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Summary

This dissertation develops a net theoretic specification technique for an area
known as protocol engineering that covers the life-cycle of protocols. After sur-
veying the application of net theory to protocol engineering, the fundamentals
of the specification technique are presented. The technique is based on Jensen’s
Coloured Petri Nets (CP-nets).

To increase their expressive power, CP-nets are extended by including place
capacities and an inhibitor function, leading to the definition of a class of ex-
tended CP-nets, known as P-nets. To allow the analysis techniques developed
for CP-nets to be applied to P-nets, a transformation from P-nets to CP-nets
is formalised and it is proved that it preserves interleaving behaviour. The
transformation is based on the notion of complementary places (known from
Place/Transition-nets) and involves the definition and proof of a new comple-
mentary place invariant for CP-nets. A class of P-nets is defined where true
concurrency is preserved under the transformation.

A graphical form of P-nets, known as a P-Graph, is formally defined, drawing
upon the notions developed for algebraic specification of abstract data types.
Arc inscriptions are multisets of terms generated from a many-sorted signature.
Transition conditions are Boolean expressions derived from the same signature.
An interpretation of the P-Graph is given in terms of a corresponding P-net. In
the P-Graph, concrete sets are associated with places, and likewise there are con-
crete initial marking and capacity multisets. P-Graphs are useful for specification
at a concrete level, and allow classes of nets, such as CP-Graphs, many-sorted
Algebraic nets and many-sorted Predicate/Transition nets, to be defined as spe-
cial cases. They also provide the basis for a comparison with other high-level nets
such as Predicate/Transition nets and Algebraic nets. An extended place capac-
ity notation is developed to allow for the convenient representation of resource
bounds in the graphical form.

Abstract P-Graphs are defined in a similar way to P-Graphs, but this time
sorts are associated with places, and markings and capacities are defined at the
syntactic level. This is useful for more abstract specifications (such as classes of
communication protocols) and for their analysis.

Part of the motivation for the extensions to CP-nets has been to develop conve-
nient constructs for the purging of a place’s marking (or part of the marking),
by the occurrence of a single transition. This is achieved by equating the inscrip-
tions of the inhibitor and normal arc. Some convenient notation is developed for
the P-Graph for purging parts of a place’s marking.

Some simple communications-oriented examples are presented including queues
and the Demon Game developed by the International Organisation for Standard-
isation as a test case for formal description techniques. A major case study of
the M-Access Service of the Cambridge Fast Ring is specified with the P-Graph
to illustrate the utility of a number of the extensions developed for P-nets.
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Chapter 1

Introduction

1.1 Background

Protocol Engineering was a term coined in the early 1980s to describe a field
of study concerned with rigorous methods for the specification, design, veri-
fication, performance evaluation, implementation, testing and maintenance of
communication protocols. Rigorous methods are required in the development of
distributed systems where high quality products or services are required. In the
provision of telecommunication services, customer satisfaction, reduction of costs
associated with the elimination of specification errors after implementation, and
ease of testing and maintaining systems are some of the reasons for developing
rigorous approaches.

It is quite obvious that in a rigorous approach, mathematical techniques will be
required to unambiguously specify requirements and protocol mechanisms; to
allow the specifications to be analysed and transformed; and to provide rigorous
methods for testing protocol implementations. There are a number of techniques
that could be considered candidates, including state machines, Petri net based
methods, process algebras, logics, set theory, programming languages, abstract
data types and hybrids of these techniques.

In a particular environment, the choice of technique depends more on the back-
ground of the individuals concerned and the available tools rather than an ob-
jective choice based on a detailed comparison of techniques against some set
of criteria. One reason for this is that a detailed comparison of the existing .
techniques would be a vast undertaking requiring the appropriate mathematical
background and a good knowledge of protocols, a rare combination.

In my case the choice of technique has been influenced by a background in the
application of net theory to the specification and verification of protocols. My
interest in formal methods was stimulated by Professor Fred Symons some 10
years ago when he was then an Assistant Director of the Telecom Australia
Research Laboratories. Fred had recently completed a PhD at the University of
Essex (under a Telecom Australia Development Award) where he had developed
the ideas of Numerical Petri Nets (NPNs) for the modelling and analysis of
communication protocols during the years 1976 to 1978 [131].

14




During the late 1970’s and early 1980’s there was considerable interest in the de-
velopment of layered protocol architectures, particularly the reference model for
Open Systems Interconnection (OSI) [151]. The notion of a service specification
[34] that expressed the requirements of the users of a protocol, arose. During
1981 and 1982, I made attempts to model the OSI Transport Service using NPNs
[29,21]. This lead to the realisation that constructs were needed for the spec-
ification of complex queues and for the resetting of systems, corresponding to
the emptying or purging of places in Petri nets. My colleague, Geoff Wheeler,
developed NPNs further, incorporating ideas from Predicate-Transition nets and
self-modifying nets, and made a first attempt at a formal definition in 1985 [145].

Concurrently with the NPN developments we were building an automated tool
(known as PROTEAN) for the verification of protocols based on reachability
analysis [149,32,147,31]. This tool has been used for the analysis of a number of
complex protocols [129] with some success in detecting errors, mainly deadlocks.

Through the use of NPNs and PROTEAN, we had discovered a number of lim-
itations of NPNs. Firstly, the queueing construct of NPNs was not formally
defined and was rather adhoc allowing only FIFO (first-in-first-out) queues to be
built. Clearly a more general approach was needed. Secondly, there was no clear
mapping from NPNs to other nets. This meant that we could only employ reach-
ability analysis techniques for verification, and could not take advantage of other
analysis techniques (such as invariants, reductions) being developed for other
high-level nets such as Coloured Petri Nets [87]. Thirdly, there was no means
of specifying classes of protocols, as only concrete constructs were available. Fi-
nally there were other difficulties, such as the need for structuring mechanisms
and formal refinement techniques.

This thesis addresses the first three of these problems by developing a high-
level Petri net technique called P-nets with its associated graphical forms, the
P-Graph and P-Graph Schema.

1.2 Research Aims

The principal aim of this thesis is to develop a high-level Petri net specification
technique (P-nets) that has a sound mathematical basis and provides some useful
constructs for the task of describing features found in protocols and other similar
concurrent systems. (This includes constructs that allow classes of systems to
be specified at an abstract level.)

A second aim is to provide transformations from P-nets to already existing high-
level nets to enable their analysis techniques and automated tools to be used
with the new technique.

A third aim is to test out the technique on a ‘real-world’ application, in this case
the service provided by the Cambridge Fast Ring (CFR).
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1.3 Scope

As is usual with research, the initial scope of the investigations are quite broad,
in this case encompassing the field of protocol engineering, but with an emphasis
on specification and verification. In order for the thesis to be of manageable size
and for it to be completed within a reasonable time, it has been necessary to
narrow the scope considerably.

Although a considerable amount of work had gone into specifying the Unison
Data Link protocol [133], it was much more important to formalise the high-
level net required for the specification. Thus the thesis does not contain this
work, initial drafts of which can be found in [24].

Similarly work published on tools [31,30] and general comparisons with other
techniques particularly the international standards, SDL [43], LOTOS [83] and
ESTELLE [82], that appear in [31,25] have also not been included, although
there is some overlap between chapter 2 of the thesis and [25,30].

1.4 Structure of the Thesis

The thesis consists of three parts. Part I contains background material with
chapter 2 introducing the area of protocol engineering and then surveying the
application of Petri nets to this area. Chapter 2 is a revision of a paper presented
at the Eighth European Workshop on Application and Theory of Petri Nets, in
June 1987 [28].

Part II, entitled ‘Extending Coloured Petri Nets’, provides the theoretical foun-
dations required to develop the specification technique known as P-nets and its
associated graphical forms, the P-Graph and Abstract P-Graph. It consists of six
chapters (3 to 8) and is based on [22]. Chapter 3 provides some motivation for the
development of P-nets, while chapter 4 defines Coloured Petri Nets (CP-nets),
the technique on which P-nets are based. Chapter 5 provides the extensions we
require and then defines P-nets in terms of CP-nets and the extensions. Chap-
ter 6 describes the transformations from P-nets to CP-nets and the restrictions
required on the P-net to ensure that true concurrency is preserved. Most of the
material in Chapters 3 to 6 has been published recently [23]. The graphical form
for the specification technique, known as the P-Graph, is defined in Chapter 7
which expands on [27]. The P-Graph is defined at a level appropriate for the
specification of concrete systems. It is compared with several other high-level
nets. The chapter concludes by defining, at a more abstract level, the P-Graph
schema, which can be used for the specification of classes of systems. Interpreta-
tions of the P-Graph and P-Graph schema are given in terms of P-nets. Chapter
8 investigates a specialised construct useful for purging places and in general
useful for manipulating markings with a single mode of a transition.

Applications of the P-Graph to the specification of communication systems is
illustrated in Part III. Chapter 9 provides examples of queues and also speci-
fies the ‘Demon Game’, an example used by the International Organisation for
Standardisation in its work on formal description techniques. The main example
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is provided in chapter 10, where the M-Access Service of the Cambridge Fast
Ring networking system is specified. It revises the work published in [26]. This
example illustrates the utility of a number of extensions and notations developed
in Part II. The final chapter provides a summary of the contribution of the thesis
and looks at areas of future work.
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Chapter 2

Protocol Engineering and Nets:
An Overview

2.1 Introduction

Communication protocols, the procedures that allow separate information pro-
cessing systems to co-operate, are becoming more important as we enter the
information age. These protocols are vital to the provision of advanced informa-
tion services and the communications infrastructure required to support them,
such as service networks, which carry customer traffic, and the management and
signalling networks, which provide for their efficient operation. Important exam-
ples include those of Open Systems Interconnection (OSI), Integrated Services
Digital Network Digital Subscriber Signalling System No. 1, Common Channel
Signalling System No. 7, and many others standardised or being standardised by
the International Telegraph and Telephone Consultative Committee (CCITT)
and the International Organisation for Standardisation (ISO). These encompass
the protocol families for wide area, local area and metropolitan area networks
and for the interworking of networks and services.

As the provision of services becomes more sophisticated, the complexity of the
communications protocols increases. It is now no longer possible to design high-
quality protocols using engineering intuition and the cost of rectifying specifi-
cation errors after implementation is considerable [85]. Errors may also lead to
inadequate reliability of services and consequent customer dissatisfaction. It is in
this environment that appropriate methodologies, techniques and computer aids
become essential for the design and maintenance of communication protocols.
The term protocol engineering [116] has been coined to describe the activities in-
volved in the rigorous design and maintenance of protocols, using formal methods
(i.e. those based on mathematics).

Early work on formal methods applied to protocol specification and verification
is reported in [75,128]. The largest source of literature on aspects of protocol
engineering is the proceedings of the annual symposium of IFIP Working Group
6.1 on Protocol Specification, Testing and Verification, published by North Hol-
land [3]. Increasing interest in the formal specification of protocols over the
last decade, has led to the development of international standards by ISO and
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CCITT. A conference known as FORTE was initiated in 1988 [135], to provide
a forum for publicising work on the standardised formal description techniques.

Protocol engineering is a part of software engineering, but it is hoped that a
much more rigorous, mathematically based discipline can be found for protocol
design, than presently exists for software engineering in general. This is because
the processing is relatively straightforward. The main problems occur with com-
munication, synchronisation and concurrency.

This chapter provides an overview of protocol engineering, including a description
of the basic concepts and methodologies, and briefly surveys how net theory may
be applied to the area as a whole. In section 2 we introduce the main protocol
engineering activities and propose a methodology for protocol design in section
3. Section 4 addresses the requirements of mathematical techniques to be used
for protocol engineering, while the merits of net theory for providing a possible
approach are discussed in section 5. Finally we examine the types of computer
aids that will be required by the protocol engineer.

The chapter builds on the work published in a number of papers, particularly
[63,41,32,146] and is a revision of [28].

2.2 Protocol Engineering Activities

Protocol Engineering covers the whole spectrum of activities regarding the life-
cycle of protocols. The major protocol design and development activities and
how they are related are shown in figure 2.1. These activities are concerned
with:

e Broad requirements of the users of distributed computing resources.

e High-level architectural design, normally developing a hierarchy of services
to be provided by a set of protocols. Examples include the OSI Refer-
ence Model[42] and computer vendor architectures, such as IBM’s Systems
Network Architecture (SNA).

e Specification of the service to be provided at each level within the hierarchy,
for example OSI Service Definitions.

o Specification of the protocols at each level of the hierarchy, usually subdi-
vided into two parts: an implementation-independent specification suitable
for international standardisation; and a refined ‘mplementation specifica-
tion, taking into account environmental constraints.

e Target Implementations
The above is a list of tangible outputs, produced by the protocol engineer. In a
rigorous approach, we also wish to show that the implementation does conform to

the high-level requirements. There are two approaches to this problem: synthesis
and analyszts.
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Figure 2.1: Major Protocol Engineering Design Activities

Synthesis provides the designer with a discipline of formal refinement of require-
ments, through specification to implementation, which preserves desired proper-
ties. Major areas of work include Protocol Synthesis, the discipline of deriving
a protocol specification from the adjacent service specifications, and Automatic
Implementation, the transformation of a protocol specification into an implemen-
tation (a compiler).

In a protocol hierarchy where we wish to check that a detailed specification is
consistent with a more abstract one (usually because we do not have a synthe-
sis procedure), analysis techniques are required to prove that desired properties
have been retained, and that undesirable ones have not been introduced. Ma-
jor activities include Protocol Verification and Conformance Testing. Protocol
Verification complements Protocol Synthesis. It is the process of proving that
the protocol specification provides the requirements stated in its service specifi-
cation. Conformance Testing complements Automatic Implementation. Various
forms of testing are undertaken to increase the confidence of the designer that
the implementation does conform to the protocol specification.

Other protocol engineering activities include performance evaluation, mainte-
nance and protocol conversion. Performance evaluation is concerned with. the
real-time properties of throughput and delay as well as reliability. Protocol
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maintenance is concerned with fixing errors in implementations and upgrading
protocols as new versions or completely new protocols become available. Pro-
tocol maintenance requires the modification of the outputs listed above in a
consistent manner. Protocol conversion [74] or interworking is required when it
is necessary for two systems with incompatible protocol architectures to com-
municate, for example between an IBM SNA network and an Open Systems
Interconnection environment. A method is required to translate between the
two architectures. Similar problems of service definition, synthesis, specification,
verification, performance analysis, direct implementation and testing occur in
the development of a protocol converter.

2.3 Protocol Engineering Methodology

The diagram of figure 2.1 suggests the following top down methodology for pro-
tocol design, in analogy with the waterfall model of software development.

1. Gather and document requirements of the users of distributed applications.

2. Provide a high-level architectural design of a protocol hierarchy to meet
the requirements. (Use existing architectures where these will satisfy 1.)

3. Define the service to be provided at each level of the protocol hierarchy.
Two steps are required:

e An integrated specification, where the behaviour of the users and
provider of the service are specified jointly at a high level of abstrac-
tion. This defines the (global) set of sequences of service primitives
(events representing communication between service user and service
provider) and how they are related at each of the user interfaces.

e A refinement of the integrated specification, where the behaviour of
the users and the provider are separated by a well-defined but still
implementation-independent interface.

4. Specify the protocol (or class of protocols) at each level of the hierarchy.
This involves defining a protocol machine for each service user as a refine-
ment of the service specifications. At this stage protocol verification and
performance evaluation should be carried out. A further stage of refine-
ment will be necessary to obtain an implementation specification. This will
include specific details of the user/protocol entity interface as well as tar-
get implementation constraints and design decisions (what hardware, which
operating system, what language, how parallel, what data structures, etc.).

5. The final stage of refinement is to produce the code for the target imple-
mentation from the implementation specification.

6. Conformance Testing and Debugging. The implementation is rigorously
tested to see if it conforms to the protocol specification and any errors are
corrected.
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Top-down design has a fundamental flaw in that it assumes that requirements
are well known and defined at the start of the design process. This is hardly ever
the case for complex or large systems. However, top-down design augmented
by iteration at all steps of the methodology, allows for the benefits of rapid
prototyping in order to refine user requirements. Another problem with top-
down design is the assumption that there are no parts of the system that already
exist. The methodology should allow for the re-use of parts of existing protocol
architectures where this is appropriate.

For complex protocols it is important to structure the service and protocol spec-
ifications in such a way as to maintain implementation independence (except for
the implementation specification) and to increase readability and understanding.
It will also be valuable from an analysis point of view.

2.4 Formal Techniques

This section addresses the needs for and requirements of formal techniques to
support the protocol life-cycle.

2.4.1 Need for Formal Techniques

In order to provide a sound foundation for the design of protocols, it is essential
that mathematical techniques are used, not only to provide unambiguous spec-
ifications, but also to allow specifications to be formally refined and analysed.
This is required to ensure that internationally standardised specifications are
of the highest quality to allow for the necessary interworking of heterogeneous
systems. Ideally the techniques should facilitate all protocol engineering activi-
ties, particularly protocol synthesis, verification, automatic implementation and
conformance testing. The use of mathematical techniques will allow the devel-
opment of compilers for specification languages and the automatic derivation of
test suites from specifications. This will provide for considerable productivity
improvements in the development of implementations and their maintenance,
thus reducing the cost of provisioning and maintaining information services.

2.4.2 Requirements of Formal Techniques

Surprisingly little has been published in the open literature on the requirements
that need to be satisfied by a formal specification technique. A summary of
important characteristics is as follows (further discussion can be found in Annex
C of [4], in [53] and more generally in {51]):

o Well-defined syntax and semantics;

e Sufficiently expressive to describe the domain of protocol architectures,
services and protocols;

22




e Analysable, to allow important properties (e.g. absence of deadlock) of
protocols to be determined;

¢ Support the management of complex protocols (e.g. structuring capabili-
ties);

e Support refinement;

e Support implementation independence (this implies support for concur-
rency and non-determinism and adequate abstraction mechanisms);

e Support all levels of the protocol life cycle, including verification, imple-
mentation and testing; and

e Support automation of design, verification, implementation and mainte-
nance methodologies.

It is also most desirable that the technique can have several forms. A graphical
form is desirable for readability. It allows all members of a protocol design
and implementation team to communicate readily. Other forms more suited to
mathematical manipulation are also desirable for analysis. Of course translations
between the different forms are essential.

It is also desirable that a form of the technique exist which can be strongly
related to the physical system that is to be modelled. The technique should not
unnecessarily constrain the specifier, so that artificial constructs are avoided.
This will lessen the difficulty of obtaining a realistic model of the desired system
and will lead to intuitively appealing specifications.

2.5 Net Theory

Just as there are a large number of different programming languages, there are
many different formal specification languages being developed and each one has
strengths and weaknesses. Space precludes a comprehensive treatment of all the
techniques and in order not to distract from the main purpose of the dissertation,
I shall focus attention on the technique of choice: Petri nets. Some comments on
other techniques, including the three international standards: CCITT’s Specifi-
cation and Description Language [43]; and ISO’s Estelle (Extended State Transi-
tion Language) [82] and LOTOS (Language Of Temporal Ordering Specification)
[83] are made by the author in [25].

Petri net theory [35,120,37,36,61] is founded upon a notion of concurrency; it
expresses non-determinism simply and can be used to express system concepts
at different levels of abstraction. Nets can be structured in a number of ways. For
example, Channel/Agency nets [122], can be used to indicate a system structure.
These nets can then be refined in various steps to define the dynamic behaviour
of the system [6]. High-level nets also provide ways of grouping system features
to indicate system structure in another way.

Nets may be presented in a graphical form which is easy to relate to physical
systems. This makes learning and understanding the language relatively easy.
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Petri nets have a solid mathematical foundation that has led to a large number
of techniques being developed for their analysis. These include: reachability
analysis; invariants analysis (a technique using linear algebra); transformations
(including reductions) preserving desired properties; structure theory; formal
language theory; synchronic distance; decomposition and equivalence of nets.
The formal basis of nets allows them to be related to other models of concurrency
that may be useful for the specification and analysis of distributed systems. For
the latest information the reader is referred to [37,36,125,126].

The early experience gained in specifying protocols with Petri nets [131] re-
vealed that place/transition nets (P/T-nets) [20] (also called Petri nets [115])
were too primitive to model complex protocols conveniently, as their use pro-
duced a proliferation of net elements. P/T-nets were also very inconvenient
when representing information in message headers and compound state informa-
tion (control state, sequence number, address and multiplexing data, time-out
limits etc.). This problem was overcome with the development of ‘high-level’ nets
[131,71,88,145,120] (i.e. nets where tokens are tuples of values, and arcs (and tran-
sitions) are inscribed by expressions). Later versions of Predicate/ Transition nets
[71] and Coloured Petri Nets [88] appear in [37]. More recent work [93,143,22,126]
has shown how abstract data types can be incorporated within the high-level net
framework. With the aim of increasing their expressive ability to specify proto-
cols and services further, this dissertation develops extensions to Coloured Petri
Nets, and formulates many-sorted high-level nets in Part II.

A weakness of nets is in the structuring of specifications and in providing equiv-
alence transformations, but these problems are the subject of current research.

Net theory provides a suitable foundation for techniques and automated tools
to support the protocol development life-cycle. The rest of this section briefly
examines how net theory can be applied to each of the protocol activities men-
tioned in section 2.2, where means/activity nets [111] will be used to define the
structure of architectures, services and protocols. (The development of an ex-

pressive high-level net for defining the behavioural aspects is addressed in Part
I1.)

2.5.1 Architectural Design

Architectural design is concerned with the definition of activities, the resources
that are required, and the products that are produced as a result of the activities.
A static structure evolves, showing the relationships between the activities and
the resources/products.

Means/activity nets [111] or channel-agency nets [122] may be used to provide
exactly this type of modelling. A simple example is given in figure 2.2, illus-
trating how the Open Systems Interconnection Protocol Architecture can be
represented and refined. The general structure is given by Means/Activity nets.
In Means/Activity nets, activities (actions) are represented by rectangles and
means (resources) by ovals (or rectangles with rounded corners). An arrow from
a means to an activity implies that the means is necessary for the activity to
occur and arrow from an activity to a means implies that the means is modified
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Figure 2.2: Development of the Open Systems Interconnection Protocol Archi-
tecture using Means Activity Nets

by the activity, often by the production or consumption of a resource associated
with the means.

Figure 2.2a shows that user resources (e.g. files) are required as input to a set of
communication procedures called application services. In general these resources
are distributed. Figure 2.2b shows a refinement of the application services, where
it is now shown that application activities are supported by presentation services.
Presentation Service-Data-Units (P-SDUs) are the resources that are produced
and shared at the Application/Presentation boundary. In a similar way, the
Presentation Service Provider may be refined into Presentation-Layer Activities
supported by a Session Service Provider.
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This process of refinement allows the complete OSI 7-Layer Reference Model
[42] to be generated, where attention is focussed not only on the layer activities
but also on the resources required for communication between the layers. Once
the basic architecture has been designed, each of the component layers may be
further refined.

An important part of the net representation is that communication across the
interface is always brought to the attention of the designer. As the layer activities
are refined, the abstract interface may also need to be refined. This is in contrast
to other techniques, where the communication between blocks is hidden and
assumed to be of a particular type (e.g. rendez-vous).

Of course architectural design is not limited to the specification of Protocol
Architectures, but plays a major role in the specification of services and protocols.

2.5.2 Service Specification
Integrated Service Specification

A slightly different view to that presented above, is to consider each layer and
the users of its service together. This can be done for each service separately.

The starting point is the naming of the service at say level N in the hierarchy
(figure 2.3a). This may be refined into activities associated with interaction
between user and provider, i.e. the occurrence of service primitives, and the N-
level Service-Data-Units (SDUs) that are transferred between the service users.
An example for two users is shown in figure 2.3b. This may be further refined
into two state machines communicating with each other via two complex queues
(figure 2.3c). Each state machine determines the set of sequences of service
primitives at a local interface. The queue size and discipline governs the global
set of sequences of service primitives. The state machines and their interaction
via the two queues can be modelled using high-level nets. Examples for the OSI
Transport and Network Service are given in [21,113].

Refined Service Specification

Figure 2.3a may be refined in a different way where the activities of the users
may be separated out from the activity of the provider. An example for two
users is given in figure 2.4a. It is similar to that of Fig 2.2b except that only two
users are considered and they have been separated out. Also the users are very
abstract activities that are only concerned with communication with the service
provider. Figure 2.4a and figure 2.3b may be further refined into figure 2.4b.
The purpose of this refinement is to provide a first step in the development of
a protocol entity specification. Further refinement will allow a service primitive
event to be refined into two events: control information will be passed between
the user and its local provider to indicate that SDUs are ready for transmission or
have been received. The event of transmitting the SDU into the service provider
queue or of the user accepting the received SDU will signify the occurrence of the
service primitive. This allows interleaving of many messages at the user/provider
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interface. (For example, a normal SDU can be signalled as ready, followed by an
expedited SDU being signalled as ready. The local provider then has the option
of acting on the expedited SDU before the normal SDU. Aborts and resets can
be handled in a similar way.)

2.5.3 Protocol Synthesis

Given the service specifications for two adjacent layers of the hierarchy, these
may both be refined into protocol entity activities communicating with their
users and the underlying service provider. This is shown by the means/activity
net of figure 2.5.

Considerable further refinement is then required to specify the structure and
dynamics of the protocol entities. What is required is the definition of some
synthesis rules, by which these refinements can be formally defined. Furthermore,
the transformations should preserve the desired properties defined in the service
specifications (e.g. sequences, safety, liveness, lack of duplication or loss).

General Net Theory may be able to provide some answers here via the no-
tion of net morphisms and various notions of equivalence [35,150,144,107]. Re-
cently published work on equivalence transformations and projections for Predi-
cate/Transition nets [72], may prove to be useful. Further work in this area will
be required before protocol synthesis is possible using net theoretic constructions.

2.5.4 Protocol Specification

Protocol specification is concerned with the refinement of figure 2.5. If we wish to
define the protocol at level N of the hierarchy, the refined service specifications at
levels N-1 and N, should be used as the starting point. The N-1 Service Provider
and its interactions (interface) with the N protocol entity (a user) have already
been defined, as have the interfaces with the N+1 users. The N service provider
and N user specifications need to be refined to include an abstract description
of protocol mechanisms [63] (to answer the question: How are N-SDUs mapped
onto (N-1)-SDUs (and vice-versa) to provide the required services at the desired
quality?).

The specification of protocols using nets (place/transition systems and high-level
nets) is the most mature of the protocol engineering activities using net theory
[69]. The earliest work on the modelling of protocols with nets was probably that
of Merlin [105]. An early survey of the use of Petri net based techniques for the
modelling of protocols is [59] with a more specific treatment in [17]. [41] presents
a methodology for the specification of Open Systems Interconnection services and
protocols using a high-level net technique called Product nets. A more recent
survey of the use of nets in the specification and verification of protocols appears
in [60]. High-level nets have been applied to the specification and analysis of
many complex protocols and services [21,54,14,15,91,40,13,12,73,16,55,69,68,94].

Structural specification of protocol entities using means/activity nets has just
begun [6]. A complete methodology for protocol specification using nets has yet
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to be compiled. Guidelines for structural design and modelling are required as
are the definition of a set of net building blocks for protocols [10].

Providing specifications at different levels of detail is also required. We would like
to start with the most abstract specification, as implementation independent as
possible (perhaps suitable for international standardisation) as the protocol may
well be implemented on computing systems with very different characteristics.
The abstract protocol and interface specifications then need to be refined to im-
plementation specifications which are faithful to the implementation-independent
specification. Rules for performing these refinement transformations appropri-
ately are required. Again we appeal to General Net Theory for answers via
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net morphisms. The work of Meseguer and Montanari [107] shows considerable
promise here as they define refinement morphisms for place/transition nets.

2.5.5 Protocol Verification

A major purpose of developing a net specification of a protocol is to make it
amenable to analysis. Protocol verification involves proving that the protocol
entities operating over the underlying service provider is behaviourly equivalent
to the integrated service specification (e.g. it preserves sequences of primitives
and safety and liveness properties, and data to be transferred is not lost, du-
plicated or otherwise mutilated). Two techniques have been used with varying
degrees of success: Reachability Analysis and Invariants Analysis.

Reachability analysis is readily understood and immediately reveals terminal
states (e.g. deadlocks) as leaf nodes of the reachability graph, however consid-
erable analysis of the reachability graph is required to discover whether or not
other desirable properties exist. For example language analysis can be used to
determine whether or not sequences of service primitives are preserved by the
protocol [54,32]. Powerful logic-based query languages are being developed to in-
terrogate the Reachability Graph [109,134,47,103] for general safety and progress
properties.

Reachability analysis suffers from the problem of state explosion, but does pro-
vide results for moderately complex systems. In order to extend the scope of
reachability analysis to more complex systems the state explosion problem is
being tackled in a number of ways. Firstly, algorithms are being developed to
reduce the reachability graph. The first of these methods uses equivalence classes
of markings [79] which are derived from symmetries in the model. Another more
general and very promising approach is the stubborn set method introduced by
Valmari [139,138,141]. It takes advantage of the inherent concurrency of sys-
tems and does not rely on symmetries. It is also possible to combine these two
approaches. Secondly, initial attempts are being made to simplify the analysis
of systems composed of a set of closely coupled identical processes by reducing
them to an equivalent smaller set [49]. Unfortunately these results only apply for
closely coupled processes and cannot as yet be directly applied to network proto-
cols where the communicating entities are normally loosely coupled via queues.
What is required is some method of induction over protocol parameters, such as
sequence numbers, number of retransmissions, buffer/queue sizes and the number
of interacting parties. An initial attempt to provide a theory for this is given in
[140]. Two other approaches are discussed in [48]: hierarchical verification which
attempts to take advantage of the hierarchical nature of concurrent systems to
abstract from details; and lazy state generation where only the states required to
prove a particular property are generated. Finally some very recent results using
symbolic model checking [39] show great promise in certain application domains.

Invariants analysis [96,71,88,120,70,87,104,142,143,76,56] provides an alternative
to reachability analysis that avoids the state explosion problem. It has been
used successfully in a number of examples [7,17,18,55]. Unfortunately, there
is no guarantee that an assertion expressing a desired protocol property can

31




be proved using invariants [8]. There is also the complementary problem of
interpretation of the invariants found, usually a large number when dealing with
complex protocols.

Specification testing is an activity that attempts to discover protocol errors rather
than prove correctness [77]. This may be achieved by simulating the net, where
only parts of the reachability graph are investigated. This may be done auto-
matically [77,86] or interactively [15].

The major problem with the analysis of protocols is their complexity. In or-
der to analyse highly complex protocols, it will be necessary to have some form
of compositional approach. The specification will be decomposed into a set
of communicating entities. Each entity will be analysed separately for desired
properties. The total system may then be synthesised by combining the entities
according to some rules of composition which guarantee that the desired prop-
erties are maintained. Promising work in this area for Place/Transition nets
using abstract algebra and category theory can be found in [150,107]. Very re-
cent progress has been made on compositional state space generation [137] and
compositional model checking [50]. Further research is required to apply these
ideas to high-level nets and to the analysis of protocols.

2.5.6 Performance Evaluation

Performance evaluation involves the prediction of the performance of the pro-
tocol (in terms of delays, throughput and failure probabilities) from its speci-
fication. This requires the introduction of time and probabilities into the net
model. Various stochastic and timed Petri net models have been introduced
[117,106,130,108,119,99,2,101]. More recently these ideas have been incorpo-
rated into high-level nets [97,46,62]. Some of these nets have been used for the
performance analysis of a number of protocols [67,119,2,100,102].

Unfortunately these models alter the firing rule of the net, thus reducing the
possibilities for behavioural analysis. In [124], the concept of a clock has been
introduced via the construction of a pulse generator using nets. The duration
of an event can then be measured in terms of the number of ticks of the clock.
This may lead to an integrated approach to the specification and analysis of both
performance and behavioural aspects of protocols, at least to the extent where
discrete time is involved.

2.5.7 Automatic Implementation

The field of automatic implementation is still in its infancy. Some reasonably
successful attempts have been made to provide semi-automatic translation of
protocol specifications based on state machine languages into compilable code
on a single sequential processor [33]. The translation from the state machine
language to code is a relatively straight forward task and produces about 40%
of the code. The remainder is hand coded to suit the particular operating en-
vironment. (A summary of some of the tools for the International Standards,
particularly SDL and Estelle compilers, is given in [25].)
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Another example concerns a project to implement the OSI Transport Protocols
(Classes 0,1,2 and 3) based on Numerical Petri Net specifications, which lead
to the development of a prototype NPN interpreter by an Australian software
house [148]. This has been developed further into a high-level net to C compiler,
called PROMPT (PROtocol Manufacture, Prototyping and Testing) [30,81].

The more general problem of providing a translator from a concurrent specifica-
tion in nets onto an implementation programming language (e.g. ADA) suitable
for programming a multiprocessor appears to be an order of magnitude more
difficult. Some attempts at this are reported in [110,38,52,146,132].

The importance of automatic implementation lies in the possibilities for rapid
prototyping and rapid protocol maintenance. It is expected that progress in this
area will be reasonably rapid as the rewards are considerable.

2.5.8 Conformance Testing

To provide comprehensive conformance testing a set of sequences of protocol in-
teractions need to be defined. This set of sequences can be determined from the
reachability graph generated from the composite protocol specification (figure
2.5). This information can be employed for rigorous testing of implementations.
It is likely that the full reachability graph for complex protocols will not be avail-
able. In this case, interactive simulation of the net specification can be used to
generate the test sequences [31]. Manual testing of OSI transport protocols based
on Numerical Petri Net specifications using this approach, has been undertaken
with considerable success [11].

This approach opens the door to semi-automatic testing, where the specification
is run interactively and controls the sending of packets (or more generally Proto-
col Data Units) to the implementation under test. A trace is kept of all events.
The sequence of message exchanges is continued until

e the received message is not one that is allowed by the specification;
e no message is received within an expected time; or

e the operator ends the session.

Alternatively this could be further automated, where the choice of the event
occurrences could be made randomly, instead of by an operator.

2.5.9 Protocol Conversion

Formal methods are just starting to be applied to protocol conversion, with the
first papers appearing in 1986 (95,112}, using state machine techniques. As far
as the author is aware, there are no papers using nets to tackle the problems of
feasibility, specification, synthesis, optimum methods for overcoming mismatches
in the protocols, performance analysis and implementation issues. It is an im-
portant problem as there are a large number of protocol architectures already

33




implemented and the desire to communicate between these heterogeneous net-
works will increase. Hopefully net theory will be able to provide the basis of a
methodology for protocol conversion. This hope is based on the ability of net
theory to provide some answers in the design and development of a single pro-
tocol architecture and that the techniques used in [95,112] are based on state
machines and protocol verification techniques.

2.6 Computer Aided Tools

This section briefly discusses the range of computer-aided tools required to sup-
port protocol engineering activities. An integrated set of these tools constitutes
a protocol engineering workstation or workbench. Perhaps the most advanced of
these are: the tools being developed under ESPRIT project GRASPIN [92,84];
PACE (Prototyping, Analysis and Code-Generation Environment) [57]; and the
CPN Palette package of Meta Software [1].

2.6.1 Specification Manager

With the design of any complex protocol a large number of specifications are
required as the system is refined. The specifications include architectural, service
and protocol descriptions at different levels of detail. It is important to be able
to manage these specifications in order to provide a consistent set, particularly
in the face of iteration. Automatic tools to assist the designer are essential and
may include graphical and textual editors, syntax and static semantic checkers,
morphism display, data dictionaries and specification libraries. Unfortunately
no comprehensive system for nets is known to the author, however a number of
tools are available covering parts of these requirements [65,89,1,118,114,31,80].

2.6.2 Simulator/Animator

A simulator is required to allow a specification to be executed. Graphical display
of the dynamics (animation) also allows considerable increase in understanding
of the system being designed. Two modes of simulation are valuable: interactive
(where the user can choose which events are to occur) and automatic, where
events can be chosen according to some previously set priorities and probabilities.
A number of Petri net tools are available for this purpose [65,1,31,118,80].

2.6.3 Analyser/Verifier

This tool provides automatic assistance in the analysis of specifications. It will
provide a set of analysis tools to allow the specification to be verified against
its requirements and to allow the specification to be debugged when errors are
found. There are a large number of Petri net tools being developed for this
purpose [89,65,114,31,118,127].
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2.6.4 Performance Analyser

An automatic tool is required which will allow the performance of a system to be
predicted from a specification which includes stochastic information. A number
of these analysers exist for various types of stochastic Petri net {2,65].

2.6.5 Translators

Facilities are required, based on net morphisms, for protocol synthesis and to
assist with the software design. No tools are presently available. Tools for the
direct implementation of specifications are also required [57,30,81].

2.6.6 Conformance Tester

Considerable computer assistance will be required to perform efficient and com-
prehensive conformance tests based on test suites derived from net specifications.
Few tools are presently available [84].

2.6.7 Debugging

Once an error has been found it is essential to trace it back to an implementation
or specification fault. Tools are required for this purpose. In an integrated
tool set, which includes a compiler, only a symbolic debugger operating at the
specification level is required.

2.7 Conclusions

The concerns of protocol engineering have been summarised and an attempt has
been made to illustrate how net theory can be used to provide a rigorous approach
to the field. The set of computer aided tools required for protocol engineering has
been discussed. We are now at the stage where some sophisticated specification
and analysis tools exist, however, considerable further work is required to provide
a comprehensive protocol engineering workstation.

Further research is required in all aspects of protocol engineering, particularly
protocol synthesis, the analysis of complex protocols, automatic implementation,
conformance testing and protocol conversion. Net theory provides a suitable
foundation for the specification of protocol architectures, services and protocol
entities, although definition of a conveniently expressive high-level net, and de-
tails of structuring and a complete specification methodology still need to be
determined.

The rest of this thesis is concerned with the definition of a suitable high-level
net for the specification of the dynamic behaviour of protocols and services, but
does not tackle the problems of structuring large specifications nor the need for
specification methodologies.
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Part 11

Extending Coloured Petri Nets
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Chapter 3

Introduction

The limitations of Petri nets for specifying complex systems have been well known
for the last 15 years. During the latter part of the 1970’s and particularly during
the 1980’s high-level nets [131,71,88,120,70,87,123] have been developed in an
attempt to overcome this problem. It is also recognised that high-level nets also
have their limitations in expressive power and this part tackles this issue. To
model many concurrent systems naturally, we would like to express bounds on
the capacity of places (without having to use the net structure to do so) and
also to express enabling conditions based on the absence of, or a limit on, the
number of tokens in places. This idea is expressed by the inhibitor arc extension
to Petri nets [115] and it can be generalised for high-level nets as will be shown
in chapter 5.

The motivation for the introduction of the inhibitor function is not only to pro-
vide for more compact descriptions but also to allow for the atomic manipulation
of markings. For example, we may wish to empty (purge) a place of all (or a
subclass) of its tokens on the single occurrence of a transition mode. This aspect
is the subject of chapter 8.

In order to be precise, it is necessary to provide formal definitions of these exten-
sions. Further, it is also important to show how these extensions can be mapped
back to the original high-level net, so that already existing results for analysis
can be used.

Starting with Coloured Petri nets (CP-nets) [88,87] we add place capacities and
an inhibitor function to define a class of extended CP-nets, called P-nets. We
then define a transformation in chapter 6 that maps a P-net back to a CP-net,
under the condition that the capacity of a place must be finite when there is
an inhibitor associated with it. It is proved that the transformation preserves
interleaving behaviour, in that the (single step) reachability graphs of the P-net
and its equivalent CP-net (ECPN) are isomorphic.

A simple example shows that, in general, true concurrency is not preserved. It
is shown that the enabling condition for the ECPN is either the same or more
restrictive than that of the P-net. A theorem establishes the class of P-nets
under which true concurrency is preserved by the transformation. As expected,
this class includes capacity CP-nets as a special case.
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The graphical form of nets provides strong support for the intuition of designers
and specifiers, as it allows for the visualisation of flow of data and control. Hence
an important goal of this part is to define a graphical form of P-nets and this is
tackled in chapter 7. In the development of the graphical form, the ideas of sig-
natures and many-sorted algebras are borrowed from the algebraic specification
of abstract data types [64]. This allows us to develop two graphical forms, the
P-Graph and P-Graph Schema, at different levels of abstraction. The P-Graph
provides facilities for the development of concrete specifications where the sets
and functions that are required are already known. On the other hand, the P-
Graph Schema facilitates the specification of abstract systems where only the
names of sets, variables and functions are used together with their declarations.
A single P-net provides an interpretation for the P-Graph, whereas a class of
P-nets can be used to interpret the P-Graph Schema. The P-Graph allows other
forms of high-level nets, such as Predicate/Transition nets [70] and Algebraic
nets [123] to be considered within its framework.

Some of the ideas formalised here stem from the author’s association with the
development of Numerical Petri Nets [131,130,29,145,31] for the specification
of communication protocols and services. Specifically the idea of purging and
the need for elegant representations of queues are due to the author [29]. The
formalisation presented here is due to the author except where specifically noted
otherwise.

The name P-net has been coined for the net defined here, to reflect its genesis
in the specification of protocols (P-net is an abbreviation for Protocol-net), but
also because it is sufficiently different from other high-level nets to warrant a new
name. Although the design of P-nets has been influenced by the author’s expe-
rience with the protocol domain, it is believed that they are generally applicable
for the modelling of distributed systems including the functional specification of
telecommunication systems and services.

This part assumes a familiarity with nets [120,115,20] and also makes extensive
use of multisets. Multisets may be considered as a special class of vectors, some-
times called wesghted-sets. Definitions of sets together with multiset and vector
notation and operations are gathered together in Appendix A. Our definition
of CP-nets is a little different from that of [87], taking a more global view and
following that of [150]. We therefore proceed in a tutorial manner, introducing
the notation and concepts gradually.

3.1 P-net Design

‘The aim of this part is the development of a formal technique to be used in
systems engineering and in particular for protocol engineering. This section
briefly discusses some of the requirements of such a technique.

The development of P-nets has been guided by the following conflicting require-
ments:

o Expressive ability
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e Analytic power

e Simplicity

There are two parts to expressive ability: modelling power and modelling conve-
nience. Modelling power is the ability of a technique to model a class of systems
(see [115] chapters 7 and 8 for example) whereas modelling convenience refers
to the elegance or conciseness of expression when representing a system’s be-
haviour. It is well known [115] that there is a trade off between modelling power
and analytic power. (We increase modelling power at the expense of our abil-
ity to analyse the model; more questions become undecidable.) In general we
would like there to be just enough modelling power for our requirements (so that
. analytic power can be maximised).

It is essential that the technique be able to express all of the properties that we
wish to express about protocols and their services. P-nets include the inhibitor
extension which raises its modelling power to that of a Turing Machine. This
allows us to model any system that is implementable. It turns out that most
protocols do not require such modelling power. The technique allows for a whole
range of modelling power, from state machines to Turing Machines, depending
on the net structure and the use of inhibitors. The appropriate modelling power
can then be chosen to suit the application.

We would also like to increase the modelling convenience of the technique, so
that important elements in the application can be modelled relatively easily. We
can add constructs (notation) to do this which can be defined in terms of the
basic elements of the technique. The addition of too many constructs makes the
language more complicated and difficult to learn and we need to strive for a few
powerful constructs.

P-nets have been developed with these goals in mind. When considering a lan-
guage for protocol engineering, we need to consider the perspectives of the spec-
ifier, analyser and implementer of protocols. It is hoped that P-nets provide a
reasonable compromise. '

3.2 The Nature of High-Level Nets

In applications we often find that we wish to model records (vectors) of informa-
tion. For example, in protocol specification we wish to model messages (Service
Data Units (SDUs) and Protocol Data Units (PDUs)) comprising many fields,
and compound state information (major states, housekeeping variables, etc).
Thus information is structured. It is useful to be able to express this structure
in our specification language.

In place/transition nets (P/T-nets), this structure can only be expressed by
complex labelling of places by values. One place is required for each value of the
domain of a data structure and there is no means of grouping places associated
with the same data structure. The structure is lost in an amorphous sea of
net elements. This also leads to an explosion of P/T-net elements for even
moderately complex applications, rendering the graphical form useless.
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High-level nets [71,70,88,87] have overcome this problem by providing a mecha-
nism for grouping sets of (P/T-net) places (transitions) together and considering
them as entities in their own right, but still usually referred to as (high-level)
places (transitions). The places in the high-level net are now typed (implicitly or
explicitly) by the domain of the data structure and tokens residing in the place
take on values from the domain. Tokens may now have a structure, and because
they represent a value, are no longer anonymous and are often referred to as
individual tokens. The grouping of transitions allows sets (schemes) of similar
actions to be referred to by the one transition. The inscriptions on arcs are no -
longer integers but involve multisets of terms, which when evaluated are multi-
sets over the domain associated with the place. The price paid for structuring
the net is the increased complexity of net inscriptions. The considerable advan-
tage is being able to model systems in a much more compact and intuitively
appealing way. For example PDUs and SDUs, compound states and queues can
all be represented by tokens in appropriately typed places.

Coloured Petri nets (CP-nets) [88,87] have been chosen as the basis for the de-
velopment of P-nets because of their generality (arbitrary grouping of places and
transitions, c.f. restricted arity of predicates in PrT-nets); their transparent re-
lationship to P/T-nets; the possibility of using the ideas of algebraic specification
of abstract data types within the same framework [143]; and the increasing range
of analysis possibilities [142,104].
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Chapter 4

Coloured Petri Nets

This chapter introduces the basic features of Coloured Petri nets, including the
colouring of places and transitions, their pre and post maps, the net marking and
transition rule and culminates in a formal definition. It also relates the definition
provided here to the one used by Jensen [87].

4.1 Colouring Places and Transitions

Consider a set of (high-level) places, S, and transitions, 7. We wish to associate
a set with each place. Let there be a set, D, comprising the sets associated with
the places. This set determines a structure on the underlying place/transition
net. (We allow the sets associated with each place to be complex sets, such as
unions of product sets, e.g. if D € D then we may have D = (D; X D;)UD;.) We

define a place grouping function, GP, which associates a set in D with a place in

S.

GP:S —D N

We also associate a set of occurrence modes with each transition and in a similar
way, define the transition grouping function

GT:T — O

where O is the set of all the occurrence mode sets. (In most applications, we can
derive O from D)

For economy of definition, we can use a single grouping function, called the
Colour Function by Jensen [87].

C:5UT —¢C

where C = DUQ andforalls € S, C(s) = GP(s) andforallt € T, C(t) = GT(¢t).
Jensen uses the term occurrence-colours for occurrence modes and the term token-
colours to describe the members of a set in D, while we shall call them place
colours. We shall refer to C as the structuring set and the sets in C as colour
sets.
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4.2 Pre and Post Maps

We follow the approach taken in [150] for defining pre and post mappings.

We define two sets:
TRANS = {(t,m) |m e C(t),t € T}

PLACE = {(s,9) | g € C(s),s € S}

TRANS is the set of transitions in the unfolded P/T-net and likewise PLACE
is the unfolded set of places. We shall refer to elements of TRANS as transition
modes, and elements of PLACE as underlying places or just simply places when
the context is clear. (In this thesis, the terms unfolded and underlying are used
interchangeably.)

We form the set of multisets over TRANS and PLACE and denote them by
pTRANS and pPLACE respectively (see Appendix A).

We may now state the relationship between places and transitions by two map-
pings:
Pre,Post : TRANS — uPLACE

Thus Pre and Post return a multiset of underlying places for each transition
mode.

4.3 Net Marking and Transition Rule

A marking multiset can now be defined for all places by

M e uPLACE

and we shall denote the initial marking by M,.

Sometimes it will be useful to consider the marking of a particular place, s. This
can be achieved by partitioning the marking multiset according to places. We
define, for s € § and for all g € C(s),

M, € u({s} x C(s))

such that mult((s, g), M,) = mult((s,g), M). (mult(z, A) is the multiplicity of z
in the multiset A - see Appendix A.) We have Y ,cg M, = M, where }_ refers to
multiset addition (defined in Appendix A).

We can consider places to be marked by a multiset of tokens, M(s) € uC(s),
where for all g € C(s), mult(g,M(s)) = mult((s,g),M). (For any s € S, a
token is a member of C(s).)

The transition rule follows immediately from [150]. We consider a finite mul-
tiset of transition modes, T, € p)TRANS. By a linear extension of the above
mappings, we have

Pre',Post' : yTRANS — uPLACE
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where
P(T,)= Y. mult(tr,T,)P(tr)

treTRANS

with P = Pre or Post. ) is multiset addition and juxtaposition is used for
scalar multiplication of a multiset (see Appendix A).

We may now define a step (the simultaneous occurrence of a finite multiset of
transition modes, T},) from marking M to marking M’ as follows:

M[T)M' iff Pre(T,) <M

with
M' = M — Pré'(T,) + Post'(T,)

where ‘<’ is multiset comparison, and ‘—’ and ‘+’ are interpreted as multiset
subtraction and addition respectively (see Appendix A).

4.4 Definition of CP-nets

We are now in a position to provide a definition of CP-nets as a summary of the
discussion above.

4.4.1 Definition

A CP-net is a structure CP = (S,T,C;C, Pre, Post, M) where

e S is a finite set of places
e T is a finite set of transitions disjoint from S (S NT = @)
e C is a finite set of non-empty colour sets, the structuring set

e C:SUT — C is the colour function used to structure places and transi-
tions (of the underlying P /T-net)

Pre,Post : TRANS — pPLACE are the pre and post mappings with
TRANS ={(t,m) |me C(t),t € T}

PLACE = {(s,9) | g € C(s),s € S}

M, € uPLACE is a multiset known as the initial marking

4.4.2 Marking

A Marking is a multiset, M € uPLACE.
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4.4.3 Enabling

A finite multiset of transition modes, T, € puTRANS, is enabled at a marking
M iff
Pre'(T,) <M

Thus a multiset of transition modes is enabled if there are enough tokens on the
input places to satisfy the linear combination of the pre maps for each transition
mode in T,.

4.4.4 ‘Transition Rule

Given that a multiset of transition modes, T}, is enabled at a marking M, then
a step may occur resulting in a new marking M' given by

M' =M — Pré'(T,) + Post'(T,).

This is often denoted by M|[T,)M' or sometimes, for a single transition mode,
tr € TRANS, by MM,

4.4.5 Set of Reachable Markings

The set of reachable markings, [M)), of CP is obtained inductively as follows.

e M, € [My); and
o if M, € [M)) and for some tr € TRANS, M[tr)M,, then M, € [M,).

4.5 Relationship to Jensen’s CP-nets

CP-nets as defined above are very closely related to the way Jensen defines his
CP-Matrix [87]. The main differences are:

1. The structuring set of colour sets, C, is included in the structure CP.

2. The empty net (S UT = @) and isolated elements are allowed.

3. The Pre and Post mappings are defined in general for the whole net, rather
than a family of functions, one for each place-transition pair ((s,t) € SxT).

The structuring set is included for completeness and as yet I have not found it
useful to restrict the definition to exclude isolated elements or the empty net.
This is in keeping with [150].

We shall now relate the pre and post mappings to Jensen’s positive and negative
incidence functions, I_(s,t) and I (s,t).
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We define the following functions

Pre(s,t), Post(s,t) : C(t) — uC(s)
and
Pre'(s,t), Post!(s,t) : pC(t) — pC(s)

so that for all m € C(t),t € T and for all g € C(s),s € S (and using Pre(s,t;m)
for Pre(s,t)(m) and similarly for Post(s,t)(m))

o mult(g, Pre(s,t;m)) = mult((s,g), Pre(t,m)) and

o mult(g, Post(s,t;m)) = mult((s,g), Post(t,m))
and similarly for the multiset extensions which are identical to Jensen’s positive
and negative incidence functions.

o Pre'(s,t) = I_(s,t)

o Post'(s,t) = I (s,t)
As the multiset extension of a function includes the function itself, it is only
necessary to use the multiset extension function. Jensen adopts this approach.
I prefer to retain the original function and explicitly use it when the multiset

extension is not required. This is the case when we wish to define the pre and post
maps for example. It is hoped that this adds to the clarity of the presentation.
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Chapter 5

Extensions to CP-nets

5.1 Place Capacity

In the definition of CP-nets it is assumed that all places have infinite capacity.
We can generalise the notion of place capacity for P/T-systems [20] (and PrT-
nets [71]) quite easily. We denote the capacity by K, representing a multiset of
tokens for each place 4

K € yt PLACE.

This capacity cannot be exceeded by the marking: M < K. Specifically, the
initial Marking, My € pPLACE satisfies My < K. Note that the capacity
may contain elements with infinite multiplicities but zero multiplicities are not
allowed (see Appendix A for the definition of u} A).

To conform with the usual definition of P/T-systems [20] and for the reasons
discussed in [58], the enabling condition now becomes

M[T,)M' iff Pre'(T,) < M < K — Post'(T},)
and the transition rule is unchanged. The subtraction used above is vector
subtraction and ‘<’ is vector comparison (see Appendix A).
We may now define capacity CP-nets as follows:
Definition '

A CPxk-net, is a structure
CPx = (CP,K)

where

o CP is a CP-net as defined in section 4.4.1 with initial marking restricted
to comply with the capacity multiset: My < K, and

e K € uf, PLACE is a multiset known as the place capacity.

Because of the enabling condition and transition rule, any marking M € [Mp),
will comply with the capacity constraint: M < K.
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We can consider a partition of K according to places in the same way as we did
for markings. We define for s € S and for all g € C(s),

K, € % ({s} x C(s))

such that mult((s, g), K,) = mult((s,g), K) and Y s K, = K.

It will be useful to consider the capacity of a particular place, s, by defining
K(s) € p3,C(s)
as the multiset of tokens such that for each g € C(s)

mult(g, K(s)) = mult((s, g), K).

5.1.1 Inhibitor Maps
Zero-Testing Inhibitor

There may be times when we would like to have the ability to test places for
a null marking. This corresponds to the well known inhibitor arc extension to
Petri nets which increases their modelling power to that of a Turing machine

[115].

We shall denote the power set of a set A by P(A). We can generalise the notion
of an inhibitor arc for high-level nets, by introducing a function

I: TRANS — P(PLACE)

which associates with each transition mode a subset of places that will be used
for zero testing.

To obtain a suitable inhibitor condition for a multiset of transition modes we
define the following function:

Iy : u,TRANS — P(PLACE)
where for tr € TRANS and T1,,T2, € uTRANS we have
o« I'(0) = 0
o I)(tr) = Io(tr)
o I}(T1,+T2,) = I}(T1,) U I}(T2,)
Thus for example for n,m € Nt and tr,trl,tr2 € TRANS
o Ii(ntr) = Ij(tr) = Iy(tr)

o I}(ntrl + mir2) = Ij(trl) U I (¢r2) = L(trl) U I(tr2)
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The enabling condition is then formulated as the conjunction of two predicates:
the CP-net enabling predicate (section 4.4.3) and the inhibitor predicate, which
is given by M N I}(T,) = 0. Here, Ij(T,) is considered to be special multiset over
PLACE, with multiplicities being either zero or one. Multiset intersection, N,
is defined in Appendix A.

In summary, a finite multiset of transition modes, T, € pTRANS, is enabled by
a marking M iff
(Pré(T,) < M) A (M N I)(T,) = 0)

Thus a multiset of transition modes is enabled if there are enough tokens on the
input places to satisfy the pre map, and no tokens reside on the inhibitor places.

The transition rule remains unchanged.

Threshold Inhibitor

For modelling convenience, we would like to introduce a threshold inhibitor con-
dition, which instead of requiring that certain tokens must be absent from the
marking as above, requires that certain tokens must not exceed a preset multi-
plicity, known as the threshold. We do this by generalising the above inhibitor
function to associate a general multiset of (underlying) places (the thresholds)
with each transition mode.

I:TRANS — poPLACE

Thus the multiplicity of place colours not having a threshold will be infinite, and
the zero-testing inhibitor is simulated when the multiplicities are zero.

We can again extend this function to multisets of transition modes by defining
I' : uyTRANS — poPLACE
where for tr € TRANS, and T1,,T2, € yTRANS we have

o I'(B) = {(p,o0) | p€ PLACE}
o I'(tr) = I(tr)
o I'(T1,+T2,) = I'(T1,) N I'(T2,)

The first item ensures that I'(T1, + 0) = I'(T1,).

Note that this extension to multisets is different from that for the pre map. Here
the extension yields the minimum threshold, rather than the sum of thresholds.

As above, the enabling condition is then formulated as the conjunction of two
predicates. A finite multiset of transition modes, T, € uTRANS, is enabled by
a marking M ff

Pre(T,) < M < I'(T,)

Thus a multiset of transition modes is enabled if there are enough tokens on the
input places to satisfy the pre map and the thresholds are not exceeded for the
inhibitor places. Again the transition rule remains unchanged.
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Definition
A Threshold Inhibitor CP-net, CP-net, is a structure

CP; = (CP,I)

where

e CP is a CP-net as defined in section 4.4.1; and
o I:TRANS — po PLACE is the threshold inhibitor map.

The enabling condition has been defined above, and markings and the transition
rule are as defined for CP-nets.

For the graphical form it will be convenient to define an inhibitor map for each
place-transition pair as follows: fors€ S andte€ T,

I(s,t) : C(t) — uC(s)
where for all m € C(t),t € T and for all g € C(s),s € S

mult(g, I(s,t;m)) = mult((s,g),I(t,m))

5.1.2 P-nets

We are now in a position to define P-nets. P-nets are CP-nets extended by
place capacities and the threshold inhibitor map. The motivation for choosing
the threshold inhibitor is that it is symmetrical with the pre map and thus allows
the two to be equated. This is convenient because it allows a marking to be
purged by a single transition occurrence, useful when specifying the abortion of
various procedures. Chapter 8 develops the theory and provides some examples.

As suggested in [90] we could use CPkr-nets (Capacity/Inhibitor CP-nets) as
the name to avoid a proliferation of names of high-level nets. After consider-
ing a number of options it was felt that the advantage of brevity; that P-net
can be considered an abbreviation for CPgr-net; and the mild link back to the
application domain of protocols (P-nets could be thought of as an abbreviation
of Protocol Nets) where some of the ideas for the extensions arose; were suffi-
cient reasons to retain the name P-nets. One may also consider CPki-nets to
be a broader class where the inhibitor extension may be defined differently (e.g.
the zero-testing inhibitor), whereas with P-nets the inhibitor extension is the
threshold inhibitor as defined above.

Definition

A P-net, is a structure
P=(CPI,K)

where
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e CP is a CP-net as defined in section 4.4.1 with initial marking restricted
to comply with the capacity multiset: M, < K.

e I:TRANS — poPLACE is the threshold inhibitor map; and

e K € uf PLACE is a multiset known as the place capacity.

Marking

A Marking is a multiset, M € uPLACE, such that M < K.

Enabling

A finite multiset of transition modes, T, € pyTRANS, is enabled at a marking
M iff
(Pre'(T,) < M < K — Post'(T,)) A (M < I'(T}))

Thus a multiset of transition modes is enabled if there are enough tokens on the
input places to satisfy the pre map, there is enough capacity left in the output
places, and the inhibitor thresholds are not exceeded.

Transition Rule

The transition rule is the same as for CP-nets and is given in section 4.4.4.

M' =M — Pré'(T,) + Post'(T,)

Reachable Markings

This is again defined in exactly the same way as for CP-nets (see section 4.4.5).

Special Cases
There are three obvious special cases of P-nets.

1. Capacity CP-nets (CPk-nets)

When the thresholds are infinite, (that is for all tr € TRANS and for all
p € PLACE, mult(p, I(tr)) = c0), the P-net becomes a capacity CP-net.

2. Inhibitor CP-nets (CPi-nets)

When the capacities of the places are infinite (for all p € PLACE, K(p) =
00), the P-net becomes an inhibitor CP-net.

3. CP-nets

When the capacities of the places and the thresholds are infinite (that is
for all p € PLACE,K(p) = oo and for all t&r € TRANS, for all p €
PLACE,mult(p, I(tr)) = oo) the P-net reduces to a CP-net.
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The condition on the inhibitor function given in case 1 above is sufficient but not
necessary for a P-net to be a CPx-net. The conditions given in cases 2 and 3 are
necessary and sufficient. In case 2, its obvious that the condition is sufficient. It
is also necessary that Vp € PLACE, K(p) = oo to remove the initial marking
capacity restriction (Mp < K). Once the necessary and sufficient conditions for
case 1 have been determined, it becomes obvious that those stated above for case
3 are also necessary and sufficient.

We now explore the necessary and sufficient conditions for a P-net to be a CPk-
net.

Consider the following proposition.

Proposition 5.1 If Vir € TRANS,I(ir) > K — Post(tr), then for any finite
multiset, T, € uyTRANS,

I'(T,) > K — Post'(T},)

Proof:

Let T, = 3 ; t; where n is a positive integer and for all ¢ € In = {1,...,n},t; €
TRANS. (Note that the ¢; need not be distinct.)

From the definition of I' (see section 5.1.1),
I'(T,) = N1(t) (5.)

and from the definition of Post' (see section 4.3),

Post'(T,) = ) _ Post(t;). (5.2)
Now, for any p € PLACE, (and from the definition of multiset intersection - see
Appendix A) :

mult(p,(I(t:)) = min(mult(p,I(t1)),...,mult(p,I(t,)))
= mult(p,1(t;)) (5.3)

where for all k£ € In,mult(p, I(t;)) < mult(p, I(tk)).

From the proposition, we have for all t; € T,

I(t;) > K — Post(t;)

and hence
mult(p,I(t;)) > mult(p, K — Post(t;))
> mult(p, K — Post(t;) — > _ Post(t;))
i#]
> mult(p, K — ) Post(t;))
> mult(p, K — Post'(T,)) (5.4)
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Combining equations 5.1, 5.3 and 5.4

mult(p, I'(T,)) > mult(p, K — Post'(T,)) (5.5)

Since equation 5.5 is true for all p € PLACE, we obtain the desired result:
I'(T,) > K — Post'(T,) (5.6)

O

A corollary from proposition 5.1 is

Corollary 5.1 If Vir € TRANS,I(tr) > K — Post(tr), then for any finite
multiset, T, € pyTRANS,

M < K — Post'(T,) == M < I'(T,)

This corollary implies that if Vir € TRANS,I(tr) > K — Post(tr), holds for a
P-net, then the threshold inhibitor has no effect on the enabling condition and
is therefore redundant. The P-net is then a capacity CP-net.

The converse is also true.

Proposition 5.2 If a P-net is a CPx-net, then Vir € TRANS,I(tr) > K —
Post(tr)

Proof:

Since the only effect of the inhibitor on the behaviour of the P-net concerns
the enabling condition, the P-net enabling condition must reduce to that of a
CPk-net. This happens when for all finite T, € yTRANS

I'(T,) > K — Post'(T},)

which implies as a special case that Vir € TRANS, I(tr) > K — Post(tr) O

We can now state the following theorem concerning the relationship between
P-nets and CPk-nets.

Theorem 5.1 A P-net is a CPg-net iff Vir e TRANS, I(tr) > K — Post(tr)

Proof: Follows directly from proposition 5.2 and corollary 5.1. O

Given that a necessary and sufficient condition to remove the capacity condition
is that for all p € PLACE, K(p) = oo, and that for all ¢{r € TRANS, for all
p € PLACE, mult(p, Post(tr)) < oo, then the only way to remove the inhibitor
(i.e. to satisfy theorem 5.1) is for the thresholds to be infinite everywhere. Hence
the conditions stated in case 3 above for a P-net to be a CP-net are both necessary
and sufficient.
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Chapter 6

Transforming P-nets to CP-nets

To allow the analysis techniques that have been and are being developed for CP-
nets to be applied to P-nets, it is important to be able to transform P-nets to CP-
nets and to know precisely under which circumstances these transformations are
applicable. This chapter! describes transformations under which-the interleaving
behaviours of the P-net and CP-net are equivalent in the sense that their single-
step reachability graphs are isomorphic. Further, it establishes the conditions on
the P-net where the transformations do preserve true concurrency.

To motivate the transformations, it is first necessary to establish an eztended
complementary place tnvariant for CP-nets.

6.1 Extended Complementary Place Invariant

In this section we consider a class of CP-nets in which the set of places is parti-
tioned into two sets of the same cardinality such that for each place in one set
there is a corresponding place in the other. We also relate the pre and post maps
restricted to one set of places to the pre and post maps restricted to the other
set, in such a way that an invariant exists between the markings of the two sets
of places.

This development has been inspired by the idea of complementarity for P/T-
systems [120]. We shall therefore call the corresponding set of places, comple-
mentary places. When complementing a P/T-system the pre map (post map)
on the complementary places is set equal to the post map (pre map) on the orig-
inal set of places. This guarantees an invariant on each pair of complementary
places. If p is an original place and p its complement, then for every reachable
marking M, M(p) + M(p) = K(p) where K(p) = Mo(p) + Mo(p) is a constant,
the capacity of place p.

The following generalises this idea in two ways. Firstly we relax the relationship
between the pre and post maps (we are only concerned with the equality of the
differences in the pre and post maps) and secondly we raise these notions to the
level of CP-nets.

1The first three sections (6.1 to 6.3) of this chapter have recently been published [23].
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S1=SuSs

where 5 = {3 | s € S}

Vs € 5,C(8) = C(s)

PLACE1 = PLACEU PLACE

PLACE = {(s,9) | g € C(s),s € S}
PLACE = {(3,9) | g € C(s),s € 8}

The pre and post maps are factored: Vir € TRANS
Prel(tr) = Pre(tr) + Pre(tr)

Post1(tr) = Post(tr) + Post(tr)

Pre,Post : TRANS — uPLACE
Pre,Post : TRANS — uPLACE

M1, = My + M,

where My € uPLACE and M, € uPLACE

Figure 6.1: CP1: Basic Definition

6.1.1 Definitions

Let CP1 = (S1,T,C;C, Prel, Postl,M1,) be a coloured net with components
defined in figure 6.1. The hat notation is used to indicate complementary places,
or sets or functions associated with complementary places. An overbar notation
is defined in figure 6.2. It is used to complement the marking or pre and post
maps associated with the original places.

If X € puPLACE then X € uPLACE such that
Vp € PLACE, Vp € PLACE, X(p) = X(p)

Figure 6.2: Overbar Notation

We now state the restriction on the pre and post maps which guarantees that
the complementary place invariant holds.

Vir € TRANS, Pre(tr) — Post(tr) = Post(tr) — Pre(tr) (6.1)

6.1.2 Complementary Place Invariant

Let M1 € uPLACE]1, a reachable marking of CP1, be factored so that M1 =
M + M where M € uPLACE and Me [.I,PL’A\CE. For convenience, let M +
M, = K where K € u.PLTC’E, then the invariant is given in the following
proposition.

Proposition 6.1 For CP1 above, satisfying equation 6.1,
VM1 e [M1),M+M=K
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Proof:

The proof is by induction over the reachable markings. The proposition is true
by definition for the initial marking. Given any reachable marking M1 = M+ M,
we assume that

M+M=K (6.2)
and then prove it is true for any follower marking. '
Vir € TRANS such that Prel(tr)<M1, the follower marking, M1, is given by

the transition rule:
M1 = M1+ Prel(tr) — Postl(tr)
= M + M + Pre(tr) + Pre(tr) — Post(tr) — Post(tr)
M + Pre(tr) — Post(tr) + M + Pre(tr) — Post(tr)

= M+M
where
M' = M + Pre(ir) — Post(tr) (6.3)
M' = M + Pre(tr) — Post(tr) (6.4)

Thus we need to prove that given equation 6.2
M+M=FK (6.5)

Substituting for M’ and M using equations 6.3 and 6.4, rearranging and using
equation 6.1 gives the required result.

M+M = M+ Pre(tr) — Post(tr) + M + Pre(tr) — Post(tr)
= M + M + Pre(tr) — Post(ir) + Pre(tr) — Post(tr)
= M+M
= K

6.2 Interleaving Equivalence of P-nets and CP-
nets

In this section we give transformations from P-nets to CP-nets which preserve
their interleaving behaviour and show that there is an isomorphism between the
single step (interleaving) reachability trees of P-nets and CP-nets, under weak
assumptions.

The transformations are important as they allow the theory developed for the
analysis of CP-nets (high-level reachability trees and invariants analysis [87]) to
be applied to P-nets in most practical situations.

We firstly consider the most straightforward case where the capacities of all
places in the P-net are finite and then relax this condition when there is no
inhibitor condition associated with an underlying place (see section 6.2.3).
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6.2.1 Complete Complementation Transformation
A P-net, P = (S,T,C;C, Pre, Post, My, I, K), with the restriction that
Vir e TRANS,Vp € PLACE, mult(p, I(tr)) < oo = mult(p,K) < oo (6.6)

can be transformed into CP-net CP = (S,T,C; C, Pre, Post, My), where we have
used the underline to denote the CP-net elements.

Firstly we define a combined inhibitor-capacity function. For a P-net, the en-
abling condition for tr € TRANS, at marking M, comprises

1. the precondition Pre(tr) < M
2. the capacity condition M < K — Post(tr) and
3. the inhibitor condition M < I(tr)

It will be convenient to combine enabling conditions 2 and 3 above and we
therefore define the following inhibitor-capacity function:

IK :TRANS — pPLACE
where Vir € TRANS, IK(tr) = (K — Post(tr)) N I(tr).

The enabling condition becomes

1. Pre(tr) <M
2. M < IK(tr)

We shall replace the second enabling condition by an equivalent pre map on a
set of complementary places in the CP-net. The construction is as follows.

Firstly we impose the restriction that all places have finite capacity

Vp e PLACE,K(p) < oo

For each s € S, we create a complementary place § and gather them together
into a set of complementary places, S = {§ | s € S}. The set of places of the
CP-netisthen S=S5US.

We denote the set of underlying complementary places by PLAC E, given by
PLACE = {(3,9) | g € C(s),s € S}
and use the notation defined in figure 6.2 for complementing multisets associated

with P-net places.

If M denotes the marking of the complementary places S, then M e uPL?l\C E.
The initial marking and pre and post maps will be chosen so that the following
invariant holds

M+M=K (6.7)
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C:SuSuT —¢

where Vs € S,Vt € T, C(s) = C(s),C(8) = C(s),C(t) = C(t)
The pre and post maps: Vir € TRANS,

Pre(tr) = Pre(tr) + K — IK(tr)

Post(tr) = Post(tr) + Pre(tr) — Post(tr) + K — IK(tr)

My = M, + K- M,

Figure 6.3: P-net to CP-net Transformation

The Pre and Post maps are factored with respect to the original set of places
and the set of complementary places and thus Vir €« TRANS

Pre(tr) = Pre(tr) + Pre(tr) (6.8)
Post(tr) = Post(tr) + Post(tr) (6.9)

where 157'\3,P/o:st : TRANS — uPL?l\C'E. From proposition 6.1, the above
invariant holds if

Vir € TRANS, Pre(tr) — Post(tr) = Post(tr) — Pre(tr) (6.10)

If we complement the second enabling condition and substitute for M using

equation 6.7, we obtain the equivalent precondition on the complementary places.
Thus Vir ¢ TRANS

M<IK(tr) & M<IK(tr)
& K — M<IK(tr)
& K-IK({r)<M (6.11)

Thus Vir € TRANS, Pre(tr) = K — IK(tr) which then gives us Pre(tr) from
equation 6.8. Finally, knowing Pre(tr), the post map is derived from equations
6.10 and 6.9.

The transformation is summarized in figure 6.3.

6.2.2 Proof of Interleaving Equivalence

The interleaving behaviours of the P-net and corresponding CP-net defined in
figure 6.3 are equivalent in the sense that their reachability trees (transition
systems) are isomorphic. This may be stated more precisely in the following
theorem.
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Theorem 6.1 (Interleaving Equivalence) 1. For each reachable marking,
M € [Mo) of P, there is a corresponding reachable marking M € [My) of
CP and vice versa. That is there 1s a bijection:

p: [My) — [Mo)
where M = p(M) = M + K — M; and

2. The single step occurrences of transition modes in P and CP are in one-
to-one correspondence:

MM p(M)-sp(M)

Proof:
The proof is by induction over the reacha_.‘tlle markings. Point 1 is true for the
initial marking by definition: My = My + K — M, (see figure 6.3).

Assume ’
M=M+K-M (6.12)

We firstly need to prove that if a transition mode, tr, is enabled at M (in P),
‘then it is also enabled at M (in CP) and vice versa. This is formally stated in
the following lemma.

Lemma 6.1 (Enabling Lemima)

Pre(tr) < M < IK(ir) iff Pre(tr) <M

Proof:

Starting with the CP-net, using equation 6.12 and substituting for the definition
of Pre(tr) reveals '

Pre(tr
Pre(tr) +K-M

(Pre(tr) + K — IK(tr)) < (M + K — M)
Pre(tr)<M and M<IK(tr)
Pre(tr)<M<IK(tr)

which has proved the enabling lemma. O

<M
<M

te e

We now prove 1 and 2 together in two parts. Firstly we prove that p is an
injection and the implication on the transition systems."

The enabling lemma tells us that if ¢r of P is enabled at M, then t¢r of CP is
enabled at M = M + K — M. Consider the successor markings

o M-ZsM'; and
. ]\_{[_LM_’
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Assuming equation 6.12, we wish to prove that Vir € TRANS
MM >M+E-M5M+K-M

From the transition rule and the definitions of the pre and post maps for the
CP-net, we have

M' = M+ K — M — Pre(tr) + Post(tr)

M + K — M — Pre(tr) + Post(tr) + Pre(tr) — Post(tr)
M — Pre(tr) + Post(tr) + K — M + Pre(tr) — Post(tr)
= M+K-M

Il

Hence we have proved the one-way implication and also that p is an injection.
We now prove the reverse implication of 2 and that p is surjective. The proof
has exactly the same form as the previous proof.

Let R be the marking we get when a transition occurs in the P-net for mode ¢r
at marking M. We need to prove Vir € TRANS

M+E-M5M+E-M = M-5M
and hence that R = M'.

From the transition rule, the definitions of the pre and post maps for the CP-net
and equation 6.12, we have '

R = M — Pre(tr) + Post(tr)

M — K + M — Pre(tr) + Post(tr)

M — Pre(ir) + Post(tr) — K + M — Pre(tr) + Post(tr)
M-K+M

= M

Thus for each successor marking M' = M' + K — M in CP we have a corre-
sponding marking M' in P, which completes the proof. [J

6.2.3 Less Restrictive Transformation

We now remove the restriction that all places must have finite capacity. If
for some p € PLACE, mult(p, K) = oo, then we must have Vir € TRANS,
mult(p, I(tr)) = oo, to satisfy the initial restriction (equation 6.6). In this case
only an identity transformation is required.

As before we shall create complementary places in the underlying P/T-net to
eliminate finite capacities and the inhibitor condition. The definition of PLACE
is modified to exclude an underlying place corresponding to p when K(p) = cc.

PLACE ={p|pe PLACE A K(p) # oo}

The set of complementary places now becomes

8'={5|3(8,9) € PLACE',s € S,g € C(s)}
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§=8uU¥§

where §' = {3| 3(3,9) € PLACE',s € S,g € C(s)}
and PLACE = {p | p € PLACE A K(p) # oo}
Tr=T

c=cut

where C = {C(8) | § € 5"

c:S5uS'uT —¢

where Vs € S,Vt € T,

C(s) =C(s) .
C(3)={g| (3,9) € PLACE}
Q(t) = C(t)

The pre and post maps: Vir € TRANS
Pre(tr) = Pre(tr) + K — I K (tr)
Post(tr) = Post(tr) + Pre(tr) — Post(tr) + K — IK (tr)

%=M0+F—Mo

Figure 6.4: Less Restrictive P-net to CP-net Transformation

where p = (3,g). The corresponding colour sets are Vs € $,C(s) = C(s) and
Vs §,C(8) ={g| (3,9) € PLACE'}

so that the set of colour sets is C = C UC where C = {C(38) |5 §'}.

The overbar notation is changed accordingly so that if X € uPLACE then
J— —— I} ———— JR—

X € uPLACE such that for p € PLACE, Vp € PLAC’E’,L((;‘)) = X (p). Note
that when K(p) = oo, there is no corresponding element in X (i.e. X(p) = 0).

The desired transformation is given in figure 6.4.

Because the transformation is of the same form as before the proofs carry through
to the new transformation. Some care is needed with the enabling lemma in the
implication proof when ‘unbarring’ where we need to note that for p € PLACE
and Vir e TRANS

—_—— —— ]
It(p,IK(tr)) if p€ PLACE
mult(p, [K (tr)) = { Zu (b Gr)) i_)tﬁerwise

6.3 Example

The following example demonstrates that, in general, true concurrency is not
preserved by the P-net to CP-net transformations. The example is essentially
a simple P /T-system (we are using a instead of ) with threshold inhibitor ex-
tension and is defined in figure 6.5. A graphical form is also given, following
the usual conventions for P/T-systems. The threshold inhibitor is represented
by the arc with a small circle at its end. The inscription defines the thresh-
old for its associated place. For the initial marking shown it is obvious that
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P-Net

S = {s}

T = {t}

¢ ={{e}}

C(s) = Clt) = {a)
Pre(t,a) = {((s,a),1)}
Post(t,a) =0

M, = {((s,a),3)}

I(t’ a’) = {((ssa)’4)}
K = {((s,a),5)}

Graphical Form

s
3a

K(s) = 5a

4a

a

Figure 6.5: Simple Inhibitor Example

a),1)}

CP-Net
S ={s,8}
T = {t}
C ={{a}}
C(s) = O(3) = C(t) = {a}
Pre(t,a) = {((s,a),1), ((3,
Post(t,a) = {((s,4),0), ((3,4),2)}
Mo = {((s,9),3),((3,9),2)}

Graphical Form

S

.

@ a ’

a

8
=@

2a

Figure 6.6: CP-net equivalent for Simple Inhibitor Example

t is enabled, self concurrently 3 times.

Pre'(Ty) = {((s,0),3)} = My.)

(More precisely, for T, = {((¢,4q),3)},

The interleaving equivalent CP-net is shown in figure 6.6, together with a graph-
ical representation. By inspection we can see that the interleaving behaviour of

the two nets is equivalent, as they have the same reachability trees.
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three times, reducing the number of a tokens from 3 to zero in place s.) It is also
obvious that truly concurrent behaviour is not preserved, since in the CP-net,
t is only doubly concurrently enabled in the initial marking, compared with 3
times in the P-net.

6.4 Concurrency and P-net Transformations

The above example shows that the P-net to CP-net transformations do not
guarantee the preservation of true concurrency. For P, a P-net, and its trans-
formation, T(P), to a CP-net according to figure 6.4, and a finite multiset of
transition modes, T, € pTRANS, then it is not necessarily true that if 7, is
enabled in P at a reachable marking M of P, then T}, is enabled in T (P) at the
corresponding marking, p(M). More formally the proposition

VM € [My), (Pre'(Ty) < M < (K — Post!(T,)) N I'(T)) = (Pre(T,) < p(M))

is false.

This leads to the investigation of the class of P-nets that can be transformed to
CP-nets while preserving true concurrency. Firstly, we note that there is always
a one-to-one correspondence between the reachable markings of the P-net, P,
and those of T(P), as steps do not change [Mp), but only introduce extra arcs
in the reachability tree. Thus we are only concerned about proving that the
reachability trees have the same arcs if true concurrency is preserved. This is
done by restricting P to ensure that if a multiset of transition modes is enabled
in P at marking M, then the same multiset of transition modes is enabled in
T (P) at marking p(M) and vice versa.

A major class under which the transformation does preserve concurrency is CPg-
nets.

Theorem 6.2 If a P-net is a CPk-net, then the above transformations preserve
true concurrency:

VM € [Mo), Pre'(T,) < M < (K — Post!(T,)) & Pre'(T,) < p(M)

Proof:

This theorem generalises the enabling lemma (lemma 6.1) to accommodate a
finite multiset of transition modes (instead of a single mode), for the restricted
case of a CPk-net.

Let T, = 31, t; where n is a positive integer and for all7 € In = {1,...,n},t; €
TRANS. (Note that the ¢; need not be distinct.)

From the definitions of Pre', Post' and p(M) (from theorem 6.1) and noting
that for a CPg-net Vt; € T,,IK(t;) = K — Post(t;) (from theorem 5.1), then in
a similar way to the proof of the enabling lemma we have for all M € [My)

Prd(T,) < p(M)
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Pre'(T,) < M < K — Post'(T,) (6.14)

a

Now let us examine more carefully how the transformations can fail to preserve
true concurrency. For a P-net, the enabling condition for a finite multiset of
transitions, T, € uTRANS, at marking M, given in section 5.1.2, is equivalent
to

Pré'(T,) < M < (K — Post'(T,)) n I'(T,) (6.15)

The interleaving equivalent CP-net enabling condition at marking p(M) has an
equivalent condition on marking M given by equation 6.13. This allows a direct
comparison of the two enabling conditions. The pre conditions are the same, but
the inhibitor-capacity conditions (i.e. the ‘M < ezpression’ part) are different in
general. Of course, if we choose a multiset of transition modes (T,) where the
inhibitor is not active (Vi; € T, K — Post(t;) < I(t;)), then

Vt; € T“,IK(t,') =K— Post(t,-)

and the enabling conditions (6.15 and 6.13 above) are the same, being identical
to the CPk-net enabling condition (6.14).

It is only transition modes where 3p € PLACE : mult(p,I(t;)) < mult(p, K —
Post(t;)) that may cause a decrease in the amount of possible concurrency. It is

therefore necessary to examine the inhibitor-capacity conditions component-wise
as follows. For all p € PLACE,

For the P-net

M(p) < min(mult(p, K—Z: Post(t;)), mult(p, I(t1)),...,mult(p, I(t,))) (6.16)

For the equivalent CP-net

M(p) < K(p) — Z[K(p) — min(mult(p, K — Post(t;)), mult(p, I(t;)))] (6.17)
It is easy to verify that the above two conditions are equivalent when n = 1.
Both 6.16 and 6.17 reduce to: for all p€ PLACE,

M(p) < min(mult(p, K — Post(t1)), mult(p, I(t1)))
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They are also the same when no inhibitors are active, that is under the condition
Vt; € Ty, p € PLACE, mult(p, K — Post(t;)) < mult(p, I(t;)) both 6.16 and 6.17
become

M(p) < mult(p,K — ) _ Post(t;)) (6.18)

as expected.

Now given a p € PLACE, such that for some t; € T},
mult(p, I(t;)) = min(mult(p, K—)_ Post(t;)), mult(p, I(t1)),...,mult(p, I(t,)))

(6.19)
then for the P-net, the inhibitor-capacity condition is (from 6.16 and 6.19)

M(p) < mult(p, I(t;)) (6.20)
and for the equivalent CP-net (from 6.17 and 6.19)

M(p) < mult(p,I(t;)) — D_[K(p) — min(mult(p, K — Post(t;)), mult(p, I(t;)))]
177

(6.21)

By comparing 6.20 and 6.21, it can be seen that the inhibitor-capacity condition

is (in general) more restrictive for the equivalent CP-net, because the part in

square brackets is always non-negative. This is demonstrated by proving the

following proposition.

Proposition 6.2 Vp € PLACE,Vt; e TRANS
[K(p) — min(mult(p, K — Post(t;)), mult(p, I(t:)))] > mult(p, Post(t;)) >0

Proof:

We shall use the notation [| to represent the part in square brackets. Note
that K(p) < oo from equation 6.19 and the transformation restriction 6.6, and .
consider two cases: Vp € PLACE, and Vt; € TRANS

1. For mult(p, K — Post(t;)) < mult(p, I(t;)),

[ = K(p) — mult(p, K — Post(t;))
= mult(p, Post(t;)) > 0 (6.22)

2. For mult(p, K — Post(t;)) > mult(p, I(t;)),

[ = K(p)— mult(p,I(t:))
mult(p, Post(t;)) (6.23)

>
> 0
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Theorem 6.3 The inhibitor-capacity condition for a P-net (P) is less restrictive
than the inhibitor-capacity condition for the equivalent CP-net (T (P)). That is,
for a finite T, € yTRANS with T, = Y%, t; where for alli € In,t; € TRANS,

(K — Post!(T,)) N I'(T) 2 K — 3 (K — IK(t))

Proof:
There are several cases.

Case 1: The P-net is a CPk-net, then from the proof of theorem 6.2 the inhibitor-
capacity vectors are the same.

(K — Post'(T,)) N I'(T,)

K — Post'(T,)
K - 3°(K — IK(t))

Case 2: dp € PLACE : mult(p, I(t;)) < mult(p, K — Post(t;)).

Here we consider the inhibitor-capacity vectors component-wise from equations
6.16 and 6.17. Equation 6.18 shows that the vectors are equal when no inhibitor is
active. Hence we only need to consider the case where there are active inhibitors.

Firstly we define the set of transition modes which have active inhibitors for
place p € PLACE

TRANSI(p) = {tr | tr € TRANS and mult(p, I(tr)) < mult(p, K — Post(tr))}
(6.24)

and the set of underlying places that have active inhibitors

PLACEI={p|pec PLACE and TRANSI(p) # 0} (6.25)

For each p € PLACE, let the corresponding component of the P-net inhibitor-
capacity vector (from equation 6.16) be

ICp(p) = min(mult(p, K — ZPost(tg)),mult(p,I(tl)), ... ,mult(p,I(t,)))

(6.26)
and let the corresponding equivalent CP-net inhibitor-capacity component (from
equation 6.17) be

n

ICcp(p) = K(p) — Y_[K(p) — min(mult(p, K — Post(t;)), mult(p, I(t;)))] (6.27)

=1

Hence we need to show that Vp € PLACE, ICp(p) > ICcp(p). This has already
been demonstrated for all p€ PLACE \ PLACEI.

Let ¢; be the transition mode which has the most restrictive inhibitor on p €
PLACEI (ie. t; € TRANSI(p) and Vt € TRANSI(p), mult(p,I(t;)) <
mult(p, I(tx)))-

Now there are two cases to consider for the P-net when there is at least one
active inhibitor for place p.
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Case 2.1: For all p€ PLACEI, t; e TRANSI(p), for all t; € Ty, t; € T},
mult(p, K — 3; Post(t;)) < mult(p, I(t;)) < mult(p, K — Post(t;))
then

ICp(p) = mult(p, K — X;Post(t;))

= K(p) — mult(p, Post(t;)) — Y _ mult(p, Post(t;))  (6.28)
7]

Case 2.2: For t; € TRANSI(p), t; € Ty, t; € T, and for all p e PLACEI,

mult(p, I(t;)) < mult(p, K — 3, Post(t;))

then
ICe(p) = mult(p, I(t;)) (6.20)

and for the equivalent CP-net (from 6.21)

ICcp(p) = muli(p, I(t;))— D _[K(p) — min(mult(p, K — Post(t;)), mult(p, I(t:)))]
7 (6.30)

From proposition 6.2, it follows directly that ICp(p) > ICcp(p) for case 2.2.

In case 2.1, since mult(p,I(t;)) < K(p) — mult(p, Post(t;)), then ICp(p) >
ICop(p) beca.use Vt; € T, [] = mult(p, Post(t;)) from proposition 6.2.

O

Now let us examine the condition under which the inhibitor-capacity vectors are
equal. This can only be true when case 1 of the proof of proposition 6.2 applies
for all the transition modes in T}, (except t;) and all the images of the post maps
with arguments taken from T, (except Post(t;)) have zero multiplicities for p.

Let T,' = T, — {t;} and consider the case when
Vt; € T, ,mult(p, K — Post(t;)) < mult(p,I(t;)) (6.31)

The enabling condition for the equivalent CP-net becomes (from 6.21)

3

mult(p, Y Pre(t;)) < M(p) < mult(p, I( J)) — Y " mult(p, Post(t;))  (6.32)
i i#]

The condition 6.31 implies that ¢; ¢ T,' and hence that ¢; must not exhibit
any self concurrency. It also means that ¢; cannot be concurrently enabled with
any other ¢;, that has an active inhibitor on place p. For the equivalent CP-net
to have the same enabling condition, we require further that for all ¢; € T/,
mault(p, post(t;)) = 0. Alternatively, if mult(p, post(t;)) # 0, then t; and ¢; must
not be concurrently enabled in the P-net.

This leads to the main theorem of this section, which states the necessary and
sufficient conditions on the P-net for the transformation to preserve true concur-
rency.

66




Before stating the theorem, in order to refer to enabling conditions and inhibitor-
capacity vectors in a convenient manner (in the theorem and proof), it is useful
to introduce the following abbreviations.

Ep = Pre/(T,) < M < (K — Post'(T,)) N I'(T,)

Ecp = Pre(T,) < M < K — (K — IK(t:))

ICp = (K — Post'(T,)) N I'(T,)

ICop = K — Su(K — IK(t:))

Theorem 6.4 VM € [My),Ep < Pre'(T,) < p(M) iff in the P-net, for all
p € PLACEI and for all t;,t, € TRANSI(p)

1. t; and t; cannot be concurrently enabled, i.e.
Pre'(t; +te) £ (K — Post'(t; +tx)) N I'(t; + tx)

and
2. Vt; € TRANS \TRANSI(p), either

(a) mult(p,post(t;)) = 0; or ’
(b) t; and t; cannot be concurrently enabled, i.e.

Pre'(t; +t;) £ (K — Post'(t; + &) N I'(t; + &)

Proof of Implication (only if):
Firstly, note that Pre'(T,) < p(M)< Ecp from equation 6.13.

From theorem 6.3, if Ep is false then so is Ecp. When Ep is true, we must
have ICp = ICcp to ensure that Ecp is also true (so that Ep and Ecp are
equivalent). When ICp # ICcp, we may be able to choose a marking, M, such
that Ep is true and E¢p is false. Thus when ICp # ICsp, we must ensure that
Ep is false, for the two enabling conditions to be equivalent. This then implies
certain restrictions on the P-net.

There are two ways in which the inhibitor-capacity vectors (ICp and IC¢p) can
be the same.

Case 1: There are no active inhibitors, Vtr € TRANS, K — Post(tr) < I(tr).

The P-net is a CPx-net, which ensures that ICp = ICcp and PLACEI = 0.
Thus, in this case, Ep<>Ecp implies that in the P-net, PLACEI = 0 and
conditions 1 and 2 of the theorem follow trivially.

Case 2: There is no more than one active inhibitor per place p € PLACE. The
places that do have an active inhibitor are in the set PLACEI.

Consider the inhibitor-capacity vectors component-wise as defined by equations
6.26 and 6.27, where T,, = }°; #;. There are two cases:

Case 2.1: Places not affected by inhibitors: for p € PLACE\ PLACEI, we have
Vt; € TRAN S, mult(p, K — Post(t;)) < mult(p, I(t;))

ICp(p) = mult(p, K — X;Post(t;))

= K(p) — Ximult(p, Post(t;))
— ICCP(P) (6.33)
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Places not affected by inhibitors have no further restrictions as the enabling
conditions on them for P and T (P) are equivalent. This is the same as case 1
for vector components.

Case 2.2: Places affected by inhibitors. For p € PLACET let the transition
mode, t; € TRANS, have an active inhibitor on place p, mult(p,I(t;)) <
mult(p, K — Post(t;)) and thus Vi; € TRANS \ {¢;}, mult(p, K — Post(t;)) <
mult(p, I(t;)).

There are two cases to consider for ICp(p), where we assume t; € T,,. (If t; € T,,,
then from equation 6.18, the enabling conditions are equivalent and concurrency
is preserved.)

A. mult(p, K — Y ; Post(t;)) < mult(p,I(t;)), then in a similar way to case 2.1 of
the proof of theorem 6.3 (see equation 6.28)

ICp(p) = K(p) — mult(p, Post(t;)) — >_ mult(p, Post(t;)) (6.34)
i#]

B. mult(p, I(t;)) < mult(p, K — 3; Post(t;)), then in a similar way to case 2.2 of
the proof of theorem 6.3 (see equation 6.29)

ICp(p) = mult(p, I(t;)) (6.35)

Substituting the above conditions into equation 6.30 gives

ICcp(p) = mult(p, I(t;)) — D mult(p, Post(t;)) (6.36)
i#£]
We know from the proof of theorem 6.3 that in case A, ICp(p) > ICcp(p) and
hence ICp(p) # ICcp(p).
Comparing equations 6.35 and 6.36 we see that the inhibitor-capacity compo-
nents can only be equal (i.e. ICp(p) = ICcp(p) = mult(p,I(t;)) ) if
Vt; € T, ,mult(p, Post(t;)) = 0 (6.37)

(Note that case A does not occur with the restriction of equation 6.37)

Since T, can be dny finite multiset, the above condition 6.37 needs to span the
whole set of transition modes, TRANS, of the P-net, if Ep can be true, or else
we must ensure that Ep is false. For each t; € TRANS \ {t;}, either

mult(p, Post(t;)) =0 (6.38)
or else ¢; and ¢; are not concurrently enabled

Pre'(t; +t:;)) £ (K — Post'(t; + t,)) N I'(t; + t:) (6.39)

If there are two or more active inhibitors on a place p € PLACE, then the proof
of proposition 6.2 (see equation 6.23) shows that ICp(p) > ICcp(p).

In the above analysis, the assumption that mul¢(¢;,T,) = 1 has been made.
When mult(t;,T,) > 1 we must ensure that Ep is false, i.e. that ¢; is not self-
concurrently enabled. This is done by placing restrictions on the Pre, Post
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and inhibitor maps in a similar way to inequality 6.39. Further, we may now
allow other transition modes that have active inhibitors for place p, so long as
the Pre, Post and inhibitor maps never allow any of them to be concurrently
enabled. To guarantee this requires condition 1 of the theorem. (Note that only
two modes need to be considered, as adding a mode would not reduce the value
of the left hand side and would not increase the value of the right hand side of
the inequality.)

We may now generalise the above to a set of active inhibitors for place p,
TRANSI(p). Since only one transition mode with an active inhibitor for place
p can be included in the multiset of concurrently enabled modes, the post maps
of transitions with active inhibitors are not relevant and hence equations 6.38
and 6.39 become that of condition 2 of the theorem. O

Proof of Reverse Implication (sf):
Case 1: PLACEI = § (the conditions 1 and 2 of the theorem are not required)

PLACEI = 0 implies that there are no active inhibitors and the P-net reduces
to a CPk-net. Hence the enabling conditions are equivalent by theorem 6.2.

Case 2: PLACEI #9

For allp € PLACE\ PLACEI, the enabling conditions on place p are equivalent
as indicated by equation 6.18 as there are no active inhibitors associated with
place p.

For all p € PLACEI, Ep is given by equation 6.15 for T, = >, ¢; as be-
fore. If t;,ty € TRANSI(p) and t;,t; € T, or if (T,NTRANSI(p) = {t;}) A
mult(t;,T,) > 2 then from condition 1 of the theorem, Ep is false and from

theorem 6.3 so is Egp and they are therefore equivalent.

If (T,NTRANSI(p) = {t;}) A (mult(t;,T,) = 1), then when condition 2a of the
theorem applies, (from equation 6.16) the component-wise Ep can be obtained
from equation 6.20.

mult(p,z:Pre(t.-)) < M(p) < mult(p, I(t;)) (6.40)

Like-wise for condition 2a of the theorem and from equation 6.32, the component-
wise E¢p is the same and hence they are equivalent.

If for t; € TRANS \ TRANSI(p), mult(p, Post(t;)) > 0, condition 2b of the
theorem implies that Ep is false and again from theorem 6.3 so is E¢p and they
are therefore equivalent. O

6.5 Illustration of Transformations

This section provides a number of simple examples to illustrate the transforma-
tion from P-nets to CP-nets, particularly theorem 6.4. The graphical form that
was used in the previous example is also adopted here. A formal definition of
the graphical form is provided in the next chapter.
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P-Net:P1

S = {s1,s2}
T = {t1,t2}
C = {{a}}
C(sl) = C(s2) = C(t1) = C(t2) = {a}
Pre(t1,a) = {((s1,a),1),((s2,a),0)}
Pre(t2,a) = {((s1,a),1),((s2,a),1)}
Post(t1,a) = Post(t2,a) = 0
Mo = {((s1,4),3),((s2,0),1)}

I(t1,a) = {((s1,a),3), ((s2,a),00)}
I1(t2,a) = {((s1,0), 00), ((2,a),0)}
K ={((s1,4),5),((s2,a),0)}

Graphical Form

K(sl) = 5a t1
3a
sl1{ 3a ~
a
a
12

32@ >
a

Figure 6.7: Self concurrency in P-net: P1

6.5.1 Examplel: Self Concurrency

The fact that self concurrency is not preserved by the transformation, T, has
been illustrated in section 6.3. Here we introduce a slightly more complicated
example that also demonstrates the lack of self-concurrency preservation. It
is introduced now so that it may be compared with the next example where
concurrency is preserved.

Consider the P-net, P1, of figure 6.7, which consists of two places, two transitions,
3 normal arcs and an inhibitor arc. There is only one colour set, the singleton
{a}. It is associated with each place and transition. It can be seen that P1 is
essentially a P/T-system with inhibitors. The capacity of place sl is 5a, and
it is marked with 3a (complying with the capacity constraint), while place s2
~ has infinite capacity and is marked by a single a. Transition ¢1 has an active
inhibitor on place s1 which means that ¢1 can be enabled only if the marking
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11 el 2

Figure 6.8: Reachability Graph for P-net: P1

of s1 is no more than 3a. We may see from the definition of enabling that the
following multisets of transition modes are enabled in the initial marking.

tl,a),1)}
e {((t1,a),n)|n =1,2}

tl,a),n)|n = 1,2,3}

{((
{((
{(
o {((2,0),1)}
{((e2,
{((

12,a),1),((t1,4),1)}
12,4),1),((¢1,0),m)|n = 1,2}

P1 exhibits both self concurrency for mode (¢1,a) and ‘mutual’ concurrency for
modes (t1,a) and (¢2,a). The full reachability graph is given in figure 6.8. For
this reachability graph we have used the convention that the transition mode
(t1,a) is identified with the transition ¢1 (and similarly (£2,a) is identified with
t2), since each transition has only one mode (as in P/T-systems). We have also
used the notation ¢1 || ¢2 to represent the multiset T, = t1 + #2, to emphasize
that the transitions occur in parallel (i.e. in one step). These conventions are
followed for the remainder of this section.

If we apply the transformation to P1, we obtain the CP-net, T (P1), depicted
in figure 6.9. The complementary place s1 and extra arcs have been added
to simulate the capacity and inhibitor conditions. This net has the following
multisets of transition modes enabled in the initial marking.

e {{(t1,0),1)}
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CP-Net: T (P1)

S = {s1,s1,s2}

T = {t1,t2}

C={{a}) _

C(sl) =C(sl) = C(s2) = Cltl) = C(t2) = {a}
Pre(t1,a) = {((s1,a),1), ((ﬂ,a),Z), ((s2,a),0)}
Pre(t2,a) = {((s1,a),1), ((s}\,a),O), ((s2,a),1)}
Post(t1,) = {((s1,0),0), (51, 2),3) ((s2,4),0))
Post(t2,a) = {((sl,ti)\,O), ((s1,a),1),((s2,a),0)}
M, = {((s1,9),8), ((s1,a),2), ((s2,4),1)}

Graphical Form

il sl
2a
sl{ 3a > > 2a
@ 3a
a a
t2

Y

a

Figure 6.9: CP-net equivalent: T (P1)
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Figure 6.10: Reachability Graph for T (P1)

e {((2,0),1)}
o {((t2,0),1),((¢1,a),1)}

The reachability graph for T (P1) is given in figure 6.10. We can see that in
this case T does not preserve self concurrency, although mutual concurrency is
retained. This is what we expect from theorem 6.4 as it states that for concur-
rency to be preserved, no self concurrency is allowed for transition modes that
have active inhibitors. Here, transition ¢1 (mode (¢1,a)) has an active inhibitor
on place s1 (underlying place (s1,a)).

6.5.2 Example2: No Self Concurrency

An example where no self concurrency exists for the P-net is given by P2, de-
picted in figure 6.11. This example is the same as the previous one except that
the Pre map for t1 now places a demand of 2a on sl instead of a. Its transfor-
mation, T (P2), is shown in figure 6.12. It can be seen that both P2 and T (P2)
have the following multisets of transition modes enabled in their initial markings.

e {((t1,0),1)}
e {((t2,a),1)}
o {((¢2,0),1),((#1,0),1)}

They have isomorphic reachability graphs. The basic reachability graph for both
is depicted in figure 6.13. (The markings are different for the two nets, but related

by p.)

This illustrates a case in which concurrency is preserved by T. This is because
conditions 1 and 2(a) of theorem 6.4 are satisfied by P2.
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P-Net:P2

S = {sl1,s2}
T = {t1,t2}
C = {{ah)
C(sl) = C(s2) = C(t1) = C(t2) = {a}
Pre(t1,a) = {((s1,a),2), ((s2,a),0)}
Pre(t2,a) = {((s1,a),1), ((sZ,a),l)}
Post(tl,a) = Post(t2,a) =
Mo = {((s1,a),3), ((s2 a),l)}
I(t1,a) = {((s1,a),8),((s2,a),00)}
I1(t2, a) = {((s1,a), 00), ((s2,a),0)}
K ={((s1,0),5), (s2.0)oo))
Graphical Form
K(sl) = 5a t1
3a
sl|{ 3a
2a
t2

32@ >
a

Figure 6.11: No Self concurrency in P-net: P2
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CP-Net: T (P2)
S = {s1,s1,52}

T = {t1,12}

¢ ={{a}}

C(s1) = C(51) = C(s2) = C(t1) = C(t2) = {a}
Pre(tl,a) = {((s1,a),2), ((sl a),2),((s2,a),0)}
Pre(t2,a) = {((s1,a),1),((51,),0), ((s2,a), 1)}
Post(t1,a) = {((s1,a),0),((51,a),4), ((s2,a),0)}
Post(t2,a) = {((s1,4),0),((51,a),1),((s2,4),0)}

2
Mo = {((s1,0),3), ((51,4),2), ((s2,0),1)}

Graphical Form

tl sl
2a
sl| 3a > 2a
2a 4a
a a
t2

a

Figure 6.12: CP-net equivalent: T (P2)

Figure 6.13: Reachability Graph for P2 and T (P2)
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P-Net:P3
S = {s1,s2}
T = {t1,t2}
¢ = {{a}} |
C(s1) = C(s2) = C(t1) = C(t2) = {a}
Pre(tl,a) = {((s1,a),2)}
Pre(t2,a) = {((s2,a),1)}
Post(tl,a) =0
Post(t2,a) = {((s1,a),1)}
M, = {({s1,a),3),((s2,a),1)}
I(t1,a) = {((s1,a),3),((s2,a),00)}
I(t2,a) = {((s1,a),0), ((s2,a),00)}
K= {((31"1')’5),((32:0‘)’00)}

Graphical Form

K(s1) = 5a i1
3a
sl|\ 3a >
2a
a
12

a

Figure 6.14: P-net: P3 with Post map involving an inhibitor place

6.5.3 Example3: Effect of Post Map

This example illustrates the effect of an output arc to a place that is affected by
an active inhibitor. Consider the P-net, P3, of figure 6.14 which is the same as
P2 except that the input arc from sl to ¢2 has been replaced by an output arc
from ¢2 to s1. In this case Post(s1,t2;a) # 0.

The reachability graph is depicted in figure 6.15. It can be seen that mutual
concurrency exists between modes (t1,a) and (¢2,e), in the initial marking.

The corresponding CP-net, T (P3), is shown in figure 6.16 and its reachability
graph in figure 6.17, where it can be seen that there is no concurrency.

In this case, it is the non-empty Post map, Post(sl1,t2;a) = a, that prevents T
from preserving concurrency.
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Figure 6.15: Reachability Graph for P3

CP-Net:T (P3)

S = {s1,s1,s2}
T = {t1,2}
C={{a}}

C(s1) = C(51) = C(s2) = C(t1) =
Pre(i1,0) = {(s1,0),2), (51, 0),2), ((62,),0)}
Pre(t2,0) = {((s1,),0), ((5L,). 1), (s2,),1)}
Post(t1,a) = {((s1,a),0), ((sl a),4),((s2,a),0)}
Post(t2,a) = {((s1, a) 1), ((51, a) 0), ((s2,a),0)}
Mo = {((s1,a),3),((51,4),2), ((s2,), 1)}

C(t2) = {a}

Graphical Form

t1
2a
sl{ 3a > > 2a
2a 4a
a a
t2

a

Figure 6.16: CP-net equivalent: T (P3)
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Figure 6.17: Reachability Graph for T (P3)

6.5.4 Example4: Two Inhibitors

A similar situation occurs if two active inhibitors affect the same place. An
example of this is shown in figure 6.18, which depicts a P-net, P4, that is again
similar to P2, except we have now replaced the input arc by an inhibitor arc,
with a threshold of 2e. The initial marking of s1 has been decreased to 2a, to
allow modes (¢1,a) and (t2,a) to be concurrently enabled in the initial marking.
There are now two inhibitors for place sl.

The reachability graph for P4 is isomorphic to that of P2 (see figure 6.13).

When P4 is transformed under T, we obtain the CP-net of figure 6.19. Its
reachability graph is given in figure 6.20 which demonstrates that concurrency
has not been preserved in this situation, as condition 1 of the theorem has been
violated.

6.5.5 Exampleb: Two Inhibitors with No Concurrency

Finally, if we ensure that the modes that have active inhibitors on a place cannot
be concurrently enabled, then (provided condition 2 of the theorem applies),
whatever concurrency is left will be preserved. An example is given in figure 6.21.
Here an extra input arc, (s1,¢2), has been included to make sure that (t1,a) and
(t2,a) are not concurrently enabled. In this case, there is no concurrency in the
P-net, and hence its transformation, T (P5), depicted in figure 6.22 also has no
concurrency.

The reachability graphs for P5 and T (P5) are isomorphic and given in figure
6.23.
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P-Net:P4

S = {s1,s2}
T = {1,t2}
C = {{a}}

C(s1) = C(s2) = C(t1) = C(t2) = {a}
Pre(t1,a) = {((s1,a),2),((s2,a),0)}
Pre(t2,a) = {((s1,q),0),((s2,2),1)}
Post(t1,a) = Post(t2,a) = 0

Mo = {((s1,4a),2), ((s2,0),1)}

I(t1,a) = {((s1,a),3), ((s2,a),0)}
I(t2,a) = {((s1,a),2),((s2,a),00)}

K = {((s1,4a),5), ((s2,a), )}

Graphical Form

K(sl) =5a t1
3a
sl{ 2a ~
2a
2a

12

a

Figure 6.18: Two Inhibitors for Place S1
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CP-Net: T (P4)

S = {s1,s1,s2}

T= {tl,tZ}

C={{ay}

C(s1) = C(sI) = C(s2) = C(t1) = C(t2) = {a}

Pre(t1,a) = {((s1,a),2),((s1,a),2), ((s2,9),0)}

Pre(t2,a) = {((s1,0),0),((51,),3), ((s2,a), 1)}

Post(tl,a) = {((sl a), 0),((31 a), ),((32 a),0)}
Post(t2,a) = {((s1,a),0),((51,a),3), ((s2,a),0)}
Mo = {((s1,4),2), (51, 0),3), ((s2,a),1)}

Graphical Form
tl

2a
sl 2a M > 3a
2a 4a

3a

t2

a

Figure 6.19: CP-net equivalent: T (P4)

OO

t1

Figure 6.20: Reachability Graph for T (P4)
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P-Net:P5

S = {s1, 52}
T = {t1,2}
C = {{a}}

C(sl)=C(s2)=cC(t1)=C(t2) = {a

Pre(t1,a) = {((s1,a),2),((s2,a),0)}

Pre(t2,a) = {((s1,q),2),((s2,a),1)}

Post(tl,a) = Post(t2,a) =

Mo, = {((s1,4),2), ((s2,a),1)}

I(t1,a) = {((s1,4),3), ((s2, ag o)}
}

}

1(t2,a) = {((s1,0),2), ((s2,0),0)}
K = {((s1,4),5), ((s2,4), )

Graphical Form

K(sl) = 5a t1
3a

sl{ 2a <
2a

2a 2a

t2

Figure 6.21: Two Inhibitors for Place S1: No concurrency
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CP-Net: T (P5)

S = {s1,s1,s2}

T = {t1,12}

C={{a}} _

C(s1) = C(s1) = C(s2) = C(t1) = C(t2) = {a}
Pre(t1,a) = {((s1,0),2), sl,a a),2),((s2,a),0)}
Pre(t2,a) = { ,a),3),((s2,a),1)}

Post(t1,a) = {((s1,4a),0) ,), 4),((s2,a),0)}
Post(t2,a) = {((81,4) 0) a),5),((s2,4),0)}

( (5
((s1,a),2). ((

’z
= {{(s1,a),2), ((51,0),3), ((s2, ), 1)}

Graphical Form
t1l

2a

sll 2a > 3a

2a 4a

2a 3a S5a

a

Figure 6.22: CP-net equivalent: T (P5)

t2

12 t1

Figure 6.23: Reachability Graph for P5 and T (P5)
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Chapter 7

P-Graphs and P-Graph Schemas

7.1 Introduction

The main purpose of this chapter is to define a graphical form for P-nets. The
work here combines Petri nets and Abstract Data Types (ADTs) within the same
algebraic framework. It has been inspired by the work on Predicate/Transition
nets [71,70], Coloured Petri Nets [87] and Algebraic nets [123]. The approach is
similar to that of [143] but differs in a number of ways. Firstly we consider nets
with inhibitors and capacities and more general arc inscriptions. (The axioms
of ADTs are not considered here, but they can be added easily). Secondly the
nets can be defined at two levels of abstraction. At the concrete level, places are
typed by sets and markings and capacities are multisets over these sets. This
has similarities with [123] and is appropriate for the specification of concrete
systems such as a particular service or protocol. At the abstract level, places are
many-sorted (i.e. a sort is associated with each place) and inscriptions, capacities
and markings are defined on the level of terms. This is similar to [143,19,92,9]
and is appropriate for specifying classes of systems. The concrete form is called
a P-Graph, because it provides a definition for the graphical form of a P-net.
Similarly, the abstract form is known as a P-Graph schema (following Vautherin’s
terminology) or abstract P-Graph (suggested by Jensen [90]).

The chapter concentrates on the (concrete) P-Graph and shows how subclasses
such as CP-Graphs, Many-sorted PrT-nets (MPrT-nets) and Many-sorted Alge-
braic nets can be derived. Why do we need many-sorted versions? The many-
sorted versions overcome some difficulties experienced with their singled-sorted
predecessors [70,123]. To allow for the many-sorted nature of applications, the
carrier of the single-sorted high-level net has to be a union of more basic sets,
necessitating the use of partial functions. All variables are typed by the sin-
gle carrier. This leads to a number of difficulties in typing and interpretation.
These problems are investigated and it is shown how they are elegantly solved
by allowing the terms to be built from a many-sorted signature with variables.

An early attempt at defining the P-Graph appears in [22]. This chapter expands
on work recently published by the author [27].
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7.2 Concepts from Algebraic Specification

In the P-Graph, we shall inscribe arcs with multisets of terms involving variables,
and transitions with Boolean expressions. Many-sorted signatures provide an
appropriate mathematical framework for this representation. Signatures provide
a convenient way to characterise many-sorted algebras at a syntactic level. This
section introduces the concepts of signatures, terms and many-sorted algebras
that will be required for the definition of the P-Graph and abstract P-Graph.
We make use of the ideas found in [64,98] for example.

7.2.1 Signatures

A many-sorted (or R-sorted) signature, X, is a pair:
X =(R,0)

where

o R is a set of sorts (the names of sets, e.g. Int for the integers); and

e (1 is a set of operators (the names of functions) together with their arity
in R which specifies the names of the domain and co-domain of each of the
operators.

The arity is a function from the set of operator names to R* x R, where R* is
the set of finite sequences, including the empty string, €, over R. Thus every
operator in () is indexed by a pair (o,7), 0 € R* and r € R denoted by w(g ).
o € R* is known as the input or argument sorts, and r as the output or range sort
of operator w. (The sequence of input sorts will define a cartesian product as the
domain of the function corresponding to the operator and the output sort will
define its co-domain - but this is jumping ahead to the many-sorted algebra.)

For example, if R = {Int, Bool}, then Wy rnt,Boot) Would represent a binary
predicate symbol such as equality (=) or less than (<). Using a standard con-
vention, the type of a constant may be declared by letting ¢ = €. For example
an integer constant would be denoted by cons(e,1ns) or simply consyp:.

Types of variables may also be declared in the same way. This leads to the
consideration of signatures with variables.
7.2.2 Signatures with Variables
A many-sorted signature with variables is the triple:
L =(R,0,V)

where R is a set of sorts, 1 a set of operators with associated arity as before
and V is a set of typed variables, known as an R-sorted set of variables. It is
assumed that R, Q and V are disjoint. The type of the variable is defined by
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the arity function, in a similar way to that of constants, from the set of variable
names to {€} X R. A variable in V of sort r € R would be denoted by v ) or
more simply by v,. For example, if Int € R, then an integer variable would be
U(g,Int) OT VInt- :

V may be partitioned according to sorts, where V, denotes the set of variables
of sort r (i.e. v €V, iff a =r).

Including the variables in the signature is a convenient way of ensuring that they
are appropriately typed.

7.2.3 Natural and Boolean Signatures

The term Boolean Signature is used to mean a many-sorted signature where one
of the sorts is Boolean. Similarly, the term Natural Signature is used when one
of the sorts corresponds to the Naturals (N).

7.2.4 Terms of a Signature with Variables

Terms of sort r € R may be built from a signature ¥ = (R,Q,V) in the following
way. We denote a term, e, of sort r by e : r and the set of terms of sort r by
TERM(QUV),, and generate them inductively as follows. For r,r,...,7, € R
(n>0)

1. V, CTERM(QUYV) ;
2. For all we,) € Q, we,) € TERM(QUV),; and

3. fey:ry,...,€, 1 1y are terms and wyy,..,r) € £, is an operator,
then wyy, r,r)(e1,---,€s) ETERM(QUYV),

Thus if Int is a sort, integer constants and variables, and operators (with appro-
priate arguments) of output sort Int are terms of sort Int.

We denote the set of all terms of a signature with variables by TERM(Q U V),
the set of all closed terms (those not containing variables, also known as ground
terms) by TERM (). Thus

TERM(QuUV) = |JTERM(QUYV),
rER

7.2.5 Multisets of Terms

Multisets or bags of terms can also be built inductively from the signature if we
assume that we have a Natural signature. We define multisets of terms this way
to allow the multiplicities to be terms of sort Nat, rather than just the Naturals
themselves. (This allows, for example, the introduction of conditions into arc
expressions - see sections 7.3.2 and 7.8.5.)
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Let BTERM(Q U V) denote the set of multisets of terms, defined inductively as
follows, using the symbolic sum representation for multisets defined in Appendix
A. (TERM(Q2UV) is considered as a special set of multisets, where each member
of TERM(QUYV) is a multiset.)

e« TERM(RUV) C BTERM(QUV);
o if b1,b2 € BTERM(Q U V), then (b1 +b2) € BTERM(Q UV); and

o if i€ TERM(QUV),,, and b€ BTERM(QUV),
then ¢ X b € BTERM(Q U V) where ‘X’ represents scalar multiplication.

-Where there is no confusion the ‘x’ will be dropped and juxtaposition will be

used for scalar multiplication (e.g. ‘3 x z can be replaced by 3z and 4 X 3 X z
by 4 x 3z which is distinctly different from 43z.)

The set of bags with infinite multiplicities, B, TERM (2 U V), may now be
defined as follows

e BTERM(QUV) C B,TERM(QUV); and
e if b€ BTERM(QUV), then oo X b € BoTERM(QUV).

where multiplication by oo is defined in appendix A.

7.2.6 Many-sorted Algebras

A many-sorted algebra, (or X-Algebra), H, provides an interpretation (meaning)
for the signature ¥. For every sort, r € R, there is a corresponding set, H,,
known as a carrier and for every operator wy,, . r,r) € (1, there is a corresponding
function

wg:H, X...X H, — H,.

In case an operator is a constant, w,, then there is a corresponding element
wyg € H,. They may be considered as functions of arity zero.

Definition: A many-sorted Algebra, H, is a pair
H = (Ry,0x)

where Ry = {H,|r € R} is the set of carriers and

Oy = {wrlwo, € 0,0 € R*and r € R} the set of corresponding functions.

For example, if ¥ = ({Int, Bool},{<(int.1nt,Boo1)}) then a corresponding many-
sorted algebra would be

H = (Z,Boolean;lessthan)

where 7 is the set of integers: {...,—1,0,1,...}
Boolean = {true, false}
and lessthan : Z X Z — Boolean is the usual integer comparison function.
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It could also be
B = (N, Boolean;lessthan)

where N is the set of non-negative integers: {0,1,...}
Boolean = {true, false}
and lessthan : N X N — Boolean.

(The power of the signature is that it allows a class of algebras to be categorised.)

For signatures with variables, variables are R-sorted. In the algebra, the variable
is typed by the carrier corresponding to the sort.

7.2.7 Assignment and Evaluation

Given an R-sorted algebra, H, with variables in V', an assignment ! for H and
V is a set of functions a, comprising an assignment function for each sort r € R,

oV, — H,.

This function may be extended to terms by considering the family of functions
ass comprising
ass, : TERM(QUYV), — H,

for each sort r € R. The values are determined inductively as follows. For
o € R*\¢,0 =riry...7, withr,7y,...,7, € Rand e,ey,...,6, € TERM(QUV),
e If e €V, is a variable, then ass,(e) = o, (e)
e For a consté.nt, w, € Q, ass,(w,) = wg € H,.

o If e = w(o,(e1,...,€s), then
ass,(wior)(e1,-..,en)) = wrlass, (e1),...,ass,,(ex)) € H,, where € :
Tl...€n iy

Knowing the values of terms we can determine the value of multisets of terms
by considering the multiset as a sum of scaled terms and evaluating each scalar
and term for a particular assignment to variables. This is defined inductively for
a € TERM(QUYV), i€ TERM(QUV),, ., and b1,b2 € BTERM(QUV) by

o Valy(i X a) = ass(t) x ass(a)

° ValH(bl + bZ) = ValH(bl) + ValH(bZ)

7.3 P-Graphs

In this section a definition of a graphical form of P-nets is given by defining a
P-Graph. A P-Graph consists of an inhibitor net where the arcs are annotated
by multisets of terms. The multiplicities of the multisets are non-negative integer

1The terms binding and valuation are also used in this context.
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terms. Transitions are annotated by Boolean terms. The terms are built from
a Natural-Boolean signature which has an associated many-sorted algebra. The
colour function restricted to places is included. It associates a carrier of the
many-sorted algebra with a place. The capacity and initial marking are multisets
over the place colour set as is the case for a P-net.

7.3.1 Definition
A P-Graph is a structure
PG = (IN,X,C,AN, K, M)

where

e IN =(S,T; F,IF) is an inhibitor net, with

— S a finite set of places;

— T a finite set of transitions disjoint from S;
— FC (S xT)U(T x S) a set of arcs; and
— IF C S X T a set of inhibitor arcs.

e ¥ = (R,,V) is a Natural-Boolean signature with variables. It has a
corresponding X-Algebra, H = (Ryg,Qg).

e C : S — Rpg is the colour function restricted to places, such that Vs €

S,C(s) #0.
e AN = (A,IA,TC) is a triple of net annotations.

— A : F - BTERM(QUYV) such that for C(s) = H,, then for all
(s,t),(u,8) € F, A(s,t), A(u,s) € BTERM(QUV),. It is a function
that annotates arcs with a multiset of terms of the same sort as the
carrier associated with the arc’s place.

— IA : IF — B ,TERM(QUYV) such that for C(s) = H,, then for
all (s,t) € IF, IA(s,t) € B,TERM(QUV),. It is a function that
annotates inhibitor arcs with a multiset of terms of the same sort as
the carrier associated with the arc’s place.

—TC:T - TERM(QUYV)g,, where for all t € T, TC(t) belongs to
TERM() U V(t))Boa and V (¢) is the set of free variables occurring
in the arc inscriptions associated with 2.

TC annotates transitions with Boolean expressions.
o K:8 — U,es #kC(s) where K(s) € ut C(s) is the capacity function.

© My : 8 — U,esnC(s) such that Vs € S, Mp(s) < K(s), is the initial
marking.
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7.3.2 Discussion
Concrete Colour Sets

In defining P-Graphs, we have intentionally associated a concrete colour set with
each place. This colour set is a carrier of the chosen many-sorted algebra, H.
This allows us to specify concrete systems where the sets and functions have
already been determined.

There is also a need for a more abstract or syntactic form that allows classes of
systems to be specified. In this case the places become R-sorted. This leads us
to the notion of a P-Graph schema which is defined later in section 7.12.

Tupling

In an earlier work [22], the P-Graph definition included explicit tupling in the
signature, in a similar way to PrT-nets [70]. This has the advantage that only
relatively simple sorts need be included in the signature. It has the disadvan-
tage that it makes for a more complex definition. If complex sorts (e.g. those
corresponding to product sets in the algebra) are allowed in the signature, then
tupling can always be done. The relationship between sorts and colour sets
becomes more transparent as places may now be R-sorted with the associated
carrier (in the algebra) being the corresponding colour set. This is a more elegant
approach and is followed in [143,123].

Arc Annotations

When generating multisets of terms for the arc inscriptions, we allow the multi-
plicities to be natural number terms, so that the value can depend on the values
of variables and operators of other types. In particular this includes as a special
case, the generalised Kronecker delta extension to PrT-nets [70].

Subtyping

An early definition of the P-Graph [22] allowed there to be terms (tuples), anno-
tating an arc, which on evaluation had to be a multiset over the colour set of the
arc’s place. This allows for subtyping. For the chosen algebra, there may be a
number of sorts, associated with terms used in the arc’s annotation, all of which
have carriers which are subsets of the place’s colour set. Strictly speaking, the
above definition only allows for terms of the same sort (as the carrier associated
with the arc’s place). This was done to keep the definition as simple as possible.

Subtyping is easily incorporated if necessary as follows. For an algebra H, define
the set R,, which gathers together our desired sorts.

R, ={r'|r' € R and H, C H,}
Thus for C(s) = H,, the restrictions on the terms annotating the arcs become:

Y(s,t), (u,8) € F : A(s,t), A(u,s) € |J BTERM(QUV),
r'eR,
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and
Y(s,t) € IF : IA(s,t) € |J BoTERM(QUV),
r'eR,

Strong Typing vs Weak Typing

The inclusion of the colour function, C, may be considered unnecessary. This
is because the co-domain of the capacity function and initial marking function
could be represented as the set of multisets of terms in TERM () evaluated in
the ¥-Algebra, H. The colour set of a place would be determined by the sorts of
the terms in the annotations of the surrounding arcs (evaluated in H) and the
capacity and initial marking functions.

The inclusion of the colour function has a number of advantages. Firstly it
encourages good design, as the typing of places needs to be considered early
in the specification of a system. Secondly, it ensures that the initial marking,
capacity function and arc annotations are all consistently typed. This can be
used to great advantage for type checking specifications with automated tools.
Finally, it allows a straightforward interpretation in terms of a P-net.

We shall use the term strongly-typed for P-Graphs in which the colour function
is included and weakly-typed when it is not included.

Alternative Graphical Forms

A slightly less syntactic approach would be to replace the signature with the
many-sorted algebra, a set of variables, and a typing function associating a vari-
able with a particular carrier of the algebra. This would be closer to the approach
in [123] for Algebraic Nets.

Another graphical form would be to just consider an annotated net (rather than
an inhibitor net). The definition would be as before, except that the inhibitor
net IN would be replaced by a net N and annotations of the input and output
arcs would be separated. The ouput arcs would be annotated as before, but the
input arcs would carry a pair as an inscription. The first element of the pair
would refer to the pre map and the second to the inhibitor map. This may prove
to be a more convenient graphical representation as less arcs are involved and
it would tend to de-emphasize the réle of the inhibitor. This is desirable when
the inhibitor is acting as a way of increasing modelling convenience rather than
modelling power, for example when purging places with finite capacities.

There are a number of alternative graphical forms and the choice of the most
suitable form will depend on further experience in particular application domains.
Present experience indicates that the above definition is at least a useful one.

7.4 Interpretation of the P-Graph as a P-net

The P-Graph may be given an interpretation as a P-net in the following way.
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1. Places: S is the set of places in the P-net.
2. Transitions: T is the set of transitions in the P-net.

3. Colour Sets: The colour set for a transition is determined by the types of
the variables occurring in the surrounding arc annotations restricted by its
transition condition.

Let there be n; free variables associated with the arcs surrounding a transi-
tion t € T'. Let these have names vy, (t),...,v,, (t) € V. In the X-Algebra,
H, for all ¢ € {1,2,...,n,}, let the carrier corresponding to r;, H,., be
denoted by G; with typed variables v;(t) : G;. Following [87], let ¢g; € G,
then

C(t) ={(g1s.-++9n) | A2 )5+ 500 (2)).TC[®))(015---,9n)}

(The A-expression provides a means for formally substituting values for
the variables in the Transition Condition. Tuples which satisfy T'C(¢) are
included in C(t).)

The colour sets for the places are obtained from the colour function. Thus

the structuring set (of colour sets) is given by C = {C(z)|z € SUT}.

4. The Colour Function: The colour function restricted to places is defined in
the P-Graph and for all t € T', C(t) is given above.
5. Pre and Post Maps.
The pre and post maps are given, for all (s,t),(t,s) € F, by the following
mappings from C(t) into uC(s)
Pre(s,t) = Avi(t),...,vn,(2))-A(s, 1)
Post(s,t) = A(vi(t),...,vn(t))-A(t,s)
For (s,t) € F and Vm € C(t), Pre(s,t;m) = @ and for (t,s) ¢ F and
Vm € C(t), Post(s,t;m) = 0.
6. Inhibitor Map

The inhibitor map is a function from C(t) into pC(s) where for all (s,t) €
IF

I(s,t) = Mv1(2),...,vn, (t)).IA(s,1)
and for (s,t) € IF, Vg € C(s),m € C(t), mult(g,I(s,t;m)) = co.

7. Capacity Function.
K(s) is as defined in the P-Graph.

8. Initial Marking.
My(s) is as defined in the P-Graph.

With this translation from the P-Graph to P-nets in place, we may now use
the definitions of marking, enabling and transition rule for P-nets to allow the
P-Graph to be executed. (Alternatively, we could define the enabling condition
and the transition rule directly for the P-Graph, by considering assignments for
terms in a similar way to [123].)
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7.5 Graphical Form of P-Graph

7.5.1 General

The graphical form comprises two parts: a Graph which represents the net el-
ements graphically and carries textual inscriptions; and a Declaration, defining
all the sets, variables, constants and functions that will be used to annotate the
Graph part. The declaration may also include the initial marking, the capacity
and the colour function if these cannot be inscribed on the graph part due to
lack of space.

7.5.2 Places

In the usual way we shall represent places by circles (or ellipses). A place s may
carry four inscriptions.

e the place name;
e the colour set associated with the place, C(s);
e the place capacity, K(s); and

e the initial marking, My(s).

The first three would be inscribed close to the place, whereas the initial marking
would be inscribed inside the circle representing the place. (As mentioned above,
C(s), K(s) and My(s) can be defined in the Declaration if there is insufficient
space in the Graph part.) We shall adopt the convention that if a place s € S
is not annotated by a capacity multiset, then it will have infinite capacity for all
tokens in C(s), unless specified otherwise in the Declaration.

Useful notation for K(s) is given later in sections 7.10 and 7.11.

7.5.3 'Transitions

Transitions are represented by rectangles, annotated by a name and may be
inscribed by a boolean expression, known as the Transition Condition. The
Transition Condition for transition ¢, T'C(t), only involves the variables of the
inscriptions of its surrounding arcs. If a transition, ¢, is left blank, then the
Transition Condition is true (T'C(t) = true).

7.5.4 Arcs

As usual arcs are represented by arrows. For (s,t) € F, an arrow is drawn from
place s to transition ¢ and vice versa for (¢,s) € F. If (s,t) and (¢,s) have the
same inscriptions (s is a side place of t), A(s,t) = A(¢,s), then this may be
shown by a single arc with an arrowhead at both ends and annotated by a single
inscription.
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Linear P-Graph

S= (), T= (), F= (GLa)Y, IF =7
Y = ({A, Bool},{truep.a},{za}); H = ({4, Boolean}, {true})
C(pl) = A

A(pl,tl) =z, IA =0, TC(t1) = true

K(p1) = {(a,0)|a € A}

Mo(p].) =A

Figure 7.1: Subset Consumption

An inhibitor arc, (s,t) € I'F, is represented by an edge from place s to transition
t with a small circle instead of an arrow head at its destination.

The arcs will be annotated with multisets of terms. We therefore need a conve-
nient representation for multisets. We use the symbolic sum or vector represen-
tation described in appendix A. In order to distinguish multiplicities from terms,
the convention is adopted that terms may be enclosed in angular brackets.

7.5.5 Markings and Tokens

A token is a member of J,cg C(s). A Marking of the net may be shown graph-
ically by annotating a place with its multiset of tokens M(s). We again use
the symbolic sum representation and distinguish multiplicities from tokens, by
enclosing tokens in angular brackets. Thus if ¢ € M(s), g or <g> could ap-
pear written in the circle representing place s. We use the natural numbers
greater than one, to represent the multiplicity of the token in M(s). Thus if
mult(g, M(s)) = m, we would represent this by juxtaposition: my<g> and this
would be written inside the circle representing s. If m, = 1, it would be omitted
from the inscription. If g is an n-tuple (for example g = (a,b,¢c)), then we adopt
the convention of dropping the parentheses (e.g. (a,b,c) would be represented
by <a,b,¢> and not <(a,b,c)>.)

7.6 Simple Examples

This section provides an inftroduction to the graphical form of the P-Graph via
some simple examples which illustrate some of the conventions adopted in the
graph. An interpretation in terms of a P-net is also presented.

7.6.1 Consume any subset

Consider the following example which represents the consumption of any non-
empty subset of a set of n € Nt elements, A = {a1,...,a,}, followed by further
consumption of a non-empty subset of the remainder and so on until all elements
are consumed. The linear form of the P-Graph is given in figure 7.1.
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P-Graph

Declarations
A={a,...,a,}
Mo(p].) =A
Graph
A tl
pl( )——’z
P-Net
S = {pl}
T = {t1}
¢ ={4}

Cpl)=C(t1)=4

Va € A, Pre(tl,a) = {(p1,a)}
Va € A, Post(tl,a) =0

K = {((p1,a),0)|a € A}

Mo = {(p1,0) | a € A}

Figure 7.2: P-Graph and P-net corresponding to Figure 7.1

A graphical form of the P-Graph and its corresponding P-net are shown in figure
7.2.

For each value of z : A, there is an occurrence mode of t1. Consider the (multi)set
T, = {(t1,a)|a € A}. Then

Pre'(T,) = {(p1,a)|a € A} = M,
Thus all modes of the transition are enabled and any (non-empty) subset could
occur simultaneously, consuming the corresponding subset of A.

This P-net represents a set of |A| independent underlying input place/transition
pairs, which are concurrently enabled.

This example illustrates a number of conventions that are adopted in the graph-
ical form.

o Inhibitors: It is quite often the case that inhibitor arcs are not present so
that IF = 0 and hence I A is also empty.

e Omission of a capacity annotation or declaration indicates infinite capacity.

e Quite often it is not necessary to state the signature explicitly and we can
operate at the level of the algebra. Thus we can just declare the sets and
operators and type variables. In this case we have adopted the convention
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that the type Bool can be considered primitive and that there is no need
to explicitly declare the constant true. This is consistent with the use of
the default transition condition as discussed below.

e Implicit typing of variables. When the colour set of a place is a simple
product of carriers (or a union of products of different degree), then the
type of a variable in an arc annotation is determined from its position in the
tuple, the degree of the tuple and the colour set definition. (If the variable
occurs in the argument of a function, then it is typed by the domain of the
function.) In this example, z : A.

If the variable is used in a number of arc inscriptions, then it is possible
for mistakes to be made with implicit typing, so that the typing of a spe-
cific variable is inconsistent. Considerable care is required with implicit
typing and ambiguity will be avoided if all variables are declared in the
Declaration.

e Default Transition Condition. If for ¢ € T,TC(t) = true, t is left blank
rather than annotating it with the constant true. This is the convention
adopted for ¢1 in this example.

e Multisets as sets. We adopt the convention that when a multiset is a set
(i.e. its multiplicities are chosen from {0,1}), then it can be represented
as a set. This has been followed for the initial marking and the images of
the pre and post maps.

Remark: Choosing C(t) = A is demanded by the above transformation (section
7.4) but this is not necessary. We could have chosen C(t) = B with |B| = | 4|
and defined Pre as a bijection

Pre : {(t1,b)|b € B} — {(p1,¢)|a € A}

Thus there is an isomorphism. We chose C(t) = A as it provides the simplest
way of defining the rule for Pre. Choosing C(t) = B would be equivalent to
renaming the transitions in the underlying P/T-net.

In the following examples we shall only give the graphical representation of the
P-Graph.

7.6.2 Consume any token and create any token

The P-net of figure 7.3 shows an example of more complex folding, where each
underlying place {(p1,a}|a € A} is an input to |B| transitions each of which has
a different place chosen from {(p2,b)|b € B} as an output place. The variables
are implicitly typed with z : A and y : B.

7.6.3 Information Flow

By replacing y by z in the above example, we can see how information can flow
around a net. To ensure that the resulting net is a P-Graph we must have that
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P-Graph

Declarations

A, B: Non-empty sets
My(p1) = A, My(p2) = 0

Graph
A tl B

nO—1_f=0r

"P-Net

S = {p1,p2}

T = {t1}

¢ ={A,B}

C(pl) = A

C(p2) =B

C(tl)=AxB

Va € A,Vb € B, Pre(tl,a,b) = {(p1,a)}

Va € A,Vb € B, Post(t1,a,b) = {(p2,b)}

K = {((p1,4a),00), ((p2,b),0)|a € A,b € B}
M, = {(p1,a)|a € A}

Figure 7.3: More Complex Folding
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P-Graph

Declarations

A, B: Non-empty sets
ACB;z: A
Mo(pl) = A, Mo(pZ) = @

Graph
A t1 B

2=

P-Net

S = {p1,p2}

T = {t1}

¢ ={4,B}

Cpr)=4

C(p2) =B

C(tl)=A

Va € A, Pre(tl,a) = {(p1,a)}

Va € A, Post(tl,a) = {(p2,a)}

K = {((r1,a),0), ((p2,b),0)la € A,b € B}
M, = {(p1,a)|a € A}

Figure 7.4: Information Flow

A C B and z : A. In this case, including the type of z in the declaration is
mandatory as implicit typing is ambiguous (is £ : A or z : B ?). The correspond-
ing P-net is shown in figure 7.4.

The underlying P/T-net is a set of |A| identical input place, transition, output
place subnets. There are also |B \ A| isolated places.

7.6.4 Transition Condition

Consider the example of section 7.6.2 with the added constraint that z < y is
attached as a condition to transition ¢1. The P-Graph is given in figure 7.5. The
comparison operator, <, must be defined in the Declaration. Infix notation is
used when it is customary. The corresponding P-net is the same as that of figure
7.3 except that the occurrence modes are limited by the condition z < y so that

C(t1) = {(a,b)|a € A,b € B,and a < b}.
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Declarations

A, B: Non-empty sets
<: A X B — Boolean
My(pl) = A, My(p2) = 0

Graph

A t1 B
OO

Figure 7.5: P-Graph with Transition Condition

Y

7.7 Many-sorted Algebraic Nets

Algebraic nets were proposed as a reformulation of PrT-nets with an improved
invariants calculus in [123], where a partial algebra over a single carrier was
employed. The many-sorted nature of applications was captured by allowing the
carrier to be the union of a number of sets. This then lead to the definition
of partial functions and their associated operators to be used in the multiset of
terms for arc inscriptions.

A colour function is not included in [123] and the net is therefore weakly-typed.
We shall consider two many-sorted algebraic nets: one weakly-typed and the
other strongly-typed.

7.7.1 Weakly-typed many-sorted algebraic nets

A weakly-typed many-sorted algebraic net, M AN, is one of the simplest special
cases of a P-Graph, where the inhibitor arcs and annotations, the Transition
Condition, and the colour and capacity functions are removed (i.e. IF = 0;

b

(Vt € T)TC(t) = true; all places have infinite capacity; and the colour function
is not included). The arc annotations are also restricted to multisets where the
multiplicities are constants rather than natural number terms.

Definition

A weakly-typed MAN is a structure
(N,Z, A, My)

where
e N =(S,T;F) is a net.
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D=AUB

A={a,...,a,},n €Nt

B = {by,...,b,}

f:+ D — D where
fla;)=b;fori=1,...,n

f(b;) is undefined for s = 1,...,n
My(p1) = B, Mo(p2) =0

t1

"10 z @ =Op2

Figure 7.6: Algebraic Net with an undefined follower marking

e ¥ = (R,N,V) is a an R-sorted signature with variables. It has a corre-
sponding R-sorted algebra, D.

e A:F - uyTERM(QUYV) is the arc annotation function.

o My:S — pu{Valp(r) | € TERM(N)} is the initial marking.

I believe that this net captures the spirit of Algebraic nets in terms of a specifi-
cation language and it has the following advantages:

1. Functions are total.

Because functions are partial in {123], it is possible to annotate arcs with
terms that are not defined in the algebra. This leads to difficulties in
interpreting the behaviour of such nets. An example of an Algebraic net
illustrating the difficulty is shown in figure 7.6.

Firstly, consider the situation when My(p1) = A. Using the terminology of
Algebraic nets, a valuation (assignment) for z, 8(z) = a; for example, will
enable ¢t1 in mode S. When £1 occurs in mode 8, a; is removed from place
pl and f(a;) = by is added to p2, i.e. M(pl) = A\ {a1} and M(p2) = {b:}.
A similar situation occurs for any valuation, #(z) € A. Any valuation,
B(z) € B, will not enable t1, due to the initial marking of pl.

Now consider when My(pl) = B, (a perfectly legal initial marking as M :
S — uD, where D = AU B). A valuation, #(z) € B, will now enable ¢1.
When ¢1 occurs in mode by, the follower marking for pl is clear, My(p1) =
B\ {b1}, but the follower marking for p2 is undefined as the value f(b;) is
not defined.

This problem does not occur with many-sorted algebraic nets as defined
above because functions are total. The intention of the designer of the
above algebraic net is unclear. A possible interpretation would be that
transition, t1, is only enabled when z is bound to an element of A. This
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Declarations

Sorts: R = {r1,r2}

Carriers: D,y = A and D, = B
Operators: All constants from A and B
and unary operator f = w(yy ,2)
Variable: z =v,; thus z: A
A={a,...,an},n € Nt

B = {b]_,... ,bn}

fp : A — B where
fpo(a;)=b;fori=1,...,n
Mo(pl) = AU B, My(p2) = 0

Graph

t1

”10 z 1) ’O”z

Figure 7.7: Weakly-typed MAN interpretation of above Algebraic Net

interpretation is easily handled with a many-sorted algebraic net (MAN)
(see figure 7.7).

The MAN has essentially the same graphical form. The graph part and
initial marking are identical. The main difference is that a signature with
variables is explicitly included. The sorts R = {r1,r2} have corresponding
carriers D,y = A and D, = B. The set of operators includes a unary
operator f = w1 ,,2) and enough constants of type AUB to define the initial
marking. The set of variables, V, is a singleton z = v,; and thus z : A. The
function corresponding to the operator f is a bijection fp : A — B, where
for A = {a1,...,a,} and B = {bs,...,b.}, fp(a;) = b; for i = 1,...,n.
To make the example more interesting we have set the initial marking to
Mo(pl) = AUB and Mo(p2) = ﬂ

Transition, 1, is enabled in all modes, m € A, and once all the a's in pl
have been transformed into b's in p2, t1 is dead. There is no possibility
of binding z to an element of B, as it is of type = : A as defined in the
signature. Thus there are no difficultiés of interpretation.

. Sets can be simple.

The sets of the many-sorted algebra are simple (as opposed to complex
unions of other component sets) and correspond to the sets of the physical
world that is being modelled. This contrasts with Algebraic nets where
there is only one carrier which needs to contain the union of all the simple
sets. This is more than an aesthetic problem when developing automated
tools, as valuations for each variable will be over the rather large set D,
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instead of a much smaller domain corresponding to a carrier of the many-
sorted algebra.

7.7.2 Strongly-typed many-sorted algebraic nets
Definition
A strongly-typed many-sorted algebraic net, includes a colour function and is
given by

(N) 2: Cs Aa MO)

where

e N =(S,T;F) is a net.

¥ = (R,Q,V) is an R-sorted signature with variables. It has a correspond-
ing R-sorted algebra, H = (Rg,Qg).

C : S — Ry is the colour function restricted to places.

A:F — pTERM(Q2UV) is the arc annotation function, where for C(s) =
H,, and for all (s,t),(u,s) € F, A(s,t), A(u,s) € yTERM(QU V).

My : S — Uses nC(s) such that Vs € S, My(s) € puC(s) is the initial
marking.

The strongly-typed many-sorted algebraic net has the advantage that static type
checking can be done to eliminate errors as discussed before. In the above ex-
ample, it may have been that place pl should never be marked with tokens from
B and that the initial marking was just a mistake. In this case it would be
appropriate to set C(pl) = A and, depending on the application, C(p2) = B. In
this case, setting My(pl) = B, would violate the typing rules and be detected in
a static check. This would not be the case in a weakly-typed MAN, where the
error would be detected at run time when an attempt to execute the net would
reveal that ¢1 was dead.

The P-Graphs of figures 7.2, 7.3 and 7.4 are examples of strongly-typed MANS,
but figure 7.5 is not a strongly-typed MAN as it has a transition condition
different from true. In the next section we define CP-Graphs which allow for
transition conditions. It will be seen that a strongly-typed M AN is a special
class of CP-Graph where Vt € T, TC(t) = true and the multiplicities of terms in
arc expressions are natural numbers rather than natural number terms.

7.8 CP-Graphs and Many-sorted PrT-Nets

7.8.1 CP-Graphs

On removing the inhibitor arcs and the place capacities from the P-Graph, we
obtain a subclass that is very similar to Jensen’s ‘CP-graph’ [87]. We shall
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distinguish our class, called CP-Graphs, from that of Jensen by using an upper
case ‘G’ in ‘Graph’. The CP-graph differs from the CP-Graph defined here in

two respects:

e it is a multigraph (i.e. multiple arcs are allowed between places and tran-
sitions); and

e the arc inscriptions and transition conditions (‘guards’}) are not explicitly

defined.

Jensen [87] states that the expressions and guards may be defined by means of a
many-sorted algebra (but excludes this from his scope of concern) and that has
provided part of the stimulus for the definition of P-Graphs. For CP-Graphs to
be a subclass of P-Graphs they include a signature rather than the algebra. This
seems to be the simplest approach, since a signature is always required to build
terms and it can also be used to type variables.

Definition
A CP-Graph (CPG) is a P-Graph

(IN,%,C,AN, K, M)

with the following restrictions

e IN = (S,T; F,0) i.e. no inhibitor arcs.
e AN = (A,0,TC) i.e. no inhibitor arc annotations.

e For all s € S, K(s) = {(g,00)|g € C(s)} i.e. the capacities of the places
are infinite.

7.8.2 Many-sorted PrT-nets

Predicate/Transition Nets (PrT-nets) have been developed over the last decade
with the latest definition appearing in [70]. PrT-nets are defined on a syntactic
level accompanied by a relational structure that provides an interpretation at the
concrete level of sets, functions and relations. In this section we shall consider a
many-sorted PrT-net as a form of P-Graph, and return to PrT-nets defined at
the syntactic level in a later section.

In [70], Genrich mentions the use of many-sorted structures and a ‘formalism
for abstract data types’ (many-sorted algebras) but does not pursue these ideas.
PrT-nets are single-sorted, do not include the inhibitor extension nor the colour
function, all variables range over a single carrier, and in [70] a capacity function
is not defined. A predicate associated with a place has a fixed index, so terms
annotating arcs associated with the place can only be multisets of tuples of the
same length as the index.

In the following we define a subclass of the CP-Graph, known as a many-sorted
PrT-net which includes the colour function (i.e. it is strongly typed), and types
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variables via the signature, but retains the PrT-net flavour of restricting the
colour sets to products. Hence tuple lengths for terms annotating arcs are con-
stant. .

Definition

A many-sorted PrT-net (MPrT-net) is a CP-Graph with the restriction that for
all s € S, C(s) is a simple set or a cartesian product of simple sets, where a
simple set comprises elements that are singletons. This ensures that the tuples
annotating arcs are of the same length.

The advantages of many-sorted PrT-nets over the PrT-nets of [70] are the same
as those for many-sorted algebraic nets over Algebraic nets (see section 7.7.1).
These problems may be overcome with PrT-nets by typing variables in transition
conditions, but as this is an option of the specifier, mistakes can easily arise. An
example is the resource management scheme represented as a PrT-net in [70],
page 217 (the variables m,r, and r1 to rL may be bound to any value from D,
but from the text it is clear that this is not intended). The need to type variables
in the transition condition may unduly clutter the graph with information that
is best handled in a declaration to allow for static checks.

7.8.3 Simple Examples

The four examples of section 7.6 are MPrT-nets.

7.8.4 'Train Example

In [70], Genrich describes the operation of two trains travelling in the same
direction on a circular track of seven sections. For safe operation, the trains
must never be on the same section or even on adjacent sections. A MPrT-net is
given in figure 7.8 where any number of sections greater than 4 is allowed.

The model is a little different from that in [70]. Apart from the minor difference -
of generalising the number of track sections, the marking of place p2 represents
which track sections are vacant. In the original model, the same place repre-
sented the predicate that sections i and i®1 were vacant. As a minor modelling
point, the simpler meaning for a place is preferred. The less intuitive predi-
cate also necessitates the definition of two functions, the modulo 7 successor and
predecessor functions, whereas only one (modulo n addition) is required in the
MPrT-net. There is also no need for the transition condition and extra variables.

The drawback of the PrT-net is that the successor functions are partial, whereas
the variables all range over I U T. Thus there are legal substitutions for the
variables for which the transition condition is undefined. This situation does not
arise with the MPrT-net.

It can be seen that this net is also a strongly-typed MAN.
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Declarations

Set of Trains:T = {a,b}

Set of track sections:I = {0,1,...,n —1|n > 4}
n: number of sections

Variables x:T; i:I

Function @:IxI—1 is modulo n addition

Place pl: Sections occupied by trains

Place p2: Vacant sections

Mo (p1) = {<0,a>,<2,b>}

Mo(p2) =1\ {0,2}

. Graph
IxT t1 I
<ix> | <i®l1> + <iH2>,
le >
<i®1,x> <i> + <i@2>
pl p2

Figure 7.8: MPrT-Net of Safe Train Operation

7.8.5 Example of Conditionals in arc expressions

In this example we use a variant of the readers/writers problem to illustrate the
use of conditionals in arc expressions. It is essentially the same as the resource
management scheme example of [70], but the model is considerably simplified by
removing unnecessary states and colours. The identities of the agents wishing to
access the common resource have been retained, but the access ‘tickets’ are not
distinguished.

A number (N) of agents (processes) wish to access a shared resource (such as
a file). Access can be in one of two modes: shared (s), where up to L agents
may have access at the same time (e.g. reading) and exclusive (e), where only
one agent may have access (e.g. writing). No assumptions are made regarding
scheduling. An MPrT-net model is given in figure 7.9.

It has been assumed that the initial state is when all the agents are idle or waiting
to gain access to the shared resource (with no queueing discipline assumed).
Place Wast is marked with all agents; Access is empty and the Control place
contains L ordinary tokens. An agent can obtain access in one of two modes: if
shared (m=s), then a single token is removed from Control (as m=e is false) when
enter occurs in a single mode; if exclusive (m=e), then all L tokens are removed
preventing further access until the resource is released (transition Leave). Shared
access is limited to a maximum of L agents as transition enter is disabled when
Control is empty.
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Declarations

Set of Agents:A = {a;,...,an}
Set of Access Modes:M = {s,e}
Control: C = {e}

Positive integer constants: N,L
Variables x:A ; m:M

Function [ |:Bool — {0,1} where
[true] =1 and [false] =0
Mo(Wait) =A

M,(Control) =L<e>

My (Access) =0

Graph
Enter
<x> <x,m> <> + [m=e|(L—1)<e>
A ! C
AXMC ) Access
Wait Control
<x> <Xm>  Le> + [m=e|(L—1)<e>
Leave

Figure 7.9: MPrT-Net of Resource Management
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Following [70] outfix notation has been used for the function Bool — {0,1} and
this will be used as a standard convention. It is assumed that integer addition
and subtraction and the equality predicate are primitive and do not need to be
defined in the Declaration.

Remark: The net of figure 7.9 is very like a PrT-net. If the places were anno-
tated by predicates rather than colour sets and the domain was formed as the
union D = AUMU C, with variables x and m of type D, it would be a PrT-net.
The indices of the predicates annotating Wait and Control would each be one,
and that of Access, two. It is important to note that the behaviour of the two
nets is not the same. In the PrT-net m can be bound to any element of D. Hence
an agent could gain access to the resource in a meaningless mode e or a; for
example. The meaning of this is unclear and contrary to the intention of the
specification.

7.9 P-Graph Example: Genrich’s Train revis-
ited

The train example above provides us with a very simple illustration of the use of
the inhibitor arc to provide a more compact, and I think more intuitive, model
of the trains travelling on a circular track. Given that this is the first example
of the use of the inhibitor and capacity extensions, we shall describe it in full
detail.

7.9.1 Linear P-Graph

The linear P-Graph for the safe train is given in figure 7.10.

In this example we have explicitly shown how tupling (in this case pairing) can
be achieved with a suitable tupling operator declared in the signature.

7.9.2 Graphical Form

The graphical form of the P-Graph for the operation of the train is given in
figure 7.11. As usual we include only the information about the algebra in
the Declaration and type variables with the appropriate carrier. The tupling
operator and function are considered primitive without any need to define them
each time in a Declaration. I have also been less formal with the use of operator
names and functions in not distinguishing between them (i.e. ® has been used
as an operator and also as a function). Also infix notation has been used as it is
customary.

For inhibitor arcs we use the convention that zero multiplicities are shown explic-
itly, whereas infinite multiplicities are assumed for any term that is not shown
explicitly (c.f. pre map arcs which assume that zero multiplicities are not shown
in the sum). We have also used ‘*’ notation to represent sums of tuples. It is
defined as follows:
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Linear P-Graph

S ={p1}, T = {t1}, F = {(p1,11), (t1,p1)}, IF = {(p1,t1)}

R = {r1,r2,r3, Nat, Bool}

Q = {®r1r1,r15 (- )rir2,r8} U Natconst U {arz, br2, truepon}

where Natconst is the set of natural constants including infinity
V= {irl’zﬂ}

H = (RH) nH); Ry = {Hrla Hr2a Hr3a HNats HBool}
H,=1={0,1,...,n—1|n>4},n €N

Hy=T= {a'a b}

H,-3 =IxT

Hyat = Noo; Hpoot = {true, false}

Qn = {®n, (-, )u,en, by, trueg}

ag = a; by = bjtruey = true

@®g : I X I — 1is modulo n addition

(-, )r :IxT —IxT is a pairing function where

Vi e LVt € T, (5,t)a = (5,t)

C(p1)=IxT

A(p1,t1) = (3,2), A(t1,p1) = (i ® 1,2)

IA(pl, tl) =0 E?:l EuEU (2 7] j’ ‘U,) + 0o EJ'GJ EuGU (1’ 7] ja u)
where J = {0,3,4,...,n— 1} and U = {a,b}

TC(t1) = true

K(p1) = {((s,u),1)|(J,u) € Ix T} (i.e. the set I x T)
Mo(p1) = {(0,2),(2,b)}

Figure 7.10: Linear P-Graph of Safe Train Operation

Declarations

Set of Trains:T = {a,b}

Set of track sections:I = {0,1,...,n —1|n > 4}
n € N: number of sections

Variables x:T; i:I

Function @:IXI—I is modulo n addition

Place pl: Sections occupied by trains

K(p1) = IXT
My(pl) = {<0,a>,<2,b>}

Graph

IXT 0<i®l,*> + 0<i®2,%> . t1
3\ <ix>
Y
pl <iplx>

Figure 7.11: P-Graph of Safe Train Operation
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P-net

S= ), T= ()

C={IxT}

C(pl)=C(t1)=IxT

Pre(p1,t1) = A(¢,z).(¢, z), the identity function on I X T
Post(t1,p1) = A(¢,z).(: ® 1,z), a permutation of I x T

I(p1,t1) : IX T — p(Ix T)

I(pl,tl) = /\('l, z)'(o Z‘?:l EuEU (z © j, u) -+ oo Eje.f EUET (i 5> js 'U,))
where J = {0,3,4,...,n — 1}

K(pl) =IxT

Mo(p1) = {(0,a), (2,b)}

Figure 7.12: P-net of Safe Train Operation

Let (z,y) : A X B, then (z,*) = X4ep(z, b).

This can be generalised to tuples of any length, by allowing the sum to be over
the domains of all the variables replaced by stars.

The graphical form provides an intuitively appealing specification of the be-
haviour of the trains on the track. The occurrence of ¢t1 again indicates the
movement of a train from section i to section i®1. This is possible if there is a
train on section i, (pre condition) and there are no trains on sections i®1 and i®2
(inhibitor condition). Of course the concurrent moving of trains is allowed, so
long as the conditions are met for different trains on different sections of track.
For example, on a 10 section track (n = 10) if train ‘@’ is on section 4 and train
‘b’ on section 9, then the bindings of i=4 and x=a and i=9 and x=b, both satisfy
the enabling condition when taken together.

7.9.3 Equivalent P-net

The equivalent P-net is given in figure 7.12.

The P-net maps can be rewritten in function notation as

Pre(p1,t1) = {((¢, z), (¢, 2))|(¢,z) € I x T}

Post(p1,t1) = {((z,z), ( ® 1,2))|(¢,z) € I x T}

I(p1,t1) ={((z, z), {((f®1,2),0), (02, u),0), (({®F,u),00)|u € T,5 € J}|(¢,z) €
Ix T}

so that for all (¢,z) €eIX T

Pre(tl,z,z) = (pl, (¢,z)) and so forth.

7.10 Notation for Capacity

The capacity of a particular place, s, is given by the function

K(s):C(s) — NI
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Declarations

H: Set of Host Addresses
Me: Set of Host Messages FREE
Variables: s,d: H;m : Me
M,(BUFFER) =0

M,y(FREE) = H I
<8> <8>
DATA-
request BUFFER transfer

<s,d,m> 'U <s,d,m>

HxHxMe

Figure 7.13: LAN Access Buffer

It is convenient to use a shorthand notation for this function when annotating
places of the P-Graph, as the place is indicated by the proximity of the annotation
to the place. Thus for the capacity of token g; € C(s), we may write (for
ny € Nf) K(g1) = n; next to place s, instead of K(s;g;) = n;. Of course,
this will only be practical when C(s) is a very small set, or when most of the
capacities are the same.

A special case is when the capacity for each token g € C(s) is the same, say
n € N*. This is the same as the capacity defined for PrT-nets [71], and we use
the same notation. Thus if place s is annotated by K = n in the P-Graph, then
this means Vg € C(s), K(s;g) = n.

7.11 Extended Capacity Notation

Although the P-net capacity function and the above notation may be of use in
some applications, for others a much richer capacity notation is required. It is
often the case that a limit needs to be placed on the cardinality of multisets over
(elements of partitions of) a place’s colour set. For example, we would like to be
able to express constraints like |[M(s)| < n. This represents the total capacity of
a place (i.e. the sum of all tokens in the place) which could be a resource bound,
e.g. a buffer capacity. Here we are not placing a direct limit on the multiplicity of
each element of the colour set but a limit on the sum of multiplicities of elements
and thus the capacity function (by itself) is inadequate.

As a further illustration, consider the following example encountered while mod-
elling the M-Access Service of the Cambridge Fast Ring [26] (see chapter 10).
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Declarations

H: Set of Host Addresses
Me: Set of Host Messages

Variables: s,d: H;m : Me
My(BUFFER) =9

DATA-
request BUFFER transfer

<s,d,m> =\J <s,d,m> g
HxHxMe
K(s,#,%) =1

Figure 7.14: LAN Access Buffer illustrating extended capacity notation

A network interconnects a set of computers, known as hosts. Hosts can send
messages to each other via the network. Each host has an address. When a host
wishes to send a message it appends its own address (source address) and that of
the destination (destination address) to the message to form a packet. Each host
accesses the network via a one packet buffer. When this buffer is free, the host
can store a new packet in the buffer. When network resources are available the
packet is transferred into the network for routing and delivery, thus freeing-up
the buffer for a new packet.

A P-Graph of the access procedure (for all hosts) is shown in figure 7.13. Place
BUFFER represents the set of access buffers, one for each host. Place FREE indi-
cates which buffers are available. (Initially all the buffers are free: My(BUFFER)
= .) If this place contains a token with the value of host a’s address, then host
a’s buffer is free and can be used for the next packet host a wishes to submit to
the network (transition DATA-request occurs). Host a’s buffer will not be free
again until the network accepts the packet (transition transfer occurs). Hence
place FREE provides the control necessary to ensure a capacity limit of one
buffer per host.

When visualization of this control mechanism is not required, we would like
to replace the capacity control for place BUFFER by an extended capacity in-
scription. This is shown in figure 7.14, where place BUFFER is inscribed by
‘K(s,*,%) = 1. We may interpret this to mean that there is one buffer avail-
able for each host, i.e. that the sum of tokens over the set of (destination) host
addresses, H, and messages, Me, in place BUFFER for a particular value of s,
is at most one. The *’s indicate sums over the domains of the variables they
replace. This may be viewed as an extended capacity condition on the marking
of the place concerned: for all markings of BUFFER, and for each host, j € H,
Yner Lgeme M(BUFFER; 5, h,g) < 1.
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More generally, a place, s, with C(s) = Gy X ... X G,,, may be annotated by
an inscription K(ey,...,a,) = k with k¥ € N*. The syntax of a;,7 € In =
{1,2,...,n} is given by the production rule a¢; ::=< v; > |* where angular
brackets denote non-terminals and v; : G;. (The syntax for variables is left open,
but it would normally be a finite string of alphanumeric characters.)

We shall now give the meaning of this notation in terms of a P-Graph without
it.

7.11.1 Interpretation of Extended Capacity Notation

When there are no stars present in the argument of K(ay,...,a,), it has the
same meaning as K, defined in the previous section. This notation is therefore
redundant and would not be used.

We now consider two cases:
e A. when there is at least one star but less than n stars

e B. when all arguments are stars.

For case A, for each place, s, inscribed by K(ay,...,a,) = k, we remove the
inscription and replace it by a projected complementary place, 5, and associated
arcs in the following manner.

1. From the argument of K create a tuple consisting of only the variables by
deleting the stars. This will be of the form < v;,...,v; > withi < j <n.

2. Create a place, 3, with colour set C(3) = G; x ... X G; derived from the
types the variables of the above tuple, where G; is the type of the variable
v; and so forth.

3. Create an arc (3,t) for each arc (¢,s), t € T and an arc (¢,3) for each arc
(s,t'), ¢ €T.

4. Annotate each arc by the tuple < v;,...,v; >.

5. The initial Marking, My(3) is related to My(s) and the value of k in the
following way. For every g; € G;...g; € G;

mult((gi,...,97), Mo(3)) Zmult((gl, <y 0n), Mo(s)) = k

where the sum is over the domains of the variables that have been replaced
by stars in the argument of K.

For case B, for each place, s, inscribed by K(*,...,%) = k, we remove the
inscription and replace it by a completely-projected complementary place, 3, (a
P/T-net place) and associated arcs in the following manner.

1. Create a place, 3, with colour set C(3) = {e}.
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2. Create an arc (3,t) for each arc (¢,s), t € T and an arc (',3) for each arc
(s, '), ¥ €T.

3. Annotate each arc by the singleton < e >.

4. The initial Marking, My(3) is related to My(s) and the value of k in the
following way.

mult((e), Mo(3)) +D_ mult((g1,- -, 9n), Mo(s)) = k

where the sum is over the domains of all the variables.

Case B corresponds to a resource limit and the notation K* will be adopted for
it (i.e. K* = K(*,...,%)) as in Numerical Petri Nets [145].
In this section the colour sets have been restricted to a single product set. No

attempt is made to generalise to unions of product sets as the complexity and
infrequent usage do not justify it.

7.12 Abstract P-Graphs or P-Graph Schemas

The P-Graph defined previously included concrete colour sets, markings and
capacities. This is often the level at which telecommunication and other systems
are specified. However it is very useful to have a more abstract specification
that allows classes of systems to be specified. For example the range of sequence
numbers or window sizes in protocols may be left open. The hope is that it will
be possible to prove properties about systems for a whole range of parameter
values by just considering the more abstract specification.

This is the approach adopted by Vautherin [143] where he defines a Petri net-like
schema, Y-schema, and provides an interpretation for it with a class of CP-nets.
Vautherin does not include capacity or inhibitor functions, only allows equations
to be associated with transitions, does not allow conditionals in arc expressions
and does not type variables in his definition (although he does in examples). The
following defines a schema addressing these points. The term Abstract P-Graph
used for the schema, was suggested by Jensen in [90].

7.12.1 Definition

An Abstract P-Graph, (APG) or P-Graph Schema is a structure
(IN’E:'I-’ANa Ka MO)
where
o IN = (S,T; F,IF) is an inhibitor net.
e ¥ =(R,N,V) is a Natural-Boolean signature with variables.

e 7:85 — R is a function that types places. (Places are R-sorted.)
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e AN = (A,IA,TC) is a triple of net annotations.

— A: F - BTERM(QUYV) such that for s € S, (s,y),(z,s) € F,
A(s,y), A(z,8) € BTERM(QUYV),,. Arcs are annotated with a
multiset of terms that are of the same sort as the associated place.

— IA : IF —» Bo,TERM(Q2UYV) where for each (s,t) € IF, IA(s,t)
belongs to BoTERM(QUV), . Inhibitor arcs are annotated with
a multiset of terms that are of the same sort as the associated place.

- TC:T - TERM(QQUV)g,,, where for each t € T, TC(t) belongs
to TERM(Q UV (t))Boa With V'(2) the set of variables occurring in
the arc inscriptions associated with ¢. T'C annotates transitions with
Boolean expressions.

e K:8 — p,TERM(Q) where Vs € §, K(s) € uf TERM(Q),() is the
capacity function associating a multiset of closed terms with each place.

e Mo : S — pTERM(Q) such that Vs € S, Mo(s) < K(s), is the initial
marking at a syntactic level which respects the capacity.

7.12.2 Discussion

The definition mirrors that of the P-Graph, where the colour function is replaced
by the typing function and the capacity and initial markings are defined at the
syntactic level of terms rather than at the concrete level of sets. We may also
include subtyping as has been discussed for the P-Graph (see section 7.3.2).

7.12.3 Interpretation as a P-net
For a many-sorted algebra, H, satisfying the R-sorted signature, (i.e. H =

(Ru,Qg)) the interpretation of the abstract P-Graph as a P-net is given in
section 7.4, with the following exceptions.

1. Place Colour Sets. For each place s € S, C(s) = H,(,).
2. Capacity Function. For all s € S, K(s) = Valg(K(s)).
3. Initial Marking. For all s € S, Mo(s) = Valg(Mo(s)).

7.12.4 Abstract CP-Graphs

Like the CP-Graph, the Abstract CP-Graph does not include inhibitor arcs and
has infinite capacities for places.

Definition

An Abstract CP-Graph (ACPG), or CP-Graph schema is a P-Graph schema
with the following restrictions

113




Declarations

R = {item, queue}

0 = {empty, enq, deq}

empty :— queue

eng,deq : item X queue — queue
Variables z : item;q : queue
7(Queue) = queue

My(Queuve) = {empiy}

Graph Schema

AQ Queue 5Q
q 7\ q

el ~{ |=
eng(z,q) \__/ deg(z,q)

.

Figure 7.15: Generic Queue Specification with a CP-Graph Schema

e IN = (S,T; F,0) i.e. no inhibitor arcs.
e AN = (A,0,TC) i.e. no inhibitor arc annotations.

o Vs € S, K(s) = {(term,o0)|term € TERM(RQ),(,)} i.e. the capacities of
the places are infinite.

We may also have classes such as a many-sorted PrT-net schema or an algebraic
net schema by restricting the above structure in a similar way to that explored
for P-Graphs.

7.12.5 CP-Graph Schema Example: A Generic Queue

Queues with different service disciplines (e.g. first-in-first-out (FIFO), last-in-
first-out (LIFO), arbitrary) are important components of computer and commu-
nication systems. There may be times in an early part of a design when the
service discipline and the items to be queued are undecided. It is at this stage
when a class of queues can be specified by using a P-Graph Schema.

A CP-Graph schema of a generic queue is shown in figure 7.15. There are two
sorts: 7tem: the name of the set of items to be queued and serviced; and queue:
the name of the queue structure (such as strings of items, or sets of items).
We define a constant empty and enqueueing and dequeueing operations which
compose items and queues to form queues. Variables are typed (z of sort item
and g of sort queue) as is the place Queue. The capacity of place Queue is infinite
and it is marked by the constant empty.
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In the graph, the transition AQ models the arrival of items and SQ their ser-
vicing. On the arrival of an item, the current queue is removed, the item is
added, and the new queue placed in Queue. If there is an item in the queue,
then on servicing, this item is removed. The way in which items are added to
and removed from the queue is not specified. This is the role of the algebra.
For an arbitrary queueing discipline, the enqueueing and dequeueing operations
correspond to multiset addition and (as we shall see later in chapter 9) for FIFO
and LIFO queues they correspond to concatenation.

7.13 Conclusions

A graphical form of P-nets, P-Graph, has been defined as an inhibitor net that
includes a many-sorted signature. Variables can now be appropriately typed and
functions are total removing any difficulties in interpretation that can arise with
single-sorted high-level nets.

A hierarchy of high-level nets can be defined by restricting the structure of the P-
Graph to include CP-Graphs, many-sorted PrT-nets and many-sorted Algebraic
nets. If partial functions are allowed, then PrT-nets and Algebraic nets can also
be included in the hierarchy, but there appears to be little motivation to do so.

The abstract P-Graph provides a vehicle for the specification of classes of systems
and the possibility of their analysis via a single member of the class as has been
demonstrated by Vautherin [143]. This opens up exciting possibilities which need
to be investigated in various application domains.
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Chapter 8

Resetting Markings

When modelling applications it is convenient to be able to manipulate markings
atomically (i.e. with the occurrence of a single mode of a transition). The
purging of a queue [29] or aborting a broadcast [26] (see chapter 10) are relevant
examples.

The manipulation of the marking of a place can be achieved with P-nets by
setting the pre map equal to the inhibitor map and hence equal to the current
marking when the transition is enabled. The post map then allows the desired
manipulation of the marking as it can be defined in terms of the pre map (i.e.
the current marking).

The idea of removing a place’s marking on the single occurrence of a transition
has arisen in the context of P/T-nets [5|, where reset nets were defined and
later by Valk [136], who defined a more general class of nets known as self-
modifying nets. The work of this section investigates the reset idea in the context
of high-level inhibitor nets, making it more expressive and suitable for complex
applications.

The term reset will be used to connote the emptying of a place of all its tokens on
the occurrence of a single transition mode. A complete reset implies the resetting
of all places on the occurrence of a single transition mode.

Firstly we investigate P-nets with the complete reset property, the class of P-nets
where the pre map and inhibitor map are the same. This class of P-net turns
out not to be suitable for our purposes, but it is the simplest case conceptually
and hence it is dealt with first. Having dispensed with this curiosity, we consider
P-nets with the reset property where at least one place may be emptied by the
occurrence of a single transition mode. The term, purging a place, is introduced,
to describe the resetting of a place irrespective of its marking. A graphical
representation of purging is given where a reset arc is defined as the superposition
of the inhibitor and normal arcs. It is inscribed by a variable typed by the set
of multisets over the colour set of the input place. The idea is generalised to
purging submultisets (subbags) of markings and further to considering partitions
and subsets of partitions of the input place’s colour set.
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8.1 Completely resetting P-nets - a curiosity

Definition: A completely resetting P-net is a P-net with Pre = I and for all
tr e TRANS, pre(tr) # 0.

The possibility of having a transition mode with zero-testing inhibitors for all
places is excluded. This is because it leads to either the transition always being
dead or, if enabled by the empty marking, then the number of times it is self-
concurrently enabled is unbounded. Further, an occurrence of the transition
mode leaves the marking empty. It appears that neither situation is of practical
value and the restriction leads to a simple statement for the following proposition.

Proposition 8.1 A completely resetting P-net ts an tnterleaving model in that
no two transition modes can be concurrently enabled.

Proof: The proof is by contradiction. Assume that ¢r1,tr2 € TRANS are
concurrently enabled at any reachable marking, M € [My), then the following
must hold from the definition of enabling

Pre'(trl +tr2)<M<I'(trl + tr2) (8.1)
From the definitions of Pre' and I'
Pre'(trl1 +tr2) = Pre(trl) + Pre(tr2) (8.2)
I'(trl1 +tr2) = I'(tr1) N I'(tr2)
= I(trl) N I(ir2)
= Pre(trl) N Pre(tr2) (8.3)
Inserting equations 8.2 and 8.3 into 8.1
Pre(trl) + Pre(tr2)<M<Pre(trl) N Pre(tr2) (8.4)

From the definition of multiset intersection (see Appendix A), this inequality
can only be satisfied if Pre(trl) = @ and Pre(tr2) = @ which is forbidden by the
above definition. Hence two transition modes cannot be concurrently enabled.
O

Proposition 8.2 Fortr € TRANS enabled at a marking M, the transition rule
ts given by
M' = Post(tr)

Proof: From Proposition 8.1, only one transition mode can occur at any instant
(interleaving) and the transition rule becomes for all tr € TRANS

M' = M — Pre(tr) + Post(tr) (8.5)
From the enabling condition and definition of completely resetting P-nets
Pre(tr)<M<I(tr)
= Pre(tr)<M<Pre(tr)
= M = Pre(tr) (8.6)
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P-Graph

A, B: Non-empty sets
ACB

T:A Ty WA, Ym : uB
My (p1) = A, My(p2) =0

A z+T, i1 Ym B
pl Z+ZTm Ym p2
Tm Z+Ym
P-Net
S = {p1,p2}
T = {t1}
C={A,B,A x upA x uB}
C(p1) =4
C(p2) =B

C(tl) = A x pA x uB

Pre(pl,tl) = my + my

I(p1,t1) = Pre(p1,t1)

Post(pl,tl) = m,

Pre(p2,t1) = 73

I(p2,t1) = Pre(p2,t1)

Post(p2,t1) = m

where 7,72, 73 are projection functions:
m :C(tl) = A

7y : C(t1) - pA

73 : C(t1) — uB

the capacities of pl1 and p2 are infinite
M, = {(plaa) | ac A}

Figure 8.1: Completely Resetting P-net simulating Figure 7.4

118




t s t

C

Figure 8.2: Transitions ¢ and ¢' cannot occur concurrently

and thus from equation 8.5, for all tr € TRANS, M' = Post(tr). O

Thus the follower marking is independent of the initial marking and it is this
property that gives rise to the term reset.

Although it is possible to model applications with completely resetting P-nets,
it is far too unwieldy and often will not match with the intuition of the designer
as every transition affects every place. A simple example is given in figure 8.1.
It models the situation in figure 7.4, where an item from a store is transferred
to another store. With the net in figure 7.4, as many items as exist in pl may
be transferred as all the modes of ¢1 are concurrently enabled. This is not the
case in figure 8.1 as only one mode is enabled for any given marking. The net
is much more complex and rather convoluted and counter-intuitive. For these
reasons completely resetting P-nets will not be investigated further.

What we would like is to be able to reset only the places of interest, not every
place. This is investigated in the rest of this chapter.

8.2 P-nets with the reset property

Instead of resetting the whole marking of a P-net, we now consider the resetting
of the marking of individual places. Consider the P-Graph of figure 8.2 where
X and Y are any legal arc insciptions. Transition ¢ has the reset property over
place s. We assert that a mode of transition ¢ cannot occur concurrently with
any other transition mode, (including its own), that has a pre map dependent
on place s.

Proposition 8.3 For a P-net with transitions t,t' € T, and place s € S with
Pre(s,t) = I(s,t), a mode of t, m € C(t) where Pre(s,t;m) # 0, and a mode of
t', m' € C(t') with Pre(s,t';m') # 0, can not occur concurrently.

Proof: The proof is essentially the same as the proof of proposition 8.1. From
the enabling condition restricted to place s and the reset condition (Pre(s,t) =
I(s,t)) it follows that for any m € C(t) and m' € C(t')

Pre(s,t;m) + Pre(s,t';m)<M(s)< Pre(s,t;m) N I(s,t';m')

A necessary condition for this inequality to be satisfied is Pre(s,t';m') = 0.
Hence transitions ¢ and ¢' cannot occur concurrently when Pre(s,t';m') # 0. O

An immediate specialisation of this proposition is:
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Proposition 8.4 For a P-net with transition t € T and place s € S such that
Pre(s,t) = I(s,t) and Vm € C(t), Pre(s,t;m) # 0, the modes of t can never be
concurrently enabled.

Proof: The proof follows from proposition 8.3 by setting t' =¢. O

The reset condition ensures that the only marking that can satisfy the precon-
dition is equality with the pre map. More precisely

Proposition 8.5 For a P-net with transition t € T and place s € S such
that Pre(s,t) = I(s,t) and a mode, m € C(t), enabled at marking M(s), then
Pre(s,t;m) = M(s).

Proof: The proof follows immediately from the reset property and the enabling
condition. For a mode m € C(t) enabled at M(s),

Pre(s,t;m)<M(s)<I(s,t;m)
= Pre(s,t;m)<M(s)<Pre(s,t;m)
= M(s) = Pre(s,t;m) (8.7)

O

Corollary 8.1 A consequence of proposition 8.5 is that if transition, t, occurs in
mode m, then the follower marking of place s is given by M'(s) = Post(s,t;m).

Proof: Follows immediately from the transition rule and equation 8.7. O

8.3 Purging

This section describes how to empty a place of its current marking. This will be
referred to as purging.

If we wish to purge a place s with a single occurrence of a mode of transition
t, we need a mode, m € C(t), for every marking of s, M(s) € uC(s). C(¢t) will
in general be a product. To guarantee a mode for each marking, let £C(s) be
one of the sets in the product. We also need the pre map, Pre(s,t), to select
the current marking. From proposition 8.5 this can be done by using a reset:
I(s,t) = Pre(s,t). Pre(s,t) and I(s,t) will then be projection functions that
select out a marking in pC(s) from C(¢).

Let D, = puC(s) and C(t) = D, x D' where D' is in general a product set
dependent upon the inscriptions of the other arcs connected to ¢. (If there is no
requirement for a product, then C(t) = D, or equivalently let D' contain a single
nondescript element so that the product D, x D' is isomorphic to D,. The latter
approach is used here, to include this special case in the general presentation.)

A projection function is defined as

wst : C(t) — uC(s)

120




where 74 (ds,d') = d; with d, € D, and d' € D'.
We set I(s,t) = Pre(s,t) = 7.

Corollary 8.1 ensures that whenever transition ¢ occurs, place s will be emptied
of its current marking, so long as Post(s,t;m) = 0.

The following propositions summarise the above discussion.

Proposition 8.6 Given a P-net witht € T, s € S, C(t) = uC(s) x D' and
Pre(s,t) = my, then Im € C(t), such that Pre(s,t;m) = M(s) for any M(s) €
pC(s).

Proof: Firstly M(s) € uC(s). From the definitions of C(t) and 7, noting that
met is surjective, Pre(s,t) ranges over uC(s). Hence we can always choose an
appropriate argument, m, of Pre(s,t) such that Pre(s,t;m) = M(s). O

The conditions under which this proposition holds ensure that a mode, m, of
transition ¢ can always be chosen so that its image under the pre map Pre(s,¢;m)
is equal to the current marking.

Now we need to ensure that a mode is only enabled by one marking, that being
the current marking. This is achieved with a reset.

Proposition 8.7 Given a P-net as in the previous proposition with Pre(s,t) =
I(s,t) and Ym € C(t), Post(s,t;m) = 0, then when t occurs in any mode, place
s is purged, i.e. M'(s) = 0.

Proof: Follows immediately from corollary 8.1. [

8.3.1 Graphical Representation

In the P-Graph, uC(s) is a carrier of the many-sorted algebra, H, (i.e. H, =
pC(s)) and a variable that ranges over multisets over C(s) is included in the
signature, for example Y : uC/(s). The arc (s,t) and inhibitor arc are annotated
by a tuple consisting of this variable: A(s,t) = I A(s,t) =Y. Any variable name
could be chosen and the declaration part would provide its type. However, a
capital letter can be used to alert readers of the graph part that this variable is
of higher order type.

To save space in the P-Graph, the normal and inhibitor arcs are superimposed
and only one inscription is needed, because A(s,t) = IA(s,t). This may be
referred to as a reset arc.

8.3.2 Example: Purging a place

An example of a simple net where all tokens are removed from a place, irrespec-
tive of its marking, is shown in figure 8.3.

Transition t1 is always enabled in one of its modes but never concurrently with
itself, except when M(pl) = 0. When ¢1 occurs, pl is emptied (M'(pl) = 0).
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P-Graph

A: Non-empty set
Y :uA
A t1

pl( )-——41[

P-Net

S = {p1}

T = {t1}

C={4,ul}

Cpy)=4

PLACE = {(p1,a) | a € A}

C(t1) = pA

TRANS = {(t1,m) | m € pA}

Pre and I are bijections: TRANS — uPLACE
where for all m € pA, I(t1,m) = Pre(t1,m) = {((p1,a),m(a))|a € A}
For all tr e TRANS, Post(tr) =0

Va € A,K(pl,a) = o0

M, = {(pl,a) | a € A}

Figure 8.3: Purging a place
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When M(pl) = 0, ¢1 is enabled by a mode in which I(tr) = Pre(tr) = 0. An
unusual phenomenon occurs where the degree of self-concurrency of the transition
mode is unbounded and its occurrence has no effect on the current state. This
possibility may be excluded by restricting the set of multisets over 4 to be non-
empty. '

The situation is the same as in figure 8.3 with the following modifications. In the
P-Graph and in the P-net we replace pA by pA \ {0} so that Pre and I become
injections. Hence for all &r € TRANS, Pre(tr) # 0. Thus t1 is not enabled
when the marking is null, but is enabled for all other markings.

8.4 'Transferring a Marking

There are situations when we would like to be able to transfer the contents of
one place to another place; for example in resetting. This may be achieved by
setting the post map for the receiving place to the pre map for the place that is
being purged.

Let s be the place that will be purged and s1 the one that will receive its contents.
We require that C(s) C C(s1).

As above we have I(s,t) = Pre(s,t) = ID, where ID is the identity function
ID : uC(s) — pC(s)

and we now set Post(sl,t) = Pre(s,t).

In the P-Graph, we shall have a reset arc from s to ¢ annotated by Y : uC(s),
as will be the (normal) arc from ¢ to s1 (A(s,t) = IA(s,t) = A(t,s1) = 7).

8.5 Purging subbags of Markings

In this section the previous results are extended to purging multisets over a
subset of a place’s colour set. Consider a transition, ¢, with an input place, s.
Let G, be a subset of C(s) and form the set of multisets over G,, uG,.

Now include uG, as part of the product set comprising C(t) in a similar way to
section 8.3. Let D, = uG,, C(t) = Dy x D', d, € D,, d' € D', so that m = (d,,d')
as before. We can define Pre(s,t) and I(s,t) as follows. For ¢ € C(s) and all
m € C(t),

mult(g,d,) ifg € G,

mult(g, Pre(s,t;m)) = { 0 otherwise

mult(g,d,) if g € G,
0o otherwise

mult(g,I(s,t;m)) = {

Thus the pre and inhibitor maps are determined by the subset G,.

We may now generalise the propositions in section 8.3.
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Proposition 8.8 Given a P-net witht € T,s€ S, G, C C(s), C(t) = uGs x D'
and Pre(s,t) as above, then Im € C(t), such that for g € C(s) and any M(s) €
pC(s),

mult(g,M(s)) ifg€q,

mult(g, Pre(s,t;m)) = { 0 otherwise

Proof: For any M(s), consider the subbag, SUB, where the multiplicities of all
elements not in G, are set to zero and the others are as they were in M(s), i.e.

mult(g,M(s)) if g€ G,
0 otherwise

mult(g, SUB) = {

Now define SUB' € uG; where for all g € G,, mult(g, SUB') = mult(g, SUB).
Hence for d' € D', we may set m = (SUB',d') so that '

mult(g,SUB') if g € G,

mult(g, Pre(s,t;m)) = { 0 otherwise

For g € G,, mulit(g, SUB') = mult(g, SUB) = mult(g,M(s)) and the proposi-
tion follows immediately. [

Proposition 8.9 Given a P-net as in the previous proposition with m € C(t),
I(s,t;m) as defined above and Vm € C(t), Post(s,t;m) = 0, then when t occurs
in mode m, place s is purged of all tokens in G, t.e.

R I if g€ G,
mult(g, M'(s)) = { mult(g, M(s)) otherwise

Proof: To prove this proposition we need the following lemma.

Lemma 8.1 Given the P-net of proposition 8.9 with the transition mode, (t,m),
enabled at M, then for g € C(s)

mult(g,M(s)) if g€ G,
0 otherwise

mult(g, Pre(s,t;m)) = {

Proof: For all m € C(t), for all ¢ ¢ G,, mult(g, Pre(s,t;m)) = 0 (by its
definition). From the enabling condition on place s it follows that for g € G,

mult(g, Pre(s,t; m)) < mult(g, M(s)) < mult(g,I(s,t;m))
= mult(g, Pre(s,t;m)) < muli(g, M(s)) < mult(g, Pre(s,t;m))
= mult(g, Pre(s,t; m)) = mult(g, M(s))

which proves the lemma. [J

From the firing rule, this lemma, and that for all m € C(t), Post(s,t;m) = 0 we
have for all m € C(t)

M'(s) = M(s) — Pre(s,t;m) + Post(s,t;m)
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= M'(s) = M(s) — Pre(s,t;m)

0 if g e G,

1 —_
= mult(g,M (8)) = { mult(g,M(S)) otherwise

which proves the proposition. [J

(Note that the condition that for m € C(t) and g & G,, mult(g, Pre(s,t;m)) =0
and mult(g, I(s,¢;m)) = oo implies that there is no enabling requirement (from
t) on tokens in place s, that are not in G,.)

8.5.1 Graphical Representation

In the P-Graph, let uG, be a carrier of the many-sorted algebra and include a
variable Z : pG, in the signature. To purge place, s, of a subbag of M (s) (thatisa
multiset over G,) by an occurrence of transition, ¢, we set A(s,t) = I A(s,t) = Z.

We now need to slightly modify the mapping from the P-Graph to the P-net
(section 7.4) to accommodate the fact that AZ.Z is an identity mapping from
pG, to itself and hence multiplicities of tokens are only defined for ¢ € G, and not
otherwise. For all modes m € C(t) and for g € C(s) \ G,: for the Pre and Post
maps we use the default that mult(g, Pre(s,t;m)) = mult(g, Post(s,t;m)) = 0;
and for the inhibitor that mult(g, I(s,t;m)) = co.

Note that this is rather like the convention adopted in section 7.9, that zero mul-
tiplicities are not shown for input and output arcs and that infinite multiplicities
for inhibitor arcs are not represented explicitly. (If all multiplicities for the pre
or post map are zero, then no arc is drawn, and similarly if all multiplicities
for the inhibitor map are infinite, then no inhibitor arc is drawn - it is just the
natural extension of this.)

8.5.2 Notation for Subsets of Product Sets

This section develops a notation for annotating reset arcs when C(s) is a product
set, G, and we wish to purge M(s) of all tokens in a subset of G. Let G =
G1 X ... X Gy, and represent an element of G by the tuple (g1,...,9,), where
i € G; are constants for ¢ € In where In = {1,...,n}.

The notation (g1,...,9,) may also represent the singleton set {(g1,...,9g.)}. The
notation # is introduced in position ¢ to indicate a subset of G where all values of
G; are included. Thus (g1,...,8i—1,*,gi+1,...,9n) Tepresents the subset {g1} x
oo X {gi-1} X Gi X {gi+1} X ... X {gn}. This may be generalised to allow a ‘’
to replace any constant, gx, in the tuple where {g;} is then replaced by G; to
obtain the subset. If all the constants are replaced by stars then the subset is
the original set G.

In general, given a tuple consisting of constants and stars, let G, C G, and
I, C In be the set of positions in which stars occur in the tuple. Then the subset
of G corresponding to the tuple notation is given by

G; = {(91,...,gn) |g,- S G.',z'EI*}.
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For C(s) = G1X...X Gy, it is convenient to use the above notation to indicate the
subset G,. For ¢ € In, a; ::= g;|*, we annotate a reset arc (s,t) by #(al,...,a,),
to indicate that all tokens of the subset G, (determined by the tuple (al,...,a,),
as above) are to be purged from place, s, on an occurrence of transition, ¢ (in
any mode).

For example, if the reset arc (s,t) is annotated by #(g1,...,9s), then the sub-
set of C(s) is the singleton G, = {(g1,-..,9s)}, and all instances of the token
(91, -.,9s) in M(s) would be purged on the occurrence of ¢. Similarly, for the re-
set arc annotation #(g1,...,8i-1, *,gi+1,...,9n), the subset is G, = {(g1,...,9x) |
gi € G}, so that any member of G, would be purged from M(s) on the occur-
rence of &.

To provide an interpretation of the P-Graph as a P-net, we need to obtain
the notation given in the previous section. This is done as follows. Replace
#(al,...,a,), on the reset arc (s,t), by a variable, v : uG,, where G, is deter-
mined by the tuple notation.

The advantage of the #-tuple notation, on the reset arc, is that it allows the
subset, G,, to be identified on the graph part of the P-Graph without having to
refer back to the declaration part.

8.6 Purging Partitions of Markings

Consider a partition of C(s)

C(s) = J{G,...,G*}
and for j € I = {1,...,k}, let D7 = uG/.
Define the colour set for transition, ¢, as follows.

C(t) = (UDj) x D'

where D' is as before.

Let D, = U; D?, then C(t) = D, x D'. For d € D,,d' € D', for all j € I and for
all ¢/ € G, the pre and inhibitor maps are given by, for all (d,d') € C(¢),
mult(g?,d) if d € D’

mult(gja Pre(s,t;(d,d"))) = { 0 otherwise

) mult(¢’,d) if d € D’
mault(g’, I(s,t; (d,d"))) = { 00 ( ) otherwise

Similar propositions to those of the previous section may now be stated.

Proposition 8.10 Given a P-net witht € T, s € S, g € C(s), C(s) =
W{G,...,G*}, for j € I, DI = puG?, C(t) = (U; D) x D' and Pre(s,t) as
above, then for & € D?, Am = (d?,d') € C(t), such that for any M(s) € uC(s),

mult(g,M(s)) ifge G’

mult(g, Pre(s,t; (dja d'))) = { 0 otherwise
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Proof: Essentially the same as that for proposition 8.8. For any M(s), consider
the subbag, SUB, where the multiplicities of all elements not in G’ are set to
zero and the others are as they were in M(s), i.e.

_ | mult(g,M(s)) fge G
mult(g, SUB) = { 0 otherwise
Now for all j € Ii, define d € pG’ where for all ¢ € G7, mult(g,d’) =
mult(g, SUB). Hence for d' € D',

. mult(g,d?) if ge GI
muli(g, Pre(s,t; (d,d'))) = { 0 (0. 4) otherwise

For g € G7, mult(g,d’) = mult(g, SUB) = mult(g, M(s)) and the proposition
follows immediately. O

We can now state that an occurrence of ¢ will purge a member of a partition of

C(s)-

Proposition 8.11 Given the P-net of proposition 8.10 with m € C(t) and
I(s,t;m) as defined above and Vm € C(t), Post(s,t;m) = @, then for d’ € D,
when t occurs in mode m = (d&,d') € C(t), place s is purged of all tokens in G7,
i.e.
, _Jo ifgeG?

mult(g, M'(s)) = { mult(g, M(s)) otherwise
Proof: Follows directly from proposition 8.9 on setting G, = G’ for any j € I,.
O

8.6.1 Graphical Representation

In the P-Graph, let D, = U; uG? be a carrier of the many-sorted algebra and
include a variable Y : D, in the signature. If we wish to purge place s of all

elements of any member of a partition of C(s) by an occurrence of transition ¢,
then for (s,t) € F and (s,t) € IF, set A(s,t) = IA(s,t) =Y.

The same default convention, regarding the mapping of the P-Graph to the P-
net, discussed in section 8.5.1, is adopted here.

8.6.2 Notation for Partitions of Product Sets

In a similar way to section 8.5.2, the aim here is to develop a notation for
annotating reset arcs when C/(s) is a product set, G, and we wish to purge M (s)
of all tokens in a subset of G, where this subset is a member of a partition of G.

For G = Gy X ... X Gy, consider a tuple of typed variables (vy,...,v,) where for
all ¢ € In, v; : Gi;. We may use this tuple (in conjunction with # - see below) as
notation to indicate a partition of G in which each element of G is a singleton
set member of the partition. If Part(G) denotes a partition of G, then

Part(G) = {{(91,..-,9n)} | 9 € Gi,i € In}.
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The * notation can now be used in the same way as in section 8.5.2. For example,
if v; is replaced by a star we obtain the notation (vy,...,vi_1, %, vi11,...,v,), with
the corresponding partition

Part(G’) = {{(gl,. .o ,g,,) I g; € G,'}, | g;i € Gj,j € In \ {1,}}

This may be extended to allow stars in any of the tuple positions. In general,
the corresponding partition is

Part(G) = {{(91,---,9n) | @ € Gi,l € L},| g; € Gj,5 € In\ L}

with I, as defined in 8.5.2. If stars are placed in every position the partition
reduces to the original set.

For C(s) = G1 X ... X Gy, We may replace the variable Y : D, annotating the
reset arc (s,t), by the above tuple notation preceeded by a # to indicate the
partition in the graph part. Two examples are

e If the annotation on the reset arc is #(vy,...,v,), then a generic member
of the partition is G = {(g1,...,9x)}-

o If the annotation on the reset arc is #(v1,. .., vi-1,%,Vi41,...,Vs), the tuple
now defines another partition determined by the notation defined above.

We may of course have a star in any of the positions of the tuple. (When there is

no partitioning of C(s), the corresponding notation, #(*, #, ..., *), corresponds
to Y, where Y : uC(s).)

'8.6.3 Example: Aborting a Broadcast

In concurrent systems design, situations often arise in which we wish to send
information to a list of destinations; for example broadcast protocols. Quite
often there is a mechanism for aborting, part-way through the broadcast. A
way of specifying this behaviour is to have a list of possible destinations for
each source. The broadcast is received by an arbitrary number of destinations
at a time (the destinations being chosen arbitrarily from the list), with the
destinations that have been serviced being transferred to a destinations-serviced
list. Aborts may occur at any stage. When an abort occurs from a particular
source, all the destinations that have been serviced (for that source) are removed
from the serviced list and reinstated on the original list.

A P-Graph specification of the management of the list is given in figure 8.4.
The list of destinations for each source is stored in place, pl, and the serviced
destinations in p2. Broadcasting occurs on firing 1 and aborts on the occurrence
of 2. When source a aborts, all tokens with a’s address in the first element of the
source-destination address pairs stored in p2 are removed from p2 and transferred
to pl. Thus on the occurrence of ¢2, the notation #(s,*) on the reset arc can be
read as, for a particular value of s, add1, remove all tokens in p2 with add! as
the first element of the pair. This then defines the multiset which is passed onto

pl.

The corresponding P-net has also been included to show how the P-Graph can
be interpreted. (Note that ID is an identity function.)
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P-Graph

Declarations

S: Finite set of source addresses

D: Finite set of destination addresses
Variables: s:S, d:D

(Replace #(s:*) by Y:USES I‘{(s:d) ] de D})
VseS, VdeD, K(pl;s,d) =1

VseS, VdeD, K(p2;s,d) =1

Mo(pl) =SxD

Mo(p2) = 0

Graph

#(s, %) #(s, %)
SxD tl SxD
pl <s,d> <s,d> - p2
P-Net

S = {p1,p2}
T = {t1,t2}

C = {SXD,Uqes #{(s,d) | d € D}}
C(p1) = C(p2) = SxD
C(t1) =SxD
C(t2) = Uses #{(s,d) | d € D}
- Pre(pl, t1) = Post(p2,t1) = ID:SxD—SxD
Pre(p2,t2) = Post(pl,t2)
Vm2 € C(t2),V(s,d)e SxD

mult((s,d), Pre(p2,t2; m2)) = mult((s,d), m2) if m2 € p{(s,d) |d € D}

0 otherwise
mult((s,d),m2) if m2 € u{(s,d)|de D
mult((s,d), I(p2,12;m2)) = s ((5:d), m2) otherwisl::{( )| }

Vm1l € C(t1), Pre(p2,tl;ml) = Post(pl,t1;ml1) =0

Vm2 € C(t2), Pre(pl,12; m2) = Post(p2,t2;m2) =0

Vml € C(t1),V(s,d)e SxD

mult((s,d), I{pl,t1;m1)) = oo

mult((s,d), I(p2,t1;m1)) = co

Vm2 € C(t2),V(s,d)€ SxD, mult((s,d), I(p1,t2; m1)) = oo
The capacities and initial markings are given in the P-Graph.

Figure 8.4: Aborts: Address List Management
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P-Graph

Declarations

A: finite non-empty set

B: finite non-empty set

C = Uaea{a} x p{(a,b) | b € B}
Variables: x:A, Y:U,ca #{(a,b) | b € B}
Va€A,VbeB, K (p2;a,b) = 1

Mo(pl) Q A

Mo(pZ) = AxB

Graph
A _t1 AxB

x,Y

P-Net

S = {p1,p2}

T = {t1}

C = {A,AXB,U.ea{a} x u{(a,b) | b € B}}

C(p1)=A

C(p2) = AxB

C(t1) = Usea{a} x u{(a,b) | b € B

Pre(pl,t1) = my : Usea{a} x p{(a,b) | b€ B} —A

where m; is the projection function for the first argument
Vml = (¢,d) € C(t1),V(a,b)e AxB

mult((a,b), Pre(p2, ¢1; (c, d))) = { mult((a,b),d) if d € p{(a,b) | b € B}

0 otherwise
mult((a,b),d) ifd e u{(a,b)|b e B
mult((a,b), 1(p2, 113 ¢, 4))) = | TH((@0)4) i€ uia,b) [be B}

Vml € C(t1),Va€A, mult(a, I(pl,t1;ml)) = co

Vml € C(t1), Post(pl,t1;ml) = Post(p2,t1;ml) =0
Va€A, K(pl;a) = o0

Va€A,VbeB, K(p2;a,b) = 1

Initial markings are given in the P-Graph.

Figure 8.5: Selecting a member of a partition for purging

8.6.4 Purging a Selected Partition Member

This section illustrates a notation for purging all elements of a member of a
partition of a place’s colour set, that occur in the place’s marking, where the
member of the partition is selected according to the marking of another place.

This situation arises in aborting broadcasts (see chapter 10, figure 10.8).
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Declarations

A: finite non-empty set

B: finite non-empty set
Variables: x:A
Va€A,VbeB, K(p2;a,b) =1
M,(p2) =AXB

Graph

A t1 AxB

pl( ) X | F#(x,* p2

Figure 8.6: A more readable representation for purging a selected member of a
partition

An example is shown in figure 8.5. The member of the partition of AxB that
is to be purged is determined by the value of the variable x annotating the arc
(p1,t1). Y is a variable which ranges over the sets of multisets over each of the
partition members. Without the transition condition, the colour set associated
with ¢1 would be C(t1) = A X U,ea #{(a,b) | b € B}. This would correspond to
any partition member being purged independently of the value of x. To ensure
that the partition selected does depend on the value of x, a transition condition
is used which restricts the colour set to

C(t1) = Useafa} x #{(a,) | b€ B}.

Although this representation does allow a direct translation from the P-Graph
to the P-net, it is rather difficult to understand. A more easily understood
graphical representation is shown in figure 8.6, where we have used the tuple
notation developed earlier in this section.

For acA, and x = a, we can read #(x,*) (associated with a reset arc) to mean:
purge all tokens in place p2 with the value ‘a’ in the first position of the pair, when
t1 occurs. In the declaration, we only declare the variables that are explicitly
represented in the P-Graph; in this case, x. To map back to the P-Graph in
figure 8.5, #(x,%) is replaced by the variable Y and appropriately declared as
Y:U.ca #{(a,b) | b € B}. The type of this variable is fully determined by the
#-tuple notation. The matching of the variable x in both arc inscriptions is used
to imply that the transition condition of figure 8.5 applies.

8.7 Purging Subsets of Partitions of Markings

The ideas of the last two sections may be generalised to allow for the purging of
a subset of a partition. Let
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C(s) = J{G%,...,G*}
as before and I, be a set of indices that index members of the partition included

in the subset, so that I, C Iy(= {1,2,...,k}). The set of occurrence modes for
transition, ¢, is then defined as

@) = (U D) x D
jel,
where D7 = pGi,
Let D, = U; D?, then C(t) = D, x D'. For d € D,,d' € D' and for all j € I,
¢’ € G7 the pre and inhibitor maps are given by for all (d,d') € C(t),

mult(g?,d) if j €I, and d € D’
0 otherwise

mult(g’, Pre(s,t; (d,d'))) = {

. mult(g’,d) if j € I, and d € D?
mult(g’, I(s,t; (d,d))) = { o0 ) otherwise

The propositions of section 8.6 apply when j € I,.

8.7.1 Graphical Representation

In the P-Graph, let D, = U;¢s, #G’ be a carrier of the many-sorted algebra and
include a variable Y : D, in the signature. To purge place s of all elements of
any member of a subset of a partition of C(s) by an occurrence of transition ¢,
then for (s,t) € F and (s,t) € IF, set A(s,t) = [A(s,t) =Y.

8.7.2 Notation for Subsets of Partitions of Product Sets

We can combine the notation developed in sections 8.5.2 and 8.6.2 to obtain a
tuple notation consisting of constants, variables and stars to represent subsets
of partitions of product sets. With G, g;, v; and 7 € In as previously defined we
consider two situations.

The tuple (g1,...,8i-1,%i,9i+1,- - - ,gn) Tepresents a subset of the partition where
all positions have variables. The subset is

{{(g1,-..,94)} | 9 € Gi}.

We can genefalise this for variables in any number of positions. Let I, C In be
the set of positions in which variables occur, then the subset is

{{(g1---,9n)} | 95 € Gj,j € L}.

When I, = In we have the notation described in section 8.6.2, where all positions
of the tuple are occupied by variables.
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A complete notation is now obtained by allowing stars to occur in any position.
Let I. C In be the set of positions in which stars occur. The subset of partitions
described above (see section 8.6.2) when using stars and variables is

{{(g1,---:92) | @€ Gi,l € L} | g; € Gj,5 € L}
Of course, I, and I, must be disjoint.

For example, the tuple (g1,...,i—1,%i;Gi+1s--+»Gk—1,%,Gk+15---,gn) I€presents
the following subset of a partition defined above (see section 8.6.2) with all
variables in the tuple except for a star at position k.

{{(g1s-.-,9n) | 9 € G} | 9: € G:}

As before, when C(s) is a product set, we can use this notation, preceeded by
a #, to replace the variable Y : D, annotating a reset arc (s,t) to indicate the
subset of the partition on the graph form. An example is

A(s,t) = IA(s,t) = #(3,b,%)

where C(s) = Ng X Bool x N with b : Bool a Boolean variable and for n € N,
N, ={0,1,...,n — 1}. This can be read as: on an occurrence of ¢, where b is
bound to true, remove all tokens of the form (3,true, —) from place s. We could
also have an occurrence of ¢ where b is bound to false, in which case all tokens
of the form (3, false,—) would be removed from place s.

8.8 Discussion

This chapter has investigated the semantics of purging places for high-level nets.
The basic idea is very simple, but the theory is quite complicated. If we think
at the level of P/T-systems with threshold inhibitors, then we need a transition
for every possible marking of the place we wish to purge. In general, for an
infinite colour set associated with the place, the number of transitions would
be uncountable (the cardinality of the set of multisets over an infinite set is
uncountable). If we restrict the colour set to being finite, then the number of
transitions (transition modes in the high-level net) becomes countably infinite.
This of course has consequences for analysis (which are not investigated here).

Fortunately, in most practical situations, not only do we deal with finite sets,
but also with finite resources so that places that we wish to purge will have a
finite capacity. In this case, the number of underlying transitions required for
purging is finite and we can always translate the P-nets to CP-nets for analysis.

Proposition 8.3 ensures that P-nets that only use inhibitors for resetting will
always satisfy condition 1 of theorem 6.4. Hence only condition 2 will need to
be checked to see if the transformation from P-nets to CP-nets will preserve
concurrency.

An attempt has been made to provide an intuitively appealing syntax for purging
a place of all elements of a member of (a subset of) a partition of a place’s
colour set when it is a product. This is based on a modification of the use of
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tuples annotating arcs, similar to that of PrT-nets. Care has also been taken
to provide a semantics for this notation in terms of P-nets. This work is not
complete. In the example of selecting a partition member to be purged (section
8.6.4), the meaning in terms of a P-net for the particular example is given, but
the procedure for mapping from the P-Graph with the # syntax to that without
it is only discussed informally.
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Part III

Application to Specification
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Chapter 9

Communications Examples

9.1 Queues

Queues are important data structures in communications. For example they are
often used when defining service specifications. This section illustrates how the
P-Graph can be used to model queues, by taking the First-In-First-Out (FIFO)
and Last-In-First-Out (LIFO) queues as examples.

We can use a place to store the queue (or a set of queues) and the occurrence
of associated transitions to manipulate the queue. The terms annotating the
arcs will then determine the service discipline of the queue. For FIFO and LIFO
queues we need to record the order of arrival of items joining the queue. Let
the set of possible items that can join the queue be A. We can record order
by forming the set of strings, A*, over A, and use this as our colour set for the
queueing place. Thus for a place, s, representing a queue or set of queues, let
C(s) = A*, so that a token represents a queue.

We shall denote the empty string by € and the set of strings over A of length no
more than n by A™.

9.1.1 Functions

We define two functions that will be generally useful for the specification of
queueing systems.

Concatenation: A binary function on strings which appends one string to the
tail of another.
AKX A — A

where fori =1,...,75,a; € A, let  =@a1a;...a;;and for: = 1,...,k, b; € A, let
Yy = biby...b; then z,y € A*, and z.y = ayaz...a;b1bs ... by.

We use the convention that the first letter of the string is on the left and the last
on the right.

Word Length: A unary function returning the length of a string.

WL:A* — N
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where for z = a4, ... a,, WL(z) = n. It will be convenient to use outfix notation
|z| for W L(z).

9.1.2 Predicates

A number of predicates on strings can be used in transition conditions. We
discuss a few here, although they are not illustrated further in our FIFO and
LIFO examples.

We may need predicates for string lengths. For this, the standard binary pred-
icates less than <, less than or equal to <, equals =, not equals #, greater
than > and greater than or equal to > are useful. For example |z| < n, where
T € A*,n € N7, to restrict a queue size or |z| = n to select strings of length n.

Other predicates like ¢s a prefiz of or ts a letter of will be useful (see [66]) but
are not illustrated here.

9.1.3 Examples

FIFO Queues

FIFO queues are important models for communications services and protocols as
they are a convenient way of representing sequence preservation. Let us firstly
consider an unbounded FIFO queue.

The queue is specified in the P-Graph of figure 9.1 along with its corresponding
P-net. The place FIFO stores the items of the queue as a string. Transition
AF (Add to FIFO) adds items of type A to the tail of the queue, whereas SF
(Serve FIFO) removes the head of the queue. The concatenation operator has
been defined above (section 9.1.1).

We now consider a bounded FIFO queue of length n as shown in figure 9.2. The
addition of items to the queue is restricted by the typing of ¢ to sequences of
length less than n (|q| < n). Since |z| = 1, this ensures that the queue size never
exceeds its bound, n. If M(FIFO) = s and |s| = n, then AF is not enabled. In
this case, an item must be served (SF must occur) before another item can join
the queue.

In an application, A may be the union of a number of product sets, which will
allow items to be structured. We may also index queues by setting C(FIFO) =
J x A* where J is a set of indices, which could also be a product set. This will
be useful in the specification of protocol services.

The above representations have the problem that they require interleaving of en-
queueing and dequeueing, whereas these actions are inherently concurrent (unless
the queue is full or empty).

Where it is important that enqueueing and dequeueing are concurrent, the FIFO
queue can be represented as a circular buffer with pointers to the head and tail
of the queue. This representation is not as abstract and is at the level of an
implementation. The costs are in the complexity of the representation (you need

137




P-Graph

Declarations

A: Set of Queue Items

A¥*: Set of strings over A

e: Empty string

z:A,q: A*

‘> binary string concatenation operator

My(FIFO) = {¢}

AF FIFO SF
TR G
gz \__/ g
A*
P-Net
S = {FIFO}
T = {AF,SF}
C = {A* A x A*}
C(FIFO) = A*

C(AF) = C(SF) = A x A*

Vz € A,Vq € A*, Pre(FIFO, AF;(z,q)) =¢
Vz € A,Vq € A*, Pre(FIFO,SF;(z,q)) = z.q
Vz € A,Vq € A*, Post(FIFO, AF;(z,q)) = q.z
Vz € A,Vq € A*, Post(FIFO,SF;(z,q)) = ¢

Vg € A*, K(FIFO;q) = oo
M,(FIFO) = {c}

Figure 9.1: Unbounded FIFO Queue

138



P-Graph

P-Net

Declarations

A: Set of Queue Items

A™: Set of strings over A, length <n
e: Empty string

z:A,q: AP+

‘.’ binary string concatenation operator
My(FIFO) = {¢}

AF FIFO SF
_ q . 4q
! _ »
gr \_/ =zg
An*
5 = {FIFO}
T = {AF,SF}

C={A™ A x A1}
C(FIFO) = A™
C(AF) =C(SF) = A x A1)

x’
z’
Vz € A,Vg € A2 Post(FIFO, AF; (z
Vz € A,Vg € A1 Post(FIFO,SF;(z
Vs € A™,K(FIFO;s) = oo

M,(FIFO) = {¢}

Figure 9.2: Bounded FIFO Queue
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Declarations

A: Set of Queue Items
N, ={0,1,...,n—1},n € N*

t:Npy,z: A
@ : N, X N, — N, modulo n addition
My(FIFO) =0

Mo(PT) = My(PH) = {0}

PT PH
O Nn O Nn
'y Iy
<1 1> |<i> 1D 1> |<i>
] FIFO ,

Y

(N
AF <i,T> 'U <t, > SF

Figure 9.3: Concurrent Bounded FIFO Queue

to keep track of the values of the pointers) and in the increase in the number of
states. The situation is depicted in figure 9.3. This example illustrates the use
of the total capacity notation, K* = n, to bound the queue.

LIFO Queue

The Last-In-First-Out queue or stack is the same as the FIFO queue except that
items are added to the head (instead of the tail) of the queue. Thus the pre map
for serving is the same as the post map for adding and vice versa. A P-Graph for
the bounded LIFO queue is shown in figure 9.4. Transition AL (Add-to-LIFO)
adds items to the head of the queue and transition SL (Serve-LIFO) removes
items from its head.

With LIFO queues there is contention between adding items to the queue and
removing them. Thus it is important that these activities are in conflict, which
is the case in figure 9.4. We could build a model of the LIFO that did not involve
sequences of items as tokens, but single items as tokens. In this case we would
need to have a pointer to the head of the queue, with mutually exclusive access
to it for adding and removing. This has the disadvantage of having to store the
value of the pointer and leads to a less abstract description.
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Declarations

A: Set of Queue Items :
A™: Set of strings over A, length <

e: Empty string

T:A,q: AlrD

‘> binary string concatenation operator
My(FIFO) = {¢}

AL LIFO SL

Figure 9.4: Bounded LIFO Queue

9.2 Demon Game

In this section a small example is presented that is being used as a test case
for formal methods being developed in ISO and CCITT with application to
Open Systems Interconnection protocols and services. The example is called the
Demon (Daemon) Game [4].

The following provides a description of the demon game which is slightly more
abstract than the narrative description in [4] in that no assumption is made
regarding communication. Thus there is no reference to the use of ‘signals’, as
this is considered to be prejudicing an implementation. It is believed that the
spirit of the game is still the same!

9.2.1 Narrative Description

Consider a system in which there lurks a demon which generates bumps; the
number of bumps not being directly observable from outside the system. The
aim of the game is to guess when there has been an odd number of bumps
generated. The demon informs a player of the outcome of the guess: either win or
lose corresponding to there being an odd or even number of bumps respectively,
at the time of the guess. The demon keeps a score which is initially zero. It is
incremented by one for a successful guess and decremented by one if unsuccessful.
A player can request his score at any time and the result will be returned by the
demon.

The game can be played by several players. Before starting a game, a player must
log-in. A unique identifier is allocated to a player on logging-in and deallocated
on logging-out.

141




9.2.2 MAN Specification

The Demon Game can be specified using a (strongly-typed) many-sorted alge-
braic net. It illustrates the use of simple many-sorted unary operators. The game
can be specified by 4 places and 5 transitions with their associated inscribed arcs
and is given in figure 9.5.

The top two transitions and associated arcs and places specify the behaviour of
players logging-in and logging-out. The next two transitions specify how to play
the game (guessing the state of the demon’s bumps and requesting the cumulative
score) and the bottom transition specifies the bumping of the demon.

The convention of double-headed arcs described in section 7.5.4 is used. That
is, if the annotation of the arcs associated with the same place and transition
are the same (A(s,t) = A(Z,s)), then both the arcs and the annotations are
superimposed, producing a singly annotated arc with an arrowhead at both ends.
For example, see f1 = (Scores,Request) and f2 = (Request,Scores) in figure 9.5,
where A(f1) = A(f2) = <z,s>.

Information about players is represented as a triple comprising: an identifier; the
outcome of a guess (including initially the null outcome denoting that no guess
has yet been made); and a score. This state information is stored as the marking
of place Players. Unused identifiers are stored in place IDs; players’ scores in
Scores; and the state of the demon’s bumps in Bump-state.

Initially, there are no players (place Players is empty); no scores (place Scores is
empty); all identifiers are available (place IDs is marked with the complete set
of identifiers I); and the demon has not begun to bump. As far as the game is
concerned, it is only important to model the state of the bumps as even or odd;
there is no need to count the actual number of bumps. Thus initially there is an
even number (zero) of bumps, represented by place Bumps being marked with
the token even.

On logging-in (transition Login), a player’s state and score is initialised, and
his identifier is removed from the unused identifier list. He may now make a
guess (transition Guess) whereupon his score is updated and he is informed
of the outcome. He may also request his score (transition Request) or logout
(transition Logout) with his identifier being returned to the unused list and all
information about him being destroyed. The demon bumps whenever it wishes.

9.2.3 Concurrency, Conflict and Interleaving

The bumping is arbitrarily interleaved with players making guesses (a conflict).
Similarly, after logging-in, a player may (non-deterministically) make a guess;
request his score; or logout (another conflict). This interleaving behaviour is
an essential part of the design. For example, it makes no sense to be able to
logout and request the score simultaneously. It also makes no sense to guess and
bump at the same time or to guess and request the score simultaneously. These
situations are naturally in conflict and require interleaving of these events.
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Declarations

Set of Player Identifiers:I

Set of Game States:G = {win,lose,null}
State of Bumps:B = {even,odd}

Set of Integers:Z

Variables b:B; i:I; g:G; s,r:Z

Functions

Complement —:B—B where

évenn = odd and odd = even
Score S:B— {—1,1} where

S(even) = —1 and S(odd) = 1
Outcome O:B—G where

O(even) = lose and O(odd) = win
Mo(IDs) = I

Mjy(Scores) =0

My (Players) = 0

My(Bumps) = even

Graph
Login
<i>
<i,0 I IDs <i,null,0>
IxZ <] Logout IXG X7
Scores <182 > <LET> Players
A <i,s> <i,g,r> 4
Request
<1,g8,8>
<i,s+S(b)> <i,0(b),r>
<i,s> <i,g,r>
Guess
- /
<b>
B Bump-state
<b>| |<b>
Bump

Figure 9.5: MAN Specification of Demon Game
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On the other hand, for a particular player, the events of requesting a score or
logging in or out, are independent of the demon bumping. Hence transitions
Login and Bump; Logout and Bump; and Request and Bump are concurrent.

We would also expect that all players would act independently of one another and
this is mostly the case. Any number of players may login, logout or request their
scores concurrently but are limited to interleaving when making guesses. Here we
have made the assumption that ‘read access’ to the bump-state is exclusive. This
is not essential and it is valuable to delay such decisions to the implementation
phase.

This limitation may be overcome by making copies of the Bump-state, and re-
moving all the old ones when the demon bumps (transition Bump). Let us assume
that there can be n simultaneous accesses to the bump-state, where n € N*, then
setting A(Bump-state, Bump) = n <b> and A(Bump, Bump-state) = n <b>
achieves the desired specification. Bump and Guess are still in conflict, but
Guess may occur concurrently with itself limited by n and the number of players
logged-on.

These more subtle parts of the design could easily be glossed over with a tech-
nique based on interleaving semantics. With an interleaving model, the imple-
menter could be unaware of which parts of the specification were intentionally
in conflict and which could be concurrent. Also, the need to specify the number
of simultaneous accesses to a resource could be overlooked.
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Chapter 10

Cambridge Fast Ring Service
Specification

This chapter provides a detailed case study of the use of the P-Graph to specify
the service provided by the hardware of the Cambridge Fast Ring (CFR) net-
working system [78]. The chapter only provides the details of the operation of
the CFR that are necessary for the specification. Further details concerning the
CFR and relevant protocol architectures can be found in [78,45,44].

The CFR was chosen as the case study for several reasons:

o the service it provides is considered to be reasonably representative of local
area and metropolitan area networks;

e it allows the consideration of both point-to-point and broadcast modes;

e it allows for a variety of behaviours including the possibility of messages
being lost, out of sequence, and duplicated;

e there was expertise available locally to clarify the intention of the service
envisaged for the CFR;

e no previous attempt had been made to provide a formal specification of
the service;

o at the time it appeared that it may be useful for the development of the
protocols to be used above the basic CFR service;

o the service is simple enough for it to be investigated in some detail without
it becoming the major work of the thesis.

An earlier version of this specification has recently been published by the author
[26]. This chapter updates that work using P-Graphs instead of Numerical Petri
Nets.
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Data Link (IEEE 802)
M-Segment

M-Access

Physical

Figure 10.1: Lower Layer Protocol Architectures for the CFR

10.1 Introduction

The Cambridge Fast Ring (CFR) networking system [78] consists of a cluster of
CFRs interconnected by bridges. The CFR is a slotted ring designed during the
early 1980s to provide a raw 100 MBit/s transmission speed and to substantially
increase the bandwidth between point-to-point users. Hardware for the stations,
the monitor and bridges for the Cambridge Fast Ring has recently been fabricated
in VLSI. The hardware implements the low level protocols between the various
distributed components. The task of designing a set of protocols above the basic
hardware to provide application services is underway.

An initial draft of the protocol architectures for the CFR has been compiled in
[45], where it is shown that different architectures can co-exist above the basic
service provided by the CFR hardware. This service is known as the M-Access
Service and has been defined in [44]. The protocol architecture is shown in
figure 10.1. The lower two layers correspond to the CFR hardware. On the
left side is the lowest layer of the Unison architecture that is supported by the
CFR, the Unison Data Link Layer. On the right side are the lower layers of an
architecture that can support the IEEE 802 and Open Systems Interconnection
protocols. The M-Segment layer bridges the gap between the standard Media
Access Control (MAC) Service of IEEE 802 and the CFR’s M-Access Service.
Thus M-Segment and M-Access together provide the MAC service over which
the Logical Link Control protocol can be implemented.

The following benefits would accrue from providing an appropriate formal de-
scription of the service.

e Ambiguities that arise in narrative descriptions would be removed.

e The formal model could be executed to investigate properties of the service,
such as global sequences of service primitives.
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¢ The model can provide the basis for the development or synthesis of pro-
tocols to be implemented above the M-Access Service, such as the Unison
Data Link Protocol [133].

o The model provides the basis for the verification of such protocols once
specified.

The chapter is structured as follows. Section 10.2 describes the M-Access Service
based on [44] and [78] and discusses some of the assumptions made about the
operation of the CFR. Section 10.3 presents the P-Graph specifications and var-
ious specification issues are discussed in section 10.4. The final section provides
some conclusions.

10.2 CFR M-Access Service

10.2.1 Terminology

In this chapter we shall use the term packet to refer to a CFR packet as defined
in [78]. The CFR packet includes a Cyclic Redundancy Check (CRC) to detect
transmission errors. The term M-Access Service Data Unit (M-SDU) will be used
to describe data that is transparently exchanged between users of the M-Access
Service.

10.2.2 TFeatures of M-Access

A draft description of the M-Access Service is given in [44]. The service provides
an abstract view of the features of a ring cluster: a set of rings interconnected
by gateways. The main concern of the M-Access Service is to transfer messages
between hosts connected to the CFR. From a user’s perspective the ring cluster
provides the following facilities:

e Error protected communications paths;
o Fixed slots of 32 octets in which to transmit messages (i.e. user data);

e A routing mechanism by which slots can be routed to their destinations,
given that a 16-bit address is provided by the user.

e Two types of communication service:

1. Point-to-point, where the address indicates the particular destination;
and

2. Broadcast, where a special address (hex FFFF) indicates that the
message is to be broadcast to all other stations on the ring cluster.

Some buffering comprising a single transmit buffer and a single receive
buffer per host and a large number of buffers in bridges (gateways) for
smoothing traffic.
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e The communications path has the following characteristics

1. M-SDUs may be lost
2. M-SDUs may be duplicated (this is a rare event, but possible)

3. M-SDUs may not be sequenced (this can only happen in an inter-
connected ring cluster where there is the possibility of two (or more)
paths from source to destination).

10.2.3 Service Primitives

In the style of Open Systems Interconnection, service primitives define the com-
munication between the users and the provider of a communications service in
terms of

e what is to be transferred across the interface - this is defined by a set of
parameters associated with the service primitive and the service primitive

type.

e the allowable sequences of service primitives both at a local interface and
globally.

e the relationships between the service primitives at each of the interfaces.

The service specification is provided at an abstract level in order to avoid over-
specification of the interface between the user and provider.

In the M-Access Service, two service primitives are defined:

e M-DATA request
e M-DATA indication

M-DATA request

This primitive is invoked to initiate the sending of data from one service user to
another service user (for point-to-point operation) or to all other service users
(broadcast). The primitive therefore has 3 essential information types: the source
address; the destination address; and the data to be transferred. (These param-
eters comprise a M-Access Service Data Unit). The primitive and its associated
parameters are represented, as usual, by the following notation:

M-DATA request(source-CFR-address, destination-CFR-address, M-data)

In [44], two further parameters are defined: retry-control and transmit-status.
The retry control parameter is a boolean indicating whether or not retries are
allowed by the transmitter of a CFR station (as a mechanism for recovery from
lost packets). If retries are not allowed, then the service cannot duplicate M-
SDUs. We shall model the retry-control parameter at a higher level of abstraction
(perhaps more appropriate for a service specification as retry-control does not
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involve both users (or all users in broadcast mode)), where we shall allow the
service provider to choose any number of retries non-deterministically. Hence
any number of retries (including zero) would be allowable in a realisation of the
service, and user control of this number on a per M-SDU basis would also be a
possibility.

We argue here that the transmit status parameter should be removed from the M-
DATA request primitive, as the return of its value cannot be considered atomic
with the transfer of data from user to provider. This is important from the
point of view of defining sequences of service primitives. If a value of transmst-
status needs to be determined before the M-DATA request can occur, then the
corresponding M-DATA indication may have occurred before it! The present
time-sequence diagrams [44] quite rightly deny this possibility - so we have a
problem. This may be solved by creating a separate TRANSMIT-STATUS in-
dication primitive. This primitive will only occur at a local interface (no global
significance) and is normally excluded from service definitions, however, it ap-
pears useful to include it in a simplified form as discussed below.

M-DATA indication

This primitive is invoked to receive data sent by a sending user. It complements
the M-DATA request primitive. The receiving user has completed the receipt of
all the data when the primitive occurs.

The primitive has the same set of parameters as the M-DATA request primitivé.
M-DATA indication(source-CFR-address, destination-CFR-address, M-data)

These parameters have the same values as those in the corresponding M-DATA
request primitive. (Note: we are not considering address mapping required in
multi-cluster configurations. They have also not been considered in [44].)

M-TOG indication

The CFR hardware has the capability of telling a user of the M-Access Service
that a transmission of a packet has not succeeded (i.e. the number of retries has
been exhausted without a positive acknowledgement). This signal is known as
“Thrown-on-Ground’ or TOG for short. A TOG will normally indicate that the
receiver is busy. The effect of the TOG is to discard the packet. The user then has
the option of retrying the same M-SDU, accepting the loss, or trying another
M-SDU to a different destination before retrying sometime later. Hence the
TOG signal has important consequences for the way in which the user behaves.
It appears to be useful at the service level to explicitly define a primitive to
express this characteristic of the service, as a form of notification service. A
possible parameterless primitive would be: M-TOG indication, indicating that
the current packet is considered lost by the service provider.
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10.2.4 Sequences of Service Primitives
Point-to-Point

The sequences of primitives are partially determined by the time-sequence dia-
grams in [44]. For a particular source-destination pair, the M-DATA indication
(at the destination) either follows the corresponding M-DATA request (at the
source), or it does not occur at all. What is not covered in [44] is a statement
as to how much buffering will be allowed, i.e. how many M-DATA requests can
occur, before a M-DATA indication must occur in the case where there is no loss?
This is obviously implementation-dependent and an implementation-independent
specification must allow for the choice to be arbitrary.

Other important points are that duplicates are possible (although rare) and that
the medium does not preserve sequence (but only in CFR clusters where there
are multiple paths between source and destination).

Now that we have introduced the M-TOG indication, its affect on the allowable
sequences of primitives will need to be defined. This will be done in the formal
specification.

Broadcast

The sequences of primitives for a successful broadcast are partially given by the
time sequence diagrams in [44]. There are a number of questions that need
to be discussed here. The set of M-DATA indications that may arise from a
broadcast must occur (if at all) after the originating M-DATA request. However,
nothing is stated regarding the sequences of occurrences of the resulting M-
DATA indications. This will depend on the ring topology, the delays through
the receiver, whether or not the receiver is busy and whether or not retries
are allowed when broadcasting. Retries (and hence duplicates) can occur if the
source station does not receive its own broadcast because it is busy receiving
another packet for example. If no retries are allowed, then the medium cannot
duplicate packets (and hence M-SDUs). Out of sequence messages are still a
possibility. A reasonable abstraction may be to assume that the occurrences
of M-DATA indications are not ordered across the different receiving stations.
Although it is possible that M-DATA indications will occur in the order that
stations are encountered on the ring, this cannot be guaranteed, due to M-SDUs
being flow controlled across the M-Access interface.

[44] appears to suggest that if any M-SDU is lost, all are lost. It is possible
however, that a number of stations could receive a packet, while others do not. A
M-DATA indication need not occur due to the receiver being busy or because of a
transmission error (or other reasons). It appears reasonable to abstract from the
ring topology and assume that loss by a particular station is independent of its
position on the ring, even though loss due to a corrupted packet would imply that
all further destinations on the ring concerned would discard the packet (except
in the unlikely event of a packet’s CRC being made good due to noise). Because
packets can be lost due to the receiver being busy, this position-independence
assumption for loss is required as the most general case.
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The use of M-TOG indication in broadcast mode is rather problematic. The
broadcast protocol appears to work in the following way. A broadcast is initiated
by a source by setting the destination address to all ones. If other stations on
the CFR are willing to accept packets from the source of the broadcast, they
will do so if they are not busy. On detecting that it is a broadcast packet, the
CRC is not changed. If the CRC is bad, the packet is not received, but continues
on its way around the ring. If the CRC is good the packet is received and sent
on its way, again with the same CRC (good). If the sender receives back the
broadcast packet with a good CRC, it notes that it is a broadcast packet and no
retransmissions are initiated. Hence no TOG will occur. Of course, the broadcast
may well have failed to be received by many stations that were busy at the time.

It is possible, however, on a multislot ring, that the sender of the broadcast
packet is busy receiving another packet when its broadcast packet returns. In
this case, no signal is sent from the receiver to indicate that it was a broadcast
packet from itself, and it is treated like a normal packet. The good CRC will
indicate that the packet has not been received and should be retransmitted.
This could cause a string of duplicate broadcast messages to be received until
the retry limit is exceeded. At this stage a TOG signal occurs. The user will
find it difficult to use the TOG in any sensible way, as its interpretation can be
that any number of the destinations have received the packet and any number
of duplicates. It appears to be advisable for the TOG signal to be ignored when
broadcast mode is used. Hence, at the service level, the M-TOG indication will
not occur.

10.2.5 List of Assumptions

This section summarises the assumptions that have been discussed above.

Point-to-point

1. A M-DATA request must have preceded the occurrence of a corresponding
M-DATA indication.

2. The parameters associated with the M-DATA indication are identical to
those of the corresponding M-DATA request.

3. Duplication is possible, but only if retries are allowed.
4. In ring clusters, sequencing is not maintained in general.

5. Single M-SDU buffering occurs in the transmitter and receiver of a station
in the current CFR implementation. There will also be buffering in any
bridges.

6. Loss of M-SDUs is possible and handled in two ways:

e reported to a user in an M-TOG indication if a retry limit is exceeded;
but

e otherwise not reported to the user.
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Broadcast

1. A M-DATA request must have preceded the occurrence of a corresponding
M-DATA indication.

2. The parameters associated with the broadcast set of M-DATA indications
are identical to those of the originating M-DATA request.

3. Loss of M-SDUs is possible. In general it does not depend on the position
of the station on the ring. It is not reported to the user.

4. Duplication is probable on multislotted rings, if retries are allowed.

5. Occurrences of M-DATA indications are not ordered across destination
stations.

6. In general misordering is possible.
7. Same buffering as for point-to-point.

8. M-TOG indications do not occur.

10.3 Formal Specification

In this section we will specify various characteristics of the M-Access Service with
the P-Graph. The following aspects will be investigated for both Point-to-Point
and Broadcast operation.

1. An arbitrary cluster of rings, with unlimited storage.

2. A single CFR with a single M-SDU buffer for sending and a single M-
SDU buffer for receiving in each of its stations, corresponding to the CFR
implementation.

10.3.1 General Comments

The aim of this section is to start with the most general M-Access Service that
may be envisaged and then to refine it towards the actual Cambridge Fast Ring
Architecture. It will be assumed that there can be an arbitrary number of
stations communicating over the service, where the number is limited by the
Source Address space.

10.3.2 Abstracting from CFR slots

At the top level of abstraction we shall assume that any station can access the
CFR simultaneously with any other station. This implies no contention over
slots. (In a more detailed specification the slot contention could be modelled.)
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Figure 10.2: Means/Activity Net of CFR M-Access Service
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10.3.3 Abstracting from Ring Topology

We shall also abstract from the ring topology by assuming that the service is
independent of the positions of the stations around the ring. For ring clusters we
shall also assume that the service is independent of the ring to which a station is
attached. For example, a station on ring 5 communicating with another station
on ring 1 will be treated as identical to stations communicating on the same ring.
This is the general case for the CFR and CFR clusters when considering possible
global sequences of service primitives as there can be arbitrary delays caused by
a receiving station being busy.

10.3.4 Structure

Because CFR stations are built from identical chips, the sending (and receiving)
operations in each of the stations are the same. We therefore only need to
model a generic sender communicating over the ring with a generic receiver,
each parameterised by the station address.

The structure of the CFR M-Access Service is given in figure 10.2. “Sender
Activities” and “Receiver Activities” involve the invocation of service primitives
associated with sending and receiving data, respectively. The resources are the
M-SDUs that are in transit from sender to receiver. It is assumed that M-SDUs
are available for the sender and that they are forwarded on to the destination
user. Hence the sender produces M-SDUs (via the occurrence of M-DATA re-
quests) but its activity can also be affected by M-SDUs (stimulating the occur-
rence of an M-TOG indication). The action of receiving an M-SDU (M-DATA
indication) requires the presence of an M-SDU in transit and in general removes

the M-SDU.

10.3.5 Specification of a CFR Cluster

Implicit Interaction with Users

The Means/Activity Net of figure 10.2 may be refined into a general M-Access
Service where the dynamics are specified by the P-Graph of figure 10.3. Implicit
interaction with the M-Access Service Users is modelled by the occurrence of
service primitives. Explicit interaction with M-Access Service Users is considered
in the next section. Service primitives associated with sending are drawn on the

153



Declarations

Sets: S (Source Addresses), D (Destination Addresses), M (User Messages)
D' = D\{b} where b is the Broadcast Address, b € D

Variables: s:S, d:D, d":D', m:M

Initial Marking: Mo(SP-storage) = 0

M-TOG indication

n

<s,d,m> \J <s,d,m>

M-DATA request M-DATA indication

<s,d,m>

REMOVE

Figure 10.3: Top Level P-Graph of CFR M—Accesé Service

left side of the diagram, those associated with describing the channel between the
sender and receiver are drawn in the centre and those associated with receiving
on the right.

The P-Graph comprises four transitions and one place. Three of the transitions
model the three service primitives, while the forth models removal of M-SDUs
that is not reported to a user. The place ‘SP-storage’ (Service Provider storage)
models an unbounded number of buffers in the service provider and may be
regarded as a queue where the item to be served is chosen arbitrarily. ‘SP-storage’
has a colour set that is the cartesian product of the set of source addresses, S; the
set of destination addresses, D; and the set of possible messages, M; and hence
may store tokens that are triples. The double-headed arc notation of section
7.5.4 is used.

The following properties of the service provider are modelled.
e Addresses and Messages. S, the set of source addresses, consists of strings

of bits of length 16, where a bit € {0,1}, but it excludes the string of
16 zeros, reserved for the monitor address, m, and the string of 16 ones,
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reserved for the broadcast address, b. D, the set of destination addresses,
comprises all strings of bits of length 16. D' is the set of (real) destination
addresses and hence is the same as D without the broadcast address (D' =
D\{b}). M, the set of user data messages, are strings of bits of length 256.

M-SDUs. M-SDUs are modelled as tokens placed in ‘SP-storage’ (i.e. M-
SDU € SxDxM).

Service Primitive Parameters. Arc inscriptions consist of triples (either
(s,d,m) or (s,d',m)) of variables that are typed appropriately in the decla-
ration of the P-Graph. (We assume that tupling is performed by a primitive
operator that does not need to be defined explicitly in the signature.) s: S
represents the source-cfr-address parameter and similarly d:D and m:M
represent the destination-cfr-address and M-data parameters respectively
of the M-DATA primitives. d':D’ also represents the destination-cfr-address
parameter. -

Service Primitive Occurrences. The occurrences of the service primitives
M-DATA request, M-DATA indication and M-TOG indication are mod-
elled by the firing of the transitions labelled with the corresponding names.
The station at which the service primitive occurs is determined by the
address variables in the associated M-SDUs. The M-DATA request and
M-TOG indication primitives occur at the source address of the associated
M-SDU and similarly the M-DATA indication primitive occurs at the des-
tination address of its associated M-SDU. The occurrence of the M-TOG
indication indicates to the source user that the provider has discarded the
M-SDU and believes that it has not been delivered to its destination.

Arbitrary Number of Buffers within the service provider. In order to allow
any amount of storage in the M-Access Service Provider, it is necessary
to allow the place ‘SP-storage’ to be unbounded or to have a finite but
indeterminate capacity. We have modelled the unbounded case here as it
is easier to represent. This allows a particular implementation to have any
number of buffers and still conform to the Service Specification.

M-SDU Sequencing: The place ‘SP-storage’ allows arbitrary overtaking of
an M-SDU by another M-SDU and hence models the “non-sequence pre-
serving” nature of the service. Note that FIFO order is also a possibility.
(If we exclude the possibility of multiple paths between source and des-
tination stations, then FIFO order is preserved. This may be modelled
by typing ‘SP-storage’ with a set of FIFO queues, one for each source-
destination pair and changing the arcs and their inscriptions accordingly
using the ideas for FIFO queues presented in chapter 9.)

Arbitrary Loss: Loss not reported to the service user is modelled by the
occurrence of the “REMOVE” transition. The REMOVE transition serves
two purposes. It indicates genuine loss (as already mentioned) but it is
also used to remove an M-SDU from the service provider after it has been
delivered to the receiver, as described in the next two items.
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e Normal Transfer: M-SDUs are placed in ‘SP-storage’ on the occurrence of
an M-DATA request. The values for the parameters are chosen arbitrarily
from the domains of the variables. Any number of M-DATA requests may
occur, initiated by any station and destined for any station. So long as
there is an M-SDU in ‘SP-storage’, an M-DATA indication may occur.
The M-SDU is retained to allow for possible duplication or for broadcast
(see below). Normal transfer is modelled by the occurrence of the M-DATA
indication transition followed by the occurrence of the REMOVE transition

for the same M-SDU, without any intervening occurrence of another M-
DATA indication for the same M-SDU.

. o Hate List and Select Register: The possibility exists for a destination not
to receive M-SDUs from a source on the hate list or when the receiver uses
the select register. The hate list is a list of sources stored by a destina-
tion. The destination will not receive any M-SDUs from the listed sources.
The select register allows a receiver to choose from 3 possibilities: receive
from nobody; receive from a single source; or receive from everybody. For
a source on the hate list of a destination, this corresponds to sequences
in which M-DATA requests for the particular source-destination pair are
always followed by either a REMOVE event or a M-TOG indication, but
not by a M-DATA indication. If the select register is set to receive from
nobody for destination b, then the same applies for all source-b pairs. If
destination b selects source a, then the same applies for all source-b pairs
except (a,b) (unless @ has been placed on the hate list!). If receive from
everybody is selected, then all sequences are allowed (modulo the hate list).

e Duplication: Duplication is modelled by the occurrence of the M-DATA
indication transition 2 or more times for the same M-SDU.

e Broadcast: This is indistinguishable from duplication except that the ‘des-
tination’ address parameter must be the broadcast address value, b. The
individual destination address for each occurrence of the M-DATA indica-
tion for the broadcast is not known at this level of abstraction. The next
section details how this information may be incorporated by a refinement
of the specification in figure 10.3. Duplication of broadcast M-SDUs is al-
lowed. If duplication is not intended (as is the case with the CFR) it may
be removed in a further refinement as shown in a further section.

¢ M-TOG indication. The occurrence of this transition for a particular M-
SDU prevents any further occurrences of the M-DATA indication for the
same M-SDU (by removing it from the queue), and indicates to the source
that the service provider believes (rightly or wrongly) that the M-SDU has
been discarded. The main reason for this in the CFR is that the receiving
station is busy and has refused to accept the M-SDU (on a number of
occasions determined by the retry limit). We have deliberately forbidden
the occurrence of an M-TOG indication for a broadcast M-SDU, by using
the variable @":D’ in the arc inscription, instead of d:D. (This makes use of
subtyping in the P-Graph.) An alternative would have been to use d:D and
to associate the condition d # B with the M-TOG indication transition.
This was the approach used in [26].
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e Retry control. In this specification retry control is handled implicitly and
non-deterministically. The retries are the mechanism for duplication. Du-
plication can only occur if retries are allowed, but it may not occur even
if retries are allowed. As far as the occurrence of service primitives is con-
cerned, the number of retries is not relevant, and is invisible to the users.
One important factor to users is the number of duplicates and that they
can be limited to zero by retry prevention. The present specification mod-
els arbitrary duplication. This is more general than the Cambridge Fast
Ring, where the number of duplicates is bounded by the retry limit. A
more detailed specification can be given to accommodate this limit by ex-
plicitly modelling a retry control parameter which passes the limit to the
M-Access Service provider.

e Quality of Service. Quality of service parameters have not been included

~ in [44] and have thus been ignored in this specification. The Retry Con-
trol parameter may be considered as an implementation-dependent QOS
parameter, as it affects a) the transfer delay, b) the probability of M-SDU
loss and c) the probability of duplication. In a service specification it is im-
portant to abstract away from implementation decisions. This is why the
present service specification does not include the retry control parameter.
It is considered inappropriate at the service level of specification.

¢ Ring Broken. It appears to be useful to include in the definition of the
service a Ring-Broken primitive. This has not been modelled as again
it does not form part of the M-Access Service definition in [44]. Given
that the effect of a broken ring is to lose M-SDUs and possibly to allow
for duplicates, the present specification does model this behaviour without
the introduction of a specific primitive.

Explicit Interaction with Users

The specification of figure 10.4 shows how the service interacts with its users
and also specifically indicates the destinations that receive M-SDUs as a result
of a broadcast. Five places (and associated arcs) have been added, three for the
source user and two for the destination user. It is quite arbitrary whether or not
any, all or none of the destinations receive a broadcast M-SDU.

Each station’s source has a set of messages stored in place ‘Messages’ which it
wishes to transmit to any one of a set of destinations. The source may also wish
to broadcast the message. The broadcast and destination addresses are stored
in place ‘Destinations’. When a M-DATA request occurs, an M-SDU is formed
from the message and the particular source-destination pair, and stored in the
M-Access service provider. This M-SDU may now be lost (transition ‘REMOVE’
occurs); discarded by the service provider while informing the source (‘M-TOG
indication’ occurs); or it may be delivered to an allowed destination (‘M-DATA
indication’ occurs). The M-TOG indication may not occur for a broadcast M-
SDU. When it does occur, the discarded M-SDU is saved in the place ‘Lost-
SDUs’. (This is more general than that defined for the CFR. It would only give
an indication to the user that an M-SDU had been lost without returning the
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Declarations

Sets: S,D,D''M

Constants: be D

Variables: s:S, d,e:D, d':D', m:M

Initial Marking

M (SP-storage)=Mp(SDUs-received )=Mp(Lost-SDUs)=0
My(Messages)€ p(SxM)

My (Destinations)C SxD

My (Acceptable-sources)C SxD'

Lost-SDUs M-TOG :
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<o,d',m> sources
<s,d',m>
Messages SP-storage <s,d'>
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<8, m> <s,d,m> <s,e,;m> |, —|<s,d,m>
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<s,d,m>
SxD
Destinations REMOVE

Figure 10.4: CFR M-Access Service: Explicit interaction with users

actual M-SDU.) Any number of M-DATA requests may occur concurrently from
any number of stations.

Each destination is prepared to receive messages from a set of sources as deter-
mined by its hate list and select register. The acceptable sources are stored in the
place ‘Acceptable-sources’. If the source address of an M-SDU in ‘SP-storage’
is on the list of acceptable sources, the M-DATA indication may occur and the
M-SDU is passed to the destination and stored in ‘SDUs-received’. Duplication
is allowed by the M-SDU remaining in ‘SP-storage’. If it is a broadcast M-SDU,
then the source address must still be acceptable to the destinations that receive
it. Two points should be made regarding broadcast.

1. A destination station which receives the broadcast M-SDU is now identi-
fied.

2. Arbitrary duplication of broadcast M-SDUs is allowed to each destination
that finds the source acceptable. If the specification is to be restricted to
disallowing duplicates when broadcasting then a more complicated speci-
fication results. The details are presented in the next section.
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Declarations

Sets: S,D,D''M

Constants: b € D

Variables: s:S, d:D, d":D', m:M
Initial Marking
Mj(M-SDU-reception)=0

Moy (In-transit-M-SDUs)=0

M-TOG
indication
<s,d',m>
M-SDU- In-transit-
reception M-SDUs
SXDxM TRANSFER Sx D'xM
<s,d,m> <s,d',m> <s, d’,m>: <s,d',m>
M-DATA M-DATA
t . . .
reques <s,%,m> indication
<s,b,m> y <5, d',m>
' BROADCAST LOSE

Figure 10.5: M-Access Service: No Duplication

No Duplication when Broadcasting

In this section a specification of the CFR M-Access service is developed where
no duplication occurs in broadcast mode. We will not include interaction with
the users explicitly, as this can be done in exactly the same manner as in the
previous section.

We assume that the broadcast to each receiving station is not ordered and that
any number of stations may not receive the broadcast, We firstly consider the
simplest situation where there is no duplication for point-to-point. (This may
be regarded as close to the initial expectation of the service to be provided by

\

the CFR.)

The specification is given in figure 10.5. It has been necessary to refine the service
provider storage into two places: ‘M-SDU-reception’ which stores M-SDUs of
the initial M-DATA request; and ‘In-transit-M-SDUs’ which stores all possible
broadcast and point-to-point M-SDUs. (This has been done to ensure that M-
TOG indications may only occur for point-to-point M-SDUs.) Point-to-point
M-SDUs are simply transferred from ‘M-SDU-reception’ to ‘In-transit-M-SDUs’
by transition ‘TRANSFER’. The transition ‘BROADCAST’ converts a broadcast
M-SDU into a set of M-SDUs, one for each possible destination. (This has been
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Declarations

Sets: S,D,D',M

Constants: b € D

Variables: s:S, d:D, d':D', m:M
Initial Marking

Mo (M-SDU-reception)=§

Mp (In-transit-M-SDUs)=0

M-TOG
indication
<s,d',m>
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M-DATA M-DATA
t . - -
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REMOVE BROADCAST LOSE

Figure 10.6: M-Access Service: No Duplication for Broadcast

achieved using the ‘#’ notation for sums - see section 7.9.) Any M-SDU may be
lost (transition ‘LOSE’) or successfully delivered to its destination (‘M-DATA
indication’).

In order to allow for duplication of point-to-point M-SDUs, we retain a copy of
the M-SDU in ‘M-SDU-reception’ and allow any number of duplicates by suc-
cessive firing of ‘TRANSFER’. The situation is depicted in figure 10.6. An extra
transition is included to allow the M-SDU to be removed from the provider. If
(for a particular source-destination pair) the REMOVE transition occurs before
the occurrence of TRANSFER or BROADCAST, then it also models loss.

CFR M-TOG indications

The above specifications allow a M-TOG indication to occur any time after a M-
DATA request has occurred, so long as the M-SDU remains in ‘SP-storage’ (figure
10.3) or ‘M-SDU-reception’ (figures 10.5 and 10.6). This allows any number of
M-DATA requests to have occurred at a particular station, before an M-TOG
indication occurs which relates to any one of the previous M-DATA requests.

This is more general than the situation that exists in the CFR implementation,
where only single buffering is provided in each station for the transmission of M-

160



SDUs. Thus after a M-DATA request, a M-TOG indication must occur before
the next M-DATA request, if it occurs at all. In other words, for a particular CFR
station, the M-TOG indication relates to the M-DATA request that immediately
preceded it. Thus a strict order is imposed.

This may be specified in the P-Graphs of figures 10.5 and 10.6 by introducing
a place (and associated arcs) that restricts the capacity of ‘M-SDU-reception’
to one M-SDU per source station. This may also be conveniently abbreviated
by using the capacity notation developed in section 7.10. This construction is
illustrated in the next section.

In the original design of the CFR, the idea of double buffering (i.e. allowing two
M-SDUs to be stored in the transmit and receive FIFO buffers) was considered.
This would allow two M-DATA requests to have occurred before the M-TOG
indication occurred for the first M-DATA request. This can also be modelled by
using the bounded FIFO queue discussed in chapter 9 with its length restricted
to two. A queue would be needed for each source-destination pair.

10.3.6 Single CFR Specification

Each station in the CFR has two buffers: one for sending M-SDUs and the other
for receiving M-SDUs. Each buffer has the capacity for just one M-SDU.

The more general case of unlimited storage was specified in the previous section.
It is applicable to CFR clusters where bridges can have large numbers of buffers.
We now turn our attention to a single CFR.

We refine the P-Graph of figure 10.6 to the specific case of single buffering for
the CFR. We shall only consider the case of implicit interaction with the users.

Explicit interaction can be added trivially, in a similar way to that shown in
figure 10.4.

We shall consider the following characteristics of a single CFR:

e Arbitrary number of stations

e Point-to-point and broadcast modes

¢ Single transmit buffer and single receive buffer for each station
° Sequence of M-SDUs preserved per source-destination flow

o Single broadcast by each station {only one broadcast per station is allowed
at any one time due to the single transmit buffer)

e Arbitrary loss of M-SDUs
e Three modes of duplication:

1. Arbitrary duplication in both point-to-point and broadcast mode;

2. No duplication in broadcast mode, but arbitrary duplication for point-
to-point operation; and
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3. No duplication

The duplication case 2 is close to the operation of the CFR, although duplication
for point-to-point is very rare and limited. A limit to the amount of duplication
can be incorporated into the specification in a straightforward way if desired. (It
requires an extra place to store the duplication limit for each station.)

We shall consider the three modes of duplication in separate specifications. As
usual, the left side of each diagram represents the transmitter and the right side
the receiver. The transitions in the centre represent various ways in which the
CFR can operate. We represent a set of transmit buffers, one for each station, by
the single place ‘Transmit-buffers’ and we record the stations that have empty
buffers in place ‘Empty-transmit-buffers’. (This is the same as the control place
for determining the capacity of M-SDU-reception mentioned above.) A similar
situation exists for the receive buffers. We also include explicitly which stations
are acceptable sources of M-SDUs for each of the destinations, by storing them
in place ‘Acceptable-sources’ as we did in figure 10.4.

Arbitrary Duplication

The single CFR M-Access service with arbitrary duplication in both broadcast
and point-to-point modes is specified in figure 10.7. The initial state of the
service is specified by the initial marking of the net. Each station connected
to the CFR will have an empty buffer for transmitting and one for receiving.
The presence of an empty transmit buffer is represented by storing the station’s
source address in place ‘Empty-transmit-buffers’ and the presence of an empty
receive buffer is similarly represented by storing the station’s address in place
‘Empty-receive-buffers’. The monitor is always attached to a ring, but cannot
transmit normal packets [78]. It can, however, receive normal packets. This is
why it is excluded from the set of source addresses, but included in the set of
destination addresses. Since the monitor is always attached to an operational
ring, its address must be included in the initial marking of place ‘Empty-receive-
buffers’. The addresses of the source stations acceptable to each destination are
stored in place ‘Acceptable-sources’ as source-destination pairs. Initially all the
transmit and receive buffers are empty and hence places ‘Transmit-buffers’ and
‘Receive-buffers’ are empty.

With this initial state, any number of stations may request the sending of an
M-SDU. This is achieved by firing transition ‘M-DATA request’. A token rep-
resenting an M-SDU, is placed in ‘Transmit-buffers’ and the token representing
that the buffer was empty for that station is removed from ‘Empty-transmit-
buffers’. If the M-SDU is not broadcast, then one of three events may occur:

1. The M-SDU is successfully transferred to the chosen destination. This may
only occur if the source is acceptable to the destination. This is achieved
by firing transition ‘“TRANSFER’. A copy of the M-SDU is maintained in
the transmit buffer while it is transferred to the destination’s receive buffer
which is removed from the list of empty buffers. The M-SDU may then be
removed from the transmit-buffer which would then be marked free by the
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Declarations

Sets: S,D,D''"M

Constants: bm € D
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Figure 10.7: Single CFR M-Access Service: Duplication
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occurrence of transition ‘REMOVE’. Concurrently, an M-DATA indication
may occur at the destination, with the M-SDU being removed from the
receive-buffer which is marked free. This may be considered as the normal
operation of the service. Duplication may occur by firing ‘TRANSFER’
twice (or more) before the occurrence of the ‘REMOVE’ transition.

2. The M-SDU is refused by the destination and this is reported to the source
user. This is achieved by firing ‘M-TOG indication’, which removes the
M-SDU from the transmit buffer and marks it free.

3. The M-SDU is lost. The CFR transmitter hardware falsely believes that
the M-SDU has been accepted by the destination, due to a CRC error
in the return path. This is represented by the firing of the ‘REMOVE’
transition. The M-SDU is discarded and the transmit buffer marked free.

For broadcast M-SDUs, there are two possibilities.

1. The M-SDU is lost by firing transition ‘REMOVE’,

2. The M-SDU is broadcast one at a time to any of the allowable destinations
by repetitively firing transition ‘BROADCAST’. When this transition oc-
curs, a copy of the M-SDU is retained in the transmit buffer, the M-SDU is
transferred to an accepting destination and its buffer is removed from the
empty list. An M-DATA indication may then occur with the consequent
release of the receive buffer. This then allows duplication of the broadcast
M-SDU, as the ‘BROADCAST’ may occur again for the same destination.
It may also occur again for any other destination. The broadcast ends with

the occurrence of the ‘REMOVE’ transition, which empties the transmit
buffer.

The specification of figure 10.7 could be made more compact by folding tran-
sitions ‘TRANSFER’ and ‘BROADCAST’ using the Transition Condition ‘e =
d'Ve = b’ and changing the inscription of the arc from place ‘Transmit-buffers’ to
<s,e,m> for the new transition. Exactly the same procedure has been followed
in figure 10.4 (see transition ‘M-DATA-indication’). This has not been done so
that point-to-point and broadcast modes are clearly separated as this helps with
the development of the specifications in the next two subsections.

No Duplication in Broadcast mode

In order to avoid duplication in broadcast mode we must keep a record of the
stations to which we have broadcast. In a single CFR this is relatively easy as
no simultaneous transmissions by a particular station are allowed due to single
buffering. For each station, only a single point-to-point or broadcast transmis-
sion is possible and this must have completed (successfully or not) before the
next transmission can occur. This allows us to use the list of allowed source-

destination pairs stored in ‘Acceptable-sources’ to determine which station has
received a broadcast M-SDU.
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Figure 10.8: Single CFR M-Access Service: No Duplication for Broadcast
M-SDUs
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The specification is shown in figure 10.8. It is the same as figure 10.7, except
that

¢ The places ‘Empty-transmit-buffers’ and ‘Empty-receive-buffers’ and their
associated arcs and initial markings have been removed and replaced by
the extended capacity notation defined in section 7.11.

o The place, ‘Broadcast-destinations’, (with initial null marking), the transi-
tion, ‘REMOVE-B’, and associated arcs and inscriptions have been added.

e The ‘REMOVE’ transition has been renamed ‘REMOVE-P’. ‘REMOVE-P’
may only remove point-to-point M-SDUs as the tuple annotating the arc
now contains the variable d":D’, instead of d:D. ‘REMOVE-B’ may only
remove broadcast M-SDUs.

o The return arc from transition ‘BROADCAST’ to ‘Acceptable-sources’ has
been deleted.

e Both ‘Acceptable-sources’ and ‘Broadcast-destinations’ have been anno-
tated with a capacity ‘K =1’.

The specification is the same as figure 10.7 for point-to-point operation. As
before, broadcasting may occur when a broadcast M-SDU is in a transmit buffer
and there is a destination (with a free buffer) that will accept M-SDUs from
the source of the broadcast. When ‘BROADCAST’ fires, the destination is
removed from the set of accepting destinations stored in ‘Acceptable-sources’,
and is written to a set of destinations that have received a broadcast M-SDU.
The set is stored in place ‘Broadcast-destinations’. The broadcast will continue
until either the set of accepting destinations is exhausted (there will no longer
be a source-destination pair in ‘Acceptable-sources’ with the broadcast source
address - hence ‘BROADCAST"’ will not be enabled (for this source address) and
the only remaining possibility for the broadcast M-SDU is that it is removed from
the transmit buffer by firing ‘REMOVE-B’) or the M-SDU is removed by firing
‘REMOVE-B’.

‘REMOVE-B’ is enabled by a broadcast M-SDU being in a transmit buffer.
When it fires, the following actions occur atomically:

1. A particular source’s broadcast M-SDU is removed from the transmit
buffer.

2. All destinations that have successfully received the source’s broadcast are
purged from ‘Broadcast-destinations’ and returned to ‘Acceptable-sources’.

Any number of stations can be active at the same time and they operate inde-
pendently except for contention (conflict) for destination receive-buffers.

To be able to purge ‘Broadcast-destinations’ of the required destinations for the
associated source, we have used the notation for purging a member of a parti-
tion developed in section 8.6. The addition of the capacity restriction (K = 1)

166



to places ‘Acceptable-sources’ and ‘Broadcast-destinations’ better reflects the
intent of the specification and guarantees that the P-net to CP-net transforma-
tions can be applied. This specification is also interesting in that it obeys the
restrictions that are necessary for the P-net to CP-net transformation to preserve
concurrency (theorem 6.4). This is because BROADCAST and REMOVE-B are
in conflict for a particular source of M-SDUs and REMOVE-B has no self con-
currency.

No Duplication

The single CFR M-Access service with no duplication can be derived from figure
10.8 by deleting the (return) arc from ‘TRANSFER’ to ‘Transmit-buffers’. When
‘TRANSFER’ fires, the M-SDU is removed from the transmit buffer and hence
no duplication can occur. It would also be useful to rename the REMOVE-P
transition to LOSE-P as it would only model loss.

We have made the assumption that as far as users of the M-Access Service are
concerned, the operation of delivery of an M-SDU to a receiving station and
the freeing of the transmit buffer can be considered atomic for point-to-point
operation.

10.3.7 Modelling Slot Contention

The above specifications of the M-Access service for a single CFR are more
general than that provided by the CFR hardware. The specifications allow there
to be simultaneous transmissions (point-to-point or broadcast) by all stations.
The CFR’s hardware only permits there to be n simultaneous transmissions,
where n is the number of slots on the ring. In most practical CFR installations,
the number of stations will be greater than the number of slots.

It is a relatively simple matter to model slot contention in a single CFR. All that
is needed is a common side place for the transitions that free transmit buffers
and another for transitions that write to receive buffers. Both side places would
be initially marked by the number of ring slots. For example, in figure 10.8, one
side place would have input and output arcs to transitions M-TOG indication,
REMOVE-P and REMOVE-B, while the other side place would have input and
output arcs to transitions TRANSFER and BROADCAST. As far as the users
are concerned, only » transmit (receive) buffers can become available at any one
time.

In many ways this is an implementation issue that it is preferable to suppress in
a service specification.

10.3.8 Notification Service

The above specifications have included the M-TOG indication primitive as a
form of notification service. Of course it is possible not to provide this service
by not informing users when the transmit hardware believes that an M-SDU
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has been lost. This can easily be modelled by deleting the ‘M-TOG indication’
transition and its associated arc from the above specifications.

10.4 Discussion

There are a number of general specification issues that are worth discussing in
the context of the above specifications. These include finite delay and progress
properties, fairness, and conformance to service specifications.

10.4.1 Finite Delay

The specifications presented above say nothing about the time it takes before a
transition fires after it is enabled, the enabling time. This is because nets have
abstracted away from time. Hence the enabling time could be anything from zero
to infinity. An important property that we would like to preserve in our models
is that given a M-DATA request at some point in time either an associated M-
DATA indication or M-TOG indication or a LOSS event occurs some bounded
time later.

We define a LOSS event as either the occurrence of a LOSE transition, or the
occurrence of a REMOVE transition that has not been preceeded by one of
a TRANSFER, BROADCAST or M-DATA indication transition for the same
M-SDU.

For this to be the case in the net, we must ensure that a transition cannot be
enabled indefinitely without firing. This is known as the finite delay property.
Another way of looking at this is to consider only those sequences generated by
the net where the stop state corresponds to all storage places (e.g. buffers for
M-SDUs) being empty. For example in figures 10.3 and 10.4, the stop state is
defined by Mj(SP-storage) = . Hence for a particular M-SDU, the singleton
sequence M-DATA request is excluded. It must be followed (at some stage) by
one of the three other possible events mentioned above.

10.4.2 Progress Properties

Another desirable property of the service is that infinite sequences of events
must include an M-DATA indication. On the other hand we are quite happy for
infinite sequences to exclude the occurrence of either an M-TOG indication or
a LOSS event or both. Thus we do not wish the service to be fair to events we
would not consider useful.

We would like to guarantee some form of progress property. For example that
there exists in every possible sequence, the subsequence “M-DATA request(u,s),
M-DATA indication(u,d)” where u=(s,d,m) is a M-SDU comprising the source
address, s, the destination address, d, and the M-data parameter, m; and the
second parameter defines the station address at which the primitive occurs.
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It appears that the CFR does not support such a progress property. For exam-
ple, it is possible that every station switches its select register to “receive from
nobody”. In this case, it is not possible for a M-DATA indication to occur.

We may define a quasi-progress property as follows. ‘No infinite sequence will
contain an infinite subsequence of LOSS events’. This rules out the possibility
of loss of M-SDUs occurring infinitely often.

This is probably true in a single CFR, as loss depends on the probability of a
transmission error which is much less than one and hence the probability of an
infinite repetition of loss events is zero. However, in ring clusters, M-SDUs may
be lost for a number of other reasons. Consider the case when a station on one
ring wishes to send M-SDUs to a station on another ring. The receiver may
not accept an M-SDU for a number of reasons. For example if the source is not
selected, the M-SDU will be lost as no signal is passed back to the source for a
M-TOG indication to occur. Thus an infinite loss sequence is possible.

The above specifications allow the infinite loss case to occur. This appears to be
an accurate description in the case of CFR clusters. In the case of a single CFR
it may provide too general a model. To overcome this we could do one of two
things:

e constrain the model to exclude the offending infinite sequences. This may
be done by introducing an extra place to limit the number of LOSS events
to some finite number. Unfortunately this will increase the state space.

e climinate the offending sequences when analysing the model.

10.4.3 Fairness

In the above section we have mentioned that we are quite happy for the service
not to be fair to ‘LOSS’ events and ‘M-TOG indications’. We would be delighted
if these events never occurred. Another form of fairness that would probably be
desirable is that the service should be fair to each of the stations. By this we
mean that we want to disallow the behaviour where a set of stations can be
locked out of communication with another station indefinitely by yet another
station constantly gaining access to it.

The CFR allows a receiver to select a set of stations (the.‘hate list’) from which it
will not accept M-SDUs, so in general it is not fair. However, given that a source
station is not on the hate list, we would like to guarantee that eventually it will
succeed. The problem is identical to that described in the previous section. We
wish to guarantee that the subsequence ‘M-DATA request((s,d,m),s), M-DATA
indication((s,d,m),d)’ occurs in a infinite sequence containing an infinite subse-
quence of ‘M-DATA request((s,d,m),s)’s. Although allowing for this possibility,
the specification does not guarantee this behaviour.
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10.4.4 Conformance to Service Specifications

When defining the service it is important to be able to state which sequences
of service primitives are essential and which others are optional. More generally
one needs to specify that one or more of a set of sequences is mandatory. Thus
in order to conform to the M-Access Service, it is necessary that, there exists a
sequence in which “M-DATA request((s,d,m),s), M-DATA indication((s,d,m),d)”
is a subsequence. It is now debatable whether or not this should be universally
quantified over all source-destination pairs. This is probably too strong, as there
will be some destinations that do not want every other source to be able to send
them data (c.f. the “hate list” in the CFR). However, it does seem reasonable
to quantify over source addresses. Thus at the very least, each source must be
able to send one M-SDU to one other station. On the other hand, it is obviously
not mandatory for the service to include sequences that contain LOSS events. It
is also necessary that the language of service primitives of the realisation of the
service is a sublanguage of that defined in the service specification.

We could therefore consider figures of merit of conformance to a service specifica-
tion. For example factors in a figure of merit would be the number of sequences
that contained LOSS events, and the proportion of LOSS events in the sequence.

10.5 Summary and Conclusions

The service provided by clusters of Cambridge Fast Rings, known as the M-
Access Service, has been specified. The specification has been divided into a set
of ‘senders’ (one for each station) and ‘receivers’ (one for each station and the
monitor), communicating via a queue in the service provider.

An attempt has been made to clarify the present M-Access service definition and
care has been taken to itemise the modelling assumptions.

The specification is presented at various levels of detail. In its most general form,
the M-Access Service provider can re-order, duplicate or lose M-SDUs that can be
transmitted either to a single destination or broadcast to all stations. This allows
a very simple model of the behaviour using a CP-Graph (figure 10.3) consisting
of just one place (representing a queue of arbitrary size and service discipline)
and four transitions (3 representing service primitive occurrences and the forth
representing removal of M-SDUs). This specification does not indicate which
destinations receive broadcast M-SDUs, only that some broadcast M-SDUs may
have been received. In this sense it is incomplete.

At the next level of detail, interaction with users is made explicit (figure 10.4). In
particular, the list of each destination’s acceptable sources (realised in the ‘hate
list’ and ‘select register’ of the CFR) is specified and this allows the destinations
to which broadcasts are received to be defined. This further detail comes at the
expense of 5 extra places and associated arcs.

If the broadcast service is restricted to being duplicate free, then this can be
modelled with the addition of one place and 2 transitions and associated arcs
(figure 10.5). The addition of a further transition allows the complete service to
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be duplicate free (figure 10.6). This illustrates the utility of the ‘*’ notation to
describe sums of tokens.

A further refinement is presented where the service provided by just a single
Cambridge Fast Ring is modelled (figures 10.7 and 10.8). In this specification,
the sequence of M-SDUs is preserved and single buffers are modelled for trans-
mitting and receiving M-SDUs (for each station). Duplication and loss are still
possible. The list of acceptable sources is included in the specification. The
service provider is conveniently modularised into service primitive actions and
those associated with its internal operation on M-SDUs: transference (originals
or duplicates); broadcast and removal. Further refinements placing restrictions
on the amount of duplication are also presented. This has illustrated the use of
the capacity notation and that for purging developed in previous chapters.

The specifications are concise (half to one A4 sheet) and allow flow of data to
be visualised by executing the net. Sequences of service primitives may also be
generated. This allows considerable confidence to be gained in the veracity of
the specification.

The specification is also general. It appears highly probable that the particular
model developed here could be slightly modified to represent an electronic mail
service or connectionless network service for example. It also provides an ad-
equate model for many local area networks of varying topologies (rings, buses,
broadcast star networks). The more abstract specification encompassing a num-
ber of networks and services would be an interesting application for a P-Graph
Schema.

High-level nets allow very general specifications to be modelled quite simply. As
these are restricted the models become more complex. The greater the degree
of non-determinism and concurrency the simpler the net representation. (This
is illustrated in the discussion of modelling CFR slots.) This facilitates stepwise
refinement from general specifications to more specific situations.

Limitations of the approach have been indicated. These concern the need to
exclude unwanted infinite sequences and involve notions of fairness. This issue
is a subject of research within the net community and elsewhere.

The specifications presented here could provide a formal basis for the develop-
ment or verification of protocols being designed to operate over CFR systems.
It is stressed that conformance to a service specification needs to be specified in
order to allow systems to be verified and the concept of a figure of merit for the
conformance of protocols to service specifications has been canvassed.

This chapter has illustrated that service specifications of networks can be devel-
oped with some degree of elegance and visual appeal using P-Graphs.
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Chapter 11

Conclusions

11.1 Contribution of Dissertation

There are several significant research results presented in this thesis, covering
the development of a specification technique and its application in the protocol
domain.

Although the concepts of place capacity and inhibitor arcs are well known for
Petri nets (Place/Transition systems), there had previously been little attempt to
incorporate them formally into the high-level net framework. The transformation
from P-nets to CP-nets is new, based on the idea of complementary places for
P/T-systems. A new complementary place invariant for CP-nets is established,
generalising a previously well known result for P/T-systems. The transformation
allows P-nets to be used for specification in the knowledge that the existing
analysis techniques and tools (and those being developed) for CP-nets will be
applicable in probably all practical situations.

Conditions under which the P-net to CP-net transformation preserves true con-
currency are established. No counterpart of this result previously existed for
P /T-systems with inhibitors. The result established here applies to P/T-systems
(with inhibitors) as a special case.

Because of its utility in visualising flow of control and data, the P-Graph was
developed for describing systems. The P-Graph takes ideas from algebraic speci-
fication, that of a many-sorted signature with variables, and includes it in a Petri
net structure. The signature allows terms to be generated and these are used to
annotate arcs and transitions of an inhibitor net. The signature allows variables
to be typed in a manner that suits applications that are naturally many-sorted.
Difficulties with Algebraic Nets and Predicate/Transition nets are highlighted.
The problems stem from the single-sorted nature of these nets, that partial func-
tions are employed and that variables are typed by a single carrier. This can
lead to nets with legal inscriptions that are undefined at a concrete level (causing
problems of interpretation when executing the net), and also to behaviour that
is not intended by the specifier. These problems are avoided in the P-Graph by
the use of a many-sorted signature, appropriately typing variables and the use
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of total functions. The P-Graph may be used as a basis for classifying high-level
nets, as many different classes result from restricting its structure.

Although the P-Graph was initially developed independently, the approach to its
formulation is similar to that taken by Vautherin [143], but it has a number of
significant differences. Vautherin stays at the syntactic level (defining a schema),
does not type variables in his definition, only allows ‘equations’ to be associated
with transitions, does not include place capacities or inhibitors, and does not
allow for natural number terms to be used as multiplicities when defining multi-
sets of terms. I have also defined a P-Graph Schema that has these differences.
The differences are important from the point of view of specification as they
provide constructs for more concise formal descriptions. An interpretation of
the P-Graph and P-Graph schema in terms of P-nets is also provided.

A theory of atomically purging places of all (or subbags of) their tokens has
been developed for P-nets. P-nets that only use inhibitors for purging, satisfy
one of the two conditions required to ensure that the transformation to CP-nets
preserves true concurrency. Some convenient notation for purging is developed
for the P-Graph. This involves the notion of a reset arc and the development of

a tuple notation for arc inscriptions. Notations for place capacity have also been
defined.

Two new applications of the technique to the specification of systems are pre-
sented: the Demon Game; and the M-Access Service of the Cambridge Fast Ring.
The latter is a detailed case study which illustrates the utility of a number of
the features developed for the P-Graph for the specification of communication
systems. These include the purging of a member of a partition of a marking and
the extended capacity notation.

11.2 Future Work

11.2.1 Analysis

No ;;.ttempt has been made in this dissertation to present a set of analysis meth-
ods for P-nets. Rather, the transformation from P-nets to CP-nets, was devel-
oped to allow the analysis methods developed for CP-nets to be applied. These
analysis techniques include reachability, invariants and reductions [37], model
checking and also analysis via the skeleton P /T-system as discussed in [143]. It
may also be the case that some of these techniques may be able to be applied
directly to the P-net. Direct analysis of subclasses of the P-Graph is possible
using invariants as shown in [121] and applied in [66].

11.2.2 Extended Capacity Notation

When developing the extended capacity notation care was taken to give an in-
terpretation in terms of another P-Graph. This meant that the basic P-net
definition of the enabling condition was retained.
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A different and more general approach has been suggested by Jensen [90], where
another capacity colour set is associated with each place. Hence we need a
capacity colour function. If Ck(s) is the capacity colour set associated with
place s € S, then we form the set CAP = {(s,c) | ¢ € Ck(s),s € S} and define
the capacity to be K € u},CAP. We introduce a new function « : yPLACE —

uC AP and replace the capacity enabling condition by

k(M + Post'(T,)) < K

The usefulness of this generalisation and its effect on transformations to CP-nets
need to be studied.

11.2.3 P-net to CP-net Transformations

The transformation from P-nets to CP-nets employs the idea of complementary
places. It may be that there are other more useful transformations. For example,
transformations using partial complementary places need to be studied. This is
indicated by the MPrT-net and P-Graph of safe train operation presented in
chapter 7. The properties preserved by these transformations also need to be
investigated.

11.2.4 Applications

A number of examples have been included in this dissertation for illustrative
purposes, but they have all been rather small. The aim of the work is that P-
nets will be able to be applied to large industrial applications and particularly
within the telecommunication and information services sector. This will require
ways of structuring and refining specifications. At a fundamental level, the de-
velopment of refinement morphisms for P/T-systems [107] shows considerable
promise. These ideas will need to be incorporated into high-level nets. Of more
immediate use at the practical level, the development of hierarchical CP-nets
[80] are of interest. This area has not been addressed in this dissertation and it
will require a large amount of effort in the future.

11.2.5 Syntax

This dissertation has concentrated on developing the semantics of a high-level
net suitable for protocol specification. Some syntactic issues have been explored
(the P-Graph; its extended capacity notation; the reset arc and its associated
#-tuple notation), but other issues such as typographical conventions for names,
markings and capacities and the formal definition of syntax have not been ad-
dressed. This would be essential for the development of computer-aided tools to
support P-nets and P-Graphs.
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Appendix A

Sets, Multisets and Vectors

A.1 Sets

We make use of the following sets:

e N ={0,1,...} the natural numbers.

No = N U {0}

N+ = N\ {0}, the positive integers

N = N* U {oo}

Z={...,—1,0,1,...}, the integers

A.2 Multisets

We define a multiset, B, (also known as a bag) over a basis set, A, to be the
function

B:A— N

which associates a multiplicity, possibly zero, with each of the basis elements.
(We require multisets to have finite support.) There are times when we shall
consider a set as a special case of a multiset, where the multiplicities of each of
the basis elements is unity.

The set of multisets over A is denoted by pA (i.e. uA =[A — NJ). For a mul-
tiset B € pA, to avoid confusion, we sometimes use the notation mult(a, B) =
B(a) where a € A, for the multiplicity of @ in B.

We may extend the definition to include the value co, and denote the set of
multisets over A, that allows infinite multiplicities, by geA = [A — Ny and
that which disallows multiplicities of zero by pt A = [4A — NZ].
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A.2.1 Vector or Sum representation

We may represent a multiset as a symbolic sum of basis elements scaled by their

multiplicity.
B =) B(a)a
a€A

A.2.2 Membership

Given a multiset, B € po, A, we say that a € A is a member of B, denoted a € B,
if B(a) > 0, and conversely if B(a) =0, then ¢ & B.

The empty multiset, #, has no members: Va € A, §(a) = 0.

A.2.3 Cardinality

We define multiset cardinality in the following way. The cardinality |B] of a
multiset B, is the sum of the multiplicities of each of the members of the multiset.

|B|=2_ B(a)

acA

A.2.4 Equality and Comparison

Two multisets, B1, B2 € pA, are equal, Bl = B2, iff Va € A, Bl(a) = B2(a),
and Bl is less than or equal to (or contained in) B2, Bl < B2 iff Va € A,
B1(a) < B2(a). Other comparison operators may be defined analogously.

A.2.5 Operations

We define four binary operations on multisets, B1, B2 € pA, known as union,
intersection, addition and subtraction, as follows:

B=B1UB2 iff Vac€ A B(a) = maz(B1(a), B2(a))
B=B1nB2 iff Vac A B(a) = min(Bl(a),B2(a))
B=B1+ B2 iff Va€ A B(a) = Bl(a) + B2(a)
B=Bl1-B2 iff Va€ A (Bl(a) > B2(a)) A (B(a) = Bl(a) — B2(a))
We also define scalar multiplication of a multiset, B1 € uA, by a natural number,
n € N, to be
B =nBl iff Va € A, B(a) =n x Bl(a)

A.2.6 Adding oo and Subtracting from oo

Forallne N,n+ 00 =00+ n =oo.
Forallm € N, co — n = oo.
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A.2.7 Multiplication by oo

Foralln € N}, coxn=nXoco=cobut cox0=0xoco=0.

A.3 Vectors

There are times when we wish to subtract one multiset from another when the
above restriction on multiset subtraction does not apply. We then need to con-
sider multisets as vectors. We define a vector, V', over a (basis) set, A, to be the
function

V:iA— 7

which associates a negative, zero or positive multiplicity, with each of the basis
elements. The set of vectors over A is denoted by VA (i.e. vA = [A —> Z]). Fora
vector, V € VA, to avoid confusion, we sometimes use the notation mult(a,V) =
V (a) where a € A, for the multiplicity of @ in V.

Subtraction is a closed operation for vectors defined component-wise as follows.

For V1,V2e€ vA

V=V1-V2iff Va€ A, V(a) =V1(a) — V2(a)

We can also define scalar multiplication of a vector, V1 € v A, by an integer,
z € Z, to be
: V=2V1iff Va€ A,V (a) =zx V1(a)

A.3.1 Equality and Comparison
Two vectors, V1,V2 € vA, are equal, V1 =V2, iff Va € A, V1(a) = V2(a), and

V1 is less than or equal to V2, V1 < V2, iff Va € 4, V1(a) < V2(a). Similar
definitions apply for >, < and >.
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