Technical Report A

Number 24

Computer Laboratory

Steps towards natural language
to data language translation using
general semantic information

B.K. Boguraev, K. Sparck Jones

March 1982

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1982 B.K. Boguraev, K. Sparck Jones

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

[N

Steps towards natural language to data language translation

using general semantic information
B.K. Boguraev and K. Sparck Jones

Computer Laboratory, University of Cambridge

Corn Exchange Street, Cambridge CB2 3QG, England

March 1982

Paper accepted for ECAI-82, the 1982 European Conference on Artificial

Intelligence, Orsay, France.

Abstract

The aim of the work reported here is to maximise the use of
general semantic information in an AI task processor, specifically in a
system front end for converting natural language questions into formal
database queries. The paper describes the translation component of such
a front end, which is designed to work from the question meaning
representation produced by a language analyser exploiting only general
semantics and syntax, to a formal query relying on database-specific
semantics and syntax. Translation is effected in three steps, and the
paper suggests that the rich and explicit meaning representations using
semantic primitives produced for input sentences by the analyser

constitute a natural and effective base for further processing.

Keywords -~ natural ‘language, databases, semantics, primitives

1. Introduction

Relatively efficient front ends for natural language access to
databases can be provided [1,2]. But these front ends are effective
because their language analysers are biased towards the database universe
of discourse. The lexicon is specialised, and a database-specific

semantic grammar may be used.

Such front ends can be stigmatised because they lack portability
from one database to another, and because they fail to take advantage of
the powerful general semantic apparatus which must underlie much ordinary
language use. However they recognise the fact that the world of any
database is a specialised world, and that questions addressed to it may
be correspondingly idiosyncratic. Any attempt to make a 1language
analyser for database questions more general has therefore to be matched
by the provision of means for linking general semantic characterisations
of input words and sentences with database-specific characterisations of

data language terms and expressions.

Our current work on this problem is described here. A database
system front end is being developed combining a general semantig analyser
for interpreting natural 1language input questions with a specific
translator for deriving formal language search queries, The claim made
is that the nature of the question meaning representation produced by the
analyser, though designed for general purposes without reference to the
database access task, is nevertheless well-suited to the database
application. The form and content of the meaning representation are
explicit and rich enough to support natural and simple query derivation

operations,

The paper describes the nature of the translator, and illustrates
the output of the successive translation operations so far implemented.
Eventually, to interface with an existing database management system, a
formal query may have to be converted into a locally appropriate
low-level search specification referring to the storage organisation of
the data. This is not discussed here. The paper focusses on the

transition from natural language to high-level query language.

2. The translator design

The translation process applied to the question meaning
representation produced by the analyser has three aspects, for
convenience in program development treated as three successive processing
steps: extraqtion of 'elementary propositions'; construction of
quantified exbressions; and substitution of database concept names. The
first of these is not database-specific, but may be task-specific; the
second may be influenced, as in the LUNAR project [3], by the database:
the third is wholly database~dependent. All of these steps rely on the
properties of the question meaning representation, i.e. work with the
analyser’'s meaning representation language. The presupposition
underlying the translator design is that the same, or a closely-related
meaning representation language can be used to characterise the terms and

expressions of the data query language.

3. The question meaning representation

The system language analyser has been fully described elsewhere
[4,5]. It is sufficient here to note that both conventional syntactic
information and a range of semantic pattern types are applied by an ATN

processor to identify word .senses and sentence structures.

The nature of the output meaning representation can only be
summarised and illustrated here [6]. 1Its most relevant properties are
that word senses are characterised by formulae using semantic category
primitives, while sentence structures are characterised by dependency
trees using semantic relation primitives, that is, case 1labels, The
category primitives are 1ike Wilks' ({71, but sentence structure
characterisations are more explicit and more complex than his: the
dependency trees are more constrained, systematically labelled, properly

hierarchical, and also succinct, structures than Wilks',

Thus the essential feature of the sentence structure
characterisation is that while sentence elements are directly and simply
treated as case role holders, case structures are also directly and
simply related to oneKénother by case links or by common elements. The
representation as a whole is straightforwardly expressive, and is

therefore easy to search and manipulate, particularly since elements

4

common to different case substructures are concisely but conveniently
connected by trace pointers. The illustration of Figure 1a shows an
example question representation organised round its highest-level verb
with its case roles (marked by @@), with the latter in turn filled either
by formulae for word senses, or by trace pointers to case role fillers of

dependent substructures organised in a similar way.

i, Query derivation

In general in database access, the properties of the database to
be searched make it natural to treat the formal query as a more-or-less
conventional predicate logic expression constructed from . simple, or
atomic, propositions., This approach was early followed in LUNAR, and is
currently exemplified by Warren and Pereira [8]. The analyser meaning
representations described above are well-suited to the extraction of such
query building blocks. The essentials of this first translation step are
as follows. Each verb and its case role fillers can be regarded as
generating one or more '3SV0O' expressions. These fall into two classes,
according to the broad characteristics of the verb and its case fillers,
as defined by the case labels and by the head primitives in the formulae
for the word senses filling the slots. Thus verbs can be characterised
as either of LINK or POSS type, and slot fillers as of OBJ or PROP type
(these terms are deliberately distinguished from "entity"™, "attribute®.
etc., which categorise data world concepts). The SVO-type elementary
propositions, called triples, are then either of [OBJ LINK OBJ] or [OBJ
POSS PROP] type.

Further, the ways in which triples can be dependent on one
another in the sentence representation are quite limited: the 'subject'
or 'object'! of a dependent triple can be either 'subject! or 'object'! of
the governing triple. (Another type of connection holds between several
triples at the same level of verb dependency.) It is therefore easy to
extract the equivalent set of connected triples from the given dependency
structure, and a simple set of rules has so far been found adequate for
the purpose, The first, ¢triple extraction, phase of translation
processing thus consists essentially of a reorganisation and marking of
the initial structure: the structure's elements are defined as OBJ, LINK,

ete., and the detailed formula and case information associated with them

(2}

is carried along for future utilisation. The triples for the example
sentence, 1in a summarily abbreviated form retaining only word-sense

names, are shown in Figure 1b,

The second stage is to generate a quantified structure for the
formal query. Currently, both the individual quantifiers onto which
natural language words are mapped, and the overall form of quantified
expressions, follow the LUNAR model. Again, given the limited ways in
which two triples can be connected, only a few rules are required to
derive appropriate LUNAR-style structures with quantifier, variable of
quantification, its class range, any class restrictions, and quantified
proposition or command, from the complete triple information. (In this,
determiner information directly attached to relevant elements of the
meaning representation, and carried forward in the triples, is
exploited.) The results for the example sentence are illustrated in
Figure 1c, again with the information associated with individual word

senses abbreviated.

In both these steps, testing so far suggests that the meaning
representation makes the subsequent processing much cleaner than would be
the case with a representation dominated by conventional syntax, as in

LUNAR and in Warren and Pereira's system.

The third step in query construction is to replace the natural
language inputs represented by the terms of the atomic propositions with
the corresponding data language ones. The natural language words are
represented by their meaning language formulae, The hypothesis is that
critical data language terms, like entity type names, attribute names,
and relation names, though not necessarily value names, are similarly
represented in either the same meaning representation language or one
closely related to it. Thus though data language words may not have
exactly the same meaning as their related natural language words, their
common character can be captured and exploited in the final translation
step. The internal structures of the atomic propositions derived from
natural language can be similarly mapped onto ones appropriate to the
database wusing word “types and case 1labels, via a repertoire of

proposition forms.

Thus if the first translation step presupposes only the
re-formation of the initial meaning representation appropriate to a
certain type of task, the quantified expression structures generated by
the second step are already in a database-oriented meaning representation
language, but probably reflect common features of many database meaning
representation languages. It is in the third step that the detailed
connection is made with the individual database. This constitutes the
hardest step in the process, but the project assumes (since this step had
not yet been implemented), that the substitution of data 1anguagq for
natural language expressions here will be facilitated by the power of the
meaning representation tools available, and by the fact that the
substitution is focussed on the elementary propositions within the query
structure built by the second stage. The philosophy underlying the
translator broadly resembles that of PHLIQA1 [9], but the substantive
details are different, chiefly because an explicit extra transition has
to be made from general semantic meaning representations to

domain-specific ones,

5. Conclusion

Database access, though challenging, is only one language-using
task. The meaning representations provided by our analyser are designed,
as those originally proposed by Wilks were designed, to capture general
semantic properties of text, giving rich and explicit characterisations
of text meaning in principle adequate for a variety of tasks. The
representations should therefore be evaluated in use for different
purposes, preferably in competition with Schank's Conceptual Dependency
representations, which are the most obvious alternatives. However, the
database access project is a serious test of the effectiveness of the
analyser's meaning representations, since many of the requirements to be

met in this case would also have to be met in the context of other tasks.
References

1. Harris, L.R. "Experience with ROBOT in 12 commercial natural language

data base query application', IJCAI-79, 1979, 365-368.

2. Damerau, F.J. 'The transformation question answering (TQA) system:

description, operating experience, and implications', Report RC8287, IBM

Thomas J. Watson Research Center, Yorktown Heights, N.Y., 1980.

3. Woods, W.A. 'Semantics and quantification in natural language question

answering', Advances in Computers, 17, 1978, 1-87.

4, Boguraev, B.K. Automatic resolution of 1linguistic ambiguities,

Technical Report No. 11, Computer Laboratory, University of Cambridge,
1979.

5. Boguraev, B.K. and Sparck Jones, K. 'A natural language analyser for
database access', Information Technology: Research and Development, 1,

1982, 23-39.

6. more details appear in U4, and in K. Sparck Jones, 'Basic semantics

information', an internal memo.

7. Wilks, Y.A. 'Good and bad arguments about semantic primitives',

Communication and Cognition, 10, 1977, 53-T4.

8. Warren, D,H.D. and Pereira, F.C.N. 'An efficient easily adaptable
system for interpreting natural language queries', RP 155, Department of

Artificial Intelligence, University of Edinburgh, 1981.

9. Bronnenberg, W.J.H.J. et al. "The question answering system PHLIQA1',
in Natural language question answering systems (Ed. Bole), London:
Macmillan, 1979.

a) question meaning representation

Sentence: WHAT IS THE WEIGHT OF ALL RED PARTS WHICH ARE SUPPLIED BY CLARK
TO 'ROME?

(clause
(type question)
(tns present)

(v)
(be2 '
((¥ent subj) (((own state) obje) be))
(@€ agent :
((trace (clause v obj))
(clause

(type relative)
(tns present)
(aspect (passive))
(v ‘
(supply1 g
((*org subj) ((*inan obje) ((¥#org recipient)
(((((@recipient subj) have) cause) goal)

give))))
(@@ agent (Clark (mal (indiv man))))
(@8 obj
((trace (clause v agent))}
(clause
(v
(be2
((*ent subj) (((own state) obje) be))
(8@ agent
(part1
((*inan poss)
((work goal) (subj thing)))
(8€ number many)
: (@@ det (alli (all)))))
(@@ state
(colour)
(val

(redi
({(#inan poss)
(((man subj) (see sense))
(obje kind))))))) 1)))
(8@ location (Rome (this (where point)))))))))
(@@ state

(weight ((*ent poss) (count sign)))
(val (query (dummy)))))))

b) question triples

& [$0bj2(part1) $Poss2(be2) $Prop2(weight=query)]
& [$0bj2(part1) $Possi(be2) $Propi(colour=redi)]
& [$0bj1(Clark) $Link1(supply1) $0bj2(parti)]
& [$0bj1(Clark) $Link1(supplyi) $0bj3(Rome)]

c) question quantified expression

(For Every $Vari/partt
: (AND
(colour $Vari red1)
(For The $Var2/Clark
-~ (supply?1 ¢$Var2 $vari))
(For The $Var3/Rome
~ (supplyl $Var1 $var3)))
- (Display (weight $Vart)))

Figure 1, Analyser and translator outputs

