
‘However the crossing of rough surfaces requires that the robot replans parts
of the gait in order to ensure that the robot places its feet into the available

- footholds, and to ensure that the robot reaches the obstacle with the correct
posture in order to cross it. Thus rough terrain navigation forces conventional
robotic approaches to incorporate some planning.
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A typical approach for this type of planning is the work of Hodgins and Raibert
[HR91]. Their goal was to enable a dynamic biped to cross a flight of stairs,
leap over an obstacle or place its foot onto a desired location. Hodgins and
Raibert used three different methods to adjust different parameters of the
gaits. One was to change forward speed, another one was to change the run-
ning height and a third was to change the duration of the ground contact.
Experimental results indicated that forward speed adjustment was the most
powerful of these three methods. Hodgins and Raibert also experimented with
an approach in which the biped first puts the foot into the required foot posi-
tion and then fries to regain balance. This approach did not work for many
consecutive steps (as required for a sequence of obstacles). Hodgins and Raib-
. ert used predetermined foot positions, and the task of the robot’s controller is
to ensure that the feet of the robot touch the ground at these points.

A recent system which deals with rough terrain crossing is discussed by Pal
and Jayarajan{PJ91]. They used a simulated static quadruped robot over
rough terrain. Using the A* algorithm to choose foot positions they programmed
the quadruped to search successfully for a sequence of moves which enabled
it to cross the rough terrain in the desired direction. This time no predefined
trajectory has been used, the system was rather given an evaluation function
which allowed it to search for foot placements which generated both a sta-
ble support of the robot and a movement forwards. Pal and Jayarajan call
the resulting behaviour a “free gait”, however there is no explicit notation for
the gait and thus it is impossible to reason about the robot gait. Their robot
searches for steps but does not learn: every new steps has to be searched in
the same way.

Connectionism and Learning to Walk

On the other hand work has been carried out which represents the robot’s be-
haviour in a distributed, subsymbolic fashion. Learning can occur by automat-
ically adjusting the properties of the neural circuitry which controls the robot.
The best known work in this field is the work of R. Brooks[Bro86a, Bro89]. Us-
ing a subsumption architecture he carefully defined a hierarchy of automata,
where each automata is responsible for a certain behaviour. Higher level au-
. tomata can cancel (subsume) the activities of lower level behaviours. This
approach enabled Brooks to build a set of small insect like robots which are
able to crawl through the corridors, look for light etc. However the behaviours
associated with each automata and the conditions under which they are sub-
sumed are carefully hand-crafted by the designer. Thus there is no learning
in Brook’s original work. Later work was aimed at learning to calibrate the
automata of the subsumption architecture:
Maes and Brooks[MB90] demonstrate how a statistical approach can be used
to learn the conditions under which certain behaviours are active or passive.
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They use a small hexapod robot with only ground contact sensors. They record

" Wwhether the use or disuse of a motor command created positive feedback or =

not. The robot can learn (within mmutes) to walk using the correlation be-
tween feedback (ground contact means failure) and the activities of the robot.
Their architecture and paradigm does not mclude reasonmg about entire sets
of activities.!

~ Work similar to Brook’s has been reported by Beer et. al.[BCS90]. They use bi-
ologically inspired coupled neural oscillators to generate rhythmic movements
for each leg of a simulated hexapod. Again the neural circuitry has been care-
fully hand-tuned by the programmer and there is no higher level reasoning
about the resulting behaviours. Holland and Snaith [HS91, SH91] also de-
scribe experiments with a real quadrupedal robot which uses neural nets in

- order to learn to control a gait which is generated by a central pattern gener-
ator. A similar approach this time applied to generating bipedal gaits from a
cyclical pattern generator is reported by Toga et. al.[TYS91]. In their work cou-
pled neural oscillators are used to control simulated dynamic biped walking.

' The different oscillation patterns representing different gaits were manually
programmed. However Toga et. al. do not deal with the adaptation of gaits but
rather the control of the gait execution. The important pragmatic difference
between the 3 approaches mentioned in this paragraph and Brooks’ work de-

. scribed above is the fact that Brooks achieves learning within minutes on a

real robot using only on-board components. This, together with his subsump-

~ tion architecture, accounts for the popularity and influence of his work. '

Learning robot walking has also been studied using neural networks and ge-
netic algorithms. Under the ambitious slogan of “brain building” de Garis
[dG90] introduces a type of neural net where the weights of the net are deter-
mined by a genetic algorithm. Using such nets and an unspecified number of
constraints which describe the desired gait he enables a pair of stick legs to
learn to walk. The walking system is a pair of legs with knees which can move
around the pitch axis. There is no motion around yaw or roll axis. This time
learning to walk means learning to follow a specified trajectory.

Adapting Gaits

Learning new gaits through the adjustment of existing gaits to new situations
is discussed by Zheng[Zhe90]. Here a van der Pol pattern generator generates
cyclical patterns, which will then be interpreted as gaits. A neural network
is used to adjust the constants of the van der Pol generator such that the
resulting gait fits best into the situation which is encountered by the robot.

1See also Mahadevan and Connel [MC91] who describe in their report a subsumption ar-
chitecture using reinforcement learning.
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Zheng’s work is based on work by Bay and Hemami[BH87a] who introduced
van der Pol pattern generators to simulate a neural pattern generator. This
time the learning component of the robot learns to adjust existing gaits to new
situations. The original gait is given by the designer.

What Has Been Achieved

There are dynamic biped walking systems capable of obstacle crossings. How-
ever the entire behaviour is engineered by the robot designer. While various
aspects of learning to walk have been treated, learning dynamic biped walking
and obstacle crossing has not yet been reported.

Most existing approaches to learning walking robots start from some notion of
a gait and then train the learning component to execute this gait. The discov-
ery of the notion of a gait is either ignored (as long as the robot walks things
are fine) or the gait is already given. There is no integral approach which
develops gaits and then adapts them to new challenges in the environment.

13




2.3 Search and Planning

Most problem solving strategies use search to achieve their goals. In the typi-
cal search problem two states are given, an initial state and a goal state. There
is also a set of operators, and each operator transforms one state into another.
The search problem is to find a sequence of operators which lead from the
initial state to the goal state.

Classic search techniques try to construct a tree of state transitions from the
start state to the goal state. A state is discarded from this tree if the search

- program decides that it will no longer need this state. By discarding this state

the search program effectively throws away some of the knowledge which it
gained during the search. Dynamic programming is used as a search tech-
nique where all visited states are kept in memory and don’ have to be recon-
structed if the search program needs to visit them again at some later point.
By doing this the program trades off computation against memory.

A typical example of an application of dynamic programming is Dijkstra’s al-
gorithm to find the shortest path in a network [Ber76]: once a state has been
visited by the search program it labels the state with the cost of reaching it. If
a state is visited again and the new path to this state is cheaper than the pre-
viously discovered path, then the state is labelled with the new, cheaper cost.
The program continues searching from the cheapest state and stops when it
reaches the goal state. Dijkstra’s algorithm contains the main ingredients of
dynamic programming: memorising states and updating their (heuristic) cost.
The algorithm can use the previous results whenever it searches for another
path starting from the same start state.

In simple cases exhaustive enumeration of all possible operator sequences can
be an easy but efficient way to implement a search strategy. A typical algo-
rithm in this class is the A* algorithm [Ric83, Kor85a] which uses a heuristic
to guide its exploration of the search space. A* is guaranteed to find the opti-
mal solution provided its heuristic is optimistic (it always assumes that states
are closer to the goal than they actually are). However many problems exist
for which such a heuristic is of little use. A well known example of such a
problem is Rubik’s Cube[Kor85b].

In many such cases search with macros provides a solution. A macro is a com-
bination of several operators into one. The goal of macro creation is to build
macro operators which enhance the power of the search algorithm with re-
spect to a certain goal. Korf [Kor85b] introduces macro operators which solve
non serializable subproblems. Assume the original goal @ can be decomposed
into a set of subgoals i, .., S, such that G is satisfied if S; A S, A .., S, are each
satisfied. The subgoals Sy, .., S, are serializable if it is possible to solve subgoal
S; without violating any subgoal §; for j < i. Which means that an ordering
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of the subgoals must exist for which it is possible to find a solution for each
subgoal in this order without violating previously satisfied subgoals. Rubik’s
Cube is a typical example of a non serializable set of subproblems. Once one
side of the cube is in one colour the attempt to have the neighbouring side in
another colour will almost invariably destroy this property on the first side.
The main idea then is to use macro operators which will reestablish the orig-
inal properties of a subgoal after their execution. These macro operators are
found by using search techniques such as iterative deepening or bidirectional
search. ’

Guvenir and Ernst [GE90] introduce an algorithm called RWM (refinement
with macros). In a first step RWM identifies which operators influence which
subgoals. Accordingly the operators are labelled relevant and irrelevant (or
safe) with respect to a subgoal. RWM then tries to solve first the subgoal over
which most operators are safe. Using only this set of safe operators, the search
then continues with the remaining subgoals. Macro operators are introduced
in order to widen the choice of operators. Refined macro operators are built
from combining two relevant operators or an irrelevant operator followed by
a relevant operator.

Apart from making the search algorithm more powerful (enabling it to find so-
lutions which simple search techniques like hillclimbing wouldn’t find), macros
can also be used in order to make the search more efficient. The complexity
of any search algorithm is determined by the depth of the search (the neces-
sary number of operator applications) and the branching factor (the number
of operators available). Introducing macro operators reduces the depth of the
search but increases the branching factor. Thus any program that generates
a reasonable number of macro operators has to contain some filter mechanism
in order to limit the number of macros.

Iba [Iba89] used a peak to peak heuristic to find macro operators for the peg
in hole puzzle. In his case macro operators do not have the task of achieving
something that was previously unachievable. Macro operators are rather used
in order to compile knowledge that has been gained during the search process.
Similarly, the authors of SOAR use macros called chunks in order to store the
results of previous reasoning in order to speed up future performance [TNR90,
LRNS86].
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2.4 The State Space. Class1ﬁcat10n, Reductlon,,, . o

and Pattern Recogmtlon

The state space of the robot is the set of all parameters describing the robot

and its environment. It can be interpreted as a multidimensional space where

each dimension has binary or real-valued values. The individual parameters

are the dimensions of the state space. A state of the robot is described by a

single value for each parameter of the state space. The dimensions of the state
space can also be called features, and accordingly the state space can be called
the feature space.

The idea behind classifying the state space is the following: originally the pro- -
gram knows how the robot behaves in a set of situations. The robot now en-
counters a new situation which is similar to some of the situations encountered
before. Provided the function describing the robot’s behaviour is reasonably
smooth one could try to predict the robot’s behaviour in this new situation by
drawing conclusions from its previous behaviour in similar situations.

If we further assume that the robot’s behaviour can be classified into some
classes of behaviour, then the program could find out how to describe the states -
which produce a given class of behaviour. This description can be called a
pattern. The process of pattern recognition finds this pattern. Assume the
patterns are described in such a way that it is easy to determine for a given
state whether it fits into this pattern. Then there is an easy way to determine
the behaviour of the robot.

The examples which are used to build the original classification of the robot’s
‘behaviour are called the training data. Based on this classification of the train-
ing data one can predict the robot’s behaviour in a previously unencountered
situation. To do this one takes the data describing the new situation and
computes how it is classified according to the classification gained from the
training data. This classification is then equivalent to the robot’s predicted
behaviour. The entire process of deriving a classification from a set of training
data is often referred to as inductive learning. '

A simple classification of the state space would be one that divides the state
space between stable and failure (illegal) positions. Another classification
would be one that reports for each state whether the application of a certain
command would lead to failure or not. Alternatively, we could create a set of
classifications by describing how long it would take until the robot reaches a
failure state if we continuously applied the same command.

- If the state space is sufficiently large then many dimensions would be either
irrelevant to the behaviour of the robot,» or redundant in the sense that other
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dimensions are sufficient in order to predict the behaviour of the robot.

When one tries to build an inductive learning system which learns to predict a
robot’s behaviour, then there are several questions which have to be answered:
(1) How will the behaviour of the robot be described and classified. (2) How
can dimensions which are irrelevant and redundant for this classification be
removed from the state space. (3) How can the patterns describing each class
of behaviour be detected and described, and how can this description be used
to compute the membership of a state to a given class.

24.1 Classification

Various approaches have been used in the literature to classify or divide the
state space. Basically two different classifications are used:

1. A behavioural classification provides a mapping
state x action — behaviour

which classifies the state-action pairs of the robot in terms of the be-
haviour. Depending on the author a behaviour can be the next state, a
sequence of actions or states, the time until failure etc. In general the
term behaviour refers to some description of what the robot is expected
to do if a certain action is taken.

2. A control classification provides a mapping inverse to a behavioural
classification, namely

state x behaviour — action

which can be used to determine the action to be taken if the robot is in a
certain state and a certain behaviour is required.

The robot is represented as a Cartesian product of the state of the robot and
the command or action applied to it, which is then mapped into the behaviour
of the robot, which in turn is usually the next state of the robot. The behaviour
can be classified by putting all state-action pairs which produce the same be-
haviour into the same class. The future behaviour of the robot can then be pre-
dicted by matching the current state-action pair with the behavioural classes.

Such a simple classi.ﬁcation has the distinct disadvantage that it requires one
to take the full scope of the robot’s behaviour into account before the state-
action pairs can be classified according to the behaviour which they produce.
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This is lisually not seen as a disadvantage since most importantly the inten-
" tion is to have a classification that predictsthe robot’s behaviour as accurately o

as possible.

Alternatively in some cases the task of the robot is extremely simple. Its only
task is to avoid a failure state, and the success of the robot is measured in the
mean time between failures. In this case behaviours can be classified in very
much the same way, ie. by using the expected time until failure as classifica-
tion. This classification is usually used in cart-pole systems (Figure 2.2), since
in such systems the time until failure is directly equivalent to the quahty of
the behaviour [MC68,- BASS3]

24.2 Reduction

Once a classification of the state space has been obtamed it becomes possible
to ask whether there are dimensions of the state space which are irrelevant to
this classification. Two approaches to the reduction of irrelevant and redun-
dant dimensions are possible: : :

1. Transformation Techniques: Such techniques create new dimensions
of the state space and discard the old ones. The number of new dimen-
sions has to be less than or equal to the number of dimensions of the old
state space representation. In the terminology of linear algebra this cor-
responds to the transformation of the base coordinates of a vector space

- into anew set of base coordinates. The new set of base coordinates is cho-
sen in such a way that a subset of its dimensions is sufficient to identify
 the classification of each behaviour.

A standard algorithm for this problem is the Karhounen-Loéve expan-

- sion [TG74]. The (linear) coordinate transformation is computed by choos-
ing the eigenvectors of the autocorrelation matrix of the members of each

“class. Since this doesn’t yet decrease the number of dimensions, the
eigenvector with the largest eigenvalue is chosen first, and more eigen-

~vectors are included until the new state space allows a distinction be-
tween all different classes. Another approach has been suggested by
E. Saund [Sau89]. He describes a neural net based algorithm for (non-
linear) dimension transformation which works for low dimensional (n <
4) state spaces.

2. Elimination Techniques do not attempt a coordinate transformation,
but rather look at the dimensions of the state space individually and
test whether each dimension is needed in order to distinguish between
different classes. Two well known and commonly used techniques are
decision tree methods and genetic algorithms.
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(a) Decision tree methods, most notably PLS1 [Ren83, RC90] and ID3
[QuiB3] and its successors [Qui86, CN89, Mic89] provide a construc-
tive approach to dimension reduction: dimensions are chosen based
on their information content until all classes can be correctly distin-

~ guished. All remaining dimensions are discarded.

(b) Genetic Algorithms (also called classifier systems) [Wil87b, KGV83,
DeJ87, BF88, Gre86, HHNT86, BGH87, Wil87¢c, Mau84, Gol85, Dav85]
reduce dimensions by searching for increasingly general classifica-
tion rules. It combines correct classifications by using evolutionary
inspired operations like “cross-over” and “mutation” in order to cre-
ate new classification rules. More general classification rules (called
classifiers) have a higher chance of being used to create new classi-
fiers.

2.4.3 Pattern Recognition and Prediction Techniques

The future behaviour of the robot can be predicted based on a state space rep-
resentation and a classification of the robot’s behaviours. This is done by look-
ing at the current state of the robot, and the action applied to it, and retrieve
the behaviour under which this state-action pair is classified. If all possible
state-action-behaviour triplets are stored away, then this is a simple retrieval
problem. Obviously in many cases the behaviour of the robot is too complex to
store all such triplets. As a result only a limited (but possibly still large) num-
ber of such example state-action-behaviour triplets are stored. It will then
be the task of a pattern recognition or prediction module to derive the actual
behaviour from the stored examples.

Various techniques to do this are discussed in the literature. Some of them
have been applied to robotic tasks, in which case the program either had to
learn to control an inverted pendulum (Fig 2.2) or to control a multi-link robot
arm. Both decision tree techniques and genetic algorithms can be used for
pattern recognition and prediction purposes. One simply uses the resulting
decision tree or classifier [DS90]. Other popular approaches are the following:?

A crude way to predict the robot’s behaviour is to quantise the state space into
a fixed number of hyperrectangles. The prediction is then based on the clas-
sification computed for the whole hyperrectangle. Thus only a limited num-
ber of classifications has to be computed. Among the earliest publications is
D. Michie’s BOXES [MC68] program which learns to control an inverted pen-
dulum by learning which actions to take in which part of a coarsely divided
state space. In each partition of the state space the program has the choice
between two actions. For each of these actions the program records how many

2For a comparison of these techniques see Moore’s thesis [Moo090].
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Figure 2.2: The inverted pendulum or “cart-pole” system. The cart-pole sys-
tem is described using the position X and velocity X’ of the cart as well as the
inclination § of the pole and its first derivative ¢'. The system crashes when
either X or 0 exceed predefined boundaries.

seconds later the system will fail. By converging on longer and longer mean
time between failures after each action the system finally learns to balance a
pole. M. Raibert’s work [Rai78a, Rai78b] uses a technique called parametrisa-
tion to split up the state space into reasonably large subspaces with linearised
dynamics. The program then successfully learned the inverse dynamics of a
6 degree of freedom robot manipulator. Alternatively the hyperrectangles can
be dynamically created and adjusted, as discussed by Salzberg [Sal88] in his
thesis.

In 1975 J. Albus [AlIb79, Alb75b, Alb75a] introduced CMAC, a program that
uses a tabular look-up method (based on a hashing function) to learn non-
linear functions such as the behaviour of a robot manipulator. CMAC took a
multidimensional input function (the state space of the robot) and mapped it
into a one-dimensional control function. CMAC was able to store the control
action for a given state over a number of addresses in the look-up table. These
addresses were distributed in such a way that neighbouring states of the robot
- shared addresses of the resulting control function. This way CMAC was able to
take advantage of the continuity of the control function in order to generalise
successfully. CMAC has been applied to robot control by Miller et al. [MGKS87].

~ They used a simulated two link robot arm, and CMAC was able to learn to
execute predefined trajectories within at most 21 attempts.

Nearest neighbour algorithms take a given state action-pair and try to find
its nearest classified neighbour in the state space. A typical measurement
of the distance could be the Euclidian distance between the two pairs. The

20



current state action-pair will then be classified in the same way as its nearest
classified neighbour. Alternatively the Q nearest neighbours can be taken
and the classification be derived by taking the mean value or a vote. Andrew
Moore [Mo090] describes in his thesis how a k-d-tree based approach can be
successfully used to learn to perform various robotic tasks like throwing a ball
into a basket.

Connectionist algorithms represent class membership by a weighting of each
dimension. A single perceptron [MP88] computes the weighted sum of all
features. Based on a threshold the neuron then decides whether these fea-
tures are below or above a certain hyperplane. A set (or layer) of perceptrons
can be trained to adjust the feature weighting such that the resulting hyper-
plane can be correctly adjusted in order to differentiate between two linearly
separable classes of behaviour. Using multi-layer neural nets allows us to
combine various such perceptron layers. As a result the net can then distin-
guish classes which are not linearly separable by a set of perceptrons[RM86].
Temporal differencing methods [Sut88] are a connectionist approach which
allow a classification mechanism to learn from its own predictions. During the
training phase the program predicts for each training element its classifica-
tion. The feature weighting is then updated according to the correctness of
the prediction.

There exists a wide variety of connectionist algorithms, the most popular ones
being Kohonen’s self-organising map [Koh87, Koh82, Koh88], Grossberg’s Adap-
tive Resonance Theory [CG87], counterpropagation networks [HN87], Bidi-
rectional Associative Memory [Kos87], Hopfield Nets [HT85] and Boltzmann
Machines[HSS86]. 2

Kawato et al. [KUIS88, KIMS87, MKSS88] use a neural net type algorithm to
learn to control a 3 degree of freedom robot manipulator. Kawato et al. were
interested in learning the inverse dynamics of the robot. They assumed that
the inverse dynamics of the robot is the linear combination of 26 “conveniently
chosen” ([KIMS87],p174) trigonometric terms. Subsequently they trained the
network to choose the proper weighting of these trigonometric terms.

Another example is Barto, Sutton and Anderson’s [BAS83] work (see also
[BS81, BAS82]). They describe a program that learns to control an inverted
pendulum based on a neural net approach similar to temporal differencing.
They partitioned the state space ex ante in the same way that Michie did it
15 years earlier. For an overview of “Connectionist Learning for Control” see
A.G. Barto [Bar89b, MSW90].

3It would be beyond the scope of this thesis to discuss these algorithms in detail.
A good collection of the original papers can be found in Anderson and Rosenfield (eds)
“Neurocomputing”[AR88]. For a gentle introduction to neural nets the see Wasserman’s book
on “Neural Computing”[Was89].
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Interpolation methods compute the weighted average based on previous

~ ‘observations. The weights are computed as the distance of the query point

from the previous observations. Regression techniques take a number of
sample data and try to describe a polynomial function which best describes
these data. :

dJ. Koza [Koz90] describes an approach to learning control by using genetic
programming as the learning element. This is a technique in which various
code fragments are recombined in order to generate a control program. The
code fragments are LISP expressions which are then spliced together to build
an executable program. This technique is not unlike Kawato’s where the prin-
cipal components of the solutions are already known. The program’s only task
is to weight and arrange these components.

The greatest common denominator of all these approaches is the fact that they

- are trying to acquire an accurate model of the robot’s state-action-behaviour

model. They do not create abstract behavioural patterns which could then be
used in new, related situations.
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2.5 Adaptation

2.5.1 Adaptation in Existing Learning Robot Control Sys-
tems

Adaptation in robot motion control can refer to various aspects of the be-
haviour of the robot. In the simplest case adaptation can be seen as a control
problem where the robot is kept on a certain trajectory despite a changing en-
vironment. Noise and other external disturbances as well as changing charac-
teristics of the robot itself can be the reason for this. These issues are handled
in conventional robotics by using standard control theory.

Learning systems applied to robot control adapt to a changed behaviour of the
robot by updating their prediction of the robot’s behaviour, or by updating the
type of action which they recommend in a given situation. A. Moore [Mo0090]
describes in his thesis an updating mechanism for a look-up table based robot
controller. Entries in the look-up table are given a time stamp, and when
the actual behaviour differs from the predicted behaviour, table entries with
the oldest time stamps are removed, and the new behaviour is entered into
the look-up table. Thus the system predicts the robot’s behaviour based on
the most recent events. Neuron-like robot controllers are less exposed to this
problem. They can regularly compare their predicted behaviour with the ac-
‘tual behaviour and update the weights in the net accordingly. Thus the net-
work can follow the changes in the robot’s behaviour relatively closely. The
only problem which arises is the possibility of overtraining.

Adaptation in such learning systems is generally directed towards the adjust-
ment of the individual state-behaviour-action triplets, ie. it corrects the robot’s
behaviour with respect to the individual state. It focusses on the individual
states such that a given trajectory can be closely followed. However in the
case of a slightly altered goal which requires a new trajectory, such systems
are only able to adapt from previous behaviour in so far as the system knows
about neighbouring states and can therefore predict the behaviour. The sys-
tem still has to search in the case of every single state transition in order to
execute the new trajectory. This is due to the fact that the systems discussed
so far are interested in learning to predict the state space rather than a set
of complex behaviours. They do not look at the entire behaviour (as a set of
actions) which create the solution (eg. all actions taken in order to reach a
certain state), and are therefore unable to adapt the entire behaviour as such.
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2.5.2 Adaptation as Looking for Invariances Between Dif-
ferent Behaviours

If we want to adapt an existing behaviour to a new situation, then this implies
that we want to keep some aspects of the existing behaviour. In other words
we are looking for invariances between different behaviours. The question is
then how these new behaviours are generated and to what extent they are
invariant with respect to the original behaviour.

One way to discover invariances is to follow physiological motor control pat-
terns and their modification?. Here the general idea is that the brain doesn’t
store individual state, command, behaviour triplets but rather entire trajec-
tories or command sequences. The command sequences (or patterns) are ex-
ecuted when the brain is presented with a given stimulus. Responses to the
variation in the environment are then reflected in changes of the entire com-
mand sequence. These different modifications can be seen as qualitative modi-
fications of the same function. Viviani and Terzuolo [VT80] report that learned
motor skills (composed out of several individual movements) are varied with
respect to the amplitude and overall speed of the entire movement. However
the time ratio between the individual movements remains constant.

Another way of looking at invariances between behaviours is by looking at
the behaviour as a qualitative function. A. Morgan’s thesis [Mor88] discusses
issues of qualitative control. Here a function is considered to be equivalent
to a qualitative function if its qualitative values and the qualitative values
of its first derivative are equivalent to the qualitative values of the qualita-
tive function. The qualitative value of a function is + if the function value is
greater then some threshold 6, negative if the values is smaller than —6, and
0 in all other cases. The qualitative controller is then.given the task to con-
trol the qualitative value of some plant’s output rather than controlling exact
values of the plant’s output. The representation of a behaviour as a qualita-
tive function introduces equivalence classes between behaviours by reducing
information about the individual behaviours. For that reason it is difficult to
use qualitative functions directly to generate specific new behaviours.

4As an introduction to physiological motor control see V. Brooks and Schmidt [Bro86b,
Sch82].
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2.6 Summary

This chapter introduced the various different concepts which are needed for
complex robot motion planning. The problem could be broadly divided into
four different parts: state space reduction, search, adaptation and learning.
For each part several algorithms and learning techniques are available.

Most solutions to robotics problems deal with a rigorous mathematical ap-
proach to robot modelling, trajectory planning, trajectory control and execu-
tion. However various learning techniques have been used successfully to
learn and control robot behaviour. What all these approaches have in com-
mon is that the robot’s goal was either defined relatively simply (e.g. control
a cart pole system) or the robot had to execute a predefined trajectory.

None of the learning systems suggests an incremental approach to trajectory
planning where previously found motion patterns can be successfully used to
control the robot in new situations. This is due to the fact that in all systems
discussed above the learned information enables the program to predict indi-
vidual state-action-behaviour patterns, where each action is a primitive motor
command, and each state is at base-level (no higher lever states have been cre-
ated by generalisation). None of the approaches combines action patterns to
create macros.

For this reason the explanatory power of most systems is rather limited. If a
user queried the robot’s behaviour the only justification the robot could give
for its behaviour would be some sort of fitness of this behaviour with respect to
some goal. This fitness might be misleading in the case of local minima. The
system would be unable to see the fitness of a single action with respect to the
overall trajectory. However literature concerning the aggregation of simple
activities into larger activities exists, and this is discussed in the literature
about macros.

Finally various approaches exist to describe invariances in behavioural pat-
terns. However no work is known to the author which systematically gener-
ates new behavioural patterns.
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Chapter 3

Learning Dynamic Biped
Walking: A Hierarchical
Approach Using Macro
Operators

This chapter gives an overview of this thesis. Some shortcomings of previous
work are summarised, followed by an introduction to how these problems are
dealt with in the coming chapters. The aim of this chapter is to draw a picture
of the whole thesis in order to allow the reader to get “the whole picture” be-
fore discussing the individual algorithms in detail. By introducing the main
algorithms this chapter gives a more detailed overview of the structure of the
thesis than Section 1.4.

The literature survey in the previous chapter documented the state of the art
and its limitations in some areas relevant to autonomous legged robots. It is
beyond the scope of this thesis to address all deficiencies and open problems
of such robots. However this thesis addresses several limitations of previous
work:

e State space reduction: Current approaches to learning robot control
use a conveniently chosen representation of the state space. The problem
is usually represented in such a way that no irrelevant or redundant
parameters occur. This clearly is a severe limitation if we want to build
robots which are able to operate in unknown, open environments.

¢ Abstraction: Existing learning robot control systems usually learn from
previous experiences by acquiring a more detailed representation of the
state space. This enables the system to predict more accurately the be-
haviour of the robot in a given state. However this does not lead to a
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better understandmg of the “task-level” Ifa robot has to learn how to |

throw a ball into a bucket then it will have to search for a new solution =~~~

every time the bucket is moved into a new position. Previous systems do
not generate higher level concepts (like “throwing the ball’_’).

¢ Generating new action patterns: Currently, robotic learning systems
have a fixed set of actions which they can execute. These actions are usu- .
ally motor commands of the type “apply 100 Newton-meter to joint 6,”.
For this reason, these robotic learning systems have only limited abili-
ties to generate new actions. An abstract view of a sequence of actions -
macros - will provide a “task-level” descnptmn of behavioural patterns.
By searching over the space of macro operators we will gain a powerful
tool to generate new, related action patterns. ‘

~o Learning from success: If new successful solutions to complex prob-
lems have been found, then it is important to analyse and generalise
‘these successful solutions. Imagine that the robot has to adapt and mod-
ify its previously used action patterns in order to negotiate an obstacle. -
If similar modifications prove to be successful in a set of instances, then
it is mlportant to analyse these modifications and extract a generic ob-
stacle crossing technique from them. In order to do this, we have to be
able to compare different action patterns and identify which difference
was crucial with respect to the new task, and where. Previously reported
systems have to search on the level of primitive actions each time a new
~ task is solved. ' :

The following sections describe how these issues are addressed. We see how
a learning system is developed which enables a dynamic biped robot to learn
to walk. Additionally this system enables this robot to cross a surface littered
with random obstacles. This in itself is a result which, to the best of the au-
thor’s knowledge has not been reported yet

3.1 State Space Reduction

Before the robot starts to search for the macro operators it needs to “clean
up” the state space description. We assume that the robot is almost flooded
with information, some of this information relevant, but most irrelevant to the
task of the robot. Most importantly, we assume that the information given to
the robot is complete in the sense that it is sufficient to describe all relevant
aspects of the robot and its behaviours. It will therefore be the aim of the robot
to organise its state space according to the importance of the parameters of
the state space. The robot can then discard all irrelevant parameters. Using
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this reduced version of the state space it can now focus on the control of the
important parameters.

In this thesis we will use a hierarchy of macro operators or behaviours. We
will assume that complex behaviour can be derived from simple behaviour,
and thus it makes sense to look for simple and general behavioural patterns
first. We will use this hierarchy of behaviours for the organisation of the state
space of the robot. '

The hierarchy of the state space will be organised according to the influence
that each dimension of the state space has on the survival of the robot. This
means that a statistic will be created which reports the extent to which changes
of a parameter affected the mean time between failure of the robot. The main
idea of the algorithm, the survival time heuristic, is as follows: the robot
chooses an arbitrary behaviour, ie. a sequence of motor commands. It now
picks an arbitrary start position and executes this sequence of motor com-
mands until failure occurs. It records the time it took until failure occurred,
which we will call the survival time. It then re-runs the same experiment with
the one exception that it modifies the value of one parameter in the start posi-
tion. Again the survival time is recorded. This is repeated for a set of param-
eter variations, and in the end, the robot records the variation of the survival
time. This is then re-run for different start positions and different command
sequences, and the average variation of the survival time is computed. This
variation of the survival time is equivalent to the importance or weighting of
the parameter. Repeating this for all parameters of the state space results in
an ordering of the parameters based on their importance for the survival of
the robot. :

Based on these data the state space of the robot can be organised into various
disjoint subspaces. First, there is the inner state space where a change of any
parameter has an immediate impact on the survival time of the robot. Next,
there is the outer state space where in some cases parameter changes have an
immediate impact on the survival time of the robot. A typical example for a
parameter in the outer state space is the height of an obstacle: as long as the
robot is far away from the obstacle the obstacle height is completely irrele-
vant. However, the obstacle height has great impact on the robot’s behaviour
whenever the robot tries to cross the obstacle. Finally, there are the irrelevant
parameters which can be altered arbitrarily without having any influence on
the survival time of the robot.

The inner state space is the part of the state space which must always be con-
trolled. The macro operators controlling the robot in the inner state space form
the basic behaviour from which more elaborate behaviours can be derived. For
a detailed discussion of these heuristics and their experimental validation see
Chapter 5.
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3.2 Macro Operators in Biped Motion Planning

Macro operators as defined in the literature serve two different purposes: they
allow for serialisability of subgoals [Kor85b, GE90] and they are used for the
speed up of the search process by chunking together a successful sequence
of actions into a macro [Iba89, LRN86]. In this thesis we will view macro
operators as a means of speeding up the search process.

Imagine the situation where a biped robot has to learn to walk. In terms of
the state space description this could mean that we expect the robot to change
its position along some axis, which could be called the X axis. We can then
search for a sequence of motor commands - a macro - which results in such a
displacement of the robot along the X axis.

Unfortunately not all these macro movements will lend themselves to a re-
peated execution. In this thesis we will view a macro as a sequence of primi-
tive actions and a set of preconditions. The preconditions have to be satisfied
if the macro is to be applicable. A macro operator is called linear, if for any n
the macro can be repeated n times. Thus we are looking for linear macros.

Linear macros do not affect their preconditions. Therefore at the end of the
macro execution all preconditions have to be reestablished to their original
values. Since the preconditions describe the value of some parameters of the
state space of the robot, these parameters have to change either in a cyclical
manner during the gait execution or they must not change at all. If the precon-
ditions of the macro require parameter values to be within a certain interval,
then the parameters may change only within the boundaries of this interval.

Applying macro operators to biped locomotion leads to the discovery of the
gait. A gait is a cyclical movement of the legs. Now, “all” the program has to
do is identify such gaits and describe them. The precondition of the macro will
correspond to the start position of the biped at the beginning of the gait, and
the operator sequence will correspond to the sequence of commands given to
the motors.

Thus, we have identified the trajectory planning of the robot as the search for
gaits. Executing this search for gaits within the inner state space will pro-
duce the basic behaviour from which we will derive more complicated obstacle
crossing gaits for the outer state space. Chapter 6 will describe this search for
basic gaits in detail. Chapter 7 will show how a gait can be linearised and how
a simple controller can be developed to control the gait execution.
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3.3 Exploring the Outer State Space

In this thesis it is claimed that complex robotic motions can be derived in-
crementally by adapting simple behavioural patterns to new, more complex
situations. This adaptation is based on the interpretation of a gait as a macro.
By creating new macros from old successful macros we hope to preserve the
generic parts of the old macro that made it successful, while at the same time,
we hope to add new features to it that will make it successful in a new situa-
tion. Therefore, the main aspect to modifying macros is to identify invariances
which have to be preserved. All other features will then represent the search
space over which new macros can be generated.

In this thesis macros represent gaits. A gait in its ideal form is a periodic
function of some parameters. By looking at various ways in which to describe
these functions, we can generate an abstract description of a function which
would allow us to define invariances. We will abstract functions by defining
equivalence classes between functions.

The definition of equivalence classes can be guided by the parameters describ-
ing periodic functions: frequency, amplitude and phase-shift. Using equiva-
lence classes which strongly resemble a modification in one of these param-
eters we generate modifications of the original gait which are still similar to
the original gait but powerful enough to achieve obstacle crossings.

In order to describe another way to define new functions which preserve some
of the important properties of an original function, let us look at the following
example: two functions f and g are qualitatively equivalent (f =, g) if they are
defined over the same domain and for each value in the domain the qualitative
values of the two functions and their first and second derivatives are equal.
The qualitative value of a function is computed by mapping the function value
into the set of qualitative values +,—,0. Thus, ¢(z), the quahtatlve value of z, -
is defined as

+ ifz>0
q(z) = { 0 ifz=0
— ifz<0
such that
frogeVz:q(f(z) = Q_(g(w)) A q(f(z)) = 4(3(2)) A a(f(2)) = 4(3(2))

By creating new functions (gaits) which are qualitatively equivalent to the
original gait we hope to create new gaits which still preserve the general “be-
haviour” of the original gait while modifying it in such a way that new results
can be achieved.
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Searching over the space of qualitatively equivalent gaits will enable the robot

" to create powerful new gaits. We will call the heuristic generating these be-
haviours the qualitative equivalence heuristic. These various gait modifica-

-tions will be discussed in more detail in Chapter 8. Using the qualitative
equivalence heuristic we will be able to generate new behaviours which en-
able the biped robot to learn to cross obstacles like a wall or a step.

34 Identlfylng Obstacles and Representlng the
Obstacle Cros51ng Gait

Using the terminology of the outer and the inner state space, the robot is in
the outer state space when its normal gait is leads to failure and it needs to
modify its behaviour. If we assume that the outer state space is regular, in
the sense that the same types of obstacles will appear at various places in the
outer state space, then it will be meaningful to identify these obstacles and
their properties.

‘When the robot encounters an obstacle (its normal gait fails), the qualitative
equivalence heuristic will be used to find an obstacle-crossing gait. Once this
gait has been found it will be used to identify which parts of the outer state
space constitute the obstacle itself. This is done by again varying parame-
- ters of the outer state space one by one (through simulation), recording those
whose variation resulted in a failure of the gait. These parameters constitute
the obstacle. Together with the inner state space these parameters form the
obstacle space for this type of obstacle.

At this point, the program has identified the parameters which constitute the
obstacle. Using the qualitative equivalence heuristic enables the robot to de-
velop an obstacle crossing gait. What we want to achieve next is to generalise
from these successful obstacle crossings such that the robot is able to cross
future obstacles without having to search for an obstacle crossing gait from
scratch :

What the program has to achieve is a description of how and where the be-
haviour of the robot changed. This will be done by using the concept of a virtual
evaluation function. This concept refers to the fact that during the successful
execution of the obstacle crossing, the robot executed some behaviour which
was different from its normal behaviour. (This is identical to the definition of
an obstacle). Now the virtual evaluation function describes how this behaviour
differs from the behaviour which the robot would normally have performed.

To illustrate the use of a virtual. evaluation function imagine the biped robot
has to step over a wall. The robot will discover a gait which results in lift-
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ing one leg over the wall and then lowering it again. This behaviour will be
compared, state by state, with the behaviour which the robot would have dis-
played if the obstacle didnt exist. Thus, every state in which it lifts the leg
even further (in order to get it over the wall) will be marked as different. How-
ever, when the robot lowers its leg behind the wall the behaviour will not be
marked as different. This is due to the fact that the robot would always try to
get the foot back to the ground. The virtual evaluation function describes this
difference in behaviour by describing what sort of state evaluation the robot
must have used in order to “prefer” to lift the leg. This description will then
enable the robot to recreate this behaviour in an individual state, rather than
having to execute an entire gait.

Using a qualitative filter (looking only at qualitative differences in the be-
haviour), the program will be able to detect various phases of divergent be-
haviour. These phases of divergent behaviour constitute the obstacle crossing
“technique”. It will be the task of the learning component of the program to
identify the parts of the state space where this divergent behaviour can be
applied in order to achieve a successful obstacle crossing.

3.5 Experiments and Epilogue

Chapter 10 will conclude the experiments with the survey of the robot’s ob-
stacle crossing capabilities. The biped will be tested on a variety of randomly
generated surfaces with different obstacles in various positions. We will use
four types of obstacles: a wall, a step up, a step down, and a slope. Distributing
them arbitrarily on a test surface we will then demonstrate how a simulated
dynamic biped robot can cross such an obstacle path.

Chapter 11 will summarise and evaluate the results of this thesis and point
towards future work.
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Chapter 4

A Dynamic Biped Robot

4.1 Dynamic Walking and State Space Learning

In this thesis dynamic biped walking has been chosen as an application envi-
ronment. While there are many “standard problems” (such as pole balancing
and standard one-arm robot manipulators) to which machine learning algo-
rithms could be applied, various reasons exist for choosing dynamic walking as
an application domain: the size of the state space, the extendible nature of the
solutions, the complexity of the problem, the ease of verbalising phenomena,
and the potential practical use. Finally there is the challenge of advancing the
state of the art in dynamic biped walking.

- Size: The modelling of multilegged walking systems introduces a state space
of challenging size. In order to control the biped, several parameters (degrees
of freedom) have to be controlled simultaneously. For example, the original
state space of the biped used in this thesis contains 10 dimensions: the angles
describing the position of each leg around the roll and pitch axis as well as

‘the position of the hip around the roll axis, and their respective velocities (see
Figure 4.1). The state space can be almost arbitrarily enlarged by adding
additional parameters describing the surface on which the biped is walking.

Extendibility: In order to walk a series of activities (adjustment of various
parameters) has to take place. All these activities are composed from discrete
motor commands (actions), and these activities can be modelled as a sequence
of operations rather than using a discrete time “point”. Walking therefore al-
lows us the definition of a behaviour as a sequence of actions. Walking is at
the same time complex and repetitive enough to justify the use of macro oper-
ators. Using these macro operators dynamic walking can display increasingly
difficult types of behaviour. Starting with walking in the plane the robot can
be trained to change the direction in which it is walking. It can be trained to
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cross obstacles of increasing difficulty. The important point is that transfer of
behavioural pattern from one behaviour to another is possible and meaning-
ful: a step forward and a step over an obstacle are comparable in so far as both
movements are steps.

Complexity: Dynamic walking is non-trivial. It involves balancing, trajec-
tory planning and search. Dynamic walking can be seen as a variation of the
well known pole-balancing problem. When the robot stands on one leg then it
tends to fall over this leg in a similar way to the pole. The cart which controls
the joint velocity of the pole corresponds to the speed with which the biped is
walking. The main difference is of course the fact that in biped walking the
“falling” support leg cannot be controlled until a support exchange command
is executed and the other leg becomes the support leg. However, the ability to
control a walking dynamic biped does not imply that the applicable algorlthms
can also control a pole balancing problem.

In the case of an actual (non-simulated) robot this might be further compli-
cated by adding real-time computing constraints. However, real-time con-
straints will not be treated in this thesis.

Verbalising: Everybody is reasonably familiar with the process of biped walk-
ing. Most people know that standing on one leg involves balancing, and they
are able to communicate and visualise the basic motions involved in biped
walking.

Usefulness: Walking robots are able to move where traction driven vehicles
fail. The state of the art in legged robotics does not yet allow the industrial use
of legged robots. However there are two important factors which will enhance
the use of walking machines outside the research labs: cheap and powerful on-
- board computing will make walking machines economically feasible, while at
the same it will become less acceptable to have humans working in hazardous
environments. For the moment the cheap supply of human labour, and the
many open problems involved in the design of autonomous robots (eg. sens-
ing and real time computing) are responsible for keeping autonomous robots
wandering within the boundaries of the floors of the research laboratories.

State of the Art: Until recently rough terrain crossing has been limited to
static walking machines. However, Hodgkins and Raibert [HR91] demon-
strate a planar dynamic biped walking machine which is capable of crossing
obstacles. This obstacle crossing capability is due to a (manual) controller de-
sign which enables the robot to adjust its step-length and to jump onto and
over the obstacle. Learning dynamic biped obstacle crossing has not been re-
ported yet. :
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4.2 The Model

In this thesis a simulated model of a dynamic biped robot will be used in or-
der to demonstrate the power of the developed algorithms. This simulation is
based on a “real” dynamic biped, Biper3 [MS84]. Biper3 is essentially a pair
of stiff (kneeless) legs, linked by a hip. Biper3 walks like a person on stilts,
a little bit like Charlie Chaplin. The robot weighs about 1 kg, and it is about
30 cm high and 7 cm wide (precise data are given in Figure 4.2). Figure 4.1
shows a view of Biper3 from the front and from the side. The view from the
front is also called the view along the roll axis, whereas a view from the side
corresponds to a view along the pitch axis. The biped can move along both of
the axes, which means it can move forwards and sideways, but it can not turn
(no moves around the yaw axis).

Let us assume that Biper3 stands on one leg. The leg on which the biped
stands is also called the support leg. This other leg is freely movable around
the roll and the pitch axis, it will be called the free leg. Biper3 is a dynamic
biped in the sense that it will fall down if it doesn’t keep walking: originally the
biped stands on one leg (the support leg). Let this leg be legl. The support leg,
leg1, will lean into some direction along both the pitch and the roll axis. The
robot will fall into this direction, until a support exchange command declares
the other leg (the free leg (leg2)) as support leg. Then the robot will start to fall
into the direction into which leg2 is leaning. In order to walk properly the robot
has to make sure that it brings the free leg (leg2) into a reasonably upright
position before it falls over too much. It then executes a support exchange
command (ie. the robot turns leg2 into the support leg, legl becomes the free
leg) and then starts to adjust the previous support leg (legl) and brings it into
a reasonably upright position.

The expression “reasonably upright” has been used because it can be impor-
tant that the robot doesn’t start with an absolutely upright support leg. If the
support leg is leaning slightly forward around the pitch axis, then the centre
of gravity of the robot will shift into this direction and at the next support
exchange command the robot will have executed one step into this direction.

The biped is described by 5 parameters, 0, v, ¢, 7, and ¢ and their first deriva-
tives. 4 describes the inclination of the support leg around the roll axis, v de-
scribes the orientation of the hip with respect to the roll axis, and ¢ describes
the orientation of the free leg around the roll axis. 5 describes the inclination
of the support leg around the pitch axis, wheres a ¢ describes the inclination
of the free leg around the pitch axis. 3 motors exist in order to control the
biped: motor u; moves the free leg around the pitch axis, and motors u, and u;
move the hip and the free leg respectively around the roll axis. The support leg
described by the parameters 6 and n behaves like an inverted pendulum and
simply falls into the direction into which it is leaning at the moment. More
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pitch-axis

Figure 4.1: The biped. Position (a) shows the biped robot from the front (along
the roll axis), position (b) shows the biped from the side (along the pitch axis).
The robot’s behaviour is described by the 5 angles 6, v, ¢, n,and ¢, and their
respective velocities. The vertical line underneath one of the legs indicates
the support leg. Motorl moves the free leg with torque u; around the pitch
axis, Motor2 moves the hip with torque u, around the roll axis, and Motor3
moves the free leg with torque u; around the roll axis. The footheight () de-
scribes the height of the lower end of the free leg above the ground, whereas the
hipheight (hh) describes the height of the centre of the hip above the ground.
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Figure 4.2: Further description of the biped model: G1,..,G5 are the centers of
mass of each segment, Mr, Mb and Mp describe their respective masses, and
Ir, Ib, Ip the respective moments of inertia about the centers of mass. Pr, Qr,
Pp, Qp, and r describe the distance from the end of each segment to its center
of mass.

Mr = 0.56 kg, Mb = 0.664 kg, Mp = 0.892 kg, Ir = 4.17 x 103 kg m?, Ib = 9 x
107* kgm? Ip = 6.21 x 10~ kg m?, Pr = 45 mm, Pp = 45 mm, r = 37.5 mm,
Qr = 263 mm, Qp = 263 mm.
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precisely: the support leg behaves with the free motion ‘of an inverted pendu-

~ lum, and it will fall into the direction into which it is leaning at the moment =

provided there is no large enough momentum going into the other direction -
left over from the movement of the leg before the last support exchange.

Miura and Shimoyama give a mathematical model for the motion of the biped

[MS84]. This model is based on several assumptions’:

The motions about the roll, pitch and yaw axis are independent.
The motion about the yaw axis is neglected.
There is no frictional force at any joint.

The equations of motion may be linearised.

o o~ W N R

The foot contacts the surface at a point, where a large frictional force is
produced and no slipping occurs. Thus, the point may be regarded as a
universal joint which is free to move about the pitch and roll axes.

- Using these assumptions Miura and Shimoyama develop the following set of

equations describing the motions of the robot:

= 346 | (4.1)

f

b = 201ug—201u, — 132 (4.2)
¢ = 5090 —50¢+203u; (4.3)
i = 3749 (44
{ = 57.79p—56.1¢ + 131y : (4.5)

The robot is controlled by changing the control parameters v, , u;, us, or by exe-
cuting a support exchange command. The support exchange command is basi-
cally a renaming of the parameters (the index : indicates the new values after
the support exchange, f refers to the old value):

6 = —d; 4.6)

¢ = —b; | 4.7)
m o= (f 4.8)
G o= 5 | | (4.9)

In order to justify this behaviour Miura and Shimoyama introduce a further
set of assumptions, namely

leited from [MS84], page 305
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6. The duty cycle of the double support phase (support exchange phase)
is short compared with the period of the single support phase, and the
posture of each segment does not change during the support exchange
phase.

7. The collision of the foot against the surface is non-elastic, and ¢ = ¥ =
-0 is equivalent to the state in which both feet are in contact with the
surface.

8. The joint velocities do not change except for renaming: b; = ¢; = —0}
ni =G =1y

In the biped model used in this thesis, Miura’s and Shimoyama’s assumptions
will be followed except for assumption 7 (¢ = % = 0). This will be relaxed by
allowing non-zero values for 1) as well as for ). Thus the biped doesn’t have to
be exactly upright around the roll axis when it comes to a support exchange
command. In this thesis the biped was simulated by recomputing the position
of the robot in time steps of 0.04 seconds.

However it will not always be assumed that the robot behaves exactly as pre-
dicted by the equations. In some experiments the algorithms will be tested by
adding noise which perturbs the motor commands or the joint positions.
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Chapter 5

A Hierarchy Based Approach to
State Space Control

5.1 Introduction

Autonomous robots are normally expected to operate in a rich environment
and hence they are represented by a rich state space. Apart from the param-
eters describing the robot itself, various other parameters are added in order
to describe the environment. If the robot is not pre-programmed, but rather
~ is expected to learn how to survive in such an environment, it is of paramount
importance for the learning program to reduce the state space and to single
out the dimensions which must be controlled when executing the individual

tasks. -

It is assumed that despite the richness of the environment the behaviour of
the robot is simple and repetitive. As an example the task of walking in ob-
stacle littered surroundings has been chosen. We assume that the robot has a
limited repertoire of activities and we expect it to use these activity patterns
and their modifications in order to survive in its environment. The behaviour
of the robot will be guided by some pre-defined goal. This means for the walk-
ing robot that we expect it to be able to walk across a plane, but apart from
this task we simply expect it to survive in its environment. This doesn’ neces-
sarily represent a strong restriction in the viability of the model since it can be
argued that additional tasks that need to be mastered in order to guarantee
survival can be learned separately. It is therefore assumed that the task of
the robot can be learned incrementally.

The analysis of the state space will proceed along the following lines: first (in
Section 5.3) the program analyses which parameters of the state space can be
directly influenced by the robot itself. In the next step the program identifies
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which of the parameters of the state space have an influence on the behaviour
of the robot itself (Section 5.4). Based on these two pieces of information |
the robot can then construct a look-up table of how to control the parameters
which it can control and needs to control

5.2 Assumptions about the State Space

5.21 Linearly Dependent Parameters

The robot and its environment are described using a large number of param-
eters. Some of these parameters are dependent on other parameters. For
example the height of the robot’s foot is dependent on the inclination of the
legs around the roll and the pitch axis, and it is impossible to alter the height
of the foot without affecting the joints of the legs. '

In this thesis it will be assumed that from the start the robot is given a max-
imal set of linearly independent parameters. Let this set of parameters be
called the base parameters. The set of base parameters is sufficient to describe
the robot and its environment. The values of all other parameters can be de-
rived from it. Thus this set of parameters is equivalent to a base in a vector
space. This thesis will not deal with the discovery of dependencies between
parameters. The robot will therefore know about the existing dependenmes
between parameters.

- 'The rest of this chapter will use the term parameter synonymously for base
parameter unless stated otherwise. '

5.2.2 Choosing Start Positions

It is assumed that the robot is able to put itself into any physiéally possible
position anywhere in its environment. This is important in order to compare
for example the outcome of various motor commands in the same position.

Any such position is described in terms of the set of linear independent param-

eters described in Section 5.2.1. If the robot wants to reach a position defined

by some other set of non base parameters then it has to search for a descrip-

tion of this position in terms of its base parameters. For example if the robot

wants to start its activities in a position where one foot is two inches above

the ground, then it has to search for a combination of Jomt angles (the base .
parameters) which generates such a state.
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5.2.3 Discussion of Assumptions

The knowledge of a set of base parameters and the ability of the robot to start
its activities in an arbitrary state correspond strongly. If the robot didn’t know
which parameters it can choose freely then selecting different start states for
various tests would be difficult and time consuming. However this ability to
pick arbitrary start positions is important for many of the algorithms devel-
oped in this thesis. If the robot wasn’t able to start its activities in a given
state then it would have to wait until it reaches such a state, be it by coinci-
dence or as the result of a search process. This would slow down considerably
the efficiency of the discussed algorithms. :

Nevertheless it must be admitted that robots operating in an open environ-
ment would not have this ability. New features in the environment will make
it impossible to give the robot in advance a set of base parameters for all even-
tualities. The only thing one could assume is that the robot has some sort of
reset mechanism which enables it to set itself into one out of a finite set of pos-
sible start positions. This reset position would be defined in terms of a set of
a priori known parameters. If the robot wants to start its activities in a state
different from its reset positions then the robot will have to search for a set
of activities which brings it into such a state. However in this thesis this will
not be the case, and it is assumed that the robot can start its activities in any
combination of base parameters.

5.3 Identify Operator-Specific Subspaces

Originally the system presents itself as a potentially large set of different pa-
rameters or state variables. Some of these parameters will be redundant,
some will be irrelevant and not all of them will be mutually dependent. That
means that some parameters can be controlled independently of some other
parameters. They can only be influenced using certain commands (or opera-
tors), and we will call the subspace which is influenced by an operator op the
operator-specific subspace R(op). Once the program discovers which parame-
ters are influenced by which commands it might become possible to split the
state space into mutually independent subspaces. The program could then
control each of these subspaces independently. This would also imply a po-
tentially dramatic increase in efficiency since several dimensions could be dis-
carded. '
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5.3.1 Constructing R(op)

In a first step the state space is split up into operator specific subspaces. An
operator specific subspace describes a set of parameters and the control com-
mands which influence exactly these parameters. This means that by applying
~ one of the control commands we will only be able to witness changes in value
of those parameters represented in this subspace. However, operator specific
subspaces do not have to be disjoint. Splitting up the state space into oper-
ator specific subspaces will result in a shrinking of the original search space
by potentially several orders of magnitude. Henceforth the parameters that
can be directly influenced will be called control parameters whereas all other
parameters will be known as reference parameters ~

The program has to find out which commands control or influence which pa-
rameters. In order to do this the program picks a set of random reproducible
states. Reproducible means that the system must be able to get back into
- this state without any major effort.! In each state all control parameters ex-
cept one are kept equal while the latter gets replaced by a number of random
values. By means of comparing the different resulting behavioural patterns
it becomes possible to find out which parts of the system are influenced by
which control parameter. The program simply looks at the sequence of states
through which the system goes and observes which parameters behave differ-
ently if in a new run some control parameters are changed.

More formally the system is in a state
| So = T3, 22, ...T,
where z; are the reference parameters. The control vector
Uy = Uy, Uz, ..Uy

with u; being the control parameters is applied to the system. As a result the
system will go through a set of states S..S; before the test terminates.

1
UyoSy — Sy : zl,:cz, Ty

z?
UyoS; — 82 :z:l,:c2,

i

UgoS;y — it ay,zh, ...z,

!Such reproducible states exist because the existence of a reset mechanism is assumed
which is able to set up the robot in any legal state.
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In the next step the original state S, is again established, but this time the
control parameter u; in I, is altered before the otherwise unchanged control
signal L{(', is again applied to Sy, producing a series of states S; .

I I 1[

A 080 — 8y : T ,23 T

/ 2’ 2’
U oS —+82 2,23, .22

i}

' ! / . 2" Z'I z
UyoS;_1 = S; 1 z},25,..2),

As a result some parameters z; in S; will have values which are different from
their respective value in §;, and some parameters will remain unchanged in
comparison to previous trials. If for a large set of start states Sy no parameter

changes, and
Vi S S;

then u; is irrelevant and can be discarded. Otherwise all these parameters
z; that change their behaviour are collected in a set R(u;). This set contains
only the parameters that change their behaviour due to a change of the control

parameter u;.
R(u;) = {z: | o} € Sp, 2} € Sp,af #of'}

where z; refers to the name of the reference parameter, and z* refers to its
actual value after k£ steps. In order to make this procedure more robust the
definition can be replaced by one that requires the absolute difference between
the reference parameter values to be above a certain threshold 6 :

R(u;) = {z: | z¥ € Sy, € S, abs(z* —zF) > 0}

This test has to be repeated with different “start-states” S, in order to avoid
wrong results due to performing these tests at a fixed point. By detecting the
parameters which change more than a certain limit it becomes possible to find
out which parameters are influenced by which control signals. The same test
has then to be repeated Wlth a number of random values for u; and a number
of different “start states” S,. The union of all results will then describe the set
of all parameters that are mﬂuenced by the control parameter ;.

This allows the state space to be split into independent subspaces, with each
subspace containing mutually exclusive sets of control parameters and the set
of reference parameters which are influenced by them.

For example consider a car which is described using speed, orientation, x-
position and y-position as parameters. There are two command signals, accelerate
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and turn. In a first test the car starts from a random position with a random

- control command and the next, say, 10 steps are recorded. In consecutive tests

everything is identical except that the accelerate command is altered. The test
series is then repeated with a different set of starting positions S,. Now the
program checks what dimensions of the state space of the car display a differ-
ent behaviour. In this case this will be the parameters speed v, x-position z
and y-position y, while the orientation o remains unchanged. Similarly, turn
changes everything except speed v. Accordingly the followmg two sets will be
created :

: R(accelerate) = {v,z,y}

and
R(turn) = {a,z,y}.

5.3.2 Creating Operatcr Specific Look-up Tables

Once the operator speciﬁc subspaces R(op,-) have been defined, the next step
is for the program to generate a simple representation of the relationship be-
tween the operator op; and the parameters in its operator specific subspace

R(op;).

In this thesis we will assume that a very simple look-up table based bang-bang
control is sufficient to control the robot. (The details of this controller will be
discussed in Chapter 7.) This section will be limited to the construction of the
look-up table. This table will then be used directly for the construction of the
controller in Chapter 7.

In order to construct such a look-up table the program will identify for each
parameter p in R(op) which value of op suffices to ensure that the value of p
increases or decreases. In other words for each parameter that appears in an
operator specific subspace R(op) two entries in a look-up table will be created.
These entries will indicate which operator op and force u have to be used. in
order to increase or decrease the parameter. Access to the look-up table will
be via a function look.up

look.up: PxA—-U

where P is the set of all parameters in R(opi) for some operator op;, and
A= {+= _}'

A indicates whether the value of P should increase (+) or decrease (—). The
output U is the specific value which has to be chosen for the operator op; in
order to achieve this change A of the parameter P. ‘
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This look-up table will be constructed by experimenting with different val-

ues for the operator op;. The problem is to find a choice of U such that the

parameters will always change their values according to the look-up table de-

scription, while avoiding having forces which are so powerful that the system
“overshoots”.

Imagine the program tries to create the look-up table for some parameter P.
Assume that P is part of the operator specific subspaces of op;..opx. Further
assume that op; ..op; are ordered by the number of parameters in their operator
specific subspaces. Let op;..op; be the operators with the smallest operator
specific subspace containing P. Now pick the operator op, : < ¢ < k with the
strongest impact on parameter P, which is the operator where a given change
of force leads to the largest change in the values of P. Store one value u,, for op,
which in most states leads to an increase of the value of P, and store another
value ., of op. which leads to a decrease in the value of P in as many states
as possible. The look-up table has then the following two new entries:

look_up : P+ — u,,

look_up : P— — Ugem,

The operator op. was chosen because it is “safe”’[GE90] over the largest number
of parameters®. At the same time it is the most powerful operator with this
quality, and this should ensure that even in a critical situation that enough
“power” is available in order to control the robot.

5.3.3 Limitations

There are many systems which can not be controlled by such a look-up table.
Imagine a cart-pole system as it is depicted in Figure 5.1. Here the cart can be
pushed to the left or to the right, and this action will influence four parameters:

the position X and velocity X’ of the cart as well as the inclination 0 of the pole
and its first derivative ¢'.

Clearly it is possible to choose forces which are so strong that they will always
guarantee that some parameter changes in a certain way. Yet this might be
too crude in order to ensure that the entire system doesn’t overshoot drasti-
cally. If we want to control a cart-pole system based on such a simple look-up
table controller we will need a more elaborate representation of the cart-pole
system.

As an example let us look only at the inclination of the pole § and its first
derivative ¢'. The goal is to control the pole in such a way that it remains

% Applying this operator only affects a minimal number of parameters.
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Figure 5.1: The inverted pendulum or “cart-pole” system. The cart-pole sys-

tem is described using the position X and velocity X’ of the cart as well as the

_inclination ¢ of the pole and its first derivative ¢'. The system crashes when
either X or 6 exceed predeﬁned boundarles '

upright with minimal angular velocity 9. It is possible to build a look-lip table
controller by introducing a variable I':

T=60x60"1

I' would then be equivalent to a very simple proportionate controller. The
aim would be to keep I' equal to some constant value C, and depending on
 whether I' is greater or smaller than this constant C, a set force in one or
the other direction is applied. Obviously it would be possible to introduce
variables which correspond to more complex controllers, eg. a PID controller.
But it is unreasonable to assume that such variables are present in the original
descnptlon of the state space.?

Instead we will limit' our attention to systems where a simple look-up table
based controller of the type described above will suffice. In the later part of
this thesis it will be shown that this is sufficiently general to achieve a robust
control of biped walking. It is not within the scope of this thesis to investigate
more general control strategies.

3Tony Morgan [Mor88] discusses this concept of control under the name of qualitative con-
trol in his thesis. He discovers the same limitations in as far as the plant has to be described
by some variable I' which represents the “correct” control value in order for qualitative control
to work in non trivial circumstances.
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9.4 Hierarchical Organisation of the State Space

Imagine one has to operate an unknown device like a bicycle. Some domain-
knowledge will be given (one has to sit on it and pedal, holding the handle-
bar). The application of the previous section leads to the understanding that
pedalling produces speed, and turning the handlebar changes the direction.
Yet we don’t know how to use a bicycle. What we will do is to play around
with these various commands and see what happens. We will realize that the
distance to the next building is rather unimportant at the moment, but that
keeping the balance is, for obvious reasons, extremely crucial. Thus, using
the state space terminology we will separate the state space into a hierar-
chy of subspaces. The most important subspace will be the one immediately
responsible for keeping the balance. Later on we will be concerned with ques-
tions like how to cycle around the block and other things. Thus we introduce
a hierarchy of subspaces based on the importance of their control.

To emphasize the necessity for a hierarchical organisation of the state space
let us consider the actual application. Since the biped is unable to control the
position of the support-leg, it will fall in the direction in which the support-
leg is pointing. Thus controlling a dynamic biped requires us to find start
positions from which the non-controllable legs of the robot simply fall into
the proper position within the time that it takes to adjust the controllable
parameters of the system. If we search for such a position without reducing
the search space, then we have to search 24 dimensions. If we have 4 possible
values for each parameter we end up with 2.8 * 10** possible start positions. If
the environment becomes richer this problem increases exponentially despite
the fact that the original basic problem, how to walk, remains the same.

54.1 Filtering out Dimensions on the Basis of Local Sur-
vival '

In order to identify the above mentioned “important” subspaces, we have to
find out which parameters may not be altered by even small amounts without
changing the immediate behaviour. To detect this, we change the parameters
one by one and observe the result. '

Assume again that the state space S is represented as a n-ary tuple with di-
mensions d;..d,. Thus a state of the system &, is described as

So = 21, T3, ...Tn,
and we create a (random) set of start states, S:
S = 80,51...Sp.
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A control Yé_céor_% has the form =
| Uo = U1, U, oo Um
and - we create a sequence of (random) control vectors, a command sequence C;:
| Ci = U o, Uiz, .. Ui .

The .length k of the command sequence should be constant, and & should be
chosen large enough so that a sequence of k¥ random commands almost in-
evitably leads to failure. In fact we create a whole set of command sequences
C: ’ ' '

C = {Co,Cy,...C1}.

A set of test-runs or tests T is the Cartesian product of the set of start states
§ and the set of command sequences C : :

T:SxC

The test 7;; describes what happens when starting from a start state S; the
command sequence C; is applied. This means that starting in state S; we con-
secutively apply the control vectors of C;. The system will go through a set
of states S° .57, before the test termmates (In this case state S° is identi-
cal with state S The mdexmg is extended to be consistent throughout the
example)

) 0 1
Uio0Si;— S

J]_OSI —)82

U g08f; = L(Crash)
or, if g = k and §7}" is a proper state of the system,
Ujg 087, _’Sz"qq?-1

which should be very unlikely if & is chosen large enough and the system is
sufficiently unstable.

Finally either the system will crash after g steps before all commands in the
command sequence could be executed (g < k) or it will end in a proper state
Sff'. If we choose k reasonably large then we can assume that the system
W1ll crash after state S7; due to the dynamic nature of its behav10ur and the
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randomness of the commands. We will call g, the number of states the system
went through, the survival time of the test 7; ;. - ‘

In the second phase of the experiment we will run the test-runs again, this
time modifying the start states S; slightly. To be more precise each test 7; ;
will be altered in the following way: for each dimension p of the state space
try to alter its original values in the start state S; resulting in a modified state
SP..

Sz‘ = (.’Eo, L1y .05 Tp, ..,:L‘n)

87 = (20, T1y -, A(Tp), -, Tn)

The amount A by which a parameter is modified is defined as a fraction of
the range of the parameter. If during an average random test a parameter
changes its value from, say, 0 to 10, then A would be chosen as a random
value from this interval. This is necessary in order to ensure that the changes
A correspond to the impact of some motor commands. If a parameter was
changed by some abnormally large number then the program would measure
the sensitivity to changes which in practice would not occur.

For all these new states S? the tests 7;» ; are run, which means repeat all the
previous tests, using the new start state, but keeping the command sequences
the same. The resulting behaviour will be

Uioo8Y ; — Sk

2%} P

1 2
Uj,1 OS' b d Sip‘j

P,

U;s0 Sz-’;,j — 1(Crash)

If the survival time f of the test 7 ; is equal to the survival time g of 7; ; then
the dimension p modified in test 7;» ; does not appear to have too much influ-
ence on the behaviour of the system. If this is the case for a large number of
tests then one can assume that this dimension is redundant®. If f and ¢ differ

“Redundant here is with respect to the task to survive in an average environment. If the
dimension has nothing to do with the stability of the robot but is nevertheless needed for some
high level behaviour, then it clearly shouldn’t be considered to be redundant. Just assume
the biped robot had a parameter indicating whether it was moving towards some goal. This
parameter would be very helpful for some high level search behaviour but wouldn’t have any
influence on the biped’s stability.
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considerably, then the dimension ; p modified in test 7;» ; seems crucial for the

" immediate survival of the system. Therefore it is suggested to order the di-

mensions of the state space depending on their average impact on the survival
time. Thus we can order the dimensions of the state space by the average de-
viation of their survival times. We expect to find in the most important group
those parameters that are crucial for the local control of the system. In the
example of the biped robot we expect these values to be the ones that describe
the biped itself.

5.4.2 Discussion of theSurvival—Time—Heuristic

| The underlying assumption for the above mentioned heuristic is that there are

large subspaces in the state space where it is possible to control the system as if
some dimensions of the state space didn’t exist. In this case a random position
will on average be located in one of these large subspaces, and the survival
time heuristic will identify the independence from the values of some other
dimension outside this subspace. Despite the fact that the program doesn’t
know yet how to control the system it can assume that in most situations
certain dimensions can be disregarded. In order to facilitate the search for a
control of the system it is therefore useful to store elements of such subspaces.
Later test runs should start in such “corners” of the state space rather than in
one where the situation becomes complicated.

Since all dimensions can be tested individually the program is able to find the
inner state space in linear time with respect to the number of dimensions of
the state space. Experiments at the end of this chapter will show that in fact
about five tests are sufficient to detect the inner state space for the biped robot.

One other approach which tries to tackle the same problem is the genetic al-
gorithm paradigm. One could interpret a random command sequence and the
state space in which it is applied as a classifier in a classifier system. Over
time this classifier would gain a certain fitness (if it does something that is
rewarded with a high score in some given evaluation function), and cross-over
would preferably happen with other successful classifiers which have a high
number of “don’t care” entries. Such an entry would indicate that the corre-
sponding dimension of the state space is considered to be irrelevant. Thus
over time one would hope to filter out the less relevant dimensions of the state
space.

The main difference between a search using genetlc algorithms and the ap-
proach discussed in Section 5.4.1 is the fact that one wouldn’t have to wait for
the mutation and cross-over commands to generate a suitable classifier which
contains the “don’t care” entries at the right place. Instead such classifiers
are generated systematically. Since we know what we’re looking for we might
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as well do this straight away rather than hoping that some search gets us
there sometime. We also don’t have to try various cross-over combinations of
successful classifiers since we know that we can simply “add” the redundant
combinations. The cross-over operator in the genetic search paradigm creates
a random split in two classifiers and then recombines them. In this termi-
nology we simply weighted the alleles’ and made sure that the crossover is
not at random but works like a hillclimbing function. We can do this because
we don’t search for arbitrarily complicated hyperplanes in the state space but
rather test and eliminate single features individually.

9.9 The Application to Biped Walking

In this section we will apply the above presented algorithms to biped walking.
Using a simulated model of a biped robot we will develop the operator specific
subspaces for this robot. Following this we will test the survival-time heuristic
in order to identify relevant dimensions and to weigh them according to their
importance for the survival of the robot. For the parameters which will be
identified as members of the inner state space a look-up table for their control

will be created.

5.5.1 Representing the Biped and its Environment

The effects of the state space reduction techniques will be demonstrated using
the previously discussed dynamic biped robot in an “enriched” environment.
In the actual application we will use a state space of 24 dimensions:

e The biped robot itself will be characterised using 12 parameters: 9, ¢, v, n
and ¢ and their first derivatives describe the angles of the joints of the
robot and their velocity. Footheight and Hipheight describe the height of
the foot and the hip. Note that the last two parameters are redundant
and can be derived from the angles of the joints. They will therefore be
omitted from the search for operator specific subspaces as well as the
inner state space.

o The environment will be a plane in which four different obstacles can
appear: (1) a wall, (2) a ditch, (3) a step and (4) a slope. The parameters
dy,ds,ds and d, describe the distance between the robot and the corre-
sponding obstacle. Heights &y, k3, k3 and k4 and widths w;, w,, ws and w,
describe the height and the width of the obstacle. The “height” of the
slope, h4, will be the actual slope of the surface.

Sallel: a substring in a classifier, typically identified with a “concept” in the state space.
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* If the environment has several obstacles of one of the types described |
above then the convention will be that the parameters refer to the closest
obstacle of this type. :

Thus we added another 12 dimensions to the state space, of vﬂﬁch some
are clearly irrelevant: a wall always has a fixed width, the depth of a
ditch is irrelevant as is the length of a slope.

5.5.2 Operator Specific Subspaces of the Biped Robot

The above mentioned algorithm for the detection of operator specific subspaces
was tested on the biped robot. It worked as predicted and was immune against .
- small amounts of noise provided two conditions were met: (1) the noise had
to be below the filter threshold § and (2) the filter threshold ¢ had to be small
enough so that relevant differences between two states were not filtered out.

It was examined how many test runs were needed in order to detect the oper-
ator specific subspaces for each operator u,, us, us of the biped robot. Several
runs were needed in order to identify the subspaces correctly due to the fact
that the robot collapsed frequently after just one or two random commands
and therefore only small differences could be noticed. Between 40 and 80 per-
cent of the tests discovered the correct set of parameters in R(op). Thus after
10 tests there is almost a 99 % probability of having identified the complete
set of parameters influenced by a given motor command.

5.5.3 The Inner State Space of the Biped

- In a second set of experiments the state space hierarchy for the biped robot
was investigated. The aim of the experiments was twofold: first to discover
the parameters of the inner state space, and second to ﬁnd the number of tests
needed in order to 1dent1fy these parameters

The experlments were set up as follows: a series of tests was organised, and
a threshold ¢ was defined. Each test changed all the parameters individu-
ally and recorded the change of the survival time for each changed parameter.
Successive tests (ie. a test-series) were carried out. If the average change of
the survival time (with respect to the already executed tests) was above the
threshold ¢ then this parameter was included into the inner state space.

The results of these experiments may be seen in Figures 5.2 to 5.5.

Each of these figures corresponds toa different filter threshold 4. In Figure 5.2
a tbreshold of § = 0 was used. Thus we expect all parameters which have a pos-
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Figure 5.2: Analysis of the State Space Hierarchy, §=0. Any effect on survival
time (average changes greater than threshold 0) were recorded. On average
19 parameters were identified which had an influence on the survival time of
the robot. These parameters are the kinematic and dynamic parameters of
the robot as well as the relevant parameters of the various obstacles.

sible influence on the robot’s survival to be included in the inner state space.
This was achieved after about 20 steps. As expected the number of parame-
ters falls quickly if a threshold greater then 0 is used. It is also noticeable that
only a few tests are needed to detect parameters with an average impact on
the survival time which is above 1.5.

Each graph indicates how many parameters were identified as having an im-
pact on the behaviour of the robot. A threshold ¢ is used to filter out those
parameters which have an influence on the survival time less than §. Each
graph plots the number of identified parameters against the number of tests
needed in order to identify the parameters. Each graph contains 3 lines: the
upper line indicates the maximum number of identified parameters, the mid-
dle line the average, and the lower line the minimum number of identified
parameters. These three lines are plotted in order to show the variation be-
tween 10 different test series.

The results show clearly that the inner state space can be identified after rel-
atively few tests, about 20 seem to suffice. The tests also reveal that the ve-
locities of the angles can be disregarded at present, a feature which simplifies
the search significantly. We expected to “loose” all the environmental features
of the biped (the information about the obstacles) but also gained the insight
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" Figure 5.3: The same test as above, this time only those parameters with an
average impact on the survival time greater than 0.5 are recorded. This al-
ready filters out almost half the parameters (the obstacle parameters). About
8 test runs are needed in order to establish this result. The 10 detected pa-
rameters are the dynamic and kinematic parameters of the robot. ‘
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Figure 5.4: The threshold is increased to 1. About 6 parameters remain above
the threshold, some first derivatives are already filtered out. The remaining
parameters are the kinematic parameters of the robot and the velocity of the
free leg around the pitch axis.
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Figure 5.5: The threshold is increased to 1.5. On average only 5 parameters
have an average impact on changes of the survival time above 1.5. These
parameters coincide with the 5 angles describing the kinematics of the robot.
The first derivatives of each angle have been filtered out.

that the first derivatives (and therefore another 5 dimensions) seem to be ir-
relevant for the immediate survival of the robot. This seems to be due to the
fact that the encountered velocities were not high enough to bring the robot
into immediate danger. The displacement of a leg (and therefore the effect on
the survival time) due to a different joint position was higher than the (final)
displacement of the leg due to an increased velocity.

Thus (after including linear dependent parameters) we are left with an inner
state space of 7 dimensions, namely 6, ¢,,7 and ¢ as well as Footheight and
Hipheight which are linearly dependent on the first 5 parameters. We will use
the average variation of the survival time o of each parameter as its weight
in the search through the state space. The next chapter will show that this
weighting produces an efficient way to search the state space, and using this
weighting trajectories can be found which enable the robot to walk.
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Chapter 6

Searching for Gaits: Planar
Dynamic Walking

6.1 Introduction

This chapter will be concerned with the development of simple planar gaits
for the robot. This means that the robot walks in a horizontal, obstacle free
plane. -

In order to develop these gaits the robot searches its state space for a set of
connected states which represent a step into some direction. The states de-
scribe the numerical values of the parameters of the robot, and the directed
connection between two states is the set of motor commands that enables the
robot to change from the first state to the second state.

To carry out this search the robot uses a simple hillclimbing mechanism: based
on some start state, a goal state, a set of operators, and an evaluation function
(a mapping from the state space and the goal to the real numbers), the robot
applies all operators individually to the start state. It then uses the evaluation
function to evaluate each of the resulting states, the state with the smallest
evaluation result will be interpreted as the one closest to the goal. Using this
state the search then continues until it reaches a state from where on the
evaluation results become worse rather than better. Once the robot reaches
such a state (a local minimum) the search stops and the robot assumes it has
finished its step.

Various aspects of this search will be discussed in this chapter: what are the
operators; where do the start states come from; what is the goal of a step and
how do we evaluate the distance of a state to the goal. Applying all this to the
biped, we will demonstrate how the biped walks over a planar surface, and
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how 1t can change the dlrectmn mto Whlch 1t is gomg

'Once the robot has successfully searched for various types of steps, the pro-

gram will analyse the properties of these steps. It will extract those steps
which it considers to be interesting. Interesting steps can be those which per-
form very regular movements or create a comparably large step forward or
- backward. The program will then take a more detailed look at these steps
and try to refine them. As a result, the program will generate combinations
of start positions and operator sequences which represent an “interesting” be-
haviour.

We will investigate criteria to select successful combinations of start positions
and operator sequences and store these combmatlons of posmons and operator
sequences as gaits.

6.2 The Search

The aim of this section is to enable the robot to walk on a horizontal plane.
Since in the beginning we have very little knowledge about how to do this we
will originally have to search for postures of the biped and motor command
sequences which will result in a series of steps forward. But, clearly we do
not want to use this technique (search) all the time. We want the program to
discover complete gaits which it can record and use whenever they are appro-
priate. A few definitions follow in order to avoid confusion over the terms used
in this chapter:

Definition 1 The posture of a system is an instantiation of the parameters
of the inner state space. Thus, the posture of the biped is a set of values for
the parameters 1,(, 0,1y and ¢. All other parameters are set to default values.
The default values are a specific posr,twn in the plane and zero velocities for all
limbs.

Definition 2 The start position ofa ga,zt 18 a posture in which the robot can
execute a support exchange command, i.e. it can shift its weight from one leg to
another. Normally, this is achieved by ensuring that both feet touch the ground.

Definition 3 A gait is a pair consisting of a start position and a set of motor
commands. The set of motor commands starts with a support exchange com-
mand. If the system is in a state specified by the start position then applying
~ the motor commands should get the system into another start position.
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So, when we are looking for gaits we are looking for macro operators which
correspond to one step forward.

6.2.1 The Operators

The operators which make the robot change from one state to another are

" defined by the torque which is applied to each of the controllable joints of the
robot and the time duration for which this torque is to be applied. The original
specification of the robot does not constrain the amount of torque which can
be applied to any controllable joint of the robot at any time, nor does it require
a certain duration of such a torque application.

However practical considerations require that there is only a small set of motor
commands (or torques applied to the joints of the robot) available. This will
decrease the branching factor of the search. By extending the length for which
a certain torque (motor command) is applied, the depth of the search becomes

limited.

Thus the first task for setting up a feasible search program is to calibrate the
torques and the time for which they are to be applied. When searching for
steps a time slice of 0.04 seconds was chosen. In Chapter 4 the parameters
for controlling the biped were introduced: u; is the torque applied to the free
leg around the pitch axis, u, is the torque applied to the hip, and u3 is the
torque applied to the free leg around the roll axis. The motor commands were
calibrated in such a way that for each of the three motors, three commands
were available: one to keep the parameters controlled by this motor in about
the same position, and one each to increase and decrease the value of the
controlled parameters.

This resulted in a torque of 0.1 Nm for u,, 0.6 Nm for u,, and 0.0 Nm for us;
in order to keep the parameters “neutral”. In order to change the values of
the controllable joints the values of u;, u; and u3 can change by +/ — 0.05 Nm,
+/—0.15 Nm, and +/ — 0.05 Nm respectively. On average these torques were
strong enough to get any joint into its required position within 0.2 seconds.

As aresult, the search has a branching factor of 27 (3 commands for 3 motors),
and an average depth of about 5, which (if the search space was exhaustively
enumerated) would result in 14348907 different states. Clearly, the exponen-
tial nature of the search space prohibits an exhaustive search.
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6.2.2 Creating Start Positions

Since we are looking for gaits, we have to start by looking for start positions.
The behaviour of the biped is dependent on its posture. If it is leaning to one
direction, then it will fall in the same direction, and the speed of the fall will
depend on the angle with which it is leaning. Because the program does not
know which start position to choose, it will enumerate as many start posi-
tions as economically feasible. Since the posture of the biped determines its
behaviour, we would like the postures to be as different as possible. This way,
we hope to detect as many different behavioural patterns as possible.

The current implementation of this search for the dynamic biped creates 392
different start positions. In order to achieve this the range of each parameter
is split into a set of intervals. The start positions are then created from the
Cartesian product of the intervals of each parameter.

The selected range for each parameter was as follows (units in radians):

-0.15..-0.08, -0.08..0.0, 0.0.0.08, 0.08.0.15

: -0.2..-0.05, 0.05..0.2

-0.2..0.0 o |
0.2.-0.1, -0.10..0.05, -0.05..-0.01, -0.01..0.01, 0.01..0.05, 0.05..0.1,
0.10..0.2 -

n: -0.2.-0.1, -0.10..-0.05, -0.05..-0.01, -0.01..0.01, 0.01..0.05, 0.05..0.1,
0.10..0.2

e R

The emphasis was to generate many different combinations of values for n and
¢. These two parameters determine how far the robot leans “forward” and thus
the direction into which the robot is walking. § was also given a larger set of
intervals because of the fact that it would be necessary to synchronise the
movements around the roll and the pitch axis. ¢ has been restricted to one
interval in order to keep the size of the Cartesian product small enough.

Since the requirement for a start position is that the robot must be able to exe-
cute a support exchange command, these interval combinations were then ad-
justed accordingly. In this case, this meant that a simple search program tried
to find a set of parameter values, such that the instantiation of each param-
eter was within the boundaries defined by the interval and both feet touched
the ground (which is the precondition for a support exchange command).
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Figure 6.1: Some of the 392 start positions used during the trials.

61




6.2.3 Creating Goal Positions

By now, we have the first element of a gait, the start position. The next step .
is to find a set of motor commands which bring the biped into another start
position (this is the definition of a gait). Clearly, there are plenty of positions
in the state space where the biped can execute a support exchange, namely, all
those positions where it has both feet on the ground. But, we are not interested
in just some new start position. We would like to find a new start position
which is as similar to the original start position as possible. This way we would
end up with a repeatable behaviour: if after the application of a command
sequence the system ends up in a state very similar to the one from where it
started then we could re-apply the same command sequence with the same
result. In other words, the behaviour of the system would be linear.

Thus, the ideal result of the search for gaits is to find a sequence of operators
that lead to a cyclicbehaviour. Starting at some state, the robot will eventually
end up in a place which is identical to the start state except for a displacement
on the surface. Therefore, it seems reasonable to search for gaits which are
cyclical with respect to all parameters in the inner state space. The goal of
the search will be the values of the parameters of the inner state space at the -
start position.

This would, of course, lead to a very serious problem for the hillclimbing search
algorithm, since the robot will start the search in a position identical to the
goal. Domain knowledge will be introduced at this point to make the hill-
climbing search work: the robot starts the search with a support exchange
command. Thus, all parameters will swap their values across the symmetry
axes of the robot. The net effect of this command is that the robot is forced to
step, ie. to alternate between the legs on which it is standing.

6.24 Searching for Steps and the Weighting of the State
Space '

The search technique is rather simple: a start position is taken and a support
exchange command is applied. Then we search (using hillclimbing) for a path
back to the original start position. The success of this technique depends on
the complexity of the underlying search problem. If the search space is com-
plex, then this could be the place where hand-crafted heuristics or other meta-
knowledge need to be incorporated. Fortunately the search problem proves to
be simple in the case of biped walking.

All that is needed is simple hillclimbing search. The goal is defined by the
parameter values of the inner state space at the start position. The proximity
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to the goal is evaluated as the weighted sum of the squares of the errors. An
error is the numerical difference between the actual value of a parameter and
its value in the goal state. The weights in the hillclimbing search are the
weights discovered by looking at the average deviation of the survival time (as
described in the previous chapter). All parameters of the inner state space are
weighted according to their impact on the average deviation from the average
survival time.

This heuristic weighting proved to be excitingly successful and enabled the
search program to reliably search for gaits. In 35 % of the previously generated
start positions it was able to successfully search for motor commands moving
the robot several (20) steps forwards. An improvement in the search algorithm
made it possible to increase the success rate to 58 %. This improvement was
achieved by backtracking over the last operator only: if the robot goes through
states A - B — C, and can’t go any further from state C (all operators lead
to failure), then it tries another operator in state B. However, it does not
backtrack further. If all transitions from B lead to failure then the system
stops and reports failure.

From these successful start positions a position was chosen, where the gener-
ated behaviour was regular (constantly low evaluation of the position at the
end of each step) and generated an above average movement forward. This
position is illustrated in Figure 6.2 together with the corresponding sequence
of steps. The robot walks from right to left. The frames show the robot with
a frequency of 0.04 seconds. An average step takes about 0.2 seconds, which
is similar to the gait used by Miura and Shimoyama (they used a frequency of
0.25 seconds per step [MS84]).

It will be interesting to see to what extent the weighting of the state space
is important for the success of the search. It might be the case that almost
any simple weighting of the state space would lead to an acceptable search
behaviour. In the remainder of this section various evaluation weights will be
tested.

A set of evaluation weights will be tested using the same start position and
then searching for a series of steps forward. Each test proceeds as follows: a
fixed start position, and a set of weights for the evaluation function (the test
set) are chosen. The robot searches for steps using the test set of weights for
the search. Each time the robot finishes a step, a dot (the footstep) is plotted on
the surface. The test is finished when either the robot walks a certain distance
or it fails.

By plotting the footsteps resulting from the use of different evaluation func-
tions next to each other it will be easy to see where the robot failed, and if it
didn’t fail one can compare the regularity of the steps.
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Figure 6.2: The robot walks from right to left. The small vertical line under-

‘neath the robot indicates the support leg of the robot. The robot completes a
step when it changes from one foot to another. A support exchange command
is carried out in positions 5, 10 and 15. Thus, the length of each step is 0.2
seconds, and the robot moves in fast short steps. On average a step is about
1.2 cm long. .
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Figure 6.3: The performance of different inner state space weightings. Simple
weights (1 or 0) were chosen and the robot moves from right to left. The dots
indicate the position of the robot at the end of a step. The robot is successful
if it reaches the left end of the line. The weights are (from left to right) the
weightings of n, (, 9, ¢, and ¢ respectively. The robot is only successful when
it uses the weights gained from the survival time heuristic (top row).

Various state space weightings were chosen: the weighting obtained from the
sensitivity analysis of the state space (average deviation of the survival time),
random weightings of the parameters in the inner state space (all other pa-
rameters weighted zero), constant weightings of individual parameters, ran-
dom weightings of all parameters. These tests were then repeated for a num-
ber of start positions..

The results are shown in the Figures 6.3 to 6.5. For each of these figures one
constant start position has been selected. In each row, a search for a series
of steps forward starts from this start position. For this search the weighting
of the state space shown to the left of the row is used. The resulting search
is indicated by the sequence of dots. Each dot represents the position of the
biped at the end of a step. The end of the sequence of dots either indicates
failure (if this is in the middle of the line) or success (if the dots continue until
the end of the line). '

The results of these tests are very encouraging: the weighting of the state
space, as derived from the survival time heuristic, provides the search pro-
gram with an efficient and successful weighting to search the state space of
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Figure 6.4: The performance of different inner state space weightings. Ran-
dom weights were chosen and the robot moves from right to left. The robot is
successful if it reaches the left end of the line. The weights are (from left to
right) the weightings of n, (, 0, ¥, and ¢ respectively. Two inner state space
weightings were successful. : ‘

the biped. Clearly, one can see that a state space which includes the dynamic
model of the biped (all robot parameters and their velocities) leads to unsuc--
cessful search. Whereas, a search based on the weighting of the kinematic
model of the robot (excluding the velocities) leads to a successful search for a
series of steps. At the same time Figure 6.3 shows that the search for these
weights is not necessarily trivial.

The reason for the failure of a search which includes a weighting of the dy-

“namic properties of the robot seems to be as follows: if the velocities of the
limbs are as important as the position of the limb, then there is a very strong
danger that the velocity of the limbs “overrides” the kinematic dimensions.
As a result, the robot is less likely to end up in a position similar to the origi-
nal start position, and the uncontrollable parameters (the fall of the robot over
the support leg) change considerably from step to step. The performance of the
robot degrades quickly since the uncontrollable parameters do not fall into the
correct position. This is reflected in the survival time analysis which shows
the high sensitivity of the robot to a change of its kinematic parameters.

Randomly chosen normal distributed evaluation weights of the inner state
space were tested for failure (e.g. the biped crashes into the ground) during
the first 200 steps. 27 weightings (out of a total of 50) lead to failure, and 11
weightings lead to a behaviour comparable with the behaviour produced by
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Figure 6.5: The performance of different random weightings of the robot’s dy-
namic state space (the parameters describing the robot and their first deriva-
tives). The weights are (from left to right) the weightings of n,7’, ¢, (/, 6, ¢', 1,
¥’, and ¢ ¢’ respectively. '

Random weights were chosen and the robot moves from right to left. The robot
is successful if it reaches the left end of the line. None of the weightings was
able to lead to a successful search for new gaits.
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the original Welghtmg derived from the survival tnne heuristic. Five of these
successful weightings are just minor modifications of the original weighting
(the relative size of the weights remained preserved).

This analysis shows that the weighting of the inner state space gained from the
survival time analysis is not unique in terms of enabling the system to search
successfully. But choosing these weights produces a considerable speed-up in -
terms of finding the proper weighting of the evaluation function in comparison
to using random weightings of the inner state space.

6.3 Discovering Gaits

At this point, the start and goal states for the search have been defined, the
weighting of the state space used in the evaluation function is known, and
the operators leading from one state to another have been defined. Since the
start position determines both start state and goal state of the search, and
since the weighting of the state space and the fixed set of operators results
in a deterministic search procedure, the search for steps is only dependent on
the choice of the start position.

Testing 392 dlfferent' start positions, the program started to search for suc-
cessful steps. For each start position the robot searched for 200 consecutive
steps and recorded the properties of these steps (distance covered and evalua-
tion of the posture of the robot at the end of each step). All start positions from
which the robot failed before completing 200 steps were deleted. The result-
ing start positions and the associated steps were sorted using a combination
of the regularlty of the movements and the resulting displacement forwards
or backwards :

Using these properties several start positions were chosen: a start position
from which the robot finds a regular gait forward and a start position from
- which the robot finds a fast (but not necessarily regular) gait forward. Similar
start positions were found for backward movements. The program also stored
the start position from where the most regular gaits were found.

Figures 6.6 to 6.12 show how the biped walks if it tries to execute the search
for steps with these positions as goal positions. Additionally, Figures 6.9 to
6.12 shows that the search is powerful enough to turn the robot and make it
change its direction. Some of these steps will form the basis for the generation
of macro operators (gaits), which will allow the execution of a step without the
need for search.
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Figure 6.6: The start position selected for the most regular gait. The robot is
very well balanced and there is very little movement between the frames.
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Figure 6.7: The start position selected for the combination of both a regular

gait and the displacement to the right
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Figure 6.8: The start position selected for the fast displacement to the left. One
can recognise the irregularity of the gait around the roll axis, where originally
the free leg points outwards but is being pulled constantly inwards. During

the last step the robot swings the free leg far too much forward around the_ _
pitch axis. However, by doing so the robot achieves a large move to the left.
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Figure 6.9: This figure and the following three figures demonstrate how the
biped turns from walking to the left to walking to the right. Originally, as seen
~ on this page, the robot walks towards the left. Notice that these first steps are
the same as in Figure 6.2 '
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Figure 6.10: Turning continued: The robot stops walking towards the left and
gets itself into an upright position.
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Figure 6.11: Turning continued: Form an upright position the robot starts to
walk towards the right.
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Figure 6.12: Turning continued: The robot is now walking towards the right.
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6.3.1 Turning Steps into Gaits

The steps which were displayed in the previous section are generally not lin-
ear. This means that after one step the robot is in a position where the angles
of the limbs are different from the angles in the original start position. There-
fore the repetition of the same motor commands as used in the previous step
does not necessarily lead to any proper step (such that at the end of the failure-
free step execution both feet touch the ground). Thus, the program has again
to search for the correct motor commands for the following step.

What we want to achieve in this section of this thesis is to learn how to walk.
Learning implies that at least that some of the original effort doesn’t need to be
repeated in later applications. In our case, this means that the system should
be able to recall what to do in order to carry out the next step. In order to be
able to use previously found sequences of motor commands the robot should
end up in positions similar to one in which it previously used a known motor
command sequence. Obviously, if a command sequence always puts the robot
back into the position from where it started (apart from a displacement along
the axis along which is walking), then the behaviour would be linear and we
could always use the same command sequence.

Thus, the program looked at all the steps which were carried out in the earlier
test runs and identified those where the start position is very similar to the
position in which the robot finished its step. If additionally this step showed
a sufficient displacement along the forward axis then this step was selected.
The step was then represented as a gait, ie. as a pair consisting of the start
position and the sequence of motor commands which generated the step.

- Now the selected gaits are modified in order to linearise them. Linearisation
of a gait means that the position at the beginning and the end of the step are
so similar that the same motor commands which generated the first step can
be apphed again and again.

The search for linearised steps mtroduces a shift in the way the behaviour
of the robot is described. A step can be seen as the combination of a start
state and a search procedure. A gait is a combination of a start position and
a sequence of motor commands. In order to find linear gaits the search shifts
from the search for an individual motor comma.nd to the search for an entire
sequence of motor commands.

The search for vlinearised gaits proceeds as follows: given is a start position
S and a sequence of operators uy, uz, ...u,. The result of applying an operator
sequence uj, Uz, .., 4, to state S will be called the result state R. Each operator
u; is a triplet of individual motor commands (my;, my;, ms;). Bach individual
motor command can be changed by some small amount (4/— A), or it can be
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left unchanged. The search for linearised gaits looks at an individual motor
command over the whole length of the operator sequence. In each operator the
corresponding motor command can be increased, decreased or left unchanged.
Thus if the length of the operator sequence is n, then there are 3" different
ways to change the :th motor command in the operator sequence. The search
program tries all 3® changes of the ith motor command and applies the result-
ing sequence of motor commands to the start position S. It picks the sequence
of motor commands that results in the result state R being closest to the start
state S (using the Euclidian distance between the parameters of the inner
state space of R and S as a measure). This is repeated for all 3 motor com-
mands until a local minimum is encountered. Since the average length of the
operator sequence is about 5, and since the search uses strict hillclimbing, the
search can be executed relatively quickly.

The result is a combination of a start position and an operator sequence (a
gait), which is, for practical purposes, as linear as the coarseness of the search
will allow. Thus, the resulting gait will be called the linearised gait.

Figures 6.13 and 6.14 show the behaviour of a linearised gait. This linearised
gait can be repeated 30 times before failure occurs because the legs are spread
too far around the roll axis. This is an improvement over the steps which
were found by the original search for steps. Gaits extracted from these steps
by simply recording the motor commands used during the execution of the step
tended to be very brittle. Those simple gaits tend to fail on average after two
steps only.

Nevertheless, the result shows clearly that the coarseness of the search makes
it very difficult to find truly linear gaits. At some point, sooner or later, cor-
rective action has to be taken, even in a “perfect” noise free environment.

6.3.2 Interleaving Search for Steps and Gait Execution

Since the execution of a linearised gait leads sooner or later to failure, it be-
comes important to ensure that the robot is kept from failure. It seems plausi-
ble to monitor the execution of a linearised gait until the robot reaches a start
position which is so different from its original start position, that the program
has to search for a step which brings it back to the original start position.

Thus an experiment was created were the program interleaved the execution
of the linearised gait with the search for a step forward. Whenever the robot
was close enough (i.e. within a certain tolerance ©) to the original start po-
sition of the gait it executed the command sequence associated with the lin-
earised gait. The tolerance 0 is defined as the Euclidian distance between the
parameters of the inner state space in the actual position of the robot and the
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Figure 6.13: A linearised gait is executed 16 times in a row. Each picture
shows the posture of the biped after the completion of a step. The regularity

of the gait as well as the displa

visible.

cement from the right to the left are clearly
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Figure 6.14: Linearised gait fails after 36 steps. Each picture shows the pos-
ture of the biped after the completion of a step. In this figure, the last 14
steps of the robot are depicted. Failure occurs because the legs of the robot
are spread too far around the roll axis. The view of the pitch axis has been
shifted to the right in comparison to Figure 6.13 in order to fit the two views

(roll and pitch axis) into the same limited space.

79




corresponding parameters in the start position of the linearised gait. If the
‘actual start position differed too much from the original position, the system
switched back and searched for a step bringing it back close to the original
start position. Figure 6.15 shows how often search had to be interleaved in or-
der to keep the robot close to the original trajectory. The system often consid-
ered the robot close enough to the trajectory to execute the prestored command
sequence and failed nevertheless. The only way to prevent this was to define
the tolerance © so narrowly that in effect the system hardly ever executed the
stored command sequence but rather kept searching. Thus, prestored com-
mand sequences are extremely brittle and help in very few cases to speed up
the system. '

As the previous example demonstrated, it is not very useful to simply store
approximately linear movements in the hope that this would enable the robot
to walk. The coarseness of the search leaves us with an error which is too
large to ignore. The execution of linearised gaits has to.be controlled.
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Figure 6.15: Interleaving search and gait execution. Boxes indicate search,
circles indicate gait execution. The threshold (of the evaluation function) for
search was increased for each trial (vertical axis). The horizontal axis indi-
cates the time until failure. A test terminated successfully after 40 steps or

gait executions.
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64 Summary

This chapter shows that simple hillclimbing search enables the program to
search effectively for steps. As discussed in Chapter 5 the success of the search
was due to the use of a state space weighting based on the survival time heuris-
tic. The result is a sequence of steps, which are stable in the sense that after
each step, the search program is able to successfully search for yet another
step

The search also proved to be powerful enough to change between d]fferent
types of steps, and thus the robot was able to change its direction.

Using a refined local search based on galts produced by the original search for
steps resulted in almost linear gaits. The robot was able to execute the same
gait up to 30 times before failure. However, a control mechanism is needed to
avoid repeatedly searching for steps. The following chapter will show how a
simple table look-up controller can be build to allow quick and robust control
of the gait execution.
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Chapter 7
Control

The previous chapter described how the robot successfully searched for steps.
These steps were then improved so that they could be executed repeatedly.
The result was a linear gait, which is a start position and a sequence of mo-
tor commands. Ideally the robot reaches the start position of the linear gait
and then keeps executing the same sequence of motor commands for as long
as needed. However a problem occurs: the robot is usually unable to reach
exactly the required start position of the linearised gait, and the gait itself
decays with time. :

This chapter deals with the control of the execution of such a gait. Two sim-
ple look-up table based controllers are introduced: an inertial controller which
controls the joint positions of the robot, and a positional controller which con-
trols the position of the hip and the free foot. These controllers are built di-
rectly from the analysis of the state space as described in Chapter 5. The
performance of the controller is analysed with respect to two different phe-
nomena: (1) since the robot is not necessarily in the proper start position for
the execution of a desired gait, the controller has to be powerful enough to
control the robot even if it is relatively far away from this desired start posi-
tion. Alternatively the robot must be able to search for steps which bring it
close enough to this start position so that the controller can take over. (2) The
characteristics of the robot itself can change over time: due to wear and tear
the actual behaviour of the robot can change, or due to faulty sensors the per-
ception of the robot’s behaviour can change.

7.1 Inertial Control

The first technique used to control the biped is called inertial gait control, and
it is based on the control of the parameters of the inner state space of the biped.
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Each time the robot tries to execute a glven gait, its actual joint pos1t10ns are
compared with the desired joint positions. Whenever a joint position deviates
by more than a certain tolerance, O, from 1ts desired trajectory, a correctlve
control command is executed.

During the earlier analysis of the state space a table was created, indicating
which command influences which parameter to what extent (see Section 5.3.2
on page 45). From this a function, look.up(parameter,effect), can be computed,
which returns a force which is needed in order to change the parameter to
achieve the desired effect. E.g. lookup((,+) would return (+,0,0), indicating
that in order to increase the value of { the force of the first motor has to be
increased. Similarly look_up(y, +) would return (0,0,0), indicating that the
parameter 7 is not controllable. ~ :

When the linearised gait is executed for the first time, all states through which
the system goes are recorded. So there exists a list of states S, S5, .., S, asso-
ciated with the linear gait. Now the gait is executed repeatedly. Each time
the current state S; is compared with the corresponding original state S;. If
one or more parameters (of the inner state-space) of S; differ by more than
a certain threshold, ©, then the action suggested by look_up(parameter,effect)
~ is retrieved and the next command is modified accordingly. The effect is ex-

pressed as the difference between current value and goal value. In the actual
implementation of the inertial controller tolerances, ©, of 0.01 (1), 0.1 (¢), 0.01
(8, 0.01 (¥) 0.01 (¢) have been chosen (all units in radians). The corrective
force corresponded to £ 0.02 N M.

Thus an extremely SJmple tabular look-up controller has been bu]lt It is ba-
sically a “bang-bang” controller that applies a constant corrective force inde-
pendent of the size of the error. Theoretically such controllers can suffer from
overshoot and make the controlled plant oscillate. The following results will
show that despite this weakness a “bang-bang” inertial gait controller is com-
pletely sufficient to control the biped during gait execution. :

- The inertial controller will be tested first with respect to its ability to keep
the biped on the trajectory described by the linear gait. Starting in the start
position associated with the linear gait the corresponding sequence of motor
commands is repeated 50 times. Whenever the robot deviates too far from the
trajectory of the linear gait the controller becomes active. Figure 7.1 shows
the resulting regular behaviour. The performance of the controller is docu-
mented as follows: for each parameter of the inner state space a “zero” line
was plotted. This line indicates the desired position of the parameter during
the gait execution. The gait was executed 50 times and the maximum (positive
and negative deviation) and average deviation from this position was recorded
and the resulting three graphs were plotted accordingly. Vertical bars through
the centre line indicate the standard deviation.
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In the two subsequent tests the execution of this trajectory was tested again,
the difference being that this time the robot started in a position different
from the original start position of the linearised gait. As Figure 7.2 shows,
the controller was unable to bring the robot back to the desired trajectory and
failed after executing one step. However if the robot searches for one step
(Figure 7.3) or two steps (Figure 7.4) towards the desired start position of
the linear gait, then it gets close enough to the desired trajectory so that the
controller can take over.

These experiments indicate that the robot seems to be able to search for a
‘number of steps which bring it close enough to some desired trajectory such
that from then on the controller can take care of the robot. It was therefore
interesting to find out how many search steps were needed in order to get
the robot close enough to a certain start position. From the 392 originally
generated start positions some 171 start positions were selected, based on the
fact that they were leaning (around the pitch axis) into the same direction as
the linear gait. Figure 7.5 shows how many of these states could be controlled
after up to five search steps. It also shows the cumulative number of all states
which were controllable after a certain number of search steps. The results
indicate that the robot can reach a “controllable” position for the execution of
a linearised gait after no more than three search steps, on average.

Since various numbers of search steps were needed in order to bring the robot
close enough to the trajectory, it is interesting to see whether there was an
easy way to indicate in advance when such a position was reached. Thus each
time the controller was used to guide the execution of the trajectory, the eval-
uation function value of the start position was noted. Together with this the
program recorded whether the controller was successful or not. Figure 7.6
shows the results: the histograms of states with a certain evaluation function
value which have been successfully or unsuccessfully controlled. As one can
see the evaluation function offers no measure of whether the search succeeded
in bringing the the robot close enough to a state from where on the controller
could be used. Of two different states with about the same evaluation function
value one could be successfully and one unsuccessfully controlled.

Therefore the program has to monitor the performance of the controller: when
a certain gait has to be executed and the robot is not in the start position for
this gait, then search for steps leading to a position where the robot points
into the same direction as the desired gait. Search then for another three
steps towards the start position of the gait which is to be executed, and then
start executing the stored gait, controlling it with the inertial controller. This
technique worked in approximately 84% of all tested start positions.
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Figure 7.1: For each parameter the divergence of the actual (controlled) gait
from the ideal gait is plotted in intervals of 0.04 seconds. The horizontal line
indicates the ideal gait position. The uppermost and lowest curved line in-
dicated minimum and maximum distance from the gait, the line in the mid-
dle describes the average position during gait execution. The vertical bars
through the middle line describe the standard deviation. Units are in radi-
ans. This figure documents the use of the look-up table controller to control
the execution of a gait. The biped starts walking in the original start position
of the gait. Note that the standard deviation is almost zero for all parameters
except 1. This is equivalent to a rapid convergence towards the frequency
response of the gait.
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Figure 7.2: Failure of Controller due to overshoot. The biped starts in a po-
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step and then fails.
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Figure 7.5: Successful use of inertial control after n search steps. The diagram
on the top shows the cumulative number of states which could be controlled
after n steps. The lower diagram shows how many states could be controlled
after n search steps, but not after n-1 search steps.
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7.2 Positional Control

It seems that when humans walk they are typically not very much aware of
whether the current position of a knee is very similar to the corresponding
position of the knee in the previous step; but they can normally remember
how upright they walk. They are much more aware of the height of their
head or the orientation of the spine, than any position of parts of their legs.
In this section we explore the efficiency of such a control algorithm. Rather
than using the deviation of individual parameters we look at other “indirect”
parameters: the position of the hip and the height of the foot.

During the original execution of the gait we record the position of the hip and
the free foot in each state. During later runs deviation from these values will
lead to corrective action. Again a look-up table is constructed which reports
how changes in the motor commands affect these parameters. In the actual
implementation of the positional controller tolerances © of 2 mm (foot-height),
1 mm (hip-y-displacement), and 1.5 mm (foot-x-dzsplacement) are chosen. The
corrective force corresponds to + 0.01 NM. : A

Figures 7.7 to 7.9 show how this control technique performed. As we can see
the performance is comparable to a controller using inertial control. Figure 7.7
displays the trajectory control when the robot starts with the desired posture.
As one can see the robot is kept in a very stable trajectory similar to the one
developed by the inertial controller. Figure 7.8 shows the inability of the po-
sitional controller to control the gait execution starting in a different start
position. The controller also failed when tested after applying one search step
trying to reach the start position of the gait. Figure 7.9 shows the gait execu-
tion which fails after 4 gait executions. After 2 search steps (Figure 7.10) the
controller is finally able to control the gait execution.

The positional controller behaves differently from the inertial controller since
its tolerances, ©, do not exactly correspond to the tolerances of the inertial
control. This means that there can be deviations from the desired gait exe-
cution where only one of the two controllers becomes active. As an example
there can be various joint positions which result in the same foot position.

The positional controller does perform slightly better than the inertial con-
troller. Figure 7.11 shows how many search steps were needed in order to
reach a position close enough to the target gait such that the positional con-
troller could be used. In about 10% of the test states the positional controller
needed one search step less in order to reach a posture from which the con-
troller could be used successfully. After two search steps the positional con-
troller could control 83% of the tested start positions. The inertial controller

could control 84% of the start states after three search steps.
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Figure 7.7: Positional control starting in the desired state.
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Figure 7.11: Successful use of positional control after n search steps. The
diagram on the top shows the cumulative number of states which could be
controlled after n steps. The lower diagram shows how many states could be
controlled after n search steps, but not after n-1 search steps.

97



7.3 Testing for Robustness

The original gaits have been developed in a noise free environment. The be-
haviour of the robot was assumed to be absolutely deterministic. If the robot
is ever to survive in'a more hostile environment, then clearly this is an invalid
assumption. In a realistic environment we will have to cope with such factors

as:

o General wear and tear: the behaviour of the robot will be different from
the originally modelled behaviour.

¢ Unreliable sensors: the perceived behaviour of the robot is different from
the actual behaviour of the robot.

An experiment was set up in which the model of the robot itself was changed.
This was done by making the robot X% more responsive. Thus the controller
needed to be “quicker” and dangerous behaviour leading to failure could hap-
pen more easily. Every 0.04 seconds the velocity of the limbs of the robot was
increased by a constant factor of X%. In different experiments X varied be-
tween -20% and 20%.

A similar set of experiments was set up again. This time the perception of the
robot’s behaviour was different from the actual behaviour of the robot. What
was tested was how far the perceived behaviour of the robot was allowed to
vary from its actual behaviour before the controller made things worse.

Figure 7.12 displays the behaviour of the inertial controller, and Figure 7.13
displays the behaviour of the positional controller in these experiments. The
controllers were able to cope with decreased velocities much more predictably
than with increased velocities, which is not surprising. Generally the con-
trollers were able to cope as long as the actual changes in the speed of the
robot differed by less then 10% from the predicted speed changes of the limbs of
the robot. Each controller’s ability to handle a faulty perception of the robot’s
behaviour corresponds directly to the controller’s tolerance, ©. Since the po-
sitional controller allowed for more tolerance, it was also less sensitive to a

faulty perception.
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Figure 7.12: Inertial control of a biped with modified physical characteristics.
In the lower graph it is assumed that due to the changed characteristics of the
biped its angular velocities change by some percentage from the original model
for which the controller was developed. The graphs describe the ability of the
controller to control the successful execution of a number of steps (vertical
axis) for various different behaviours of the robot (horizontal axis). In the

-upper graph the same tests are repeated for a model were due to faulty sensors

the controller assumes the robot to be in a position which is different from the
actual position of the robot. '
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Figure' 7.13: Positional control of a biped with modified physical character-
istics. Again positional control produces a more robust control than inertial
control.
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74 Summary

The look-up table based controller has a fixed response the moment a parame-
ter goes out of bounds. This fixed control response does not reflect the amount
of error of the corresponding parameter. Therefore the performance of the con-
‘troller depends to some extent on the error tolerance ©. © has to be chosen in
~ such a way that the controller only becomes active if the error corresponds to
the force applied by the controller. The present implementation of positional
control appears to be slightly superior to inertial control: since positional con-
~ trol allows for a wider range of values for each parameter (there are various
postures resulting in the same hip pos1t10n), it becomes more tolerant towards
- minor errors and performs better. :

Look-up table based i.nertial and positional bang bang control are an easy and
robust way to control biped gait execution. Combining look-up table control
and search for steps results in the ability of the biped to execute a given gait
from most positions in its state space. However there is no obvious way of -
indicating whether a given position is close enough to the desired trajectory -
so that the gait can be executed. Therefore the program has to search for a
number of steps leading the robot close to the trajectory before the controller
takes over. Once the controller controls the execution of a stored gait the robot
is able to execute gaits in constant time and without search.

Biped robot walking on a planar surface will therefore be controlled by com-
bining the search for steps and the controller. As soon as the controller proves
abIe to control the biped and the parameter values converge to some frequency
response pattern, the search is switched off and the biped is controlled only
by the controller.
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Chapter 8

Interpreting. and Mddifying
Gaits as Qualitative Functions

At this point the robot has learned to execute and control gaits. The latter
were developed in order to enable it to cross an obstacle-free horizontal plane.
However the robot is unable to cross obstacles by relying on these gaits alone
or on a search of the inner state space. Even so the sequence of actions needed
to step forward is not very different from the stepping over a small obstacle. It
is therefore interesting to see how the original ability of the robot to walk on
a horizontal plane can be adapied in order to cross an obstacle. This adapta-
tion will be based on modifications of the entire gait. Thus the robot changes -
its bias from the search for motor commands to the search for gaits and gait
modifications. This will provide it with a powerful mechanism to speed up and
-improve the search process. '

Research on biological motor control [Bro86b] reveals that motion is organised
in the form of activity templates. Any activity learnt by an animal or a human
is stored as a pattern of muscular activities. For example we have a pattern
stored away somewhere that describes how to write the letter “a”. If we want
to write the letter a bit larger or a bit faster, then we will still use the same
pattern, but the frequency of the pattern and the amplitude of the pattern will
change [VT80]. ' :

In this chapter the term behaviour will be used to describe a sequence of move-
ments made by the biped robot such as a step forward. These behaviours usu-
ally correspond to the motion patterns which the robot learnt to control.

Some movements are related, but their relationship is of a more general na-
~ ture than a variation of frequency and amplitude. This is true in the world of
biped walking: the steps of the robot may be long or short, but in each case
the basic procedure is the same: lift one leg off the ground and bring it into a
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more upright position, then lower it back onto the ground and execute a sup-
port exchange command. On crossing obstacles some of the robot’s steps may
be considerably different from others, but all will obey the same basic princi-
ples. In order to climb upwards the stepping motion is curtailed or shortened
because the foot is no longer returned to its original height. This movement
_differs from the original by more than frequency and amplitude.

What is needed is a way to derive these new, modified behaviours from old
ones, without distorting too much of the original behaviour. The aim there-
fore is to change as few parameters as possible. If the robot searches for new
behaviours as modifications of old behaviours, then the new search space will -
be the set of possible behavioural modifications rather than the original state
space of the robot. If this set of behavioural modifications is smaller or eas-
ier to search than the original state space then this can lead to considerable

improvement in the search process.

At the same time these behavioural modifications must be easy to implement:
if the robot “designs” a certain trajectory which is similar to some other tra-
jectory, then it still has to find the sequence of operators (motor commands)
which will enable it to execute this trajectory. If, however, the modifications
are applied directly to the original motor commands, then this problem will
no longer arise. This is particularly important in the case of the biped robot
model used in this thesis: it does not have a servo mechanism and thus has to
search for suitable motor commands if it wants to follow a certain trajectory.

Therefore new gaits will be developed from old gaits by modifying the motor
commands (or torques) applied to the robot. The number of control dimensions
(the number of motors) as well as the range of control torques is considerably
smaller than the state space of the robot. Provided the number of modifica-
tions remains small, this should result in a powerful mechanism by which the
robot can solve new, related tasks.

Related recent work has focussed on the generation of trajectory modifications.
Y.F. Zheng [Zhe90] proposes to use the van der Pol oscillator to (manually)
generate gaits for biped walking. These gaits are then changed by using a
neural network to modify the constants of the van der Pol oscillator. As a
result he generated gait trajectories, which are then used to servo the robot
joints. This approach is not applicable to this thesis, where the servoing itself
is considered to be non-trivial.
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81 Qualitative Equivaience |

This section will define various gait modifications which preserve the quaii-
tative equivalence between the original gait and the resultant modified gait.
These modifications have to meet several criteria:

¢ The definition of qualitative equivalence has to be operational. Once a
qualitatively equivalent gait has been identified its executiqn should be
" easy. '

o Many locomotive patterns can be regarded as periodic functions. A gait
modification should exist that modifies the amplitude of this periodic
function. This would generate pattern modifications in a similar way
to the modification of human or animal motion patterns, and would be

especially useful for when the robot needs to reach a goal state similar

to the goal state of the original gait. A definition of qualitative output
equivalence (=,) will be g1ven which is aimed at generating such a mod-
ification.

e Many new situations will impose new goals for the robot. Therefore any
gait modification which lets the robot reach the original goal state will
be too conservative. The robot needs the ability to generate gaits which
allow it to achieve new goal states. Nevertheless these gaits should pre-
serve many of the properties of the old gait. A definition of qualitative
input equivalence (=;) will be given which is aimed at generating new
trajectories while attempting to preserve some properties of the old gait.

We will mtroduce the following definition of quahtatlve equivalence ~ o be-
tween gaits: we are g1ven a hnear dynamic system of the form

X = aX +aX +bU

where a and b are matrices and X and U are vectors. X denotes the state
variables of the system, and U denotes the input to the system. Now assume
that the system is fed a series of input signals#/ : U; ... U,. The behaviour
of the system under input / is now described by '

B = X, =a; X;-1 + azX,'_l +bUi—1,2: 1... n.
Let U} € U; be the input to behaviour B,, at step ; and let U? € U, be defined in

the same way. Two behaviours B, and B,, of a dynamic system under inputs
U; and U, will be considered to be qualitatively equivalent B,, ~; B,, if

Ul=U}+ki:l...n
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where k is a small constant. In other words two behaviours are input equiva-
lent if one differs from the other only because constantly a slightly higher (or
lower) input was fed to the system. Since /; and I/, can be of different length,
they only have to be qualitatively equivalent for the duration of the smaller of

the two input sequences.

The important aspect of this definition of qualitative equivalence is the fact
that the input to the system is similar to other input sequences. This does
not necessarily mean that the resulting behaviour of the system is similar in
terms of its state space. As an example consider a cart-pole system. Assume
the pole is leaning forward with an inclination 8 and the cart is accelerated in
such a way that the angular velocity of the pole becomes zero. In this instance
the pole is balanced, but by applying a slightly higher acceleration this balance
will be lost. Despite this the behaviour would be considered to be qualitatively
equivalent!

The above definition of qualitative equivalence is defined in terms of the input
to the system. A second definition of qualitative equivalence can be based
on the output of the system. This definition is based on the fact that many
locomotive patterns are rhythmic or cyclic. It is therefore possible to deseribe
the state transitions of the robot by some periodic function. The robot’s new
behaviour B; can be considered to be output equivalent to its old behaviour
B; (B; =, B)), if the functions describing the two behaviours differ only in
their respective amplitude.

8.11 GaitTransformations which Preserve Qualitative Equiv-
alence '

The resulting gait modifications can be derived as follows: a gait is defined as
a start position P followed by a sequence of motor commands. For example

gait G can be defined as
G= (P, Uy, Ug, Un)

where each motor command v; is a triplet of torques
Ui = M1, M2, M3,

Various gait modification heuristics will be defined to preserve the input equiv-
alence between two gaits: one (add) that uniformly increases the torque used
in the motor commands, one (sub) which uniformly decreases it, one (lengthen)
which adds an additional motor command to the gait, and one (shorten) which
cuts the last command. Another heuristic (amplify) will be defined which aims
at the preservation of output equivalence. This heuristic splits the motor com-
mands in half and increases the first half and decreases the second half or vice
versa. ‘
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Assuming the original gait is defined as above, and the torque m;,1 <: <3
refers to the i-th torque in a motor command, then the gait modlﬁcatlons can
be defined as follows:

add(G,i) : G = (P, plus(us, i), plus(us, i), . .plus(un, ))

where plus(u;, i) is defined as increasing the :-th torque m; in the motor com-
mand u; by one unit.

sub(G,i): G (P minus(uy, ) minus(uy, 1),... minus(un, 1))

where minus(u;,:) is defined as decreasing the i-th component of u; by one
unit. The modification

shortén(G) : G = (P, uy, ug, . Up-1).
shortens the gait by one time-slice.
lengthen(G) : G = (P, u1, uz, ...Un, Unt1)
adds a further motor command to the gait. The value of u,,; is computed froni

the average of the previous commands:

Mpi1i = 9 Mei/n.
k=1

These heuristics preserve most of the properties of the original gait. Since
only the torques applied to one joint are effected, most parameters of the robot
will remain uneffected. These heuristics also preserve the qualitative input
properties =; of the gait since they introduce constant change of the input
torques in one direction.

The only gait transformation of B; which produces an output equivalent gait
B, where B, =, B; is the amplify heuristic.

amplify(G,i) : G = (P,plus(u,1),...plus(ug,?), minus(ug 41,%), . .. minus(u,,)).

amplify(G,i) : G = (P, minus(u, ¢), ... minus(ug, ¢), plus(uz 11,%), . . . plus(u,, 1)).

In this case the first half of the gait is increased and the second half is de-
creased (or vice versa). The reason for the inclusion of this gait transforma-
tion heuristic is that by increasing and then decreasing the torque applied to
the system it is hoped to produce an amplification of the underlying periodic
behaviour of the system only, and therefore to preserve the qualitative output
equivalence =,.
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8.1.2 Example of Qualitative Equivalence Heuristic

In the current model of the biped robot two motors effect the movement of the
free leg around the roll and pitch axis, and a third motor moves the hip around
the roll axis. All three motors receive signals, coded as integers between 0 and
9, which are then translated into specific torques exerted by the motor. If a
step takes 7 time slices, the corresponding gait could be the following pair:

(6,%, 6,7,¢) (9.7.3,7.1.7,5.5.7,9.5.7, 7.5.7, 3.3.7, 3.3.7))

0,%, and ¢ are the angles of the support leg, the hip and the free leg around
the roll axis, 7 and ¢ describe the angles of the support leg and the free leg
around the pitch axis. The first triplet of commands, (9.7.3), represents a
torque associated with signal “9” that is exerted from the motor controlling
the free leg around the pitch axis, torque “7” is exerted towards the hip around
the roll axis, and torque “3” swings the free leg around the roll axis.

~ In this chapter the behaviour of the robot will be documented by using a plot
of the position of the robot’s free foot. Figure 8.1 shows the execution of the
actual trajectory: the original position of the biped is drawn and consequent
positions are shown only as dots. Each dot indicates where the free foot of the
robot would be. The start values for 6,1, ¢,7 and ¢ were -2.5, 5.0, -4.8, -0.2,
and -6.0 respectively. The command sequence was the same as above.

Figures 8.2 to 8.5 document the effects of various heuristics. For most of
the rest of this chapter the documentation of the robot’s behaviour will be re-
stricted to plotting only the position of the free foot. Using this representation
Figures 8.2 to 8.5 document the effects of the various heuristics introduced in
Section 8.1.1. The heuristics have been applied to the gait depicted in Fig-
ure 8.1.
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8.2 Searching for Obstacle Crossings Using the
Qualitative Equivalence Heuristic =

Whenever the robot encounters an obstacle its normal gait execution will fail
and the robot will have to search for alternative strategies to cross the obstacle.
These alternatives will be provided by generating new gaits based on the gait
meodifications introduced in Section 8.1.1. The robot will search for a successful
obstacle crossing by searching over the space of qualitatively equivalent gaits.

Originally the robot will only “know” one gait, which is the standard gait which
it developed in order to cross a planar surface. This gait will be the starting
point for the search. Using the gait modifications as operators the robot will
perform a hillclimbing search until it reaches an executable gait. The evalua-
tion function for the search will be the displacement of the robot towards and
across the obstacle. The gait found by the search will be executed. If this is
sufficient to cross the obstacle then the robot will proceed with its usual gait.
Otherwise it will repeat the search for an executable gait. The difference is
that at this point the robot will now have two gaits in its repertoire: the stan-
dard gait and the just developed obstacle crossing gait.. If the robot starts to
search for a further step by using modifications of both the standard gait and
the newly acquired obstacle gait, then this search will be called training.

Training introduces a trade-off: by storing each successfully used gait the
breadth of the search increases while the depth of the search decreases. The
more training occurs the more likely it becomes that the required gait can be
created from one previously learned by applying only one or two modifications.

This trade-off is discussed by Iba [Iba89], who uses static and dynamic filters
to keep the number of new macros (which correspond to gaits in this section)
under control. Static filters define fixed criteria which every new macro has
to satisfy. These criteria include domain dependent knowledge, a maximum
length for each macro, and degree of redundancy. A dynamic filter assigns
credit to each macro that has been used in obtaining a solution. After anumber
of tests all macros below a certain credit rating are discarded.

All the algorithms and heuristics that are used in this section will be docu-
mented using a fence as obstacle. This was done in order to limit the number
of diagrams. All other types of obstacles (steps, trenches and slopes) could be
crossed with less search effort. The documentation will view only the free foot
of the biped along the pitch and the roll axis. Black dots indicate the position
of the foot as the biped crosses the obstacle from the right to the left. This is
done in order to make the documentation of the experiments more concise. All
graphs use the same scale which is approximately 1:4.
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- 8.21 Séarching from Scratch

For a first test the gait modifications were used to generate obstacle crossings.
The search started from the gait displayed in Figure 8.1 and finally succeeded
in generating a successful fence crossing. Figure 8.6 and Flgure 8.7 show the
successful crossing of a small fence.

It is interesting to note the preconditions for such a successful obstacle cross-
ing. First the éxtent to which the original gait influences the success of the
search will be investigated. If the original gait is already very similar to an
obstacle crossing then the search will obviously become much easier. At the
same time it could be argued that the hillclimbing search will produce a series
of successive gait modifications which pull the free leg of the biped further and
further over the obstacle. For this purpose the robot will be given two different
gaits. One pair of “strong” gaits that lifts the free leg of the biped about 10mm
above the ground (the biped itself is only 308mm tall), and a pair of “weak”
gaits that lifts the leg about 6mm above the ground. Figure 8.8 and Figure 8.9
show the respective behaviour.

114




X
‘.

Figure 8.6: The biped crosses a small fence. The gait has been found by ap-
plying various .successive gait modifications. Small black dots indicate the
position of the free foot during the gait execution.
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Figure 8.7: The second step of the biped over the fence. The gait modifications
provide a gait which first pulls away the free leg from the obstacle and then
lifts it to the other side.
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8.2.2 The Effect of Training

The fence crossing experiments were repeated. This time the robot stored
every successful gait. The search algorithm for new obstacle crossing gaits
searched for modifications of all previously successful gaits. One would expect
the performance of the robot to improve since the search covers a wider range
of gaits. This is only partially true as Figure 8.10 and Figure 8.11 show. The
wider range of gaits leads into local minima and in some cases the performance
of the biped deteriorates.

This can be seen in Figure 8.11: without training, the biped crosses fences of
up to 10mm height. Surprisingly with training the behaviour is (for an obsta-
cle height of 10mm) worse than it was when no additional training gaits were
available! The biped is able to cross the obstacle with its first step, but is not
able to cross the obstacle with its second leg when the obstacle height exceeds
10mm. However, the robot succeeds in lifting at least one leg across the ob-
stacle when the obstacle height is greater than 10mm. Without training the
robot did not achieve this. Compare this behaviour with the one documented

in Figure 8.9.

In a second set of experiments the biped was put in the same posture, but once
Smm closer and once 5mm further away from the obstacle. Again the robot
tried to find gait modifications which would enable it to cross the obstacle, and
successful gaits were used to widen the search.

Figure 8.12 shows how the robot starts its search 5mm closer to the obstacle. It
successfully crosses fences of up to 12mm height, and the overall performance
is superior to the one displayed in Figure 8.11. Similarly Figure 8.13 and
Figure 8.14 show the performance of the robot when it starts 5mm further
away from the obstacle. For heights greater than 4mm the robot fails to lift
the second leg over the fence. These results underline the sensitivity of the
qualitative equivalence heuristics with respect to the distance of the obstacle.
It shows that the gaits cannot be “stretched” to cross a wider obstacle, so the
robot has to use some gait simply to come closer to the obstacle and then to
try again. In this case it ends up in a position which is unsuitable for any of
the gaits which it has developed so far, and the search fails. In some cases
the robot effectively moves the second leg away from the obstacle. This is
because the search algorithm executes the best executable gait available. If it
cannot execute a gait that leads it closer to or over the obstacle, then the robot
executes a step away from the obstacle.

This time only the weak pair of gaits is documented. Using a strong pair
of gaits yields similar results when the robot is 5mm closer to the obstacle.
However the use of a strong pair of gaits enables the robot to cross fences of
up to 14mm height when the robot starts 5mm further away from the obstacle.
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fences. Without training the robot failed at fences higher than 16mm.
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Figure 8.13: The robot crossing the obstacle, with the start position 5 units
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8.2.3 Robustness: the Transfer of Training Data

So far qualitative equivalence has been tested with the biped always in the
same start position. In all previous experiments the angles of the joints are
the same at the beginning of all obstacle crossings. However, it cannot always
be assumed that the biped reaches an obstacle in precisely this posture. It
was thought to be worthwhile to explore to what extent successful gaits can
be used in new postures.

Fortunately Chapter 7 demonstrated that it is possible to control the robot in
such a way that it remains close to the desired trajectory. Even if the robot
approaches the obstacle from a posture which is different to the start posture
of the obstacle crossing gait, on average two steps will be enough to bring the
robot close to the desired trajectory, and hence at the end of the second and
any later step the robot will be in a posture similar to the start position of the
obstacle crossing gait. In this section it will be tested whether such a position
is similar enough. As Section 8.2.2 demonstrated the distance to the obstacle
is important for the success of the obstacle crossing. Being in the right posture
is of little help if the displacement relative to the obstacle does not suit the gait.

Figure 8.15 shows the robot attempting to cross the fence after it started in a
posture different from the start position in the original gait. This new start
position has been derived by starting the robot several steps away from the
fence and then letting it step (using the gait controller) towards the fence. The
robot tries the qualitative equivalence heuristics after the gait controller failed
to execute further steps. Figure 8.16 shows the successful obstacle crossings
of the biped using the strong pair of gaits.

Using the weak pair of gaits the robot failed to cross obstacles higher than
4mm. This is documented in Figure 8.17. This very poor performance reveals
that some gaits are completely inadequate for use in new start positions.
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Figure 8.15: This is the position from which the robot will try to cross the ob-
stacle in the next two experiments. This position was derived from when the
robot was searching to get into the position in which it started in the previous
examples. Thus it represents a position similar to the ones we are likely to en-
counter if we are using the previously described gaits. In this actual example
the robot tries unsuccessfully to cross an obstacle and brings the foot safely

down in front of the obstacle.
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8.3 Discussion

This chapter described a sequence of experiments which pointed out the power
and limitations of the qualitative equivalence heuristics. Although the heuris-
tics were able to achieve obstacle crossings, it proved difficult to develop a
generic obstacle crossing ability. We will briefly summarise the main results:

¢ Improvement. The use of gaits and the search via gait modifications
enables the robot to develop a behaviour that is unobtainable using the

original search method.

¢ Brittleness. A single gait does not guarantee a certain behaviour unless
the preconditions for the execution of the gaits are exactly matched. In
many cases one leg is successfully lifted over the fence but in consecutive
steps all that happens is that the legs are actually moved further apart
from each other. The robot ends up standing with one leg on each side
of the obstacle, both of them moving further away from each other and
therefore leading into disaster.

e Locality and lack of power. The search for new gaits based on gait modifi-
cations depends heavily on the property of the gait from which the search
started. If a gait is modified in order to achieve a desired behaviour which
is distinctively different from the original gait then the search is almost
guaranteed to fail. Gait modifications have to be more powerful if they
are to be used extensively.

¢ Training improves performance. It is possible to train for a certain be-

haviour by providing the program with tasks of increasing complexity.

. 'The provision of training examples is similar to a guided search through

the search space, where only neighbouring areas leading towards the
correct solution are searched.

¢ Training is not very powerful. Training for a certain behaviour improves
the performance but does not provide a general solution to the problem
of obstacle crossing. In fact it only seems useful where the desired be-
haviour is similar to an already learned behaviour.

e Overtraining can occur. If the robot learns too many obstacle crossing
gaits it will often find and use gaits that do not lead to failure but rather
into a situation that is even further away from the goal. Running the
same experiment, recording each time more actual steps, results in a
different, in some cases even worse behaviour. This is due to the fact
that the heuristic which selects the gait only looks at the height of the
foot after the execution of the gait. The more gaits the robot stores, the
more likely it is to find one that places the foot precisely on the surface
without crossing the obstacle.
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Thus the effects of overtraining can be limited by introducing an evalu-
ation function which only selects steps which contribute to the obstacle
crossing. One way of doing this is to introduce a selection procedure
which only accepts gaits which lead the robot towards and over the ob-
stacle.

¢ Complex evaluation functions are needed. One of the reasons for the
occasional failure of the robot to find a gait which lifts its legs over the
obstacle is the fact that its current search procedure uses a very sim-
ple evaluation function. Of all executable gaits the robot chooses the one
which brings it closer or across the obstacle. This however introduces
a severe limitation: if the robot can immediately execute a gait which
corresponds to a step backwards, then the robot will execute this step
despite the fact that searching slightly deeper into the space of gait mod-
ifications would yield a step forwards.

Tt is clearly insufficient to search for a behaviour that is “only” specified
in so far as it has to bring both feet back to the ground. Whether or
not the obstacle is crossed could be included along with other features
like the similarity to the original start position. This would almost erase
the overtraining symptoms. It should be stressed again that the goal of
this chapter is to develop a simple obstacle crossing heuristic without
feeding in too much information. One can always try to find and code an
evaluation function which is nothing less than a premse instruction on
how to cross the obstacle.

o Filters. Gait modifications have to be evaluated and filtered in order
to reduce the growth of the search space. An algorithm like Holland’s
“bucket brigade” credit assignment algorithm [BGH87] could lead to con-
siderable speed-up. One could then also search over the space of gait
modifications in order to extract useful and powerful operators. Exper-
iments have shown that the biped normally only uses 4 out of 16 gait
modifications. These gaits could then be used as the start point for fur-
ther gait modifications, i.e. one could create new heuristics that do the
same thing but are more powerful.

o Limited use. Gaits should be memorised for standard situations like
walking in the plane. In this case they lead to considerable speed-up :
and help to avoid search almost completely. In order to tackle obstacles
gait modification is useful as a search technique but the resulting gaits
are relatively difficult to use in other situations.

As a result, we are in a position where the robot is able to cross some obsta-
cles. The robot couldn’t develop a generic obstacle crossing strategy since the
success of the qualitative equivalence heuristics depends heavily on the robot
being in the right position with the right posture. The failure of the robot
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can be attributed to two main shortcomings: first, the algorithm produces too

' many different gaits and the search suffers from a large branching factor. Sec-

ond, the training data are not classified or analysed and it is therefore easy to
use them out of context. Thus, we have two choices for the development of a
generic obstacle crossing capability:

(1) In order to investigate further into the development of qualitatively equiv-
alent behaviours, the robot would need to develop the ability to administer a
reasonably large set of gaits. These gaits would either ensure that the robot
reaches the obstacle in the very position from which it has a working obstacle
crossing gait, or they would ensure that the search for obstacle crossing gaits
was powerful enough to adapt an existing gait to the current obstacle. In ei-
ther case the reasoning of the robot would be on the level of behaviours and
behavioural modifications.

(2) Alternatively one can look at the existing obstacle crossings and consider
them as a successful example of how to cross an obstacle. The task of the robot
is then to transfer this experience to new situations. Here the robot has the
choice of deriving new behaviours from old successful ones, or it can derive
a new strategy for the search for actions (individual motor commands) which
constitute the obstacle crossing behaviour.

In the next chapter we will choose the second alternative and use existing
obstacle crossings as examples. These examples will be analysed in terms of
the individual actions which constitute the obstacle crossing behaviour. By
doing so we will loose one level of abstraction, but as a result we will gain a
generic obstacle crossing capability.
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Chapter 9

Learning from Examples

At this stage the robot has been able to successfully cross various obstacles.
However this obstacle crossing performance was relatively brittle. In order to
be able to use the qualitative equivalence heuristic the robot had to stand more
or less in a certain posture and with a certain distance in front of the obstacle.
In practice it proved to be difficult to approach the obstacle in exactly this way.
In order to be able to deal with arbitrary obstacle combinations it is therefore
necessary to improve the robot’s obstacle crossing capabilities.

In this chapter we will use the obstacle crossings based on the qualitative
equivalence heuristic as examples of successful obstacle crossings. These ex-
amples will then be analysed in terms of how the robot’s behaviour changed
- from its normal behaviour during the obstacle crossing. In order to analyse
the changes of the robot’s behaviour in more detail, we will analyse the activ-
ities of the robot on the level of the individual motor commands. The basic
idea will be to see how the choice of a motor command differs depending on
whether the robot is crossing an obstacle or executing a normal step on a hor-
izontal surface. We will analyse how these two commands differ from each
other and memorise these differences along with the point in the state space
where they were observed. In other words we will label the state space in
terms of how the robot’s choice of actions differs from its normal activities in
an obstacle free environment. If the labelling of the state space is sufficiently
dense, then it will be possible to generalise a strategy of how to select a motor
command if the robot is in a certain area of the state space. Section 9.1 will
describe how the different choices of motor commands will be analysed and
how the result of this analysis will be operationalised such that the robot can
derive a generic obstacle crossing capability.

Originally the robot developed a gait which enabled it to walk on a obstacle
free horizontal plane. Whenever the robot is unable to use this gait or search
for a step based on the weighting of the inner state space we assume that the
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robot is in an obstacle space. The obstacle space is defined as a hyperrectangle
inside the state space where the robot is unable to execute its standard gaits.
An important question for the robot is how to identify the exact location of
the individual obstacle spaces, so that it can change its behaviour accordingly.
Section 9.2 describes how the obstacle space of each obstacle can be identified.

9.1 Analysing Obstacle Crossings

Assume the robot has somehow developed a way to cross a particular obstacle,
for example a step. This obstacle crossing could have been achieved by using
the help of a teacher or human operator, or the gaits developed by using the
qualitative equivalence heuristic might have been used. In any case the robot
would not have been able to cross this obstacle by using its standard search
based on the inner state space (otherwise the situation wouldn’t count as an

obstacle).

This specific obstacle crossing will constitute an example of how to cross such
an obstacle. Using several of these examples the robot will analyse their prop-
erties, compare them to its normal behaviour (in the inner state space) and try
to generalise an obstacle crossing strategy. In other words: whenever the robot
encounters a situation similar to an obstacle crossing example, it will compare
its present state with the corresponding state in the obstacle crossing exam-
ple. It will then see what it did in the obstacle crossing example, and try to do
something similar with the current obstacle. This section will describe how
the robot achieves these similar behaviours. (NB in this section the term be-
haviour is used to denote the choice of action or motor command in a given
situation.) :

The main emphasis of this section is to give an operationalisation of how to
achieve similar behaviours. Since the robot will rarely be in a state that is ex-
actly equivalent to some state in an obstacle crossing example, it has to match
its present state with the states in the obstacle crossing example, and it has to
develop a behaviour which is similar to the behaviour in the matching state.
This section will define similarities between behaviours by trying to construct
evaluation functions which would result in a sumlar choice of operators during
the search for a step forwards.

The comparison of an obstacle crossing with the robot’s behaviour in the inner
state space has to be defined more precisely. Imagine the robot in some posture
P in the obstacle space of some obstacle O. Because the robot is inside the
obstacle space of O it will at least once take an action that is different from
the action that it would have taken if it were in the same posture P outside
the obstacle space O. The aim is to compare the actual action of the robot in
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some posture P inside the obstacle space with the action in the same posture
P in some state away from any obstacle (ie. in the itiner state space). -

Assume the obstacle crossing' gait is a sequence C of motor commands uq, us, ..., un
and a starting state S;. This leads the robot through a series of states So..Sx:

Uy 080—!'81

Uz 051 —’Sg

Un O Sn—-l - Sn

If the robot searched for steps as if the obstacle were not present, then it would
choose for any state S; a motor-command u},,, resulting in a state S;,,. It
would select a motor command which brings the robot as close as possible
to some goal state, and the distance to the goal would be measured by an
evaluation function based on a weighting of the inner state space. '

Provided the robot is given some goal state, then for each state S; there will
always be exactly one best successor state S;,; with respect to a given weight-
ing of the inner state space and the goal state. This state transition S; — S/,
will be called the standard state transition of S;.

This will be used in order to describe an obstacle crossing gait: each state
transition S; — S;;; will be compared with the result of the standard state
transition of S;, namely S;,;. Assuming each state is defined as a tuple of
parameters

Sl‘+1 ri+1 a;n'+1 $1i+1
i

T 1 T g 5.-.T,
) 1 il il
‘Sz+1 Ty 5Ty 5Ty T,

then the qualitative difference S;;; © §’;41 can be expressed as the difference
per parameter filtered by some threshold 6:

Sit1 © Sl = Mo(ei*, 1), Ao(aft, 25, o Aola, 25F)

where A, is defined as the qualitative difference between the two parameters
filtered through the threshold ¢:
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0 ifla—0b<6
Ag(a,b)=3 + ifa—-b>0
| — ifa—b< -4

This qualitative difference S;,; © §'i41 describes how the state transition cho-
sen by the robot in state S; differs depending on whether or not there is an
obstacle. If state S; is inside the obstacle space then the next state will be
state S;.;. Otherwise, if state S; is outside the obstacle space, then the state
transition will be from S; to §’;;;. The qualitative difference S;y; © S},; de-
scribes whether the individual parameter values in S;;, are greater or less
than their respective values in S/, ;.

The qualitative difference S;;; © S},; is however dependent on the state S,
with the state S;,; being taken from the obstacle crossing example, and the
state S;,, being computed on the assumption that state S; isn’t close to any
obstacle. It is important to note that once a state S; has been annotated with
such a qualitative difference list, it is possible to approximate the successor
state S;11. Therefore the qualitative difference between S;’s actual successor
Siy1 and its successor using the standard state transition S ; will be called the
virtual evaluation function used at state S;. The robot originally doesn’t know
why the successor state S;,; was chosen, but it assumes that some evaluation
function was used in order to select the best of all possible successor states of
S;. Since it doesn’t know much about this evaluation function the term virtual

will be used.

In other words: the virtual evaluation function of state S; is the qualitative
difference between state S;’s standard successor S}, and its actual successor
Si+1. The virtual evaluation function is basically a labelling of the state space
which will be used in order to compute the best possible successor state. In
order to generalise from the obstacle crossing examples, the robot analyses
the successful obstacle crossings and annotates each state S; in the successful
crossings with the virtual evaluation function which was used to get to its suc-
cessor state S;,;. Whenever in the future the robot finds itselfin a state similar
to S; it will use this virtual evaluation function for its next state transition.

As an example imagine the robot approaches a wall and starts to lift its free
leg. At some point the free leg will be lifted higher than it would be during
the execution of a normal gait away from the wall. Thus there will be some
state where the leg will be lifted instead of being lowered. This state will
be labelled with the qualitative difference between its actual successor state
(lift-leg) and its “normal” standard successor state (lower-leg). Let us call this
virtual evaluation function “lift-leg-higher-than-normal”. Now whenever the
robot approaches a wall again and finds itself in a similar state, it will attempt
to find a successor state in which it also lifts the leg higher than normal. How-
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ever there could be various possible actions which would lead to a lifting of the
leg, and we need to give a more precise definition of how to compute the suc-
cessor state base on a virtual evaluation function. :

A state transition from a state S; based on a virtual evaluation function v; is

computed as follows: we assume the robot has m operators us, .., u,, available
to generate the successor states of S;. Applying these operators to state S;

k)

uzosi '1382_*_1

U
Um 08; 3 Siyy

results in a set of possible successor states Sf.;,k : 1..m. Furthermore the

standard transition from S; can be computed, let this state be S}, ;. For each

state SE,, k : 1..m the qualitative difference vy -
Vg = Sf+1 © 5£+1

is computed. Let S,, be the set of all those states S¥,, with a qualitative dif-
ference equal to v;. ,
Sy = {Sik+1lsik+1 S Sz{+1 = v;}.

For each state in S, the Euclidian distance to the state S, ; is computed, and
the state furthest away from state S; 11 1s selected as successor state of state
S;. This state has been chosen since the idea is to make the robot behave
differently from its normal behaviour. By choosing the state furthest away
from state S;,, the robot chooses an action which maximises this difference.
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9.1.1 Constructing the Virtual Evaluation Function: an Ex-
ample

As an example assume that there is a three dimensional state space with pa-
rameters ¢, ¥, and x. The robot goes through a series of states S to Ss. Sup-
pose the standard state transition of the robot is defined as

(¢a¢7X) - (¢+57¢—5,X)

Thus the robot would “normally” increase the first parameter by 5, decrease
the second by 5 and leave the third parameter unchanged. That is if the robot
is in a state S; : (20,30,40), then the result of its standard state transition
S; — 8}, is state S, : (25,25, 40).

Now assume that the robot approaches an obstacle O and displays the follow-
ing behaviour:

State ¢ v x
S 20 30 40
S 26 24 40
A 31 24 45
S 385 24 50
Ss 40 20 40
Se 45 15 30

Next the standard transitions for each state 5;..5 are computed. For example
the standard transition for state Ss : (31,24, 45) is S : (36,19, 45) The standard
transitions S5}, ; for each of these states are:

State ¢ P X

S5 25 25 40
S5 31 19 40
A 36 19 45
Si 40 19 50
Sg 45 15 40
Sy 50 10 30
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The dlfference between Sit1 and S 41 is computed

State ¢ X
Sy — S} 1 -1 0
S-S54 0 5 5
Sy—S8; -1 5 5
Ss— 8% 0 1 -10
Se — S 0 0 -10
Sy — 5% nil nil nil

In order to arrive at the qualitative difference the values are filtered by some
threshold 6. In this example the value chosen for 6 is 2. The qualitative dif-
ference of S; — 57 can be discarded because state Sy is unknown.

~ State @ P X
S2 — S, 0 0 0
Sz — S5 0 + +
S5s— 54 0 + +
Ss — St 0 0 -
Se — Sg 0 0 -

As a result the virtual evaluation functions for each state 5'1,’ ;95 can be
given. Again the virtual evaluation function for state Se can not be given be-
cause the successor state S7 is unknown.

State virtual evaluation function

S 0,0,0)

SZ_ (O, +: +)

S3 (O, +, +)

Sy 0,0, -) '
Ss ©,0,-)

Therefore the robot assumes that whenever it is close to an obstacle of type
O it has to use three different strategies: whenever it is in a state similar to
state S; or S; it uses the virtual evaluation function of the type (0, +,+) and
whenever it is close to the states 54 or S; it uses the virtual evaluation function
(0,0,—). Otherwise the robot uses the normal evaluation function (0, 0, 0).
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9.1.2 Finding the Successor State Based on the Virtual Eval-
uation Function

Suppose the robot is in a state similar to S; and tries to imitate the behaviour
displayed in state S;. Since the robot is not in exactly the same state, it is
not obvious which command it should use in order to mimic the behaviour
displayed in state S;.

It is possible to approximate the state transition S; — S;;; based on the stan-
dard state transition S; — S;,; and the virtual evaluation function used in
state S;. If the robot has a set of possible motor commands (or operators)
U1, Ug, .., Um, then applying these operators to state §; will result in the follow-
ing states: '

Uy 0 S; — 8i2+1

Um 0 S; = 874

Assuming the standard state transition leads to state S., ;, then for each state
SF.1,k : 1.m the qualitative difference S¥, © S/, is computed. Each state
Sfﬂ where this qualitative difference is equivalent to the virtual evaluation
function of state S; is a potential successor state of S;, and from these states a
state will be selected where the Euclidian distance to state S}, is greatest.

Following the last example the robot might have five different operators avail-
able:

Q
3
-

(6,%,x)
(8,9, x)
(6,%,x)
(6,9, %)
(6,9, )

(¢+ 35,9 —5,x)

2 (¢+5,%+5,x+3)
(p+5,%+5,x+T7)
(6% —5,x)
(¢+5,%—5,x—8)

!

i3

313

I3
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Assume the robot is in state 52 (26, 24,40) and therefore has the following 5
" ‘possiblé successor states: T~ oo s e

State é >¢' X

st 31 19 40
Sz - 31 29 43
S3 31 29 47
S3 26 19 40

S8 31 19 32

Assuming that the standard transition from state S, would lead to state S}
the following qualitative differences S¥ © S} can be computed:

State ¢ ¥ X
Sieo S 0O 0 0
53083 0 + +
53083 0 + +
Sto S} - 0 0
S30 5} 0 0 —

The virtual evaluation function used for the transition from state S, to state
S; was (0,+,1), and therefore states 52 and S are possible successors of state
S,. However the Euclidian distance between S3 and S} is greater then the
Euclidian distance between 52 and 53, and therefore state S3 is chosen as the
successor state of state S,. In other words when the robot reaches state S,
and it is supposed to use the virtual evaluation function (O +,+), it will select
operator us in order to generate the next state.

- Using the current example the robot would reach state S5 : (31,29,47), while
the actual state transition in the example was S; : (31,24,45). This demon-
strates that the virtual evaluation function concept does not guarantee a state
transition that recreates a certain example. It is, however, good enough to ap- -
proximately recreate a certain type of state transition. Applying the concept
of the virtual evaluation function to b1ped obstacle crossing will reveal the
usefulness of these concepts.
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9.2 Identifying the Obstacle Space

At this point the robot has identified the set of virtual evaluation functions
V which was used during various obstacle crossings. The next task will be to
identify where in the state space which virtual evaluation function was used.
The underlying assumption of this section is that each virtual evaluation func-
tion is used in one single hyperrectangle of the state space. It is assumed that
it is possible to identify these hyperrectangles by using linear decision func-
tions. This is a relatively strong assumption concerning the description of the
state space of the robot. However it is in line with one of the premises of this
thesis! which stated that the state space description is so rich that all neces-
sary data are directly readable, which means that for each information on the
state of the robot that might be needed at some point, there will be a param-
eter where this information is directly accessible. No information needed to
describe the state of the robot or its behaviour has to be computed by combin-
ing various parameters.

Therefore the task of identifying the obstacle space is reduced to the task of
identifying the relevant dimensions and then identifying the boundaries of the
obstacle space along these dimensions.

The obstacle space was originally defined as the part of the state space (which
is the set of all available parameters and their values) in which the robot is
unable to carry out its normal search for steps on the basis of the weighting of
the inner state space (the inner state space corresponds to the 5 joint positions
of the robot). This will happen whenever the robot is so close to an obstacle that
it influences the executability of it standard gait. In the following sections we
will not only identify the hyperrectangles in which the robot needs to change
its search strategy, but also we will split the obstacle space into a disjoint set of
hyperrectangles, where within each hyperrectangle the robot will use exactly
one virtual evaluation function for its search.

9.2.1 Identifying the Dimensions of the Obstacle Space

In this thesis a survival oriented approach to credit assignment is chosen: the
survival time heuristic orders parameters based on their impact on the sur-
vival of the robot. All parameters which have a certain impact on the average
survival time of the robot constitute the inner state space. A simplified version
of this approach will suffice in order to establish the dimensions of the obstacle
space for each type of obstacle.

At this point the robot has a set of examples of successful obstacle crossings.

!see Section 2.1, page 6
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These examples are defined by a start state S, and a sequence of motor com-
mands C : uy,uy, .., u,. Applying the set of motor commands to state S, results
in a successful obstacle crossing. Some of the parameters in the description
of state Sp describe the original posture of the robot at the beginning of the
obstacle crossing. :

In order to discover the dimensions of the obstacle space the robot will test the
sensitivity of the obstacle crossing gait to changes of parameters outside the
inner state space. This means that the robot will execute the same gait (ie.
execute the same commands starting in the same posture), but it will individ-
ually alter all other parameters and observe whether these parameters will
have an impact on the executability of the gait. Provided a certain parameter
is changed and the robot fails to execute the obstacle crossing gait, then this
parameter will be included into the obstacle space. Executability of the gait
refers to the fact that all commands can be executed and the robot reaches a
state in which it can execute a support-exchange command. This definition
leaves enough space to tolerate all those parameters which have a small im-
pact on the performance of the robot but do not on average affect the robot’s -
survival during an obstacle crossing. The parameters of the inner state space
are also included within the obstacle space, since they have an impact on the
robot’s survival even if there is no obstacle. Thus they don’t need to be tested.

9.2.2 Identification of the Obstacle Space Boundaries

Once the dimensions of the obstacle space have been identified the robot tries
to identify which hyperrectangles of the state space correspond to which vir-
tual evaluation function. The underlying assumption is that the state space
of the robot is sufficiently regular and it is possible to identify relatively few
regions where a certain virtual evaluation function has to be used.

Let there be n dimensions in the obstacle space of the robot. Let S be the set of
all states of all successful obstacle crossing exemplars. Let V : vy, .., v,, be the
set of all virtual evaluation functions annotated to states in S except for the
virtual evaluation function consisting only of zeros (ie. where the robot follows
its standard transition). For each virtual evaluation function v; in V, inspect
each state in S that has been annotated with v;. Let the set of these states be
Sy;» For each dimension j of the n dimensions of the obstacle space find the
maximum and minimum value of the corresponding parameter in S,,, and call

them max,(j) and min,, ().
Assuming a state S is described as
S = (21,22, ., Tn),
then the hyperréctangle P(v;) identified with the virtual evaluation function
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v; will be described by the set of all states for which the following holds:

P(vi) = {S|S = (21,22, .., Tn), ; < Max,(j) A z; > min,,(j),7: 1..n}

As an example assume that there is a small obstacle space described by a pa-
rameter called distance-to-obstacle and another one called height-of-obstacle.
An examination of the successful obstacle crossing examples identifies a vir-
tual evaluation function which will be called lifi-leg. Assume the maximum
value of the parameter distance-to-obstacle when the virtual evaluation func-
tion lift-leg is used is 10, and its smallest value when lift-leg is used is -100.
If the corresponding values for height-of-obstacle are 50 and 10 respectively,
than the hyperrectangle identified with the virtual evaluation function lift-leg
is described as follows:

Plift—leg)={S | S=(z1,22,-,20) A
10 < height-of-obstacle < 50 A
—100 < distance-to-obstacle < 10}

9.2.3 Refining Obstacle Space Boundaries

At this point the obstacle spaces have been split into various hyperrectangles,
each of which represents the use of one virtual evaluation function. In a last
step the borders of these hyperrectangles will be refined: it will be examined
whether dropping some of the dimensions of each obstacle space is permissible,
and the hyperplanes which make up the boundaries of each hyperrectangle
will be adjusted in order to improve the performance of the robot.

These adjustments will be carried out individually for each dimension of the
obstacle space for each hyperrectangle indicating the use of some virtual eval-
uation function v. Let this dimension be expressed by the parameter z4, and
let the two hyperplanes which limit the use of v be

AS.’BdSB

with A and B being some constants. The robot will be presented with a set of
obstacle crossing tasks and the parameters A and B will be adjusted using a
hillclimbing algorithm with the number of successful crossings as an evalua-
tion function.

9.24 The Treatment of Overlapping Obstacle Spaces

Once the hyperrectangles for each virtual evaluation function have been iden-
tified it is possible that two such hyperrectangles overlap: this would in effect
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mean that the robot could beAr'equired to carry out two contradictory activities -

like lower and lift the leg. The conflict resolution heuristic is to test whether

the obstacle crossing capabilities of the robot remain uneffected if the overlap-
ping region is removed from one of the two hyperrectangles. This is in effect
an extension of the boundary adjustment of Section 9.2.3 above.

The justification for this heuristic is based on the origin of the obstacle cross-
ing exemplars from which the virtual evaluation functions have been derived.
- If for example the robot executes a long step over a fence then it might not
immediately lower the leg behind the obstacle. Thus part of its behaviour will
differ from its normal behaviour without the need to do so. It would be per-
fectly acceptable (and in fact more stable) if the robot lowered the leg as soon
as it has crossed the fence. However the qualitative equivalence heuristics
which generated the obstacle crossing exemplars were just looking for any
successful obstacle crossing, and thus some solutions were non-optimal. At
the same time it is possible to observe an obstacle crossing where the robot
lowers its leg at exactly the same position. Thus one could end up with over-
lapping hyperrectangles for different virtual evaluation functions. However
one of them could clearly be removed because of the non-optimal nature of the
- original example. ' ' ‘

The underlying assumption is that it is possible to identify disjoint hyperrect-

angles for each virtual evaluation function. The results in Section 9.4 will
- confirm this assumption. Otherwise the robot would necessarily have to take

different decisions at different times despite being in the same state. This

would imply that the state description of the robot lacks some necessary in-

formation about the robot, which contradicts one of the assumptions of this
~ thesis, namely that all relevant information is directly accessible.

9.25 _Cdmments

Let the inductive learning algorithm described in this section be called bound-
ary adjuster. It is based on a number of rather strong assumptions: first is the -
assumption that the use of a virtual evaluation function can be described by
a linear decision function in one parameter. Therefore the boundary adjuster
can not learn disjunctive concepts. The second assumption is that the hyper-
rectangles for each virtual evaluation function do not overlap. The boundary
adjuster is even weaker than the perceptron learning algorithm, because it re-
quires the decision functions to coincide with a dimension of the state space.

However, the reasons for using the boundary adjuster are its ease of use and
the fact that it is sufficient in order to enable the biped robot to learn to cross
obstacles. It also gives its results in a very simple and understandable form
(upper and lower boundaries per parameter rather than multi-parameter de-
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cision functions). This makes debugging and explanation easier.

Various algorithms exist for such applications where the boundary adjuster
would fail. A. Moore discusses nearest neighbour techniques [Mo0090] and
shows its application to robotics. Other popular techniques are decision tree
techniques like ID3 [Qui83, Qui86], as well as neural nets [Was89]. For amore
detailed discussion see Section 2.4.

The main difference between the boundary adjuster and some classification
techniques is the fact that the boundary adjuster selects its own set of training
data. Techniques like ID3 or neural nets work on a given set of training data.
(For an excellent treatment of the choice of training data for nearest neighbour
learning see again A. Moore’s thesis [M0090].) The boundary adjuster also
operates in a state space which is full of redundant parameters. In contrast
to this most classification systems assume “...that the features are relevant to
the prediction or category decision” ([Sal88], page 56).

Section 9.4 will show that a simple algorithm like the boundary adjuster is
sufficient to generate a reasonably robust obstacle crossing behaviour.

9.3 Adjusting Step Length for Obstacle Cross-
ings

Obstacle crossing requires that the robot stands with the correct distance to
the obstacle before initiating the obstacle crossing gait. If the robot is too
close to the obstacle then it will not be able to lift its foot quick enough over
the obstacle, and as a result it will crash into the obstacle. Similar problems
occur if the robot is initiating the obstacle crossing behaviour too far away
from the obstacle.

Experiments have shown that it is quite important for the biped to initiate the
obstacle crossing with the right distance to the obstacle. The virtual evalua-
tion function tells the robot what to do once the robot is in the right position.
However it does not take care of bringing the robot into the right position
in front of the obstacle. About 20% of all attempted obstacle crossings failed
because the robot was standing the wrong distance away from the obstacle.
In such cases the robot needed to be about half a step length further away (or
closer) to the obstacle, otherwise starting one step earlier (or later) would have
solved the problem. Thus step length adjustment becomes a necessity.

Robots which navigate in rough terrain must make use of a limited number
of available footholds, and consequently the robot must plan ahead to ensure
that it places its feet in the right position. Very recently Hodgkins and Raibert
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[HR91] discuss control algorlthms to manage step length ad]ustments for a

* dynamic biped robot. Pal and Jayarajan [PJ91] use the A* algorithm to search

for foot placements for a planar quadruped robot.

-The approach taken in this thesis is a combination of backtracking and step
length adjustment. We recall from Chapter 6 that the biped searches for new
motor commands until it reaches a local minimum with respect to its goal
position. It then finishes the current step, executes a support exchange com- .
mand and starts again. If the biped has to find a step with a different step
length then it simply ignores the first local minimum which it encounters.
This is equivalent to not executing the support exchange command between
two steps. Thus the new step becomes slightly longer and should provide the
robot with the necessary displacement. Whenever the robot fails to cross an -
obstacle it backtracks to the last position in which it executed a normal gait
for planar surfaces. ThlS time it w1ll execute a step with different step length
as just descrlbed .

In the experiments with the virtual evaluation function descrlbed in Section 9.4
the biped makes use of this step length adjustments. However the biped was
not allowed to backtrack more than 5 times during an entire obstacle crossing
experiment. On average the biped needed to backtrack twice per obstacle.

Figure 9.1 shows the amount of backtracking used in a more complex test
series. Here the biped was given the task of crossing 175 randomly created
test surfaces. The distance between each obstacle was 90mm. 79 test surfaces
could be crossed without backtracking, and another 29 could be crossed with
only one backtracking step. Backtracking occurred twice on 9 test surfaces,
and three times on 5 test-surfaces. 29 test surfaces could not be crossed with
less than 20 backtracking steps. ’
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Figure 9.1: Number of backtracking needed to cross a surface with 4 randomly
chosen obstacles.
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' 94 Learning Biped Obstacle Crossing

It is finally time to discuss the application of the virtual evaluation function
and the boundary adjuster to dynamic biped walking. This section discusses
how the biped crosses various types of obstacles. Each type of obstacle is in-
spected individually, and the performance of the robot is discussed. The test
-of the obstacle crossing capablllty follows the same pattern each time:

1. Anobstacle crossing usmg search and the qualitaﬁve equivalence heuris-
tic are inspected, and the virtual evaluation functions are analysed.

2. For each virtual evaluation function the corresponding hyperrectangles
of the state space are constructed.

- 3. The ability of the robot to cross this type of obstacle using the virtual
evaluation functions is tested. The robot encounters the same type of ob-
stacle at various positions and the performance of the robot is measured.

These data provide insight into various aspects of this chapter. They show

how many different virtual evaluation functions can be detected. The experi-

 ments also show that a small set of obstacle crossing examples is sufficient to

generate the original hyperrectangles identified with each virtual evaluation

- function. It is also demonstrated that a small number of experiments suffices
in order to adjust the hyperrectangles. Finally the results demonstrate the

robot’s ability to cope with different obstacles.

A short note on the documentation of the movements of the biped: in the fig-
ures throughout most this chapter the surface and the position of the free foot
of the biped are plotted. Occasionally the foot is plotted below the surface. This
is due to the fact that the coarseness of the motor commands makes it impossi-
ble to place the foot exactly on the surface. Therefore moves are allowed which
result in the robot placing its foot slightly (Imm or 2mm) under the surface.
Therefore occasionally the foot position is plotted marginally below the surface
line. Implementing the algorithms on a real robot would require to initiate a
support exchange command before the robot’s free leg hits the surface. The
‘support exchange command would then ensure that the free leg of the robot
drops the remaining one or two millimeters, a.nd thus the robot ends up with
~its foot on the surface.

Every figure shows only one attempt of the biped to cross the obstacle. The
high number of dots is due to the fact that the position of the free foot is plotted
every 0.04 seconds ,
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9.4.1 Crossing Steps

Virtual Evaluation Functions Derived from the Qualitative Equiva-
lence Heuristic

The task of crossing a step differs depending on whether it is a step up or a
step down. In the first case the biped has to ensure that it lifts both legs high
enough, in the second case it has to lower the legs quickly enough. Figures 9.2
to 9.5 show the original biped obstacle crossing.

Figure 9.2 shows how the qualitative equivalence heuristic was used in order
to train the robot to cross a step upstairs. Figure 9.3 shows the use of the same
heuristic in order to discover steps downstairs. The qualitative equivalence
heuristic picked the first successful obstacle crossing, it did not search further
for obstacle crossings which resulted in a posture close to the original posture.

Identifying the Used Virtual Evaluation Functions

In anext step the obstacle crossings were analysed in terms of the virtual eval-
uation function which could be identified with each state encountered during
each successful obstacle crossing. Figure 9.4 and Figure 9.5 show the crossing
of a step with a height of 10mm and -10mm respectively.

Taking a closer look at the virtual evaluation function annotated to each state
reveals that the biped used a different behaviour only for one of the two steps
which constitute the obstacle crossing. In Figure 9.4 and Figure 9.5 the vir-
tual evaluation function notation refers to the parameters 5,(,9,, and ¢.
We notice that only two virtual evaluation functions have been used, namely
(000+0), which corresponds to an increased value of v, which in turn corre-
- sponds to a lifting of the hip around the roll axis. Similarly (000-0) corresponds
to a lowering of the leg around the roll axis.
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 Figure 9.2: Using the qualitative equivalence heuristic to cross a step upstairs.
The biped walks from the right to the left.
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- Figure 9.3: Using the qualitative equivalence heuristic to cross a step down-
stairs.
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The biped lifts the first leg up the step.

In every position the biped uses 000+0 as virtual evaluation function,
which is equivalent to lifting the hip around the roll axis.

®e

The biped lifts the second leg up the step by using normal search.
Thus in every position the biped uses 00000 as virtual evaluation function.

O  support foot position
@ free foot position using normal evaluation function 00000

fl free foot position using virtual evaluation function 000+0

Figure 9.4: Identifying the virtual evaluation functions of a step upstairs.
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The biped lowers the first leg down the step by using normal search.
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The biped lowers the second leg. This is done in three pahses.

‘First it uses the normal evaluation function to get the foot to the edge.
Next it lifts the leg slightly, using 00040 as virtual evaluation function,
before finally lowering the leg, using 000-0 as virtual evaluation function.

support foot position
free foot position

free foot position using virtual evaluation function 000-0
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free foot position using virtual evaluation function 000+0

Figure 9.5: Identifying the virtual evaluation functions of a step downstairs.
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 Hyperrectangles for Virtual Evaluation Functions -

For each of the two virtual evaluation functions the corresponding hyperrect-
angle of the state space had to be identified. Once the robot enters this area
of the state space it has to use the corresponding virtual evaluation function
to generate its next set of motor commands. The original hyperrectangles
defining the obstacle space were discovered using the annotation of all states
encountered during the application of the qualitative equivalence heuristic.

For the virtual evaluation function (000+0) the following boundaries were orig-
inally discovered: '

42 > diStance-’to-step > -34

7.3 > foot-height > —1.0
0.04 > 7 > —0.11
0.12> ¢ > —0.04
0.01 >6>—0.11

0.16 > 1 > 0.04
~0.05> ¢ > —0.12

These boundaries were then adjusted. Three new test obstacles of the same
type (step up or step down (height 10mm)) had to be crossed using the vir-
tual evaluation functions, and the smallest? hyperrectangle was identified, in
which the virtual evaluation function could still lead to a successful crossing
of all three test obstacles. This resulted in the following hyperplanes:

25 > distance-to-step > —6

~0.04 > 5 > —0.11

2gmallest: smallest number of boundary hyperplénes, and smallest distance between two
hyperplanes of the same dimension.
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Running the same program for the virtual evaluation function (000-0) resulted
originally in

9 > distance-to-step > —34

1.6 > foot-height > —1.6
0.02 > n > —0.08
0.07 > ¢ >0.01
0.01 >8> —0.11
0.1 > >-0.03
—0.11> ¢ > —0.12

which was reduced to .
—6 > distance-to-step > —34,

thus it was ensured that the two hyperrectangles for (000-0) and (000+0) did
not overlap.

Crossing new Steps

Finally the new obstacle spaces and their virtual evaluation functions were
tested in a set of new random obstacles. Figure 9.6 shows how the biped suc-
cessfully crosses 5 different steps upstairs, while Figure 9.7 displays how the
biped succeeds in crossing 5 different steps downstairs.

The data show how the robot progresses from right to left. The dots indicate
the position of the free foot. The obstacle positions in the different trials differ
between 5mm and 50mm. The small differences between the obstacle posi-
tions were chosen in order to avoid having the biped always encounter the
obstacle at a “convenient” point during its stride. Each figure shows the foot
positions during a single attempt to cross the obstacle. The large number of
dots is due to the 0.04 second frequency with which the foot positions were
plotted. The same type of visualisation (one walk and plotting of the foot po-
sition per diagram) will be used in all similar diagrams in this and the next
chapter. Thus all diagrams where the dots indicating the foot position reach
the left end of the surface demonstrate that the obstacles were crossed on the
first attempt. If the robot fails then the foot position will be plotted up to the
last “safe” position.
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Figure 9.6: Using the virtual evaluation functions to cross a step upstairs.
Each diagram represents one walk, with the position of the free foot plotted
every 0.04 seconds. The biped walks from the right to the left. The location
of the steps was chosen in such a way that the biped would encounter the
obstacle during different moments of its stride.
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Figure 9.7: Using the virtual evaluation functions to cross a step downstairs.
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942 Crossing Fences

Virtual Evaluation Functions Derived from the Qualitative Equiva-
lence Heuristic ‘

The same experiments were repeated in order to analyse the fence crossing
capabilities of the robot. First the biped was trained to cross a fence by pre-
senting it with a number of fences of increasing height. Using the qualitative
equivalence heuristics and memorising all successful gaits the robot succeeds
in discovering gaits which enable it to cross a 10mm high fence (Figure 9.8). A
closer look at the successful crossing of the 10mm fence reveals that the same
virtual evaluation functions were used as in the step crossings (Figure 9.9).

Hyperrectangles for Virtual Evaluation Functions and Crossing new
Fences

For the crossing of walls the robot could already rely on some of the previ-
ous results. The virtual evaluation functions used were the same as the ones
needed to cross a step. Since the hyperrectangles for these virtual evalua-
tion functions were already identified, it had to be tested whether they were
applicable to the crossing of a fence. Generalising the variables distance-to-
step and distance-to-wall to distance-to-obstacle allowed us to apply the hyper-
rectangles developed for the crossing of steps. All that had to be tested was
whether the respective boundaries of the hyperrectangles needed adjustment.
Thus the robot was present with'5 randomly positioned fences of 10mm height.
The robot used the hyperrectangles for virtual evaluation functions developed
in Section 9.4.1 for the crossing of steps. As the results in Figure 9.10 show
it proved to be sufficient to use these hyperrectangles and virtual evaluation
functions. :
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Figure 9.8: Using the qualitative equivalence heuristic to cross a fence. The
height of the fence is written to the right of each plot.
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The biped lifts the first leg over the wall.
In every position the biped uses 000+0 as virtual evaluation function,
which is equivalent to lifting the hip around the roll axis.

a
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The biped lifts the second leg over wali.
Again, in every position execpt for the last one the biped uses 000+0
as virtual evaluation function.

support foot position
free foot position using the normal evaluation function

free foot position using virtual evaluation function 000+0

m0OeoO

free foot position using virtual evaluation function 000-0

Figure 9.9: Identifying the virtual evaluation functions of a fence crossing.
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Figure 9.10: Crossing a set of random fences. As in the previous examples
the the fences have been placed relatively close to each other so that the b1ped
encounters them during different phases of its stride.
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9.4.3 Crossing Slopes

The crossing of slopes proved to be no problem for the biped. The robot was
able to cross slopes of up to about 120% by using the normal search procedure
for the inner state space. Figure 9.11 shows the biped crossing slopes of dif-
ferent inclination. Once the slopes became steeper than 120% they could be
treated like steps and crossed accordingly, provided they were not too high.

9.4.4 Crossing Trenches

Crossing trenches proved to be the fairly easy as well. Here the main problem
was the fact that the normal gait execution could end in a state where the
free foot is just over the trench and hence no support exchange was feasible.
In this case the robot had to backtrack to a previous support-exchange state
and create a “short” step such that later steps would lead over the trench (see
Section 9.3). Figure 9.12 shows the biped crossing small trenches of 5mm
width.
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Figure 9.11: Crossing a set of slopes with increasing inclination.
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Figure 9.12: Crossing a set of trenches.

161




9.5 Discussion

The qualitative equivalence heuristics proved to be relatively brittle with re-
spect to the posture of the robot at the beginning of the gait. They were also

brittle with respect to the relative distance between the obstacle and the robot.

Thus a small variation in the search technique was introduced which allowed
the robot to create steps with a step-length different from the one of the stan-
dard gait. However the execution of such a step leads the robot into a position
which is even more different from the start position of the standard gait. Thus
the robot is able to vary its position relative to the obstacle, but this isn't al-
ways enough to successfully apply the qualitative equivalence heuristics for
the obstacle crossing. :

The concept of a virtual evaluation function overcomes these limitations. Based
on a small number of successful obstacle crossings the robot developed a generic
obstacle crossing strategy. This chapter demonstrated that based on a small
series of successful obstacle crossings generic obstacle crossing behaviour can
be derived.

The robot used no other data than the obstacle crossings displayed in Fig-
ure 9.2 and Figure 9.3. Based on these 10 obstacle crossing exemplars the
robot identified all necessary virtual evaluation functions. From these obsta-
cle crossings the robot also derived a first description of the hyperrectangles
of the obstacle space which are identified with each virtual evaluation func-
tion. Using 8 new test crossings the robot was able to adjust the boundaries
of these hyperrectangles to such a degree that a generic obstacle crossing ca-
pability was achieved. '

Up to now the robot has been presented with one obstacle, and thus after the
obstacle crossing it had plenty of time to adjust itself with respect to its normal
gait. Introducing a series of obstacles will result in a test of the biped’s ability
to recover quickly enough from the disturbances to its gait execution created
by individual obstacles. It will also give a more impressive documentation of
_ the biped’s ability to cope with difficult surfaces. The obstacle crossing ca-
pabilities of the robot with respect to random surfaces will be tested in more
detail in Chapter 10. '
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Chapter 10
Crossing Random Obstacles

10.1 Random Obstacles on Even Terrain

It is finally time to demonstrate the generic obstacle crossing capabilities of
the biped. Using the virtual evaluation functions developed in Chapter 9, the
biped will be presented with a number of randomly generated test surfaces.

Each of these surfaces contains up to 4 random obstacles; any one of these ob-
stacles is either a 10mm fence, a step which goes 10mm up or down, or a slope
up or down. The space between the obstacles is a horizontal plane. The dis-
tance between obstacles is 90mm; this distance was chosen because it proved
to be sufficiently large for the robot to resume its standard gait execution.

Shorter distances between obstacles can prevent the robot from regaining its
normal posture. In this case the deviation from the normal start-position in-
creases with each obstacle until the robot reaches a position where the torques
of the robot are not powerful enough to bring the robot back into an uprlght
position.

Typically the robot spreads its legs around the roll axis while it crosses an
obstacle. If given enough space the robot needs up to about ten steps in order
to adjust the legs around the roll axis; however if the robot encounters the
next obstacle before the legs are adjusted, it spreads its legs even further and
is unable to adjust them any longer. -

The obstacle crossings demonstrated in this section are chosen from 175 ran-
domly generated surfaces. Out of these 175 surfaces only 29 could not be
crossed. This is equivalent to a failure rate of 16%. By moving the obsta-
cles further away from each other all obstacle combinations could eventually
be crossed.

The robot’s movements across the obstacle course is represented as in previous
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chapters: the robot walks from the right to the left, and every 0.04 seconds the
position of the free foot is plotted as a dot. All regions with an above average
concentration of black dots indicate that the robot is making less progress
forwards. This is due to the fact that the robot spends time-to get itself back
into a posture that is close to the start position of its standard gait. Usually
such concentrations of dots can be observed (1) at the end of an upwards slope,
(2) behind a fence, or (3) behind a step upstairs. Especially after the crossing
of a step or a wall the robot finds itself in a posture where it actually leans in
the wrong direction. Thus it has to use the limited space between its current
position and the obstacle in order to make a turn and regain a posture which
leans into the other direction.

In order to give a better understanding of what exactly is happening in these
“above average concentrations of black dots” we will look at such an obstacle
crossing in more detail: Figures 10.1 to 10.3 give a detailed example of the
robot’s behaviour during the crossing of a wall. In Figure 10.1 the robot is
seen as it approaches the obstacle (position 1). It lifts the first leg over the
wall (position 2) and then corrects its own position around the pitch axis and
the wall (positions 3 and 4). Figure 10.2 then shows how the robot lifts the
second leg over the obstacle (position 5). In positions 6 and 7 the robot ac-
tually moves backwards towards the wall in order to regain a posture which
enables it to continue to walk to the left; in position 8 it has reached this pos-
ture. Finally Figure 10.8 documents how the robot now attempts to adjust its
posture further by correcting errors around the roll axis. In positions 9 to 11
the robot pulls both legs further inwards around the roll axis until in position
12 it reaches a posture similar to that before the obstacle crossing (which may
be compared with position 1 in Figure 10.1). These last 3 steps show how the
controller enables the robot to resume its normal gait trajectory.

Figure 10.4 to 10.7 present some random examples of the successfully crossed
obstacle combinations. We can see that the robot could cope with combinations
of steps, fences and slopes. Trenches were not included because to do so would
make the obstacle combinations less difficult. The scale used in the figures is
approximately 1 : 4, which is the same scale as used in most figures shown in

previous chapters.

Figure 10.8 shows obstacle combinations which could not be crossed if the dis-
tance between obstacles was 90mm or less. Figure 10.9 documents how these
obstacle combinations could be successfully crossed with a wider distance be-
tween the individual obstacles. In Figure 10.9 the distance between obstacles
is widened to 120mm.
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Figure 10.1: The robot lifts the first leg over a wall and then corrects its pos-
ture. ‘ '
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Figure 10.2: The robot lifts the second leg over the wall and resumes a posture
leaning towards the left.
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Figure 10.3: The robot ﬁmshed the obstacle crossing and needs another 3 steps
to resume its standard gait.
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Figure 10.4: The robot crosses a sequence of random obstacles. The robot
walks from the right to the left. Small black dots indicate the position of the
free foot.
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Figure 10.5: The robot crosses another sequence of random obstacles.
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Figure 10.6: The robot crosses a third sequence of random obstacles.
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Figure 10.7: The robot crosses a fourth sequence of random obstacles.

171




Figure 10.8: Sample of obstacle combinations which the robot was originally
unable to cross

172




Figure 10.9: The same set of obstacles as in Figure 10.8. This time the distance
between obstacles has been increased from 90mm to 120mm and the robot is
now able to cross all obstacle combinations.
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10.2 Rough Terrain

Section 10.1 considered smooth terrain; we now turn our attention to rough
terrain which more closely approximates a surface that might be found out-
doors. A set of such surfaces was generated by concatenating slopes whose
width and steepness varied randomly. Figure 10.10 and Figure 10.11 repre-
sent a sample of such randomly generated, rugged surfaces. The robot was
able to cross all of the surfaces that were tested. This is due to the fact that
during most of the terrain crossing simple search for steps sufficed to move
the robot forwards.

It is important to note that the robot was modelled in such a way that the foot
of the support leg had optimal grip on any surface. Thus the robot was able
to stand on rather steep slopes. This in part accounts for the ease with which
the robot is able to navigate through rough terrain. '

In general the robot proceeded by trying to apply its standard gait. Whenever
this failed the robot searched for steps using the weighting of the inner state
space. When the terrain elevation in front of the robot differed by more than
2mm from the elevation of the current position of the robot then the robot
assumed it had approached an obstacle; in this case it searched to see whether
it was in some obstacle space, if so the robot used the corresponding virtual
evaluation function.

10.3 Real-Time Considerations

The code generating the obstacle crossings, the gait execution and search pro-
grams was written in C; the step-length adjustment and overall control func-
tions were written in Lucid Common Lisp. The code ran on a Motorola 68020
based Hewlett Packard HP2000/350 workstation with 8 Mb memory. The av-
erage time to cross obstacle combinations like such as those described earlier
in this chapter was 120 seconds. Without step-length adjustments, using the
gaits found in a previous trial, the robot was 30 seconds faster. This demon-
strates the small overhead for backtracking and step-length adjustment. This
is about 10 times slower than would be needed for the real-time execution (ex-
cluding search) of the obstacle crossing. If the obstacle crossing had been per-
formed by the real robot then the robot would be crossing 50cm (the length of
the obstacle path) in about 9 seconds, which corresponds to an average speed
of 200 meters per hour.

It would be interesting to see what computing resources will be required to
obtain this obstacle crossing performance (including search for step-length ad-
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Figure 10.10: The robot crosses a set of randomly generated “rough” surface.
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Figure 10.11: The robot crosses another set of random surfaces.
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justment) in real time. This will be based on the assﬁmption that all sensor

‘data are immediately available and all communication to the physical robot =~
can be carried out in real time. It is further assumed that the state space has _

been labelled with the appropriate virtual evaluation functions.

For obstacle crossings using the virtual evaluation function the robot has to -

be able to plan several steps ahead before committing to the execution of some
gait. The duration of a gait execution varies between about 0.1 and 0.3 sec-
onds, and thus the robot has to compute the effects of several steps ahead
within this time frame. This is needed in order to decide whether a step-
length adjustment has to be carried out, such that the robot reaches the next
obstacle in the right posture and with the correct distance to the obstacle.

Thé ‘amount of backtracking reqhired to select the correct gait to approach the
next obstacle is very small - usually at most one or two backtrack steps were

needed to cross an individual obstacle. This is equivalent to an upper limit

on the number of step-length adjustments. The small amount of backtracking
justifies the assumption that the search for obstacle crossing gait combina-
tions can start reasonably close to the obstacle; therefore there is an upper
boundary on the necessary number of steps for which the robot needs to look-
ahead. Thus it is possible to enumerate all possible step combinations which
could lead the robot over the obstacle and search all these step combinations
in parallel. ‘

Since each step can be searched for in constant time (the hillclimbing does not
allow for backtracking) the pre-planning of a gait execution can be done in the

order §(nb) time steps where n is the length of the look-ahead and b the number

of adjustments used by the step-length adjuster.

Assuming that choosing the best out of 30 motor commands requires 3000

computations (100 computations per motor command and no exploitation of
the possible parallelism and pipelining - a very generous estimate), and fur-
ther assuming that each step requires 10 motor commands, looking ahead 10
steps will require 300000 computations. Assuming these computations corre-
spond to machine instructions, a 30 MIPS machine would therefore be able
to manage a 10 step look-ahead in 0.01 seconds. This is clearly within the

range of current (1991) micro-processor technology. Experimental results sug- -
gest that not more than 2 step-length adjustments per obstacle are necessary.

Thus 100 such look-aheads are needed, but all these look-aheads can be run
independently and in parallel.
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104 Summary

This chapter provided the experimental proof that the biped acquired a generic
obstacle crossing capability. This enabled the robot to cross previously unen-
countered obstacles. The limitations of the robot are the limitations of its
physical characteristics and do not depend on the combination of obstacles.
Provided the robot was given enough time to recover from one obstacle cross-
ing then it encountered no difficulties in crossing the next obstacles. Cur-
rently the obstacle crossing performance of the robot is therefore limited by
the distance between obstacles and the height of the obstacle. Both of these
features do directly correspond to the physical characteristics of the robot it-
self: if the robot failed this was due to the fact that the robot lacked the power
to bring itself quickly enough into an upright position. The same is true if
one increases the height of a step or a fence; provided the robot is given more
powerful torques to control its joints it can successfully cross higher obstacles.
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Chapter 11

Conclusion

11.1 Contributions

Previous Work in robotic learning is limited in tbe sense that programs learn
actions rather than functions: based on a state space with relatively few di-
mensions the robot acquires a model of the effects of its individual actions.
Based on this knowledge the robot then has to search for a sequence of actions
which allows it to reach a certain goal. Whenever the robot has to execute a
task similar to one which it previously executed, it has to search again for all
the actions needed to perform this task [Moo91, Sut91]. This emphasises the
need for techniques which enable a robot to deal with increasingly complex
- state spaces and to transfer previous solutions to new tasks. It leads to the

“main approach of this thesis which is to couple these two aspects and transfer

behavioural knowledge from lower dimensional state spaces into more com-

plex higher dimensional state spaces.

This thesis followed a hierarchical approach in order to decompose automat-

ically the state space. The basic idea was that there is a small “core” of di-
mensions of the state space (the inner state space) for which the robot needs
to develop an original strategy of how to achieve its goals. Exploring regions
of the state space outside this original core of dimensions can then be done
by incrementally modifying the behaviours which succeeded inside the inner
state space. We kept a close connection between the behaviours of the robot
and the dimension of the state space: each behaviour (seen as a sequence of
activities) is identified with a set of parameters to which this behaviour is sen-
sitive. Changes to any of these parameters lead with high probability to the
failure of the robot during the execution of the corresponding behaviour.

This approach was then appliedtb the domain of bipedrobot walking. Here the -

notion of the inner state space and its associated behaviour corresponds to the
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kinematic parameters of the robot and the execution of a gait on a horizontal
obstacle free surface. Learning this gait was accomplished by searching the
inner state space using an evaluation function based on the importance of the
parameters for the survival of the robot. The robot then improved its gait and
developed a controller for the gait execution. We were able to show that simple
look-up table based bang-bang control was sufficient to generate a stable and
robust ability to walk in an obstacle free environment.

We then extended the activities of the robot: in order to cross obstacles the
robot needed to incorporate the parameters describing these obstacles into its
reasoning. From this we developed the notion of an obstacle space, defined
as the part of the state space where the normal behaviour of the robot leads
to failure. The robot learned to cross various obstacles by modifying existing
behaviours in a systematic way. The robot’s behaviour was seen as similar to
a periodic function, and it is possible to identify the frequency (stride), ampli-
tude (lifting of leg) and displacement (step-length adjustment) of a gait. By
slightly varying such aspects of a periodic function it became possible to mod-
ify the original function while keeping most of its properties. This was the
motivation for the design of the qualitative equivalence heuristics. Modifying

- parts of a gait, while keeping most of its original properties, enabled the robot

to use previously acquired knowledge from simpler domains (walking on a hor-
izontal obstacle free surface) and apply it to new, more complicated situations
(obstacle crossings). '

In a last step we refined the definition of the obstacle space even further: the

- obstacle space is now divided into hyperrectangles. Each of these hyperrectan-

gles corresponds to a virtual evaluation function, describing how the actions
of the robot differ inside the hyperrectangle from the robot’s normal actions
outside the obstacle space. The virtual evaluation function concept provided a
tool to analyse and compare behaviours. It further enabled the robot to oper-
ationalise its analysis of obstacle crossing exemplars. Thus, based on a small
set of obstacle crossing exemplars the robot was able to generate a generic
obstacle crossing capability.
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11.2 Discussion

11.2.1 Scaling Up: Higher Dimensional State Spaces

Very large dimensional state spaces do not pose an immediate problem to the
algorithms of this thesis. The size of the overall search space does not really
matter as long as the robot is able to identify an inner state space which is
easy to search. The same holds for the search over the space of qualitatively
equivalent behaviours: the size of the original state space of the robot does not
matter as long as the space of behavioural modifications remains relatively
small or easy to search. '

However these assumptions may not always hold. It is possible that the re-
quired behaviour of the robot is so complex that the search has to rely on an
exhaustive enumeration of the search space. In this case the complexity of the
search grows together with the search space, and the exponential character of
this growth will make any complex search prohibitively expensive. One way
to alleviate this is by introducing additional domain knowledge into the search
program.

Thus the applicability of the algorithms discussed in this thesis share the prob-
lems of all search techniques: if the search space is benevolent (a smooth sur-
face and an effective evaluation function), then simple hillclimbing can be very
efficient. If the search space is riddled with local minima, then nothing short
of an exhaustive search will do. However the wide spread use of hillclimbing
search techniques suggests that such rough or chaotic search spaces are rel-
atively rare. Additionally the technique to weight the individual parameters
of the search space, based on their impact on the survival of the robot, proved
to be a powerful tool in order to improve the search process.

11.2.2 Abstraction

We were able to generate a mechanism to develop a high level description
of the robot’s behaviour. By aggregating successful operator sequences into
macros and then searching the space of macro modifications it became possible
to change to a more abstract description of the robot. However we only par-
tially used this abstract view of the robot to generate a generic obstacle cross-
ing capability: the search for a generic obstacle crossing capability has been
implemented in such a way that behavioural modifications using the qual-
itative equivalence heuristic were employed to generate a set of successful
obstacle crossing exemplars. Once these exemplars were obtained the focus
of the program changed and a labelling of the state space (virtual evaluation
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function) was derived from these obstacle crossing exemplars. The labelled
state space could then be used for an efficient search for obstacle crossing ac-
tions. This interaction between high level behavioural patterns and improved
search for actions and action sequences deserves further attention and should
be used as a starting point for further work.

11.2.3 Perspective

This thesis presented a novel set of algorithms for learning complex robotic
tasks. We were able to show how large state spaces could be stripped of irrel-
evant parameters, we generated new behaviours from old ones, adapted them
to new situations and analysed them so that learning from examples could
take place. Taking all this together we enabled a robot to learn dynamic biped
walking in obstacle cluttered environments.

The experimental results were very encouraging, and they demonstrated that
relatively simple symbolic algorithms were able to generate solutions to tasks
as complex as biped obstacle crossing. The incremental search over a search
space of increasing size was made possible by the transfer of abstract descrip-
tions of the robot’s behaviour into new, more complex environments. This tech-
nique offers the possibility to search efficiently in search spaces where local
minima would force less abstract search methods to give up. As.a result we
were able to demonstrate a previously unreported ability to learn a generic
biped obstacle crossing capability.

Previous work in robotic learning has been concerned with the acquisition
of a world model based on which the robot then searched for actions lead-
ing to its goal [Moo90], alternatively a control law was learned by the robot
[Lee91, BAS83], or in a subsumption architecture a stimulus response pattern
was learned [MB90]. Progress was limited to relatively small dimensional
search spaces. This dissertation provided a way to integrate these previous
results into the search of large, regular, and incremental state spaces. It now
becomes possible to use these previous approaches in order to search the inner
state space or to search over the space of behavioural modifications, because
the algorithms of this thesis structure the state space into small, manageable
search spaces, and therefore provide a possibility to remove the curse of high
dimensionality.
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1.3 Future Work

- 11.31 More and Better Behaviours

" At the moment the obstacle crossing performance of the robot is improved
by analysing the individual obstacle crossing examples and deriving a vir-
tual eévaluation function from these examples. The virtual evaluation function
concept was powerful enough to develop a generic obstacle crossing capabil-
ity. However no analysis of the resulting obstacle crossing gaifs has yet been
carried out. Such an analysis would have to concentrate on the relationship

between obstacles, gaits and the start positions of these gaits. Nearest neigh-
bour pattern matching techniques as discussed by Moore [M0090] could then-

be used to develop a yet more powerful representation of the entire obstacle
crossing gait. The result would be a repertoire of obstacle crossing gaits which

could be modified using the qualitative equivalence heurlstlc to negotiate pre-

viously unencountered obstacles.

‘This would allow us a final shift from the space of robot states and motor -

commands to a space of gaits, obstacles and gait modifications. Techniques
like the survival time heuristic could then be used again to give a weighting
to the space of all gaits and their modifications. This would enable the robot
to use an improved evaluation function for the search for gait modifications.

11.3.2 SWitching Between Behaviours

Chapter 6 demonstrated the robot’s ability to switch from one gait to another
by searching for actions which would lead it into the start position of the new
gait. However the complexity of the search space can make such a search very
difficult, and a spanning tree of behaviours and the trans1t10ns between them
might be necessary. Such a spanning tree for biped gaits has been constructed
and it allowed the robot to switch between gaits where normal search would
have failed. For example the robot was able to change from a fast gait Grettorwara
into gait G peseawers Which moves quickly into the opposite direction by choosing
gaits with slower respective speeds as intermediary goals. Thus the robot went
through a sequence of gaits Gustewad — Gotomtorward — Giowbademard — Gt
However a direct change from gait G sewara N0 AL Gropinaard failed. It will
be interesting to analyse this switching between behaviours further and in-
vestigate a higher level description of behavioural transitions.
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11.3.3 The Application to Different Domains

The algorithms which we discussed in this thesis have been developed to learn
incremental regular behavioural patterns in large state spaces. Domain spe--
cific knowledge has only been introduced by defining the goals of the search
processes. Apart from this the algorithms depend only on the benevolence of
the underlying search space. There are many domains which appear to share
these properties. Regular activities like cycling, swimming or flying (insects
or aero-planes) would therefore be interesting candidates for the application
of the algorithms. ‘

It will also be interesting to move into applications with a larger set of be-
haviours, for example a biped which can also jump and run[Rai86b]. The
availability of a large set of behaviours will make it possible to investigate
a number of interesting questions: how many different behaviours need to
be stored, and how orthogonal will these behaviours be? Up to what point
can behaviours again be combined into higher level behaviours? What type of
synergy can be observed? What type of problems can be solved using incre-
mental behavioural learning? Answering such questions will let us develop a
better understanding of behaviour based robots and give us a clearer view of
the challenges on the way towards autonomous robots.

11.4 Epilogue

The solution of complex robotic tasks in complex environments requires a set
of various tools, and at the moment it is hard to see that a single research
paradigm or unifying theory can solve all the problems of an autonomous
robot. For the time being hybrid approaches using different tools and paradigms
appear to be the most promising way to combine the various aspects of robotic
tasks in order to build autonomous robots.

Maybe one day an all encompassing theory of autonomous agents will be avail-
able and autonomous robots will roam on distant planets and perform tasks to
the benefit of mankind. Hopefully the application of this technology will not
include autonomous hordes of robotic fighters for 21st century trench warfare.
This will remain the responsibility of the individual researcher.
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