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Abstract

Set theory is today the standard foundation of mathematics, but most
proof development systems (PDS) are based on type theory rather than set
theory. This is due in part to the difficulty of reducing the rich mathematical
vocabulary to the economical vocabulary of set theory. It is known how to
do this in principle, but traditional explanations of mathematical notations
in set theoretic terms do not lend themselves easily to mechanical treatment.

We advocate the representation of mathematical notations in a formal
system consisting of the axioms of any version of ordinary set theory, such
as ZF, but within the framework of higher-order logic with A-conversion
(H.O.L.) rather than first-order logic (F.O.L.). In this system each notation
can be represented by a constant, which has a higher-order type when the
notation binds variables. The meaning of the notation is given by an axiom
which defines the representing constant, and the correspondence between the
ordinary syntax of the notation and its representation in the formal language
is specified by a rewrite rule. The collection of rewrite rules comprises a
rewriting system of a kind which is computationally well behaved.

The formal system is justified by the fact that set theory within H.O.L.
is a conservative extension of set theory within F.O.L. Besides facilitating
the representation of notations, the formal system is of interest because it
permits the use of mathematical methods which do not seem to be available
in set theory within F.O.L.

A PDS, called Watson, has been built to demonstrate this approach to the
mechanization of mathematics. Watson embodies a methodology for inter-
active proof which provides both flexibility of use and a relative guarantee of
correctness. Results and proofs can be saved, and can be perused and mod-
ified with an ordinary text editor. The user can specify his own notations
as rewrite rules and adapt the mix of notations to suit the problem at hand;
it is easy to switch from one set of notations to another. As a case study,
Watson has been used to prove the correctness of a latch implemented as two
cross-coupled nor-gates, with an axiomatization of time as a continuum.
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Chapter 1

Introduction

1.1 Motivation

It may be fair to say that set theory is today the standard formal system for
the foundation of mathematics. One would therefore expect most attempts
at mechanizing mathematics to be based on set theory. This is not the
case, however. Proof development systems (PDSs—also known as interactive
theorem provers) have so far mostly been based on variants of type theory,
rather than set theory.! This is the case, among others, of HOL [23], TPS [4,
6], Veritas [26], EKL [33], and Nuprl [12]. '
Type theory and set theory, which originate respectively in Russell’s and
Zermelo’s systems of 1904, are competing alternatives, both having advan-
tages and disadvantages. The advantages of type theory have been pointed
out by some of the authors of PDSs based on type theory [5, Preface], [22];
and the choice of type theory for any particular PDS is not at all surprising.
What is surprising is that the favor enjoyed by set theory as a foundational
system is lost when it comes to implementing a PDS. This suggests that
there may be some feature of set theory which causes no difficulty for ordi-
nary mathematical practice but becomes an obstacle to mechanization.
Actually it is not the mechanization of set theory itself which presents a

!The system Ontic is presented as being based on ZFC, but it is not clear how the
six syntactic categories and twenty three syntactic constructs of Ontic [39, pages 194-196]
reduce to the syntax of ordinary, F.O. set theory. The language of Ontic has in fact types,
type generators and A-abstraction, so it is closer to type theory with A-conversion than to
Zermelo’s set theory.
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difficulty, but the mechanization of mathematics with a set theoretic foun-
dation. Set theory is just a particular first-order theory, and general purpose
PDSs have been successfully put to the task of proving theorems in set the-
ory. For example, Isabelle [43, 44], an interactive prover designed to support
a large class of logics, has been applied to set theory [42]. Also, it has been
observed in the automatic theorem proving community that variants of set
theory which distinguish sets from classes (often referred to as Gédel-Bernays
set theory, [19, 8, 40]) have finitely many axioms, and so existing automatic
provers can be used to search for proofs of theorems in such theories. What
is difficult is to go from the realm of set theory per se, i.e. from proving
propositions which can easily be expressed using only the set-membership
predicate symbol €, into the wider realm of mathematics.

It is not that proofs in “mathematics” are harder than proofs in “set
theory,” and the difficulty is not due to any limitation in the size of the
inference steps that mechanical provers can take. Much progress has been
made in automatic theorem proving, and an interactive prover could use the
full power of an antomatic prover to justify each of the steps of an interactive
proof; those steps could then be “larger” than the steps of a proof done by
hand.

What is then the problem? As it has already been observed by An-
drews [5, Preface], the problem is one of vocabulary. There is a considerable
gap between the extremely economical vocabulary of set theory (a single
binary predicate symbol in many versions of set theory) and the very rich
vocabulary of mathematics. In informal mathematics, the gap is bridged
by informal mathematical notations. Mathematical notations are essential:
without them, one cannot take off the ground, one cannot move from the
realm of set theory into the realm of mathematics. The problem is how to
use these notations in a mechanical theorem prover.

Logicians have proposed several competing ways of explaining mathemat-
ical notations in terms of first-order set theory. However, these explanations
were not conceived with the idea of mechanizing set theory. As we shall
see, trying to base the implementation of a PDS on any of them would
present considerable practical difficulties. Instead, we propose a new method
of formalizing mathematical notations, within a formal system which is a
conservative extension of ordinary set theory. The proposed method lends
itself readily to mechanization.
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1.2 Overview

In the remainder of this introduction we shall first consider, in section 1.3,
whether it would be possible to take mathematical notations at face value,
i.e. to formalize them without explaining them in terms of any more prim-
itive notations. In this connection we shall briefly discuss the specification
language Z. Then, in sections 1.4 and 1.5, we shall review some of the ways
of explaining mathematical notations which have been proposed to date. We
shall point out their practical shortcomings from the point of view of the
implementation of a PDS, but at the same time we shall gather useful ideas
which will lead us to the formalization which we are proposing.

The new formalization requires a formal system consisting of Church’s
higher-order logic (H.O.L.) [10] together with the axioms of ordinary first-
order set theory. Chapter 2 is dedicated to the study of that formal system.
First, a natural deduction formulation of Church’s H.O.L. is given in sec-
tion 2.3. Then in section 2.4 we prove the fact that any first-order theory
(e.g. Zermelo-Frankel set theory) developed within H.O.L. is a conserva-
tive extension of the same theory developed within first-order logic (F.O.L.)
This simple result provides the philosophical justification of our approach
to the mechanization of set theory; and as suggested in the conclusion, it
may also lead to other developments in the foundation and mechanization
of mathematics. In section 2.5 we describe our treatment of mathematical
notations in the formal system. We show that notations are eliminable, we
give the axioms of ZF and the basic notations associated with them, and we
discuss which formulas are acceptable as parameters of the axiom schema of
replacement.

In the proposed formalization, mathematical notations are considered as
shorthands for expressions of the formal system. A PDS for set theory can
then use the shorthands for input and output, while internally it uses the
corresponding expressions of the formal system. Chapter 3 shows how the
shorthands can be specified by rewrite rules and how the translation between
surface form and internal representation can be accomplished by a rewriting
system of a kind which is particularly well-behaved.

The proposed approach to the mechanization of set theory has been tested
by building a prototype PDS, called Watson, and carrying out with it a case
study in hardware verification. This is the topic of chapter 4. Section 4.1
describes the language processor of Watson. Section 4.2 then describes a
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methodology for interactive proof which has been especially developed for
Watson. The methodology borrows ideas from several other PDSs and it
features the possibility of editing proofs under construction and libraries of
results using an ordinary text editor such as Emacs. The case study is the
proof of correctness of a latch with an axiomatization of time as a continuum,
something which does not seem to have been done before in the field of
Hardware Verification. It is described in section 4.3.

The concluding chapter, after a recapitulation, points out opportunities
provided by the formal system in several areas, in particular regarding the
foundations of category theory.

1.3 Taking mathematical notations at face
value

The problem of bridging the gap between set theory and ordinary mathe-
matical notations could be avoided by “formalizing” mathematical notations
directly, without reducing them to axiomatic set theory. In some sense this
is what is done in computer algebra systems, and also in the specification
language Z [51].

Z must be mentioned here for two reasons: (i) it is part of the field of
“formal methods,” and (ii) its appeal is partly due to the fact that it is
explicitly based on set theory (although not on aziomatic set theory).

However, it is not appropriate to compare Z and Watson. While Watson
is a computer tool for developing proofs, Z is a language for developing speci-
fications. The goal of Z is to facilitate joint development of a specification by
a team of engineers; and this is achieved by imposing a discipline by means
of a common notation. In contrast, a feature of Watson is that each user
is free to design his own notations—while still being able to share results
and even proofs with users who prefer different notations; this is the topic of
chapter 3.

Computer algebra systems perform computations which a mathematician
may need during the course of a proof, but they do not deal with the totality
of a mathematical argument, and have no notion of proof within themselves.
Therefore it is not necessary to relate rigorously the notations used in a
computer algebra system to axiomatic set theory.
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A PDS, on the other hand, deals with proofs, and therefore requires a
formal system of logic. If we choose to use axiomatic set theory, we must then
explain mathematical notations in terms of axiomatic set theory. To this end,
we shall begin by reviewing the most common traditional explanations.

1.4 Axiomatic vs. metalinguistic definitions

There are two ways of introducing mathematical notations: by aziomatic
definition or by metalinguistic definition.

In the first case, a new syntactic construct is added to the object language,
and a new axiom is added to the inference system as the definition of the
new construct. For example, the unordered pair notation can be introduced
as a construct which builds a term “{A, B}” out of two terms A and B,
with the defining axiom:

VaVyVz(z € {2,y} =2=2Vz=y)

In the second case, the object language is not modified at all. Instead,
a convention is introduced in the metalanguage by which a certain (parame-
terized) metalinguistic expression refers to a certain object language expres-
sion. For example, to say that, for every pair of terms A, B the expression
“A C B” stands for the sentence

Ve(r € A Dz € B)

(where @ is a variable which is not free in A or B) would be a metalinguis-
tic definition of the subset notation. (A and B are the parameters of the
notation.)

When notations are introduced by axiomatic definition, one must ensure
that they are eliminable from proofs. That is, if a result is proved using the
notations and their defining axioms, but the result itself does not contain any
of the notations, it should be also provable without making use of the nota-
tions. In other words, the system obtained by introduction of the notations
should be a conservative extension of the original formal system.? It is also
desirable that notations be eliminable from formulas, i.e. that any sentence
containing notations be logically equivalent (in the extended formal system)

2Suppes calls this the “criterion of non-creativity.”[52, §2.1]
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to a sentence which is free of them.> Why notations should be eliminable
from proofs is clear: we do not want them to strengthen the system, and
in particular we do not want them to introduce a contradiction. Why they
should be eliminable from formulas is less clear. In fact, in formal systems
other than set theory (e.g. in type theory), the requirement of eliminability
from formulas may be superflous, and undesirable.* However, in set the-
ory there is a powerful motivation for this requirement, as we shall see in
section 2.5.

A simple way of introducing notations by axiomatic definition is to enlarge
the vocabulary of a F.O. theory with additional n-ary function symbols (or
constants as the special case where n = 0). For example, for the pair-set
notation we could use a binary function symbol “enum”: “enum A B” would
denote the unordered pair A, B. It is well known [40, §9] [34, §74] that, if
@, Y,...Y, are the pairwise distinct variables occurring free in a sentence P,

and
Yy,...Vy, 3lzP

is derivable in a F.O. theory, then the definition of a new function symbol f
by the axiom:
xT

Vyl coe vyn fyiyn

(where we assume that “f y,...y,” is free for z in P, and where P7,
is the result of substituting “f y, ...y,” for the free occurrences of = in P)
satisfies both eliminability requirements. In the unordered pair example the
axiom would be

VyVzVu(u € (enumyz) =S u=yVu=2)
and eliminability would be guaranteed by the fact that
VyVzleVu(u €z =u=yVu=2)

is derivable in a theory of sets with the axiom of extensionality and the pair-

set axiom: existence follows from the latter, uniqueness from the former.
Even when an additional function symbol, e.g. “enum”, is used, the

traditional notation, e.g. “{A, B}”, is usually still retained, as standing

3Suppes’ “criterion of eliminability.”[ibid.]
4,..undesirable because, as Suppes [ibid.] points out, many definitions are most natu-
rally formulated as conditional definitions, and as such are not eliminable from formulas.
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for the function-symbol notation. This is again a metalinguistic definition:
“{A, B}” stands for “enum A B” in the same sense as “A C B” stands for
“Vo(x € A D x € B)”. But there is a major difference: while going from
“{A, B}’ to “enum A B” is just a change of notational style, going from
“A C B” to “Ya(x € A D @ € B)” involves expanding the definition of the
notion of subset. The latter could constitute a step of a proof done by hand,
but not the former. ,

The difference between those two kinds of metalinguistic definitions be-
comes even clearer if we consider the possibility of introducing predicate
symbols in the same manner as function symbols, something not usually
done by logicians. Then we would have the choice between considering that
“A C B” stands for

Ve(ez € A D x € B) (1.1)

and considering that it stands for
subset A B (1.2)
the predicate symbol “subset” being defined by
VaVb(subset a b = Vz(z € a D z € b))

Clearly in the second case it is the axiom defining the predicate symbol which
lends its substance to the notation “A C B”. So in such case we shall still
say that the notation is defined axiomatically.

Assume now that we want to implement a PDS according to some text-
book of set theory. Assume the author of the textbook uses “A C B” as a
shorthand for either (1.1) or (1.2). With respect to the textbook, “A C B”
is not part of the object language; it is a metalinguisitic shorthand, i.e. an
abbreviation which the author uses to simplify his text, just as he may write
“wi” for “well-formed formula.” From the point of view of the theorem
prover, however, “A C B” (for particular instances of A and B) is some-
thing that the user types in and that the PDS prints out. It is a shorthand
for either (1.1) or (1.2), but it is also part of the language of the PDS as
much as (1.1) or (1.2). In other words, from the point of view of the PDS,
metalinguistic shorthands become object-language shorthands.

While shorthands should be used for interaction with the user, the in-
ference component of the PDS must manipulate expressions of the formal
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system. This means that the PDS must use the expansions of the shorthands
internally. We shall refer to the language for interaction with the user as the
surface language. The formal language is then the internal representation of
the surface language.

When axiomatic definitions are used, the surface language is made out of
shorthands which are simple stylistic variations with respect to the formal
language, e.g. “A C B” for “subset A B”. It is then easy to translate
back and forth between the surface language and the formal language. In
chapter (3) we shall see that this can be accomplished by a well-behaved
rewriting system. On the other hand, when metalinguistic definitions are
used, translation becomes difficult or impossible. A given formal language
expression may be obtainable by shorthand expansion from multiple surface
language expressions, and it may not be clear which of these to print out.
In the other direction, expansion of shorthands is combinatorially explosive;
this is because a parameter of the notation may occur multiple times in the
definiens; the length of the expansion is exponential in the depth of nesting
of definitions where this happens, which is itself unbounded.

From the point of view of the implementation of a PDS, then, axiomatic
definitions are preferable to metalinguistic ones. This is the opposite of what
logicians generally prefer. Typically logicians do not introduce additional
predicate symbols such as “subset”, because sentence constructors such as
“A C B” can be defined metalinguistically. They introduce function symbols
such as “enum” only because there are no term constructors in ordinary set
theory, and so a notation such as “{A, B}” cannot be defined metalinguisti-
cally in a straightforward way, since there is nothing that it can stand for.®
For our purposes, on the contrary, we are quite content with additional func-
tion symbols and we shall make use of additional predicate symbols as well.
Unfortunately, these expedients do not cover all mathematical notations.

1.5 Variable-binding term constructors

We have seen how some mathematical notations can be dealt with easily in a
PDS by introducing additional constants, functions symbols, and predicate

5Some authors, e.g. Godel [19], still manage to avoid an axiomatic definition in such
cases by resorting to a conrtextual definition; an example of contextual definition will be
given below.
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symbols. All such notations have something in common: they do not bind
variables. Unfortunately, there are many notations in mathematics which do
bind variables. Some of them are sentence constructors, such as

(e e A)P

and generalized quantifiers such as those discussed in section 5.2.2. They can
be defined metalinguistically, but metalinguistic definitions are undesirable
from the point of view of the implementation of a PDS, as we have seen.

Worse yet, many mathematical notations are term constructors which
bind variables. Consider for example:

e “{x € A| P}”—occurrences of @ in the sentence P are bound by the
notation.

o “U,eq B”—occurrences of @ in the term B are bound by the notation.
e “F , C”—occurrences of 7 in the term C are bound by the notation.

It is not clear how to explain these notations even if we have recourse to
metalinguistic definitions, since ordinary F.O. set theory has no term con-
structors, let alone term constructors which bind variables.

We shall now examine four methods which have been used to explain such
notations, and point out the difficulties that they raise for the implementation
of a PDS.

1.5.1 The pseudo-binding method

A common method of explanation [40, 32] relies again on the conservative
introduction of additional function symbols defined axiomatically. Now, how-
ever, a different function symbol f is used for each instance of the notation.
(By an instance of a notation we mean the result of giving particular values
to the parameters of the notation.) The arity of the function symbol f is the
number of distinct free variables occurring in the instance of the notation,

and if those free variables are y, ...¥,,, the instance is supposed to stand for
»

oy,
For example, the term “{z € y | 2 € 2}” is an instance of the notation

“{x € A| P}”, with parameter values & = “2”, A = “y” and P = “z € 2”7,
Let us use “f” as the function symbol. There are two free variables in the
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term, “y” and “z”, so the arity of “f” is 2. The term stands for “f y 2”. The
new function symbol “f” is in this case defined by the axiom:

VyVaVe(z €fyz=2z € yAz € )

Eliminability is ensured, in a set theory with extensionality and separation,
by the theorem:
VyVz3lsVz(z € s= 2z €y Az € z).

Notice the fate of the bound variable “z” in “f y z”: it disappears. Thus,
although the surface form suggests that a variable is being bound, no variable
binding occurs in the corresponding formal expression. We shall refer to this
method as the pseudo-binding approach.

The drawback of the pseudo-binding approach, from the point of view of
mechanization, is that the surface form has a very different logical structure
from the formal language expression for which it is supposed to stand. For
example P is a subexpression of the surface form “{@ € A | P}”, but not of
the corresponding formal expression “fy, ... y,”. Using the formal expres-
sion as internal representation for the surface form would then block a proof
step consisting of a rewrite within P in “{@ € A | P}”. Appendix A shows
how this can force considerable detours in the course of a proof; detours,
moreover, which it would be difficult to justify to the user.

1.5.2 Bourbaki’s approach

Authors seeking explanations closer to actual mathematical practice must
remedy the absence of variable-binding term constructors in ordinary set
theory. Generally they introduce one or two such constructs and define other
notations from them, either axiomatically or metalinguistically.

Bourbaki [9] uses as basic construct Hilbert’s e-operator.® Thus Bourbaki
develops set theory in an extension of F.O. logic, the e-calculus. A problem
with Bourbaki’s approach is that it builds-in the axiom of choice, even though
the e-calculus is a conservative extension of F.O. logic. We shall have more
to say about this in section 2.5.5.

$He calls the operator 7; also, he dispenses with bound variables in his formal language,
using the symbol O instead, and lines drawn from each occurrence of O to the occurrence
of 7 to which it refers.
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The e-construct, “cx P” denotes “some @ such that P if there is any, or a
completely unspecified @ otherwise”. It is indeed a term constructor, which
binds the variable  in P. Bourbaki defines other mathematical notations
metalinguistically.” For example, Bourbaki defines “{« | P}” as

eyVe(x € y = P)

where y is a variable other than @ and not free in P.

Bourbaki’s grand project, with its emphasis on carefully showing how
actual mathematical practice relates to axiomatic set theory, is a valuable
source of inspiration and ideas for an attempt at mechanizing mathematics.
Mechanization, however, was not the goal of the project, and Bourbaki’s
approach has, from that point of view, the same drawbacks as any other
approach based on metalinguistic definitions. It is remarkable that Bourbaki
was aware of the combinatorial explosion that we mentioned in section 1.4,
and curious enough to estimate the size of the expansion of the symbol “1”,
which stands in his system for “Card({#})”: the expansion would be tens of
thousands of symbols long. The possibility of mechanizing their system may
have been in the mind of some of the mathematicians who signed under the
collective pseudonym Nicolas Bourbaki.

1.5.3 Quine’s approach

In [48], Quine uses the construct “{@ | P}” (which he calls a class abstract)
as basic construct, and, like Bourbaki, defines other mathematical notations
metalinguistically, with the corresponding drawbacks for mechanization. It
is interesting to note that “{@ | P}” is itself defined metalinguistically, by
means of a contextual definition. In Quine’s system set-membership is the
only predicate symbol, and equality is not part of the object language (it is
defined metalinguistically, as equiextensionality: “A = B” for “Va(z € A =
x € B)”). So the construct can only appear in the following contexts:

y €{z | P} | (1.3)

{z|Pley (1.4)

"Including the existential and universal quantifiers.
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The former expression is defined as P; and the latter is in effect defined as
Jz(Vz(z € 2=P)ANz € Y)
The definition of (1.3) as P; gives a meaning to (1.3) whether or not
JzVe(z € 2 = P) (1.5)
holds. To avoid this, one would define (1.3) in the same fashion as (1.4), as
Jz(Ve(z € 2= P) ANy € 2)

In Quine’s system, however, class abstracts which do not necessarily sat-
isfy (1.5) play a useful role in schematic reasoning.

1.5.4 Bernays’ approach

Bernays [8] does not use metalinguistic definitions at all. As primitive
variable-binding term constructors, he uses both “{a | P}” and a descrip-
tion operator. Mathematical notations are incorporated into the language as
additional constants, function symbols, predicate symbols, or “operators,”
i.e. variable-binding constructs, defined axiomatically.

This approach is, of those that we have surveyed, the one which lends
itself most readily to mechanization. The only problem with it is its compli-
cation. There would have to be a large variety of constructs, not just in the
surface language, but also in the formal language used as internal representa-
tion and manipulated by the inference component of the PDS. For example,
to the surface construct “SZ , C” would correspond a term-construct with
four parameters, the variable ¢ and the terms A, B and C; the description
of the constructor would have to specify that occurrences of ¢ in C are al-
lowed and bound by the construct, while occurrence of ¢ in A or B are either
disallowed or not bound by the construct. Other constructs would bind mul-
tiple variables. All this would complicate the task of defining notations, and
the design of most of the components of the system, including the inference
component.

Fortunately, this complication can be avoided, as we shall now see.



Chapter 2

A formal system for the
representation of mathematical
notations

2.1 Representing notations with higher-order
constants

Consider a model M of set theory, and the notation “{A, B}”. Assuming
extensionality and pairing, for every pair of objects (A, B) in the model, there
exists one element C of M which is a SET whose ELEMENTS are 4 and B. (By
SET and ELEMENT we refer to the denotations in M of the corresponding
formal concepts of set theory.) Let F be the function from M? to M which
maps every (A, B) to the corresponding C. If the terms A and B denote
A and B, then the notation “{A, B}” denotes F(A, B). We have seen that
the notation can be formalized by introducing an additional function symbol
“enum” and considering that “{ A, B}” is a shorthand for “enum A B”. The
function symbol then denotes the function F.

Consider now the notation “{@ | P}”. This is one of the “difficult”
notations, since it binds a variable and constructs a term.

In the same manner as “{ A, B}” is related to the pair-set axiom, the no-
tation “{w | P}” is related to the Cantorian comprehension axiom. In Can-
torian set theory, the comprehension axiom stipulated that for every “prop-
erty” of objects there is a SET (unique by extensionality) whose ELEMENTS

13
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are those objects which satisfy the property. This axiom leads to Russell’s
paradox and had to be abandoned, but modern set theories have weaker ax-
ioms which stipulate that there is such a SET for some properties of objects.
The notation “{z | P}” denotes the SET corresponding to “the property
which P states of ®,” when this is one of such properties.

This suggests trying to formalize “{a | P}” as some kind of function
symbol, that we could call “set”, applied to some formula @ denoting the
said “property”: “{@ | P}” would be short for “set $”. Model-theoretically,
the denotation of ®, i.e. the “property”, would be the subset of M consisting
of those objects X" such that P denotes truth when @ denotes X’; and “set”
would denote a function mapping subsets of M to elements of M.

The problem is of course that there are no formulas & denoting subsets of
the model M in F.O.L. However, in Church’s system of Higher-Order Logic
with A-abstraction there are such formulas. We can take & = “AzP”. So in
Church’s system we can formalize “{@ | P}” as a shorthand for “set (A\xP)”,
or more precisely as “set,(o,) (A P)”. The type t(ot) of set,(,,) indicates that
set,(o,) denotes, as desired, a function mapping subsets of M to elements of
M; set, o) is a higher-order constant.!

As we saw in section 1.5.4, the drawback of Bernays’ approach is the
syntactic complication of having to specify and manipulate many different
variable-binding constructs. We have just seen how this complication can be
avoided in Church’s system in the particular case of the notation “{z | P}”:
by considering it as a shorthand for “set,(,,) (A@.P)” it suffices to introduce
a constant to represent the notation, “set,,)”; variable-binding is accom-
plished by the preexisting A-abstraction construct.

Other variable-binding notations can be handled similarly:

“{ee A| P} for “subset,) A (AzP)”

“Ueea B” for “union,,) A (AzB)”
« ?:A C” for “SumL(LL)LL AB ()\ZC)”
“{A}rep” for “range,,, B (AzA)”

“{A}eenyec” for “range,,), B C (AziyA)”
“Ve e A)P” for “forally,,) A (AzP)”

1 As we shall see in section 2.3.1, o denotes the type of the two truth values, ¢ denotes
the type of individuals, and (af) denotes the type of functions from the denotation of the
type 3 to the denotation of the type a.
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In contrast with Bernays’ approach, it is not necessary to specify that the
notation “{w € A | P}’ binds @ in P, that “{A},cpyec” binds @ and
1 in A, and so on, since this is implied by the formal counterparts of the
notations, “subset,,), A (A@P)”, “range,,,), B C (AxAyA)”, and so on.

2.2 The double nature of type theory

The problem of formalizing mathematical notations has led us to consider a
formal system consisting of set theory within Church’s higher-order logic. In
the rest of the chapter we are going to study this formal system and describe
more precisely the method of handling mathematical notations that we have
just sketched out.

But the formal system is unusual. It seems that it has not been used or
studied before, besides a brief mention in Henkin’s thesis [27, pages 64-67).
So it may be useful to pause now and try to put it in perspective. This
section assumes some familiarity with Church’s system, thus it anticipates
section 2.3; but it can be skipped without loss of continuity.

We have referred to Church’s system [10] as H.O.L. (as most authors
refer to it nowadays), but Church himself refers to it as type theory. So,
after declaring the intention of breaking away with the tradition of using
type theory in PDSs, it seems that we have been thrown back to it. And
indeed, Church’s system is the formal system used in TPS [6], while the HOL
prover [23] uses a formal system which is essentially a polymorphic extension
of it. Our approach, however, uses Church’s system in an essentially different
way, as we shall now show.

When the paradoxes showed that Cantorian set theory was contradictory,
two ways of overcoming the difficulty were devised. Russell restricted the
set-membership construct, by assigning types to variables and ruling out,
syntactically, instances of the construct whose parameters were not of the
appropriate types. Thus Russell’s type theory, at least as later simplified, is
a many-sorted set theory. The addition of Church’s A-abstraction construct
to the simplified type theory resulted in the system of [10]. Zermelo, on
the other hand, restricted the axiom schema of comprehension; he replaced
it with a collection of weaker axioms and axioms schemas.? Zermelo thus

?Namely empty-set, pair-set, union, power-set and separation—replacement was later
added by Frankel.
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preserved the syntactic simplicity and much of the flexibility in constructing
sets of Cantorian set theory.

Remarkably, besides being a many-sorted set theory, type theory is also
an extension of F.O.L.—hence its other name, “H.0.L.”. This has not always
been understood,® but it is true, not only in a debatable philosophical sense,
but in a precise metamathematical sense. Indeed, the theory of types admits
two model-theoretic interpretations: one, as a many-sorted set theory; the
other, as an extension of F.O.L. The latter corresponds to Henkin’s standard
models, the former to Henkin’s general models.*

In our approach, we make use of the fact that type theory is an extension
of F.O.L. to introduce a second notion of set-membership in Church’s type
theory. Both notions then coexist. The first one is exrpessed by:

SOQ MC!

The member M, is of arbitrary type «, the set S, is of type oa. The second

one is expressed by:
in,, M, S,

where in,,, is a constant. Set and member are both of type «. In pre-A
simplified type theory “S,, M,” would have been written “M, € §,,”; but
to avoid confusion we shall reserve the use of the symbol “€” to the second
notion of set-membership: “M, € §,” for “in,,, M; §,”.

We use the second notion of set membership to formalize the usual notion
of set membership in mathematics, while other PDSs such as HOL or TPS,
use the first one. Thus, even though TPS, HOL and Watson all make use
of type theory, TPS and HOL are truly based on type theory, in the sense
that they use a type-theoretic formalization of mathematics, while Watson
is based on set theory, in the sense that it uses a set-theoretic formalization.
In TPS and HOL, Church’s system plays the role of type theory, while in
Watson it plays the role of H.O.L.> Watson uses Church’s system as a richer

3Quine [48, pages 257-258] dismisses the view of type theory as H.O.L. as the result
of a confusion between schematic (metalinguistic) variables and genuine (object-language)
variables.

4More precisely, every model of type theory considered as a many-sorted set theory
is isomorphic to a general model. From this it follows that completeness for Henkin’s
general models follows directly from the completeness of many-sorted first-order logic. For
the details, see [13].

580, priority apart, Watson would have a stronger claim to the name HOL!
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framework than F.O.L. in which to develop F.O. set theory. The fact that
H.O.L. is a conservative extension of F.O.L., as we shall see below, means
that there is no reason not to do so.

Practically, using the second notion of set-membership provides the set-
forming flexibility of set theory, to be contrasted with the rigidity of a type
hierarchy.

2.3 Natural deduction formulation of H.O.L.

In this section we describe Church’s system of H.O.L., with standard-model
semantics and a natural deduction inference system.

2.3.1 The type hierarchy

We define simultaneously by induction the type erpressions, more simply
called types, and their denotations:

e “0” is a type expression. It denotes a set {F, T} of two elements which
we shall use as truth-values, T as truth and F as falsity.

e “” isa type expression. It denotes an arbitrary non-empty set M. The

elements of M are called individuals, and M is called the domain of
individuals.

o If o is a type expression denoting a set A and S a type expression
denoting a set B, then “(af3)” is a type expression denoting the set of
functions from B to A.

The types o and ¢ are the atomic types, while the types (af3) are the func-
tional types. (As we have already done in the definition, we shall use the
Greek letters a, f ..., not including of course o and ¢, as metalinguistic
variables denoting type expressions.)

The denotation M of “.” determines the denotation D, of each type
expression a. We shall refer to the family D of those type denotations as
the (standard) frame generated by M. (General models make use of “non-
standard frames”; since we shall not deal with general models, we shall say
“frame” for “standard frame”.)
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When writing type expressions, parentheses are suppressed with associa-
tion to the left.
The order of a type is defined inductively as follows:

1. The order of ¢ is 0.
2. The order of 0 is 1.

3. The order of «f3 is the maximum of (i) the order of «, and (ii) the order
of /8 plus 1. '

Every type can be written in a unique way éaj ...y, where ¢ is an atomic

type. We then say that n is the arity of the type. It is easy to see that the

order of éay...a, when n > 01is 1 plus the maximum of the orders of ay,
. Q.

2.3.2 The typed A-language

For each type o there is a denumerable set of proper symbols of type o. This
set is partitioned into two subsets, each denumerable, the constants of type
o and the variables of type . As constants we shall use the identifers in
roman font, with the type indicated as a subscript, e.g.:

¢, cl,, and,,,, subset,,, subset,(,).

As variables we shall use the identifiers in italic font, again with the type
indicated as a subscript, e.g.:

‘TH ‘TJL) pO\ a'bCOLL'

There is also an improper symbol, “A”, and parentheses are used for group-
ing subexpressions.” Unless otherwise specified, by “symbol” we shall mean
“proper symbol”.

Given a frame D, a symbol of type « denotes an element of D,. More
precisely, an assignment into D is a function ¢ from the set of all symbols into
Uq Da such that the imageé by ¢ of a symbol s of type a is an element of D,

8In our treatment, the only difference between constants and variables is that constants
cannot be bound.
TWe do not consider parentheses as symbols of the language—see chapter 3.
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called the denotation of s in ¢. We shall also consider partial assignments,
which are partial such functions. An interpretation is a pair (D, ¢) consisting
of a frame D together with an assignment ¢ into the frame.

We now define by simultaneous induction the formulas of the typed A-
language, their types, their denotations in an interpretation (D, ¢) (for a fixed
frame D but variable assignment ¢), and the binding of variables:

e If sis a symbol of type o then “s” (i.e. the expression consisting of the
single symbol 8) is a formula of type «, which denotes the image by ¢
of s.

o If Ais aformula of type o8 denoting a function f from Dy to D,, and
B is a formula of type 3 denoting an element u of Dg, then “(A B)”
is a formula of type a denoting f(u). Such a formula is called an
application, where A plays the role of function and B plays the role of
argument,

o If Ais aformula of type o and @ is a variable of type /3, then “(AzA)”
is a formula of type aff which denotes the function from Dz to D,
which maps every element u of Dg to the denotation of A in the in-
terpretation (D, ¢'), where ¢' is the assignment which maps @ to u but
otherwise coincides with ¢. Such a formula is called an abstraction,
of which the subformula A is the body. The occurrence of ® which
immediately follows ) is a binding occurrence: its scope is the body of
the abstraction, A; it binds the occurrences of @ in the body which are
not themselves bound within A and which are not binding occurrences.
An occurrence of a variable in a formula is free iff it is not a bound or
binding occurrence.

Parentheses can be suppressed when doing so does not make a formula am-
biguous, except parentheses around an application “(B C)” which plays
the role of argument in an application “A (B C)”; such parentheses are
compulsory.® Synonimously with formula we shall sometimes say well-formed
formula, especially when well-formedness, i.e. membership in the set of for-
mulas of the typed A-language, is being stressed.

It is clear that the denotation of a formula depends only on the denota-
tions of the symbols which occur free in the formula. That is, given a frame

8, ..even though the typing would make the formula unambiguous without parentheses.
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D, two assignments ¢ and ¢’ into D, and a formula A, if ¢ and ¢’ coincide
on the constants which occur in A, and on the variables which occur free in
A, then A has the same denotation in the interpretations (D, ¢) and (D, ¢').

We shall say that an interpretation satisfies A iff A is a formula of type
o whose denotation is T.

A contert of the typed A-language is a pair (A, ), where A is a formula
and x is a variable.® The type o of A is the type of the context, while the
type B of x is its argument-type. If B is a formula of type 3, then the result
of substituting B for the free occurrences of @ in A is a well-formed formula
C, of type a. We shall write A® for (A, z) and A% for the formula C. If
we let C = A” then we shall also write “C[B]” for the latter. A variable y is
free in A* iff it is free in A and it is distinct from @; it is captured by A" iff,
within A, a free occurrence of @ occurs in the scope of a binding occurrence
of y; it is adequate to A® iff it is neither free in A” not captured by A”.
In the latter case the contexts A® and (A’;)y are equivalent, in the sense
that A} is the same formula as (A})% for any formula B of same type as @;
moreover, & is adequate to (A;)? and (A;)) is the formula A. The formula
B is said to be free for & in A when no variable free in B is captured by
A°.

A simple contert is a context A® such that @ has exactly one free occur-
rence in A.

2.3.3 Conversion—the typed A-calculus

The typed A-calculus consists of the typed A-language, together with a col-
lection of conwversions. Conversions are certain binary relations between for-
mulas, which will be useful in formulating the inference rules of the formal
system, and for proving some of the results. In addition to the usual «,
and n-conversions, we define a ~y-conversion. This is a partial converse of
n-conversion; y-normal form coincides with what is sometimes called 7n-long
form. In this section we give the definitions and state some normalization
results. The technical machinery can be found in appendix B.

A special vocabulary will be used for conversions. If R is a conversion,
a step of R is a pair of formulas (A, B) € R. If (A, B) € R we say that a

9This is a one-argument context; an n-argument context would be an (n + 1)-tuple
(A,z;...T,). In section 3.3 we define a more general notion of context which applies to
languages other than the typed A-language.
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step of R takes A to B and we write A K B. A chain of R is a finite or
infinite sequence of formulas where any two consecutive ones form a step. A
finite chain is said to terminate. We say that R converts A to B iff there
exists a chain whose first element is A and whose last element is B, i.e. iff
(A, B) is in the transitive closure of R. Conversions are traditionally named
by Greek letters (there is a-conversion, S-conversion and 7-conversion; we
add ~y-conversion); this use of Greek letters bears no relation to the use of
Greek letters as metalinguistic variables denoting types, even when the same
letter is used in both ways in the same sentence.

There is an expectation that conversions preserve the denotations of for-
mulas, so we shall say that a conversion R is sound iff whenever R converts
A to B the formulas A and B have the same denotation in every interpre-
tation. '

We shall consider the following conversions and associated normalization
results:

® a-CONVERSION. A step of a-conversion takes A to B, A = B, iff: A
is a formula of the form C[ A2 U], where U is a formula of type o, @ is a
variable of type # and C is a simple context of argument-type aff; and
B is the formula C[AyU}], where y is a variable of type  adequate to
U?. This conversion is symmetric. If A converts to B we say that A
and B are the same up to renaming of bound variables.

e [3-CONVERSION. In a formula A, a 5-redez is a well-formed part of the
form “(AxU) V", where U and V are formulas, and @ is a variable (of

same type as V). A step of f-conversion takes A to B, A LA B,iff Ais
a formula with a f-redex “(A@zU)V” where V is free for ¢ in U, and B
is the formula obtained by replacing the redex with “U7,”. A formulais
said to be in S-normal form (B-nf) iff it contains no f-redexes. Notice
that we say that “(AaU) V” is a [-redex even if V is not free for x in
U; so a formula is not in f-nf if it contains a subformula of the form

“(AeU) V7, whether V is free for @ in U or not.

e 03-CONVERSION. A step of aff-conversion takes A to B, A o8 B, iff

A% Bor AL B We say that a chain of af-conversion is trivial
iff it is infinite but has a finite number of S-conversion steps. We say
that a chain of a/f-conversion is complete iff it terminates in a formula
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in B-nf, or else it is infinite. The last formula of a finite complete chain
which starts with a formula A is said to be a f-nf of A.

We observe that for every formula A there exists a non-trivial complete
chain starting with A. This is because if a formula has a -redex, even
though no f-conversion step may be applicable (because of variable
capture), it is always possible to rename bound variables so that a f-
conversion step will apply. So as long as the last formula of a chain is
not in S-nf it is possible to find an extension of the chain which has an
additional fS-conversion step.

The strong normalization theorem of the typed A-calculus [29, Apps.1,2]
asserts the following: every non-trivial chain terminates; therefore ev-
ery formula A has a S-nf (the last formula of a complete non-trivial
chain starting with A); and the f-nfs of A are all the same up to
renaming of bound variables.

e n-CONVERSION. In aformula A, an n-redex is a well-formed part of the
form “Ae(U x)”, where U is a formula of type o and @ is a variable
of type B which is not free in U. A step of 7-conversion takes A to B,
A L B, iff Ais a formula having such a redex “Az(U «)”, and B is
the result of replacing it with U. A formula is said to be in n-normal
form (n-nf) iff it has no 7-redexes.

Although formulas in 7-nf are compact, generally they are not the formu-
las used by mathematicians, and they cannot be written using traditional
mathematical notations. Take for example the formula

exists,(o,) (A2, (equal,,, y, 2.)) (2.1)

As we shall see it can be written using traditional shorthands as:

But it is not in 7-nf; »-conversion transforms it into
exists,(,,) (equal,,, y,) (2.2)

which is in n-nf and is more compact than (2.1), but cannot be expressed
using the traditional shorthands for equality and existential quantification.



2.3. NATURAL DEDUCTION FORMULATION OF H.O.L. 23

So it seems that the inverse of 7-conversion would be of more interest
to us than n-conversion, since it converts (2.2) into (2.1). Unfortunately,
after a step of (n-conversion)~! takes (2.2) into (2.1), an additional step can
take (2.1) into any of the following formulas:

(Apo(existso(o) Po)) (A2, (equal,,, v, 2.)) (
existso(o,) (Az,((Az,(equal,, ¥, .)) 2,) (
exists,(o) (Az,((Az,(equal,, 2.) v, z.)) (
existsy(o) (A2, (A7, (equal,, 3.) 2.) 2.)) (

[>T G 1 SR SN

NN NN

These transformations, however, can be blocked by specifying that the ex-
pansion U — “Aa(U @)” shall not take place if U plays the role of function
in an application, or if U is an abstraction. This leads to the introduc-
tion of a conversion which is a subrelation of (r-conversion)™; let us call it
Y-conversion:

® Y-CONVERSION. In a given formula, a v-redex is a well-formed part
whose type is functional, which is not an abstraction and which does
not play the role of function in an application. A step of 7-conversion
takes A to B, A 2 B, iff A is a formula containing a y-redex U of
type a3, and B is the result of replacing the redex with “Aa(U )",
where @ is a variable of type / which does not occur free in U. A
formula with no +-redexes is said to be in y-normal form.

If A y-converts to B and B is in -nf we say that B is a yv-nf of A. A
chain of y-conversion is complete iff it is infinite or ends in a formula
which is in 4-nf. A formula is in v-nf iff no step of y-conversion applies
to it; so for every formula A there exists a complete chain starting with
A. The following strong normalization result is proved in appendix B
(corollary B.9): every chain of y-conversion terminates, therefore every
formula A has a y-nf (the last formula of a complete chain starting
with A); and the normal forms of A are all the same up to renaming
of bound variables.

We shall say that a formula is in fvy-nf iff it is both in S-nf and in ~-nf.
Formulas in 3+-nf are important because, as we shall see in chapter 3, they
are those which can be expressed using ordinary mathematical notations.
In addition, conversion to fvy-nf will be part of the process of elimination
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of notations from formulas described in section 2.5. With this in mind we
introduce the following conversion:

® afy-CONVERSION. A step of affy-conversion takes A to B, A 2By

B,if A% BorAL Bor AL B. We say that a chain of
afiy-conversion is trivial iff it is infinite but has a finite number of
p-conversion and 7-conversion steps. We say that a chain of afy-
conversion is complete iff it terminates in a formula in fv-nf, or else
it is infinite. The last formula of a finite complete chain which starts
with a formula A is said to be a fy-nf of A. As for aff-conversion, we
observe that for every formula A there is a non-trivial complete chain
starting with A. Corollary B.11in appendix B establishes the following
strong normalization result for a3y-conversion: every non-trivial chain
terminates, therefore every formula A has a fv-nf (the last formula of
a non-trivial complete chain starting with A); and the Sy-nfs of A are
all the same up to renaming of bound variables.

It should be noted that the steps of 15-conversion which are not part of
(y-conversion)™! are redundant in the presence of a- and f-conversion. In-
deed such a step must either

1. Transform a formula of the form C[(Az(U x)) V], where x is not free
in U, into C[U V7, or else

2. Transform a formula of the form C[Ay((AxU) y)], where y is not free
in “AaU”, into C[AzU].

In the first case, the 1-conversion step is also a f-conversion step. In the
second case, the 7-conversion step can be accomplished by an a-conversion
step

CPy((AzU) y)] = C[Az((AaU) 2))]
to rename vy, if necessary, to a variable z adequate to U®, followed by a
p-conversion step

Cz((AaU) 2)) & C[Az(Uj)]

followed by an a-conversion step

Cz(UD] = Chae(U)).
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Therefore the equivalence closure of o/3y-conversion is the same as that of
a-conversion U [-conversion U 7-conversion.

The soundness of a-conversion, /-conversion and 7-conversion is easy to
establish, and well known. The soundness of the other conversions listed
above follows.

2.3.4 Logical constants and models

As described so far, the typed A-calculus is a formal system concerned with
functions, function application and function abstraction. To turn it into a
logistic system we shall make use of the fact that o denotes the two “truth-
values,” choose constants to be used as logical constants, and define the
intended denotations of these logical constants.

Church’s system [10] uses only, as logical constants, negation, disjunction,
universal quantification, and description or selection operators. Andrews’
system Qg [1, 5] uses only equality and description or selection operators.
In both systems, other logical constructs are introduced by metalinguistic
abbreviation. However, since we have seen that metalinguistic definitions
are not easily amenable to mechanization, we shall make use of a full slate
of logical constants.

To denote equality between objects of type o we shall use the constant
“equal_,,”, with the shorthand

oaq )
A=B

for equal,,, A B. The denotation of a symbol of type oaa in an assignment
¢ into a frame D is a function from D, to the set of functions from D, to
{r, T}. We define the intended denotation of “equal,,,” in the frame D as the
function which maps every element u of D, to the function which maps u to
T and every element of D, other than u to F. Then for every interpretation
T = (D, $) where ¢ maps equal,, to its intended denotation, and for every
pair of formulas A, B of type «, the denotation of

equal,,, A B

in 7 is T iff the denotations of A and B in T are the same.
To denote the conjunction of two truth values we use the constant and,,
with the shorthand
ANB
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for
and,., A B.

The denotation of a symbol of type ooo in an assignment (into any frame)
is a function from {F, T} to the set of functions from {F, T} to {F, T}. The
intended denotation of and,,, is the function which maps the truth-value u
to the function which maps the truth-value v to Tif u = v = T and to F
otherwise. That is, the intended denotation of and,,, is the usual truth-table
for conjunction, in curried form. Then, if A and B are formulas of type o,
and if Z = (D, ¢) is an interpretation where ¢ maps and,,, to its intended
denotation, 7 satisfies “and,., A B” iff it satisfies A and B.

Besides and,,, we shall use, as logical connectives, the constants not,,,
OT.. and implies,,,, with the usual truth-tables as intended denotations,
and with “-=A”, “AV B” and “A D B”, where A, B are formulas of
type o, as shorthands for “not,, A”, “or,,, A B” and “implies,,, A B”.1°
Then an interpretation in which the logical connectives have their intended
denotations satisfies “—=A” iff it does not satisfy A, it satisfies “A V B” iff
it satisfies A or B, and it satisfies “A D B” iff either it does not satify A
or else it satisfies B,

We shall also use the constants true, and false,, with shorthands T and
L, as O-ary logical connectives, with intended denotations T and F.

As universal quantifiers we shall use the constants forall,.q), for every
type a. If @ is a variable of type o and A a formula of type o, we write

Ve A

for
fora.llo(oa) AT A.

The denotation of a symbol of type o(oa) in an assignment into the frame D
is a function from the set of functions from D, to {F, T} to the set {F, T}.
The intended denotation of forall,(,q) is the function which maps the function
with constant value T to T, and every other function to F. For every formula
A of type o, variable @ of type «, and interpretation Z = (D, $) where
¢ maps forall,os) to its intended denotation, 7 satisfies “Vz A” iff “AzA”
denotes the function with constant value. T, i.e. iff for every u € D,, the

10Negation will have higher precedence than conjunction or disjunction, and these will
have higher precedence than implication.
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interpretation (D, ¢'), where ¢’ is the assignment which maps ¢ to u and
otherwise coincides with ¢, satisfies A.

Besides “for all” we shall use the quantifiers “there exists”, “there exists at
most one” and “there exists exactly one”. (“Exactly one” is useful in connec-
tion with the description operator, and “at most one” is useful in connection
with the introduction and elimination rules for “exactly one”.) For this pur-
pose we choose the constants exists,(oa), 8tmosto(oq) and unique,,,), with the
shorthands “JzA”, “lz A” and “IleA” for “exists (o) AL A", “atmosty(oa) A A”
and “unique,,,y A#A”.M The intended denotations of the constants are the
obvious ones: they map to T the functions from D, to {F, T} which take the
value T at least once (exists,(,q)), at most once (atmosto(oq)), exactly once
(unique,(,oy). Then, if ¢ is an assignment into a frame D in which these
constants have their intended denotations, the interpretation Z = (D, ¢)
satisfies “Jz A” iff some interpretation (D, ¢’) where ¢’ coincides with ¢ ev-
erywhere except perhaps at @ satisfies A; 7 satisfies “le¢ A” iff at most one
such interpretation satisfies A; and 7 satisfies “3laz A” iff exactly one such
interpretation satisfies A.

Finally, we use the constants the,,a) as description operators, i.e. to
denote objects specified by definite descriptions. We write

peA

for
thea(oa) AT A.

The description operators differ from the other logical constants in that they
have a range of admissible denotations, rather than a unique intended de-
notation. The denotation of a symbol of type a(oa) in an assignment into
a frame D is a function from the set of functions from D, to {F, T} to the
set D,. Such a function is an admissible denotation of they(oq) iff it maps
every function f : D, — {F, T} which takes the value T for exactly one el-
ement u of D, to precisely that element u. Given a formula A of type o,
a variable @ of type «, and an interpretation 7 = (D, ¢) such that ¢ maps
thea(oa) to an admissible denotation, if there exists a unique u € D, such
that A denotes T in the interpretation Z = (D, ¢') where ¢’ maps @ to u and
otherwise coincides with ¢, then “ux A” denotes u in Z. If there are zero or

1 The shorthands for quantifiers will have higher precedence than those for connectives.
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more than one such u, then “uz A” is “undefined” in the sense that the fact
that ¢ maps the,(oq) to an admissible denotation does not tell us anything
about the denotation of “ux A” in 7.

The logical constants are the equality constants, the logical connectives,
the quantifiers, and the description operators. An interpretation (D, ¢) is a
logical interpretation iff ¢ maps the description operators to admissible de-
notations in D, and the other logical constants to their intended denotations
in the frame.

A theory is a set of formulas of type o. The formulas which are elements
of a theory I are called the azioms of . A model of a theory T is a logical
interpretation which satifies the axioms of T.

We shall say that a formula P of type o is a logical consequence of a
theory T, written

kP,

iff every model of T' satisfies P.

2.3.5 Natural deduction proofs

Having defined the relation |= of logical consequence between theories and
formulas, we must now define the deducibility relation b, i.e. we must provide
an inference system.

We are using a full slate of logical constants, rather than just a small num-
ber of primitive constants, so it is natural to turn to a deduction paradigm
which places all the logical connectives and quantifiers on the same footing;
such is natural deduction. Another reason for choosing natural deduction is
that the introduction and elimination rules of natural deduction systems are
indeed “natural,” in the sense that they correspond rather closely to steps
of proofs done by hand. The primitive inference rules of a natural deduction
system are sufficient by themselves (even without the addition of derived
rules and decition procedures) for constructing rather complex proofs in a
natural way. Thus they can form the basis of the inference tool-kit of a proof
developement system. We shall see in section 4.2 that this is the case in the
theorem prover Watson.

Natural deduction has two ingredients:

1. The use of proof trees or, equivalently as observed in [47, §1.6], of linear
proofs where the lines of the proof are asymmetric sequents.
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2. The use of introduction and elimination rules for the connectives and
quantifiers.

The PDSs HOL and TPS are both described as being based on natural
deduction, and this is true in the sense that they feature the first of the two
ingredients. However, the formal systems upon which they are based are not
standard natural deduction systems, lacking the second ingredient.

In our formal system a sequent is a pair (I', P), where I' is a theory
and P a formula of type o; we shall often write I' + P rather than (T, P).
The axioms of T' are the hypotheses, or assumptions, of the sequent, and
P is the conclusion of the sequent. An inference rule with n premises is a
mechanically verifiable relation R of arity n + 1 between sequents, i.e. a set
of tuples of the form (Si,...S,, S’) where Sy, ... S, and S’ are sequents.
We shall refer to each element (Si,...S,,S’) of the inference rule R as an
instance of R, of which Si,...S, are the premises, and S’ is the conclusion;
and we shall say that S’ follows from Si, ... S, by R. We shall write inference
rules in the usual schematic way: the premises are written above a horizontal
bar, and the conclusion below it, with any conditions written as a comment
to the right of the bar; the bar is omitted when there are no premises. A
proof is a sequence of sequents, called the lines of the proof, such that each
line follows from zero of more preceding lines by an inference rule. A proof
of a sequent (T, P) is a proof whose last line is (T', P). We shall say that
P follows from T, written I' + P, iff there exists a proof of (I', P). We
shall refer to this relation between theories and formulas as the deducibility
relation. If I' F P we shall say that P is a theorem of I', or that the sequent
(T, P) is a theorem. When T is empty we shall write - P and we shall
say that P is a theorem of H.O.L. A derived inference rule is a rule which
could be added to the primitive rules of the system without modifying the
deducibility relation.

Observe that I' + P has two meanings: it can refer to a sequent, or
it can assert that P follows from I'. Correspondingly, the inference rule
notation (with the premises above a fraction bar and the conclusion below
it) also has two meanings. We have explained it above as a schema, i.e. as a
description of a generic instance of the rule, the symbol I being interpreted
as a sequent constructor. But if the symbol I is interpreted as denoting the
deducibilty relation, the inference rule notation can be read as an implication:
the statements above the fraction bar together with the side condition imply
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the statement below the bar.!? This second reading is particularly useful for
derived rules: a rule described by the fraction bar notation is a derived rule
iff the implication holds.

We shall say that a sequent (T, P) is true iff T |= P. An inference rule
is sound iff whenever the premises of an instance of the rule are true, the
conclusion is also true. We shall now give the inference rules of a system of
natural deduction for H.O.L. and show that they are sound.

2.3.6 Inference rules

The following conditions have been omitted from the rules for the sake of
clarity:

1. T, IV, T'" are theories.

2. A, B are formulas of type a.

3. C is a simple context of type o and argument-type a.
4. P, Q,. Rare formulas of type o.

5. @, yare variables of type a.

Each rule implicitly includes all applicable conditions among the above ones.
If two or more applicable conditions mention “o”, they scope of “a” is the
entire rule. For example, when the meta-variables “z” and “A” occur to-
gether in the rule V-elimination, the implicit conditions assert that “z and
A have the same type o”.

We write the hypotheses of a sequent in the traditional way, as a theory
name followed by a comma and additional formulas separated by commas.
Both the theory and the additional formulas are optional. For example,

T,-P
refers to the set of hypotheses

T U{“-P"},

12The deducibility relation could alternatively be defined as the smallest relation which
satisfies the set of those implications, one for each primitive inference rule of the system.
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and in

PHP
is the set of hypotheses is {P}.

Intrinsic rules

The first two inference rules are required by the fact that proof lines are
sequents rather than formulas; they are trivially sound.

1. Reflexivity of +.
P-P

2. Monotonicity of F.
r+PpP

TUI'+ P
Substitutivity of equality
3. Substitutivity of equality.

I+ C[A] I'A=B C does not capture any
TUl'F C[B] variable free in T

PROOF OF soUNDNESS. Let I, I' be two theories, A and B two formulas
of type «, and C a simple context of type o and argument-type a.. Assume
thatT = C(A) and I' = A = B.

We shall first show that, in every model of I, C[A] and C[B] have the
same denotation. Let C by the pair (P, x), where @ is a variable of type o,
and P is a formula of type o having a single® free occurrence of @ (and, for
simplicity, no bound or binding occurrences of ). Consider a parse tree for
P and let ng...n; (j > 0) be the ascending path going from the root of the
subformula “z” to the root of the entire tree. A parse tree for C[A] can be
obtained by grafting!? a parse tree for A onto node no, without disturbing the

13Recall that the implicit condition on C asserts that C is a simple context. Hence if
C = (P, x) there is exactly one occurrence of © in P. Of course the rule of Substitivity of
equality for arbitrary contexts C holds trivially as a derived rule of inference in the formal
systeni.

14What grafting means should be clear without further explanations, but a formal defi-
nition can be {found in appendix B, page 180.
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original parse tree above ng. Let A9 = A and let A;...A; be the formulas
corresponding to the subtrees rooted at ny...n; in the tree resulting from
the graft. In the same way, a parse tree for C[B] is obtained by grafting a
parse tree for B onto ng. Let By = B and let B;...B; be the formulas
corresponding to the subtrees rooted at n;...n; in the tree resulting from
the graft. We show by induction that every model of I assigns the same
denotation to A; and B;, for every ¢, 0 < ¢ < j, and so, in particular, to
A, = C[A] and B, = C[B]. This is the case for i = 0. Assume that the
assertion holds for 4, 0 < 7 < 7. Then it is obvious that it holds for ¢ + 1 in
the case where n;;; is an application node. If n;4; is an abstraction node,
then A;4; is of the form “AzA;”, where z is a variable, and B, is “AzB,”.
Let (D, ¢) be a model of I'. Since the variable z is captured by C it is not
free in I', so every interpretation (D, ¢') where ¢’ differs from ¢ only in the
denotation of z is also a model of I, hence, by induction hypothesis, assigns
the same denotations to A; and B;. Therefore (D, ¢) itself assigns the same
denotations to “AzA;” and “A2B,”, i.e. to A;;1 and B,41.

Now, every model of T UT' is a model of T, so it satisfies C[A], and a
model of I”, so it assigns the denotation T to C[B] as well as to C[A]. O

Conversion rules

Their soundness follows immediately from the soundness of conversion (sec-
tion 2.3.3), given the intended denotation of the constants equal,,,.

4. a-Conversion

A% B

HA=DB
5. B-Conversion

AL B

FA=DB
6. v-Conversion

AL B
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Rules concerning the logical connectives

We include here the introduction and elimination rules of intuitionistic logic
for the logical connectives, and the contradiction rule of classical logic.

7. T-Introduction
FT

8. —-Introduction
LPFL

T'-P

9. —-Elimination
TP 'k -P

; TUVF L
10. A-Introduction
THP I'@Q
TUMEPAQ
11. A-Elimination
TrFPAQ THFPAQ
reP '+Q
12. V-Introduction
r-r '-Q
THFPVQ rEPvVQ

13. V-Elimination

rFPvQ T ,P+R TI"QFR
TUD'UT'F R

14. D-Introduction
I'PHQ

TFPD>Q
15. D-Elimination
r-P>Q '+ P
ruly+qQ
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16. Contradiction
I''-Pt+ L

r-P

PROOF OF SOUNDNESS. The soundness of each of these rules is obvious from
the definition of the intended denotations of the logical connectives, and from
the observations made in section 2.3.4. As a sample, we prove the soundness
of A-introduction.

Assume I' E P and I' | Q. Let T = (D, ¢) be an arbitrary model
of TUT'. T is a logical interpretation, so ¢ maps and,,, to its intended
denotation. Then, as we observed in section 2.3.4, 7 satisfies P A @ iff it
satisfies P and Q. But 7 is a model of T, so it satifies P, and a model of I,
so it satisfies Q. Therefore 7 satisfies P A Q. Thus TUT' = PA Q. O

Equivalence and equality

The inference rules that we have introduced so far are compatible with a
wider class of interpretations than the ones which we have specified, namely
with interpretations in which the type o denotes a set of “propositions” with
arbitrary cardinality, partitioned into two classes: the “true propositions”
and the “false propositions”. Then the logical equivalence: “P O Q” to-
gether with “Q D P”, would mean that P and @ denote propositions in the
same partition, but not necessarily identical. We rule out such interpreta-
tions by the following rule:

TFP>Q I'FQ>OP
TUT'FP=Q

This rule corresponds to Church’s axiom [10, p. 61} “p= ¢ D p = ¢” (which,
he says, means that there are “only two propositions”). It is obviously sound
for our class of logical interpretations.

When o does denote the set S = {F, T}, equality in S is logical equiva-
lence; that is, the intended denotation of equal,,, is the curried truth-table
corresponding to logical equivalence; so there is no reason for having a sep-
arate connective for logical equivalence, besides equal ,,. We shall then use
the shorthand

(2.7)

P=Q

as standing for
equalOOO P Q
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(in addition to the shorthand “P = Q” which remains in effect). The infer-
ence rule (2.7) can then be written:

17. =-Introduction
THFPDQ I'tQ > P

TU'FP=Q

Rules concerning the quantifiers

18. V-Introduction

T+P  free in T
T FvaP 2 not free in
19. V-Elimination
I'+VeP A free § L p
TF P ree for @ in
20. 3-Introduction
Lr PZ A free { in P
Y ree for ¢ in

21. 3-Elimination

['FdeP I Pj FQ y adequate to P7;
Trul'kQ y not free in I or Q

22. \-Introduction

I'+-VaVy(P AP, Dz =y)
I'tHaP

y adequate to P

23. 1-Elimination

I'HaP
I'kVeVy(PAP, Dx=1y)

y adequate to P*

24. -Introducti
nroucion I'k3zP THaP

TH3lzeP
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25. Al-Elimination

I'+3lzeP 'k3laP
T'+daP I'HlaP

PROOF OF SOUNDNESS. The proofs of soundness of these rules are left to the
reader. They present no difficulty given the observations made in section 2.3.4
about logical interpretations and the following two observations:

1. If y is adequate to P®, and if ¢ and ¢’ are assignments into a frame D
which coincide on variables other than # and y, and such that ¢(z) =
#'(y), then the denotation of P in the interpretation (D, ¢) coincides
with the denotation of P} in the interpretation (D, ¢').

2. If A is free for P* and denotes u in an interpretation (D, ¢), and if ¢’
is the assignment into D which maps @ to u and otherwise coincides
with ¢, then the denotation of P% in the interpretation (D, ¢) coincides
with the denotation of P in the interpretation (D, ¢').

Rule concerning the description operators

26. p-Introduction

I'3laP
' P*_

uxP

“px P? free for  in P

PROOF OF SOUNDNESS. Assume I' = 3!z P. Let 7 = (D, ¢) be an arbitrary
model of I'. T satisfies “JlaP”. Hence, since it is a logical interpretation,
there exists exactly one u € D, (recall that a is the type of @) such that
the interpretation Z' = (D, ¢'), where ¢' is the assignment which maps z to
u and otherwise coincides with ¢, satisfies P. But then the denotation of
“uxP” in T is precisely u. Since “uxP” is free for ¢ in P, by observation
2 above, the denotation of P}, p in T coincides with the denotation of P in
I'; ie. T satisfies P p. SoT' |= Py, p. O

2.83.7 Soundness and incompleteness

Since each inference rule is sound the inference system itself is sound, i.e.
[+ P implies T = P. It is not complete, however. It follows from Gdédel’s
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incompleteness theorem that no inference system for H.O.L. can be sound and
complete for standard models. Our formal system is, however, equivalent to
the system of Church [10]. (In appendix C the equivalence is stated precisely,
and a sketch of the proof is given.) It follows from this equivalence that the
formal system is sound and complete for general models.

2.3.8 Derived rules for equality

Reflexivity of equality has not been included among the primitive rules of
inference because it is redundant: for a formula A with at least one abstrac-
tion, it is a special case of the rule of a-conversion; for a formula without
abstraction, it can be derived using F (Az,2,)A = A. Symmetry and Tran-
sitivity of equality follow immediately from reflexivity and substitutivity. So
we have the following three derived rules of inference for equality:

'+-A=18B I'+A=B TI'FB=C

FA=A =
T-B=A TUT'F A=C

where T, IV, I are arbitrary theories, and A, B and C are formulas of the
same type.

2.4 H.O.L. as a conservative extension of F.O.L.

2.4.1 First-order formulas

In this section we identify the terms and sentences of traditional F.O. logic
with certain formulas of the typed A-language.

To the constants and variables of F.O.L. correspond the constants and
variables of type ¢, which we shall call the individual constants and variables
(because they denote individuals). From now on we shall often omit the sub-
script ¢ from individual variables, to give them a more traditional appearance.
(This is what the PDS Watson does when writing out formulas. The ¢ sub-
script is not omitted from individual constants because unsubscripted roman
identifiers are used as keywords. But there will be mathematical symbols or
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keywords to stand for most individual constants that we shall use, e.g. @ for
emptyset,.)

An n-ary predicate symbol (n > 1) is a symbol (variable or constant) of
type ooy ...ap, a3 = ... = a, = t, other than the logical constant equal,,,.
An n-ary function symbol (n > 1) is a symbol (variable or constant) of type
L0 Oy O] = = Oy = L

A F.O. term is defined by induction as follows:

1. If sis an individual constant or variable, then the formula “s” is a F.O.
term.

2. If f is an n-ary function symbol, n > 1, and T ... T, are n F.O. terms,
then “f T, ... T,” is a F.O. term.

(More generally, we shall call terms the formulas of type ¢, even if they are
not F.O. terms.) A F.O. sentence is defined by induction as follows:

1. f T and T' are F.O. terms, then “T = T'” (i.e. “equal,, T T") is a
F.O. sentence.

2. If p is an n-ary predicate symbol, n > 1, and T';...T, are n terms,
then “pT, ... T,” is a F.O. sentence.

3. “1” (i.e. “false,”) is a F.O. sentence.
4. If § is a F.O. sentence, then “~8” (i.e. “not,, §”) is a F.O. sentence.

5. If § and §' are F.O. sentences, then “S A §”, “§V §” and “S > §7

are ¥.0. sentences.

6. If Sis a F.O. sentence and x is an individual variable then “VY&S” and
“Jx 87 are F.O. sentences.

(More generally, we shall call sentences the formulas of type o, even if they
are not F.O. sentences.) A F.O. theory is a set of F.O. sentences. A F.O.
formula is either a F.O. term of a F.O. sentence. A context §* is called a
F.O. context when S is a F.O. sentence and @ is an individual variable.

A F.0. vocabulary is a set of predicate symbols and function symbols. In
the rest of this section, V will denote an arbitrary F.O. vocabulary.
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We define a V-F.O. term (resp. sentence, formula) as a F.O. term (resp.
sentence, formula) whose predicate symbols and function symbols are part
of the vocabulary V. A V-F.Q. theory is a set of V-F.O.formulas, and 57 is
a V-F.O. context iff § is a V-F.O. sentence and @ an individual variable.

The F.O. logical constants are the logical constants which appear in F.O.
sentences, i.e. false,, noty,, and,so, OTeee, implies,,,, forall,,,) and exists, ().
The notion of f4-nf provides the following characterization of V-F.O. formu-
las in terms of the free symbols that they contain:

Theorem 2.1 The V-F.O. formulas are the formulas of atomic type in fy-
nf which have no free symbols other than:

1. Predicate symbols and function symbols of V.
2. F.O. logical constants.

3. Individual constants and variables.

PrRoOOF. Let S be the set of symbols consisting of: the symbols of V; the
F.O. logical constants; the individual constants and variables. Then, by
definition B.5, the V-F.O. formulas are the standard formulas of atomic type
generated by S. Therefore, by theorem B.16, they are the formulas of atomic
type in Fv-nf whose free symbols are elements of S. O

2.4.2 First-order inference

Having identified the formulas of F.O. logic with certain formulas of H.O.L.,
the standard natural deduction formulation of classical F.O.L. with equality,
for a given F.O. vocabulary V, consists of the inference rules listed below. The
metavariables occurring in each rule carry with them the following implicit
conditions:

1. T, IV, I'" are V-F.O. theories.
2. A, B are V-F.O. terms.

3. C is a simple V-F.O. context.
4. P, @, R are V-F.O. sentences.
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5. @, y are F.O. variables.

Inference rules:

A. Reflexivity of F.
P+HP

B. Monotonicity of F.
r+pr

Trulr P
C. Substitutivity of equality.

I'+-C[A] T'FA=B C does not capture any
TUT'+ C[B] variable free in I

D. Reflexivity of equality.
FA=A

E. —-Introduction
P+ L

I'--P

F. —-Elimination
THP I -P

TUIk+ L
G. A-Introduction
'+P I''Q
TUI'FPAQ
H. A-Elimination
THFPAQ '-PAQ
'-Q '-Q
I. V-Introduction '
r+-r I'+Q

TFPVQ TFPVQ
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J. V-Elimination
r-pPvaQ I'P-R I'"QFR
TUMUIFR

K. D-Introduction
IPFQ

TFPOQ

L. >-Elimination
r-P>Q ' P

TUlkF Q@
M. Contradiction
I'-PF L
THP
N. V-Introduction
TP free i T
TF VP x not 1ree in
P. V-Elimination
I'-VeP A free § P
F §_ P'jq Tee 10T T 1n
Q. 3-Introduction
T S3apP ee for x in

R. 3-FElimination
I't3JdaeP I, P; FQ vy adequate to P,
TUIl'FQ y not free in IV or Q

We write ' K,r 0. P to indicate that a V-F.O. formula P follows from a
V-F.O. theory I' by the above inference rules.

All these rules can be found among the inference rules of H.O.L. (To be
precise, when considered as relations among sequents, they are restrictions of
H.O.L. rules. Indeed they are all among the primitive rules of H.O.L. listed
in section 2.3.6, except reflexivity of equality which is a derived rule as noted
in section 2.3.8. Hence H.O.L. is an ertension of F.O.L. That is, T' being
a V-F.O. theory and P a V-F.O. sentence, if ' i, . P then I' - P. The

converse 1s also true:
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Theorem 2.2 ((conservative extension)) H.O.L. is a conservative ex-
tension of F.O.L. That is, T being a V-F.Q. theory and P a V-F.O. sentence,
Thro P iffiTH P,

ProoF. See appendix D. O

2.5 Set theory within H.O.L.

2.5.1 The power of set theory within H.O.L.

The reason for stating theorem 2.2 and giving a careful proof of it in ap-
pendix D is that it justifies the development of set theory within H.O.L.
rather than F.O.L. Indeed theorem 2.2 can be applied to any version of set
theory formulated in the framework of F.O.L., T’ being the set of axioms and
V the vocabulary of the theory. For example, ' could be the set of axioms
of Zermelo-Frankel set theory, which we shall call ZF; V would then consist
of the single binary predicate symbol in,,, (with “A € B” as a shorthand for
“n,, A B”). From now on, to make things definite, we shall focus on ZF,
and we shall let ¥V = {“in,,,”}. However, most other versions of set theory
could be used instead of ZF. In section 2.5.6 we discuss the issue of finite vs
infinite axiomatizations.

The combination of ZF and H.O.L. appears to be, at first glance, an
awesome logistic system. Theorem 2.2 tells us, however, that it is not
any more powerful than ordinary ZF within F.O.L.: any set theoretic re-
sult derivable from ZF by higher-order means (i.e. any V-F.O. sentence P
such that ZF F P) is also derivable from ZF within F.O.L. (i.e. is such that
ZF K.ro. P). The F.O. proofis of course likely to be more complicated than
the H.O. proof, and in fact, since the proof of theorem 2.2 is non-constructive,
no means of finding the F.O. proof from the H.O. one are provided. (The
problem of finding a constructive proof is left open.)

A corollary of theorem 2.2 is that ZF (or any other version of set theory)
within H.O.L. is relatively consistent with respect to ZF within F.O.L. If ZF
within H.O.L. were inconsistent then 1 would be provable:

ZF - L
But L would then be derivable from ZF in F.O.L.:
ZF F—V'F.O. _L
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So ZF within F.O.L. would itself be contradictory. Therefore developing ZF
within H.O.L. is safe: no new contradiction can thus be introduced.

In the case study (section 4.3) we shall see how higher-order reasoning
can be used to simplify a proof; and in the conclusion we shall point out
some exciting possibilities which are opened by the availablity of higher-order
means.

But our motivation for developing set theory within H.O.L. was the rep-
resentation of mathematical notations. We already know how to represent
the logical notations (equality, the connectives, the quantifiers and the de-
scription operators) and the notation of set-membership. We shall refer to
these as the primitive notations. We shall now describe our method for
representing additional, non-primitive notations.

2.5.2 Method for representing notations

We begin by showing how the method works on four examples, one for each
class of notations obtained by distinguishing term constructors vs. sentence
constructors, and variable-binding vs. non-variable-binding notations.

1. The notation
{z | P}, (2.8)
where @ is a F.O. variable and P is a sentence, is a variable-binding
term constructor, As anticipated in section 2.1, we consider it as a

shorthand for
set, (o) rxP. (2.9)

The transformation from (2.8) to (2.9) allows us to represent the no-
tation in the formal language, but it does not explain its meaning.
The meaning is expressed by an axiom involving the constant set,,,).
H.O.L. allows us to use an axiom of the form “set,,,) = ...”, namely:

sety(or) = AP isVz(z € s = p,, ) (2.10)

Using this axiom we can “expand” the notation (2.8) as follows. Let ¥
be a theory consisting of (2.10) and other such object-language defini-
tions. Then:

3 b setyo) = ApapisVz(z € s = p,, 2).
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By reflexivity and substitutivity of equality:
SH{z| P} = (ApopusVe(z € s = po, z)) AxP.

We rename 2 (the actual letter “z” used as a variable in the axiom)
to @ (whatever variable is used in the role of the parameter @ of the
notation—observe the boldface), and s (the letter “s” used as a variable
in the axiom) to some variable s (observe the boldface) distinct from
2 and not free in P:

Lk {x|P}=(ApousVe(z € s =p, x)) \xP.
By the rule of B-conversion (and substitutivity of equality):
Sh{z|P}=pusVae(x € s = (AeP)x).
By [-conversion again:
LF{x| P} =pusvVe(e € s = P). (2.11)
In section 2.5.4 we shall use the axiom of extensionality to derive:
ZFUX F 3sVae(x € s= P) D Ve(x € { | P} = P) (2.12)

from (2.11).

. The notation “(V& € E)P”, where @ is a F.O. variable, E a term and

P a sentence, is a variable-binding sentence constructor; it binds & in
P. We represent it by the formula:

forall,(o,), E Az P

(Notice that forall,,,) and forall,,,), are two different constants.) The
constant forall,(,,), is defined by the axiom:

forallyo,), = AeAp,Ve(z € € D p,, ) (2.13)
If £ contains (2.13), by reflexivity and substitutivity of equality:

Yk (Ve € E)P = (Aedp,Ve(z € e D py z)) E AP
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We. rename p,, (if necessary) to a variable P of type or which does
not occur free in E, and we rename e (if necessary) to an individual
variable e other than & and z. Then we rename z to @:

YF (Ve € E)P = (deApVz(z € eDpa)) E P

Now we need to assume that @ does not occur free in E. (If @ is free
in E the notation “(Vo € E)P” is still well defined, but the derivation
is blocked. To proceed with the derivation in that case we would first
rename the bound variable @ in “AxzP?”.) Then, by two steps of /-
conversion:

St (Ve € E)YP =Ve(x € E D (AzP) )
And by another step of F-conversion:

Y+ (Ve € EYP =Va(x € E D P) (2.14)

3. The notation “{A, B}” constructs a term but does not bind any vari-
able. We consider “{ A, B}” as a shorthand for:

enum,, A B.

In this we do not depart from the traditional method of introducing an
additional function symbol, since enum,,, is indeed a binary function
symbol. H.O.L., however, allows us again to provide the axiom defining
the notation in the form “enum,,, = ...”:

enum,, = AzdyusVz(z €Es=z=2Vz=y) (2.15)
If ¥ contains (2.15), by reflexivity and substitutivity of equality:
LH{A,B}=(AzdypsVz2(z €s=z=aVz=y)) AB

We rename s and z to two distinct variables s and 2 which do not
occur free in A or B and are distinct from z and y:

L {A, B} =(AzdypsVz(z€s=z=2Vz=y) AB
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Then, by two steps of S-conversion (after renaming y if necessary):
SH{A,B}=usVz(z€s=2=AVz=B) (2.16)

In section 2.5.7 we shall use the axiom of extensionality and the pair-set
axiom to derive:

Vz(2 € {A,B} =2= AV z = B)

from (2.16).

. Our fourth example is “A C B”. This notation is a sentence con-

structor, but it does not bind any variables. We represent if by the

formula:
subset,,, A B

subset,,, is a binary predicate symbol. Again we can define it by an
equation “subset,, = ...”:
subset,, = AzAyVz(z € 2 D 2 € y) (2.17)
If ¥ contains (2.17):
Y+ subset,,, A B=(Az)yVz(: €z D2€y)) AB

If z is a variable not free in A or B, by a-conversion and f-conversion:

¥ b subset,, A B =Vz(z € AD z € B)

In general, representing a non-primitive notation consists of two steps:
1. Choosing a formula to represent the notation in the formal system.

2. Providing an axiom which captures the meaning of the notation.

Here is a simple recipe for the first step.

The representation of a notation will always be of the form:

c ARG, ... ARG,
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(n > 0) where c is a constant specifically chosen to represent the notation,
the representing constant. When n > 0, ARG, ... ARG, are the arguments
of the representation.

The notation has syntactic parameters, such as z, E, P in “(Vz € E)P”.
Some of these parameters, such as E and P in the example, are formula
parameters, while some, such as @ in the example, are variable parameters.
The notation binds each variable parameter (if any) in a formula parameter;
in the example, the notation binds @ in P. ‘

The collection of arguments ARG}, ... ARG, is derived as follows from
the parameters of the notation. First if there are no parameters then n = 0
and the representation is reduced to the representing constant ¢. The type of
¢ is chosen according to the syntactice role of notation; usually the notation
plays the role of a term; then the type of ¢ is . If there are parameters, then
there is one argument ARG, for each formula parameter. It is constructed
as follows. If the notation binds no variable parameters in the formula pa-
rameter, then ARG, is the formula parameter itself. If the notation binds
one or more variable parameters in the formula parameter, then ARG, is
obtained by abstracting with respect to each of those variables (in arbitrary
order). In the notation “(Va& € E)P” no variable parameter is bound in
the formula parameter E, while the variable parameter  is bound in the
formula parameter P; so the arguments are “E” and “AzP”. Hence the
representation:

forallo(m)L E \xP

which we saw above. For a more complicated example consider the notation
“IA},epyec” (one of those mentioned in section 2.1): B and C do not bind
any variables, while A binds both @ and y; so the arguments are “B”, “C”
and “AzAyA”. Choosing range as the representing constant we obtain
the representation:

enm

Ia'ngeL(LLL)LL BC ()\(B)\yA)

which we proposed in section 2.1.

The type of the representing constant is determined once we have chosen
the ordering of the bound variables in each argument, and the ordering of
the arguments themselves. Indeed the type of ¢ is:

60’1 el Qg
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where i, ... a, are the types of ARG}, ... ARG, and 6 is normally ¢ or
o (according to whether the notation plays the role of a term or a sentence
respectively). The type a; of each argument ARG; is in turn:

eﬁl e ﬁm
(m > 0) where £, ... B are the types of the variable parameters bound
by the notation in the formula parameter from which ARG, is constructed
(usually f; = ... = B = ¢), and 8 is the type of the formula parameter

(6 = ¢ if the formula parameter, 6 = o if the formula parameter is a term).
If the notation binds at least one variable, the type of at least one argument
will be at least 1, so the type of the representing constant will be at least 2,
and thus the notation will be represented by a higher-order constant. In the
usual case where all the bound variables are of type ¢, the order of the type
of the representing constant will be exactly 2.1°

Notice that the recipe works correctly even for the primitive notations:
it can account for the internal representation of equality, the logical connec-
tives, the quantifiers (including the quantifiers for higher-order types), the
description operators (4 being a higher-order type for a higher-order descrip-
tion operator), and the set-membership notation.

The second step is more difficult. All that can be said in general is that,
if ¢ is the constant chosen to represent the notation, the axiom defining the
notation is of the form “c = A”. There is of course no recipe for composing
the right-hand side A. However, if help is needed, we can turn to Bourbaki
[9]. Indeed, ezpanding a notation as we have done in the four examples above
(by replacing the constant representing the notation with its definition, then
converting to A-nf) results in the Bourbaki-style expansion of the notation,
except that Bourbaki uses a selection operator rather than our description
operator p. In most definitions where Bourbaki uses his selection operator,
the operator is in fact applied to a definite description, and so a description

15Notice that the notation may require a higher-order constant even when it does not
bind any variable. This the case when one of the arguments is of type o, given that we
have somewhat arbitrarily assigned the order 1 to the atomic type o. For example the
term constructor: “if P then A else B" requires a higher-order representing constant, say
Hlou.:

“{ P then A else B" for “if,,, PAB”
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operator would do as well. (A notable exception is Bourbaki’s definition of
cardinality.) In those cases, it is a simple matter undo the conversion to f-nf
and obtain, from Bourbaki’s definition, a definition “c = A” of the constant
which represents the notation in our formal system.

2.5.3 Eliminability of notations from proofs

We have extended our formal system from ZF within F.O.L. to ZF within
H.O.L. to be able to accomodate notations. We have justified the move by
showing that the extension is conservative. Introducing notations does not
require any further extension of the language of the formal system, since
the constants used to represent the notations, as identifiers in roman font
subscripted by types, are already constants of H.O.L. However the azioms
defining those constants do extend the formal system, and we need to show
that the extension is conservative. That is, we need to show that notations
are eliminable from proofs.

An (object language) definition of a constant ¢ is a sentence of the form
“c = A”, where A is a formula which contains no free occurrences of vari-
ables, and no occurrences of ¢. Given a set of definitions, the definition
graph is the graph of the relation “is defined in terms of”. That is, a pair of
constants (¢, ¢') is an element of the definition graph iff there is a definition
“c = A” where ¢’ occurs in A. A set of definitions ¥ is an abbreviation
system iff:

1. No constant has two definitions in X.

2. The definition graph of ¥ is a noetherian relation, i.e. it has no infinite
chains (see definition B.3 in appendix B, page 185).

3. No logical constant has a definition in X.

Notice that it is not sufficient to say that there are no cycles in the graph. For
example, consider the infinite family of notations “{A;,..., 4,}”, (n > 1)
and the constants which represent them, say enum,, enum,,, enum,,, etc.
Obviously, each constant, of arity n, could be easily defined in terms of the
constant of arity n + 1. Although such definitions would have an acyclic
graph, they would not constitute an abbreviation system, because the graph
would have an infinite chain.
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Given an abbreviation system X, the X-expansion of a formula A is the
result of starting with A and repeatedly replacing occurrences of constants
defined by ¥ with their definientia until there are no such occurrences left.
If A'is the ¥-expansion of A:

SHA=A (2.18)

Notice that this is not quite the same notion of “expansion of a notation”
that we have seen informally above. The former notion involved a conversion
into B-nf. We shall say that A’ is a £3-expansion of A iff it is a [-nf of the
Y-expansion of A. We shall say that A’ is a £87-ezpansion of A iff it is a
By-nf of the Y-expansion of A. Clearly (2.18) still holds in these cases.

Theorem 2.3 If ¥ is an abbreviation system which does not define any
constant occurring in T, and if P is a sentence which contains no occurrences
of constants defined in L, thenTUX F P iff T+ P.

Proor. Let I = ((A;, Q;))1<i<n be a proof of T UX + P. For every ¢,
1 < i < n, let Al be the set of T-expansions of the axioms of A; — ¥; and
let Q! be the T-expansion of Q. Let II' = ((Al, @!))1<i<n; we shall refer to
the pairs (A!, @}), 1 < i < n, as the lines of I', even though II' may not be
a proof.

Suppose that line 7 of II follows from previous lines by a rule of inference
other than 1, 8, 13, 14, 16 or 21. (Rule 1 is reflexivity of - (i.e. P I P), and
rules 8, 13, 14, 16, 21 are those that discharge assumptions.) Then line ¢ of
II' follows from the corresponding lines of II' by the same rule.

Suppose that line i of II follows by 8, 13, 14, 16 or 21 from previous lines,
one of which is line j from which a formula R is being discharged. If R
happens to be an axiom of ¥, then its Y-expansion may not be part of the
hypotheses of line j of II’; but then a new line can be derived from line j
of II' by adding the missing hypotheses, with rule 2 as justification; the new
line can be used instead of line j when justifying line 7 of II'.

Suppose that line 7 of I is ({@;},Q,) (ie. Q; F @,). If Q, is not an
axiom of ¥, then line 7 of I’ is ({Q!}, @!), which is justified by rule 1. If
Q; is an axiom of ¥, then line 7 of Il' is (§, @!). But then Q, is “c = A”,
and ¢ and A have the same S-expansion A'. Therefore Q! is “A' = A”.

H
Reflexivity of equality is not a primitive rule of inference in the system, but



2.5. SET THEORY WITHIN H.O.L. 51

it can be derived, as we saw at the end of section 2.4.2; so line 7 of II' can be
proved.

Therefore by inserting additional lines and proof fragments, II' can be
made into a proof. The last line of I is (I' UX, P), where neither P nor the
axioms of T' contain any occurrences of constants defined by ¥. Therefore
the last line of Il is (T', P); hence:

r'-~p.

0

In particular, let T' = ZF, let ¥ be an abbreviation system which does not
define in,,,, and let P be a F.O. sentence containing no non-logical constants
other thanin,,,. f ZFUX F P then ZF + P, and by theorem 2.2, ZF K, ¢, P.

2.5.4 Some axioms and notations of ZF
Extensionality

Most axioms of ZF assert the existence of certain sets, the uniqueness of
which follows from the axiom of extensionality. The basic notations of ZF
denote those sets. We are now going to review the axioms of ZF and show how
each basic notation can be represented in our formal system by a constant
and an axiom defining it. We begin with Extensionality, Empty-set, and
Replacement.

Extenstonality.

VaVy(Vz(z Ez =2 €y) Dz =y) (2.19)

The use of (2.19) in connection with notations defined in terms of the
description operator can be illustrated with “{@ | P}”. This notation was
introduced in section 2.5.2, page 43, where we proved (2.11) and promised
to prove (2.12) using the axiom of extensionality.

The existence of a set s such that “Vz(z € s = P)” for an arbitrary
sentence P does not follow from the axioms of ZF if ZF is consistent; so it
is an explicit condition in (2.12). The proof of (2.12) is as follows. Let R be
the formula “Ve(x € s = P)” and let t be a variable distinct from s and @
and not free in P. Then R} is “Va(z € t = P)” and we have:

RAR, F Ve(r€s=P)AVe(xet=P)
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RAR; + Ve(zes=P)
RAR, F Vae(zet=P)
RAR; F Ve(zes=wxet)

Hence by the axiom of extensionality:

ZE,RAR: + s=t
ZF - RAR Ds=t
ZF F VsVi(RAR; Ds=t)

By rule 22 (-introduction):
ZF + IsR
l.e.
ZF + lsVe(x € s = P)
Let Q be the existence assumption “JsVa(z € s = P)”.
QF JsVe(z € s = P)
By rule 24 (3!-Introduction):
ZF,Q  sVa(x € s = P)
By rule 26 (u-Introduction):
ZF,Q +Va(z € usvVe(z € s = P) = P)

Then by (2.11) (which asserts that “{@ | P}” is equal to its £-expansion
“usVe (e € s = P)”):

ZFUZ, Q+Ve(z e {z| P} =P)

From this we obtain (2.12) by discharging Q.
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Empty-set
The Empty-set axiom asserts the existence of a set with no elements:
IsVz—(z € s)
On the other hand, by Extensionality, we know there is at most one such set:
ZF FlsVz—(z € s)

Hence

ZF b 3lsVz—(z € s).
By p-Introduction:

ZF F Vz—(z € usVz—(z € s)) (2.20)
We introduce the notation
“P” for “emptyset,”

with the definition:
emptyset, = usVz—(z € s). (2.21)

If ¥ contains (2.21), from (2.20) and (2.21):

ZFUS F Va—(z € 0).

Replacement

A formula is an instance of the axiom schema of replacement iff it is of the

form
Vzi1...Vz,( VeVyVu(P APY Dy =u) D (2.22)
VedsVy(y € s = Jz(z € e A P)))

where:
1. @ and y are distinct individual variables,
2. P is a V-F.O. sentence,

3. z21...%z, are the individual variables other than @ and y which occur
free in P,
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4. u is an individual variable other @ and y which is adequate to P, and

5. e and s are distinct F.O. variables, other than @ and y, which do not
occur free in P.

We shall refer to P as the parameter of the axiom schema.

Replacement has two important special cases. The first one is obtained
by taking P of the form “y = @ A Q@”, where @ is a V-F.O. sentence with
no occurrences of y (of any kind). After simplification we get:

ZF F Y2y ... Vz,(VedsVy(y € s =y € e A QY))

Nothing prevents us now from calling @ what we have been calling y, and
P what we have been calling Q7. We recognize then the theorem schema of
separation:

ZF FVz,...Vz,VedsVe(e e s=ax €e A P) (2.23)

where the conditions are as follows:
1. @ is an individual variable,
2. P is a V-F.O. sentence,

3. z1...2z, are the individual variables other than @ which occur free in
P,

4. e and s are distinct F.O. variables, other than @, which do not occur
free in P.

We shall refer to P as the parameter of the theorem schema.
Separation allows us to introduce the notation “{@ € E | P}”, where @
is an individual variable, E a V-F.O. term, and P a V-F.O. sentence. We

represent it as:

subset,o,), E Az P.

(Notice that subset,,), is a different constant from the constant subset,,
which we used to represent the notation “A C B”.) We define subset,,,)
with the axiom:

subset,(o,), = AeApo,usVe(z € s =2 € e Ap,, z) (2.24)
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Let ¥ be an abbreviation system containing this definition. Assume @ is not
free in E, and let s be a F.O. variable other than @ which does not occur
free in E or P. Then by substitutivity of equality and conversion:

SH{z€eE|P}=pusVe(zcs=axc EAP) (2.25)
By rule 14 (V-Elimination) applied to Separation (2.23):
ZF \- sV (z € s=x € E A P)
and by Extensionality:
ZF HsVe(e e s=ax € ENAP)
Therefore by rule 24 (3!-Introduction):
ZF + 3lsVe(e € s=x € EAP)

And by rule 26 (u-Introduction), followed by substitution of the left-hand
side of (2.25) for the right-hand side:

ZFUSHVe(ze{e € E|P}=xzc EAP). (2.26)

The second special case of Replacement is obtained when P is of the form
“y = A”, where A is a V-F.O. term having no free occurrences of y. After
simplification we obtain the following theorem schema:

ZF - Vz;...Vz,VedsVy(y € s=Fz(r € e Ay = A)) (2.27)
where the conditions are as follows:
1. @ and y are distinct individual variables,
2. Ais a V-F.O. term having no free occurrences of y,

3. z;...2, are the individual variables other than & which occur free in
A,

4. e and s are distinct indidvidual variables, other than & and y, which
do not occur free in A.
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We shall refer to A as the parameter of the theorem schema.

This theorem schema allows us to introduce the notation “{A},ecg” (“the
set consisting of everything of the form A for @ € E”), where A and E are
V-F.O. terms, and @ is an individual variable. We represent it by:

range,,,), £ Az A.
with range,,,), defined by:
range,,), = AeAa, usVy(y € s=3a(z €e ANy =a, ) (2.28)

Assume that @ is not free in F, and let s, y be distinct individual vari-
ables, other than @, which do not occur free in E or A. If ¥ contains
definition (2.28), by substitutivity of equality and conversion:

CH{A},er = psVyly € s=3x(z € e ANy = A)) (2.29)
Then by extensionality and theorem schema (2.27):

IZFUSFYy(y € {A}rer =3x(x € e Ay = A)). (2.30)

2.5.5 The axiom schema problem

In the statement of the axiom schema of replacement we were careful to
specify that the parameter P must be a V-F.O. formula. The reason for
this restriction is clear: otherwise we would be allowing instances of the
schema which are not V-F.O. sentences and therefore cannot be axioms of
ZF. In moving from ZF within F.O.L. to ZF within H.O.L. we have enriched
the logical framework, but we do not wish to change the set of axioms of the
theory ZF, since the resulting formal system might not then be a conservative
extension of the original one.

The restriction is not an unimportant one. Formulas containing mathe-
matical notations (other than the notations for set-membership, F.O. quan-
tification, and the logical connectives) are not V-F.O. formulas; therefore, in
principle, they cannot be used as parameters of Replacement (2.22), Separa-
tion (2.23) and theorem schema (2.27), arid they cannot be used in the role
of P in (2.26) or in the 1ole of A4 in (2.30). But Replacement and Separation
are essential in set theoretic arguments; if we were to actually rule out the use
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of mathematical notations in such contexts we would render the notations
practically useless, and we would be going against mathematical practice.

Fortunately, if a sentence P’ is logically equivalent to a sentence P (un-
der hypotheses having no free variables), then by substitutivity of equality
(equivalence, in this case), P’ can be used instead of P. And if a term A’ is
equal to A, it can be used instead of A. We thus have to show that formulas
(terms or sentences) containing mathematical notations are equivalent to V-
F.O. formulas; in other words, we have to show that notations are eliminable
from formulas.

It should be noted that notations would not be eliminable if we defined
them in terms of a selection operator instead of the description operator.
A selection operator could be easily added to our system, as a family of
constants select 4(oq) With the notation “exP” for “selectq(oa) A2 P” and the
rule of inference:

27. e-Introduction

't dzP . . )
m cx P” free for  in P

The resulting system, ZF within H.O.L.+¢, would still be a conservative
extension of ZF within H.O.L. But if we allowed occurrences of the selection
operator in the parameter of Replacement, either directly or indirectly by
allowing notations defined in terms of it, we would strengthen the system.
In particular the axiom of choice would become provable.!® (It follows from
Replacement by letting the parameter P be the sentence

y = (z,¢e2(z € z))

with 2z and y in the roles of @ and y.) This is precisely what happens in
Bourbaki’s system (recall section 1.5.2).

Notice that no harm is done by adding the selection operator to the sys-
tem, as explained, as long as it is not used in the parameter of Replacement.
The presence of the selection operator is equivalent to the type theoretic ax-
iom of choice [2]. It is interesting to note that in our formal system there
is room for both the set theoretic axiom of choice, and its type theoretic
counterpart. We have the option of using none, both, or either one.

16Tt is not provable in ZF if we assume that ZF is consistent.
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Versions of set theory which distinguish between classes and sets are
finitely axiomatizable. The axiom schema problem does not go away in
those systems. Although there is no aziom schema of replacement, there is
a theorem schema of class existence [40, proposition 4.4] which gives rise to
the same difficulty.

2.5.6 Eliminability of notations from formulas

In fact, notations defined in terms of the description operator are not elim-
inable from formulas in the system that we have so far.!” But they are
eliminable in the slightly stronger system obtained by adding the following
additional introduction rule for p, which covers the case when unique exis-
tence does not hold, by stipulating that yx P is then the empty set. (Notice
that this rule is only for the description operator the,,); we need no addi-
tional introduction rule for the,(,,) when a is other than ¢.)

26a. p-Introduction-bis

I't-3leP
I'F Ve-(x € yaxP)

x individual variable only

From now on we shall write I for the deducibility relation in this stronger
system.

The following theorem states that the stronger system is a conservative
extension of F.O.L. in the presence of ZF.

Theorem 2.4 Let T be ¢« V-F.O. theory and P a V-F.O. sentence. If
TUZF+ P

then
TUZF Ko P

17 . since our description operator is even more inderminate than the selection oper-
ator. That is, if the description operator was eliminable, it would also be eliminable in
the stronger system obtained by turning it into a selection operator (instead of adding a
separate selection operator). But then the selection operator could be used in the para-
mater of Replacement without strengthening the system, which is not the case, assuming
the consistency of ZF.
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PROOF. An interpretation with empty set is an interpretation (D, ¢) (in the
H.O. sense of section 2.3.4) with domain of individuals D, = M such that
#(in,,,) is a function f € D,,, for which there exists a unique z € M such
that, for every 2 € M,
fa)(z) = .

The unique element z is called the empty set in the domain of individuals of
the interpretation. A logical interpretation with empty-set default is a logical
interpretation with empty set where the denotation of the,,) is a function
g € D,(o,) Which maps to the empty set z every function h € D,,, which takes
the value T on zero or more than one individuals of M.

Clearly, the system obtained by adding rule 26a is sound for logical in-
terpretations with empty-set default. That is, if I' - P with the new sense
of -, and-Z is a model of ' with empty-set default, then 7 satisfies P. It is
also clear that any V-F.O. interpretation which is a model of ZF in the F.O.
sense has a H.O. extension with empty-set default.

The proof then proceeds as the proof of theorem 2.2 given in appendix D.
Assume TUZF + P where I' is a V-F.O. theory and P is a V-F.O. sentence.
Let Z be a V-F.O. interpretation which is a model of T' U ZF. Since 7 is
a model of ZF it has a H.O. extension J which is a logical interpretation
with empty-set default. By lemma D.3, J is a H.O. model of T U ZF. By
the soundness of the new inference system for logical interpretations with
empty-set default, J satisfies P, in the H.O. sense. By lemma D.3 again,
7 satisfies P in the F.O. sense. Thus every V-F.O. interpretation which is
a model of T U ZF satisfies P, i.e. I UZF | P. By the completeness of
F.O.L. (theorem D.1), TUZF K50 P. D

The following theorem states that notations are also eliminable from
proofs in the stronger system.

Theorem 2.5 If ¥ is an abbreviation system which does not define any con-
stant occurring in a theory T', and which does not define in,,,, and if P 1s
a sentence which contains no occurrences of constants defined in T, then
TUZSHPIfTE P.

PROOF. Assume I'UX F P, and let II be a proof of the sequent (T UX, P).
We construct II' as in the proof of theorem 2.3 given above. If line ¢ of II
follows from previous lines by rule 26a, of by a rule of inference other than
1, 8,13, 14, 16 or 21, then line ¢ of II' follows from the corresponding lines of
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II' by the same rule. This is because in,,, is not one of the constants defined
by X. The proof then proceeds as the proof of theorem 2.3. O

Now we show that notations are eliminable from formulas in the stronger
system.

The residual vocabulary of an abbreviation system X is the set of constants
occurring in ¥ other than those defined by X. A set-theoretic abbreviation
system is an abbreviation system whose residual vocabulary consists only of
F.O. logical constants, in,,,, the,,) and individual constants. A p-sentence is
a sentence with no occurrences of constants other than the F.O. logical con-
stants, in,,,, the,,) and individual constants, and with no free occurrences of
variables other than individual variables. Given a set-theoretic abbreviation
system T, a $-sentence (tesp. a L-term) is a sentence (resp. a term) with no
occurrences of constants other than constants defined by ¥, F.O. logical con-
stants, in,,, the,,) and individual constants, and with no free occurrences
of variables other than individual variables.

Lemma 2.6 Given a set-theoretic abbreviation system X, for every L-sentence
P there exists a p-sentence P' such that

SFP=P

PROOF. The Z-expansion of a formula does not change the variables which
occur free in the formula, it removes any constants defined by ¥ which occur
in the formula, and it adds only constants which are part of the residual
vocabulary of ¥. Therefore the -expansion of a E-formula is a p-formula.
So for P’ we can simply take the L-expansion of P. O

Lemma 2.7 For every u-sentence P in 3y-nf there erists a V-F. Q. sentence
P’ such that
ZF-P =P

ProoF. Let P be a p-sentence in fy-nf having an occurrence of the,,).
By lemma B.13, page 198, P has a subformula of the form “ux@”, where
z is an individual variable and @ is a sentence. Furthermore, if we choose
“ux@” to be an innermost such subformula, then @ has no occurrences of
the,o,) (since Q itself is a y-sentence in F4-nf).

Since “ux@” has an atomic type (namely, ¢), by lemma B.14, P has a
subformula of the form “s A; ... A,” where s is a symbol of n-ary type
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barn .. .aq and for some i, 1 < 7 < n, A;is of the form “Ay,... Ay, pzQ”.
But then «; is of the form ¢f3,,...5;. By lemma B.15 the bound variables
of P are of type ¢, so 8 must be a free symbol of P; therefore s must be:
a F.O. logical constant, the symbol ,,,, the symbol the,,), or an individual
constant or variable. The only such symbols that have a type of the form

are equal,, and in,,,. Therefore P must have a subformula R of one of the
- following forms (A being a term):

A=pzQ
prQ = A
AcpzeQ
HeQ € A

In other words, R is a formula C[u@ @], where C is a context of one of the
forms (“A = u”, u), (“u= A", u), (“A €u”,u), or (“u € A”,u), where u
is a variable which does not occur free in A.

Let then R’ be the formula:

Iy ((FzQ D Q;) A (—3zQ D Vz(—z € y)) AC[y])

where y is an individual variable not free in A and adequate to Q*, and z
is an individual variable distinct from y. Clearly, using rules 26 and 26a:

ZF+-RDOR'

Using again rules 26 and 26a, together with the axiom of Extensionality of
ZF:

ZF+ R' D R.

Hence:

ZF-FR=R.
And if P, is obtained from P by substituting R’ for R, then:

ZF-P=P,.
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P, is a u-sentence in Bv-nf having one fewer occurrence of the,,,) than P.
Therefore there exists a formula P’ which has no occurrences of the,(,,), is a
p-sentence in Sv-nf, and is such that

IZF-P =P

But a p-sentence in S4-nf having no occurrences of the,(,,) is, by theorem 2.1,
page 39, a V-F.O. sentence. O

Theorem 2.8 (Eliminability of notations from formulas) IfX is a sei-
theoretic abbreviation system, for every L-sentence P there exists a V-F.Q.

sentence P' such that
ZFUS P =P

ProOOF. By lemma 2.6 there exists a u-sentence @ such that - P = Q. Q
has a 3y-nf Q' (af3y-CONVERSION, page 24). Every symbol which occurs
free in Q' also occurs free in Q; therefore Q' is also a p-sentence. Then
by lemma 2.7 there exists a V-F.O. sentence P’ such that - Q@' = P'. By
transitivity of equality (equivalence, in this case), L+ P = P'. O

Now, given a set-theoretic abbreviation system X, if R is a formula which
would be an instance of Replacement, except for the fact that the parameter
P is a S-formula rather than a V-F.O. formula, it follows from theorem 2.8
by substitutivity of equality (equivalence in this case) that:

ZFUX F R.

So we can use the constants defined by ¥, and the notations that they rep-
resent, in the parameter of Replacement. And therefore we can also use
them in the theorem schema of Separation (2.23), in the second special
case of Replacement (2.27), and in the characterizations of the notations
“lz € E| P} (2.26) and “{A},cs” (2.30). More precisely, we have:

ZFUX FVz,...Vz,VedsVe(z €es=z € e A P)

where the conditions are as in (2.23) except that P is now any X-sentence,
Y. being a set-theoretic abbreviation system;

ZFUX FVz;...Vz,VedsVy(y € s=Fx(x € e Ay = A))
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where the conditions are as in (2.27) except that A is now any X-term, ¥
being a set-theoretic abbreviation system;

ZFUZHFVe(z e{z e E|P}=xc EAP)

as in (2.26), except that P is now any Y-sentence, ¥ being a set-theoretic
abbreviation system including equation (2.24), the definition of subset,,);

and
IFUS FVy(y € {A}ser =32(z € EAy = A))

as in (2.30), except that A is now any X-term, ¥ being a set-theoretic ab-
breviation system including equation (2.28), the definition of range,,,y,.

2.5.7 Other axioms and notations of ZF

We now give the remaining axioms of ZF, and show how we formalize a few

basic notations associated with them. In this section ¥ is a set theoretic

abbreviation system including all the definitions introduced in the section.
Pair-set aziom.

VaVydsVz(z €s=z=aVz =y)
This axiom gives rise to the notation
“{A, B} (A,B: terms) for “enum,, A B”
with the definition
enum,, = AzdyusVz(z €s=z=aVz=y)
The expansion of the notation gives:
Y+{A B} =usVz(z €s=2=AVz=B)

where 8, z are distinct individual variables which do not occur free in A or
B. Then, by the Pair-set axiom and Extensionality:

ZFUTSFVz(2€{A,B}=z=AVz=B).

There is also:
“{A}” (A: term) for “enum,, A”
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with the definition
enum,, = Az({z, z2})

from which:
LH{A} ={A, A}

Union aziom.
V23sVz(z € s=3y(z € yAy € z))
It gives rise to the notation:
“WA” (A: term) for “union, A”
with the definition:
union,, = AausVz(z € s = Jy(z € y Ay € 2))
Expanding the notation we get:
SHJA=psVz(z€es=y(z €y Ay € A))

where s, z and y are pairwise distinct individual variables which do not
occur free in A. By Extensionality and the Union axiom:

ZFUSFVz(z €| JA=Ty(z € yAy € A))
We have also two related notations:
“AUB” (A,B: terms) for “union,, A B”

with the definition:
union,,, = AzAy({_{z,y})

from which:
T+ AUB=J{A,B}

and:
“Upep A” (x: variable; B, A: terms) for “union,,,) E Az A”
with the definition:

union,(,,), = )\e)\aLL(U{au z}ree)
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which can also be written, in fully formal notation:
union,(,,), = AeAa, (union, (range,,,), ¢ Az(a, z)))

From this definition we get:

U Aa=U{Aes)

z€E

Power-set aziom.
V23sVy(y € s =Vz(z € y D 2 € z)) (2.31)

The axiom becomes more readable if we introduce the C notation, as ex-
plained in section 2.5.2:

VzIsVy(y € s=y C z) (2.32)

Formula (2.32) is not a V-F.O. sentence, so it cannot be an axiom of ZF; but
it is a theorem of the theory ZF U %:

ZFUZ F Va3sVy(y € s =y C a).
The power-set axiom gives rise to the notation:
“P(A)” (A: term) for “powerset,, A”
with the definition:
powerset,, = AzusVy(y € s =y C z).
Expanding the notation we get:
T FPA)=psVyly e s=y C A)

where s and y are distinct individual variables not free in A. And by Ex-
tensionality and Power-set:

ZFUTHFVy(y e P(A)=y C A)
Aziom of Infinity. It is traditionally given as:
Js(@ € s AVz(z € s D2 U {z} € s)). (2.33)

But of course this is not a V-F.O. formula, so it cannot be an axiom of ZF.
The real axiom is the formula obtained by
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1. Computing the X-expansion of (2.33).
2. Converting to f~-nf.

3. Eliminating the occurrences of the,,,) as explained in the proof of
lemma 2.7.

(2.33) is then a theorem of ZF U S
ZFUZF 3s(P € sAVz(z € s Dz U{z} € 3)).
Agiom of Foundation.
Ve(=(z =0) D Jy(y e s Ayna =0)) (2.34)

Again, the real axiom is obtained from (2.34) by eliminating the abbrevia-
tions.



Chapter 3

A rewriting system for the
translation of notations

3.1 A customizable surface language

The distinction between surface language and internal representation opens
up the possibility of allowing the user to customize the surface language.
This is important because mathematicians like to choose or invent their own
notations, and it is desirable that a PDS allow them to do so. Even more
importantly, what set of notations is “good” depends on the domain or even
the problem at hand. The favorite mathematical notations, e.g. “A + B” or
“A-B” or “A — B” are reused with different meaningsin different contexts.
Watson has been conceived as a general purpose PDS for mathematicians and
engineers. Since it is not known what problems it will be applied to, it is not
possible to design an optimal set of notations; so it is best to allow the user
to specify his/her own notations.

As we shall see, Watson is very flexible in this regard. It is easy to switch
from one set of notations to another. Definitions of theories, statements
of theorems and lemmas, and proofs of results can be kept in a library in
external format and internal format (or only in one of the formats, the other
format being easily produced). Different surface languages can be used within
the same library, while the common internal representation makes it possible
to use results independently of the surface language in which they are stated.

But if the surface language is to be customizable, there must be an easy,

67
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declarative way of specifying mathematical notations. And the front-end of
the PDS cannot simply consist of an ad-hoc parser and pretty-printer; it must
be able to deal with an entire class of surface languages. In this chapter we
are going to present a simple syntactic theory of one-dimensional mathemat-
ical languages, within which notations can be specified as rewrite rules and
translation can be accomplished by rewriting. (We say “one-dimensional”
languages because we shall not handle two-dimensional aspects of notations,
such as subscripts, superscripts, fraction bars, etc. An alternative linear
syntax will have to be specified instead.)

3.2 Labeled expressions and patterns

The fact that expansion of shorthands is some form of rewriting is infor-
mally obvious. To translate “{@ | P}” into “set,,,) A@P” one looks, within
a given expression, for a subexpression of the form “{@ | P}”; one notes
which variable plays the role of @, and which sentence plays the role of P;
then one constructs the expression “set,(,,) A P”; finally one substitutes the
constructed expression for the original subexpression.

The problem in making this more precise is that the theory of rewriting
systems has been developed for algebraic languages, i.e. for languages whose
expressions are F.Q. terms (hence the phrase “term rewriting system”). We
need a theory of rewriting for much richer languages. The language for
internal representation is the language of H.O.L., of which F.O.L. is a “small”
subset, and F.O. terms are only a “small” subset of F.O.L. The surface
language is, in some sense, even richer, since it involves all kinds of variable
binding constructs.

In extending the notion of rewriting to these richer languages, one has
to be careful. For example, “@ € y” normally rewrites to “in,,,  y”; but it
would be wrong to perform the rewrite within

{zxey| P} (3.1)

This is because, in (3.1), “@ € y” is not a sentence, it is only part of a
larger construct. This of course can only be seen after parsing the entire
expression. It seems therefore that the tranlation process should consist of
two steps: first, a syntactic analysis, then a series of rewrites.
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Since there are two steps, there must be an intermediate form: the result
of the analysis, to which the rewrites are applied. The result of the analysis
must specify the boundaries of the subexpressions, and their syntactic cat-
egories. We are going to restrict our attention to the style of mathematical
notation in which groupingis accomplished exclusively by parentheses. Then
the result of the analysis can be shown by adding parentheses around every
subexpression which does not have them yet, and annotating each pair of
parentheses with a phrase marker, or label, indicating the syntactic category
of the subexpression. Conversely, given such a labeled expression, the cor-
responding unlabeled expressions are obtained by erasing the markers, and
then suppressing zero, some or all the pairs of parentheses.

We shall place each marker immediately to the right of the opening paren-
thesis enclosing the corresponding subexpression. The markers are additional
symbols to be introduced besides the ordinary symbols of the language. We
shall refer to them as non-terminal symbols and to the ordinary symbols
of the language as terminal symbols. This is by an analogy with the the-
ory of context-free languages and grammars which will be made precise in
section 3.5. It should be noted that parentheses are neither terminal nor
non-terminal symbols. They form a category of symbols by themselves, the
delimiters.

In the typed A-calculus, we distinguished in section 2.3.2 between the
proper symbols (the constants and the variables) and the single improper
symbol ). They are all terminal symbols. As non-terminal symbols we shall
use FML, and VAR, for every type a: FML, will be used as a marker for the
formulas of type a; VAR, will be used for binding occurrences of variables,
that is, in “AzA”, where « is a variable of type «, we shall consider “@” as a
subexpression of syntactic category “vaR,”. (The reason for the distinction
between FML, and VAR, is that an occurrence of A can be followed by a
variable only, rather than by a subformula.) So, for example, the result of
parsing the expression

Az, (o, 2.)
is:
(FML,, ) (VAR, z,) (FML, (FML,, p,.) (FML, ,))).

For the surface language we shall use the same terminal and non-terminal
symbols as for the typed A-language, plus some additional ones. (It should
be noted that the surface language consists of shorthands for the formal
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language, but these shorthands are optional: the user can use the formal
expressions instead. Also, there are expressions in the formal language which
cannot be expressed by shorthands—more on this in section 3.4.4. Therefore
the formal language must be considered part of the surface language.) As
additional terminal symbols we shall use:

1. Miscellaneous mathematical symbols such as “v”, “€”, “U” etc.

2. Unsubscripted roman identifiers used as keywords. For example, in the
case study, section 4.3, we shall write “V low” (where V is a term
denoting a voltage level) for “low,, V", and “norD D' S §'S§"” (where
D and D' are terms denoting delays, and §, S’ and §” are terms
denoting signals) for “nor,,,, D D' S 8 §"7; “low” and “nor” are
keywords, while low,, and nor,,,,,, are constants. Keywords will also be
used instead of symbols which are not available (and cannot be imitated
by a concatenation of other symbols) in the computing environment of
Watson.

3. Unsubscripted italic identifiers used as surface versions of variables of
type ¢.

We shall use additional non-terminal symbols for the surface language only
rarely. The non-terminal symbols of the typed A-language are sufficient for
most purposes; for example, the surface language expression

{r. €y |2 €}
shall be analysed as:
(FML, { (VAR, ) € (FML, y) | (FML, (FML, 2) € (FML, z)) }). (3.2)

When we do use additional non-terminal symbols, they shall be identifiers in
small-caps font, some of them subscripted by type expressions.

The reason why we write the markers immediately to the right of the
opening parenthesis is that the resulting labeled expressions are strikingly
similar to algebraic terms, the markers playing the role of algebraic function
symbols, and the terminal symbols playing the role of algebraic constants.
These algebraic terms are many-sorted, the sort of a term being simply the
syntactic category of the expression, i.e. the marker following the opening
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parenthesis, i.e. the top level algebraic function symbol. The analogy with
sorted algebraic terms is not perfect, since function symbols and sorts are
identified, but it is good enough to allow the theory of algebraic term rewrit-
ing to carry over.

In this analogy between labeled expressions and algebraic terms there is
nothing yet corresponding to the algebraic variables, so labeled expressions
are the equivalent of ground terms. Let us then introduce pattern-matching
variables, materialized as identifiers in italics subscripted by non-terminal
symbols, to play the role of algebraic variables. The subscript of a pattern-
matching variable is its sort: if a pattern-matching variable is subscripted
by a non-terminal IV, it can only “match” labeled expressions of sort IV,
i.e. labeled expressions whose top-level label is IN. The pattern-matching
variables should not be confused, of course, with the variables of the typed
A-language, which are terminal symbols. When there is no risk of confu-
sion between the two kinds of variables, we shall refer to pattern-matching
variables simply as variables.

We shall call patterns the generalization of labeled expressions obtained
by allowing pattern-matching variables as “arguments” of the labels/funtion-
symbols. For example,

(FML, { 2ysp, € (FML, ¥) | Pear, })-

is a pattern which “matches” the labeled expression (3.2) displayed above,
with 2y,z, matching
(VAR, z)

and Py, matching
(FML, (FML, z) € (FML, z)).

The labeled expressions are then the ground patterns, i.e. the patterns with
no occurrences of pattern-matching variables.

Formally, a pattern is defined inductively as a string, or sequence, of
symbols consisting of: (i) a single pattern-matching variable; or (ii) a left-
parenthesis, a non-terminal symbol, an arbitrary number (zero or more) of
terminal symbols or (sub)patterns, and a right-parenthesis. The sort of the
pattern is: in case (i), the sort of the pattern-matching variable; and in case
(ii), the non-terminal symbol which follows the opening left-parenthesis. A
proper subpattern of a pattern A is a subpattern of A other than A itself.
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We shall refer to a string consisting of a single pattern-matching variable
as a variable pattern, and to any other pattern as a non-variable pattern.

Observe that a string consisting of a single terminal symbol is not a
pattern, and a that a terminal symbol does not have a sort. This is another
(also unessential) difference with an algebraic language, since non-terminal
symbols play the role of algebraic constants in the analogy, but algebraic
constants do have sorts in a many-sorted algebraic language.

Alternatively, algebraic constants could be considered to be algebraic
function symbols of arity 0. They would then correspond, in the analogy,
to non-terminal symbols followed by zero terminal symbols or patterns; i.e.
they would correspond to patterns consisting of a left-parenthesis, followed
by a non-terminal symbol, followed by a right-parenthesis. Then the terminal
symbols would have no counterpart in the correspondance.

A substitution (for pattern-matching variables) is a function whose do-
main is a set of pattern-matching variables, such that the image of each
variable (its substitution value) is a pattern of same sort as the variable. To
apply a substitution @ to a pattern P is to replace the occurrences in P of
variables in the domain of § with the substitution values of the variables; the
result, written P9, is a substitution instance of the pattern P. Note that
given a pattern P and a substitution instance A of P there exists a unique
substitution # which yields A when applied to P and whose domain is the
set of pattern-matching variables occurring in P.

In the next section we shall use patterns to specify rewrite rules. But
patterns can also be used to define languages. Indeed, recall that a labeled
expression is nothing but a ground pattern. A set S of patterns is stable by
substitution iff for every pattern P in S and every substitution § which maps
every pattern-matching variable in its domain to either a variable pattern or
an element of S, the pattern P#@ is also in S. Let the substitution closure
of a set of non-variable patterns II be the smallest set which includes II and
is stable by substitution. Then the language L generated by II is the set of
labeled expressions (ground patterns) in the substitution closure of II.

For example the typed A-language can be redefined as the language gen-
erated by the following patterns, which we shall call the basic patterns of the
typed A-language: '

»

1. For every pair of types o, f, the pattern “(FMLq Apay,; Brwy)”-
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2. For every pair of types «, 3, the pattern “(FMLag A Zysr, Armea)” -

3. For every type o and every proper symbol of type a of the typed A-
language, the pattern “(FML, 8)”. Recall that, in the typed A-language,
the proper symbols are the variables and the constants, all of which are
terminal symbols in the extended framework.

4. For every type a and every variable z of type a, the pattern “(VAR, )",

This new definition is equivalent to the one given in section 2.3.2 in the
following sense: for every labeled expression in the language generated by
the above patterns whose sort is of the form FML, (this excludes expressions
of sort VAR,) the result of erasing the labels is a formula of the typed A-
language, of type a; conversely, for every formula A of type o of the typed
A-language, there exists exactly one labeled expression of sort FML, in the
language generated by the above set of patterns from which A can be derived
by erasing the labels.

Consistently with our previous terminology, we shall refer to labeled ex-
pressions of sort FML, as terms, and to labeled expressions of sort FML, as
sentences.

3.3 Rewrite rules

A rewrite rule is a pair of patterns of same sort (P, P’) which satisfy the
following conditions: (i) P is a non-variable pattern, and (ii) every pattern-
matching variable which occurs in P’ also occurs in P. We shall write
P — P'for (P, P'); P is the left-hand side of the rule, and P’ the right-
hand side. For example,

(PML, Apae, € BFMLL) — (FML, (FML,, (FML,,, inou) AFML;) BFML;) (3-3)

is a rewrite rule.
A pattern A rewrites to a pattern B by an application of a rule P — P’
iff:

1. There exists a subpattern A’ of A which is the result of applying a
substitution 8 to the pattern-matching variables of P;
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2. B'is the result of applying the same substitution ¢ to the right-hand
side P'; and

3. B is the result of replacing an occurrence of A’ in A with B'.

We then say that B is a result of applying the rule to A or, more precisely,
to the occurrence of A’ which is replaced.

In section 2.3.2 we defined a context of the typed A-language as a pair
C = (A, z) and the notation C[B] as A%. Now we can define a more general
notion of context by using a pattern-matching variable instead of a variable
of the typed A-language as place holder. We define a context again as a pair
C = (A, ), where now A is a pattern and @ a pattern-matching variable.
And we define the notation C[B], where B is a pattern of same sort as x,
as the result of substituting B for @ in A. (When we say that a pattern
is of the form C[B] we shall be implicitly asserting that B is a pattern of
same sort as @.) Observe that if A has no occurrences of pattern-matching
variables other than @, and B is a labeled expression (i.e. a ground pattern),
then C[B] is a also a labeled expression.’

A simple context is a context (A, @) such that @ has exactly one occur-
rence in A. A trivial context is a context (A, x) such that A is the variable
pattern “x”.

With these definitions we can more succinctly say that a pattern A
rewrites to a pattern A’ by an application of the rule P — P’ iff A is
of the form:

C[P?)
where C is a simple context and 6 a substitution, and A’ is the expression
C[P']].

Since the rule introduces no variables (no variable occurs in P’ without occur-
ring in P), if A is a labeled expression, then A’ is also a lebeled expression.

1The new definition is indeed more general than the one of section 2.3.2: given an
old-style context (A, z) where z is a variable of type a, a corresponding new-style context
can be obtained by (i) labeling A with the appropriate non-terminal symbols to obtain
a labeled expression B; (ii) choosing a pattern-matching variable v of sort FML,, and
(iii) replacing the occurrences of “(FML, 2)” in B which have been derived from free
occurrences of x in A with v to obtain a pattern P. The new-style context is (P,v).

The new definition can be used to provide a notion of context even for languages which
do not have variables among their terminal symbols.
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It is mostly the rewriting of labeled expressions which will be of interest to
us, for the task of language translation.

As an example, let us try to apply rule (3.3) to the labeled expression
(3.2), page 70. We observe that the subexpression

(FML, (FML, z) € (FML, z)) (3.4)
is the result of applying the substitution

AFML, — “(FMLL Z)”
By, — “(FML, 2)”

to the left-hand side of the rule. Applying the same substitution to the
right-hand side gives

(FML, (FML,, (FML,,, in,,) (FML, 2)) (FML, z)) (3.5)
Then, replacing (3.4) with (3.5) in (3.2) we get:
(PML, { (VAR, 2) € (FML, y) | (FML, (FML,, (FML,,, in,,,) (FML, z)) (FML, )) }).

Notice how the rule does not apply to the substring “z € y” of “{z € y |
z € 2}”, for two reasons: “z” is not analysed as a term, and “z € y” is not
analysed as a sentence. Generally, the rule applies to “A € B” when A and
B are analysed as terms and “A € B” is analyzed as a sentence; it then
replaces (the labeled expression resulting from the analysis of) “A4 € B”
with (the labeled expression corresponding to) “in,, A B”. Thus applying
the rewrite rule is expanding the shorthand “A € B”.

All shorthands seen in chapter (2) can similarly be expressed as rewrite
rules. To obtain a rewrite rule from a metalinguistic description of a short-

hand is a matter of:

1. Labeling the schematic formula which gives the representation of the
shorthand;

2. Labeling the schematic formula which gives the shortand itself; and

3. Replacing the metalinguistic variables by pattern-matching variables
of appropriate sorts.
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Thus rule (3.3) above can easily be derived from the shorthand description:
“A € B” (A,B: terms) for “in,, A B”
by labeling “in,,, A B” as
(FML, (FML,, (FML,,, in,,,) A) B),
then labeling “A € B” as
(FML, A € B),

and finally replacing “A” with “Apy,” and “B” with “Bey,”.

How to label the representation of the shorthand is determined by the
definition given above of the typed A-language as a language generated by a
set of patterns. The labeling of the shorthand itself is not fully determined,
since we have not defined the surface language yet as a set of labeled expres-
sions. In fact, it is the labeling of the shorthands which will determine the
surface language as the language generated by the following set of patterns:

1. The patterns which generate the typed A-language, given above; and
2. The left-hand sides of all the shorthands in use.

The labeling of shorthands is however partly determined by the fact that
both sides of a rule must be of the same sort. So, for example, the top-level
label of “A € B” must be the same as the top-level label of “in,,, A B”, viz.
FML,; simply stated, “A € B” must be a sentence. Most often, shorthands
can be analysed as not having any “internal structure”: then only the top-
level label has to be added, and so the labeling of the shorthand is entirely
determined; this is the case for “A € B” which is labeled “(FML, A € B)”.

Sometimes, though, shorthands have internal structure. This is the case,
for example, of the notation “(V& € E)P”, which we saw in section 2.5.2:

“(Ve& € E)P” (x: variable; E: term; P: sentence) for “forally,,), E Az P”

Since we are not treating parentheses as terminal symbols, but rather as
delimiters, “(V& € E)” must be a subexpression. We must introduce an
auxiliary non-terminal symbol, say RQ (for “Restricted Quantifier”) to serve
as its label. Since the representation of the shorthand is a formula of type o,
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the top-level label of the shorthand is FML,. So the labeling of the shorthand
is:

(FML, (RQ Y@ € E) P)

Using pattern-matching variables zy,p,, Fry, and Pey,, the left-hand side
of the rule is
(FML, (RQ V Zyar, € EFMLL) Prwo),

and the entire rule:

(FMLo (RQ \ Tyam, € EFML,) PFMLO) —
(FML, (FMLo(0,) (FMLo(o,), forallo(o,)) Epmr,) (FMLo, A Zyan, Pewso))

Even when there are no explicit parentheses in the shorthand it may be
reasonable to introduce internal structure; for example, we could emphasize
that the notations:

{z € E| P},
(Ve € E)P,
User A (linearized as “Ux € E; A”),

etc.

have “@ € E” in common by making it a subexpression; such a subexpression
would not be a sentence, so we would have to introduce again an auxiliary
non-terminal symbol, say RANGE, to be used as its label. The left-hand sides
of the rules would then be:

(FML, { (RANGE Zysg, € Er,) | Provro })s
(FML, (RQ Y (RANGE Zysp, € Eray,)) Pemvo)
(FMLL U (RANGE Tysp, € EFML,) ; AFMLl)
etc.

Certain shorthands are parameterized, and give rise to a family of rewrite
rules. Thisis the case of “A = B”, where A and B are formulas of arbitrary
type «; the type « is a parameter of the notation. For every o we have a
rewrite rule:

(FMLo Ap, = BPMLQ) — equal,,, Arme Brmie

(where the labeling of the right-hand side has been erased for readability,
since it can easily be restored). The quantifiers also require one rewrite
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rule for every type. For example, this is a rewrite rule schema for universal
quantification:

(FMLo V Zvara PFMLo) —_ forallo(m)(/Xmmnal PFMLo)

We could also introduce internal structure in this notation, which is in fact
often written “(Va)P”. We would then introduce a family of auxiliary non-
terminal symbols QUANT,; the rule schema would become:

(FML, (QUANT, V Zysr,) Pes,) — forallo(m)(AJ}va Prvno)

The auxiliary non-terminal symbols QUANT, could be shared by the four
quantifiers “for all”, “there exists”, “there exists at most one”, and “there
exists exactly one”.

The translation between the surface and internal form of individual vari-
ables can also be accomplished by rewrite rules; the surface form of an in-
dividual variable is an italic identifier, while the internal form is the same
identifier subscripted by the type :. This time we have two rewrite rule
schemas, both with the identifier Id as parameter:

(FML, Id) — (FML, Id,)
(VAR, Id) — (VAR, Id,)

Table 3.1 gives rewrite rules for all the notations discussed in chapter 2.
The auxiliary non-terminal RQ is used, but not RANGE or QUANT,. The
labeling of the right-hand sides has been suppressed for readability. Two-
dimensional notations have been linearized as follows:

Uz e EB; A instead of U,ep A
{A; 2 € E} instead of {A}.ep

3.4 Rewriting

3.4.1 Example

A set of rewrite rules constitutes a rewriting system. Given a rewriting system
R, we shall say that a pattern A rewrites to A’ in R iff there exists a chain



3.4. REWRITING

® NP O W

BN DN DN DN NN NI DN N = = = = e i b e e
CRXISPARDONEOVOADT R LNR OO

(FMLo (RQ Viygm € EFML[) P
(FMLO (RQ dZyan, € EFML,) P,

(FMLO Armra = Bewva
(FMLo Povo = Qeme,

(FMLo = Pewi,
(FMLo Powo A Qe
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(FML, 3 Zvana Pewn
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equal, ., Arvra Brmva
equa’looo PFMLo QFMLO

false,

true,

not,, F FMLo

andoeo PFMLo QFMLo

OTooo Prmro @rmro

implies,,, Prvw, @rvro
forally(oa)( A% vara Pemo)
eXistSo(oa)(ALvara Prnro)
atmosto(on)(AZvana Prro)
unique, o) (AZvana Praio)
thea(oa)()‘w\’ARaPFMLo)

(FML, Id,)

(VAR, Id,)

inou AFML, BFML:

fora‘llo(OL)L Ery, ()\mVARz Is FMLO)
exists,(o.), Fpmr, (')‘T‘VA}h PFMLO)
subset,,, AFML, BFML,

sety(o1) (AZvar, Pesaro)
subset,(o,), Fpmr, (AZyar, Prvio)
range,,,), Eea, (f\fcvm, AFML,)
emptyset,

enum,,, AFML; BFML¢

enum,, Appy,

union,, Appy,

unionm AFML, BFML:

union,(,,), Ermr, (>\ﬂ3vm, Ara,)
powerset,, Apmy,

Table 3.1: Rewrite rules for the translation of shorthands.
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of one-step rewrites by rules of the system which takes A into A e iff
there exists a sequence of patterns Bj, ..., B,, n > 1, such that B; = A,
B, = A', and each B, for 1 < i < n rewrites to Bi4; by an application of a
rule of R. A normal form for R is a pattern to which no rewrite rule of R is
applicable. A'is a normal form of A iff it is a normal form for R to which
A rewrites.

We shall consider a certain collection of shorthands defining a particular
surface language, and we shall refer to the set of rules derived from those
shorthands as the rewriting system for shorthand elimintation, ReLiv. The
translation of a labeled expression from the surface language into the typed
M-language is accomplished by rewriting all the shorthands in the formula;
more precisely, by successively applying rewrite rules until no more rules
apply, i.e. by computing a normal form of the labeled expression for ReLnu.
As an example, let us compute the representation of

Va=(z € 0). (3.6)
It involves the following rewrite rules from table 3.1:

Rule 9  (Universal quantification)

Rule 5 (Negation)

Rule 16 (Set membership)
Rule 23 (Empty set)

Rule 14 (Variable conversion)
Rule 15 (Variable conversion)

The first step is to parse (3.6), i.e. to add all missing pairs of parentheses,
and to add the phrase markers. Parsing is the subject of section 3.5, but it
is obvious what the result should be:

(FML, ¥ (VAR, 2)(FML, = (FML, (FML, z) € (FML, §)))) (3.7)

Let us begin by translating the shorthand for universal quantification.
Rule 9 matches the entire formula, with zy,;, matching

(VAR, z)
and Ppy, matching

(FML, = (FML, (FML, 2) € (FML, 0))).
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We substitute these expressions for zy,z, and Py, in the right-hand side
of rule 9 (and we restore the labels of the right-hand side, which have been
suppressed in table 3.1 for readability):

(FML,
(FML (o) forallyo,))
(FML,, A (VAR, z) (3.8)
(FML, = (FML, (FML, 2) € (FML, §)))))

Let us now translate the shorthand for negation. Rule 5 applies to the
subformula.
(FML, = (FML, (FML, z) € (FML, 0)))

which it transforms into

(FML,
(FML,, not,,)
(FML, (FML, 2) € (FML, §)))

By substitution in (3.8) we get:

(FML,
(FMLy(o,) forallyo,))
(FML,, A (VAR,; 2)
(FML,
(FML,, not,,)
(PML, (FML, z) € (FML, §)))))

Translation of the shorthand for set-membership (rule 16) gives:

(FML,
(FMLo(o,) forall,,,)
(FML,, A (VAR,; z)
(FML,
(FML,, not,,)
(FML, (FML,, (FML,,, in,,) (FML, z))(FML, §))))).

Finally we apply rules 23, 14 and 15, which rewrite the following subexpres-

sions:
(FML, §) into (FML, emptyset,)

(PML, ) into (FML, z,)
(VAR, ) into (VAR, z,)
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The result is the representation of (3.6) in the formal system:

(FML,
(FML (o, forallygo,))
(FML,, A (VAR, z,)
(FML,
(FML,, n0t,,)
(FML, (FML,, (FML,,, in,,) (FML, 2,))(FML, emptyset,)))))

which becomes more readable after erasing phrase markers and unnecessary
parentheses:
forall,(o,) Az, (not,, (In,, 2, emptyset,)). (3.9)

Conversely, given an expression of the typed A-language such as (3.9), the
corresponding surface language expression (3.6) is obtained by applying the
same rewrite rules in reverse. Indeed, it is clear that if (P, P’) is a rewrite
rule for shorthand translation, then the same pattern matching variables
should appear in both patterns P and P’, and P should be a non-variable
pattern. Thus the opposite pair (P’, P) should also be a rewrite rule; and
if A rewrites to A’ by P — P’ then A’ rewrites to A by P' — P. The
opposites of the rules of Rgrv comprise what we shall call the rewriting
system for shorthand introduction, Rintro. In general, we shall say that
a rewriting system is reversible iff every rule contains the same pattern-
matching variables in its right-hand side as in its left-hand side, and all
patterns, left-hand sides as well as right-hand sides, are non-variable patterns.
The opposites of the rewrite rules of a reversible system R form a rewriting
system which we shall call the reverse of R. Thus Rgpm and Rintro are
the reverse of each other.

This method of translation raises the following questions:

1. Is it certain that the chain of rewrites will terminate, both in the direct
and in the reverse direction?

2. Is the resulting expression independent of the order in which the rewrites
are applied, in both directions?

3. Does the direct rewriting process produce a formula of the typed A-
language?
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4. Does the reverse rewriting process produce a labeled expression which
is part of the surface language?

5. Is the effect of rewriting in one direction, and then the other, to produce
the original expression?

6. Is the rewriting process fast enough for its intended use as part of the
front-end of an interactive system?

We answer these questions in section 3.4.4 after establishing the results
needed for that purpose in sections 3.4.2 and 3.4.3.

3.4.2 Some simple rewriting theory

To establish the needed results we need to develop a modest amount of
rewriting theory.

Up to now we have stayed within a very concrete framework. We have
introduced a vocabulary consisting of a variety of symbols: (i) The constants
and variables of the typed A-language, and the symbol “)\”; miscellaneous
mathematical symbols, and unsubscripted roman and italic identifiers. We
have referred to all these symbols as terminal symbols. (i) Small-caps iden-
tifiers, subscripted by type expressions of the typed A-language, or unsub-
scripted; we have referred to these as non-terminal symbols, or sorts. (iii)
Italic identifiers subscripted by sorts, which we have called pattern-matching
variables. (iv) The left and right parentheses, called the delimiters.

However, everything in the next two sections holds in a more abstract
setting, consisting of: (i) An arbitrary set of terminal symbols. (ii) An arbi-
trary set of non-terminal symbols, also called sorts, disjoint from the set of
terminal symbols. (iii) A set of pattern-matching variables, disjoint from the
two previous sets of symbols, together with a function which assigns a sort to
each pattern-matching variable. (iv) An ordered pair of delimiters distinct
from the symbols in the three previous sets. The reader shall easily verify
that all the definitions which have already been given in the concrete set-
ting and are used in the next two sections can be transposed to the abstract
setting.

As we have already pointed out, the framework in which we make use
of rewriting is slightly different from the usual one, but the differences are
unessential and the results of the theory of algebraic term rewriting carry
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over to our framework. Rewriting theory is by now well developed, and
most, if not all, of the results that we need follow from more general known
results, as we shall point out in each case. For surveys of rewriting theory see
[15, 16, 31, 35]. But the kind of rewriting system that we need for language
translation is a very specific one, and it seems awkward to rely on overly
general theorems which require elaborate proofs, when simple direct proofs
can be given. So we shall give the simple proofs in addition to indicating the
connection with the more general results.

Well-formed trees

We shall make use of parse trees of labeled expressions, and more generally of
trees associated with patterns. We consider known the definition and basic
facts and terminology related to labeled trees, when alabeled tree is regarded?
as a triple (N, S, L), where N is the set of nodes, S is the function mapping
each internal node to the ordered sequence of its successors,® and L is the
function mapping each node to its label.* We shall say that a node n' is
above a node n iff ' is on the path from the root to n, without being equal
to n; below n iff n is on the path from the root to n/, without being equal to
n'; beside n iff n and n' are on divergent rooted paths.

A well-formed tree is a labeled tree whose whose internal nodes are labeled
by non-terminal symbols, whose leaf nodes are labeled by terminal symbols
or pattern matching variables, and whose root is an internal node or a leaf
node labeled by a pattern-matching variable, but not a leaf node labeled by a
terminal symbol. We shall refer to a leaf node labeled by a pattern-matching
variable as a variable node, and to all other nodes as non-variable nodes. We
shall refer to a node which is neither the root nor a variable node as an inner

2An alternative approach, where a tree is identified with the set of path coordinates
(called positions) of its nodes, has been used in the context of term rewriting [49). The
approach which we are following is more convenient for our specific purposes as we shall
show below. :

3A node may be without successors in two different ways: an internal node n may have
a sequence of successors (n) which is empty; a leaf node has no image by S.

4This is a different use of the word label from its use in the context of labeled expressions.
We have been referring as a label or marker to the non-terminal {following a left parenthesis.
From now on we shall use only the word marker for this purpose, but we shall continue
using the phrase labeled expression. Markers will be tree-labels of the parse trees of labeled
expressions, but terminal symbols will be tree-labels of parse trees as well,
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node; the inner nodes should not be confused with the internal nodes, the
latter being simply the non-leaf nodes; the inner nodes are the internal nodes
other than the root, if any, and the leaf nodes labeled by terminal symbols,
if any.

With every well-formed tree we associate the string (sequence) of symbols
defined by induction as follows: if the root of the tree is a leaf node, labeled by
a pattern-matching variable v, then the associated string is the one-symbol
sequence “v”; if the root is an internal node, then the associated string is the
concatenation of: a left parenthesis; the non-terminal symbol which labels
the root; the strings associated with the subtrees whose roots are the children
of the root (if any); and a right parenthesis. ,

Clearly, the string associated with a well-formed tree is a pattern. Con-
versely, given a pattern A, there exists a well-formed tree, determined up to
isomorphism, whose associated string is A. If A is a labeled expression, then
‘a well-formed tree associated with A is nothing but a traditional parse tree
of A, determined up to isomorphism.

The depth of a tree is the number of nodes in the longest path from the
root to a leaf node. The depth of a labeled expression or pattern A is the
depth of any tree associated with A.

Substitution by grafting

Let T = (N,S,L) and 7' = (N, 5", L") be two well-formed trees, let n € N
be a node of 7, and let 7" = (N", 5", L") be the subtree of 7 rooted at n.
Consider the following conditions: (i) the root of 7" is n; (ii) the set of nodes
N’ of T’ is disjoint from N — N". If both conditions are met, then the triple:

T"=(N—-N"YUN, (S—S)US,(L-L"YUL

is a well-formed tree. We shall refer to this construction as the graft of 7"
onto node n of 7. When 7' meets the conditions we shall say that it is
adequate for the graft.

Consider now a pattern P and a substitution §. Let 7 be a well-formed
tree associated with P, and let n;...n; be the leaf nodes of 7 which are
labeled by pattern matching variablesin the domainof §. For1 < i < £k let v,
be the pattern-matching variable which labels n;, let A; be the pattern 6(v;),
and let 7! be a well-formed tree associated with A;. If the trees 7 have
pairwise disjoint sets of nodes, and each 7 is adequate for grafting at node
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n; of 7, then the result 7" of the k grafts is a well-formed tree associated
with the pattern Pf. Observe that the result of the graft can be described
as the componentwise union of the 7' and the triple (¥, S, L') where L' is
the restriction of L to N — {ny,...,nz}. We shall refer to a well-formed tree
T" obtained as described from 7 and ¢ as being a 6-graft of 7.

Conversely, let A be a pattern of the form P8, where P is a pattern and
6 a substitution. If 7 is a well-formed tree associated with A, then there
exists a unique well-formed tree 7" associated with P such that 7 is a §-graft
of T'.

Occurrences and overlapping

Let 7 be a well-formed tree, let A be a pattern, and let 7' be a well-formed
tree associated A. We shall say that 7' is an occurrence of A in 7 iff there
is a subtree 7" of 7" which is a §-graft of 7' for some substitution §. When
this is the case every node n of 7' is a node of 7, and if n is a non-variable
node of 7' then the labels of n in 7 and 7’ coincide, and the sequences of
successors of n in 7 and 7" coincide.

Transitivity. We shall often make implicit use of the following observation:
if T4 is an occurrence of a pattern A in a well-formed tree 7, and 75 is an
occurrence of a pattern B in 74, then 7p is also an occurrence of B in 7T
itself.

Let A be a non-variable pattern, and 7' an occurrence of A in a well-
formed tree 7, with root r. Since A is a non-variable pattern the label of r
in 7' is a non-terminal symbol f. Since the label of r if 7' is not a pattern-
matching variable, f is also the label of » in 7. Hence r cannot be a leaf
node of 7. Thus the root of an occurrence of a non-variable pattern in a
well-formed tree 7 is an internal node of 7.

We shall say that two patterns A and B overlap iff one of them, say
A, has a non-variable subpattern A’ which has a common instance with the
other pattern, B; i.e. iff one of them, A, is of the form C[A'], where C is a
simple context and A’ is a non-variable pattern, and there exist substitutions
6 and 6’ such that A'6 = Bé'. ‘

Any non-variable pattern trivially overlaps itself in this sense. However,
we shall say that a pattern A self-overlaps iff it has a common instance with
a proper subpattern A’ of itself; i.e. iff A is of the form C[A'] where C is a
simple but non-trivial context and A’ is a non-variable pattern, and there
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exist substitutions # and ¢’ such that A'0 = A6’

Let now 7 be a well-formed tree, and let 7’ and 7" be occurrences in 7°
of two patterns A and B respectively. We shall say that 7' and 7" overlap
iff the root of one of them is an internal node of the other. We shall say that
they overlap at the root iff they overlap and their roots coincide.® If 7' and
T" overlap, then so do the patterns A and B. Indeed, assume that the root
node n of 7" is an internal node of 7'. Let A’ be the pattern associated with
the subtree of 7' rooted at n. Clearly, A’ is a non-variable subpattern of A,
and the pattern associated with the subtree of 7 rooted at n is a common
instance of A’ and B.

Let 7 be again a well-formed tree, and let now 7’ and 7" be occurrences
of the same pattern A. We shall say that 7’ and 7" have a proper overlap iff
they overlap without overlapping at the root, i.e. iff the root of one of them
is an internal node of the other other than the root. Clearly, if 7' and 7"
have a proper overlap then A self-overlaps. If, on the other hand, 7' and 7"
overlap at the root, then they coincide.

Lemma 3.1 Let T be a well-formed tree and let T' and T" be occurrences
in T of two non-variable patterns. Then T' and T" overlap iff they have a
non-variable node in common.

ProoF. If 7/ and 7" overlap, then the root of one of them, say 77, is an
internal node of the other. But since 7' is associated with a non-variable
pattern, its root is an internal node of itself. Hence 7' and 7" have an
internal node (and a fortiori a non-variable node) in common.

Conversely, assume that 7' and 7" have a non-variable node n in com-
mon. By going up both trees, it is clear that the root r of one of them, say
7', is a non-variable node of the other. Then r has the same label in 7, 7’
and 7", and that label is a non-terminal symbol. Hence the root » of 7’ is
an internal node of 7", and thus 7' and 7" coincide. O '

Reduction of a redex

Let 7 be a well-formed tree, P — P’ a rewrite rule, and 7p an occurrence
of the left-hand side P in 7. Let n be the root of 7p, let A be the pattern

5Tt is possible for the roots to coincide without there being an overlap: such is the case
when and only when A and B are variable patterns.
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associated with the subtree of 7 rooted at n, and let # be the substitution
which yields A when applied to P and whose domain is the set of pattern-
matching variables which occur in P. We shall say that a tree 7' results
from 7T by rewriting Tp with the rule P — P'iff 7' is the result of grafting
an adequate tree associated with P'8 at node n of 7. If this is the case, 7"
is a well-formed tree, and it has an occurrence 7 pr of P’ 1o0ted at n. We
shall refer to 7 ps as the occurrence of P’ in 7’ resulting from the rewrite.
All trees resulting from rewrites of a given occurrence of a pattern in a given
well-formed tree are isomorphic.

Clearly, if 7' results from 7 by rewriting an occurrence 7p of P in T
with the rule P — P’, then the pattern associated with 7 rewrites to the
pattern associated with 7' by an application of the rule. Conversely, if a
pattern @ rewrites to Q' by an application of the rule P — P’, and 7 is a
well-formed tree associated with @, then there exists an occurrence 7p of P
in 7 such that, if 77 results from 7 by rewriting 7p with the rule P — P’
then 7’ is a well-formed tree associated with the pattern Q'.

When a rewriting system R is given, we shall refer to a pair (7p, P — P')
where P — P'is a rewrite rule of R and 7p is an occurrence of the left-hand
side P in a well-formed tree 7, as a redex of R in 7. And we shall refer to
a rewrite of Tp by the rule as a reduction of the redex. We shall sometimes
refer to 7p itself as the redex, if it is clear from the context which rewrite
rule P — P’ we have in mind, which is the case in particular when distinct
rules have distinct left-hand sides.

A pattern is said to be linear iff no pattern-matching variable occurs-more
than once in it. A rewriting system is lefi-linear iff the left-hand sides of the
rules are linear, right-linear iff the right-hand sides of the rules are linear.

If both sides of a rewrite rule P — P’ are linear and, in addition, P and
P’ contain exactly the same pattern-matching variables, then every pattern-
matching variable used in the rule occurs exactly once in each side. We shall
refer to such a rule as a permuting rule. In a rewriting system which is
left-linear, right-linear and reversible, every rule is a permuting rule.

It turns out that, when P — P’ is a permuting rule, there is a particularly
convenient way in which an occurrence of P in a well-formed tree can be
rewritten. Let V be the set of pattern-matching variables which occur in the
rule. As before, let 7p be an occurrence of P in a well-formed tree 7, let
n be the root of 7p, let A be the pattern associated with the subtree of 7
rooted at n, and let § be the substitution with domain V' which yields A
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when applied to P. For each v € V let T, be the subtree of 7 rooted at the
unique leaf note of Tp labeled by the pattern-matching variable v. There
clearly exists a well-formed tree Tp: which is associated with the pattern P’
and which satisfies the following conditions: (i) the root is n; (ii) for every
v € V, the unique leaf node [, labeled by v coincides with the root of 7,; and
(ii1) the inner nodes are not nodes of 7. The well-formed trees 7, v € V
have disjoint sets of nodes and are adequate for grafting at the leaf nodes
l,, v € S of Tp:. The result of the graft is a well-formed tree 74 whose
associated pattern is A’ = P'4, And 7T, is adequate for grafting at node n
of T; the result of the graft is a well-formed tree 7’. 7' is one of the trees
which result from 7 by rewriting 7p with the rule P — P’. We shall say
that 7' is the tree which results from T by rewriting Tp to Tpr in situ.

The convenience of this particular way of rewriting an occurrence of a
pattern comes from the fact that the original well-formed tree 7 is minimally
disturbed. In particular, the resulting tree 7' shares with 7 the subtrees 7,
v € S, in addition to sharing the root n of 7p and 7p/ and all the nodes
above and beside n. We shall refer to this kind of rewriting as rewriting in
situ.

Symmetry of in-situ rewriting.® If P — P'is a permuting rule and if
P’ is a non-variable pattern (so that P’ — P qualifies as a rewrite rule)
then P’ — P is also a permuting rule. In that case, if 7' results from 7 by
rewriting in situ an occurrence 7p of P in 7 with P — P’  and if Tp/ is
the resulting occurrence of P’ in 7”, then 7 results from 7' by rewriting in
situ the occurrence 7p: of P’ in 7' with P’ — P, and Tp is the resulting
occurrence of P in 7.

The following lemma exploits the concept of in-situ rewriting.”

Lemma 3.2 Let P — P' be a permuting rewrite rule, let T be a well-formed
tree having an occurrence Tp of P, let T' be a well-formed tree obtained from

¢ A non-symmetric version of in-situ rewriting could also be defining. It could be use
{for a rule P — P’ with the only requirement that P’ be right-linear. Theorem 3.3 below
could then be stated without the conditions of left-linearity and reversibility, while keeping
the same proof.

“In-situ rewriting and the lemma that follows are not easily available when trees are
defined as sets of path coordinates (“positions”) as in [49], since coordinates below 7p in
7 depend oun the shape of 7p, and coordinates below Tpr in 7' depend on the shape of
Tpi. This is one reason why we have defined a tree as a triple (N, S, L) instead of {following
Rosen’s approach.
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T by rewriting Tp by the rule in situ, and let Tpr be the occurrence of P’
in T' resulting from the rewrite. Let Q be a linear pattern. Then: (i) any
occurrence of @ in T which does not overlap Tp is also an occurrence of Q
in T'; and (ii) any occurrence of Q@ in T’ which does not overlap Tp: is also
an occurrence of Q in T'.

PROOF. By the symmetry of in-situ rewriting, (ii) follows from (i). We prove
(i). Let 7 be an occurrence of @ in 7 which does not overlap Tp. Let n be
the root of 7p and m the root of Ty. In 7, the node m can be above, below,
or beside n If m is beside n, then the subtree of 7 rooted at m is clearly also
a subtree of 7', and hence 7 is also an occurrence of @ in 7. If m is below
n then, since it cannot be an internal node of 7p, it must belong to a subtree
T, of T rooted at a leaf node p of 7p labeled, in 7p, by a pattern-matching
variable v. But 7, is among the trees which, in the process of rewriting 7, in
situ, are grafted onto 7ps, the result of the graft being then grafted onto 7
at n. Therefore 7, is also a subtree of 7', and hence 7y is also an occurrence
of @ in 7'. If m is above n then, since n cannot be an internal node of 7y, it
must belong to a subtree 7, of T rooted at a leaf node g of 7 labeled, in 7,
by a pattern-matching variable w. The subtree of 7 rooted at m is modified
in the process of rewriting 7p in situ to 7p:. However, the modification takes
place only in the subtree rooted at q. Let A be the subtree of 7 rooted at
m. Let 6 be the substitution defined on the pattern-matching variables of Q
such that A = Q¢. Since Q is a linear pattern, it has only one occurrence
of w. Let then §' be the subtitution which coincides with 6 except that it
maps w to the pattern associated with the subtree of 7" rooted at g. Since
the subtree of 7 rooted at m is a 6-graft of 7y, the subtree of 7' rooted at
m is a @'-graft of Ty, and hence 7 is an occurrence of Q in 7'. O

Termination

A rewriting system is terminating iff there are no infinite chains of rewrites,
i.e. iff there is no infinite sequence of patterns (A;);e, where each A, rewrites
to A;41 by an application of one of the rules of the system. To answer
question 1 of section 3.4.1 we shall establish in section 3.4.4 that Ry and
Rintro are both terminating. For that purpose we shall make use of the
following definition and theorem.
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Definition 3.1 A rewriting system is left-to-right non-overlapping 1ff no
left-hand side overlaps any right-hand side.

(In connection with the preceding definition, recall that the notion of pattern
overlap is symmetric. Some people refer to this same notion as symmetric
left-to-right non-overlap.)

Theorem 3.3 If a rewriting system 1is left-linear, right-linear, reversible and
left-to-right non-overlapping, then it is terminating®

This theorem follows from a result of Dershowitz [15, Theorem 33, page 109]
which asserts that a right-linear rewrite system is terminating iff it has no
infinite “forward closures”. Indeed a left-to-right non-overlapping system has
only trivial forward closures, the rules themselves. However there is a direct
proof based on lemma 3.2 which does not require the use of the of the forward
closure construction. Here is the direct proof.

PrOOF. Let R be a rewriting system satisfying the conditions of the
theorem. Every rule of R is then a permuting rule.

Let A be a pattern which rewrites to a pattern A’ by an application of
atule P — P’ of R. Let 7 be a well-formed tree associated with A. There
exists an occurrence 7p of P in 7 such that any well-formed tree obtained
by rewriting 7p with the rule P — P’ is associated with the pattern A'.
Since P — P’ is a permuting rule, 7p can be rewritten in situ; let 7'
be the resulting well-formed tree associated with A’ and 7p/ the resulting
occurrence of P’ in 7.

Let now (79, Q — Q') be a redex of R in 7'. Since R is left-to-right
non-overlapping, the patterns P’ and @ do not overlap. As a consequence,
their occurrences 7p: and 7¢ do not overlap. Let n be the common root of
7Tp and Tp, and m the root of 7p. Since @ is a non-variable pattern, m is
an internal node of 7, and therefore n # m.

Since 7 does not overlap 7, by lemma 3.2(ii), T is an occurrence of
Q in 7 also, and hence (7, Q@ — Q') is a redex of R in T; and since n # m,
it does not coincide with the redex (7p, P — P’').

We have shown that if A rewrites to A’ in one step by application of
a rule of R, then every redex of R in A’ is a redex in A other than the
one being reduced. Hence there are strictly fewer redexes in A’ than in A.
Therefore there can be no infinite chain of rewrites by rules of R. O

8See footnote 6 page 89.
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Confluence

A rewriting system is confluent iff whenever two chains of rewrites lead from
a pattern A to two patterns B and C, then two chains of rewrites lead
from B and C to the same pattern D. A rewriting system is convergent (or
complete) iff it is terminating and confluent. In a convergent system, every
pattern has a unique normal form.

To answer question 2 of section 3.4.1 we shall establish in section 3.4.4
that Rermv and RinTro are both convergent. For that purpose we shall make
use of the following definition and theorem.

Definition 3.2 A rewriting system is non-overlapping iff left-hand sides of
distinct rules do not overlap, and no left-hand side s self-overlapping.

Theorem 3.4 If a rewriting system 1s left-linear, right-linear, reversible,
non-overlapping and left-to-right non-overlapping, then it is convergent.

A rewriting system which is left-linear and non-overlapping is said to be
orthogonal [35]. Theorem 3.4 is a special case of a theorem which asserts
that every orthogonal rewriting system is confluent. A proof of this more
general theorem can be found in [49]. But again a simpler proof based on
lemma 3.2 can be given.

PRrRoOOF. Let R be a rewriting system which satisfies the conditions of the
theorem. By theorem 3.3 we already know that R is terminating. To show
that it is confluent it suffices to show that whenever a pattern A rewrites to
distinct patterns B and C in one step, then B and C both rewrite to the
same pattern D in one step.’

Assume then that A rewrites to B by one application of a rule P — P/,
and to a pattern C' distinct from B by one application of a rule @ — Q'.
Let 7 be a well-formed tree associated with A. There is an occurrence 7p
of P in 7 such that any tree resulting from 7 by rewriting 7p with the rule
P — P'is a well-formed tree associated with the pattern B. And there is
an occurrence 7¢ of @ in 7 such that any tree resulting from 7 by rewriting

9We are not using Newman's theorem here (theorem B.1, page 186). If we knew only
that B and C rewrite to D in some number of steps (local confluence), then, having
termination, we would use Newman's theorem to establish confluence. But if B and C
both rewrite to D in a single step, confluence is obvious, independently of termination:
fill-in the lattice.
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T with the rule @ — Q' is a well-formed tree associated with the pattern
C.

Because R is non-overlapping, 7p and 7, do not overlap. For if P — P’
and Q@ — Q' are distinct rules of R, then the patterns P and @ do not
overlap. And if the rules coincide, then 7p and 7 are occurrences in 7
of the same non-self-overlapping pattern; this means that they cannot have
a proper overlap; and they cannot overlap at the root, because then they
would be identical, and B and C would be the same pattern, contrary to
the hypothesis.

Since P — P’ and Q — Q' are permuting rules, 7p and 7 can be
rewritten in situ. Let 7p be a well-formed tree associated with P’ which has
the same root as 7p, which for every pattern-matching variable v occurring
in P’ has the same leaf node labeled v as 7p, and whose inner nodes are not
nodes of 7. Let Tg: be a well-formed tree associated with Q' which has the
same root as 7g, which for every pattern-matching variable v occurring in
Q' has the same leaf node labeled v as 7, and whose inner nodes are not
nodes of 7 nor of Tg. Let Tp be the tree obtained from 7 by rewriting in
situ 7p to Tps, and 7T the tree obtained from 7 by rewriting in situ 7 to
To. Tp is associated with the pattern B, and 7¢ with C respectively. By
lemma 3.2(i), 7 is an occurrence of @ in 75. T¢ has no inner nodes which
are nodes of 75, and thus within 75 it is possible to rewrite 7g in situ to
Ty let Tp be the resulting well-formed tree, and B’ the pattern associated
with it. Symmetrically, by lemma 3.2(i), 7p is an occurrence of P in 7¢,
and since 7ps has no inner nodes which are nodes of 7¢, 7p can be rewritten
in situ, within T¢, to Tpi: let T be the resulting well-formed tree, and C'
the pattern associated with it. It is easy to verify that the trees 75 and T¢»
are idendical. Hence the patterns B’ and C’ are identical, and B and C do
rewrite in one step to the same pattern. O

Rewriting algorithm

When a rewriting system R satisfies the conditions of theorem 3.4, it is
particularly easy to compute the normal form of any given pattern. Because
R is left-linear and non-overlapping (orthogonal), it is possible to use the
full substitution, or Gross-Knuth rewriting strategy [35]. Informally speaking,
this strategy calls for “reducing at once all the redexes present in the pattern”
at each step. Moreover, because the system is right-linear and left-to-right
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non-overlapping, no new redexes are introduced by one full substitution step.
Hence only one step is necessary!

We make this more precise by describing an algorithm which performs
one step of full substitution, and proving that it finds the normal form of the
pattern given as input to it when the rewriting system satisfies the conditions
of theorem 3.4. ‘

~ Algorithm 3.1 Given: a rewriting system R satisfying the conditions of
theorem 8.4. Input: a pattern A. Quput: a pattern A', which purports to be
the normal form of A.

1. If A is of the form P8 where P is the left-hand side of a rule P — P’
of R and 6 1s a substitution whose domain V 1is the set of pattern-
matching variables occurring in the rule, return A' = P'8', where §' is
the substitution which maps every v € V to the result Bl of applying
the algorithm recursively to the value B, = 6(v).

Otherwise:

2. If A is not an instance of the left-hand side of any rule of R, but it is of
the form “(f By ... B,)”, where f is a non-terminal symbol and each
B;, 1 <1 < n, s either a terminal symbol or a pattern, then return
A'=“(f B| ... B.) where B! = B; if B; is a terminal symbol, or
B! is the result of applying the algorithm recursively to B, if B; is a
pattern.

3. If A is a variable pattern, return A'=A.

Observe that the algorithm is deterministic. Indeed, since R is non-
overlapping, A can be the left-hand side of at most one rewrite rule. And the
algorithm terminates: every recursive call takes as input a proper subpattern

of A.
Theorem 3.5 Algorithm 3.1 computes the normal form of its input.

Proor. Reasoning by induction, assume that the algorithm is correct on
any input of depth less than k£ > 1, and let A be a pattern of depth k. Let
us show that the pattern A’ returned by the algorithm when applied to A
is indeed the normal form of A. We distinguish the same cases as in the
description of the algorithm.
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1. Assume that A is of the form P# for some rule P — P’ of R. Let
us use the same notations as in the description of the algorithm. By
induction hypothesis, each B! is the normal form of B,. Hence each
B, rewrites to B’ and therefore A = P§ rewrites to P§'. Since P&’
rewrites to P'¢' = A’ be an application of the rule P — P’, if follows
that A rewrites to A’

To show that A’ is a normal form of R, we reason by contradiction.
Assume that a rule Q — Q' applies to A'. Then, if 7 is a well-formed
tree associated with A', there is an occurrence 7 of @ in 7. There
is also an occurrence of 7p: in 7 whose root coincides with the root
of T. Each leaf node of Tp: is labeled by a pattern-matching variable
v € V, and is the root of a subtree 7, of 7 associated with the pattern
B'. Since R is left-to-right non-overlapping @ and P’ do not overlap.
Hence the root n of 7 cannot be an internal node of 7pr. Then n must
be a node of 7, for some v € V. But this means that the rule @ — Q'
applies to B, which contradicts the fact that B;, is in normal form.

2. Assume now that A is of the form “(f B, ... B,)” without being an
instance of a left-hand side of a rule of R, and let us use again the
same notations as in the description of the algorithm. By induction
hypothesis, for every 4, 1 < i < n, if B; is a pattern (rather than a
terminal symbol), then B; is the normal form of B;.

Since each B, rewrites to B/, it is clear that A rewrites to A'. Let
Ci,...,C,,, m <1, be achain of one step rewrites leading from A =
C, to C,, = A'. To show that A’ is a normal form we reason by
contradiction. Assume that a rule Q@ — Q' of R applies to A’. Let T4
be a well-formed tree associated with A’. There is an occurrence of Q
in 74, and since every B is in normal form, the root of the occurrence
must coincide with the root of 7 4. This means that A’ is an instance
of Q.

We have shown that A’ = C,, is an instance of the left-hand side Q
of a rule of R, and we know that the same is not the case for A = C.
Therefore there must be some j, 1 < j < m, such that C;4; is an
instance of @ but C, is not. C; rewrites to C;41 by an application
of arule R — R' of R. Let 7 be a well-formed tree associated with
C;. There exists an occurrence Ty of R in 7 which, when rewritten,
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yields a tree associated with R'. Since R — R’ is a permuting rule,
Tr can be rewritten in situ; let 7’ be a tree for C;4; obtained by
an in-situ rewrite, and calTx the occurrence of R’ in 7' to which 75
rewrites. Since C,4; is an instance of @), there exists an occurrence
To of Q in 7' whose root is the root of 7'. Since R is left-to-right
non-overlapping, @ and R’ do not overlap, and hence their respecitve
occurrences 74 and Tg do not overlap. Since @ is a linear pattern,
lemma 3.2(ii) applies, and asserts that 7 is an occurrence of @ also
in the tree 7. It is clear that the root of 7 is the same as the root of
T'. Thus Ty is an occurrence of @ at the root of 7, which means that
C is an instance of @, a contradiction.

3. Finally, assume that A is a variable pattern “v”. The output of the
algorithm is A itself. Since non-variable patterns are not allowed as
left-hand sides of rules, A is trivially a normal form, and the algorithm
is also correct in this case.

O

Observe that the algorithm performs at most as many rewrites as there
are internal nodes in A. Deciding whether a given pattern has an occurrence
rooted at a given node of a well-formed tree can done in constant time if
the pattern is linear. Rewriting an occurrence can also be done in constant
time by pointer manipulations. Hence, for a given rewriting system R, the
algorithm runs in linear time with respect to the size of A.

3.4.3 Language translation by rewriting

So far, in section 3.4.2, we have studied rewriting as an operation on patterns,
without reference to any particular language. Recall that in section 3.2 we
defined a language as the set of labeled expressions (ground patterns) in
the substitution closure of some set of patterns, which are said to generate
the language. To answer questions 3, 4 and 5 of section 3.4.1, we need a few
results concerning language generation, and the interaction between language
generation and rewriting.

This section remains in the abstract setting introduced at the beginning
of section 3.4.2.
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We begin by characterizing languages in terms of parse trees of labeled
expressions.

Let 7 be a well-formed tree whose set of nodes is N, and whose set of
non-variable nodes is N’ C N. Let ¥ be a set of occurrences of non-variable
patterns in 7. We shall say that ¥ is a tessellation of 7 iff the sets of non-
variable nodes of the elements of ¥ form a partition of N'. In the special case
where 7 is associated with a ground pattern (i.e. when it is the parse tree
of a labeled expression), ¥ is a tessellation of 7 iff the sets of non-variable
nodes of the elements of ¥ form a partition of N.

Let now II be a set of non-variable patterns and 7 a well-formed tree.
We shall say that II tessellates T iff there exists a tessellation ¥ of 7 whose
elements are occurrences of patterns which are elements of II. We shall
say that II tessellates a pattern A iff it tessellates at least one of the trees
associated with A; in which case it tessellates them all, since they are all
isomorphic.

Observe that a well-formed tree consisting of a single leaf node labeled
by a pattern-matching variable has an empty set of non-variable nodes, and
hence is trivially tessellated by any set of non-variable patterns. Thus a
variable pattern is trivially tessellated by any set of non-variable patterns.

Lemma 3.6 A non-variable pattern A belongs to the subsitution closure of
a set of non-variable patterns I1 iff it is tessellated by II. (As a special case, a
labeled expression A belongs to the language generated by a set of non-variable
patterns II iff it is tessellated by 1.)

ProoF. The set of non-variable patterns tessellated by II is clearly stable
by substitution, and includes II. Hence it is a superset of the substitution
closure of II.

We prove the converse by induction on the depth of A. Let £ > 1
and assume that every non-variable pattern of depth less than k& which is
tessellated by II is in the substitution closure of II. Let A be a non-variable
pattern of depth £ tessellated by II. Let 7 be a well-formed tree associated
with A, and ¥ a tessellation of 7 by occurrences of patterns which are
elements of II. One of these occurences, 7, must be rooted at the root n of
7. Let V be the set (possibly empty) of pattern-matching variables which
label the leaf nodes of 7. Let P be the pattern of II associated with 7.
Since 7 is an occurrence of P rooted at n, 7 is a f-graft of 7, 6 being a
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substitution with domain V. Hence A = P#. Let v be an arbitrary element
of V (if V is not empty), and let m be a leaf node of 7, labeled by v in 7.

Assume that the image of v by 4 is a non-variable pattern A', and let 7”
be the occurrence of A’ in 7 rooted at m. Let 7; € ¥ be an occurrence of a
pattern Q € II which has a non-variable node in common with 7’. 7; has no
non-variable node in common with 7Ty, since they are both in the tessellation
Y of 7. But then the root of 7; (which is a non-variable node of 7; since
Q is a non-variable pattern) is in 7', and 7; is also an occurrence of @ in
7'. This means that the elements of ¥ which have non-variable nodes in
common with 7' form a tessellation ¥’ of 7', by patterns which are elements
of II. Since the depth of 7" is less than k, by induction hypothesis A’ is in
the substitution closure of II.

Thus every non-variable pattern in the range of # is in the substitution
closure of II. Ther