Technical Report A

Number 216

Computer Laboratory

Exploiting OR-parallelism in Prolog
using multiple sequential machines

Carole Susan Klein

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© Carole Susan Klein

This technical report is based on a dissertation submitted
October 1989 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

If the branches at each node of a tree are labelled, paths through the tree can be represented by
a sequence of labels called an oracle. If an oracle leading to a node is followed, all of the bindings
and other state information associate;i with the node will be recreated. Thus, oracles are both a
specification for a path through the tree and a concise format for representing the environment at a

particular node.

This dissertation investigates the use of oracles for the parallel execution of Prolog programé.
The execution of a Prolog program can be represented pictorially by an AND/OR tree. The
branches of OR nodes within this tree have no binding dependencies so their evaluation can be
performed on separate processors. If one or more of these OR branches is explored in parallel, OR-

parallelism is exploited in the Prolog program.

A distributed system called the Delphi Machine has been designed and implemented to exploif
the OR-parallelism inherent in Prolog programs. In the implementation described in this
dissertation, Delphi runs on a group of uniprocessors connected by Ethernet. Various control
strategies using oracles to control the parallel search are investigated. The execution times for
Prolog programs run on the Delphi machine are compared with those of a compiled and an
interpreted sequential Prolog system. The results show that a distributed system using oracles to
control the parallel search can be an efficient way to exploit OR-parallelism in nondeterministic

programs.

Because of overheads imposed by the Delphi algorithm, a program executed on a single
processor Delphi machine runs at approximately one half the speed as the same program executed
on the unmodified Prolog system. For a twenty processor configuration, the speed ups obtained
vary from approximately two to nine times depending on the amount of OR-parallelism which can
be exploited by Delphi. Problems with large amounts of OR-parallelism show a nearly linear

speed up.

Contents

Chapter 1 Introductioncc.o0nn... P 1N |
1.1 Branch Enumeration, 1-1

1.2 Oracle TYPesoouiiinii e 1-2

1.3 Delphi Machine 1-2

1.4 Implementation 1-4

1.5 DelphiandThe Oracleo i, 1-5

1.6 Contributions of this Dissertation 1-5

1.7 Chapter Discussion e 1-6
Chapter 2 Related Workccvvvevvnnnnninnn. creeenns R |
2.1 Definitions 2-1

22 EarlyModels e 2-2

2.3 Committed-Choice Languagescooooiiuia 2-3

2.4 OR-Parallel Models i 2-6

2.4.1 Global Address Space Designsooiieuniiina .. 2-6

2.4.2 Sequential Prolog on Multiple Processorscc..oiiuuii .. 2-8

2.4.3 Broadcast Architectures 2-8

2.4.4 OR-Parallelism with AND-Parallelism 2-9

2.4.5 Independent Processing via Clever Splitting Algorithms 2-10

2.5 UsingOracles 2-11
Chapter 3 Focus on OR-Parallelism cerecsecans - 13 |
3.1 Sequential Prolog 3-1

3.2 AND/OR Partitionings i i 3-3

33 OR-OnlyTreesoiuiiiii e 3-7-
Chapter 4 Oracle Instructions ceetearerans checaeaaan 4-1
4.1 DelphiProlog 4-1
4.2 Delphi Compiler 41
4.3 Delphi Loader 4-3
4.4 Oracle Numbered Instructionsoooii e 4-4
4.5 Setmax Instruction 4-5
4.6 Sets of Clausesoiiii i 4-6
4.7 Oracle Stack 4-8
Chapter 5 Models of Communication Cereceenann ceeesenn 5-1
5.1 Client-Server Paradigm e 5-1
5.2 Blocking and Non-blocking VO e 5-2
5.3 AmoebaIPC 5-5
5.4 Transaction Primitives 5-10
5.5 Dynamic Port Allocation e 5-11
5.6 IPCusing 4.2BSD Socketsooioiimm 5-14
57 Echo Servers 5-16

Contents-1

Chapter 6 Distributed Delphicccvviinne.... R 3 |

6.1 Amoeba Distributed Delphi Model 6-1
6.2 Internet Daemon 6-7
6.3 AnlIntegrated Delphi Model 6-10
6.4 Initiation of Processes over the Network 0o i . 6-13
6.5 Multiple Users or Configurations 6-17
Chapter 7 Control Strategiesccvvvvnunnnn.. cerecnenaas 7-1
7.1 Categories of Control Strategieso i . 7-1
7.2 Non-Backtracking Strategies 7-2
7.3 Conventional Searchusing Oracles o i ... 7-3
T4 Encodings e 7-7
7.5 Expandingadob. 7-9
7.6 Branchby Branch 7-13
7.7 Backtracking Strategies 7-18
7.8 Automatic Partitioning 7-20
7.9 Reassigningdobs 7-30
Chapter 8 Results Ceessicecsesserratsecsnsstnroanns ceeesenas 8-1
8.1 Initial Resultso 0o 8-1
8.2 No Control Communications Neededoooo oo 8-9
8.3 Other Problems 8-18
8.4 Relative Speed Up 8-24
8.5 Faster Processors 8-24
8.6 Deterministic Problems oo 8-26
Chapter 9 Adaptive Controlccvviiiiiiiiiiiiiineeiieennnnnn 9-1
9.1 Load Balancing Comparisonso oo 9-1
9.2 Passive and Active Control e 9-6
9.3 Limiting the Number of Check-ins 9-8
9.4 Active Control Strategiesoo oo 9-14
9.5 Strategies using Work Estimates o0 i 9-15
Chapter 10 Delphi Tools Ceeeiriaettaans ceaeen Ceeeeenaes .. 10-1
10.1 Search Space Analysisco 0o 10-1
10.2 External Process Management System 10-3
10.3 Oracle Disassembler 10-5
10.4 Oracle Traceroiuuneea 10-6
10.5 External Checkpointing 10-6
10.6 Prolog Preprocessoro 10-9
Chapter 11 Conclusionsccevviiiiiiiiiiinnninnnnnns ceeeas oo 11-1

Contents-2

Appendices

Appendix4a Loaded Source Ceetesesrenaan ceeeanaas

4a.1 Indexing Example Program
4a.2 Program Loaded for Non-backtracking
4a.3 Program Loaded for Backtracking

Appendix 5a Echo Servers

5a.1 Amoeba Echo Server
5a.2 Amoeba Shout Client i
5a.3 Capability Functions

5a.4 Sockets Echo Server ;

5a.5 Sockets Shout Client
5a.6 Mutual Header File

Appendix 6a Global Log File Cereeeinanans Cerireaeans

6a.1 Example Configuration
6a.2 Example Global Log File
6a.3 Explanationofthe LogFile

Appendix 6b Sessions Cetetereteeiianaaas P ceeenes

6b.1 Direct ConnecttoPrologs o i,
6b.2 Starting Master Processeso
6b.3 AutomaticStart Up

Appendix 7a Encodings ceteseriaaas ceesenns Ceerecsseens

7a.1 Regular and Compressed Encodings
Ta.2 Induction Proof of C,,

Ta.3 Aside ...
Appendix 8a All Check-insc.u......
8a.1 Check-inIntervals 1 Through 80 0 i,
8a.2 Check-in Interval 81 and Selected Others
Appendix 8b Programsceeiiiiiiiieiiiiitiiittotiteaaans
8b.1 PrologTop Lievel
8b.2 N-QUeens Sourceoiuieea
8b.3 PentominoesSource

8b.4 Parser Source
8b.5 Adder Source

Conténts—3

Appendix9a Portability Notes R * 7: 1 |

9a.1 Technical Note on Signal Catching oo i i . 9a-1
9a.2 PorttoBobeats 9a-2
Appendix9b OutofBandDataccevvvirenininnnnnreeannnnn. 9b-1
9b.1 UsingOutofBandData i . 9b-1
9b.2 Out of Band Data Example - ServerCode 9b-4
9b.3 Out of Band Data Example - ClientCodecouiiniini.. 9b-6
Appendix 10a Tree Analysisccevvveeiverrennnnnnnnn. ceeess 10a-1
10a.1 TwoQueensProblem 10a-1
10a.2 Three QueensProblem 10a-1
10a.3 FourQueensProblem 10a-2
10a.4 EightQueensProblem 10a-3
10a.5 Parser-2Problem 10a-4
10a.6 Parser-4Problem 10a-5
10a.7 Larger Problems 10a-6

Bibliography

Contents-4

Chapter 1 Introduction

1.1 Branch Enumeration

If the branches at each node of a tree are enumerated, then the location of any node within the
tree can be identified by a unique sequence of numbers. This sequence of numbers is called an
oracle [Clocksin and Alshawi 1988]. At each node of the tree in Figure 1.1, the branches are
enumerated from left to right. The oracle [4, 1, 2, 1] leads to the internal node indicated. An oracle

is therefore a path leading to a particular location within a search space.

1 4
2 3
v 3 1 2
1 4
1 2 9 3
1 2 1 2 o 3
1 1
9 3 9 3

oracle leading to this
nodeis[4,1,2,1]

Figure 1.1 Branch Enumeration

An oracle can be followed by picking the clause at each node which corresponds to the next
number in the oracle sequence. By following an oracle, the environment associated with each node
is recreated. In Figure 1.1, as the oracle [4, 1, 2, 1] is followed, the environment associated with
each of the nodes along the path is recreated. All of the bindings and other state information
associated with each node will be generated. Thus, oracles are both a speéiﬁcation for a path

through the tree and a concise format for representing the environment at a particular node.

1-1

1.2 Oracle Types

Figure 1.2 is the same example tree showing the location of solutions. Table 1.1 lists a few of

the different types of oracles with example oracles corresponding to the tree in Figure 1.2.

X X
X X X
X
Xl [X

. solution

x no solution

Figure 1.2 Example Tree Showing the Location of Solutions

1.3 Delphi Machine

One of the uses of oracles is in exploiting the OR-parallelism inherent in Prolog programs.
Executing a Prolog program generates an AND/OR tree. The branches of the OR nodes within this
tree can be partitioned among multiple processors without the need to communicate bindings.
Each processor will perform the computation of following an independent path starting at the top of
the search space. The binding information will be recreated from the root so there is no need to
share bindings or communicate among the processors to ensure consistency. Paths through the
search space can be explored in parallel by multiple sequential machines simultaneously following
separate oracles. These host machines each execute an equivalent process (or processes) called the

Prolog system.

1-2

Type Description Examples
[1,2]
incomplete leads to an internal node {4]
[4,1,2,1]
successful leads to a leaf node with a solution 1, %’ ‘11’ ;}
(2]
failed leads to a leaf node with no solution [1, 3]
[4,1,2,1,1]
[3]
(3,1]
complete reaches a leaf node and may have extra (3,1, 4]
unused branch numbers (4,1,2,1,2]
[4,1,2,1,2,3]
[3,1]
redundant a complete oracle with extraneous (3,1, 4]
branch numbers [4,1,2,1,2, 3]

Since an oracle specifies a path starting from the root of the search space, it can be given to any

Prolog system which:

Table 1.1 Types of Oracles

® Knows how to follow an oracle.

® Contains the database of Prolog clauses for the program which is to be executed.

The oracle is an independent piece of information applied to a particular Prolog program.
Multiple Prolog systems executing the same Prolog program can therefore be used to follow
separate oracles simultaneously without the need to communicate with each other. This technique

of giving different oracles to independent Prolog systems describes a parallel search of the tree and

is the basis of the Delphi Machine.

The Delphi machine contains a Controller Process and any number of equivalent Prolog
processes called Path Processors. In the original Delphi model [Clocksin and Alshawi 1988], the
function of a Path Processor is to follow an oracle that it is given. It then reports back to the

Controller the outcome of following that oracle. The outcome is:

® Incomplete if the oracle leads to an internal node.
® Successful if a leaf node with a solution is reached.
¢ Failed if a leaf node with no solution is encountered.

After an oracle has been followed and the outcome reported back to the Controller, the Path
Processor is ready to receive a new oracle from the Controller. This cycle of receiving an oracle,
following an oracle and reporting the outcome continues until the entire tree has been explored.
The generation and distribution of oracles occurs according to a particular control strategy. The
control strategies are algorithms which use oracles to partition the searéh space among multiple

Path Processors and thereby explore the search space in parallel.
1.4 Implementation

Though an oracle is just a simple description of a path through a search space starting from the
root of the tree, it is the fundamental implementation detail which is unique to the functioning of a
Delphi machine. Throughout this dissertation, the word oracle is used in numerous contexts. It is
the job that is sent to the Path Processors, or a string that is generated by the Controller, or the
message that is received when a Prolog system performs a check-in. Each of these uses of an oracle
depends upon the control strategy in operation. All of these uses end up equivalently being a
means of pinpointing a node within the search tree by specifying a path to that location.
Additionally, the oracle functions as a means of reestablishing the environment necessary to

continue processing from the point where the path terminates.

The implementation of the Delphi machine described in this dissertation is similar to the
original model proposed by Clocksin and Alshawi [1988]. A Controller process is used as the liaison
between the Path Processors. The Path Processors run on independent host machines which are
connected by a network. The original paper on the Delphi machine [Clocksin and Alshawi 1988]
describes possible control strategies which can be divided into two categories; non-backtracking
(where the Path Processors are not allowed to bacl;track), and backtracking control strategies. The

Delphi model described in that paper did not include an implementation.

The inefficiencies with non-backtracking strategies were discovered in the Delphi
implementation by Alshawi and Moran [1988]. A few non-backtracking strategies were attempted
in that research, but were found to be too inefficient for general use on a Delphi machine.
Backtracking control strategies were the focus of the Alshawi and Moran implementation and are

the most successful control strategies used on the Delphi machine described in this dissertation.

The implementation of the Delphi machine described in this dissertation was run on multiple
uniprocessors connected by Ethernet. The host machines used for this research include five types
of Digital Equipment Corporation hardware:

® VAXstation
& VAXstation II
® VAXstation II / GPX

® VAXstation 2000
® microVAX II

All of these are based on the same processor and have approximately the same processor speed.
Throughout this document the term pVAX will be used to denote a single Digital Equipment

Corporation machine listed above. The term pVAXes will be used for the plural.

1.5 Delphi and The Oracle

Delphi in ancient Greece was the site of the famous Oracle where prophecies were taken to be
the will of the gods. Many Greek and Roman travellers came to the temple at Delphi to have
important questions answered and their future revealed. The petitioner would go before a stone
altar and make his request to the unseen woman behind. Her replies were often cryptic sayings
which then needed interpretation by other priests associated with the temple. These cryptic replies
were called oracles and today we refer to the place as the Delphic Oracle. In reality, the priestesses
of the temple had many successes in fortune telling and hence the reputation of Delphi as a place

for consultation flourished for over a thousand years [Parke and Worwell 1956].

One reason for this success was that Delphi was a major meeting point for travellers and the
source of guidance to ambassadors from all over the world. The caretakers of the temple
accumulated information brought to them from distant lands and artfully divulged it to those who
sought fortune and fame. To the recipients of the oracle this knowledge was possible only through
the clairvoyance of a god, when in fact, the temple often served as a database, accumulating
information and dispensing it upon request. In return for this information the temple was lavished
with gifts and treasures from all over the world, adding to the prosperity of Delphi and endowing

its continued sponsorship. The Delphi machine is named after this sacred Oracle at Delphi.
1.6 Contributions of this Dissertation

This dissertation presents the first large-scale implementation of a multiprocessor Prolog
machine based on the Delphi model. This Delphi implementation is a distributed system which

contains facilities for process management, debugging and tracing, fault tolerance, and security.

Communications within Delphi are controlled through the use of two systems of Ihterprocess

Communication (IPC) commands. Both the Amoeba-transactions-under-UNIX [Mullender 1987]

and 4.2BSD [ULTRIX-32 Supplementary Documents: Volume III System Managers 1984] IPC
systems were used in separate Delphi implementations. A detailed investigation of the problems

encountered with these two [PC facilities is discussed along with some security implicat\;ions.

A self-contained utility for managing multiple processes on multiple host machines was
developed to organise and control the numerous Delphi machine processes. This Process
Management System is a menu-driven tool which can assist in the debugging and control of

distributed systems.

The process management facilities implemented for use with Delphi have extended the
original model to cope with a multi-user environment. Multiple users can run simultaneous Delphi
configurations over the network without interfering with each other. Additionally, a single user
can run multiple Delphi configurations simultaneously. This provides a user the option of

executing simultaneously separate Prolog programs on separate sets of host machines.

Numerous new control strategies have been developed such as: branch by branch, automatic
partitioning, reassign jobs, on demand and work estimate strategies. The majority of the
demonstrated results are by applications of automatic partitioning and the reassign jobs control
strategies. Automatic partitioning allows the search space to be automatically partitioned without
the need for the Path Processors to communicate. Reassign jobs is an extension of the automatic
partitioning where idle Path Processors are given new partitions of the search space to explore.
Adaptive control strategies such as the on demand strategy monitor the variation in parameters to
allow the strategy to adjust dynarﬁically to changing conditions. Different methods of encoding

oracles for use by these control strategies is also discussed.

Results are shown for a variety of Prolog programs executed on the Delphi machine. These
results are compared to both a compiled (Cosmic Prolog) and an interpreted (C-Prolog) Prolog
system. Cosmic Prolog is the unmodified version of the Prolog system run by the Delphi machine.
For a number of standard benchmarks, the characteristic patterns of communication between

processors is also examined.
1.7 Chapter Discussion

Chapter 2 is a brief discussion of related work in the field of parallel Prologs. The major types
of parallelism in Prolog programs (AND- and OR-parallelism) are initially defined. Some of the
models which exploit these types of parallelism are then discussed. The Delphi machine was
implemented to exploit the OR-parallelism in Prolog programs. Chapter 3 describes where this
OR-parallelism comes from along with general methods for exploiting parallelism in search trees.
A particular emphasis is placed on a description of how an AND/OR tree generated by a Prolog

program can be transformed into an OR-only tree. Delphi extracts the OR-parallelism in Prolog

1-6

programs by stacking the AND goals and partitioning the OR-only tree equivalent to the original
AND/OR tree representation. ‘

Starting with Chapter 4, the Delphi implementations designed during this research are
investigated. Chapter 4 begins with the low-level details of Prolog intermediate instructions which
provide the framework for exploiting OR-parallelism. A subset of the intermediate instructions
called oracle instructions are the main source of oracle creation and manipulation by the Delphi
machine. Chapter 5 and Chapter 6 examine the higher level aspects of the two Delphi machine
implementations. Chapter 5 contains the details of communication commands while Chapter 6

explains how these commands are used in the control of the Delphi distributed system.

Controlling a parallel tree search involves the generation and distribution of oracles among
multiple Path Processors. The algorithms which perform this function are called control strategies
and are discussed in Chapter 7. Chapter 8 contains the results from benchmarking Prolog
programs controlled by the strategies discussed in Chapter 7. Execution times for the Delphi
machine are compared to those of two sequential Prolog systems. Further control strategies are
discussed in Chapter 9. These strategies are extensions of the algorithms discussed in Chapter 7 to
allow adaptive control. Some of the tools developed during the course of this research are discussed
in Chapter 10. A few of these tools are useful both for the Delphi machine and for applications
which are not associated with the Delphi research. Chapter 11 is a summary of what was

accomplished by the Delphi research.

1-7

Chapter 2 Related Work

Many methods have been proposed for increasing the efficiency of Prolog by exploiting sources
of parallelism inherent in the language. A brief description is given of some of the models which

have motivated the Delphi research.
2.1 Definitions

The roots of parallel logic programming languages can be traced to a general interest in
multiprocessor architectures [Hwang and Briggs 1984] and successes with exploiting the
concurrency in imperative languages [Gehani and McGettrick 1988]. Kahn and MacQueen [1977]
proposed a model of computation which formalised the description of process interaction within a
parallel logic language. This process interaction model became the impetus for the development of
stream-parallel implementations. Names have been given for various types of parallelism in a
Prolog program by Conery and Kibler [1981]. The major interest in the field is focused on
exploiting what is called AND- and OR-parallelism. Within these two types of parallelism,
subdivisions have been identified. AND-parallelism is divided into restricted and stream AND-
parallelism [Conery 1987], with types of OR-parallelism distinguished by don ¥ care and don know
nondeterminism [Kowalski 1979]. Additional types of parallelism have been identified, and these
can be grouped under the headings of AND- or OR-parallelism. These major categories are

described below.

AND-parallelism
when more than one goal is contained within a clause, these goals can be
processed in paraliel.

restricted AND-parallelism
the goals to be processed in parallel do not have any shared variables in
common. :

stream AND-parallelism
goals which have variables in common can use the binding of a common
variable as a synchronisation mechanism. One literal is said to be the
producer of a binding while one or more other literals are consumers.

unification parallelism

concurrently unifying all of the terms within a goal with the terms in the
head of a candidate clause.

OR-parallelism

when more than one alternate clause is defined for a relation, they can
be processed in parallel.

don't care nondeterminism
some alternative clauses may not be tried.

don't know nondeterminism
all alternative clauses are tried, and all solutions to a query are found.

search parallelism

a parallel search is performed to find all of the clause heads which match
the current goal.

Using these definitions, Delphi can be described as an OR-parallel model employing don't know
nondeterminism. This type of nondeterminism is also known as full OR-parallelism as all

alternative clauses are fully explored and all solutions are found.
2.2 Early Models

Implicit parallelism is the automatic identification and exploitation of sources of parallelism
within a program. The idea is to maintain the syntax of a sequential Prolog language rather than
adding special operators for exploiting parallelism. The alternative' approach is to have explicit
parallelism where the programmer must explicitly point out the portions of the program that are to
be executed in parallel. Early languages [Clark and McCabe 1982, Porto 1982, Wise 1984]
contained numerous programmer annotations to explicitly label parallel or sequential events.
Delphi uses the implicit parallelism approach where the procedures involved with exploiting'the
parallelism in a program are transparent to the programmer. The syntax used in a Delphi program

is standard Edinburgh syntax [Clocksin and Mellish 1981].

Early models of parallel Prolog-like systems demonstrated the difficulties in dealing with
nondeterminism. To accomplish concurrency may mean sacrificing some of the distinguishing
features of sequential Prolog. Synchronisation and process interaction must be included in the
concurrent models, and in many cases, this involves limiting or obliterating sequential features
which allow nondeterminism. One common restriction is to disallow the reversibility of a
procedure’s usage. New annotations must be added to the language to specify a mode of use of a
procedure. These annotations are used to partially order the evaluation of goals, and so increase

the efficiency of execution.

IC-Prolog [Clark and McCabe 1982] relies on variable annotations to provide predetermined
producer and consumer relationships among dependent goals. In addition to these, numerous
control annotations are supplied which order goals by delaying or forking a process. Epilog (Porto)
[Porto 1982] and Prism [Kasif, Kohli and Minker 1983] provide annotations which allow the user to
specify a sequence of goals to be evaluated sequentially or simultaneously. The ordering
mechanism of Epilog includes weak and.strict sequencing operators in addition to symbols that
facilitate coroutines. The evaluation order is controlled by a complex mechanism which performs
the reduction of goals one resolution at a time. Prism employs a simple notation of brackets and
parentheses which delineates groups of goals to be solved asynchronously, and from those which
must have a strict left-to-right ordering. Another Epilog (Wise) [Wise 1984, Wise 1986] uses
various constructs to impose a sequencing order to allow both AND-parallelism and OR-

parallelism. Optional variable annotations similar to those in IC-Prolog [Clark and McCabe 1982]

2-2

are also provided. These take preference over the implied sequencing and help to order the goal

evaluation.

Various methods for the synchronisation of goal reduction were borrowed from the longer
established study of functional languages, and the formal models of parallelism [Hoare 1978,
Milner 1980]. Mechanisms such as data triggered coroutines [Clark and McCabe 1982}, thresholds
[Wise 86], modes [Conery 19871, and read-only variables [Shapiro 1987b] are an attempt to control
the data flow within a program and schedule the execution of goals in an efficient manner. Guards
are another syntactic addition to parallel logic languages used both to restrict the nondeterminism
in a program and to synchrohise the execution of goals. The notion of a guard originated from
Dijkstra’s guarded commands language [Dijkstra 1976]. This concept has influenced the design of

many parallel logic programming languages.

When the Fifth Generation Computer Systems Project was studying ways in which logic
programming could be realised on a parallel architecture, the following approaches were

considered [Fuchi and Furukawa 1983]:

(1) Addition of parallel control primitives to Prolog.
(2) Delaying the evaluation of goals until specific data arrives.

(3) Imposition of guards on Horn clauses and restriction of nondeterminism.

The third approach was chosen and so called committed-choice languages (those languages

which use guards) became popular in the logic programming community.
2.3 Committed-Choice Languages

Concurrent Prolog [Clark and Gregory 1986], Parlog [Shapiro 1983], and Guarded Horn
Clauses [Ueda 1985], are three very popular committed-choice languages. Their common ancestor,
Relational Language [Clark and Gregory 1981], was proposed in 1981, the same year in which the
Fifth Generation Computer Systems Project announced that logic programming was to have a
central spot in their research. The commit operator is the common syntactic addition to the
committed-choice languages. Its function is to restrict the search space of the program to increase
efficiency in the language by committing to a particular nondeterministic choice. After this choice
has been made the control mechanism does not permit backtracking to consider an alternative. A

guarded clause has the form:

A<G,G,...,G, |B,B,.. B, (mn=0)

1’

The commit operator ' is both a synchronisation and a control operator. Logically it functions
just as a normal ', operator (conjunction operator) would. That is, A is true if all of the G's and all of

the B's are true. The order in which the goals are tried is not strictly left to right. Goals in the body

2-3

of the clause (the B's), cannot be tried before the guard (the G's) have succeeded. Once the goalsof a
guard are determined to succeed the execution mechanism commits to this clause, and the
execution of any alternative clauses is aborted. Forms of both AND- and OR-parallelism are used
in this committing process. AND-parallelism is used when the guard goals are tried concurrently.

If the guard succeeds the goals of the body can be concurrently tried.

An OR-parallel search is performed on the guards of the matched heads. It is only after the
commit operator is passed in one of the clauses (meaning all the goals of a particular guard were
successful), that the OR-parallel search is aborted and the chosen clause is committed to. This type

of nondeterminism has been described as don't care nondeterminism.

Only one solution can be found with this don’t-care nondeterministic method. If all solutions to
a query are required, additional special purpose relations must be added to these languages.
Committed-choice languages provide synchronisation methods which express logic programs as
parallel systems of processes. They use shared variables in the form of streams as the
communications medium. Their differences can be seen in the syntactic alterations on a standard

Prolog program to order the evaluation of goals.

Read-only variables are the synchronisation mechanisms introduced in Concurrent Prolog
[Shapiro 1983]. A new syntactic component is added to the language in the form of a postfix
operator “?” which can appear after a term in the head or clause body. The unification algorithm is

constrained by the additional requirements on a read-only term X?:

(1) If X? is unbound, then unification with a non-variable fails.

(2) If X? is unbound, then unification with a variable succeeds. The result of this
unification will be a read-only variable.

(3) If X? is bound to u, unification with a term t succeeds if v and t are unifiable.

Binding a read-only variable to a value is a passive process; it must take place through the
binding of the same variable in a non-read-only form somewhere else within the clause. The
operational efféct is that a process (in the form of a goal trying to reduce itself) is suspended until
one or more of its read-only terms can be unified. The read-only annotation controls the data flow

through shared variables and synchronises the processes.

Mode declarations are required for relations in Parlog [Clark and Gregory 1986] to constrain
the communications among processes. If the declaration has an input constraint as one of its
arguments, the unifier must supply an input substitution for that parameter. If the mode
declaration shows an output constraint, the unifier must not supply a substitution. In this case, the
calling procedure must have an unbound variable in that argument position. Suspension of a
process occurs if unification would involve the violation of an input constraint. The caller in this

case would not have had its parameter sufficiently instantiated. A run time error occurs if an

2-4

output constraint would be broken by unification with a calling procedure. In Parlog, the
procedure declaration determines its mode of use, and this never changes throughout the program.
In Concurrent Prolog the caller of a procedure can partially affect its usage. If a caller has a read-
only annotation on one of its variables, this constitutes an input declaration. A parameter which is
to be in output mode only can be created by a read-only annotation on a variable in the head of a

clause.

Guarded Horn Clauses [Ueda 1985] have no additional operators added to the language except
for the commit operator. There is, however, a particular style of programming that is requ&red fora
query to be successful. All output binding information must be located in the body of a clause.
Since the guard of a clause is not permitted to permanently instantiate any variables of its caller
(this is true in all of the committed-choice languages), Guarded Horn Clauses suspends the
computation of a guard until sufficient binding information is provided by the caller. This results
in a guard being suspended until input arguments are bound. If the clause is selected for
computation, unifications providing output bindings occur in the body. Evaluation of guards can -
be a very complex procedure. For this reason, the more efficient flat versions of Guarded Horn

Clauses and Concurrent Prolog have been proposed [Shapiro 1986].

The trend for more recent committed-choice languages has been to introduce methods which
allow multiple solutions to a query to be searched for in parallel. P-Prolog [Yang and Aiso 1986]
incorporates a user controlled method which admits both don’t-care and don’t-know
nondeterminism. The synchronisation of goal reduction is obtained by performing an exclusive
check on the clauses which deseribe a procedure. Expected exclusive clauses (which are partitioned
by the programmer) are evaluated with the following results:

(1) If none of the clauses in a relation are committable, the result is false.

(2) When the guards of more than one clause succeed, the calling process suspends.

(3) If only one clause is committable, the result is success.

In the case where more than one clause is committable and the clauses are annotated as non-
exclusive, full OR-parallelism will be performed in an attempt to find multiple solutions to a query.
For many of the older committed-choice languages a great deal of effort has been put into providing
methods for acquiring all solutions to a query. The original design was to have two different
subsets of the language. One sublanguage would be efficient and provided only a single solution to
a query. An alternate sublanguage would supply all solutions to a query [Shapiro 1989].
Converting OR-parallelism into a more easily exploitable form is another method to allow multiple

solutions to be found {Ueda 1986, Codish and Shapiro 1986].

Two additional committed-choice languages have been proposed which allow multiple

solutions to be searched for in parallel. Saraswat [1987] provides a don % know commit operator to

v

permit alternate clauses to be explored in parallel. Okumura and Matsumoto [1987] use the notion

of layered streams where separate sections of the stream are available to separate processes.
2.4 OR-Parallel Models

Two major methodologies have come to light in the creation of OR-parallel Prolog models:

(1) Using a global address space (possibly with additional local memory) for the storage of
multiple environments.

(2) Using separate processors as independent sequential machines.

When reduction of multiple clauses is attempted in parallel different bindings for variables
may occur as the result of unification with the heads of more than one alternate clause. The
traditional OR-parallel method involves the creation of OR-processes [Wise 1986]. Every relation
that contains more than one alternative clause will have a child process spawned for each of these
clauses consisting of a copy of the current bindings. The end result of this method is that a
complete binding environment is created for every possible solution. If these multiple
environments are independent, then storage space is at a premium and communication overheads
are introduced within the copying time. A structure-sharing technique may minimise the amount
of storage required. This may also increase communications among the processors when a new
process traverses its ancestors' frames while searching for a value. Various OR-parallel algorithms

have been proposed as an efficient method for maintaining multiple environments.
2.4.1 Global Address Space Designs

The single-assignment property of unification (once a variable is bound to a value it cannot be
changed) ensures that processes created by OR-parallel search can share already bound variables
with their parent process. The technique of sharing committed contexts reduces the time required
by traditional OR-parallel techniques [Wise 1986] to copy environments. This is mainly because
the entire address space of the shared environments do not need to be copied when execution is
performed on a shared memory multiprocessor. Sharing of environments in this model is at the
expense of a higher access time to establish a binding for a variable. In a proposed distributed
binding model [Ciepielewski and Haridi 1983], environment directories are used which point to
contexts/frames (groups of variable bindings often corresponding to a clause) which are either
committed (have no unbound variables) or uncommitted (have at least one unbound variable).
Committed contexts can be shared among the processes while uncommitted ones must be
duplicated for each child process created. Values can be accessed in constant time by the two level
storage system presented, but the entire directory of the parent process must be searched every
time a new environment is constructed. An improved model is presented in [Ciepielewski and
Haridi 1983] which links the directories into a tree structure and avoids the drawback of scanning

the directories at the expense of a longer access time for the first reference to a context.

A variable importation algorithm [Lindstrom 1984] imports unbound variables from an
ancestor into a local frame temporarily. Any unification will only bind variables which occur
within the local frame consequently minimising the time required for updates. Variables are
imported via an import mapping vector corresponding to the number of variables in a parent frame.
References to unbound variables are pointers from the vector while bound values are nil. When a
clause terminates, an export mapping vector is created to export variables back to their original
locations in the parent frame. Any newly created variables which remain unbound are exported

(via an export mapping vector) in an analogous fashion and a new parent frame is created.

The observation that only a small number of variables in ancestor frames are bound by
unification with a clause head, prompted the idea of hash windows for variable updates [Borgwardt
1984]. A local frame is maintained for variables within the child process’ clause and a hash window
for any bindings that occur to variables referénced in an ancestor frame. Hashing on a variable’s
address provides a very fast look up mechanism for subsequent accesses and is efficient in terms of

memory usage [Crammond 1985].

Two models of OR-parallel execution have been defined by Warren: the Naive model and the
SRI model [Warren 1987a, Warren 1987b]. The Naive model is similar to the traditional OR-
parallel model. A new process is spawned for each branching point in the search space. A process
contains goals and a set of variable bindings. Bindings already created before the choice point is
reached are added to the binding environment of the new process. An improvement in the
efficiency of the SRI model [Warren 1987b] lead to the creation of the Naive model. This
improvement ensured that access to variable bindings could be performed in constant time at the

expense of some additional bookkeeping tasks.

Hash tables are also used for a certain type of variable in the Argonne Model of OR-parallel
execution, which identifies three storage classifications for variables [Butler, Lusk, Olsan and
Overbeek 1986, Overbeek et al. 1985, Shen 1986). Private references correspond to variables which
will not be shared by any other processor. This occurs when no additional OR-parallel nodes need
to be explored since none exist below the current position in the search tree; program annotations
in the form of compiler directives control the OR-parallelism. It is guaranteed that the value on the
stack is the correct binding with a private reference, but multiple bindings may be possible with
other variables. All other references contain a conditional flag. If the current path is the favoured
one (left-most successful path) bindings on the stack will be correct, otherwise values must be

looked up in a hash table.

All of the models discussed in this section on global address space differ from Delphi in the
initial assumptions about implementation hardware. These models assume that a shared memory

architecture is the target machine. The initial design of the Delphi model assumes that the

processors involved will be independent machines connected by a network. This seems to be the
more general case. Delphi could be implemented on a shared memory architecture with minimal
difficulty, whereas a model designed for a shared memory may not be able to execute efficiently

without it.
2.4.2 Sequential Prolog on Multiple Processors

An alternative to having a clever scheme for maintaining multiple environments is to make
the environment for a goal or group of goals as local as possible to a particular processor. Each
processing element (PE) would then be able to run standard sequential Prolog, and communication
among PEs would only be necessary when a task makes a request to be split. Models designed to
use sequential Prolog on multiple processors do not try to conserve storage, as separate
environments are located on separate processors. They do attempt to minimise the quantity of job

splits which in turn minimises the communications time among the processors.

One method extends sequential Prolog by splitting the control stack into process bundles
(chunks of the search space) and allocating these portions to be searched by particular processors
[Yashuhara and Nitadori 1984]. Partitioning of a task is performed in a demand-driven manner by
an idle processor receiving a partition, recreating the environment and resuming processing. An
algorithm which splits jobs in a depth first manner is described in [Sohma, Satoh, Kumon,
Masuzawa, and Itashiki 1986]. As successive idle processors demand a job, the highest node in the
search tree which has not been previously split is sectioned into two pieces. The interrupted
processor continues its search in a depth-first left to right manner, while the demaﬁding processor

takes all the branches to the right.

Models described in this section are similar to Delphi in that they use a sequential Prolog
running on multiple machines. A major difference is that the models described here take the active
view that idle processors should demand jobs from other processors. This is one of the techniques
explored by the Delphi research, however, the passive technique of having processors periodically

check-in to see if there are any idle processors was more successful for the Delphi machine.
2.4.3 Broadcast Architectures

Hardware modifications have been proposed which reduce the time involved in copying an
environment by implementing a broadcast architecture. When a job needs to be split, the working
PE can broadcast a copy of its current environment to several idle PEs simultaneously and
efficiently. If OR-parallelism was left unbridled, contention from burdened processors requesting a
split of their workload or idle processors demanding a task may still occur. Various algorithms
have been suggested that reduce thé number of requests to split a job in an effort to reduce or avoid

this contention.

In addition to the specialised architectures, some sort of split scheme algorithm is required to
create an efficient system. The optimised solution is to avoid the overheads involved with splitting
a job by employing a clever partitioning strategy which initially partitions the tree into fairly
equal chunks. In this manner, the processors would be equally loaded throughout the computation,
and no splits would be necessary. As this is impossible (since the shape of the search space cannot
be known in advance), strategies are developed to minimise the splits as much as possible. In [Ali,
Fahlen and Karlsson 1986] several split schemes are proposed. One of these is a depth-first
iterative deepening strategy where each processor explores the search tree in a breadth-first

manner to a particular level of the search space.

The splitting strategies in [Ali, Fahlen and Karlsson 1986] are similar -to the automatic
partitioning strategies of Delphi. The differénces occur both in the hardware used to implement
the system and the method of passing an environment to another processor. Delphi uses multiple
sequential machines and [Ali, Fahlen and Karlsson 1986] uses specialised hardware with an
architecture seé up to allow broadcasting of environments. When an environment is passed, the
information sent is the variable bindings and other information needed for control. With Delphi,

the information sent is the concise oracle only.

The most important aspect of the gesearch shown in [Ali, Fahlen and Karlsson 1986] is the use
of local memory as far as possible so that binding environments do not need to be shared. It is only
when idle processors exist and a job needs to be split, that any communications are performed. This
is similar to Delphi where the environments must remain local to the processors as no shared
memory is provided. This idea leads to the work shown in [Ali and Wong 1988] where the control
strategies become very similar to ones proposed in [Clocksin and Alshawi 1988]. The major
difference again is the hardware used for the implementation. A shared memory architecture is
used in [Ali and Wong 1988]. With the shared memory comes the problems associated with

contention, and various locking strategies have to be examined.
2.4.4 OR-Parallelism with AND-Parallelism

The AND/OR process model [Conery and Kibler 1985] and its modifications [Hermenegildo and
Nasr 1986, Lin, Kumar, and Leung 1986], form a milestone in the literature by emphasising the
trade-offs between the quantity of extractable parallelism and the combined effects of variable
dependency analysis and program annotations. Static data analysis fChang and Despain 1985]
may miss some of the available AND-parallelism, as a worst case must be assumed while a

complete run-time determination involves overheads due to the dynamic monitoring of variables.

2-9

Restricted AND-parallelism [DeGroot 1984] involves a compromise between complete compile time
and complete run time data dependency analysis. In [Hermenegildo 1986], a more generalised
notion of restricted AND-parallelism termed goal independence is formed. Goal independent AND-
parallelism can be identified within several early implementations [Clark and McCabe 1982,

Monteiro 1982, Kasif, Kohli and Minker 1983], and is still a prominent area of investigation.

Conery and Kibler [1985] detail the steps required to extract parallelism within their process
model. An ordering algorithm organises goals within a clause on the basis of generator/consumer
relationships among the variables. Parts of the algorithm are performed at compile time, parts are
left for run time application. The connection rule is an heuristic used within the algorithm to aid in
an optimal assignrhent of generator)consumer pairs. Forward execution is the graph reduction
technique which coordinates the initiation of descendent processes. All of the above rules coupled
with mode declarations are sufficient to implement AND-parallelism of mutually independent
subgoals only for deterministic procedures. If the model is to be extended to include

nondeterministic procedures an additional rule, backward execution, must be provided.

Sun and Tzu [1986] have proposed a combined OR-parallel/restricted AND-parallelism model
of Prolog. A partitioning is performed such that goals within the same group have shared
variables, and this grouping is mutually independent of all others. One special group is created
containing goals which have a shared variable with at least one niember of all the other groupings.
Independent OR-trees are created from these groups and these collectively are termed the OR-
forest. If some of the OR-trees can be searched in parallel then restricted AND-parallelism is

accomplished.
2.4.5 Independent Processing via Clever Splitting Algorithms

Models of OR-parallel Prolog in this category avoid the necessity of a global address space by
localising the computation of a particular branch in the search space. Instead of having processors
allocated to a particular goal, all processors in the system start their execution by reducing the top-
level (query) goals. This redundant execution continues until a choice point is reached, when a
splitting algorithm is used to determine which processor(s) take which branch(s). After the split is
performed and all branches are aliocated, the processors continue just as a sequential Prolog
interpreter would until the next choice point. These systems are dependent upon a clever splitting
strategy which will ensure that no part of the search space is ignored (very important for all-

solution queries), and attempt to divide the workload efficiently.

2-10

The Multi-Sequential Machine (MSM) proposed by Ali [1987] is designed to partition branches
of the search space onto different processors so that no communications are involved, yet each
processor knows what branch(es) to take at any choice point. This is done with a set of local
pointers which relay information- concerning the number of processors currently executing a
particular branch, and the virtual number of each processor. A right-biased strategy works as

follows:

All processors begin at the root of the tree until the first choice point. At this point, one
processor (PE1) takes the leftmost branch and continues as a standard sequential Prolog. The
other processors (PE2-PEn), continue redundant processing of the tree until another choice
point is reached when PE2 now takes the leftmost branch. This continues until either the
complete search space has been explored (which meant that there were more processors than
independent paths from the root to a leaf node), or all processors have been allocated a task and
the highest number processor (PEn) has to explore the remainder of the right part of the search
space on its own.

MSM also allows the copying of environments to take place after a certain number of processors
have become idle. A working processor is interrupted to request a portion of its environment, and
this is copied to the idle processors simultaneously through a broadcast link. To implement the

copying process, a manager process is required in addition to the multiple sequential machines.

Both the MSM and BC machine [Ali Fahlen and Karlsson 1986] proposals describe a balanced

strategy for partitioning the search space:

All processors begin execution at the root of the tree. When a choice point is reached, the
branching factor is determined and the processors are equally divided among the branches.

Many of the Delphi strategies described in this dissertation can be considered to fall within the
category of independent processing via clever splitting strategies. Automatic partitioning is a
method of automatically splitting up the search space among independent processors. The reassign
jobs strategy is an extension of automatic partitioning where the idle processors are given new

areas of the search space to explore.
2.5 Using Oracles

The distinguishing feature of Delphi type work is the use of oracles to define a position in the
search space of a Prolog program. Though they may not be called oracles, the concept is the same
for other models which use an enumeration technique for distinguishing between multiple choices.
A path is created consisting of the choices to take at each branching point. A choice is just a
number specifying which branch to take. In the seminal work on Delphi machine, Clocksin and
Alshawi [1988] define an oracle and show how it can be used to specify paths within the search

space. Alshawi and Moran [1988] implement a Delphi machine and demonstrate its successful

2-11

performance on a parsing problem. Other researchers have started to consider the idea of using an
oracle as a concise method of representing either an environment or a path to a particular location

in the search tree.

Shapiro [1989] shows an algorithm and implementation of OR-parallelism into Flat
Concurrent Prolog which makes use of paths through the search space. These paths are a list of the
indices of the clauses to be explored, hence they are oracles. In [Wang 1989] an oracle is termed a
refutation path. The refutation paths are used to control the unification of literals. Oracles have
been used in OR-parallel systems such as the implementations described in this dissertation and in
[Clocksin 1987, Clocksin and Alshawi 1988, Alshawi and Moran 1988]. Oracles have been used for
implementing the OR-parallel component of an AND-parallel Prolog [Shapiro 1989]. Oracles have
been investigated for use in exploiting unification parallelism [Wang 1989]. Research intb the use
of oracles to exploit AND-parallelism is underway at the University of Cambridge Computer
Laboratory [Wrench 1989].

2-12

Chapter 3 | Focus on OR-Parallelism

OR-parallelism is demonstrated in a graphical manner by showing how an OR-only tree can be
~created from an AND/OR tree. With an OR-only tree, the sites for exploiting OR-parallelism are

every internal node with a branching factor greater than one.
3.1 Sequential Prolog

The following example Prolog program is taken from Clocksin [1987].

g(U, V) 1= p(U), q(V), r(U, V).
p(1).

p(2).

q(1).

q(2).

r(X, X).

with goal clause : - g(X, Y).

The search tree corresponding to the execution of this program is shown in Figure 3.1. The

AND node is denoted by an arc drawn across the branches to its descendants.

g(u,v)

p(U) a(v) r(X,X)

p(1) p(2) q(1) q(2)

Figure 3.1 Example AND/OR Tree

Figure 3.2 shows how a sequential Prolog system would search the example tree. The top-level
goal clause g(U, v) is invoked matching the first and only predicate named ‘g’ with arity two (g/2).
Matching the head of clause g/2 causes an AND stack to be created which holds the three subgoals
contained in the body (p(U), q(Vv), r(U, V)). Figure 3.2 continues the search from this point with

the exploration progressing down the page.

3-1

AND Stack

P(1), q(V), r(1,V)

T

q(1), r(1,1)

4

r(1,1)

a(2), r(1,2)

r(1,2)

P(2), q(V), r(2,V)

T

q(1), r(2,1)
r(2,1)

a(2), r(2,2)

r(2,2)

Instantiations

Solution
node set {1,2,5,3,7,4}

Fail
node set {1,2,5,3,8}

Uus=2
V=1
Fail

node set {1,2,6,3,7}

Solution
node set {1,2,6,3,8,4}

3393 3933

Figure 3.2 Sequential Prolog Search

3-2

The arrow in the AND stack column points to the top of the AND stack, with the subgoals to the
right of the arrow contained further down in the stack. When a solution has been found, an implicit

failure is assumed which forces backtracking and continues the search.

Figure 3.3 AND/OR Tree Node Labelling

Labelling the nodes in the tree from top to bottom, and from left to right we get Figure 3.3.
Exploration of the search tree involves four sets of nodes corresponding to the four combinations of
OR branches in the tree. Sequential Prolog creates these combinations by exploring the four node
sets in the following order:

1,2,5,3,7,4
1,2,5,3,8

1,2,6,3,7
1,2,6,3,8,4

With sequential Prolog the entire search space is explored by a single processor, so the tree has
been partitioned into one single large chunk. Next we consider how to partition the search space
into multiple sections to exploit either AND or OR-parallelism. After a tree has been partitioned, a

parallel search is executed with each partition being explored by a separate processor.

3.2 AND/OR Partitionings

Partitioning the tree in any manner would allow more than a single processor to search the tree
simultaneously. The dotted lines in Figure 3.4 represent the boundaries of separate partitions of
the tree. This tree is split by two vertical lines partitioning the tree into three sections. The first
section contains nodes {2, 5, 6} the second section contains nodes {1, 3, 7, 8} and the third contains
node {4}. If we had three processors to search this tree, it would be very convenient to have them
search in parallel with Processor 1 exploring the nodes in set 1, Processor 2 exploring set 2, and

Processor 3, set 3. This type of parallelism is AND-parallelism as each processor is receiving one of

the branches of the AND node to explore. The difficulties with AN D-parallelism is that there may
be shared variables among the branches of the AND node. When there are variables shared among
the branches, and these branches are explored on separate processors, then the processors must
somehow communicate their bindings to assure consistency. With OR-parallelism there are no
shared variables and the separate branches of an OR node can be explored by separate processors
without the need to communicate bindings. If there were more or less than three processors
available to explore the AND node, then a splitting algorithm would control which processors were
assigned to which branch of the AND node. In many cases this splitting algorlthm would be biased

to favour one section of the AND node over the others.

Processor 1

Processor 3

Processor 2

Figure 3.4 AND Partitioning

The biasing applies to which side of the tree is to be favoured. This is a guess that more of the
work will be located on that side of the tree. If there is more work on a particular side then either
more processors should be assigned to explore that section of the tree or, that side of the tree should
be contained in a smaller partition. Figure 3.5 shows both of these types of bias. In Figure 3.5a two
processors are splitting the AND node with a left-hand bias. The assumption is that there will be
more work to perform on the left-hand side of the tree. The left-most branch is placed in a partition
all by itself to be explored by a single processor or equivalently, Processing Element (PE). Figure
3.5¢ shows this left biasing when there are four processors available to split the AND node. Two of
the processors are assigned to the left-most branch (PE1 and PE2), and the other two PEs are each
given a single branch. When there are more PEs than branches, more than one PE is assigned to

the branches on the side of the tree which the splitting bias is applied to.

PE1 | |

: PE1 :
i PE2 | PE2
| |
1 1
a. Left bias b. Right bias
two processors two processors

PE2
c. Left bias d. Right bias
four processors four processors

Figure 3.5 Biased Partitions

In all of the cases so far, the branches of the AND node have been split among multiple PEs
without splitting any of the OR nodes. OR nodes can be split among a number of processors so that
each of the branches of the OR node are tried simultaneously. Figure 3.6 is an example of splitting
an OR node between two processors. PE1 explores the left branch of the OR node, and PE2 explores
the right branch.

PE1 PE2

Figure 3.6 Splitting an OR node

3-5

This is a very inefficient partitioning since node 5 (see Figure 3.3) is explored by PE1 only, node
6 is explored by PE2 only, with all of the other nodes in the tree explored by both PEs. The
sequence of traversal for each of the PEs is performed simultaneously resulting in the following

node sets being explored:

Processing Element 1 explores nodes

) b 3 3, 77 8) 4
Processing Element 2 explores nodes 3 4

2,5
1’2)6, ’7,8,

This shows that there is duplication of effort in searching most of the tree. Duplication of work
is not necessarily an undesirable part of partitioning the search space. If we consider that nodes 5
and 6 may not be the leaves of the tree, but may have very large subtrees below them, then the
duplication becomes less important. With very large subtrees below nodes 5 and 6, partitioning
only the single OR node could reduce the time for searching the entire tree by nearly half. Figure
3.7 shows how two processors would partition this new tree. The work of exploring the two very

large subtrees below the branches of the OR node is split between the two PEs.

PE1 PE2

precelelelele |

Figure 3.7 Partitioning Two Large Subtrees

It is just as simple to partition each of the OR nodes in this search tree, and have each of the
processors automatically pick the correct branch to take. Using the same tree as an example,
assume that two processors are exploring from the root of the tree. At each OR node, a processor
takes the branch number corresponding to that processor’s identity number. Assume that the
branches in the OR node are numbered from left to right. Figure 3.8 shows the result of having two

PEs search the tree.

3-6

Figure 3.8 Incorrect Partitioning

Whenever an OR node is explored, each of the two processors takes the branch number
corresponding to that processor's number. Processor 1 always takes the first branch and
Processor 2 always takes the second. In this manner, there is no duplication of the OR node
branches. In this strategy the PEs simultaneously explore:

Processing Element 1 explores nodes

, > I 3’ 7
Processing Element 1 explores nodes 3,8

2,5
’ ’6,

I b

This is an incorrect partitioning (not a complete search of the tree) since not all combinations of
OR branches have been explored. The two sets shown here are equivalent to the first and fourth

node sets explored by sequential Prolog (see Figure 3.2). There are two sets missing in this search:

(1) The combination containing the first branch of node 2 with the second branch of node 3.

(2) The combination containing the second branch of node 2 with the first branch of node 3.

A simpler way to look at the searches performed by sequential Prolog and Delphi is to

transform the AND/OR tree generated by Prolog into an OR-only tree.

3.3 OR-Only Trees

For Delphi to be able to exploit the OR-parallelism in an AND/OR tree, the '"AND' goals are
stacked and then sequentially executed, just as they are with sequential Prolog. For explaining
search strategies it is useful to have a pictorial representation of an AND/OR tree in its
transformed state of an OR-only tree. This is done by duplicating some of the branches of an AND
node and omitting some other AND branches. Throughout this dissertation the partitioning of OR-

only trees among multiple processors is shown. The AND nodes are still being executed by the

3-7

Path Processors (for now, a Path Processor can be thought of as equivalent to a PE), but as they are
executed sequentially, they are not shown in most of the diagrams. Delphi only exploits the OR-
parallelism (or OR branches) of and AND/OR tree, so the AND nodes are generally not shown. This
section demonstrates how an AND/OR tree can be transformed into an OR-only tree. Figure 3.9

shows the same example tree being rearranged so that the OR-parallelism is clearly shown.

branch 2

branch 1 branch 3

a. Separation of the three

AND branches
AND branch 1
AND branch 2
R AR W e ...-ANDbraHCh3
b. Copying of AND c. Sites for exploiting OR-
branches 2 and' 3 parallelism

Figure 3.9 Creating an OR-only Tree

Every branching point on the OR-only tree is a potential site for exploiting OR-parallelism. All
of the AND nodes have been removed, so there will be no problems with maintaining consistency of
bindings across partitions. Given this form of the original tree, it is easy to demonstrate how two
processors would perform an exhaustive search. They would both start at the root of the tree and

then split up at the first OR node or choice point. After this split, they would each continue to

3-8

search the tree in the manner of sequential Prolog (depth-first left-to-right search with
backtracking) stopping back at the node where the Processors originally split up. Labelling the
nodes in this OR-only tree we get Figure 3.10.

11 12 13 14

Figure 3.10 Labelling Nodes in the OR-Only Tree

Standard sequential Prolog searches the nodes of this OR-only tree in the following order:

1,2,3,5,7,11,8,12,4,6,9, 13, 10, 14

This search is called a depth first left to right search with backtracking. In this search there is
no partitioning of the tree, therefore the search can be accomplished by a single uniprocessor. Also,
since there is a finite number of branches, and each of these branches is a finite length, this tree

can be completely searched by the single processor.

Two Processing Elements could simultaneously search the nodes of this OR-only tree:

Processing Element 1 explores nodes 1,2,3,5,7,11,8, 12
Processing Element 2 explores nodes 1,2,4,6,9,13,10, 14

For use in describing Delphi searches, this OR-only tree still contains redundant information.
There are seven deterministic OR nodes (and OR node where the outward branching factor is equal
to one) in this tree. These branches do not represent true choices so are not displayed in most of the
OR-only trees within this dissertation. Thé proper OR-only tree corresponding to the original
example search space is shown in Figure 3.11. All of the non-leaf nodes in this tree are sites for

exploiting OR-parallelism.

3-9

Figure 3.11 OR-Only Tree without Deterministic Branches

Figure 3.12 shows how the OR-only tree without deterministic branches can be partitioned by
multiple Processing Elements. Figure 3.12a shows a partitioning for two PEs searching the tree.
PE1 and PE2 both start at the root of the tree, and then split up at the first choice point. Below that
point, the processors explore the entire subtree as if they were a single sequential Prolog. If there
were four processors available, they could partition the work as shown in Figure 3.12b. All four
PEs start at the root of the search space. PE1 and PE2 take the left branch at the first choice point.
PE3 and PE4 take the right branch at the first choice point. This same type of split occurs at the

second choice point reached by each of the PEs.

I 1
PE1, PE2 PE3, PE4
PE1 1 PE2 1
| ! l !
| |
| |
1 1
| |
| ! I |
| PE1 | PE2 | PE3 | PE4
I |
1 1
a. Two processors b. Four processors

Figure 3.12 Exploiting OR-parallelism

3-10

In a Delphi search, the execution of AND branches (of a particular AND node) is duplicated on
each of the Path Processors which encounters the AND node. The creation of an OR-only tree from
the AND/OR tree shows this duplication of AND branches. The tree itself however is not actually
generated or held in memory. The clause instructions to be executed can be found only once in
memory, and they are held sequentially. These instructions are not duplicated in the program
space which contains the compiled-Prolog program. The compiled code is stored in the same way as
in a sequential Prolog system. Chapter 4 goes into more detail about the program space
maintained by each of the Path Processors and the intermediate code corresponding to a source

Prolog program.

3-11

Chapter 4 Oracle Instructions

This chapter describes the intermediate instructions for the creation and manipulation of
oracles. The addition of oracle instructions to the WAM (Warren Abstract Machine) [Warren 1983]
allows OR-parallel search within the control strategies of Delphi. Paths are communicated to and
from the Controller process by using the oracle number associated with each clause in a set. This
oracle number is a parameter of what are called onum or oracle numbered instructions. An
instruction named setmax relays information that a choice point has been reached before ahy choice
is made. Instruction setmax has as its argument the number of clauses in a set; this is equivalent to
the number of choices which must be tried. Nine oracle instructions make up the full complement
of intermediate code needed for implementing any of the Delphi control strategies. These
instructions allow OR-parallelism to be exploited and turn the WAM into a WAMO (Warren
Abstract Machine with Oracles).

4.1 Delphi Prolog

A source Prolog program goes through the following three stages of the Delphi system:

(1) Delphi Prolog Compiler
(2) Delphi Loader
(3) Run time Prolog System

The Delphi compiler takes source Prolog code and generates an intermediate code similar to
WAM instructions. Special indexing instructions for all clauses in a predicate are also generated
by the Delphi compiler. The Delphi loader takes the compiled code and generates oracle
instructions from the output indexing information while loading the program for execution. The
run time Prolog system consists of the code which executes the WAMO intermediate instructions in

addition to the facilities needed for communication with the Controller.

The compiler is a separate component of Delphi which is run on a single host machine. The
compiled code is then distributed to all of the Path Processors along with the system files needed to
execute the intermediate code. The Path Processors contain both the Delphi loader and the run
time Prolog system which load and execute the compiled program according to the current control

strategy.
4.2 Delphi Compiler

At the beginning of the Delphi research, two Prolog systems were candidates for modification;
SICStus (Swedish Institute of Computer Science) Prolog, and SB-Prolog (Stony Brook Prolog, from
the State University of New York at Stony Brook). SICStus was originally chosen and modified to
perform simple oracle manipulations. This system was soon rejected due to the large amount of

code contained in the version that we were using. SICStus had many additional features which

4-1

were not needed by a ‘Delphi implementation, and the smaller public-domain SB-Prolog was

investigated.

SB-Prolog incorporates a WAM-style compiler written mostly in Prolog with an interface to the
C programming language for various low-level components. The compiler produces a symbol table
with offsets which are resolved by the loader, individual clause information given on a predicate-
by-predicate basis and information used by the loader for the generation of indexing instructions.
Only the indexing methods of the original compiler were significantly changed for the Delphi
implementation. Since oracles are intimately involved with the indexing procedures it is

important that this portion of the code be as clear and maintainable as possible.

Information given by the compiler which is used to produce a symbol table include:

® Symbols such as predicate names and constants.
® The type of each symbol. -
® Arelative entry point if the symbol is a predicate name.

Predicate names along with their arity (number of arguments) are put into the symbol table as
each new predicate is compiled. The bulk of the work performed by the compiler is in the creation
of clause instructions which are the low-level instructions to perform the job of matching against a
goal pattern. Each of the clauses within the predicéte generate numerous WAM instructions in an
attempt to unify each of the arguments in a clause head and maintain the proper arguments in the
available registers. The first piece of information generated for each cAlause is the entry point to
that clause's instructions. The entry points to the predicates and clause instructions are used when

the oracle instructions are created.

Indexing information has been added to the original SB-Prolog compiler to create the Delphi
Compiler. Every clause in a predicate has some indexing information associated with it. The
information is given for each clause in the order in which it appears in the program. The format of

this information is:

<type> <value> <entry point>

type is a single character indicating the type of the first argument in a clause
value is a four byte field with various meanings
entry point is a four byte address which is the entry point to a clause

There are seven characters which represent seven types of first argument:
nil

list

constant

structure

integer

variable

zero arguments (for predicates with zero arity)

N < w6 =5

4-2

The value field may contain two different pieces of information depending on the type of the
first argument. For the constant and structure types, value is a pointer to that object's name in the
symbol table. With an integer, value refers to the numeric value of that integer. The value field is
used for hashiﬁg multiple clauses with the same type of first argument which differ textually. For
example, clauses within the same predicate may have either a '1' or a '5' as their first argument.
These clauses will all be of type integer, but the integers they represent are different. These
clauses would be hashed according to the value of their integer first argument. For constants and
structures, the same principle applies. The constant or structure arguments can be subdivided into
categories containing an exact textual string of a particular constant or structure. Clauses with
either nil, list, variable, or zero as its type do not require a value to be associated with them. Each
of these types represents only a single category of argument, so there is no need to hash them. The

value field for the types nil, list, variable or zero will be null.
4.3 Delphi Loader

An example of intermediate instructions created by the compiler and loader is shown in
Appendix 4a. A source Prolog program is given along with its loaded format to demonstrate how
indexing is performed by the Delphi loader. The appendix contains examples of most of the oracle

instructions which are described in this chapter.

Indexing information emitted by the Delphi compiler is used by the Delphi loader. Oracle
instructions are generated at load time and arranged in a uniform format after the symbol table
and clause instructions have been loaded. The entry point of a predicate becomes the first availalble
memory location after the symbol table and clause instructions. The instruction name for the entry
point of any predicate is jumponspecial. Instruction jumponspecial takes five operands or arguments
which are pointers leading to each of the possibilities for any type of first argument in the goal

which is special.

The first argument of a goal to be matched is either special or general. A general argumentisa
variable with a special argument being anything other than a variable. Zero arity goals do not
have a first argument so are neither special nor general. There are five categories of special
argument: nil, list, constant structure, or integer. The jumponspecial instruction has five pointers
as arguments associated with each category or set. If the first argument of a goal to be matched is
special, then one of the five pointers is followed. A jump to a special set is taken if the first
argument of the goal is special. If the first argument of the goal is general, then no jump is taken
and the program pointer falls through to the category or set of clauses which is located directly

below the jumponspecial instruction.

The format for indexing instructions is equivalent for all predicates with arity greater than

zero. The entry point of these predicates is the jumponspecial instruction which has pointers to the

4-3

five types of special set. If the goal clause does not have a special first argument, then a fall
through occurs to the code directly beneath the jumponspecial instruction. For zero arity predicates,
the jumponspecial instruction is not needed. Since there are no arguments to index, the goal will
match the heads of all candidate clauses in the predicate. For this reason, the zero arity predicates
have a different format for their entry point and indexing instructions. There is no jumponspecial
instruction as the first instruction to the entry point. The entry point to the predicate leads to the

first onum instruction of a single set containing all clauses within the predicate.

Clause instructions generated by the compiler, are located before the entry point to the
predicate. The predicate entry point begins with a jumponspecial instruction which has five
arguments associated with it. These five arguments are pointers to sets of clauses whose first

arguments will most probably match the given goal.
4.4 Oracle Numbered Instructions

Modifications to the original SB-Prolog WAM include the addition of instructions named
'oracle numbered instructions'. These instructions contain an argument which déscribes that
clauses position within a group or set of clauses. Since this argument is a numeric field, these
instructions are called onum instructions where onum is an abbreviation for oracle number. There

are four onum instructions used by the Delphi Prolog system to index and execute clauses:

® onumtry build a choice point

® onumretry update a choice point

® onumtrust remove a choice point

® onumsing do not build a choice point

Three of these four new instructions are analogous to their WAM counterparts try, retry and
trust. The fourth (onumsing) is a special instruction for Delphi where you want a Path Processor to
pick some clause and then never backtrack to it again. This instruction is often used in the
execution of non-backtracking control strategies. All four onum instructions have the same format.

This format contains an instruction name followed by three arguments:
onum< suffix > argt arg2 arg3

The onum instructions each refer to an individual clause within a predicate. Arg1is the arity of
the predicate and therefore the arity of the clause which is being referenced. Arg2 is the number of
this clause within the set, and arg3 is the entry point for this clause. As an example, consider a set

which has four clauses in it and has been loaded to run as part of a non-backtracking strategy:

onumtry 2 1 entry point for clause number 1
onumretry 2 2 entry point for clause number 2
onumretry 2 3 entry point for clause number 3
onumtrust 2 4 entry point for clause number 4

The first argument to each onum instruction is the integer 2 showing that the arity of the
predicate (of which these clauses are a part) is 2. The second argument is the oracle number of the
clause. This number represents a clause's position within a set of clauses which have been indexed
together. The entry point to each clause's low-level instructions is given by the third argument.
Each clause will have the same arity number as all others in the set, but will always have a unique

oracle number and a unique address describing its entry point.

Onumsing has the semantics that a choice point is not created before executing the clause
specified in the third argument. It is not the same as an onumtrust instruction which says to
relinquish the last choice point on the choice point stack. There are two places where onumsing is
used. The first case is where there is only one clause within a set to choose from. The other case is
when a non-backtracking control strategy is being used. With non-backtracking strategies, all of
the onum instructions will be onumsing instructions. Since no backtracking is going to be performed
there is no need to create any choice points to backtrack to. With non-backtracking control

strategies, onumsing ensures that no choice points are ever created or destroyed.

4.5 Setmax Instruction

One final instruction needed to implement any of the Delphi control strategies is setmax.
Inétruction setmax occurs at the beginning of each set of clauses, and has as its argument the
number of clauses contained in that set. Even for sets with only one clause in them, the setmax
instruction is still necessary. The setmax informs the Path Processor that a choice point has been
reached. The onum instructions following the setmax can be interpreted in a variety of ways
depending on what the current control strategy is. For example, assume that a non-backtracking
control strategy is being executed where each Path Processor can only follow an oracle that it has
been given. In this strategy, setmax marks the position in the instructions where the given oracle is
decoded to find out which clause should be chosen next. Consider the tree in Figure 4.1 and the

oracles which describe the three paths from the root of this tree through to each of the leaves.

Assume that a Path Processor is following the oracle [1010], and has arrived at the node

indicated in Figure 4.1. The intermediate instructions representing this situation are shown:

setmax 3 INSTRUCTION POINTER IS AT THIS SETMAX
onumsing 3 1 entry point of clause number 1

onumsing 3 2 entry point of elause number 2

onumsing 3 3 entry point of clause number 3

setmax 1

onumsing 3 1 entry point of clause number 1

The next clause number to be chosen by the Path Processor can be decoded only with the
knowledge that there are three possible clauses in the set to choose from. This information is given

by the setmax instruction. The Path Processor then knows that the next two bits of the oracle string

4-5

instructiqn pointer is at
the setmax represented
by this node

oracle leading to this
leaf node is [1010]

orafq le headl to this oracle leading to this
leaf node is [1000] leaf node is [1001]

Figure 4.1 Using the setmax Instrucetion

must be used in determining the next clause to choose. The Path Processor is following the oracle
[1010] and has already arrived ét the position specified by the oracle [10]. The next two bits (10)
are used in determining the proper clause to choose. In this case, it is the right-most of the three
possible branches. The instruction pointer is then updated to pick the third clause in the set by

offsetting to the required onum instruction. The argument at the offset indicated by:
((clause number picked off the oracle - 1) X instruction length of an onum instruction)

will then lead to the entry point of the desired clause.
4.6 Sets of Clauses

Instruction jumponspecial was the name given to the entry point instruction for every predicate
(excluding those with an arity of zero). Special refers to the type of the first argument that is to be
matched. We can consider the register to be matched with as the input argument R. If the contents
of R is anything other than a variable, then it is considered a special input argument. If R is a
variable, then it will be considered a general input argument. When a special argument needs to
be unified with candidate clauses in a predicate, one of the pointers of the jumponspecial will be
followed. If the input R was a general input, then no branch is taken, and the instruction pointer
falls through to the next instruction after the jumponspecial. This is the beginning of the set of all
clauses or plenary set. All of the other sets contained within the indexing instructions are subsets
of the plenary set. In a zero arity predicate, no jumponspecial instruction is used, and the entry
point to the predicate is the plenary set (and only set) for that predicate. There are eight different

types of set for predicates which have an arity greater than zero. These sets are listed in Table 4.1.

4-6

Set Contents

plenary all of the clauses of a predicate

clauses in the predicate with an empty list
as their first argument

nil

list clauses in the predicate with a non-empty
list as their first argument

clauses in the predicate with a constant
constant (which is not the empty list constant) as
their first argument

structure clauses in the predicate with a structure as

their first argument
integer clauses in the predicate which contain an
integer as their first argument
default clauses in the predicate which contain a
variable as their first argument
fail when there are no clauses in a set, this is

the code which implements a fail

Table 4.1 Indexing Sets

The plenary set contains all of the clauses in the same order as they occur in the predicate. The
five special sets are the sets pointed to by the jumponspecial arguments. The default set is called
this since any special input will match the first argument of each of these clauses. This is because
each clause in the default set has a variable as its first argument. The fail set is not really a set at
all, it is just the location of the code which executes a fail instruction. Appendix 4a contains

examples of most of the indexing sets.

For the following discussion we assume that a backtracking control strategy is being used. The

format of the plenary, nil, list and default sets is similar to the example intermediate code shown in

4-7

Section 4.5. This format is called the standard format for a set. The first instruction in a standard
format set is setmax, and all of the following instructions are onumt ry, onumretry's, and an onumtrust.
If there is only one clause in the set, then a setmax with an onums i ng instruction directly following it
is the standard format. The other three sets (constant, structure and integer), all contain a hash
table which further subdivides the clauses with that type of argument. Each of these hashed sets
starts with a switchon instruction which describes the type of argument that is to be hashed. The

format of these instruction is:
switchon<type> argi arg2

Where type is either constant, structure, or integer.

The first argument of a switchon instruction is the address of the hash table used to subdivide
the clauses. The second argument, arg2, specifies the number of entries in the hash table. The
values to be hashed are generated by the compiler as shown in Section 4.2. The hashing funetion

and an example of its use is shown in Appendix 4a.

4.7 Oracle Stack

In additional to the usual memory allocated for program instructions and control stacks (such
as the heap and the trail), space is also reserved for the creation and maintenance of oracles. This
section of memory is called the oracle stack. Figure 4.2 shows the major memory divisions of the

Delphi run time Prolog system.

Program space is the portion of memory which holds the loaded intermediate code. This code
includes both the compiled Prolog program to be executed, and that part of the Prolog run time
system which is written in Prolog. The majority of space is allocated to a combination of the heap
or global stack, and the local stack. Contents of the heap include dynamically constructed lists and
structures, while the local stack holds activation records for active Prolog clauses including
information needed to create choice points. The trail stack contains pointers which allow a
reversible means of binding variables to data structures. When a pattern matching failure occurs,

the bindings can be efficiently undone before the next clause or predicate is called.

4-8

program space

top of heap

N

-

local top

heap

local stack

TN

heap bottom

local bottom

top of oracle stack

NS

oracle stack

L
N

oracle bottom

trail top

trail stack

trail bottom

7

Choice points consist of special-purpose registers containing pointers to locations within the
other stacks. These pointers allow the state of the machine to quickly return to a previous node in
the search space when backtracking oecurs. Choice points are created when there exists more than
one choice or clause within the set which must be explored. If pattern matching with clause
number n of the predicate fails, then the state of the machine is returned to its original form (before

clause n was tried), and clause number n+1 is attempted next. When the final clause of a predicate

Figure 4.2 Memory Allocation

is attempted the choice point ceases to exist.

4-9

<

Choice points contain pointers to the following structures:

Arguments of the original procedure.

The environment of the calling procedure.

Previous choice point.

A program space address if the procedure succeeds.

A program space address if backtracking is necessary.

Pointers to the top of the heap and trail before the procedure was invoked.

In addition to these fam_iliar special-purpose pointers, a Delphi Prolog choice point also has an
ORC register. ORC points to the top of the oracle stack before the procedure was invoked. The oracle
stack holds any information concerning oracles which must be saved throughout calls to other
procedures. When backtracking returns control to a procedure which placed information on the
oracle stack, that information is available for updating. The particular control strategy dictates
the use of the oracle stack. For the non-backtracking strategies, the oracle stack is only used to
hold the route through the search space that the Path Processor has taken. For some of the
backtracking control strategies, the oracle stack holds a structure which maintains the current

path and implements limited choice points.

4-10

Chapter 5 Models of Communication

In considering any implementation involving concurrent execution, a major topic is how to
communicate among the concurrent components. For a set of processes communicating across a
network, message-passing systems are widely used for Interprocess Communications (IPC).
Message passing provides both a means of transferring data among different host machines, and a
method for process synchronisation within the system. Two message-passing IPC facilities have
been used in different implementations of the Delphi machine. The first is the Amoeba-
transactions-under-UNIX model of communications [Mullender 1987]. The communications
abstraction in Amoeba is the transaction between a client and server process. The ULTRIX
implementation of 4.2BSD IPC was the second IPC facility used [ULTRIX-32 Supplementary
Documents: Volume III System Managers 1984]. Socket connections are the communications

abstraction in this IPC model.
5.1 Client-Server Paradigm

The client-server paradigm is a method of interaction among processes. These processes can be
running on the same host machine, or could be operating over a network within a distributed
system. The IPC mechanisms described in this chapter use this client-server model of
communications. In this model, an active process called the client, makes a request to the passive
process called the server, which then responds to the request. The client initiates communications
with the server by sending a message to it. The server, whose function it is to reply to such
requests, responds by performing an action and possibly sending a message in return back to the
client process. Servers are processes which offer services across a network to a variety of executing
processes which will request these services. One implementation of a server: is as a background
process which is blocked waiting for a client process to make a request. The server process is
blocking on an input appearing on its communications port. The process is essentially idle and can
do no useful work until a message arrives on that port. Only then is the process awakened and able
to do useful work such as performing a calculation and replying to the client process. A common
usage of the client-server paradigm can be demonstrated with the time-of-day server shown in

Figure 5.1.

A process called the time-of-day server is shown as a background process polling its
communications link named port 2034. This process can do nothing else except wait for an
incoming message on the port. Another process comes into existence (the client), makes a
connection to port 2034 (which he knows the time-of-day server is waiting on), and sends a message
requesting the date and time. The time-of-day server responds by determining the date and time

and sending the results back to the client in a human readable format. The server process then

5-1

reverts to the same state it was in before the request was sent, blocking until another request

arrives on its port.

time of
day port 2034
server

time of .
request time of day .
day port 2034 | 4 client

server

H g —~ =3

time of
day port 2034
server

Wed Jan 17 11:54:36 .
| client

Figure 5.1 Client-Server Paradigm

5.2 Blocking and Non-blocking 1/0

Blocking on input is one of the methods used by message-passing IPC mechanisms to
synchronise communicating processes. The server process is halted indefinitely until a message
arrives. A second process sends a request to this server and the processes synchronise. Only after
this synchronisation takes place can the server process continue execution on its own. Data is
written by the client process and read by the server process when this synchronisation occurs. This
data is the message which is passed between the client and server processes. Message-passing IPC
mechanisms can serve as both a synchronisation mechanism and a means of sending data around a

network of processes executing on multiple machines.

Options may exist for the programmer to specify whether he wants blocking or non-blocking
input/output. As was already shown, having the server block on an input (or read) is a very simple
way to allow clients and servers to synchronise and communicate. If the server only has one task
that it performs and only a single client requests this service at any time, then there is no need for
providing a non-blocking read. The server has nothing else to do but answer requests from clients,

so it may as well block waiting for a message to arrive. In many other applications, the tasks may

not be as simple as the function of the time-of-day server. Non-blocking input or output strategies
may be desirable or even necessary for the application. Figure 5.2 shows four strategies for

blocking on a read or a write.

both blocking block on read
read read
S > S >
C > C I
write write
a. b.
block on write no blocking
S read |read
|
C > C |
it | write
write
C. d.

Figure 5.2 Blocking Reads and Writes

When a write occurs in some user-level output commands, the process transmits data to a
buffer cache and control immediately returns to the program. This is called an asynchronous write.
Figures 5.2b and 5.2d both show examples of the client process (C) performing asynchronous or
buffered writes. The reads and writes occur where the vertical line touches either the server or
client process lines respectively. Two reasons for providing asynchronous writes are that the client
may have multiple servers which it is sending messages to, or the client may have other

calculations to perform immediately after the write takes place.

The left-hand side of Figure 5.2 shows the synchronous or unbuffered writes where a client
blocks until the message is sent to the device at the receiving side. This is a very clean method of
the system sending messages as leés or no buffer space is necessary to hold the information at each
end. " In Figure 5.2a both the server and the client processes block on their read and write
respectively. With this input/output strategy no extra buffer space is required to hold the data
which is transmitted or received. Figures 5.2b and 5.2c require buffer space to be allocated on the

non-blocking side of the communications channel, the write and read end respectively. When

5-3

neither reads nor writes block (Figure 5.2d),.buffer space is necessary on both the client and the

server sides of the communication channel.

One common implementation which will permit any of the I/0 strategies described is to have
buffers for both of the communicating processes. This is a general format and an efficient method
of providing communications among processes running on time-sharing machines. Figure 5.3
shows the activities that take place when a read or write is performed with buffering on both sides
of the communications channel. On time-sharing machines this means that other processes can
continue to run until the information is available on the receiving end of the transmission. It also
allows the writing side to immediately return as soon as the information has been copied to a
system space buffer. Figure 5.3 demonstrates an implementation of a system which copies a buffer
from the user address space to the system address space before the data is sent to the server process.
It is not necessary in general to copy a system space buffer to avoid blocking other processes on the
machine; this example is an implementation detail of some systems such as the BSD version of
UNIX. The read and write commands are taken from the ULTRIX.documentation [ULTRIX-32

Programmer's Manual: Sections 2,3,4, and 5].

user
address 7 V/
space 4 Z % //A// %

< write(5, writebuf, 3) Q read(5, readbuf, 3)
system % L
address %/ /A é//
space

client side —— server side

Figure 5.3 Buffering on Both Sides

Inefficiencies caused by this type of buffering are the copying from the user area into the
system area on the write side, the context switches that take place, and the copying of the system
buffer back to the user area on the server or receiving side. An example of a system which does not
require this buffering is a process written in the programming language occaAM running on a
network of transputers [Burns 1988]. One use of synchronous reads and writes could be for real
time processing on a non—ﬁme—sharing machine. Here a call to a read or write causes a context
switch. The process which is still performing the computations is always the running process while
the other process is blocked waiting to send or receive data. Extra care has to be taken to avoid

deadlock when using synchronous I/0.

Pipes are an example of combining asynchronous reads and asynchronous writes. Using the
client-server model, a pipe begins by the client performing asynchronous writes to a port (this is the
buffer, or pipe), while the server is blocked on a read from that same port. When the pipe is full, the
writer (client process) is blocked and asynchronous reads occur by the server until the pipe is
emptied. When the pipe is empty the server blocks on a read. This process continues until an end

of file condition occurs.

Asynchronous reads and writes may allow clients and servers to check the status of multiple
ports without blocking. Checking the status of multiple ports could be beneficial when
implementing a client which has connections to multiple servers and often writes to each of these
servers. Each of the buffers which hold information from an individual port can be checked to see if
a write could be performed on that port without the client blocking. A free port could then be
selected to write to, and the client would send information to that server. An instruction which
allows the monitoring of multiple ports is the select call provided within ULTRIX. The ULTRIX
imple‘mentation of 4.2BSD IPC allows any of the I/O strategies which have been described; the
Amoeba IPC facilities do not. :

5.3 Amoeba IPC

The Amoeba Distributed Operating System [Mullender 1987] was the first system which was
investigated for running the Delphi machine. Amoeba offered a simple user interface coupled with
potentially fast communications. The first decision to be made was between using the native
Amoeba system and the Amoeba-transactions-under-UNIX implementation. This was a very
simple decision as the very basic services that were needed for a full Delphi machine were not yet
available with the native Amoeba implementation. These facilitiesA included the ability to read and
write files (a file server), a clock for timing results, a remote file distribution service, and many
standard UNIX library calls. Amoeba-transactions-under-UNIX uses the IPC mechanism of
Amoeba but runs under the UNIX operating system. This means that all of the facilities available

on a UNIX system would be available with this implementation.

The alluring feature of Amoeba is the simplicity in the user-level code needed to send messages
across a network. Figure 5.4 gives an example of a simple successor server written using Amoeba-
transactions-under-UNIX. When sent an integer, this server replies by sending back the sucecessor

to that integer.

The code demonstrated in Figure 5.4 is an example written to succinetly demonstrate a simple
server. Many deficiencies such as the lack of error checking, and having a port hard-wired in the
header, would not be used in a real server. With that caveat, this example is a real runnable server
which can be started on any of the available host machines and left to run for as long as the

machine remains up. A client could at any time request this service by sending an integer I to the

5-5

port named p1, and the server would reply by returning the value of I+1. A client program which

uses this server is shown in Figure 5.5.

If the successor server program is executing on one of the available host machines (running
Amoeba-transactions-under-UNIX), and this client program is started on the same or any other

host machine, the results will be to print out “i = 8".

#include "/usr/amoeba/h/amoeba.h"

main()
{
header hdr;
int i;
assigning a port to
strncpy(&hdr.h_port, "pl", PORTSIZE); gi;engdt(l))
while (TRUE){
getreq(&hdr, &i, sizeof(i)); body of the server
TS which is performed
P
putrep(&hdr, &i, sizeof(i)); forever
3
} /* end main of successor server ¥/
Figure 5.4 Amoeba Successor Server
#include "/usr/amoeba/h/amoeba.h"
main()
{
header hdr;
int i = 7;
assignin rt to
strncpy(&hdr.h_port, "p1", PORTSIZE); f—— Ssriceivgei'xl‘:)()m
trans(&hdr, &i, sizeof(i), &hdr, &i, sizeof(i)); —
printf("\ni = %d\n");
} /* end main of successor client */ | Initiating
communications

Figure 5.5 Amoeba Successor Client

5-6

Ports are the communications addresses which connect the server and client processes during a
transaction. In the version of Amoeba we used, the port is a six-byte number chosen by the server
itself and placed in its proper position in the header structure. In the example client and successor
server, this was the only field which was filled in the Amoeba header. Most of the fields in an
Amoeba header are used to manipulate objects and to access the privileges that a user may have for

a particular object. The Amoeba header structure is shown below:

typedef struct {

port h_port; /*server port*/
port h_signature; /*authentication*/
private h_priv; /*private part, for object manipulation*/
unshort h_command; /*operation code*/
Tong h_offset; /*offset in the object*/
unshort h_size; /*size of buffer#*/
unshort h_extra; /*extra parameter*/
} header;

This header is one of the two components of an Amoeba message. A transaction consists of the
client sending a message to the server and the server sending a message back to the client. These
messages both have a header part and a user buffer part. This user specified buffer is not
mandatory so sometimes a null buffer is sent in a message. Often enough information can be
placed in just the header portion of a message so the buffer need not be used.

\
The first field of an Amoeba header contains the port of a server process to which this message

is being sent (for a client process). With a server process the port field contains the name of the port
on which the server waits for incoming requests. The method by which these ports are assigned
demonstrates one of the user friendly interfaces to the Amoeba IPC. Amoeba allows a user to
dynamically name ports and initiate servers. Before this facility is described, a brief introduction

to the Amoeba model is given.

Amoeba is a capability-based operating system which provides its users with a means of
manipulating processes, files and any other abstract data types by using capabilities. The data
types which are manipulated are termed objects, and these objects have capabilities associated with
them. Capabilities function as a protection measure (by being sparse and encrypted) to ensure that

users do not interfere with each others objects accidentally or maliciously.

Servers are used as the middlemen between a client process and the objects it wishes to have
access to. A server may have control over one or many different objects; this depends upon the
particular application. In the Delphi implementation capabilities were used to specify and protect
particular processes. Many of the protection mechanisms available within Amoeba were not
needed in the Delphi implementation. The major reason for this is that Delphi was the only project
at the Computer Laboratory which was using the Amoeba system. The capabilities were still
needed, but only to protect Delphi processes from other Delphi processes. The capability data
structure is shown below. The port field is a six-byte character field:

typedef struct {
port cap_port;
private cap_priv;
} capability;

typedef struct { /% private part of capability */

char prv_object[3];
char prv_rights;
port prv_random;

} private;

Capabilities are divided into two parts. The first is the server port which provides information
on where a call should be placed to access the object which is desired. The second part conté.ins all
of the protection and identification fields to manage the use of this object. The first private field,
prv_object[3], can be used by the server to identify this object from any of the others that it
manages. The prv_rights field is ﬁsed as a mask for identifying the operations which the user is
allowed on the object; such as read or write on a file object. The prv_random field can be used as a
protection mechanism by the server to ensure that the capability which has been shown to it is
valid. It is up to the designer of the server just how the access and protection of the objects should

be implemented; Amoeba provides the framework.

Names and capabilities for objects appear to the user in a global directory space accessible from
any of the host machines. This directory is provided by a directory server running on one of the
host machines. When an object is appended to this global directory, its name and capabilities are
incorporated into this structure which is similar to the UNIX directory facility. The object names
are placed in the directory of the creator within this global directory structure. The creator's
directory is a subdirectory of user, which is a subdirectory of root. An example of this directory

structure containing object names and capabilities is shown in Figure 5.6.

This directory structure is examined by using the command 1ist. When used with no
parameters this command lists all of the objects in the user's home directory. The listing contains
the name of the object which is a text string, and the capabilities which that user has for accessing

the object. The first field in the capability portion is the port of the server which is responsible for

5-8

manipulating the object concerned. The other fields are protection and rights of access for the

object.
using command 1ist in directory csk
name of object port of server private part

list

root dirsvr 2 ff 27?027

pool dirsvr 5 ff 2?2?2219

Del1PhiNET dirsvr 856 ff ?2\727?

echo ?2?2?C?? 0 0 ???>0?

Tist DelPhiNET

OracleSv u???2?? 0 0 277?272

AnExSv =77777 0 0 ?R+#87

P3 Ku??7k{ 0 0 m?)?y?

P1 #0J777? 0 0 "?7k8?

p2 c??2??/ 0 0 ?7<&?7?7

P5 vaz??6 0 0 ?2t????

P6 ?Sv??? 0 0 wW???7k?

P7 jreeef 0 0 ?7??T@?

P4 ,??E2? 0 0 ?7?7X?7?7?

P8 '7?777R 0 0 j#?72?

P9 261727 0 0 h?s???

P10 ?-#b7? 0 0 ?778)??

P11 7?)?7K 0 0 ?(0A??
Tlist root Tist root/user/csk
user dirsvr 3 ff G?c??H root dirsvr 2 ff 2?2?2077
pool dirsvr 5 ff 777718 pool - dirsvr 5 ff 2?2219
public dirsvr 22 ff 2'72777 Del1PhiNET dirsve 85 ff 2?2\72?27?
Tist root/user echo ?2??7C?? 0 0 ??7?>0?
mb dirsvr 1 ff 2272227 shout w?Km?? 0 0 ?3?71i
csk dirsvr 7 ff i7§;?7?
gem dirsvr 10 ff ??:7q?

Figure 5.6 Global Directory Structure

As shown in Figure 5.6, the server's port field is either the word dirsvr or the ASCII string
resulting from encoding the port name. A port field with dirsvr indicates that this object is itself a
directory server containing all of the objects that appear below it in the hierarchical structure. To
list all of the objects located below a directory object, the list command is given with a parameter
specifying the pathname for that directory. By altering the access rights to directory structures

and other objects, a complete protection system can be enforced upon the users of those objects.

5-9

5.4 Transaction Primitives

A transaction is a complete circuit of communication consisting of: a request to a server, the
receipt of this request, a reply from the server, and the receipt of this reply. Amoeba provides three
primitives for use in a transaction between a client and a server process: trans, getreq and putrep.
A trans or transaction is the initiating communication by the client process. The getreq (get

request), and putrep (put reply) primitives are used by the server. The syntax for these three is

given as:

unsigned short trans(headerl, bufferl, sizel, header2, buffer2, size2)
header *headerl, header2;
char *bufferl, buffer2;
unsigned short sizel, size2;
unsigned short getreq(header, buffer, size)
header *header;
char *buffer;
unsigned short size;
unsigned short putrep(header, buffer, size)
header *header;

~ Cchar *buffer;
unsigned short size;

A server process blocks on a getreq waiting for a message to arrive on the port specified in the
header structure. When a message arrives the header and buffer structures will contain the header
and buffer of the sending process' transaction. Since the ports must have been identical in both
header structures (of the client and server), the port field remains the same throughout the
transaction. If no client process attempts to contact the server on its specified port, the server
process remains blocked indefinitely. The Amoeba IPC does not provide a non-blocking getreq
command. When a message is received, control returns from the getreq, and the server process is
free to continue its compufation. At the end of this computation a putrep is called, and a message
(header and buffer) is returned to the client process. In a getreg, the buffer and size parameters
give the location and the size of the buffer where data from the client process’ buffer is to be placed.
The returned value is the actual size of the buffer that was transmitted from the client, and is
always less than or equal to the initial size value. Any additional bytes greater than size will be

discarded.

Client processes also block when they perform their trans calls. A trans procedure attempts to
send the message contained in header1 and buffer1 to the server whose port is specified in the
header. It then remains blocked until a reply is sent by the server. This reply is placed in header2,
and buffer2. In Figure 5.5, the successor client has its sending and receiving buffers at the same
address. In this case it was unnecessary to retain the initial information sent (the integer 7), so it
was overwritten when the reply came back. Clients, unlike servers, do not indefinitely block on the

port placed in their header. If a port cannot be located within the time specified in the timeout call,

5-10

an error is returned. Even with the timeout call, the transaction protocol is an example of
synchronous transmission; the client and the server are synchronised with each other when the

data is sent and received.

Appendix 5a shows an example client and server process which use the Amoeba IPC
mechanisms. This code provides a better look at the transaction primitives of Amoeba, and the use
of the capability mechanisms. The capability mechanisms are used in this example code in the
same way as it is used in the Delphi implementation; for avoiding unintentional servers and clients
being proliferated across the network. The timeout procedure shown in the routine tran s_C_output

is defined as follows:

timeout(deciseconds)
unsigned short deciseconds;

The trans in routine trans_C_output (see Appendix 5a) waits for a maximum of ten seconds (the
time is measured in tenths of a second) for locating the port connection specified in the header. If
the port is not located in that time, a timeout oceurs. The error condition shown in case number two
is then reported. A zero value is used if the client is to try and locate the server port for an infinite

amount of time.
5.6 Dynamic Port Allocation

Earlier in this chapter it was stated that assigning a hard-wired port name for a server is not a
good idea. The successor server code in Figure 5.4 is an example of using a hard-wired port placed
in the header. Why this method is unsound will now be discussed along with how to correct the

dangers through the use of capabilities.

Consider the standard Delphi model where we have one Controller process and any number of
Prolog (server) processes on the same or on separate host machines. If we adopt the system of using
hard-wired ports then the Controller must know in advance the maximal amount and names of all
Prolog ports. One wz;y to avoid needing this information is to associate the name of host machine
with the port name. The Prolog on host number one has port named “host1”, the Prolog on host two
has port name “host2”, up to the Prolog with port “hostN”. With this system for naming ports the
Delphi model has been restricted. The assumption made is that there is one Prolog per host
machine, and this is not one of the specifications of a Delphi network. An updated port naming
system could be adopted where an additional letter is added to the port name to uniquely identify a
Prolog executing on the same host. If there are three Prologs on host number one, their port names
would be “hostla”, “host1b”, and “hostle”. This does define a unique naming convention for ports,
but does not help the Controller find out how many Prologs exist, or which port names are being

used.

5-11

Port names come into existence when a Prolog server is started on a host machine; the Prolog
creates or acquires a port designator for itself on initialisation. In the simple successor server, the
port name “p1” was chosen and hard-wired as this server's port. There are numerous problems with
acquiring a port name in this way. Firstly, in Amoeba, no port name is special. Two servers can be
listening on the same port and any number of clients can simultaneously write to a particular port.
The problem this poses is one of security against malicious intruders, and protection against

accidentally initiating more than one server with the same port.

Protection against malicious abuse includes disallowing other users' servers to masquerade as
one of your own servers. When ports are hard-wired, it is a trivial task to read the proper user's‘
server code, get the port name, and start a false server which listens on the same port name. For
the successor server, a false server process could listen for communications on port."p1", answer
back with the proper response (so the real user's of that service do not know that they are
communicating with an intruder), and then perform whatever malicious deeds it was designed to
do. This is one of the ways in which Trojan horses and viruses can be running on machines without
anyone being aware of the fact for a long time. Two situations with false servers can occur:

(1) If the false server is started in place of the real server, then all communications
intended for the real server will be sent to the false one.

(2) If the false server is started in addition to the real server, then it is unspecified as to
which of the servers will get any particular message.

In the second case, it is unlikely that a user of this service would notice anything wrong as the
proper answer will be supplied by either the false or the real server. However, a system manager or
vigilant user might notice the existence of the two server processes unless an extra effort was made
by the intruder to disguise its process status too. The second case also demonstrates a problem that
does not involve any malicious intent-—the accidental occurrence of duplicate servers using the
same port. During the testing phase of a server's life, it is common to start the server, test it, and
kill it so that alterations can be made. When using a hard-wired port, the modified server will be
listening on the same port. If the original (or any other intermediate versions of the original)
server is not killed, then multiple servers could be outstanding listening on the same port. It is
indeterminate as to which server will receive any message sent by a client. This is particularly a
problem with different versions of the same server as some of the older versions might not perform
the proper tasks. Even if the server has been completely debugged, two executing copies will waste
resources on the host machines. There is, however, a use for having multiple servers listening on
the same port. Duplication of a server on more than one host machine is a common method of
providing reliability in a distributed system. With two identical servers, one will remain up even if

the other server machine is down.

5-12

In addition to the problem of unwanted multiple servers, another fundamental difficulty arises
from allowing hard-wired port names; how does the Controller know what servers are available?
Without a centralised service to supply the port names in the first instance, the Controller will not
know what these names are. One solution is to have a file containing all of the potential host
machines and use the port naming scheme as described above. The Controller could then perform a
transaction using each potential port name. For every host machine name in the file, the
Controller would try out the ports “hostnamela”, “hostnamelb”, and so forth, until a transaction
timed out. This procedure could continue until all of the possible port names are queried in order.
The problem with this method is that it does not allow for the possibility of a new server starting up

after the Controller has tried the port name that the server will listen on.

Using the capabilities mechanism provided by Amoeba prevents many of the problems
inherent in using hard-wired ports. Four additional commands are provided by Amoeba to protect
against duplicate port allocations and allow servers to dynamically create their own port names.
The sample Amoeba programs in Appendix 5a demonstrates the use of capability commands to
safely create and advertise port names. Procedures server_put_capability and
get_server_capability demonstrate the capability commands provided by Amoeba. The call to
unigport fills the given port structure with 48 random bits. It is unlikely that this generated
random number will duplicate a port name already in existence. The random number in the
private part of the capability is also generated for use in authenticating a user's capability for that
object. The syntax for unigport is:

unigport(newport)
port *newport;

Three routines are used to update the global directory structure maintained by' the directory
server. This global directory holds the names and capabilities for all known objects. For the Delphi
implementation, the objects included in this directory space are the Delphi processes (the
Controller and Prolog processes). This same system is used in the example programs provided in
Appendix 5a; the objects are all processes. Amoeba command am_10okup attempts to find an object
name in the directory structure. Deletion of an object name and capability is performed by
am_delete, and am_append adds a new object name and capability to the directory space. The syntax

for these three commands is:

int am_append(objectname, capabilityforobject)
char *objectname;

capability *capabilityforobject;

int am_delete(objectname)

char *objectname;

int am_Tookup(objectname, capabilityforobject)
char *objectname;

capability *capabilityforobject;

5-13

An example of the echo server's entry in the global directory space is shown in Figure 5.6. Also
shown are all of the capabilities created for a configuration of the Delphi machine. The Delphi

machine capabilities are listed under the directory De1PhiNET.

As the size and quantity of Delphi processes grew, the Amoeba system started crashing
frequently. When up to one half of the code in the smaller clients or servers was dedicated to trying
to catch Amoeba system errors, or avoid them, a new Delphi machine was implemented. This new
implementation contained the IPC facilities of the Berkeley Software Distribution of UN IX,
version 4.2 (4.2BSD).

5.6 IPC using 4.2BSD Sockets

Sockets are the communications abstraction used in the 4.2BSD (and 4.3BSD version [Leﬁ'ler?
McKusick, Karels and Quarterman 1989]) Interprocess Communications (IPC) facilities. Sockets
provide a very general IPC mechanism which allows great flexibility in the types of systems which
can be built from them. They function within two standard domains supplied by the system; with
the allowance for any additional communications domains to be supported by the user. The UNIX
domain allows sockets to have names similar to UNIX pathnames, but is generally used only for
processes communicating on the same host machine. Pipes for example, could be implemented
using UNIX domain sockets (and are in BSD). Internet is the domain used by processes which
communicate across a network. Internet is itself divided into two protocols: UDP (Unreliable
Datagram Protocol), and TCP (Transmission Control Protocol). All of the following discussion
assumes the use of TCP as this is the underlying protocol used by the Sockets implementation of
Delphi.

Sockets are the endpoints of communication channels which are set up between processes to
allow them to send and receive messages. For a pair of communicating processes, each procevss sets
up one socket, and then proceeds through a standard set of commands in attempting to connect two
endpoints together and form a communication link. In setting up a communications link between
processes, the client-server paradigm is used. Separate commands are required depending on
whether the process is initially viewed as a passive server process, or an active client process. After
the channel has been set up processes are free to send and receive communications in any specified
order. Appendix 5b has a pictorial representation of the system commands needed to make a
connection between a client and a server process. Creating a socket connection provides a two-way

communications link between the client and server process.

5-14

Establishing a connection implies that there is a service available, and that the client knows
the host machine and port number on which to find the required service. A server creates an
endpoint of communication using the socket system command and proceeds to bind this socket by
specifying the host name and port number at which this service can be reached. Command 1isten
sets up a queue for client processes waiting for their requests to be handled by the service. The

accept command causes the server to block on the named port waiting for incoming traffic.

A client process only has to perform two system commands before a connection to a server can
be established. Command socket creates an endpoint of communication, and connect does all of the
rest. For a client process to perform connect, it must know both the Internet address of the remote
host, and the port number on which the service resides. In the 'shout’ client example shown in
Appendix 5a, two command-line arguments are given to the client process. These two arguments
are needed to establish the server's identity and location on the network. The host machine's
Internet address is returned by gethostbyname. The port on which the service listens is returned by
the getservbyname system command. This port is a number which could have been hard-wired by
directly putting the value into the sp->s_port variable. There is also a method for using a
predefined name (associated with a port number). An example of starting the 'shout’ client
program is with the command shout path0o1 test2, where path01 is the host machine name, and

test2 is the name of the port where the required service can be found.

TCP provides stream socket connections with reliable delivery of all messages. A stream has
the property that the bytes sent at one end of the communications link will be received at the other
end exactly as they were sent. Once a connection has been established, the processes are free to
send messages in either direction along this bidirectional communications socket. This process of
sending and receiving messages can continue until the channel has been closed. Appendix 5 has a
pictorial representation of the system commands used in sending and receiving data between a

client and server.

A comparison is now given between the transaction commands of Amoeba and the reads and
writes using sockets. A transaction entails the entire process of a client initiating communications
by sending a message to a server and having that server respond. The equivalent code for a system
using sockets is to have the client initiate communications with a write to a socket, and the server
receive this message with a read command. Then, the server must respond with a return message
by writing to the socket, with the client now receiving this message with a read. This involves four
system calls and therefore four context switches to execute the code. It might be expected that the
Amoeba system would show a better performance than the generalised IPC using sockets. Amoeba
did not show any spectacular performance, even when the kernel stayed up long enough to run an

entire four queens problem.

5-15

5.7 Echo Servers

-

One of the original bugs in the Amoeba system was a problem with the trans call. The error
message, “FAIL because of network or server crash” would be returned even when the network and
the server were fine. The problem occurred when the following conditions were combined:

(1) There is more than one client processes competing for the same service.

(2) The clients are communicating very frequently to the server.

With the amount of communications that takes place in any of the non-backtracking
strategies, these conditions always existed, and the Amoeba implementation was useless for them.
While this bug was being investigated, the first backtracking strategy was implemented—
automatic partitioning only. The automatic partitioning only strategy does not involve any control
communications between the Path Processors and the Controller. With this strategy, the Amoeba
system was able to run a complete Prolog problem without crashing. The frequent communications

were causing many of the problems.

Some tests were performed to compare communications times using Amoeba-transactions-
under-UNIX and the ULTRIX implementation of sockets. A very simple problem, an echo server,
was chosen as the benchmark. An echo server receives a buffer and sends the exact same buffer
back to the client process. The servers and clients to execute this problem were written using

Amoeba IPC and sockets. Code for all of these programs can be seen in Appendix 5a.

An initial decision in the design of the Delphi machine was to pack the bits which represented
choice points instead of having one bit per byte. This greatly reduced the size of the
communications so that oracle sizes were mainly below 100 bytes (800 bits). Packet sizes from 1
byte to 100 bytes were tested with both of the systems executing simultaneously. The two servers
were started on the same host machine, with the two clients started simultaneously on a different
machine. The first test was to allow 100 transmissions of each of the packet sizes. The results are

shown in Figure 5.7.

Though the servers and clients were started at the same time, conditions on the network could
exist which would benefit one of the two IPC mechanisms. For this reason, this test with 100
repetitions was tried numerous times on different machines and at various times of the day.
Though the exact data points differed with each time trial, the trend was always that the Amoeba
points were slightly above the Socket data points. The Amoeba times were always more consistent
than the Sockets times. Using such a small number of repetitions creates more erratic data.
Additionally, the number of communications represented here is slightly lower than many of the
Delphi benchmarks. The trials were performed again with the NUMTIMES variable in the header file

set to 1000 (see Appendix 5a). These results are shown in Figure 5.8.

5-16

.64 | | | I | | | | |
56 - : Amoeba
| e
S - EE b L
4l . sm R
Y ° as® st an -: .: [s [Fle sl e o -
S ol Dniol S .
T iie ke e RS
E 32le 2110 mgi ozl 5
M = ::E]: ::- :.E ::: E-IEI : .
T IliIm o anomaees
T BIoniEIomnm amoraesm o
I .24 e @i ln EL YL Siag .
M Snowmnonmme rmeha o an e
E . = :-. fans u @] ™ Bl s "y a [ls e .
s oiwosdEsns " = 11 Sockets
(s) 16 |- 1 I3 ¥iiii- LI .
i TED
ciom o ite
08 L _
e i
- -
(Y0 .
[= (O]
0 B | | | | | | | |

30 40 50 60 70 8 90 100
SIZE OF PACKETS (bytes)

o
N
o
N
o

Figure 5.7 100 Packets Transmitted

During the simultaneous running of the two echo server systems, it was noticed that the
Amoeba client process was taking a much longer time to complete than the client using socket
connections. The communications times (shown in Figure 5.7 and Figure 5.8) were not causing the

problem since they are fairly similar.

5-17

1 I [l | T T
'j‘ @
.:m ,
6
Amoeba
5
S
Y
E
4
E
M
T
I 3
M
E :
© Poyets
2 %ﬁmﬁ&]; —
1 1 | | I | | l | L

0O 10 20 30 40 50 60 70 8 90 100
SIZE OF PACKETS (bytes)

Figure 5.8 1000 Packets Transmitted

One possible explanation of this is a problem in Amoeba with the frequency of packets. The
shout client process is hammering away at the echo server sending as many packets as it possibly
can across the network. Perhaps the server process cannot keep up with the demand, and starts
dropping the packets. This would lead to an increase in the execution times since these dropped

packets have to be retransmitted by the client (Amoeba IPC ensures reliable delivery).

5-18

It is simple matfer to test this hypothesis by putting a delay in the client loop. This delay would
slow down the frequency of packets sent to the server. Instead of a tight loop consisting of just the
trans call, an additional loop with a delay variable was added. In Appendix 5a the delay variable is
called DELAY and can be seen in both the Sockets code and the Amoeba code. For Figures 5.7 and 5.8,

this DELAY variable was set to zero.

E 500
L
A 400— —
P
]% 300 — —
D
200 —
}‘ Sockets Sockets
M 100 —
E
(S) 0 I]
DELAY =0 DELAY =10
VALUE OF DELAY

Figure 5.9 Execution Times for 100 Packets

Figure 5.9 is a bar graph showing the execution times of the Sockets and Amoeba systems. For
each size of packet from one byte to one hundred bytes, both systems sent and received one hundred
packets of each size. On the left-hand side are the times. with no delay (DELAY set to 0) in the client
loop. On the right, DELAY has been given the value 1000. The value 1000 means that the delay loop
was executed 1000 times. It appears counterintuitive that when a delay is added to the client’s

transmission loop, the execution time decreases; but that is exactly what happened with the

Amoeba system.

Figure 5.10 shows a similar plot with the number of transmissions extended to 1000 times per
packet. The final plot shows the execution times for transmitting packet lengths of from 1 to 100
bytes 10,000 times each (Figure 5.11). The code for the Amoeba Ethernet driver was checked after
these results had been demonstrated. A bug was discovered in the driver which caused the server

process to frequently drop packets and force the client to retransmit.

5-19

E 14,000

L _ Amoeba

A 12,000 — i

P

10,000 —
S 00
D .
6,000 —

T

I 4,000 — émoeba
1]\3/1 2,000 — Sockets . Sockets
(S) 0 i

DELAY =0 DELAY = 1000
VALUE OF DELAY
Figure 5.10 Execution Times for 1,000 Packets

E 50,000

L

A 40 000 b Amoeba

P ! : g

S Amoeba
E 30,000 — 53

D Sockets |

ockets [

T 20,000 — ‘:‘

I :

M 10,000 h

E ;

(s) 0 :

DELAY =0 DELAY = 1000

VALUE OF DELAY

Figure 5.11 Execution Times for 10,000 Packets

5-20

Chapter 6 Distributed Delphi

Models and implementations of two distributed Delphi machines are described in this chapter.
The first uses Amoeba-transactions-under-UNIX Interprocess Communications (IPC) facilities and
was designed to run under the Amoeba Distributed Operating System [Mullender 1987]. The
second implementation uses the 4.2BSD IPC mechanisms implemented within ULTRIX [ULTRIX-
32 Supplementary Documents: Volume III System Managers 1984]. The Amoeba version of Delphi
is a distributed system with multiple client and server processes operating across a network.
Delphi running with the ULTRIX 4.2BSD IPC is a more integrated system with the client
processes being combined into a single executable image. The process management facilities in the
ULTRIX version are also incorporated in the single client. In the Amoeba version the process

management system is an external system requiring additional client and server processes.
6.1 Amoeba Distributed Delphi Model

The original implementation of the Delphi machine is a model where the Controller process is
divided into three component processes. In this model, not only are the Prolog processes distributed
among the various machinery, the Controller itself can be distributed among any of the available

host machines. The distributed Controller is divided into the following three unique processes:

(1) Oracle Generation process
(2) Jobs Distribution process
(3) Answers and Exceptions server

These processes were originally designed to handle non-backtracking control strategies. Their
functionality is first described in terms of control strategies which do not allow backtracking. The
Oracle Generation process or Oracle Generator is the algorithm for describing paths through the
search space which need to be explored. Depending on the strategy, oracles can be both created and
stored by the Oracle Generator process. In the naive depth-first iterative-deepening
implementation, the Oracle Generator creates and stores a single oracle at a time. When a Prolog
process (also called a Path Processor or PP) becomes idle, it is given the single stored oracle to
explore. The Oracle Generator then creates the next oracle in succession stores this oracle and
waits for another Path Processor to become idle. With other non-backtracking strategies, a jobs
queue needs to be maintained for storage of the numerous oracles which have not yet been

explored.

There are two major non-backtracking strategies which have been implemented: a bit by bit
strategy, and a branch by branch strategy. In the bit by bit strategy, the Oracle Generator creates
new oracles when a Prolog process reaches a choice point and becomes idle. The newly created
oracles are one bit extensions of the path previously explored by the idle PP. These new oracles are

then placed on a jobs queue until they are requested. When a Path Processor becomes idle the first

6-1

job on the queue is assigned to the idle PP by adding a host identifier onto the job structure residing
in the jobs queue. This identifier is used by the Jobs Distribution procéss to ensure the delivery of
the path to the proper Path Processor. The entire job structure is placed onto the distribution list
which is picked up by the Jobs Distribution process when a transaction between these two

processes occurs.

In the branch by branch control strategy the jobs queue is used to hold oracles which have been
sent by the Path Processors. The Oracle Generator is used for storage of oracles generated by the
PPs and does participate in the creation of these oracles. The jobs queue contains the paths of all
branches which have been discovered but not yet explored by the Path Processors. A PP always
follows a set course through the choice points (for example, always picking the first choice) and
sends the paths of all untried choices back to the Oracle Generator. The Oracle Generator then
holds these untried paths in the jobs queue until a PP becomes idle and needs a new job. A
particular oracle is then assigned to a PP by putting a host identifier into the job structure. This
job information will wait on the distribution list until it is sent to the proper PP. Figure 6.1 shows

the set of data structures needed to implement any of the non-backtracking strategies.

Job structures are the standard unit of information which must be relayed to a Path Processor.

In general, a job structure consists of :

An oracle describing the path to be followed.

An identifier of the Path Processor to which this oracle goes.
A command describing the function to be performed.

The number of bits in the oracle (they are packed).

Any extra information needed by the Path Processors.

Wh(_en there are extraneous jobs which cannot immediately be assigned to a PP for exploration
(as occurs in the bit by bit and branch by branch strategies), these jobs are put into the jobs queue.
If there are no jobs on the queue when a PP has become idle and needs a new oracle to follow, the PP
must wait on the idle processors stack until a Job becomes available. This stack contains the unique
identifier associated with each idle PP. Memory management is the reason for the free list data
structure. This structure is an array containing the addresses of individual job structures which
have been allocated memory space but are not currently being used. An initial number of job
structures are allocated memory and placed into this free list. This reduces the number of calls to

malloc which will need to be made during the execution of the Prolog program.

The last run array is used in the bit by bit strategy for control and by all of the Delphi
strategies to provide fault tolerance. In the bit by bit strategy the Oracle Generator must provide
the two single bit extensions to an oracle and place these new jobs on the jobs queue. The oracle to
which the bits are appended is the last oracle explored by the PP which has become idle. Before an

oracle is sent off to a PP for exploration, it must be saved in the last run array so that potential

6-2

PP3
/ \ FREE LIST
/ \ e e o
IDLE PROCESSORS
DISTRIBUTION LIST
oracle oracle oracle
HEAD —» PPid PPid PPid +— 1AL

JOBS QUEUE !

= B (B

job structure

01001 0111 01010 null null
PP1 PP2 PP3 PP4 PPn
LAST RUN ARRAY

Figure 6.1 Data Structures of the Oracle Generator

extensions can be properly made. One of the features in Delphi which makes the system fault
tolerant is the oracles contained in the last run array. If the host machine or an individual PP
should crash during the execution of a Prolog program, the last run array will still be holding the
oracles which were last sent to each of the failed PPs. Additional PPs can be initialised and given

the oracles which should have been explored by the PPs which have died.

The function of the Jobs Distribution process is to communicate with the Prolog processes and
send them their new oracles to follow. By supplying a separate distribution process, some of the
burden of the Controller is alleviated. The jobs distribution process interrogates the Oracle

Generator occasionally to pick up the entire queue of jobs waiting in the distribution list. After the

distribution list has been collected, the Oracle Generator can turn back to the problems involved
with maintaining the jobs queue and assigning oracles to idle PPs. The Jobs Distribution process

will be busy communicating with the PPs and sending them new oracles to follow.

The final component of the divided Controller is the Answer and Exceptions server process.
This process provides a means for global logging of the activities of all other processes. It is the
only process which always functions as a server process. It never initiates communications to any

of the other processes, it only receives information and transmits an acknowledgment.

Prolog

need new job or

send off job(s)

need extension

[Sl e bl el R ey UUEO Uy)i Vg

Answers &
Exceptions

Oracle
Generator

Jobs
Distribution

get job(s) to send

CONTROLLER

N e e e e e e e e e e e e e — ————

Figure 6.2 Individual Processes

The information it receives is usually a character string which needs to be logged. The message
often consists of status information on a particular process, such as when they are initiated or
halted. Solutions to the Prolog program which is being executed are sent from the PPs to the
Answers and Exceptions server as answer messages. Faults which occur during the processing are
also logged by this server process. The Answers and Exceptions server is not a mandatory process

in the Delphi system. If it does not exist, then all of the logging information can be gathered from

local log files on each of the host machines. A Delphi configuration consisting of two Prolog

processes and the three separate process which comprise the Controller are shown in Figure 6.2.

Each of these individual processes is shown as a named ellipse. The direction of the
communications among the processes is shown by the direction of the arrows. The Jobs
Distribution process most often functions as a client by initiating communications to both the
Oracle Generator and the Prolog processes. Only one command is sent to the Oracle Generator; the
command to obtain all of the jobs waiting to be distributed among the Path Processors. These jobs
are sent off to the various PPs with commands in the job structure to perform activities such as
halting the execution of a PP or telling the PP to follow an oracle. The Prologs themselves function
both as clients and servers at different times. When they have no work to do they initiate
communications with the Oracle Generator to request a new job to be given to them. These
processes then act as a server, blocking on input from their port and waiting for a new command

from the Jobs Distributor.

To configure the processes shown in Figure 6.2, four communications ports would be created by
the system. Each of the Prologs has one port on which to receive jobs from the Jobs Distribution
process. The Answers and Exceptions process has a single port on which to receive messages from
any of the other processes. The Oracle Generator has a port which is used both by the Prolog
processes and the Jobs Distribution process. The Prolog processes request jobs on this port and the
Jobs Distributor acquires the distribution list on it. The Jobs Distributor process mainly functions
as a client, the Answers and Exceptions process mainly as a server, and the others function as both.
These client and server processes can be run on any of the available host machines, either all

together or distributed in some fashion among the machines.

Figure 6.3 shows two possible distributions of Delphi processes to host processors. Figure 6.3a
is a simple configuration of three processes executing on a single host machine. The Answers and
Exceptions server is not a mandatory process so this configuration represents the smallest amount
of code needed to execute a Prolog program. A more common configuration of the Delphi machine
is shown in Figure 6.3b. Each individual process is executed on its own host machine and multiple
Prolog processes are configured. Most Delphi configurations using the Amoeba-transactions-

under-UNIX IPC contain the Answers and Exceptions server for reasons of convenience.

The process of running a Delphi machine using the Amoeba-transactions-under-UNIX
implémentation is not user friendly. The code for each individual process must be distributed to
the host machines and then each process must be manually started. The distribution can be
performed automatically with a shell seript using the rcp (remote file copy) or ftp (file transfer
program) commands of ULTRIX. Initiating processes across a network is not accomplished as
easily. In addition to initiating the client and servers, it is desirable to maintain a global status of

all processes and be able to terminate them remotely. To help the user manage the Delphi clients

6-5

host4

Prolog .
Prolog
Prolog
, host1 Prolog
ost
host6

Answers &

Oracle Exceptions

Generator

— host2 —

Jobs
Distribution

Jobs

Oracle
Generatpr

hostf ——— | Distribution

L—— host5 host3 —

a. Simple Configuration b. Common Configuration

Figure 6.3 Two Configurations

and servers, an external Process Management System was developed. This system is external
because it is not restricted to the management of Delphi processes. Any executable process can be

distributed, started, watched and terminated by the Process Management System (PMS).

The PMS was designed to provide the convenience of using a menu driven program on a single
processor which could initiate and watch all of the Delphi processes running on any of the host
machin_es. This system was implemented using the Amoeba-transactions-under-UNIX IPC
facilities and contains its own code for file distribution via Amoeba transactions. The PMS is self-
contained code to help developers and users in debugging, initialisation and maintenance of a

distributed system such as Delphi.

When Delphi is managed by the PMS, each of the Controller components is automatically
initiated in turn. The Answers and Exceptions server is started first so that it can log the initiation

of all other Delphi processes. The Oracle Generator is started, then the Jobs Distribution process

and finally all of the Prologs are initiated in any order. As soon as a Prolog has been started, it
immediately performs a transaction to the Oracle Generator to obtain a Global Server Number. All
Prolog processes are equivalent so this number is needed by the other processes to identify each
individual Prolog. This number remains with the Prolog process throughout its lifetime and is

used for identification during a transaction.

After a Global Server Number is obtained, the Prolog process creatés a unique port name for
itself and announces its existence to the Answers and Exceptions server. The port name is a
concatenation of the character 'P' and the Global Server Number so is guaranteed to unique for
each Prolog process. After all Prologs have been initialised, execution of the Prolog program
begins. Any solutions which are found by the Prologs are sent to the Answers and Exceptions
server to be placed in the global log file. When the tree has been completely searched, the Prolog
processes are halted. Each sends a message to the Answers and Exceptions server to “log out” and
then terminates itself. At the end of a Delphi run the global log file (which is created on the same
host machine on which the Answers and Exceptions server executes) contains the solutions to the

Prolog program in addition to the logging messages for each of the Delphi processes.

Even with the PMS facilities, the Delphi implementation using Amoeba IPC was never as
clean and easy to manage as the ULTRIX implementation. The problems originated with the
Amoeba IPC mechanisms which were available when Delphi was implemented. The IPC forced
particular structure on the Delphi model causing it to be more complex than the model used for the
ULTRIX _implementation. The problems inherent in the Amoeba implementation will be discussed
after a description of the process management tool (used by the ULTRIX implementation) known

as the Internet daemon.
6.2 Internet Daemon

Imagine that all of the services associated with ULTRIX are constantly running in the
background of a host machine waiting for clients to request their service. Figure 6.4 shows a few of
the common services that might exist on such a system. Each of these individual services takes up
time and space on the host processor and some of these services may rarely or never be requested by

the users on the host machine.

A daemon can be described as a process which waits in the background for messages to be sent
to it via its port connection. It is essentially an idle server process which becomes active when a
client requests its service. In Figure 6.4 all of the services shown are daemon processes waiting for
a connection to their port. When a request for a connection is made by the client process, the
daemon receives the message through its port and acts on it accordingly. This model of multiple
daemons is a great waste of resources. A socket connection is used up for each service available and

memory has been allocated so that the process can run once it is awakened. Many of these services

printer o " time
. i ime .
service printer port po service
remote remote
login remote login port remote shell port shell
service service
talk ftp
service talk port ftp port service

Figure 6.4 Multiple Services

may never be used by the customer, so the allocation of resources for them cannot be justified. The
Internet daemon was designed to avoid some of the problems with having multiple services always
available and running on a host machine [ARPA/Berkeley Services Reference Pages HP 9000
Series 300 1987).

The Internet daemon is a process which handles many of the services available on UNIX
machines. It listens on numerous ports for requests to any of the services that it controls, and then
acts as a temporary liaison between the client process and the service that the client wishes to
contact. When a request is made to one of the Internet daemon services, the daemon receives the
message, starts up the proper service process, and finally connects the client with the service it had
originally specified. It is similar to a phone connection going through a switchboard where the
Internet daemon is the switchboard. The beauty of this scheme is that only a single daemon takes
up space on the host machine (see Figure 6.5). Other service processes do not exist until they are
requested and become activated by the Internet daemon. Thisis a great savings on the resources of

the machine.

How would a service such as the Internet daemon be created using the Amoeba IPC calls? A
get request (getreq) performed by a server is a blocking primitive. Once a port name has been
specified in the header, and the getreq has been performed, there is no way to alter the connection.

" The getreg will wait forever on that single port until a message arrives. What is desired’ is a
method which allows more than one port to be tested to see if any messages have arrived on any of
them. If one of the ports does contain a message, then the message can be answered by performing
a getreq on that port. To test more then one port, a non-blocking transaction which reads a port

must be allowed. The version of Amoeba which we used could not perform énon—blocking port test.

printer port I time port
N D
T A
B E
remote login port R remote shell port

M
N oo
E N

talk port T ftp port

Figure 6.5 Internet Daemon Service

It would be difficult to use the Amoeba IPC to create a process similar to the Internet daemon.
There is work underway to allow a set of ports to be tested using the Amoeba system, but no such

facility was available at the time when this research was done.

Without a port select mechanism a constraint is placed on the types of communication models
which can be implemented. For the Delphi system, there is typically one Controller process which
receives messages from any of the Path Processors. A common model is one where a non-blocking
port select mechanism is used. The Controller spends its time scanning the ports for incoming
messages, answering requests from Path Processors which have sent a message. As this model
could not easily be implemented with the Amoeba primitives a less intuitive protocol had to be
created. The Oracle Generation Process waits for requests on one port only. All of the Path
Processors write to this same port, and instead of the requests being queued up as they would be
with a selection function, only one processor gets answered. If many PPs send messages

simultaneously there is contention for the Oracle Generator port.

Figure 6.6 shows two models for port connections between the Controller and the PPs. In
Figure 6.6a is a model with only one port on the Controller side. All of the PPs must communicate
to the Controller through this single port. Figure 6.6b is a more desirable set of connections where
the Controller has a connection for each individual Prolog Process. Maintaining a single port on
the Controller side is not necessarily a negative feature. If the underlying communications system
has been set up to handle contention, then with just one port the simultaneous requests from client
processes could be queued and answered in turn. This would be no different from having multiple

ports and scanning them sequentially for requests.

a. Many Prologs to One Port b. One Prolog to One Port

=NVS

CONTROLLER CONTROLLER

Figure 6.6 Models for Connections

The Amoeba system however, could not handle the contention properly. Multiple clients
writing to the same server port usually caused the system to crash. Ironically, using the An{loeba
IPC facilities in the Delphi machine forced an implementation where contention was common on
the major port in the system. The Amoeba system could not handle this contention and responded
by crashing when it took place. A widely tested IPC mechanism was chosen for the second

implementation of the Delphi machine; the ULTRIX implementation of 4.2BSD IPC.

6.3 An Integrated Delphi Model

In this m;)del of the Delphi machine, the Controller is a single process which performs all
functions of the Oracle Generation Process, the Answers and Exceptions Server and the Jobs
Distribution Process. No external process management system is needed to start processes on
remote host machines or display the state of the network. This functionality has also been
incorporated into the Controller of the integrated Delphi model. The implementation created from
this model uses the 4.2BSD IPC facilities implemented within the ULTRIX operating system. This

second implementation of the Delphi machine will be called the ULTRIX implementation.

With the ULTRIX implementation, the user does not have to understand clients, servers or
distributed systems to execute a Prolog program on multiple host machines. A source file can be
written and a single command invoked to take this file through the compilation, distribution,
loading and execution phases of Delphi. A global log file will be created on the host machine where

the initiation command was invoked. Any solutions found along with all of the logging messages

6-10

sent throughout the Delphi run will be contained in this file. An example of a global log file can be

found in Appendix 6a.

If a user wants to avoid the compilation phase of execution on the Delphi machine (perhaps the
same compiled code is-to be executed more than once) or change the parameters for a control
strategy, only a single file needs to be altered. Facilities have been provided to make Delphi simple
for those willing to use the default Delphi setup. If the user is interested in tailoring the system,
(for example, to use particular host machines on the network in preference to others) then more has
to be learned about the wide range of tools, methods of initiation, and various configuration files

which are an integral part of Delphi.

For benchmarking purposes, the distribution and execution phases were mainly used. This
involves distributing all of the pertinent files to the Path Processors and then invoking the
command Controller with any command line arguments. A shell script controls the distribution of
files using the minimal number of remote copies to ensure that all of the files are always up to date.

The functions performed by this shell seript include:

® Checking to see which of the potential host machines are available and running.

® If a host machine is available and is to be included in a Delphi run, check that all of the
files needed are up to date on that host and in the proper directories.

® Ifafile does not exist on the host machine, or is an old version, copy it to that machine.

® Create logfiles and report any errors or crashed machines.

The first function gives an overall view of the state of the network; which machines are
available and which are not. This is not necessary for the functioning of Delphi since if a machine
is down at initialisation time, that machine is just not used and an alternate is found if possible. It
is mainly of interest to the user, and especially important when benchmarking, to see how many

machines are available for a run.

The method of checking for the existence of necessary files uses a file distribution and
configuration file. All files named in this configuration are maintained on a source machine.
Equality between these files on the source machine and on each of the host machines is checked. If
a source file has been modified since it was last copied to the host machines, it is updated. If any of

the source files do not exist on the host machine, they are copied over to that host.

Deletion routines for particular file types can also be placed in the distribution configuration
file. These routines are useful since numerous log files are created and disk space on the host
machines might become full if they were not occasionally deleted. For networks running nfs
(network file system) the distribute command is not needed as all host machines appear to use the
same file server. Because some of the machines used during this research did not have facilities for

remote file servers, the distribute phase of Delphi was necessary.

6-11

Files to be distributed or maintained on all of the Path Processors include:

(1) Prolog master server daemon
- (2) Prolog run time system
(3) Prolog system files
(4) Compiled source file to be executed /
(4) The file containing the standard input to the Prolog systems

The Prolog run time system is written in the C programming language. This is the code which
executes and controls the low level WAMO (Warren Abstract Machine with Oracles) instructions.
All of the communications code and low level interfaces to the control strategies and the Controller
are also a part of the Prolog run time system. When this systein is executed, it immediately loads
all of the Prolog system files which is that part of the run time system written in Prolog. These files
include all of interfaces between the C code and the user commands written in Prolog. As an
example, there is a Prolog command which allows the user to interactively change control
strategies. This command is the interface to the C code which actually implements the control
strategy change. After all of the Prolog system files are loaded into the program space, the source

code translated with the Delphi compiler is loaded using the special Delphi loader.

The executable command which starts the Prolog run time system will be called prolog.
Depending on how this executable command is initiated determines whether the Prolog master
daemon or the standard input ﬁlgs are used at all. If the prolog command is initiated on a terminal,
then the session will be in some way interactive. The user gets the choice as to whether the system
will be run stand alone or as one of a network of Path Processors functioning as a Delphi machine.
If the prolog command is started by the Prolog master server daemon, then it must be connected to

the Controller and the only option is a networked system.

As the Delphi machine is intended to be run on a large number of processors, it is necessary to
provide a high degree of automation in starting the Path Processors. For debugging purposes (or
Just to quickly test out some Prolog code) it is also useful to have a stand alone system without any
network connections. If the prolog command is given at a terminal, then the user chooses whether
this Prolog process will be stand alone or one of the networked Prologs of a Delphi machine. Upon

giving the command prolog the user must supply an answer to the following query:

service for direct Prolog connection?

This query only occurs when the command has been initiated from a terminal. It is also
possible (and in most setups, this is standard) that the prolog command is initiated by a daemon
process. When prolog is initiated by the user, the query determines whether what is required is

actually a stand alone Prolog system or whether connections to the Controller are to be made

v

6-12

manually. Two possible stand alone configurations and three levels of initiating networked

Prologs, have been incorporated into Delphi.

Executing prolog at a terminal and answering the service query provides different
characteristics for standard input and standard output files. Table 6.1 shows the set of parameters

for standard input and output according to how the query is answered.

Answer to query | Standard input | Standard ou-t:put Standard error Prolog setup
NONE terminal terminal terminal stand alone
STDIN prot ‘?i—r]sptuat" dard terminal terminal stand alone

service name socket socket socket ' networked

Table 6.1 Terminal Setups

Answering the service request with 'NONE' states that no service (port connection) is to be
used for this run. The Prolog process functions with input and output directed to the user
(terminal). This is the standard interactive mode similar in funetion to many sequenti‘al Prologs.
When 'STDIN' is the response, the standard input is read from the file pro1 og_standard_input with
output going to the terminal. This is a useful method of starting prolog if many initialisations take
place; they will automatically be read from a file. Stand alone does not only mean running on a
single processor—it means that the Prolog has no interaction with the Controller process. In
contrast, a Delphi configuration consisting of only one Path Processor can run on a single machine,
but will still consist of a Controller and a Path Processor with a socket connection between them.
Any other response besides 'NONE' or 'STDIN' assumes that the response is a service name. The
Prolog process will then wait on that port name for a socket connection to be established from the

Controller.
6.4 Initiation of Processes over the Network

Three methods of Prolog process initiation have been provided to allow the maximum
flexibility for starting a networking Delphi session. A networked Delphi session is one where all of
the Prolog processes are connected by a socket to the Controller. This socket connection functions
as the standard input, standard output, and standard error streams for the lifetime of the Prolog

process. There is no user interaction at all with any of the Prolog processes once the connection to

6-13

the Controller has been established. The methods of initiating the Prolog process, and allocating a
socket connection or port for each Prolog range from a direct Prolog connection to automatic start up
using the Internet daemon. The goal of any of the process initiation methods is to automatically
start each Prolog on its proper host machine and establish a connection for each of them. A single
connection between the Controller and each of the Prolog processes is the only communications
channel that is necessary. Figure 6.7 is an example Delphi configuration consisting of eight Prolog

processes distributed over five host machines.

path0l1
prolog
duke prolog fylde
prolog prolog prolog
Controller

hendy path02

prolog prolog

prolog

Figure 6.7 Minimal Connections

In Figure 6.7 each rectangular box with a bold-faced outline represents a separate host
machine. The name of the host is shown in italics at the top of each box. No host name has been
given for the Controller process, but it can be assumed that it is a different host from any of the
other named machines. The Controller could be run on any of the host machines including those

which run Prolog processes. Most often, if enough host machines were available, a separate host

6-14

machine was used to run the. Controller. Figure 6.7 demonstrates the minimal number of
connections that a Delphi configuration with eight participating Prologs can have. Each Prolog
has an individual socket connection to the Controller even if they are executing on the same host
machine. The minimum number of connections to the Controller for a Delphi configuration is
equal to the number of Prolog processes. These connections are sockets or logical connections and

are not related to the physical connections between the host machines.

The physical connections for the machines used in the Delphi research are shown in Figure 6.8.
The Tower and the Old Music School (OMS) are two sites at the University of Cambridge. Each site

has its own Ethernet and there is an optical fibre link between them.

approximately 15 processors
delphi tholos fylde path03 o o0 duke

- v

Tower Ethernet A

optical fibre link

OMS Ethernet V

- . —
hendy | bidder o 00 hudson
approximately 5 processors

Figure 6.8 Physical Connections

To create the example configuration shown in Figure 6.7, it is necessary to access each of the
host machines and start some number of Prolog processes running on them. There are three levels

of mechanisms provided within the Delphi system for initiating Prolog processes over the network.

6-15

The levels are associated with the number of intermediate processes which are created to aid in the
final goal of initiating Prologs. At increasingly higher levels of abstraction the details of process
initiation over the network are hidden from the user. From the user's point of view these levels
range from having to manually start each Prolog (direct connection) to an automatic initiation
through the use of a configuration file (Internet daemon connection). Table 6.2 shows four

initiation methods in relation to the user's involvement and the number of processes which are

created.
name Direct Master Daemon Internet
Daemon
level of abstraction 0 1 ' 2 2
user interaction for each Prolog for each_ host only when a never
machine machine crashes
number of DelPhi
initiated processes 0 1 92 1
(excluding Prologs)

Table 6.2 Levels of Prolog Initiation

The direct Prolog connection is at the lowest level of abstraction, level zero. Each Prolog
system is individually initiated by the user with no automatic control at all. The user must log
onto each host machine, start the Prolog(s) and supply a service port name for each of them. Any
number of Prologs can be started on any of the host machines so this initiation method can quickly
become tiresome. In addition to the Prologs needing initiation, the Controller process must be
started on some host machine. When the Controller is executed, it runs a menu driven program
which can complete the direct connections to the Prolog processes. Appendix 6b shows example
sessions with the Delphi system where each of these mechanisms is demonstrated. Level zero
interaction is very similar to running the Amoeba implementation without any aid from the
external process management system. Each process must be started individually by logging into

each of the host machines in turn, and initiating each of the processes to be run on that machine.

The level one initiation method is named Master because it uses a Prolog Master server process
to spawn Prolog processes. The Master initiation method allows the user to view a configuration as

a host by host initialisation procedure instead of the Prolog by Prolog method at level zero. At this

6-16

level, a Master process controls the initialisation of all Prologs on that host machine. Instead of the
user having to log onto each of the host machines and start up each individual Prolog on that
machine, only the Master process now needs to be started. Still the user must log onto all of the
host machines, but only one process, the Master, needs to be initialised per host machine. At level
zero, the user started the Prologs individually. At level one, the user starts a Master process which

starts the Prologs.

The highest level of abstraction, level two, allows the user to look at process initialisation on a
configuration by configuration basis. A Delphi daemon process is left running on each of the host
machines. This daemon controls the initialisation of the Master process, and this Master controls
the initialisation of each of the Prolog processes. There is now no need for the user to have to log
onto each host machine to initiate a new Delphi configuration. The configuration itself is

automatically read from a file with no user interaction at all.

Also at level two is an initiation rﬁethod which occurs through the use of the Internet daemon.
This method is just a simplification of the Delphi daemon method described above. The difference
being that instead of a Delphi daemon running on each host machine, the ULTRIX maintained
Internet daemon is used instead. The functioning of each of these daemons in relation to the Delphi
machine is equivalent; they both initiate the Master process on each host machine. However, the
Internet daemon is automatically initialised with each reboot of the processor, whereas the Delphi
daemon needs to be manually restarted. When around twenty machines are involved in a
particular Delphi configuration, this automatic initialisation is an improvement. At the Computer
Laboratory, it is not uncommon for each of these machines to be rebooted more than once a day.
With the Internet daemon listening for Delphi configuration requests there is no reason for the
user to have to log onto any of the participating host machines at all. As a summary, Figure 6.9

shows the hierarchical nature of Prolog process initialisation at each of the three levels described.
6.5 Multiple Users or Configurations

All of the configurations have been explained as if only a single user were running the Delphi
machine. The process initiation methods described allow multiple users to run Delphi
configurations, or a single user to run more than one configuration simultaneously. Configuration
is intended to mean the setup of Delphi processes on each of the host machines which includes a
single Controller process. It is most common to start a new configuration for each Prolog problem
that is to be solved. Often the problem involves loading a single compiled Prolog program with one
or more top level queries. It is however possible, just as it is in standard sequential Prologs, to have

a single Delphi session read and compile multiple source files and answer multiple queries.

A configuration can be thought of as a Prolog session starting from initialisation of processes

by the Controller, and ending when the Controller is exited. It is possible that a single user may

6-17

LEVELO0 LEVEIL 1 LEVEL 2
user user user

' ' '

prologs master daemon
; '

prologs master
'

prologs

Figure 6.9 Process Initiation Hierarchy

want to run more than one configuration or session simultaneously, perhaps because the first
session is going to take a long time to complete, and a separate Prolog program also needs to be
executed. Also, multiple users may be running different Prolog sessions on the same or different
host machines. The process initiation methods which have been described will handle all of these

eventualities.

Initiation levels zero and one are very similar in a description of how individual users would go
about starting their own Delphi sessions without interference from one another. With level zero,
every Prolog process started by an individual, called Userl, has the privileges and ownership
associated with the account under which Userl is operating. If a second user, User2, starts Prolog
processes on any machines, these processes have the same privileges associated with, and are run
within User2's account. Since all processes (excepting the daemons) run under the user's account,
there are no name clashes on any of the host machines. There is no problem with user specified
port assignments as each user must keep track of the set of ports that he uses. Named ports
(actually any ports) on a host machine can each be used only once. A second user trying to use a

port name which has already been assigned will get an error message “port in use”.

This same argument applies when starting Master processes (level one method of initiation)
which are activated by multiple users. These processes run under the user's account and so have no
identity problems. If a user wants to run multiple sessions (at the zero level of abstraction), it is
entirely up to that user how the Prolog processes are connected together to form the various
configurations. With level one, the multiple Master processes that run on each host are completely
independent processes which spawn independent Prolog processes. The port names for the Prologs
are assigned by the Master processes, so the user is spared the effort of remembering which ports

are associated with which Prologs, and which Prologs are associated with which session.

The level two initiation mechanism was specifically designed to handle multiple configurations
and multiple users. Before describing how the level two initiation procedures work, we shall take a
look at what a single user configuration looks like on a particular host machine. Figure 6.10 shows

a single user configuration, using a level two process initiation procedure, for a single host

machine.

fylde

daemon

master

prologl

prologN

Figure 6.10 Single User Configuration on a Single Processor

The host machine's name is in italics at the top of the rectangle. All of the rest of the boxes
contain individual Delphi processes which are run on the host. For level two, a daemon process
needs to be running; this daemon can represent either the Delphi daemon or the Internet daemon.

The Delphi daemon was mainly used during the testing phase of this initiation method. The

6-19

functioning of this process has been completely taken over by the Internet daemon. One Master
process is started by the daemon, and this Master initiates all of the Prologs required. The rest of
the boxes have individual Prolog processes in them showing a minimum number of Prologs equal to
one. There can be zero Prolog processes running on a host machine, but in that case the extraneous

hosts (along with their daemon processes which continue to run) will not be shown.

There is a communications link to the Controller for each of the Prolog processes on the host
machine, plus one additional connection for the Master process (see Figure 6.10). It is not
absolutely necessary to maintain the connections to the Master processes after the Prologs have
been initiated and their connections to the Controller established. If this connection is maintained,
it is easy to initiate additional Prolog processes if they are required throughout the lifetime of the
configuration. Most of the control strategies have been organised so that additional Prologs added
at any time during the computation will be used. Figure 6.11 shows the Delphi processes on the

same host machine when multiple users, multiple sessions or both are being run.

fylde
daemon
masterl masterN
prolog prolog
[[[]
[] []
° '
® ®
prolog prolog

Figure 6.11 Multiple User Configuration on a Single Processor

Each different configuration (whether it is the same or a different user) requires that a new
instance of the Master code to be run. The Master initiates a certain number of Prolog processes

and automatically establishes unique port connections between these Prologs and the Controller.

6-20

Separate Masters initiate separate Prologs, so the processes concerned with a particular
configuration never interfere with any other configurations. Notice that the daemon process is

shared between all users and configurations.

Once the daemon process has been started, it is impossible for any other instance of a Delphi
daemon to be initiated on the same host machine. This is because no port parameters are given
when the daemon is started; this process always uses the special port named ‘delphi'. If the
Internet daemon is functioning on any of the host machines it is unnecessary and impossible to
start the Delphi daemon process at all. This is because the Internet daemon also listens for port
connections on the port named 'delphi’, so the Delphi daemon process would not be able to bind to

this already assigned 'delphi’ port.

As an example of the ease in using the automatic start up facilities of Delphi, the initialisation
command and the configuration files are shown for two users simultaneously running sessions.
User1 has started his Delphi session by executing the command Controlier 5 with a configuration
file:

path01 3
path02

duke

fylde

hendy 2

hythe
tholos

Controller is the command name which initiates the Controller process with the level two
initiation method. On the command line, the first parameter means to create a session from the
first five host machines in the configuration file, and then begin execution. The configuration file
does not contain a one when there is only one Prolog process to be run on the host machine; one is
the default number. Asno particular problem file has been listed on the command line, each of the
Prologs begins executing using the default file prolog_standard_input as the standard input for the
Prolog processes. User2 has issued the command Controller 4 myfile and User2's configuration file
contained the following lines:

duke
hendy
path01 3
path03 2

path00
laira

Here the user has specified the file to be used as standard input to the Prolog system (this file
contains the parameters to specify both a program to execute, and any other setup features for the
Prolog system) as file myfile. The first four host machines in this user's configuration file are used
in the session. Figure 6.12 shows how the Delphi processes would appear after both Userl and

User2 had issued their respective commands.

6-21

path01

daemon
fylde
duke
masterl | master?2

daemon

daemon prolog | prolog
masterl | master2 masterl

prolog | prolog
prolog | prolog prolog | prolog prolog

/

(Controller 1

, Controller 2 (
hendy path02 path03
daemon

daemon daemon
masterl | master2
masterl masterl
prolog prolog
prolog prolog
prolog
prolog

Figure 6.12 Example Delphi Configuration with Two Users

6-22

Chapter 7 Control Strategies

Each of the control strategies described in this chapter makes use of one or both of the following
techniques:
® The use of oracles to recreate an environment (all strategies).

® Tree partitioning algorithms which divide the work of exploring a search space among
multiple processors (backtracking strategies).

Both the use of oracles and tree partitioning strategies have been independently the focus of
other research. In Chapter 2, Section 2.5, research focusing on the application of oracles to the
creation of parallel Prolog models was described. Section 7.1 supplements Section 2.5 by relating

the control strategies described in this chapter to the area of tree search algorithms.
7.1 Categories of Control Strategies

Searching techniques for AND/OR trees have been developed by researchers working in a
number of disciplines including: game playing, theorem proving, planning, expert systems and
Logic Programming languagesl. 'To improve the computational efficiency of these tree searches
parallel formulations of the algorithms have been proposed2. The Delphi control strategies
described in. this chapter are related both to previous work in the area of parallel Logic
Programming languages [see Chapter 2] and to tree partitioning algorithms developed for game
playing programs3. This section provides a closer look at the tree searching algorithms related to

the Delphi control strategies.

Figure 7.1 shows the categories of control strategies which have been investigated during this
research. Only exhaustive search strategies have been investigated as the purpose of this research
is to exploit OR-parallelism in nondeterministic problems. The category of exhaustive search can
be divided into two major types; the backtracking and non-backtracking control strategies. It is
this division which defines the relationship of the control strategies to previous research. The non-

backtracking strategies are related to previous work on the Delphi machine [Clocksin 1987,

1 Rao, V.N,, and Kumar, V., Parallel Depth First Search. Part I. Impleméntation. International
Journal of Parallel Programming, Vol. 16, No. 6, 1987.

2 Li, G. and Wah, B.W., Computational Efficiency of Parallel Combinatorial OR-tree searches.
IEEE Transactions on Software Engineering, Vol. 16, No. I, January, 1990.

3 Finkel, R., and Fishburn, J., Parallelism in alpha-beta search. Artificial Intelligence, Vol. 19
pp-89-106, 1982,

Akl, S.G., Barnard, D.T., and Doran, R.J., Design, Analysis, and Implementation of a Parallel
Tree Search Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-4, No. 2, March 1982.

Newborn, M., Unsynchronized Iteratively Deepening Parallel Alpha-Beta Search. IEEE
Transactions on Patiern Analysis and Machine Intelligence, Vol. 10, No. 5, September 1988.

7-1.1

s

Clocksin and Alshawi 1988, Alshawi and Moran 1988], while the backtracking strategies resemble

tree partitioning algorithms3.

control strategies
for exhaustive
search

non-backtracking
strategies

backtracking
strategies

auto partitioning

auto partitioning only reassign jobs adaptive control

Figure 7.1 Control Strategies

Within the non-backtracking strategies two types of control are identified; the expand job and
the branch by branch strategies. Expand job strategies are those which have some sort of prefix
string or oracle to which extensions are added. Permutations of these extensions are generated
creating new oracles to follow. The expand jobbstrategies described in this chapter (Section 7.5) are
equivalent to those proposed in Clocksin and Alshawi [1988]. The branch by branch strategies
demonstrate the minimum number of communications which must occur in a non-backtracking
strategy. Branch by branch is an original strategy which was not proposed in any of the previous
Delphi research containing non-backtracking strategies [Clocksin 1987, Clocksin and Alshawi
1988]. All of the previous work on the Delphi machine [Clocksin 1987, Clocksin and Alshawi 1988,
Alshawi and Moran 1988}, and related research using oracles [Shapiro 1989] contain algorithms

which have a strong similarity to the non-backtracking algorithms described in this research. The

7-1.2

similarity is that the generation and following of oracles is the method for dividing the search space
among multiple processors. In the backtracking strategies described in this chapter (Sections 7.7 -

7.9), oracles are used, but not for the division of the search space.

Backtracking control strategies (described in this research) all begin with an initial strategy or
mode called automatic partitioning. Automatic partitioning allows the processors-to partition the
search space (from the root of the tree) without any communication to the Controller. After the
initial automatic partitioning mbde, each strategy executes in accordance with its individual mode
of control. Three generic categories of backtracking strategies are shown; automatic partitioning
only, reassign jobs and adaptive control. With automatic partitioning oﬁly, there is no extra control
after the initial automatic partitioning mode has been completed. The search space is
automatically partitioned among the processors at the root of the tree. When a processor has
searched the section of the original tree allocated to it, the processor becomes idle and is not given
any additional work to do. The reassign jobs strategy extends automatic partitioning by giving
work to idle processors. This extension allows automatic partitioning to begin from any node in the
search space, not just from the root. Adaptive control includes any control methods where the
strategy is altered by events which occur during the execution of the problem. All of the control
strategies shown in Figure 7.1 are described in this chapter (Sections 7.5 - 7.9) with the exception of

the adaptive control strategies.

Parallel backtracking control strategies [Clocksin and Alshawi 1988, Alshawi and Moran
1988] initiate independent depth-first searches on separate processors. These strategies have been
motivated by sequential iterative depth-first deepéning algorithms [4, Korf 1985] and parallel
formulations of depth-first searchl. In all of these parallel algorithms, the load of one processor is
split among other processors either by sending environment information such as stacks, or
recreating these stacks through the following of oracles. In the case of the Delphi research, oracles

are used exclusively to partition the work load. In the backtracking control strategies deseribed in
| this research, oracles are not used exclusively; it is the combination of tree partitioning algorithms
implemented through the use of oracles which allows a search space to be partitioned. The
backtracking strategies described in this research are not only related to the previous Delphi
research (since oracles are used), but also to many of the tree partitioning strategies developed in
the area of game playing3. In particular, the partitioning algorithms used by these backtracking
strategies are very similar to the two tree splitting algorithms in papers by El-Dessouki and Huen
[1980]5 and Ali [1987].

4 Slate, D.J. and Atkin, L.R., Chess 4.5-The Northwestern University chess program. In Chess
Skill in Man and Machine, Springer-Verlag, New York, 1977.

5 El-Dessouki, O., and Huen, W., Distributed Enumeration on Between Computers. IEEE
Transactions on Computers, Vol. C-29, No. 9, September, 1980.

7-1.3

The tree partitioning algorithm described in El-Dessouki and Huen [198015 is equivalent to the
automatic partitioning algorithm described in Section 7.8 with minor differences in the splitting
schemes. This algorithm is described in some detail to contrast it with automatic partitioning and

the reassigning jobs strategies described in Sections 7.8 and 7.9 respectively.

Two types of enumeration methods (backtracking algorithms) are pointed out as candidates for
parallel formulation in El-Dessouki and Huen [1980]5: those which require all solutions to a
problem and those which only have a single solution6. The parallel algorithm is described in terms

of subprocesses which exist in one of the following phases:

(1) Selection phase.
(2) Full enumeration phase.
(3) Exchange phase.

Phase 1 - The selection phase begins at the root of the search space with the number of
cooperating subprocésses (NCP) know by each separate subprocess. The nodes are distributed
starting from the root node with the final result being that the tree is automatically partitioned so
that each subprocess explores an independent subtree. The splitting algorithm is shown below
where SIZE denotes the number of nodes which can bé distributed. The subprocess numbered
MYNUMR is assigned node g where:

g=[MYNUMR - 1) moduloSIZE]} + 1
New values are then calculated for MYNUMR and NCP.

DELTA =1 if g < [(NCP — 1) moduloSIZE] + 1
DELTA =0 Otherwise

MYNUMR = [MYNUMR/SIZE]
NCP = [NCP/SIZE] + DELTA

When SIZE becomes equal to or greater than NCP, each process picks the number of nodes
equal to [SIZE/NCP]. If SIZE is not divisible by NCP, the last process takes any remaining nodes.

The selection phase is then ended and full enumeration begins.

Phase 2 - Full Enumeration is the phase where each process explores its own unique subtree.
Since the parallel ‘algorithm described by El-Dessouki and Huen is intended mainly as a
distributed branch and bound technique, additional tasks are created for the sending and receiving
of information (such as the upper bounds) between processes. For the purpose of this comparison, it
is sufficient to say that this phase performs a standard depth-first search of its subtree. When the

exploration of the subtree is completed, the process enters the exchange phase.

6 There is no connection between the enumeration methods described in El-Dessouki and Huen
[198015 and any integer labelling of a search space.

7-1.4

Phase 3 - A process which is idle (process p) obtains additional work to do by interrupting a
neighbouring process (process q) and requesting a portion of ¢ s search tree. Each process is tried in
turn until one of the other processes is able to split off some of its load. If none of the other processes
are willing to give up a portion of their search space, process p infornis the group that it is quitting
and halts. An interrupted process (process gq) is willing to split up its search space if the variable
UNSEARCH points to an unsearched node. When the enumeration phase begins, UNSEARCH is .
initialised to the highést right-hand node in the search space. If the process has been given more
than one node to explore (i.e., [SIZE/NCP} > 1) UNSEARCH points to the rightmost node received.
If there is only one node to exi)lore, then UNSEARCH is the rightmost son of this node. There are
additional rules which describe whether an exchange is performed when a process interrupts and

requests one.

If the exchange is successful, process p teceives the address in ¢'s UNSEARCH and any
information needed to switch its search to this new subtree. Full enumeration is again entered to
search this new subtree poséibly resulting in additional exchanges being made between processes.
The distributed algorithm continues with each process entering full enumeration and the exchangé
phase until the original tree has been searched exhaustively. An important point to notice here is
that the original phase involving selection is only performed at the root of the search space. This

selection phase is never entered again once full enumeration begins.

As a comparison with the Delphi strategies, the selection phase of this algorithm is equivalent
‘to the automatic partitioning strategy of the Delphi machine. Automatic partitioning is used as
the initial phase of all backtracking control strategies, so the selection phase of the El-Dessouki
and Huen algorithm is the same as the initial phase of all backtracking control strategies.
Likewise, the full enumeration phase can be considered equivalent (though El-Dessouki and Huen .
include many extra parameters to allow branch and bound searching) to the standard depth-first
search performed by the Delphi Path Processors. It is the third phase which involves the exchange

of information between processors which is different in the two systems.

El-Dessouki and Huen describe a method of exchanging information which involves two
processors. One processor interrupts the other, and then state information is transferred to split up
the work. The work is split so that the receiving processor gets one branch of the sending
processor's search space. The Delphi backtracking algorithms described in this chapter have the

following additional features:

® More than one processor can be included in an exchange.
e Any state information sent is in the form of an oracle.

® The application of automatic partitioning starting from any node in the search space (as
described by an oracle) is the method of splitting up the work load.

7-1.5

This final statement is the crux of the backtracking control strategies developed in this
research. This is also what makes them unique among other tree partitioning algorithms. In the
El-Dessouki and Huen algorithm the automatic partitioning only occurs at the root of the search
space. Any partitionings which occur after the root has been searched, are performed by a separate
algorithm. In the Delphi backtracking strategies, all partitionings of the search space are

governed by the same algorithm.

Oracles allow the automatic partitioning algorithm to be applied uniformly to any node in the
search tree. Following an oracle recreates the environment at a particular node in the search tree,

and this node can be considered the root for an additional application of automatic partitioning.

The Ali algorithm [Ali 1987] is an extension of El-Dessouki and Huen which adds the ability to
partition starting from any node in the search space. This is performed by copying all or part of the
environment of an interrupted processor to the idle processors, and then adjusting that
environment (in some cases by backtracking) before partitioning is initiated. The initial splitting
scheme used by Ali has been described in Chapter 2, Section 2.4.5. The initial splitting algorithms
of all three models [El-Dessouki and Huen, Ali and Delphi (see Section 7.8)] are equivalent. The

method of exchanging information by the use of oracles is unique to Delphi.

Other models involve the use of oracles for the recreation of the environment at particular
nodes in the search space. Chapter 2, Section 2.5 describes some related work involving the use of
oracles. Both of the previous papers on Delphi machines [Clocksin and Alshawi 1988, Alshawi and
Moran 1988] involve the use of oracles and backtracking control strategies, but none of these
strategies employs any tree partitioning algorithms. In these models, the generation of oracles is
the method for dividing up the search space among multiple processors. The same is true for the
non-backtracking control strategies deseribed in this chapter; it is the generation and following of
oracles which is the method for partitioning the search space. However, in the backtracking
algorithms described in this chapter, it is the application of automatic partitioning which is the

method for dividing the search space; the use of oracles provides the means.

There is one other feature that the algorithms described in this chapter have that others
[Clocksin 1987, Clocksin and Alshawi 1988, El-Dessouki and Huen 1980, Ali 1987] do not—all of
the non-backtracking control strategies have been implemented and most of the backtracking
control strategies have been both implemented and tested (see Chapter 8). Only one other
implementation of the Delphi machine is known [Alshawi and Moran 1988] and the control
strategies investigated in that system are more similar to the non-backtracking control strategies
developed in the current research. As for the backtracking control strategies, there are parallel
implementations of backtracking algorithms [for example, Finkel and Manber 19871, but none are

known to split a search space by automatic tree partitioning.

7-1.6

In summary, the use of oracles to recreate an environment is a unique feature of parallel Prolog
models based on the original Delphi machine [Clocksin and Alshawi 1988]. Other parallel Prolog
models [Ali 1987 and models discussed in Chapter 2, Section 2.4] use some method of environment
sharing or copying to perform the same task as that of following an oracle. In addition to the use of
oracles, the backtracking algorithms described in this chapter use tree partitioning strategies as
the method for dividing .up a search space. Other parallel Prolog models which use oracles
[Clocksin and Alshawi 1988, Alshawi and Moran 1988, Shapiro 1989] do not use partitioning
strategies to divide the search space. It is the generation and following of oracles that partition the

search space.

Tree search algorithms [El-Dessouki and Huen 1980, Ali 1987] may partition the search space
in a manner similar to the backtracking control strategies developed in this research, but they do
not use oracles for the recreation of an environment. It is the combination of these two features
which makes the backtracking algorithms in this chapter uniform, efficient (see Chapter 9) and

unique.
7.2 Non-Backtracking Strategies

With a non-backtracking strategy no choice points (such as those created by sequential Prolog
systems) are built. Since there is no choice point stack’ (this term will be used for a contrived data
structure containing only choice points) maintained locally, the search can only progress
downwards from the root of the tree structure. When a branching point is reached there is no
alternative but to save the current position to later be explored by the same or a different processor.
Saving the current position is analogous to creating a choice point but instead of the choice point
information necessarily being kept by a local process (one of the PPs), it can be kept 'globally’ by
the Controller process. This leads to the basic design of the non-backtracking strategies; the
Controller is used as a global (available to all of the Prologs) choice point stack. The interesting
feature is that the dafa kept on this stack is an oracle giving a complete description of how to
'proceed to a particular place within the search space. It does not contain conventional choice points
which consist of pointers into other local stacks. The information held by an oracle is truly global

and can therefore be given to any of the Path Processors.

The term 'Path Processor' is used throughout this document to indicate the running of one
Delphi Prolog server or equivalently, Prolog system. A Path Processor is a piece of software and
not a specific piece of; hardware. Though the Delphi machine is most often configured to run
exactly one Path Processor per uVAX, it is possible to run numerous Path Processors on any of the

host machines.

7-1.7

7.3 Conventional Search using Oracles

We consider just how a non-backtracking single Delphi processor might operate using oracles
instead of a conventional choice point stack. The well known search strategies breadth-first, depth-
first iterative-deepening, and depth-first are described using oracles to control the search. The

following program and its representation as a tree (shown in Figure 7.2) is used in the example

searches.
root H branchl,
root H branchr,
branchl e cibl.
branchl e c2bl.
branchr H cibr.
branchr H c2br.
branchr s c3br.
root

branchl branchr

clbl c2bl clbr c2br ¢3br 00 o1 100 101 110

Figure 7.2 Example Tree

Figure 7.2a is a‘répresentation of the Prolog program using the goals of each clause as the
nodes of the tree. The representation of Figure 7.2b shows the oracles required to reach each of the
leaf nodes in the program. Naive versions of breadth-first and depth-first iterative-deepening
search [Korf 1985] can be easily demonstrated using oracles instead of a choice point stack to
control the search. These algorithms generate and explore oracles without knowledge of what the
search space looks like at any particular point. Many nodes are redundantly exploréd and many of
the generated oracles are superfluous. For this reason these algorithms are termed naive. For

each of these naive searches the oracle is generated and explored starting from the root of the tree.

The following algorithm uses oracles to perform a breadth-first search:

N=0
DO{
N=N+1
generate all oracles’of length N
explore all of these oracles
} UNTIL there are no incomplete oracles of length N

Depth-first iterative deepening using oracles can be implemented by the following algorithm:

N=o
DO {

N=N+1

generate all oracles of length N

explore each of these oracles as they are generated
} UNTIL there are no incomplete oracles of length N

An incomplete oracle is an oracle which is not long enough to reach a leaf node. When an oracle
is complete it reaches a leaf node or may extend beyond it. For example, the oracles [01] and
[01001] are both complete. Both of these oracles reach the second leaf node (counting from the left)
of the tree in Figure 7.2.

Storage is the main difference between the naive breadth-first and depth-first iterative-
deepening algorithms. In the breadth-first algorithm all paths of length N are generated and
stored. Each of these oracles is then in turn explored. In the second algorithm (depth-first
iterative-deepening) only one path is generated at a time. As soon as the path has been generated
it is explored and the oracle is discarded. Depth-first iterative-deepening shows a time complexity
similar to a breadth-first algorithm, but has the space complexity of a conventional depth-first
algorithm. A more detailed examination of depth-first iterative-deepening search can be found in
Korf[1985].

In both the naive breadth-first and depth-first iterative-deepening algorithms oracles are

explored in the following order:

[0],{1], (00}, [01], [10], [11],[000], [001], [010], [011],[100],{101],[110], [111]

The difference between sequential Prolog search (which is depth-first) and the naive searches
using oracles for control is in the amount of information available and used at each branching
point. For the sequential Prolog what is known at a branching point is that there is at least one
more branch that needs to be explored. A poiﬁter (the choice point) is set up to allow the future
~ search of the next right-hand branch and ultimately all others. The naive searches make no use of
any information available when a branching point is reached; even the fact that a branching point
has been reached is not used. They function by generating and exploring all oracles of length one

up to the maximum depth of the tree. The information available during the search is that an oracle

7-4

is incomplete or complete. Depth-first search using oracles can also be demonstrated using only

this information:
Oracle = [0]
CALL Extend-With-Zeros
DO{

remove all trailing "1’ bits from Oracle
flip last bit in Oracle to '1'
CALL Extend-With-Zeros

} UNTIL there are no '0' bits in Oracle

SUBROUTINE Extend-With-Zeros

explore Oracle

WHILE Oracle is incomplete {
concatenate a '0' bit onto the end of Oracle
explore Oracle

Using this naive depth-first algorithm, oracles are explored in the following order:

fo1, [oo}, [o1], (11, [10], [1001, (1011, [11],[110], [111]

With the WAMO (WAM with Oracle control) instructions an extra piece of information is
available at each branching point; the exact number of branches which need to be explored~ is
known before a particular branch is chosen to explore. This information is given by the single
argument of the setmax instruction. If the current branch is the only one that needs expanding
(deterministic choice) this argument is 1. If there are additional branches this argument is greater
than 1. The naive breadth-first, depth-first iterative-deepening and depth-first algorithms do not
make use of the information provided by the setmax instruction or even that a branching point has
been reached. If the argument of setmax is used during the search more efficient algorithms can be
designed. Anexample of a depth-first search which uses the number of choices at a branching point

is shown in Figure 7.3.

Figure 7.3a shows the start of the process with the stack of jobs (oracles to be explored)
containing an entry for root. At the root of the tree the setmax instruction would have an argument
of 2 showing that there are two clauses to choose from at this node. The two oracles describing
these two choices go on to the stack pushing the rightmost branch first through to the leftmost.
Figure 7.3b shows the condition of the stack after these two oracles have been pushed onto it. The
dark arrows represent the furthest point in the tree (from the root) that is reached for each oracle

explored.

-5

c.

top of stack

|

ROOT

00

01

01

i'

100

101

110

101

110

110

NULL

Figure 7.3 Using Oracles and Setmax Information for Depth-First Search

7-6

So far no oracles have been explored so the arrow is shown at the root of the search space. In
Figure 7.3c, the top oracle [0] is popped and explored. A branching point is reached adding two new
jobs onto the stack. The process continues in this manner; popping the stack to obtain the next
oracle to explore and pushing new entries when a branching point is encountered. When there are
no more jobs available on the stack (Figure 7.3i) the tree has been searched. The important points

to notice from this example are:

® Each oracle or job starts from the root of the tree.

® At each branching point, an entry (or entries) has to be put on the stack or information on
the existence of alternate choices will be lost.

The searches described in Section 7.5 fall into three categories depending on the amount of

information used at each branching point:

(1) No information about the branching point is used.
® naive breadth-first
® naive depth-first iterative-deepening
® naive depth-first

(2) The fact that a branching point has been reached is used.
® sequential Prolog depth-first search
® depth-first search shown in Figure 7.3

(3) The number of branches is used.
® depth-first search shown in Figure 7.3

In the naive depth-first search the oracles [10] and [11] had to be generated and explored. With
the depth-first search using the setmax information (Figure 7.3) these two oracles never appeared
on the job stack. The reason is that the setmax instruction not only indicates the number of
available choices, but also provides the encodings for each of these choices. When the node with
three branches was reached (Figure 7.3f), the oracles pushed onto the stack were those defined by
Figure 7.2b. The method for encoding the oracles shown in Figure 7.2b is described in Section 7.4.

74 Encodings

When a tree with a maximum branching factor of two is encoded, all left hand branches are the
‘0" choice, and all right hand branches are the '1' choice. If there is only one branch it can
arbitrarily be called the 0 or 1 choice; we have used 0 to represent a single branch. When the
number of branches is not a power of two the branches can be encoded in various ways. Two
encoding methods named regular and compressed are demonstrated in Figure 7.4. The example

tree is the same as the one used in Figure 7.2

Compressed encodings uniquely enumerate the clauses of a predicate using a smaller number
of bits overall than the regular encoding. In Figure 7.4 we are interested in encoding the three

alternative clauses for branchr (see Figure 7.2a). There are three clauses or objects to be encoded.

7-7.

added trivial
OR nodes

00

a. Compressed encoding b. Regular encoding

Figure 7.4 Two Encoding Methods

The compressed encoding (Figure 7.4a) shows two clauses encoded with three bits, and one clause
with two bits. If we consider these three branches on their oWn, the number of unique bits is two for

two of the clauses and one for the final clause (the initial '1' bit is similar for all three leaf nodes).

With three objects a compressed encoding uses two bits for two of the objects and one bit for the
third object. The combined number of bits needed for encoding all three objects is five. With the
regular encoding, three items are encoded with two bits each giving a total of six bits. In general, a
regular encoding of n items entails nllogy,n bits for all encodings. A compressed encoding uses
n(llogyn + 1) - 2Mogynl pbits. See Appendix 7a for a discussion of these figures. Reasons can be
given for using either of these encodings. The regular encoding method was more often chosen

when implementing Delphi control strategies for the following reasons:

® Space Conservation

One reason to use compressed encodings is for extra space conservation. Packing the bits
with regular encodings proves to be enough of a space saving and keeps the transmission
times low.

® Representation

In a regular encoding all clauses in a predicate have the same number of bits. This makes
the decoding algorithm simple and if graphically displayed, all clauses are located at the
same level of the tree.

¢ Complexity

With a regular encoding the integer corresponding to the encoded string is equal to the
clause number being picked. If the clause numbering starts from one then the encoded
string is equal to one less than the clause number.

7-8

7.5 Expanding a Job

In the algorithms described so far, the storage for nodes to be expanded (oracles to be followed)
has been assumed to be local to a single processor. The computation involved in exploring each of
the oracles generated is also assumed local. Oracles are global data in that they give a complete
description of the path to be followed from the root of the tree. With a Delphi machine these oracles
can therefore be distributed to any available host processor. Expand a job is the first strategy

which will demonstrate the distribution of oracles to more than one Path Processor.

In the naive breadth-first strategy the only information used was that a leaf node had been
reached by all generated oracles. Expanding a job additionally uses information when an internal
node has been reached. The information consists of two messages NEEDNEWJOB and NEEDEXT which are
sent by the Path Processors to the Controller. The need a new job message is sent on two
occasions—when the processor is originally initialised and after a leaf node of the tree has been
reached. The need an extension message is sent when an internal node which has a branching
factor greater than one is reached. If a deterministic-node is reached (branching factor equal to
one), then the choice is automatically taken without any need for the Controller to send an

extension of [0]. With these two messages a variety of expand a job strategies can be implemented.

Expanding a job in its most basic form is a simple breadth-first search using multiple
processors. The Controller process maintains a queue of oracles in breadth-first order. It uses
information returned by the Path Processors to avoid the creation of redundant oracles such as

those generated in the naive breadth-first strategy.

The naive strategies generated the next oracle to explore by guessing the next bit in the oracle
string. Guessing is when bit permutations of a certain length are created and explored without
knowing that the oracle will be successful. For example, in the naive breadth-first and depth-first
iterative-deepening algorithms, all permutations of length n were created without considering
whether a failed oracle of length n-1 would obviate generation of some oracles of length n. With the
naive depth-first algorithm an extension of one ‘0’ bit or replacement of the '0' Bit by a '1' was a
guess that the newly generated oracle would be successful. All of the naive algorithms guess ahead
by a single bit. It is also possible to guess ahead by more than one bit. If the oracle [0110] ends on
an internal node then we might guess that a successful oracle may be [0110000], three bits ahead of

the known sure path.

The length of an oracle expansion whic}lx is not a guess is the number of bits needed to encode
the choices at a branching point. If the tree is binary the expansion will be one bit. In general, with
a branching factor of n the extension length can be up to T log,n1 bits. The Controller is the
process which generates oracles and their expansions. For the Controller to be ensured of correctly
expanding oracles, information concerning the number of choices has to be communicated from the

Path Processors back to the Controller. This information is the parameter of the setmax instruction

which occurs at the beginning of a set of clauses. Without this information only guesses of one bit
could be ensured of being correct expansions. The only information available at each node is the
type of node that it is—internal or leaf node. With compressed encodings it is fairly obvious why
one-bit extensions will always be correct. The Path Processors communicate to the Controller
when they need an extension and an internal node has been reached. All internal nodes have
exactly two outward branches so any one-bit extension will be correct. When a leaf node is reached
no extensions are generated as the Path Processors then ask for a new job to be given to them by the

Controller.

Deterministic choices can be made automatically without involving communications to the
Controller. For this reason one-bit extensions are also correct when using regular encodings. Just
as with the compressed encodings, communications to the Controller will only be performed if there
are two branches to choose from or a leaf node has been reached. An example of a deterministic
choice being automatically taken is shown in Figure 7.5. When the oracle [11] is sent to Path

Processor 2 this processor automatically explores route [110].

With a bit by bit strategy oracles are expanded one bit at a time. The jobs queue is initialised to
hold the two oracles [0] and [1]. As Path Processors (PPs) report to the Controller with the message
NEEDNEWJOB, they are given the next oracle on the jobs queue. When PPs report back with the
message NEEDEXT, a '0' bit and a '1' bit are appended to the end of the oracle which that PP has just
followed. These two newly created oracles are placed at the end of the jobs queue. This strategy is
termed strictly following meaning that the Path Processors have only one mode of operation; to
follow the oracle that they have been given beginning from the root of the tree. An example of this

bit by bit strategy operating with two host Path Processors is shown in Figure 7.5.

The jobs queue and last run array are two data structures manipulated by the Controller. The
last run array holds the last oracle which was explored by each of the Path Processors (PPs). In
Figure 7.5, PP1 and PP2 are the first and second locations respectively in the last run array (with
location number one on the left). Processing is shown as if it occurs in a synchronous manner with
the Controller distributing oracles and the Path Processors responding. Though synchronous
execution does not really occur, it is shown in this form for the sake of simplicity. The Controller
updates the queue and last run array as each PP sends back either of the two possible messages.
Darkened areas on the trées to the right of the PPs show which path is explored after the PP's
request is granted. As the processing is asynchronous, it is possible that a strict breadth-first
search will not be performed. If we assume that all oracles of the same length take the same time to
compute and that all Path Processors report back to the Controller with equal priority, then this
control strategy will effect nearly breadth-first search. In addition to the problem of asynchronous
behaviour, exact breadth-first search will not occur since deterministic branches are automatically

explored.

7-10

Controller

last run array

null null

Path Processors

last run array

last run array

00 01

last run array

10 11

jobs queue
0
1 NEEDNEWJOB
_—
~ 0 > PP1
NEEDNEWJOB
~—
1 PP2
jobs queue S~—7
00
01
10 NEEDEXT
11 _—
~00 PP1
NEEDEXT
D o N
' o1 PP2
jobs queue —
10
11
NEEDNEWJOB
LN
~10 PP1
NEEDNEWJOB
[—\
1 PP2
jobs queue
100
101
NEEDEXT
r\
~ 100 y PP1
NEEDNEWJOB
LN
101 PP2

Figure 7.5 Bit by Bit Strategy

7-11

Figure 7.5a shows the first step in the bit by bit strategy. The jobs queue is initialised with the
oracles [0] and [1]. The last run array is empty as no oracles have been distributed yet. Each of the
two PPs sends a NEEDNEWJOB message to the Controller shown by the top curved arrows.
Communications to the Controller from the Path Processors are shown by the top arrows with
communications to the Path Processors in the bottom arrows. The Controller responds to these
messages by sending oracle [0] and [1] to PP1 and PP2 respectively. The sending of these oracles
from the Controller is shown in the bottom curved arrows. The last run array can now be updated
showing the latest oracles which have been distributed (see Figuré 7.5b). The paths explored by
each of the PPs is shown by the trees to their right. Both Path Processors reach a choice point and

so each will send a NEEDEXT message.

In Figure 7.5b NEEDEXT has been sent by both PPs. The jobs queue is updated to reflect the new
paths which have been found by the PPs. When PP1 sends its NEEDEXT message the oracle in the
first position of the last run array is extended by one bit. The two new resulting oracles {00] and
[01], are placed on the jobs queue. The same is true for PP2. When its NEEDEXT message is received
[10] and [11] are placed on the queue. The first two jobs on the queue are sent by the Controller to
the PPs to explore. In general, the jobs queue expands by one oracle for each NEEDEXT message
received. A NEEDEXT sent by a PP creates two new oracles on the jobs queue but also takes the first
oracle in the queue as that Path Processor's next job to explore. The net effect of a NEEDEXT message

is to increase the queue by one job while a NEEDNEWJOB message reduces the jobs queue by one oracle.

Figure 7.5¢ shows the last run array updated with the oracles last sent to PP1 and PP2. Both
PPs reached a leaf node with their last exploration and so they each send a NEEDNEWJOB message.
PP1 is given [10] to explore and PP2 is given [11]. PP1 reaches an internal node and sends back a
NEEDEXT because of this (see Figure 7.5d). PP2 explores [11] which leads to a deterministic branch.
This branch is automatically taken without any communication to the Controller. PP2 reaches a

leaf node and has to request a new job.

In Figure 7.5d the NEEDEXT message of PP1 puts two jobs onto the queue. The first of these is
immediately taken by PP1 to explore. PP2 gets the final job. The search is known to be complete
when all Path Processors are blocking on a NEEDNEWJOB message and there are no more jobs in the

jobs queue to give them.

Many variations on this job expansion theme can be created. For example, it is possible to send
an extension which represents an additional number of bits to be appended onto the previous
attempted path. This saves on having to always start the computation from the root of the search
space. The next strategy described, branch by branch, uses a technique to extend a path and avoid

always starting at the root of the search space.

7-12

7.6 Branch by Branch

Branch by branch is a strategy which demonstrates the limit of the bit by bit strategy. It avoids
always having to start from the root of a tree when a choice point is reached by allowing the Path
Processor to pick a branch. For this reason it is more efficient than the bit by bit strategy. In the
bit by bit strategy the Controller communicated oracles to the Path Processors and the PPs
responded with one of two messages. In this strategy oracles are communicated both by the
Controller and by the PPs. Branch by branch is a non-backtracking strategy which exhibits
features of both a depth-first search and a breadth-first search.

Since a non-backtracking strategy is being used, the minimal number of communications that
can be involved is equal to the number of choice points in the tree, a choice point being where more
than one alternate clause is available to choose from. We are assuming here that no local stack is
maintained to store some of the potential oracles and that there is no omniscient routine for
guessing a correct path. At each choice point the PP must report that there is more than one
branch available as it is unable to backtrack and try these branches by itself. It can however
choose one of the branches to try while reporting one or more of the other alternatives. If this
technique is used the result will be to keep each Path Processor exploring a particular branch from
the root of the tree to a leaf node. Only when a leaf node is reached does the PP report back to the

Controller and request a new oracle to explore.

For the branch by branch strategy the NEEDEXT message is no longer needed. An alternate
message, GIVEPATHS, is used in its place. When a choice point is reached this message is sent along
with the oracles for paths which the PP cannot explore itself. In one possible implementation,
these oracles are paths from the root of the tree to the current node with extensions for all branches
excepting the clause that the PP picks to explore itself. Figure 7.6 shows a particular branch by
branch strategy operating. In this case, the clause automatically chosen by the PP is always the

first clause or leftmost branch.

Computation proceeds down the pages of Figure 7.6 with the Controller's actions shown on the
left-hand side and the two host PPs shown on the right. The jobs queue is initialised to hold the
first job which is the root node. The processor which receives this job will know that it is supposed
to immediately pick the first clause at the first choice point and continue to pick the first clause at
each choice point until a leaf node is reached. As each choice point is encountered, a message
(6IVEPATHS) including the paths of all oracles which are not explored by this processor is sent to the
Controller. The return message after a GIVEPATHS is performed is an acknowledgment (AcK) that the
paths have been received. If a new job is requested and there are no jobs in the queue, the processor
must wait on the idle processor stack (not shown) until a job has been enqueued by another

processor doing a GIVEPATHS.

7-13

Controller Path Processors
jobs queue
special first job, root
NEEDNEWJOB
LN
~._ root > PP1
NEEDNEWJOB
£
PP2
a.
jobs queue
null
GIVEPATHS: (1]
LN
b.
jobs queue
1
S B s /<>N
C.
jobs queue
null
GIVEPATHS: [01]
e
d.

Figure 7.6 Branch by Branch Strategy

7-14

Path Processors

Controller
jobs queue
01
NEEDNEWJOB
A
~01 PP1
€.
jobs queue
null GIVEPATHS: [101],[110]
~ACK | ppo O\
f‘
jobs queue
101 NEEDNEWJOB
110 e
\1(1_1 PP1 /{)\
NEEDNEWJOB
A
110 PP2
8- ~——7
jobs queue
null NEEDNEWJOB
A
PP1
NEEDNEWJOB
b\
PP2
h.

Figure 7.6 Branch by Branch Strategy (continued)

7-15

Two distinct modes of operation are encountered within this strategy: a following mode and an
automatic choice mode. The following mode is identical to the following performed in the bit by bit
strategy. An oracle is sent to the Path Processor which follows that oracle as far as it leads. After
the following mode is completed an automatic mode is entered involving automatically picking a
particular numbered clause. This mode is continued until a leaf node is reached when the Path
Processor has to request a new job. This automatic picking mode is also accompanied by the

transmission of untaken paths back to the Controller as each choice point is reached.

Figure 7.6a shows the start of the branch by branch strategy with the jobs queue initialised
with the root node. Both PPs are requesting a new job after their initialisation phase. There is
only one job available and it is given to PP1. PP2 must wait until a new job is available from the
jobs queue. At the root PP1 sees that there are two branches. Since it cannot backtrack PP1 is only
able to explore one Qf those paths. It transmits the untaken path [1] to the Controller and takes the
[0] path (Figure 7.6b). In Figure 7.6¢c the path transmitted by PP1 is immediately given to PP2
which has been blocked waiting for a job to appear on the queue. PP1 reaches a choice point after
automatically taking path [0]. At this choice point PP1 sends the path it will not explore [01] to the
Controller with a GIVEPATHS message (Figure 7.6d). It then automatically proceeds to Iocatioﬁ [00]
picking the first clause in the choice point to explore itself. It did not restart computation from the
root of the search space to get to [00], it just automatically picked the first clauses of each choice

point after its initial oracle (in this case the root node) was received.

Figure 7.6e shows PP1 requesting a new job and being given path [01]. PP2 reaches the choice
point with three branches located at [1]. Two of these paths are transmitted to the Controller [101]
and [110] after which the PP automatically proceeds to location [100]. In Figure 7.6f both PPs are
requesting new jobs. After following the oracles they are given both PPs reach leaf nodes and again
must request new jobs. When all participatiné PPs are blocked waiting on new jobs and the jobs

queue is empty, the search is complete (Figure 7.6h).

One possible variation on the branch by branch strategy could be to pick the rightmost branch
instead of the leftmost. Another branch by branch variation could be implemented to reduce
communications over the network. Instead of communicating paths at each branching point, the
Path Processor could store all of the oracles it encountered and transmit them all together. Figure
7.7 demonstrates this variation. The Path Processors do not perform a 6IVEPATHS until they reach a
leaf node. This can be seen in Figure 7.7b where PP1 does not do a GIVEPATHS until the leaf node is

reached.

7-16

Controller

jobs queue

special first job, root

Path Processors

NEEDNEWJOB

_—
~ root e

PP1

NEEDNEWJOB

jobs queue

null

) e

pPpP2

GIVEPATHS: [1],[01]
r—\

jobs queue

1
01

~_ ACK V‘

PP1

NEEDNEWJOB

PP1

jobs queue

null

PP2

GIVEPATHS: [101],[110}
r\

jobs queue

101
110

~ ACK,

PP2

NEEDNEWJOB

_—
~. 101 >

PP1

NEEDNEWJOB

_— T
~ 110 >

PP2

Y PP Y PP

Figure 7.7 Branch by Branch Variation

T-17

Branch by branch can be considered a combination of depth-first and breadth-first search as it
contains characteristics of both. When a processor reaches a choice point it reports all paths to the
right of the one it explores. These paths are therefore generated in a breadth-first manner. When a
Path Processor is involved in automatic picking, it proceeds in a depth-first manner always ending
at a leaf node of the search space. Throughout this mode it gives paths back to the Controller in the
order of a depth-first search as it explores further down the tree. Most of the backtracking

strategies also have components of both breadth-first and depth-first exhaustive search.

7.7 Backtracking Strategies

Non-backtracking strategies have the major disadvantage that at every choice point, some
operation to save untried branches must occur. There are two general ways to approach saving the

untried branches:

(1) The extended oracle for each untried branch is placed on a local queue to await execution
by the processor which discovered the path.

(2) Communications take place to the Controller, and the oracles representing untried
branches are placed on the global jobs queue.

Combinations of the two choices above can also be constructed. The first method is analogous
to the way sequential Prolog creates a choice point. The choice point stack of sequential Prolog
becomes a local oracle queue. | Oracles take the place of the pointers which need to be saved to
recreate the environment before each choice is taken. The major difference is that the oracles
recreate the environment starting from the root of the search space. They do not take advantage of
any possibilities for replacing a portion of the environment without starting from scratch each

time.

The second method indicates the communication of each untried path to the Controller. This
entails the disadvantages of always having to explore each path starting from the root of the tree in
addition to the communications overheads involved with sending and receiving oracles over the
network. A compromise situation is to allow normal backtracking (as in sequential Prolog) to occur
within particular sections of the search space. The search space is logically divided into separate
sections to be explored by separate Path Processors. Normal Prolog control is applied to each of
these sections with the Path Processors. backtracking within their given portion of the original

search space.

7-18

Partitioning the search space can be seen graphically as drawing separation lines through
internal nodes of the tree. The branches. within each section would all be explored by an individual
backtracking Path Processor. Figure 7.8 shows examples of partitioning a search space by using
horizontal or vertical lines to create the sections. In addition to using exclusively horizontal or
vertical lines, a combination partitioning could be drawn using them together. It is very easy to
draw the individual partitions. To effectively use the idea of partitioning, new control strategies
have to be implemented which create and exploit sections of the search space, and properly map

these sections onto separate Path Processors.

4 y
s
s e
e Cc
c R R R T
t i
i 0
O n IIIII L]
n
3
4
b €17 AN DI U S W, - X
S . . section 1 * - :

) section 2 " ':
s-ection 3 :H

: section 4

a. Horizontal partitioning b. Vertical partitioning

Figure 7.8 Partitionings

A horizontal partitioning leads to depth-first iterative-deepening strategies while vertical
partitioning lends itself to separate depth-first searches. In Figure 7.8, the example tree is
partitioned into four horizontal and four vertical sections. The four horizontal sections correspond
to the four levels of the search space. For the vertical sectioning, four is just an arbitrary number.
A vertical partitioning with one section would incorporate the entire tree while a partitioning with
eleven sections would separate each of the eleven unique branches from the root of the search space
to each of the eleven leaf nodes. The purpose of this partitioning is to divide the search space into
sections which can then be searched by individual Path Processors with the intention of reducing

the execution time of the Prolog program.

7-19

7.8 Automatic Partitioning

Automatic partitioning is a vertical partitioning strategy executed by each of the Path
Processors without the need to communicate. Each of the Path Processors begins execution at the
root of the tree. The search space is repeatedly partitioned until each Path Processor finds a unique

section of the search space to explore.

Executing this strategy centres around the manipulation of two variables; the Unique
processor number (U) and the number of processors in a Group (G). Both of these variables are
initialised by the norrhal setup routines that the Delphi machine performs before execution of the
Prolog program. The U value is initialised to the unique Global Server Number which each of the
Prolog processes receives from the Controller. The G value is initialised to the number of Prologs
initially configured for the Delphi run. During the computation G always represents the number of
processors which are simultaneously executing this same portion of the search space. Variable U is
each Path Processor's unique number which has a range from one to the value of G. Path
Processors split up at choice points according to different partitioning algorithms. They continue
with this splitting process until their G variable is equal to one. At this point there is only one
processor available to explore all of the search space contained within the partition. This partition
includes one or more branches from the choice point where the splitting occurred plus all of the tree

located below these branches.

Partitioning is accomplished at a branching point with the creation of a limited choice point.
The creation of a limited choice point enables a Path Processor to explore a subset of the available
branches and not necessarily all of them. When a sequential Prolog choice point is created all of
the branches will be.explored when the same process backtracks to them. A pointer to the next
clause to be tried is placed on the choice point stack. By storing this information and updating it
upon backtracking, all clauses will -eventually-be tried in sequence. After the final clause is
attempted the choice point is not needed any more and is released. This process relies on WAM
instructions similar to try, retry and trust to perform the choice point creation, update and deletion
functions. For a limited choice point to be manipulated the analogous onum instructions onumtry,
onumretry and onumtrust are used. The information manipulated by the creation, update and

deletion of a limited choice point is stored in a structure called the oracle structure.

7-20

Throughout the execution of automatic partitioning or any control strategy the path through
the search space is maintained by the Path Processor in a data structure called the current path. If
the oracle held in current path were followed it would lead to the location of that PP within the
search space and recreate the environment associated with that location. Automatic partitioning
itself may not need to store this information as it is never communicated to any other process, but
previous non-backtracking strategies needed it and other backtracking strategies require the
current path to be maintained. One reason for maintaining the current path, even with automatie

partitioning only, is for debugging.

For non-backtracking strategies it is sufficient to use only the one onum instructing onumsing.
When this instruction is executed a bit or bits are appended onto the end of the oracle contained in
current path. As the current path is always extended with non-backtracking strategies, no
previously appended bits arev ever changed and the task is rather simple. With backtracking
strategies the current path can change by adding, deleting, or updating any number of bits. To
perform these tasks the oracle structure is used to hold information needed to maintain the current
path so that it always reflects the location of that Path Processor within the search space. In
addition to this function, the oracle structure maintains information on whether or not this
branching point isvbeing split with another Path Processor. If the branching point is being split

with other PPs then a limited choice point is created.

The current path is a string of bytes containing an oracle. Associated with the string are byte
and bit pointers which uniquely describe the next location for a bit or bits to be appended to the
oracle. When a call to a predicate is made the values of these pointers are placed in the oracle
structure along with the number of bits which are needed to uniquely pick a clause. Together, this
information is enough to update the current path. A clause is chosen for execution, and the current
path string is-extended to reflect the branch that is about to be taken. If the clause fails and a redo
is performed, the original bit pointer (held within the oracle structure) is reinstated as the current
path's bit pointer. This sets the condition of the current path properly back to its state before the
first clause was explored. The new bits to be appended will overwrite and update the previous ones.
Figure 7.9 shows the two data structures needed to maintain the current path and use limited -

choice points.

7-21

typedef struct {
unsigned char numbits;
oracle
structure unsigned char atbyte;
definition
unsigned char atbit;
unsigned char 1lastclause;
} oracle_struct;
ofrjojofojofr 1ot joqorjolrfrfhofofifolrfifofrfofolilots|11o(n
current path numbits
data strueture

Figure 7.9 Oracle Structure

The oracle structure holds information needed to both create a limited choice point and to
maintain the current path data structure. To create a limited choice point, the last clause which a
PP has been assigned to explore must be saved during backtracking. Information must be retained
throughout backtracking to properly update the path which describes that PP's location from the
root of the search space. This information consists of two pointers and a small integer value. The
pointers atbyte and atbit describe a unique bit location within the current path. The location
specified by these two pointers is the position at which bits will be appended when a clause is
chosen. When backtracking occurs the original values of these pointers will be returned.
Character numbits contains the number of bits needed to encode the number of the clause which has

been chosen next to explore.

In Figure 7.9 atbyte points to the third byte in current path and atbit the second bit within this
byte. The number of bits needed to encode the clause chosen (n umbits) to explore is shown as four.
A small amount of information concerning the value of 1astclause can be predicted from knowledge
of the other three values. Assuming a regular encoding, the number encoded in the four bit

positions starting at the location described by atbyte and atbit is five. The value of Tastclause will

7-22

be a minimum of five since the clause with this value has already been chosen to explore. The

maximum value for 1astclause will be fifteen since this is the largest number which can be stored

in the four bits specified by numbits.

Within the oracle structure, 1astciause is the number describing the last clause which is to be
attempted by the Path Processor. If the choice point is normal and all clauses are to be tried as in a
regular sequential Prolog, this number is set to the value of the setmax argument. Normal choice
points are created when a single Path Processor is executing in solo (G is equal to one). If more
than one Path Processor arrives at the same choice point (G is greater than one), then a limited
choice point is created and the total number of choices are split among the group of participating
Path Processors. Splitting algorithms can range from very complex methods of attempting to
ensure that each Path Processor is given an equal share of the work load, to a simple mapping of
branches onto unique identifier numbers (U's). A simple splitting strategy which uses such a
mapping is demonstrated. It is called the partition right splitting algorithm and is a very right
biased splitting strategy. Partition right assumes that the longer paths of the tree always exist
beneath the rightmost branch. This strategy therefore assigns the largest possible number of Path

Processors to this final branch.

Four cases exist for each splitting strategy relating the number of Path Processors available at

the choice point to the number of branches. The four cases are:
® There is only one PP operating at this choice point.
® The number of PPs is less than the number of branches.
® The number of PPs is equal to the number of branches.

® The number of PPs is greater than the number of branches.

The first case is the most important. If there is only one Path Processor available to explore all
of the branches of a choice point, then there is no need to execute a splitting algorithm at all. With
this case the splitting algorithm code is never entered and the Path Processor behaves in a manner
equivalent to sequential Prolog. If there are more branches than Path Processors, then the number
one Path Processor in the group takes all of the extra clauses while each of the other Path

Processors take one each of the clauses towards the right of the tree.

This partitioning is a right biasing with the assumption that the left hand clauses amount to
less work cumulatively than each of the branches towards the right. If there are exactly the same
number of Path Processors as clauses then each Path Processor picks the clause associated with its
unique identifier (U). The group count (G) is changed to reflect that only one Path Processor will be
proceeding from this point. In the case where there are more Path Processors than choices, more
than one Path Processor will need to be assigned to at least one of the choices. As this strategy is

right biased, the branch chosen for all of the remaining Path Processors (after each clause has been

7-23

assigned to a single Path Processor) is the rightmost. The U and G variables are set to properly

reflect the new arrangement of Path Processors to branches.

In the following algorithm the setmax variable contains the value of the argument of the Setmax
instruction. It defines the maximum number of possible choices or clauses within this set. This
algorithm is only entered if the group count number (G) is greater than one. When only one Path
Processor is executing within a partition a standard left-to-right depth-first backtracking search is
performed.

int partition_right(setmax, p_lastclause) /* right biased partition */
int setmax, *p_lastclause;

int firstclause, extra;

if (setmax > G){ /* more clauses than processors */
extra = setmax - G;
if (U == 1) {

firstclause = 1;
*p_lastclause = extra + 1;
} else {
firstclause = U + extra;
*p_lastclause = firstclause;

G=U-=1;
} else { /* setmax <= G */
if (U < setmax)
firstclause = U;
*p_lastclause = firstclause;
G=U-=1;
} else {
firstclause = setmax;
*p_lastclause = firstclause;

G =G - setmax + 1;
U=U - setmax + 1;
}
return(firstclause);
3} /* end partition_right */

A PP enters the algorithm with the intention of supplying values for the firstclause and the
*p_lastclause variables. Firstclause is the number of the clause or branch which will initially be
explored by the PP. The *p_1astclause variable contains the final clause which has been assigned
to this Path Processor. Both of these values represent clauses which are contained within the same
set. The firstclause value is used to determine an offset from the setmax instruction which will
properly pick that numbered clause. Setmax is the instruction in the loaded code which heads the
list of clauses within the set. The offset from the setmax instruction is immediately placed in the
Prolog program counter. The *p_lastclause value is the clause in the set to which the Path
Processor will eventually backtrack. This value is placed in the oracle structure which creates a

limited choice point.

7-24

Each time a retry is performed the #p_1astclause value which is stored in the oracle structure is
compared to the current clause number being executed. This clause number is held as an argument
of the onum instructions. If this clause number is less than or equal to the *p_lastclause value stored
in the oraéle structure, that clause is explored. The usage of limited choice points involves separate
sections of code being executed when any of the onum instructions onumtry, onumretry, onumtrust,
and onumsing are reached. This code depends not only on the instruction to be performed, but also

on the control strategy and splitting algorithm being used.

A diagrammatic example of the resulting partitions created with automatic partitioning is
shown in Figure 7.10. The splitting algorithm used is partition right. The same search space is
shown in each diagram as it would be partitioned by a varying number of initial Path Processors
ranging from one to six. With only one Path Processor the entire tree is encireled showing that all
of the search space was explored by this single PP. With more than one PP the search space is
divided by the splitting algorithm in accordance to the creation of limited choice points. When a
Prolog system has finished exploring its unique section of the tree it becomes idle and reports back

to the Controller. When all of the Path Processors have become idle, the search is complete.

A more detailed analysis showing the changes in variables U and G is given for the initial state
of six Path Processors searching the tree. Figure 7.11 labels the internal nodes in a breadth-first
manner. Table 7.1 shows the changes .which occur to thé U and G numbers as automatic
partitioning with the partition right splitting algorithm is executed. The numbers in the table are

the values for the variables after each of the selected nodes from Figure 7.11 has been reached.

Where entries in Table 7.1 have been left empty that PP never encounters the specified node.
At the beginning of execution all PPs are given a unique Global Server Number which is used to
initialise the U variable. In all cases we are assuming that this number is equal to its Path
Processor number. For example, the Prolog process called Path Processor 1 (PP1) has its unique
identifier U initialised to the value 1. The group count (G) in the example is initially equal to six as
there are six initial Path Processors starting exploration from the root of the search space. Entries
in the table refer to the U and G numbers after the Path Processor has encountered the specified
node. Notice that as soon as a Path Processor reaches the condition of U and G being equal to one,

these variables do not change value.

7-25

PP2

-——— - -———
1 1 1 I 1 1
(B 10 1 10 |
=V - N T
A0 (DN A0000
1 1 ———— 1 1 71 I
H _4_ ———— e
I N
(=R TN
(=D
1 1
_ﬂolu
1 Lo
-"
[=Pa]
i I
e -
N\ 4
(0
1
e QN
oY |-V
| ial
[~ I C——a
[T
1 1 _——
- 1 1
10
-
AR
o to-d
[
(="
[~
1 !
ﬂo!“
| Lo/ -
[~
[P
1 1
\ AN
AN N
——— - ———
| Qi ‘ e
1
1 Qs -~ 12y
(=T ! (=D
1 l i 1 1
—- 1 _————
1
1

Figure 7.10 Right Biased Splitting

7-26

Figure 7.11 Node Labelling

PP1 PP2 PP3 PP4 PP5 PP6
Node
root 1 1 1 1 1 4 2 4 3 4 4 4
1 1 1
2 1 1
3 1 1 1 1 1 2 2 2
4 1 1
5 1 1
6 1 1 1 1
7 1 1
8 1 1
9 1 1

Table 7.1 Automatic Partitioning Example

7-27

Central splitting partitions the search tree in a less biased manner than the partition right
algorithm. If there are more branches at a choice point than PPs, the extra branches are
distributed among the lower numbered PPs. If there are more Path Processors than clauses, the
leftmost branches have extra Path Processors assigned to them. The partition central algorithm is

shown below.

int partition_central(setmax, p_lastclause)
int setmax, *p_lastclause;
{

int firstclause;

if (setmax == G){

firstclause = U;

G=U-=1;

*p_lastclause = firstclause;
} else if (setmax > G){

int div, rem, maxnum;

div = setmax / G; /* min clauses any proc gets */
rem = setmax % G; /* num procs that get 1 extra */
maxnum = div + 1;
if (U <= rem) { /* these procs get maxnum clauses */
*p_lastclause = U * maxnum;
firstclause = *p_lastclause - (maxnum - 1);
} else { /* these procs get div clauses */
*p_lastclause = U # div + rem;
firstclause = *p_lastclause - (div - 1);
if (div == 1) *p_lastclause = firstclause;
}
G =U=1;
} else { /* setmax < G *¥/
int div, rem;

div G / setmax; /¥ minimum procs per clause */
rem G % setmax; /* clauses that have extra proc */
firstclause = U;
U =1;
while (firstclause > setmax) {

firstclause -= setmax;

U++;

}
G = div;
if (firstclause <= rem) G++;
*p_lastclause = firstclause;
/¥ end of if cases */
return(firstclause);
3} /* end partition_central */

Divisions of the search space using the partition central algorithm with from one through six

initial Path Processors is shown in Figure 7.12.

7-28

4

PP2

~==-=y
[

r~=—==1
., PP1 !

7z

PP2

r————=3/
lee e

7

PP2

[————-1/
Y |

Figure 7.12 Central Splitting

7-29

7.9 Reassigning Jobs

A summary of the major features of automatic partitioning is contained in the following

statements:

(1) All Prolog Systems (or equivalently Path Processors) start at the root of the search tree.

(2) Each Prolog System automatically finds a unique portion of the original tree to explore.

The second feature is obtained by manipulating the two variables G and U. Variable G being
the total number of Prolog systems in a group and U the unique number given to each Prolog
system. When the number of Prolog systems in a group was equal to one, a Prolog system was
exploring a portion of the original search space by itself. When it had completed exploration of its
section of the original tree the Prolog system became idle and did not receive new work to perform,
The reassign jobs strategy is an extension of automatic partitioning which allows idle Path
Processors to be assigned new work to perform. This work entails the exploration of new unique

sections of the original search tree.

Reassigning jobs to idle Path Processors can be seen as a generalisation of feature number one
of the automatic partitioning strategy summarised above. Instead of starting a group of Prolog
systems only at the root of the search space, a group can be given any arbitrary node as a starting
point. An oracle is used to describe the path from the root of the search space to this starting point.
This oracle along with the group count (G) and unique identifier (U) is given to each participating
Prolog system. This information is all that is needed to perform automatic partitioning from any

arbitrary node.

The tree in Figure 7.13 is used as an example of starting automatic partitioning at a node other
than the root of the search space. Assume we have six Prolog systems which are requesting
additional work to perform. The tree has been searched down to the node pointed at by the arrow
(see Figure 7.13) so we wish to begin an automatic partitioning strategy starting from this location.
Each of the six Prolog systems is given the oracle [1011] to follow along with two additional pieces
of information; the group count (G) and a unique identifier (U). In this case G is equal to six and so
the unique-identifiers range from one to six. If the partitioning strategy being used is right biased,
we now have a situation equivalent to that demonstrated in Figure 7.10 and Table 7.1. The only

difference is the location within the search space where automatic partitioning is initiated.

Two questions that have not been answered in the previous discussion are:

(1) Where did the available Prolog systems come from?

(2) What nodes are potential choices from which automatic partitioning can be initiated?

7-30

root

oracle leading to this
location is[1011]

Figure 7.13 Automatic Partitioning Starting From an Arbitrary Node

The first question can be answered simply by mentioning that all available Prolog systems are
maintained in the idle process queue. If the idle process queue is empty then there are no Prolog
systems available to perform new work. In the majority of cases the reason a Prolog system
appears on the idle process queue is that it has completed the exploration of its unique portion of
the search tree. The only other time that a Prolog process joins the idle process queue is when that

process has just been initialised. For most Prolog processes this occurs at the beginning of a Delphi

run. Each Prolog started at the outset sends the need new job message and receives the initial G

and U parameters; automatic partitioning is then begun starting at the root of the search space.

There is a mode for running Delphi which permits Prolog processes to be started and used at
any time throughout the processing. The initialisation parameters sent to each Prolog system at
the start of the Delphi run contain the original G value. If any additional Prolog processes are
started after this number is distributed, the process must wait on the idle process queue until new
work can be given it. It will not participate in the initial automatic partitioning from the root of

the search space. The Prolog process (and all processes on the queue) will participate in the next

7-31

automatic partitioning group requested after it has been received on the queue. This group will

begin automatic partitioning from some node other than the root node.

The second question asks how and when these idle Prolog processes receive new sections of the

search tree to explore. Before this question can be answered, the concept of a check-in must be
described.

When a process is uniquely searching some portion of the original tree, it has G and U values
equal to one. Under these conditions when a branching point is reached, the Prolog can check-in to
the Controller process to request a distribution of the workload. The check-in consists of sending
an oracle to the Controller to describe that Prolog's position within the search space. The
Controller then sends back an integer telling the Prolog the number of idle Path Processors in the
idle process queue. If this number is zero then the check-in has been unsuccessful. The Prolog has
no other processes to split the work with and must therefore continue searéhing the tree on its own.
If the number sent back by the Controller is greater than zero, then the Prolog which has checked
in becomes one of a group of processes which will automatically divide the work. The group count G
will be equal to the number of processes in the queue plus one (the Prolog which did the check-in).
This group can then split the work of exploring the tree starting from the branching point sent as

an oracle to the Controller.

The final question to answer is when the check-ins to the Controller occur. It has been
mentioned that a Prolog will only check-in when G and U are equal to one. If this were the only
constraint on performing a check-in then check-ins would occur at every branching point that the
Prolog reaches by itself. To provide additional flexibility into the system a check-in interval is
defined.

A check-in interval limits the frequency at which check-ins will occur. It sets the minimal
change in depth that must occur before a-check-in will be performed. For example, suppose that the
check-in interval is set to one. Check-ins will be performed at every change in depth of one level.
This means that check-ins will oceur at every branching point where a Prolog system is searching
on its own. The number of check-ins that will be performed will be large even for small search
spaces. If the check-in interval is set low then the check-in frequency will be high. The inverse is
also true. If the check-in interval is set high then the nﬁmber of check-ins actually performed (the

check-in frequency) will be low.

Figure 7.14 is a demonstration of the reassign jobs strategy with three participating Prolog
processes and the check-in interval set to one. The partitioning strategy used will be the partition
right algorithm. Since the events in a Delphi run are asynchronous, Figure 7.14 shows just one of a
number of possibilities for this reassign jobs example with three initial processes and a check-in

interval initialised to one.

7-32

Prolog 1 Prolog 2 Prolog 3

AR

HE -

IDLE
IDLE IDLE

RS

Figure 7.14 Reassign Jobs Example

7-33

For simplicity of this discussion, we will consider Figure 7.14 as five time frames. A frame
consists of three Prolog systems at the same instant in time. In frame number one, all of the
Prologs start at the root of the search space and automatic partitioning takes place. Prolog 1 (PP1)
takes the left-hand branch while the other two (PP2 and PP3) take the right-hand branch. PP1
realises that it is on its own and with a check-in interval equal to one, it checks in to the Controller.
A check-in is shown by the shaded triangle. There are no idle Prolog processes for PP1 to split the
choice point with and so the check-in is unsuccessful. PP1 will continue to search the tree on its
own. PP2 and PP3 both reach the node located by oracle [1] and so they automatically split the
choice point with PP2 going to the left and PP3 to the right. No check-ins are performeq at node [1]

since the G number was equal to two.

In frame number two PP1 has continued to search the tree on its own after the unsuccessful
the branching point at [0] was not divided) so it will backtrack. PP2 has become idle since there is
no more work (portion of the tree to explore) for it to do. PP3 reaches a branching point on its own
and performs a check-in. There is one idle process (PP2) and so these two will split the choice point
at [00].

In frame three, PP1 has backtracked, arrived at [01], and performed a check-in to the
Controller. There are no idle processes and so it continues the solo search. Because of the
successful check-in performed by PP3, the choice point located at [00] is split between PP2 and PP3.
PP2 takes the left-hand branch and PP3 takes the right.

In frame number four PP1 has explored [010], backtracked to [011] and performed a check-in to
the Controller. This check-in is successful. PP2 and PP3 have both become idle after exhausting
their portions of the tree. Because of the check-in by PP1, all three of the Prologs will participate in
splitting the branching point described by oracle [011]. Since the branching factor is equal to the
number of Prolog processes, each process explores one of the branches. Frame five shows each
Prolog system exploring its own unique branch. If there were a sixth frame it would show all three

Prolog processes idle and the search would then be complete.

7-34

Chapter 8 Results

Benchmarking of the Delphi machine began with the new implementation using 4.2BSD
sockets for interprocess communication. Non-backtracking strategies had been left behind with
the implementation using Amoeba-transactions-under-UNIX. The few timings made with the
Amoeba implementation made it appear that non-backtracking strategies were too inefficient.
Even taking into account all of the problems with the Amoeba system, the execution times were
excessive. The 4-queens problem was taking over half an hour to run on a single processor. This
problem was known to run in under two seconds on a sequential Prolog. Alshawi and Moran [1988]
came to the same conclusion that non-backtracking strategies are too inefficient. The results they
show for their Delphi implementation are only for backtracking control strategies; the same is true
for the results presented in this chapter. All of these results were obtained from two general
backtracking control strategies. The first backtracking strategy implemented used automatic
partitioning. This strategy was to become the initial mode for all future backtracking strategies.
Next the more general reassign jobs strategy was developed and implemented. The results in this
chapter show applications of these two strategies to various Prolog programs. Sources for the

benchmark programs can be found in Appendix 8b.
8.1 Initial Results

The problem chosen as a first benchmark was the 8-queens problem. This problem is used as a
benchmark for parallel Prolog [Shapiro 1989] and other parallel language and machine
implementations [Finkel and Manber 1987]. The problem does not take long to execute (under ten
minutes) and the number of answers is large (ninety-two). This problem would be a good test to
ensure that the system was reporting all of the results properly to the global log file. A check-in
number was arbitrarily chosen to be fifty and a shell seript used to run the benchmark from one to
the maximum number of processors available which was twenty. Figure 8.1 shows the first results
from the 8-queens problem being run on from one to twenty yVAX machines. The reassign jobs
strategy and partition right algorithm were used with a check-in interval of fifty. At every change
of depth greater than or equal to fifty levels each Prolog system checks with the Controller to see 1f
there are any idle processors waiting for work. The execution times are in seconds as are all of the

timings given throughout this document.

Figure 8.1 shows an anomaly (encircled) when eight processors are configured for execution of
the 8-queens problem. These results were obtained on a weekday afternoon. The problem was run
again early in the morning to test whether this irregularity is a function of the 8-queens problem or
some symptom of the network. This avoided contention with other users for host machine cycles

and access on the Ethernet. The results from this early morning run are shown in Figure 8.2.

8-1

320
L % x
280 - x
E B
¢ F
'[I‘J 200 - %
I [
@) 160 |
N C X @
T 120 u X
I :
M |
E 80 [
— X
s) a0 | X X X x x X X x x X x
0_||||||l|||||.||||1|||
0 2 4 6 8 10 12 14 16 18 20
NUMBER OF PROCESSORS

Figure 8.1 8-Queens Problem - Afternoon Run

An interesting feature of both Figure 8.1 and Figure 8.2 is that they are only able to use ten out

of the twenty available processors. Four hypotheses for this are:

1) The communication overheads with over ten processors start to reduce any of the speed
ups obtained by increasing the number of processors.

(2) Forty to fifty seconds represents the minimal load and initialisation time for this problem.
The initialisation overheads cannot be reduced below this level.

(3 All of the available OR-parallelism in this problem has been exploited. There is a limit on
the amount of OR-parallelism available in a program. For the 8-queens problem this
limit is reached when ten or more processors are configured for a run.

4) This is a feature sbeciﬁc to the N-queens problem. Something about the search space of
the N-queens problem causes this characteristic levelling out.

8-2

320

~
: X X
280 E y
E B
X 240 e
E -
C —
}I‘J 200 |- y
I N
1(\)1 160 - y
T 120 |
I X
M
E 80
X

40

—~
2]
~—

FT TP T T TT T T

o
N
EN
o
[o2}

10 12 14 16 18 20

NUMBER OF PROCESSORS

Figure 8.2 8-Queens Problem - Early Morning Run

If communications costs were the root of the problem, we would not expect the curve to level
out. This would only happen if the communication costs were balancing the speed ups so that the
end result was constant. If communication costs were the dominant overheads in this problem we
would expect the values to increase after the minimum value of around forty seconds is reached.
Since this does not happen it suggests that the communication costs are not interfering
significantly with the execution of the problem. Figure 8.2 demonstrates that even when double
the number of processors needed to reach the minimum time are configured, the execution time
does not increase. If communication overheads were the major factor in the inability to use more

than ten processors we would expect a plot looking something more like that in Figure 8.3.

HE—3 ZO—RCOENME

NUMBER OF PROCESSORS

Figure 8.3 Hypothetical Plot Demonstrating Communications Overheads

The second hypothetical explanation for why the 8-queens plot (Figure 8.2) levels out is that
some minimal initialisation time has been reached. This initialisation time includes the starting
of Prolog processes over the network, loading of the compiled program and reading in the system
start up files. If it is true that the minimal initialisation time for this problem was reached, then
there will be some characteristic loading and initialisation time for every problem tested. If the
number of processors is sufficient to bring the execution time down to a minimal time required for
initialisations, the plots will level out at this point. One way to test this is try more problems and

see if the characteristic levelling out occurs.

In running numerous problems it was seen that the initialisation times were very similar. The
length of the compiled code varies very little so the time it takes to load the code is comparable in
each case. The time it takes to initialise the Prologs on the various host machines is not dependent
on the problem to be executed, so these times will also be similar. Initialisation time is a function
of the load on each of the host machines and on the network. It turns out that this time is not

affected appreciably by changes in the Prolog program. The initialisation times vary from nearly

8-4

zero seconds to a little under a minute, depending on the load on each of the host machines, but not
on the problem to be executed. Because the initialisation time is dependent on the network load,
problems were benchmarked when the network load was very light (in the middle of the night). We
would expect these results to have similar initialisation times. If the level portion in the 8-queens
plot (Figure 8.2) is indicative of an absolute minimal initialisation time then other problems would
show this same bottom limit. Other problems did not show a common bottom limit. This means

that the supposition regarding initialisation time is insufficient to explain our measurements.

Number of Execution Time
Processors in Seconds
1 8137
2 6723
3 6335
4 5183
5 4477
Table 8.1 6 3811
The 10-Queens 7 2805
Problem Executed on 8 1766
From One to Twenty 9 1542
uVAXes; 10 1394
Data f:or the Plot in 1 1010
Figure 8.4 12 940
13 855
14 784
15 680
16 534
17 523
18 501
19 468
20 450

The third hypothesis is that the levelling out of the 8-queens plot (Figure 8.2) is caused by the
upper limit of OR-parallelism (as exploited by the splitting strategy used) being reached. There are

several ways to test this hypothesis. The first is to run a larger version of the N-queens problem to

see if any more processors are used. We would expect that the 10-queens problem has more OR-
parallelism than the 8-queens problem. Assuming that this is correct and that the limit of the OR-
parallelism available in the 8-queens problem had been reached, we should see an increase in the
number of processors used when running the 10-queens problem. For the 8-queens problem the
number of useful processors was about ten. For the 10-queens problem we would predict that more

then ten processors would be used. The 10-queens problem was attempted next with the results

shown in Table 8.1 and Figure 8.4.

9,000 ~
8,000 |- X
E u
< 7,000 5
E X
C 6,000 |
U
r{ 5,000 .
@) : x
N 4000 |
X
T
I 3,000 |- y
M
E 2,000
(s) X X o
1,000 — X x X %
X X X X X x
ollllllllllllllllllll
0 2 4 6 8 10 12 14 16 18 20
NUMBER OF PROCESSORS

Figure 8.4 10-Queens Problem on nVAXes

It is difficult to see from the plot whether there is a levelling off at a particular number of

processors. What is easy to see is that the rate of change in the execution time is decreasing as the

number of processors increases. It looks as if the times are approaching some minimal value.

Table 8.1 shows the execution times used to produce the plot in Figure 8.4.

From Table 8.1 it appears that the 10-queens problem uses all of the available host machines.
To obtain a lower limit we would have to run the problem on a larger number of processors. As
there were only twenty available this could not be done so a smaller problem (9-queens) was run.
The 9-queens problem did show a minimal value being reached when the configuration contained
at least fifteen processors. This suggests that the third explanation is more accurate; the limit of
OR-parallelism is being reached in fhe 8-queens and the 9-queens problems when fewer than

twenty processors are configured.

There is another way to test whether the amount of OR-parallelism in a program is
proportional to the number of processors that can be effectively used by Delphi. This is to increase
the amount of OR-parallelism by increasing the number of clauses in a predicate. Figure 8.5 is an
example of a contrived problem wxl'itten to test the usage of processors. The program is named

ortest.

count(0).

count(N) :- N > 0, N1 is N - 1, count(N1).

c10(X):- count(10000).

¢10(X):- count(10000).

c10(X):~ count(10000).

c10(X):- count(10000). :
cmEx;:— count(10000g. 10 clauses in the
c10(X):- count(10000). c10 predicate
c10(X):- count(10000).

c10(X):- count(10000).

c10(X):- count(10000).

c100(X):- count(10000).
c100(X):- count(10000).

. 100 clauses in the
. €100 predicate

c100(X):- count(10000).

cN(X):- count(10000).

eN(X):- count(10000). N clauses in the ¢N
) predicate

cN(X):- count210000).

Figure 8.5 Ortest Program

Ortest was run on Delphi with the queries ¢10(X), ¢50(X) and c100(X). Plots of these runs are
shown in Figure 8.6. Results of the best Delphi run are compared to C-Prolog and Cosmic Prolog
(the unmodified Prolog system used to develop the Delphi Prolog system) in Table 8.2.

8-7

QUERY

?- ¢10(X)

QUERY

?- ¢50(X)

QUERY

?- ¢100(X)

HE— ZO~cOmME

—~
wn
~

HE—~ ZO—COENXE

—~
w .
~—

HE—H ZO0~3COmXE

—
wn
~—

100 x
80 |

60

20

XX x X xxXxxXxx X x X

|] | J

500 —
400 |
300 |-
200 |-

100

5 10 15 20
NUMBER OF PROCESSORS
D X x

X x
x"xxx
| l X x x X x X

1,000 ~
800
600 |

400 |

200

5 10 15 20

NUMBER OF PROCESSORS

NUMBER OF PROCESSORS

Figure 8.6 Results of Three Ortest Queries

8-8

All three of the Prolog systems shown in Table 8.2 (and throughout this chapter) were run on
uVAXes. The times shown have been rounded to the nearest second. The version of C-Prolog used
is Version 1.4 [Pereira 1984]. Cosmic Prolog is essentially SB-Prolog Version 2.2 with
modifications to the floating point number instructions and various bug fixes. SB-Prolog or Stony
Brook Prolog is a public domain piece of software developed at SUNY (State University of New

York) at Stony Brook. The execution times for Delphi are for a twenty processor configuration.

Problem C-Prolog Cosmic Prolog (2013:)13‘)::0“)
c10 253 66 21
¢50 1247 274 38
c100 2465 587 62

Table 8.2 Ortest - Comparison of Execution Times

8.2 No Control Communications Needed

The 8-queens problem was run with the initialised check-in interval set to different values. It
was noticed that the best execution times were obtained with a very wide range of check-in
intervals. Even more unusual was that when the check-in interval was set higher than the
maximum depth of the tree the optimal results were still obtained. When the check-in interval is
set higher than the maximum depth of the search space then no check-ins ever occur. This means
that the 8-queens problem was achieving optimal results without any control communications at
all.

Setting the check-in interval to be higher than the depth of the search space is equivalent to
running an automatic partitioning strategy only. As soon as a processor becomes idle it is never
reassigned any more work to do. It was thought that automatic partitioning would leave one or a
few processors with the bulk of the work to do while all of the rest of the processors sat idle during
most of the execution time. To check exactly what was happening at various check-in intervals, an
extra facility was added. This was to allow logging of messages about the active or idle state of
each processor. An active state occurs when a processor is busy executing the program. These
active and idle times are then plotted to get an idea of how balanced the loading is on each of the

host machines. Two separate plots are produced. Figure 8.7 is an example of the first type of plot.

8-9

Prolog

7 .

active 8
idle
active Prolog
idle]
active Prolog
idle] 6
active Prolog
idle 5
active Prolog
idle _I 4
active Prolog
idle 3
active " Prolog
idle 2
active Prolog
idle 1
L I 1 |] 1 | J
0 50 100 150 200 250 300

SECONDS

350

Figure 8.7 Loading for Auto Partitioning (Check-in Interval Initialised to %)

8-10

Eight Prologs were run on eight separate host machines to produce the waveform plot in Figure
8.7. The problem executed is the 8-queens problem. The right side of Figure 8.7 shows the unique
identifier given to each Prolog system as it logs in to the Controller. On the left side are shown the
different levels for active and idle states of each Prolog. The time on the bottom seale is in seconds.
The increased time taken to perform this problem is the result of extra logging messages sent to the
Controller. To produce this plot the check-in interval was set to a very high number which is much
greater than the maximum depth of the search space. We say that the check-in interval is “set to
infinity”. When the check-in interval is set to infinity the control strategy that is being used is

automatic partitioning.

Figure 8.7 shows the results from running the automatic pé.rtitioning strategy. These are the
results that were expected from this control strategy. Two processors, Prolog number 1 ahd Prolog
number 2, become idle immediately while three others only contribute a few seconds of execution
time (Prolog numbers 4, 6 and 7). Three processors contribute a substantial amount of active time
with one of them, Prolog number 3, performing the majority of the work. The second type of plot is
a histogram showing the amount of idle and active time for each processor. Figure 8.8 corresponds
with the plot in Figure 8.7. The host machine names on the left side of this plot are in the same
order as the Prolog systems of Figure 8.7. Host machine path0I executed Prolog number 1, host

machine hythe executed Prolog number 8, and so forth.

For a comparison, the reassign jobs strategy was run with the check-in interval initialised to
ten. The waveform plot is shown in Figure 8.9. This plot shows the first ten seconds of execution
time. Notice that all but three of the processors have become both idle and active at least once
within these ten seconds. This is to be expected when the check-in interval is set as low as ten. The
active processors are checking in to the Controller so frequently that as soon as any processor
becomes idle it is immediately given new work to do. The load balancing is therefore much better
than with an automatic partitioning strategy. All of the processors are kept working most of the
time. The problem is that there is more communication traffic making the overall execution time
longer. A histogram plot of the active and idle times for the reassign jobs strategy can be seen in
Figure 8.10.

With the control strategies-operating as expected; the -next experiment was to obtain the
results over the entire range of check-ins. The range of check-ins extends from one (each processor
checking in at every choice point) to seventy-eight, which is the maximum depth of the 8-queens
search space. Each check-in interval was tested with between one and twenty processors. With the
check-in interval set to seventy-eight there are no check-ins performed at all. Here the reassign
jobs strategy can be said to be equivalent to the automatic partitioning strategy. The results are
plotted for the first five check-in intervals in Figure 8.11. All of the data is presented in tabular

form in Appendix 8a.

8-11

| hythe
hendy
grove
fylde
county
city
path02

path01

0 32 64 96 128 160 192 224 256 288 320 352

|

Active Time (s)

Idle Time (s)

Figure 8.8 Active and Idle Time Per Processor (Check-in Interval Initialised to «)

8-12

active
idle
active
idle
active
idle
active
idle
active
idle
active
idle
active
idle

active

. idle

I | Prolog

Prolog
LT

Prolog

1 Prolog
HER:

Prolog

Prolog

Prolog

Prolog

SECONDS

Figure 8.9 Reassign Jobs Strategy with Check-in Interval Initialised to 10

8-13

0 32 64 96 128 160 192 224 256 288 320 352 384

hythe

hendy

grove

fylde

county

city

path02

path01

Active Time (s) Idle Time (s)

Figure 8.10 Active and Idle Time Per Processor (Check-in Interval Initialised to 10)

8-14

9,000 ~

8,000 -

7,000 - Check-in interval equal to 1

6,000 |- /

HE~ ZO~_ECcQE<E

5,000

4,000 - « Check-in intervals 3, 4, and 5
‘\
\

3,000 . R N
\ - —9—0—0¢—o——4—¢ AN I A
Y

2,000 - Check-in interval equal to 2

(S) \B\ /
1 000 - \E'—.ﬂ._l.a.__ﬂ.—-ﬂ-—ﬂ-—-ﬂ-—-ﬂ-"'ﬁ'_'ﬁ""ﬁ____'a'—-ﬂ._.B'_—B_—n
' Y
\.‘:‘ — t..- x X -

‘ -.:8:'_': -._..-..._-....‘...‘.r.... ,._::.:-_-:---_-- S :_;:-::: r-_-:-
P IRV i A A i e A A
0 2 4 6 8 10 12 14 16 18 20

NUMBER OF PROCESSORS

Figure 8.11 Check-in Intervals from One to Five

Many trends can be seen from the data presented in Appendix 8a. In general as the initialised
check-in interval goes up for the same number of processors, the execution time goes down. If we
consider all of the tables placed side by side, then a row of this large table from left to right shows a
decrease in the execution time. In general as the number of processors is increased for a particular
check-in interval, so the execution time decreases. Looking down a column the execution time
decreases for most columns. The major exception to the inverse relationship between the number
of processors and execution time is when the check-in interval is very low. Even here, the added
communications do not cause a relatively great increase in the execution time. Looking down the
columns of the low check-in intervals the execution time appears to level off rather than get much

higher. The reason is that the number of check-ins performed is fairly constant within a column.

8-15

Initialised Number of Initialised Number of
Check-in Check-Ins Check-in Check-Ins
Interval Performed Interval Performed

1 41182 21 988
2 19475 23 911
3 11697 24 792
4 8463 25 696
5 6711 26 620
6 5744 27 562
7 5007 28 491
8 4376 ' 29 428
9 3708 30 330
10 3142 31 292
11 2759 32 203
12 2433 33 141
13 2230 - 34 102
14 2045 35 73
15 1846 36 38
16 1652 37 12
17 1483 , 38 16
18 1330 39-77 1
19 1212 78 - 0
20 1058

Table 8.3 Number of Check-ins Actually Performed for each
Initial Check-in Interval

Some interesting results shown in Appendix 8a are where the check-in interval is set high.
The optimal result of between forty-three and forty-eight seconds is achieved in many of these
configurations. Except for a few anomalies, if the check-in interval is greater than about thirty-
eight the best result is achieved when at least eleven processors are configured. These optimal
results are still obtained even if the check-in interval is higher than the maximum depth of the
tree. What this means is that approximately the same number of communications are being

performed in all of these configurations.

8-16

A table of the number of control communications (check-ins to the Controller) that are
performed when running the 8-queens problem is shown in Table 8.3. These results were obtained
by counting the number of check-ins from a single processor Delphi configuration. There is a range
on the number of check-ins that occur as the number of participating processors changes from one
to twenty. Even runs of the same multiple processor configuration will show a variation in the
number of check-ins. This is what would be expected since the processing proceeds in an
asynchronous manner; there is a random element in each individual run. A simple example of

where this randomness can occur is demonstrated with Figure 8.12.

arbitrary
tree
structure

Figure 8.12 Example of a Random Component within a Run

Assume that the check-in interval has been initialised to one. A single processor Delphi
configuration arrives at node 1 in Figure 8.12. It checks in to the Controller to see if there are any
idle processors with which to split the choice point. When this check-in is performed at node 1, we
will consider two cases:

(1) There are no idle processors waiting for work.

(2) There are two idle processors waiting for work.

- - - In the first case the-single processor continues to traverse the search space and reaches node 2.
It performs another check-in at this node. Assume again that no idle processors are available. The
single processor proceeds to the choice point labelled 3 and does a final check-in (no idle processors
again). The processor then finishes executing the remainder of the search space. The total number

of check-ins in this situation is three.

8-17

In the second case we assume that two processors are requesting work when the check-in occurs
at node 1. The three processors split the work. The original processor (PE1) takes the left-hand
branch. The other two processors (PE2 and PE3) explore the right-hand branch. These two
processors both arrive at node 2 where no check-in is performed. Check-ins only occur when there
is a processor working on its own within a subtree. At node 2, PE2 takes the left-hand branch with

PE3 going to the right. PE2 then arrives at node 3 and performs the final check-in. The total

number of check-ins in this case is two.

The results shown in Table 8.3 demonstrate the number of check-ins performed for each of the
initialised check-in intervals. These results demonstrate the typical number of check-ins
performed irrespective of the number of participating processors or the speed of the processors. The
number of check-in communications is related to the initialised check-in interval with a random

component for each individual run.

A comparison of the execution times for three N-queens problems are given in Table 8.4. The
sources and queries used to obtain these results can be found in Appendix 8b. The execution times

shown for Delphi are for a twenty processor configuration.

Problem C-Prolog Cosmic Prolog (2013:321::0:5:)
8-queens 411 175 42
9-queens 1994 841 127
10-queens 10245 4560 450

Table 8.4 N-Queens - Comparison of Execution Times

8.3 Other Problems

The N-queens problems are special because“they do not require any control communications.
This is because the search space is fairly balanced. The same is true for the contrived ortest
program. These problems can be run with the check-in interval initialised to a very high number
so that no check-ins ever occur. The same is not true for any of the other nondeterministic
problems that were run on Delphi. These problems require a check-in interval that is less than the
~ maximum depth of their search space and therefore require some communications to control the
search. The sources, descriptions and queries used to test these nondeterministic programs are

listed in Appendix 8b.

8-18

Problem C-Prolog Cosmie Prolog Delphi
(20 processors)
parser-2 38 38 11
parser-3 108 100 25
parser-4 390 354 73
adder 1192 805 154
pentominoes 19005 13474 ‘. 2521
8-queens 4t 175 42
9-queens 1994 841 127
10-queens 10245 4560 450

Table 8.5 Comparison of Execution Times

A comparison summary of the best Delphi results are shown in Table 8.5. In all cases the best
results were obtained with a twenty processor configuration. Only with the 8-queens and 9-queens
problems were fhe best results also obtained with fewer processors. The N-queens problems are in
an unusual category. No control communications are needed so the check-in interval can be set to
infinity. Most of the other problems show improved but not optimal results when no check-ins are
performed. The parser-3 problem in Figure 8.13 demonstrates this. When the check-in interval is
set to infinity some OR-parallelism is exploited. The execution time does decrease slightly as the
number of processors goes from one to twenty. When the check-in interval is set to 20, better
results are obtained. With all problems tested, excepting the N-queens, automatic partitioning
alone is not enough. Without control communications, a twenty processor configuration is too
small to exploit much of the OR-parallelism in these problems. To execute these problems
efficiently, work must be reassigned to the idle processors. In all but the N-queens problems the
reassign jobs strategy was used. The reassign jobs strategy was tried with various check-in

intervals to obtain the results in Table 8.5.

8-19

HE—~3 ZO—~3COQEME

—_
wn
~—

EE—3 ZO~kCoEXE

~
wn
~

150

100

50

180

120

60

xXXxXxxx

X X X X XX o
check-in interval set to o
i | | i | | 1] | J
0 4 8 12 16 20
NUMBER OF PROCESSORS

X x
B
— X X ..
x check-in interval set to 20
X X .
X x x X X x
| xxxx
| | | | | l | - 1 J
0 4 8 12 16 20
NUMBER OF PROCESSORS

i ‘ o Table 8.6 shows the check-in statistics for a twenty processor -Delphi configuration running
| each of the problems. The first column is the initialised check-in interval. This parameter is sent
to each of the configurations before the run begins. The only other initialisation parameter that is
sent is the number of participating processors. The second column shows the number of check-ins

actually performed for the given check-in interval. The third column shows the range of check-ins

Figure 8.13 Parser-3 Problem - Two Check-in Intervals

that occurred with configurations from one to twenty processors.

8-20

initialised number of check-in range
Problem - check-in check-ins for all
interval performed configurations
parser-2 10 158 158-177
parser-3 20 169 168-185
parser-4 40 S 144 144-153
adder 140 1921 1907-1978
pentominoes 40 20434 20279-20651
8-queens 00 0 0
9-queens 00 0 0
10-queens 00 0 0

Table 8.6 Check-in Statistics

All of the problems have some communications associated with them. These communications
can be split into four groups:

® initialisation

® logging messages

® answers

® control communications

Initialisation communications are a simple way to alter the parameters of a Delphi run. It is
possible to have these parameters hard-wired into the Prolog processes or read from a local
initialisation file. For convenience to the user initialisation parameters are given to the Controller
process and this process autbmatical]y distributes them to the Prologs, In all of the strategies one
initialisation communication takes place for each host machine. In the automatic partitioning and
reassign jobs strategies the initialisation message consists of two integers. The first is the unique
identification number for the Prolog process and the second is the number of initial Prolog

processes configured for the run.

8-21

Logging messages occur as the Prolog systems are initialised on each host machine. In this
case the messages are sent from the host machine to the Controller. The Controller also generates
logging messages. This is usually the result of some compilation flag being set. An example of a
logging message produced by the Controller is the entry in the global log file showing the total

number of check-ins performed. Logging messages are also sent if an error occurs in any of the

processes.
number of
i ere 1e . check-ins number of
Probl initialisation N number of | total number of
roblem (control logging .
parameters . answers | communications
communica- | messages
tions)
parser-2 20 158 23 5 206
parser-3 20 169 23 14 226
parser-4 20 144 23 42 229
adder 20 1921 23 16 1980
pentominoes 20 20434 23 8 20485
8-queens 20 0 . 23 92 135
9-queens 20 0 23 352 395
10-queens 20 0 23 724 767

""Table 8.7 Communication Statistics for Twenty Processor Configurations

All answers to a query are collected in the global log file. This file resides on the same host
machine on which the Controller is executed. Answer and logging messages are duplicated in a
local log file on each of the host machines. This provides some redundancy so that if thé network
communications break down the answers will still be available. With error messages it may be
impossible to transmit the message over the network. For this reason these messages are also

duplicated in local logging files.

8-22

Control communications incorporate the sending and receiving of oracles. An oracle is sent to
the Controller when a Prolog checks in. This oracle locates that Prolog within the search space. If
there are idle processors waiting for work, the process which has checked in receives information
containing the number of idle processes. When an idle process is awakened an oracle and some
control information is sent to it. The control information consists of a pair of integers. One integer
designates that Prolog's unique number in the group, the second is the total number of Prologs

participating in the group. These messages are examples of control communications.

20 I l | |
R
E
L
A
T
I
\Y%
E
S
P
E
E
D
U
P

0 | | 1 |

0 4 8 12 16 20

NUMBER OF PROCESSORS

Figure 8.14 Relative Speed Up of Two N-Queens Problems on uVAXes

Table 8.7 is a summary of the communications for each problem. The number of check-ins is
taken from Table 8.6. The number of logging messages is constant for each of the problems.
Twenty of these are messages from the twenty host machines when they are initialised. Two of the
logging messages are the start and stop messages for the execution-time clock. The final message
is to report the total number of check-ins for the run. These comprise the twenty-three messages

logged for each problem.

8-23

8.4 Relative Speed Up

Relative speed ups for the 8-queens and 10-queens problems running on the pVAXes are shown

in Figure 8.14. A table showing the relative speed up for all of the problems is Table 8.8.

s . excution time
execution time .
Problem on twenty relative speed up
on one processor
processors
parser-2 58 11 5.27
parser-3 177 25 7.08
parser-4 461 73 6.32
adder 1814 154 11.78
pentominoes 26798 2521 10.63
8-queens 301 42 7.17
9-queens 1405 127 11.06
10-queens 8137 450 18.08

Table 8.8 Relative Speed Up

8.5 Faster Processors

Delphi was port;ed to a group of HP 9000 Series 350 workstations (also known as Bobcats). The
10-queens problem was used as a comparative benchmark. The results of the 10-queens problem
running on the Bobcats is shown in Figure 8.15. For a single uyVAX configuration the execution
time of the 10-queens problem is 8137 seconds. On the Bobcats this same benchmark takes 3039
seconds, approximately 2.68 times faster. It would be expected that the N-queens problems would
execute with a relative speed up as that shown in Figure 8.15. Since there are no extra control
communications involved the relative speed up should be similar to that shown for the pVAXes in

Figure 8.14. The interesting question is whether the performance holds up when control

8-24

4,000)
g s -
s
o 3,000 | x y
{
0O 2,000
N X
X
T 1,000 | Sl
) X
3 X x
0 | l I | |
(s)
0 2 4 6 8 10
NUMBER OF PROCESSORS
10 n I I T
R
E
k 8 |- i
T
v
6 -
E X
P
E 4 X .
E X
D X
U 2 x = -]
) X
x x
0 1 | | |
0 2 4 6 8 10
NUMBER OF PROCESSORS

Figure 8.15 10-queens on the Bobcats

communications are involved. The network (Ethernet) being used is the same as that used for the

nVAZXes. Though the processor speed has been increased the speed of communication across the

network remains the same.

8-25

A few of the problems were run on the Bobeats to ascertain whether the performance is
hindered by the communications traffic. The parser-2 problem runs in seven seconds on a single
processor configuration. This time could not be improved upon by the addition of more processors.
In this case the execution time went up slightly (about three seconds) as the maximum number of
processors (ten) was reached. The parser-3 problem was tested with a range of check-ins varying
from ten to eighty. The best results were found when the check-in interval was initialised to thirty.
This is ten higher than the results shown for the pVAXes in Table 8.6. This means that the
communications are having an effect with the faster processors. The check-in interval has to be set
a little higher so that not as many check-ins are performed. The execution time using ten

processors was nineteen seconds.

The results using faster processors suggests the question of how to predict what the appropriate
check-in value is when we know the relative speed of a machine. This question was not answered
during the course of this research. To obtain a general solution to this problem a variety of
processors with different speeds would need to be available for tests. One other possibility is to
artificially reduce the processing power available to simulate slower processor speeds (for example
by having a controlled interrupt overhead). Obtaining a solution to this problem would still not be
very useful. A program would have to be tested with a large range of check-in intervals on some set
of processors to obtain an initial optimal check-in interval. What is really wanted is a control
strategy that is optimal for any class of problems running on processors of any speed. It is ﬁot

known whether any control strategy will fit this requirement.

The adder problem was also run on the Bobcats with similar results to the parser-3 problem.
The initialised check-in interval was set to 180. With ten processors the execution time was 131
seconds. Again the communications have required the check-in interval to be set higher than on
the pVAXes. With the pVAXes the check-in interval was initialised to 140.

8.6 Deterministic Problems

Figure 8.16 shows the results for the matrix multiplication problem running the queries test20
(mm20 data) and test40 (nm40 data). With Cosmic Prolog the test20 query runs in 12 seconds. This is
the same amount of time as for the one processor Delphi run. The execution time range from 12 to
18 seconds include the overheads due to setting up log files and sending the result over the
network: The extra-time also includes all of the calculations done each time the choice point is
reached. The matrix multiplication problem in Appendix 8b does have an OR branching point for
the predicate mmc. This is due to the fact that Delphi indexes the clauses only on the first argument.
Every time this choice point is reached, calculations are done to see if it is time to check-in to the
Controller. The range of from 12 to 18 seconds shows that this branching point is not reached very
many times. With the larger mm40 problem this choice point is reached many more times as can be

seen from the execution time.

8-26

90 ~
80_xxx ><xxxx" X X X o x o,0X oxo
B mm40
X 70
E
C 60 |
U
T
0
N 4 L
T
I 30 +
M
E 20 mI-n20] " m
(S) l....l--. ll- - =
10 |- "
0 | I N N NN NN N AR NN N N (SO (N NN DO M N T N |
0 2 4 6 8 10 12 14 16 18 20
NUMBER OF PROCESSORS

Figure 8.16 Two Matrix Multiplication Queries

Any deterministic program run on Delphi will show an increase in the execution time when
compared with Cosmic Prolog. The deterministic problems which favour Delphi are those with no
OR branches. With these problems we can expect to have an additional few seconds added on to the
execution time of the sequential Prolog. The reason this number will be fairly constant is that
during a deterministic problem theré are no (or very few) OR branches encountered. It is only
when an OR branch is reached that any extra computation is performed. Without any OR branches

the Delphi machine behaves in a manner similar to Cosmic Prolog.

8-27

The potential additional overheads of running a deterministic problem (with no OR branches)

!

on Delphi are described below:

¢ initialisations over the network

Overheads involved with starting the Prologs on the various host machines over the
network. This includes setting up local logging files for each of the Prolog systems. A
global log file is set up on the machine where the Controller runs. The extra time depends
on the load on each host machines and the status of the network.

® communication of the answer

The overhead of sending the answer over the network to the global log file as compared to
printing it out locally. For a deterministic problem at most one answer is recelved so this
overhead is negligible.

® ensure no duplicate answers

In a deterministic problem with no OR branches all Prolog systems will follow precisely the
same path. With Delphi there is no possibility of more than one Prolog system reporting
the same answer back to the Controller. With the automatic partitioning strategy each
Prolog system always knows its own unique identifier and how many Prolog systems are
currently exploring the same path. If there is more than one Prolog that reaches a solution
then only the Prolog with unique identifier 1 sends the answer to the Controller.

The overheads involved with running a deterministic Prolog program on Delphi are
proportional to the number of OR branches involved. If there are very few or no OR branches the
overheads are small. Though Delphi cannot improve the performance of a deterministic program it
also does not greatly hinder the performance. A comparison of the results for the two matrix

multiplication problems is shown in Table 8.9.

Problem C-Prolog Cosmic Prolog Delphi Range
mm20 29 12 12-18
mm40 198 67 80-84

Table 8.9 Matrix Multiplication - Comparison of Execution Times

8-28

Chapter 9 | 4Adaptive Control

Further control strategy developments are described in this chapter. Desirable features of
some of the previous strategies are pointed out for use in the design of potentially more efficient
and generalised control strategies. Some backtracking strategies together with their automatic
partitioning mode have been modified by the addition of adaptive control behaviour. This
behaviour provides a reduction in the total amount of communications by limiting the number of
check-ins performed. A new class of control strategies with active control are described. In these
strategies a reversal of the protocol for initiating communications occurs. The final control
strategy described in this chapter involves making an estimate of the amount of work left to be
done by each Path Processor. This estimate is then used to determine how often the Path Processor
should communicate with the Controller. The work estimate provides a useful side effect of being
able to give the user an estimate of the amount of time left for processing the problem. Both active

and passive control techniques.are incorporated within this work estimate strategy.
9.1 Load Balancing Comparisons

With the non-backtracking strategies, load balancing among the host Path Processors was
automatically adjusted. As soon as a Path Processor became idle it immediately was given the job
of exploring the next oracle on the jobs queue. The Path Processors received a fairly equal number
of oracles to explore, and the time each of them spent performing computation was roughly
equivalent. With non-backtracking strategies, the time spent in communications to the Controller
was also equally distributed though it was very high. Load balancing with the backtracking
strategies has not been dealt with in such a successful manner. Many Path Processors may remain
idle while others receive the bulk of the search tree to explore. This is not necessarily an unwanted
property. If a low execution time is the goal and there are many host machines available to run
Delphi processes, then there is no reason not to use them. Since Delphi runs on time sharing
machines other users can be getting the benefit of the idlé machines which Delphi initialises, but
does not give much of the search space to (for exploration). Another reason to desire an unfair split
of the work load is if communication costs across the network must be kept to a minimum. An
automatic partitioning only strategy could be used to execute a program and avoid network

communications at the expense of a potential unequal distribution of the work load.

In the reassign jobs strategy the check-in interval is one of the initial parameters given to each
of the Path Processors (PPs). Setting this interval is used as a method of trying to statically adjust
the load balancing versus communications costs. As the check-in interval increases towards the
limit of the maximum depth of the search space, the PPs never check-in to enquire about any other
PPs waiting for work. Communication costs decrease as this check-in interval increases, but the

load balancing becomes very inefficient to the point where one or a few machines are assigned the

9-1

majority of the tree to explore. Figure 9.1 demonstrates the situation. When the check-in interval
is very high a few machines are doing most of the work. As the check-in interval is brought down to

the minimum of one, all of the machines are working during most of the execution time.

check-in at

every choice —

point
desired position is
where the
communications

&.—-—/ (number of check-

ins) and loading
are balanced

check-in

interval >

depth of the

tree

one machine working all machines working

Figure 9.1 Balanced Loading and Communications

In adjusting the check-in interval we are looking for a position (in Figure 9.1) on the line where
the amount of communications is not hindering the performance of the program and as many
machines as possible are in use throughout the computation. Without several trials of different
initial check-in intervals, it would be difficult to find a balance between the amount of time spent
performing communications as compared to the amount of time spent exploring the search space.
Without this trial and error process, to properly set the check-in interval would require some

advanced information about the problem to be solved and the shape of the search space.

If the problem is a binary tree such as the 8-queens problem then we would pick a very simple
partitioning strategy. The low branching factor means that the partitioning strategy will not be
too important so a simple splitting algorithm will probably be most effective. With the knowledge
that the tree to be searched is binary, we would choose the partition right splitting algorithm.
Since the maximum depth of the tree is around 70, we might pick an initial check in interval of
around half this or 45. Better still, if we knew that the problem formed a fairly balanced search
space, then we might set the check-in interval to « so that no check-ins at all will be performed.
Table 9.1 shows some examples of what parameters we might pick if information about the problem

was available in advance.

9-2

TYPE OF SEARCH SPACE CHOICE FOR STRATEGY

reassign jobs with a high initial

is deep but not wid
free is deep but not wide check-in interval

reassign jobs with partition central

tree has a high b hing fact
ree has a high branching factor splitting algorithm

branch by branch strategy

tree is deterministic (would utilise only one processor)

reassign jobs with partition right

tree is biased to the right
reeisbiasedtothe rig splitting algorithm

tree is fairly balanced automatic partitioning only

Table 9.1 Type of Control Strategy for a Known Search Space

If no information was available the first strategy to try is probably the reassign jobs strategy
with a central partitioning algorithm. All of the available processors should be used with a check- -
in interval set to around forty. What would be much nicer to have is an automatic method for
choosing a strategy, or changing the strategy or its parameters during execution. Automatically
choosing an initial strategy or changing that strategy dynamically would involve some analysis of
the program throughout execution. Automatically altering the parameters of the strategy as it is
working, however, can easily be done to the existing control strategies. We will consider strategies
which can automatically adjust their parameters in an attempt to balance the work load and
minimise communications time. For some of these strategies additional storage such as a local
queue needs to be maintained. This extra parameter of storage was originally described in the non-
backtracking strategies. In addition to the communications costs, these strategies entailed

overheads for the maintenance of job queues and for the memory they use.

Load balancing was not a consideration at all in the non-backtracking strategies. As the Path
Processors become idle they pick the next job off of the jobs queue and are sent right back to work.
If it is the case that there are no jobs in the jobs queue the Path Processor is put into a holding
queue until a job becomes available. Usually this is a very short period of time since the working
processors are sending oracles to the queue at every choice point. Only in the case of running a
deterministic problem (with no backtracking), or a problem with only a minor amount of
backtracking, will the load be shifted from all of the processors to Jjust one or a few of them. Using

only a few processors is exactly what you would want if the problem has very little OR-parallelism

to exploit. The successful load balancing of the non-backtracking strategies is overshadowed by the
time spent in performing communications. Because of the communications overheads, the non-
backtracking strategies are not efficient enough for the exploration of large search spaces. It can
be shown that the branch by branch strategy is at least as inefficient as the reassign jobs strategy

with the Path Processors communicating at every choice point.

There is a similarity in the communications costs between the branch by branch strategy and
the reassign jobs strategy when the check-in interval is set to one. In a comparison of these two
strategies, we will look at the average communications costs, storage requirements, and execution
overheads that the Controller witnesses. The conclusion to be reached is that the branch by branch
strategy is at least as inefficient as the reassign jobs strategy with an initial check-in interval of
one. Since this is the worst case set up for the reassign jobs strategy, setting the initial check-in
interval to be any number greater than one will be more efficient than the branch by branch

“strategy.

In this comparison, we will consider the overheads that the Controller observes and not
consider the point of view of the Path Processors running the Prolog. The PPs see a more
complicated algorithm with the backtracking strategies than with any of the non-backtracking
strategies. Even with the more complex backtracking algorithms, it appears that putting more of
the computational burden onto the Path Processors rather than on the Controller leads to an
overall more efficient system. One reason for the computation burden to be placed on the PPs and
not the Controller is to avoid communication bottlenecks as the number of processors is increased.
This is one reason why the branch by branch strategy was developed from the bit by bit strategies.

Bit by bit strategies placed much more of the computation onto the Controller.

In the bit by bit strategies, the Controller had to generate and store oracles at the same time as
it was receiving messages from the Path Processors. With the branch by branch strategies, the
oracle generation process took place at the PPs' side. With the PPs communicating at each choice
point, the number and frequency of the messages is high in either strategy. As the number of
processors is increased it be‘comes increasingly more difficult for the Controller to keep up with

answering these messages.

An implementation detail of the branch by branch strategy reduced some of the computation
performed by the Controller and placed the burden onto the PPs instead. Complete oracles for all
branches at a choice point.(excepting the one that the PP will explore itself) are transmitted to the
Controller and placed on the jobs queue. Originally, the number of branches and a prefix oracle
were sent. The Controller could then recreate the proper oracles from this information and place

them on the jobs queue. Even with this modification to reduce the Controller's execution

overheads, it is constahtly fighting to keep up with the Path Processors sending in jobs at every

choice point.

We now compare the branch by branch strategy to the reassign jobs strategy with check-in
interval set to one. We assume we are searching a tree with constant branching factor equal to B

and depth equal to D.

COMMUNICATIONS

Reassign Jobs
For every choice point reached; for every
processor, the path of where that processor
is, gets sent to the Controller. The length is

o §
~1D.

Oracles sent to previously idle processors
from Controller.

Message sent back to the processor checking

Branch by Branch

For every choice point reached, for every
processor, each unique path that the
processor does not take is sent to the
Controller. The length is ~1D(B - 1).

Oracles sent to previously idle processors
from Controller.

Receive acknowledgement .

in containing the number of idle processors.

STORAGE REQUIREMENTS
Branch by Branch

Current queue length plus B - 1 new jobs of
average length 1D.

Reassign Jobs
No storage kept.

EXECUTION OVERHEADS
Branch by Branch

Reassign Jobs
Check queue for idle processors.

Check queue for idle processors.

Add oracles to the jobs queue.

Both of the strategies do some kind of communication at every choice point. In general, the
branch by branch messages sent at each choice are longer than the reassign jobs messages. Each of
the branches in a choice point (except for the leftmost, which has been chosen by the PP sending the
message) is formed into a separate oracle before being sent to the Controller. The reassign jobs
strategy sends exactly one oracle (the current path oracle) when a choice point is reached. The
second communication message listed is equivalent for both strategies. Idle PPs are sent the oracle
describing the path which they are to follow. Thg third communication message also has an

equivalent length.

Storage requirements for the branch by branch strategy exceed the backtracking strat':egies
since a queue of oracles which need to be followed must be maintained. Execution overheads
additionally occur as this queue must be maintained. There are large numbers of oracles which
have been discovered waiting to be explored by the small number of Path Processors. Storage for

all of these oracles must be found and efficiently handled.

9-5

Communication times have been shown to have a significant effect upon the total execution
time of a Prolog program. The execution time for the 8-queens problem configured for one PP and a
check-in interval set to one is 8321 seconds. For one PP and the check-in interval set to two, the
execution is 3970 seconds. For any number of PPs configured, the execution times with the check-
in interval set to two is less than half the time when the interval is set to one. The communication
overheads in the non-backtracking strategies would be at least as dominant a factor as the reassign
Jobs strategy with a check-in interval set to one. This is why the non-backtracking strategies were
not implemented for a second time after the Amoeba-transactions-under-UNIX IPC mechanisms

had been replaced.
9.2 Passive and Active Conirol

From the results shown in the previous chapter, a reduction in the number of communications
is critical in the design of an efficient and generalised control strategy. So far, all of the control
strategies shown have been given a specific interval at which communications occur. This interval
was either a static parameter embedded in the control strategy, or as a parameter provided during
the initialisation phase of Delphi execution. The non-backtracking strategies are forced to
communicate at every choice point so this interval is embedded in the strategy. In both of these
situations the control is termed passive control. Passive control is where the Path Processors
check-in to the Controller at constant intervals throughout the execution time of the Prolog
program. There is an alternative method where the number of communications is dictated
dynamically at execution time and is not a static parameter. One method of achieving this is to

modify the existing passive control techniques with adaptive behaviour.

In all previous strategies we have considered the communication requests progressing in a
pattern from the Path Processors to the Controller. The Path Processor initiates a communication
by sending a message to the Controller. The Controller responds with an acknowledgment or by
sending the information that the Path Processor requested in the originating message (see Figure
9.2). With this situation, when a Path Processor sends a message to the Controller it must then be
blocked until it receives a return message from the Controller. No more useful work is being done
by the Path Processor until this reply arrives. A sample set of the possible initiation and reply

communications for the reassign jobs strategy are given in Table 9.2.

On the Controller side, there is never any blocking done while waiting for a message to appear
on any of its ports. A select system call [ULTRIX-32 Programmer's Manual: Sections 2,3,4, and 5
1987] is performed on all of the available communication ports to check for pending messages. This
call is used in a non-blocking manner. If there is a message available on one or more of the ports
the lowest numbered port is picked to be answered first. Successively higher file descriptors are

then checked until all requests have been answered. The function of the Controller is to scan all of

Initiate communications

- o —
Controller Path Processor
—— I
Send acknowledgement

or other information

Figure 9.2 Communications are Initiated from the Path Processors

REQUEST FROM A PROLOG PROCESS REPLY FROM CONTROLLER

Initial U (unique identifier)
get initial parameters Initial number of PP's (G value)
Initial check-in interval

send answer ACK

send message to be logged in the global log file ACK

Oracle to follow
no more work to do New value for U
(NEEDNEWJOB) v

New value for G

Table 9.2 Sample Requests and Responses for the Reassign Jobs Strategy

the ports for incoming messages, pick a port to answer, decode the request, and send a reply. Each
Prolog process only has a single port so their communications protocol is more simple; send a

message when necessary then block until a response is received.

There is no reason why the communications have to go in the predictable manner of Path
Processor initialisation and Controller response. We can consider a generalisation of
communication between the Controller and any of the Path Processors where either side can
initiate a request. In this case, the protocol must be carefully defined and thoroughly debugged as
all types of race conditions become possible. One of the reasons for wanting a more flexible facility
is to allow the Controller to be able to “interrupt” any of the Path Processors. Allowing the

Controller to interrupt any of the Path Processors would reverse the direction of the

9-7

communication initiation procedure and create a control strategy using active control. Active
control is part of an on demand strategy where the number of communications (check-ins
performed) is equal to the number of times that the processoré have become idle. With this
strategy, check-ins only takes place when a processor reports that it has no work left to do and
becomes idle. The Controller than finds an active Path Processor to interrupt and requests that PP

to perform a check-in.

The interrupt sent to the PPs could be in the form of a signal which is passed and processed by
an interrupt handler. It could also be a soft interrupt in the guise of a message sent to the Path
Processor. Either type of interrupt would have to be acknowledged and held by the PP until it was
able to respond to the request. When the PP was in a convenient position within the execution of
the Prolog program (at a setmax instruction), then it could perform a check-in to the Controller for
partitioning of its section of the search space. The reason for interest in the addition of an interrupt
facility is to try and maintain a more equal work load on all of the processors. Only checking in on
demand would additionally avoid the communications associated with the many failed check-ins.
A check-in can be considered a failure is there were no idle processors to split the choice point with

when the check-in occurred.
9.3 Limiting the Number of Check-ins

Limiting the number of check-ins performed is important since the communication overheads
appear to be a dominant factor in the overall execution time of a Delphi run. Using the reassign
jobs strategy on the 8-queens problems has clearly demonstrated this. When the check-in interval
was set low the number of communications was high and the execution time of the problem
increased. The N-queens problems, in fact, show very good results when no check-ins are
performed at all. It is not the case that this sort of behaviour occurs with all problems. For most
problems a trial and error process of altering the check-in intervals was used in an attempt to
decrease the execution time. Altering the check-in interval was a static method of limiting the

number of check-ins performed and therefore the communication overheads.

Adaptable methods for limiting the number of check-ins have been added to the existing
backtracking control strategies. The major alteration to the passive control techniques is to inflict
a penalty for checking in when there are no idle processors waiting for work. The penalty varies
depending on the mechanism which caused the failed check-in to occur. In the reassign jobs
strategy for example, if a Path Processors performs a c¢heck-in which fails (there were no idle PPs
waiting for work) the penalty is to increase the check-in interval. This has the feature that Path
Processors will eventually be performing check-ins at different check-in intervals. This is in
contrast to the static method described with the reassign jobs strategy whereby all PPs check-in at

the same interval throughout the processing.

Along with the concept of penalising the Path Processors for performing unnecessary check-
ins, additional methods of deciding when to check-in have been implemented. With the reassign
Jobs strategy it was the exploration at particular depths of the search space which elicited a check-
in by the Path Processors. The penalty for failed check-ins with this strategy will be to increase the
depth interval. If there are Path Processors idle when the check-in is performed then the penalty is
not imposed or a positive adaptation is performed. Table 9.3 shows three mechanisms for initially
limiting the number of check-ins performed, and the type of penalty incurred if the check-in should
fail.

MECHANISM FOR ELICITING A PENALTY INCURRED IF THE
CHECK-IN CHECK-IN FAILS
depth interval increase the interval

increase the threshold value
containing the number of choice
branching factor points (with that branching factor)
which must be reached before a
check-in is performed

time increase the time

Table 9.3 Check-in Mgchanisms and Penalties

The first mechanism is the one used by the reassign jobs strategy. If a check-in fails then the
depth interval is increased with a reduction in the number of check-ins performed. Various means
of increasing the check-in interval can be used. In the implemented version a constant number is
added to the depth interval for each successive check-in failure. If the check-in is successful then a

similar action is taken to decrease the check-in interval.

The second mechanism listed in Table 9.3 has not been used in any of the previous strategies.
The check-ins are performed not in accordance to particular depth levels, but according to the
branching factor of the choice points. Strategies which perform check-ins in relation to the number
of branches at a choice point are called branching factor strategies. To limit where the check-ins
will occur a static parameter is initialised to the minimal branching factor. Setting a minimal
value for the branching factor means that check-ins will oceur only at choice points which contain
at least that number of branches. One variation on this strategy is to only check-in when choice
points with the maximal branching factor (within the entire search space) have been reached. To

perform this variation takes two steps. First the largest value of setmax for the entire tree has to be

discovered. Then every time a choice point with this maximum number of branches is reached, a

check-in to the Controller is performed.

%};; c::;? 2 branches 3 branches 4 branches 5 branches 43 branches

20 289 116 101 85 177

30 114 50 58 18 7

40 53 18 35 13 34

50 11 7 5 3 5

60 12 | 4 12 5 12

70 1 0 0 0 0

80 | 1 0 0 0 0

90 1 .0 0 0 0
140 0 0 0 0 0

Table 9.4 Parser-4 Problem - Branching Factor when Check-ins are Performed

With the eight queens problem the branching factor at each check-in is always the same; it is
two. This is ensured since each predicate set (clauses within the same predicate having the same
type of first argument) of the N-queens problem contains either one clause or two clauses. Check-
ins are not performed at the deterministic nodes, so the branching factor at each check-in during
the N-queens problem must be equal to two. In other problems this is not the case; the number of

branches at the choice points exhibit a range of values.

9-10

While implementing the branching factor strategies, the reassign jobs strategy was examined
to determine the distribution of branching factor values. When a Path Processor performed a
check-in, the value of the setmax instruction was noted. An example of this experiment using the
parser-4 problem is shown in Table 9.4. The check-in intervals range from 20 to 140, with the

maximum depth of the tree being 131 levels.

The parser-4 problem has choice points containing five different branching factors; two
branches, three branches, four branches, five branches and forty-three branches. For all of the
tested check-in intervals, the choice points with two branches had more check-ins performed at
them then any of the others. The minimal number of check-ins occurred in most cases at the choice

points with five branches.

2 branches 3 branches 4 branches 5 branches 43 branches

11008 8990 3751 - 2315 8237

Table 9.5 Parser-4 Problem - Number of Nodes with each Branching Factor

A branching factor control strategy was implemented which only performed check-ins when
the maximum branching factor in the tree was reached. The parser-4 problem was first attempted
with check-ins only performed when the branching factor was equal to forty-three. The execution
times using this strategy turned out to be considerably longer than thle reassign jobs strategy. The
reason for this is that in the entire search space, there are a large number of nodes with a
branching factor equal to forty-three. For the entire search space the number of nodes with each of

the number of branches is given in Table 9.5.

If check-ins were performed at every node in the parser-4 problem containing forty-three
branches then the number of check-ins would be equal to 8237. This is much higher than the
number of check-ins performed with the reassign jobs strategy. The number of seconds it takes to
execute the parser-4 problem with twenty Path Processors is seventy-three. Performing 8237
check-ins in this time period would give a check-in rate of around 113 check-ins per second. This
rate is much higher than any of those which produced the results shown in the previous chapter.

The check-in rates for the Prolog problems in the previous chapter is given in Table 9.6.

To limit the number of check-ins performed with the branching factor strategies, a simple

adaptation is added to the control strategy. A count is maintained of the number of nodes where

9-11

Number of
Problem Execution Time Check-ins Check-in Rate
Performed
parser-2 11 158 14.4
parser-3 25 169 6.8
parser-4 73 144 2.0
adder 154 1921 12.5
pentominoes 2521 20434 8.1
8-queens 42 0 0
9-queens 127 0 0
10-queens 450 0 0

Table 9.6 Check-in Rates

check-ins would occur. If check-ins occur only when the maximal branching factor is reached for
the parser-4 problem, then this count will contain the number of nodes reached which have forty-
three branches. In addition to this count, a threshold value is maintained. Only when the count
reaches the threshold is a check-in performed. Check-ins will only be performed after a certain
number of choice points with the maximum branching factor have been reached. Penalties for
failed check-ins and bonuses for successful ones easily can be added by increasing or decreasing the

threshold value.

The final mechanism listed in Table 9.3 for controlling the number of check-ins performed is to
use a timer. An alarm library routine [ULTRIX-32 Programmer's Manual: Sections 2,3,4, and 5
1987] can be used to count the nﬁmber of seconds before the signal SIGALRM is sent to the process
which set the alarm. The sending and receiving of signals creates the need for special code which

may be specific to the machinery used. A technical note on using signals and some portability

9-12

issues are discussed in Appendix 9a. The code for a simple program which uses alarm is shown in

Figure 9.3.

#include <stdio.h>
#include <signal.h>

int sig_alarm();

#define TRUE 1
#define FALSE 0

typedef int Boolean;
Boolean AlarmFlag = FALSE;

main()

signal(SIGALRM, sig_alarm);
for(;;){
alarm(10);
while (lAlarmFlag);
printf("\nALARM\n");
AlarmFlag = FALSE;

3
int sig_alarm()

AlarmFlag = TRUE;
3

Figure 9.3 Using the Alarm Signal

Executing the code in Figure 9.3 results in the word ALARM being printed every ten seconds.
The routine sig_alarm is the signal handler which catches the signal and sets a flag. The flag can
then be polled at a later time when it is convenient within the code. If a timer mechanism were
used to limit the number of check-ins performed, then the flag set by the alarm signal would be
inspected when a choice i)oint was reached. This timer strategy could be used on its own or in
conjunction with any of the previously described mechanisms. For example, the following
conditional statement could be formed to limit the number of check-ins:

IF (at proper depth level AND branching factor is maximal AND alarm flag is set)
THEN perform a check-in to the Controller

It is very easy to add adaptive behaviour with a timer strategy. The number of seconds set in
the alarm routine can be decreased for successful check-ins and increased when a check-in fails.
Another use of the timer strategy is to limit the number of check-ins performed in relation to the
amount of execution time taken by the Path Processor. The total number of seconds could be
estimated by counting all of the values used to set the alarm. The number of check-ins could then

be increased or decreased as the execution time of the problem exceeded particular values.

9-13

9.4 Active Control Strategies

All of the methods demonstrated for limiting the number of check-ins have involved passive
control. Even with the adaptive techniques for limiting the number of check-ins performed, it is
possible for there to be no idle PP waiting for work when the check-in does occur. To amend this
situation active control strategies are introduced. With an active control strategy it is the
Controller which initiates communications with the Path Processors and tells them to perform

check-ins.

The first control strategy described which uses active control is the on demand strategy. When
a Path Processor becomes idle, the Controller sends a signal to one of the active PPs telling that PP
to perform a check-in. When the check-in is performed by the interrupted PP it will always be
successful. Implementation of this strategy is very similar to the timer strategy in that it involves
a signal being sent and a signal handler to receive it. The major difference is that now instead of
only one process being involved, the signal is sent by the Controller over the network to one or more

of the Path Processors.

Implementing an on demand strategy requires the use of a signal which can be sent via a socket
connection. One such signal is SIGURG which tells the receiving process that an urgent condition
exists on the socket. Using this signal involves the sending of an out of band data message which is

Jjust a special flag on the send call. Two things oceur when an out of band data message is sent:

® The signal SIGURG is sent to the process.

® The single byte which is the out of band data message is placed in the data stream.

The message is used to mark a place in the data stream so that the position of where the out of
band data was sent can be used. This is often used to mark the position within a buffer where data
is to be flushed up to. See Appendix 9b for a discussion of out of band data and an example of using
it.

For implementétion of the on demand strategy the déta byte was sent into the stream but not
used. A handler such as the one shown in Figure 9.3 receives the out of band signal and sets a flag.
Just as on the timer example, the flag can then be checked and an action taken at a convenient spot
in the code. The first strategy implemented using this facility involved sending a signal to an
active process whenever an idle process reported in to the Controller. The Path Processors were
‘interrupted' by this signal to tell them to perform a check-in. When the check-in is performed it
will be successful since the Controller can keep track of when PPs are idle or active. An extra data
structure was added to keep track of Path Processors which had been sent an interrupt and those
which had not. In this way more than one PP could be interrupted at a time and the Path

Processors in the idle queue could be distributed among the active processes.

9-14

The on demand strateéy with an active PP being interrupted as soon as another PP becomes
idle, turned out to be unsuccessful as compared to the passive control strategies. Path Processors
become idle very often during the execution of a Prolog program. The extra computational burden
placed on the Controller in performing interrupts to the PPs takes time away from the large
number of PPs which are reporting in as idle. A parameter was added to the strategy so that an
interrupt was sent only when a particular number of Path Processors had become idle. Still this
did not improve the on demand strategy to the point where the execution times were competitive

with those of the passive control strategies.

A combination strategy using the interrupt facility and the alarm signal was attempted. When
the alarm was located on the Path Processors side, it was used to signal how often to check-in to the
Controller. With the alarm placed at the Controller side, it can be used to control the out of band
data messages being sent to the Path Processors. Again this active control strategy was not as
successful as the ones using passive control. An adaptive measure could be used to limit the
number of out of band data messages being sent. A penalty would be incurred if there were idle
PPs blocked when the interrupt was sent by the Controller. The penalty would be to either
increase the number of idle PPs in the queue before sending an interrupt or to increase the time

before the next out of band data message is sent.

The passive control adaptation mechanisms have been implemented but not tested as widely as
the automatic partitioning and reassign jobs strategies. These adaptations were implemented in
the attempt to discover a general control strategy for any Prolog program. It is not certain whether
these adaptations will generalise a particular strategy so that all problems will run successfully
using it. In implementing the active control strategies it was found that too much time is spent in
sending interrupts to the PPs. When there is only a single Controller it appears that passive

control techniques are more efficient.
9.5 Strategies using Work Estimates

Many of the desirable features of the non-backtracking and backtracking strategies are
brought together in the work estimate strategy. An additional feature in this strategy is the
ability to give an estimate to the user of how much time is needed for executing the Prolog
program. This is a desirable feature for all of the long running Prolog programs which are executed
on Delphi. The following set of features are goals of the work estimate strategy:

Keep as many of the Path Processors working as often as possible.

Perform load balancing automatically.

Use minimal communications.

Maintain some measure of how much work there is to left to do.

9-15

Keeping the Path Processors busy is an easy task as long as the computation time spent on
“useless” work is overlooked. Useless work falls into two categories: communication overheads and
exploring portions of the search space which are too small. Spending time communicating with the
Controller is useless work if the communications are performed too often. It is also useless to
perform a check-in when there are no idle PPs. If the communications are sent in close succession,
the Controller will not have time to deal with all of the requests and the PPs will be blocked
waiting on a response. If there was no idle Path Processors at check-in time, the communication

was wasted since the same PP will have to continue exploration on its own.

The exploration of very small portions of the search space is also useless work. An example is
when an oracle which is rather long is given to a Path Processor to follow. A great deal of
computation takes place in following the oracle to the point at which a unique portion of the search
space will be explored. After the following phase is completed, the proper branch at the choice
point is chosen and this path imniediately fails. It would have been more efficient for the processor

which sent the original oracle to have explored this branch by itself and not split the choice point.

If we do not care about this useless work occurring, we can easily maintain a queue of jobs that
need to be done just as in the non-backtracking strategies. Maintaining this queue will ensure that
there is always work available for a PP to do if and when it becomes idle. As an enhancement to
avoid placing all of the burden for maintaining this queue onto the Controller, a limited number of
oracles will be held at any time. In the non-backtracking strategies, the Controller must accept
any oracle received from the PPs and place them on the queue. An oracle which is missed meaﬁs
that the tree would not be searched exhaustively and solutions may be lost. Maintaining a jobs
queue with all of the paths which have so far been discovered but not explored wastes a great deal
of space and time. To lessen the burden on the Controller a limit is placed on the number of jobs
which can be held. An example of a limited queue is to maintain the number of jobs in the queue to
satisfy the expression:

zNumber of Path Processors = Number of Jobs in Queue = Number of Path Processors

This is not a very large number of jobs (at least for the Delphi configurations that we have so
far considered) so the queue can be kept small and easily maintained. This expression is also an
estimate of the number of processors which may become idle at the same time. If this number is
exceeded then some of the PPs will have to go onto an idle queue until more work becomes
available. If all of the Path Processors become idle at once then the problem has been completed. If
half of the PPs become idle, there must still be portions of the search space to explore since half of

the processors are still working.

Maintaining this jobs queue involves some method for acquiring new work if the number of jobs

on the queue falls below a critical value. One of the objectives is to perform this job acquiring

9-16

function automatically without any parameters supplied by the user (as in the reassign jobs
strategy). Check-ins would only be performed if necessary, where necessary means that there are
slots in the jobs queue to fill or worse, idle PPs waiting in a queue for work. If a Path Processor
must be interrupted so that a check-in will occur, the PP with the largest work estimate will be
chosen. This is an estimate of how much work each Path Processor thinks it has left to do at any
time. Various algorithms can be described which give an estimate of the amount of work
remaining in a partition. One possibility is the summation of all branches which have been
allocated to a PP to explore. For a single PP exploring the search space on its own, this value will
be the summation of all setmax values (branches at a choice point) which have been reached so far.

Figure 9.4 is an example tree with summational estimates shown for the four internal nodes.

@ eStimate of 2

estimate of 5 estimate of 5

estimate of 6

Figure 9.4 Summational Estimates

The estimates in Figure 9.4 are just a count of the number of branches that the processor knows
exist but have not been explored. We assume that a single processor is exploring the search space

on its own and that no limited choice points are created. On backtracking the count is reduced by

one branch. When a choice point is reached the count is increased by the setmax value. This is a '

very simple estimate which gives information only about work that the processor knows to exist.
No attempt is made to estimate how much work exists within the entire search space or portion of
the search space that the PP has been allocated. This estimate can be used by the Controller in
various ways. If the work estimates are.maintained for each of the Path Processors, load balancing
can be dynamically assessed by the Controller. Totalling all of the PP estimates will provide an
estimate of how much work is know about in the search spéce as a whole. If a Path Processor needs
to be interrupted to provide a job for the jobs quéue, then the PP with the largest estimate can have

its work load split.

The summational estimates in Figure 9.4 are not real estimates as they count known branches
only. It could be made into an estimate by adding on an additional amount at each choice point.
For example, if at each choice point the number of branches was doubled and then added onto the

previous value, this would be a true estimate. For the tree in Figure 9.4, an estimate of four would

9-17

® estimate of 2

estimate of 6 estimate of 5

estimate of 10

Figure 9.5 Multiplicative Estimates

occur at node one, an estimate of ten at node two, an estimate of thirteen at node four and an
estimate of sixteen at node number three. This again assumes that on backtracking one branch is

subtracted from the estimate.

A more useful estimate for a tree is shown in Figure 9.5. A multiplicative estimate multiplies
the current estimate by the number of branches which have been allocated to that PP for
exploration. This attempts to give a work estimate of the entire portion of the search space which
has been partitioned and assigned to a Path Processor. For the estimates shown in Figure 9.5 we
have again made two assumptions for simplicity. The first is that there is only one Path Processor
which explores the entire tree. No limited choice points are created during the exploration. The

second assumption is that on backtracking only a single branch is deleted from the estimate.

Check-in intervals perform a different job than these of work estimates. They tell the
Controller when the backtracking level is outside of a certain range. The expression used to

calculate if the current level is one at which a check-in should be performed is:

absolute value (current choice point — last choice point where a check-in was performed)
must be = initial check-in interval

Using this expression to decide when a check-in is performed may not always show the places
where a large amount of exploration is left to do. Quite a lot of backtracking could be going on by a
PP, but until the required threshold value (as given by the initial check-in interval) is reached no
check-ins will be performed. Communication overheads are attempted to be controlled by altering
the initial check-in interval. The theory is that Path Processors doing a great deal of backtracking
will reach the threshold many more times. These PPs must therefore have a lot of work to do and so
they check-in more frequently to have their work partitioned. The work estimates can be more
exact in providing a quantitative picture of how much work a PP has left to do. Unlike check-in

intervals, the estimate is not necessarily related to the amount of backtracking which has been

9-18

performed by a PP nor does it provide a means to control the amount of communications that will

be performed.

Change in depth information is what the initial check-in interval is set to convey. If the check-
in interval is initially given as N, then only a change of N levels in the tree will trigger a check-in
to the Controller. A great deal of processing time could be spent backtracking within a shallow
area and the Controller would not be aware that there still was work left to be done in the tree. An
example of such a tree such can be seen in Figure 9.6. The filled triangles indicates an arbitrary
number of branches at that choice point. Figure 9.6 shows a search space with a large branching
factor at a few of the choice points and a shallow depth. If the initial check—in interval is not less
than the maximum depth of the tree (in Figure 9.6 this depth would be less than five) no check-ins
will ever be performed. Clearly there are places within this tree where it would be advantageous to
perform a check-in. Though the check-in interval mechanism does not work properly on trees of
this shape, the work estimates do take into account nodes at the same level which have a high

branching factor.

A Theinitial
check-in
interval must
be less than
this depth. If
not, the Path
Processor will
never perform
a check-in.

v

Figure 9.6 Change of Depth Information

An algorithm using work estimates would begin execution in a similar manner to the reassign
jobs strategy. Each Path Processor is given an initial unique identifier (U) and the total number of
PPs beginning execution at the root of the search space. The tree is then autoinatically partitioned
until each PP is exploring a unique section of the original search space. After this mode has
completed various strategies using the work estimates can begin execution. Three such strategies

are described which attempt to keep the Path Processors working:

® Use the interrupt facility as in the on demand strategy.
® Add a small queue of jobs.

® Combine passive control with the active interrupt strategy.

9-19

An extra amount of complexity is added to these strategies in the time required to maintain a
sorted list of host machines and their most recent estimates. This data structure is maintained by
the Controller in addition to the idle processors queue. With only a few host machines the
estimates list could be kept as an unsorted array and exhaustively searched to find the PP with the

highest estimate. If many PPs are initialised then this data structure must be kept sorted.

The use of estimates in a strategy such as the on demand strategy is so that a PP with a large
amount of work remaining to be done can be targeted for interruption. To provide this facility only
a small number of changes need to be made to the on demand strategy. The first modification is
that when a Path Processor performs a check-in, not only is the oracle contained in its current path
sent to the Controller, but also an estimate of the amount of work left to do. When'a PP begins
work on a new section of the search space its estimate will have to be reinitialised. The Controller
could alternate between interrupting a PP which has a positive estimate to those which have just
been given new work to do. In this way, all of the Path Processors have the potential of being
interrupted. Path Processors are only interrupted when another PP has become idle just as in the

on demand strategy.

The difference between the on demand strategy and using the work estimates in conjunction
with the on demand strategy are minor. Work estimates are only sent when a PP performs a check-
in, s0 no extra communications take place. The major differences are that an estimates list needs to
be maintained, and the PP chosen to be interrupted is not necessarily the first active PP on the list
(as in the on demand strategy). Maintaining the estimates list is not very different from the

active/idle processors list which was used in the on demand strategy.

The following code is what each Path Processor will perform on reaching a choice point. The
interrupt flag is set when the Controller sends out of band data to tell the Path Processor to perform

a check-in.

When a choice point is reached DO
check Interrupt Flag
IF Interrupt Flag is set
send oracle and new estimate to Controller
create a limited choice point
ENDIF
ENDDO
This strategy will keep the Path Processors working, but will also burden the Controller with
having to spend a great deal of time interrupting PPs. In an attempt to lessen this burden, a small
jobs queue is maintained by the Controller. Instead of interrupting a Path Processor because
another PP has become idle, the interrupts are used mainly to keep the jobs queue full. When the
number of jobs in the queue falls below some particular critical level, then the Path Processors with
the highest estimate (or one that has just been given new work to do) is interrupted. Since both an

estimate and an oracle are sent when the PP performs a check-in, the oracle can be placed on the

9-20

jobs queue and that PP's estimate updated after the single communication. The reason for
maintaining the jobs queue is to quickly give the idle PPs new work to do by taking one of the
oracles off the queue. This is faster than having the idle PP wait for an interrupt to be sent from
the Controller and an active PP to check-in. The interrupts can be done at the expense of the

Controller and not make the idle PPs wait in the jobs queue for work to become available.

The problem with both of the previous strategies is that the estimate value will not be very
accurate. Estimates are only provided to the Controller when the Controller interrupts a Path
Processor. The final work estimate strategy to be described uses passive control techniques to keep-

the estimate value up to date.

The reassign jobs strategy used a check-in interval to control the amount of communications
from the PPs to the Controller. The Controller was not burdened with having to interrupt active
Path Processors when a PP became idle. The idle PP had to wait until a check-in was performed
before it could continue exploration of thé search tree. This final strategy uses this passive control
technique both to keep the estimates list up to date and to keep the jobs queue filled. Instead of
using the initial check-in interval throughout the strategy, the adaptation methods described

earlier in this chapter will be used.

When a Path Processor checks in to the Controller (with an updated work estimate and an
oracle) it will be penalised if there are no idle PPs or any jobs needed to fill the jobs queue. If the
check-in is successful then the check-in interval can be reduced for that PP to allow it to check—in
more frequently. The amount of change in the check-in interval can reflect the importance of the
successful check-in. If the check-in added one of the final jobs onto the jobs queue, then its interval
would only be changed slightly. If however the check-in was successful because an idle Path
Processor was found waiting for work, then the interval will be reduced significantly. This
feedback is no more effort for the Controller than telling the PP which has performed the check-in
the number of idle PPs in the queue. It is the Path Processor which updates its own check-in
interval and leaving the Controller to ensure that work is always available for any PP which

becomes idle.

If there are idle Path Processors waiting for work then the jobs queue must be empty. This is a
serious situation since it may take time away from the Controller handling incoming idle PP
requests. The Controller has two options in acquiring work for the idle Path Processor:

® Passively wait until an active PP performs a check-in.

® Interrupt the PP with the highest estimate to demand that a check-in be performed.

If the Controller waits for an active PP to check-in then it is possible that another PP will
become idle in this time. If the Controller interrupts an active PP then it has taken time away from

potential incoming idle PPs. These PPs will be blocked until the Controller finishes with the

9-21

sending of an interrupt (out of band data) to an active process. In either case a check-in needs to be
performed. When the check-in is performed, it would be useful for that check-in not only to provide
a job for the idle PP requesting new work, but also for any additional PPs which may soon become
idle. This is very easy to do by assigning phantom Path Processors to explore some portion of the

work which is sent when the check-in is performed.

When a Path Processor performs a check-in, it receives the number of idle PPs on the jobs
queue with which to split the work load. The Controller can “lie” to the Path Processor which has
checked in by returning-a number which is larger than thé actual number of idle PPs.- The
Controller can then keep some of the work for itself, and put this work in the jobs queue. The group
of PPs which participate in splitting this work, assume that there is an extra phantom Path
Processor working as part of their group. The PPs will therefore leave some section of the search
space untouched. When the next PP becomes idle, it will be given the remaining work to be done
(the oracle which the Controller placed on the queue) and its unique identifier (U) and be able to
finish the work left by the phantom PP.

Using these techniques, the Controller can attempt to have work immediately available for any
* PP:which becomes idle. If the jobs queue runs out of work then new work can be acquired by
- assigning one or more phantom PPs to the group and keeping these jobs on the queue. If the
feedback from passively performing check-ins is successful then the Path Processors may never

need to be actively interrupted by the Controller.

9-22

Chapter 10 Delphi Tools

10.1 Search Space Analysis

Oracle instructions are contained within the intermediate code of any Prolog program run on
the Delphi machine. The setmax oracle instruction has as its parameter the number of possible
branches at each choice point. From this information it is very easy to create a data file containing
a description of all of the paths searched while executing a Prolog program. This file is created by
running Delphi on a single processor with some compilation flags set to print out the value of the
setmax operand. A single processor Delphi searches the tree in a depth-first and left to right
manner, so the data file created is in a depth-first format. This file is then analysed to give
information on the path lengths, number of branches of each length, and other data which can be
easily derived from a depth-first representation of the search space. To create a graphical
representation of the tree, it would be more useful to have a breadth-first representation of the
search space. For this reason, given enough disk space and time, the depth-first file can be

transformed into a breadth-first file and then displayed in a graphical format.

Programs have been developed to analyse the search space using C , Modula-2 and many of the
UNIX facilities such as awk and sort. The goal is to display the search space in a way that would be
helpful to the user. One of the Modula-2 programs uses the breadth-first file and produces
PostScript output. If the tree is very small it ¢an be printed on a few sheets of A4 paper.
Unfortunately, even something as tiny as the 4-queens problem is too large to be properly
displayed by the current implementation. A second representation of the search space using a
simple ASCII character format has also been developed. Figure 10.1 shows a simple example of the

output from the tree analysis program.

The tree file is first analysed in a depth-first manner displaying information such as the
number of answers found and at what depth they were found. The number of branches of each
length is shown along with the mean and mode of the branch lengths. A breadth-first data file is
then created from the original depth-first data file. For some of the larger problems, it may take
too much time or space to create this file, so the analysis is only done for the depth-first file. The
information given in the breadth-first analysis is slightly redundant, as the number of answers is
again calculated. The new information generated by the breadth-first analysis is used to create a

graphical representation of the search space.

The total number of nodes is given by the breadth-first analysis along with a breakdown of
their types. Internal nodes can be divided into deterministic nodes (the setmax parameter is equal

to one) and nondeterministic nodes (the setmax parameter is greater than one). In the example

10-1

DEPTHANALYSIS

Number of answers = 1
Number of branches = 4, Maximum branch length = 3, Minimum branch length = 1
Number of branches of length 1 1

Number of branches of length 2 1

Number of branches of length 3 2

Average branch length = 2
Most common length = 3
Number of answers at depth 3

[}
[N

BREADTHANALYSIS

Maximum branching factor = 2

Total number of nodes = 7: internal nodes 3
non-deterministic = 3, deterministic 0

Number of leaves = 4: failed leaves = 3, answers = 1

Maximum width (number of nodes) on a level = 2 on level 1

Figure 10.1 Tree Analysis Qutput

shown in Figure 10.1 and in Appendix 10a, the number of deterministic nodes is always 0. An-
optional flag can be turned on when creating the tree data file to prohibit the display of any:

deterministic nodes. This option was used in all of the tree analyses given in this appendix. The:

reasons for providing this option are:

space considerations If the deterministic nodes were added to the depth-first data file,
these files would be much larger. The breadth-first analysis could
not be performed on the larger data files. Any graphical
representations would span over many pages.

representation Delphi is an OR-parallel Prolog system, so it is reasonable not to
display the deterministic nodes. The amount of parallelism which
can be exploited is demonstrated by displaying only the nodes
which have more than one branch.

An attempt is made to give a pictorial summary of the search space if the breadth-first analysis
succeeds. If the tree is small enough to render on a single A4 sheet, it is represented as an ASCII
file (see Figure 10.1). Numerals represent the branching factors of the internal nodes while the
letters represent the leaf nodes. An 'F' (Fail) represents a leaf node that has been reached with no
solution. It is a failed path. The 'A’' (Answer) represents a leaf node with a solution. This is a
successful path and an answer has been found. Each level of the tree is displayed to the right of the
nodes at that level. With this representation, it is easy to see where the answers are located in a
search space, and distinguish the widest and longest portions of the tree. An example of using the

ASCII representation to construct a line drawn diagram is shown in Figure 10.2. The PostSeript

10-2

output produces trees similar to the graphical representation shown in Figure 10.2. Other

examples of data file analysis and ASCII representations are in Appendix 10a.

F o2 1 X Fail
. Answer

Figure 10.2 ASCII and Graphical Representations

10.2 External Process Management System

This system was originally designed for use with the Amoeba-transactions-under-UNIX
implementation of the Delphi machine. It has been developed into a completely independent tool
(independent of the Delphi machine) for managing a distributed system. The Process Management
System (PMS) handles aspects of remote distribution from password management to checking on .
process status over the network. It is by far the largest and most general tool that was motivated

by the Delphi research.

The goal of the PMS is to provide a simple and powerful user interface for process control over
multiple host machines. Three types of processes are established by the PMS:

command process This is the top level process which initiates and controls the other
two types of process.

error server Any problems with the system are reported to this process.

daemons A daemon process spawns and watches all of the requested user
processes on a particular host machine. There is one daemon
running for each host machine.

The command process is a menu driven program initiated by the user. There are two groups of
processes which are manipulated by this command process; the PMS processes, and the user
process. Figure 10.3 shows the top level menu which is entered when the command process is

executed.

10-3

Top Level Commands

remotely distribute user programs using the rdist command
print this menu

ki1l remotely executing process(es)

1ist remotely executing processes

remotely execute a program on a given host(s)

get status of processes on a given host(s)

transfer files to a given host(s)

perform an update on the process list

C &+ v = —u x T O

Commands that follow are used for initialising and checking the
status of the Process Management System.

A print a list of Amoeba Daemons known to this session
B implement shutdown procédure for the system -
this kills all daemons and all spawned user processes
start Amoeba Daemons executing on host(s)
copy/update Process Management System files on host(s)
update hosts file
exit the Process Management control program (this process)
execute restart procedure
find status of Ameoba Daemons on host(s)
terminate Amoeba Daemon on host(s)
enquire about Amoeba Daemons from the Errorserver
get errormessage about Amoeba Daemon from the Errorserver
get the Errorserver started on a given host
find out if the Errorserver is up
tell the Errorserver to exit

N < >XECHwnw>o2$2O0 T m

Figure 10.3 PMS Top Level Menu

The PMS is initialised using the commands which begin with upper case letters. Once all of the
system processes have been initiated and put in place, only the eight commands starting with lower
case letters are used. System initialisation involves starting the error server process and the
daemons. A hosts file is maintained with the names of all participating host machines. The error
server is started on any of these host machines with the daemons being started on all machines
where user processes will be run. In Figure 10.4 an example configuration of the PMS using six

host machines is shown.

Each of the system processes is shown as running on a separate processor. It is possible to place
the command process and the error server on ény of the host machines including those where the
daemons are running. The only requirement is that a daemon process be placed on each host

machine where user processes are to be run. After the system initialisation is performed, user

10-4

command
process

error
server

daemons

Figure 10.4 Example PMS Configuration

processes can be transported, started and examined on any of the host machines containing a.

daemon. These user processes are initialised and watched by daemons throughout their lifetime.

Each daemon maintains status information for any user processes executing on that host:
machine. This information is additionally relayed to the error server and the command process.
Both the error server and the command process maintain a global view of all user processes on all
host machines. Information is maintained on the time that each user process was started, and the
current status of each process. The information is redundantly maintained so that if any single

system process fails, the information on user processes is not lost.
10.3 Oracle Disassembler

The oracle disassembler is used to see exactly what intermediate instructions are generated
from a source program. It is a menu driven disassembler entered by a Prolog command. The top-

level menu for this tool can be seen in Figure 10.5.

The most helpful feature of this disassembler is option number four. This allows the user to
specify a file where the Prolog source code for a predicate resides. This predicate is then located,

compiled, loaded, and the low-level instructions displayed. The predicate can be edited externally,

10-5

options

1 dump instructions to a file

2 disassemble instructions starting at a specified location
3 search for a symbol

4 automatically compile, load and find a predicate

5 print the index table for a predicate

6 print dinstructions starting at the predicate entry point
10 quit

Figure 10.5 Oracle Diassembler Top-Level Menu

and the user can again request option number four. Without ever leaving the disassembler, the

user can see how changes made to the source code alter the low-level instructions.

10.4 Oracle Tracer

The oracle tracer is an application specific tool for following oracles throughout the Delphi
machine. When this option is in use, the user is asked for the bit string describing the oracle to be
traced. All ancestor and descendent oracles are then followed during the execution of the Prolog
program. An ancestor string is any string which is a subset of the user given string. If the user
requests a trace of the oracle [0110], then any communication involving a subset oracle [0], [01],
[011], [0110] is reported. A descendent oracle is a bit string which has the user given oracle as a
prefix. If the user requests a trace of the oracle [0110], then any oracle starting with the prefix
[0110] ('such as [0110101]) will be followed. The information provided by a trace is a listing of the
ancestor or descendent oracle and the name of the host machine (and unique identifier for the

Prolog process) where the oracle is being updated.

10.5 External Checkpointing

When a program is run over a large number of machines and for long periods of time (a few
days to weeks), there are many outside complications which could result in the user losing
solutions and having to restart the system from scratch. Reasons for having to restart the Delphi
configuration range from machines crashing during the run to the logging files not being written
because other users have consumed all of the available disk space. If the machines running the
Prolog systems crash, Delphi automatically restarts the Prologs. Even this may not be desirable if
the idea is to benchmark the Delphi system without including machine crashes. Also, the machine
running the Controller may crash, and this is not handled internally by Delphi. For these reasons,
a problem specific checkpointing facility has been developed for use in the Delphi project. This tool

is the beginning of a more generalised checkpointing facility for UNIX processes.

Most of the fault tolerance built into the Controller is centred around checking on the status of

Path Processors. If a Prolog system fails, the Controller is immediately notified by the receipt of an

10-6

error message on that PP's socket connection. When this message is received, the Path Processor is
down and is eliminated from the run. The oracle that the PP was last working on is held in the last
run array, so it can be sent to an existing or a newly initialised PP. The host machine on which the
PP was running is checked to see if it too has crashed. If not, a new PP is initialised on that same
host. If the host machine crashing caused the error on the PP's socket connection, then a new host
machine is found (if possible), and a new PP is started on the new host. If there are no more

available host machines (in the configuration file), then either one of two things happens:
® An additional PP is started on a host machine already running a PP.

® The oracle in the last run array is held until one of the existing PPs reports in idle. It
is then given to that idle PP.

It is easy to assure that crashing PPs do not cause any portion of the search space to be left
unexplored. Even if all of the PPs crash at the same time, no information will be lost. There has
never been a case where the Controller itself has crashed. The reason for this is that the Controller.
is usually run on a 'safe' machine; a machine which not many of the other users have access to. If
the Controller did crash, all of the information about which oracles have been explored and which
have not would be lost. This could be a catastrophic failure if Delphi were running a very large-
problem; many hours or days of work may have been lost. To avoid this problem, an external-
checkpointing facility has been developed in collaboration with a student at the Computer

Laboratory. The design of this checkpointing facility is documented in Guest [1989].

The user of the checkpoihting facility specifies how often the process is to be checkpointed. The.
state of that process is dumped at the specified intervals, and the process can be restarted from this:.
state information. Currently, the checkpointing facility is not able to handle processes which have:-
socket connections (this would involve also .checkpointing the processes at the other end of the
sockets). It is able to handle I/0 to local files, and this is sufficient for checkpointing the Controller.
Since the Controller maintains a last run array, no oracle will be lost. All of the PPs can be

restarted, and the Delphi machine can continue from where it left off.

There are two ways to go about providing a checkpointing facility for Delphi. One method is to
provide an external checkpointing facility usable on any UNIX process. The other solution is to
have an internal, problem specific solution applicable only to the current Delphi machine
implementation. An external method of checkpointing would involve having the process dump its
state at certain intervals and then reestablish the communications necessary if a restart is to be
done. At the present time, there is no system which can checkpoint an arbitrary UNIX process. It

is a difficult problem, but would be a useful facility to have on an operating system.

A problem specific solution has already been accomplished by saving the contents of the last
run array. The last run array maintains a copy of the last oracle sent to each of the Path

Processors. From the configuration file and the contents of the last run array, the connections to

10-7

host machines can be reestablished and the Path Processors restarted. This is a coarse grain
solution since the Path Processors are restarted with the last oracles held by the Controller. It still
may take a long time for the entire Delphi system to be back to the state it was in when he
checkpoint was taken. For example, if the reassign jobs strategy is being used with a check-in
interval of one thousand, then a great deal of work can easily be lost. A Path Processor (PP) may
have been about to perform a check-in to the Controller just when the crash occurred. This loses
the last one thousand steps of the computation performed by that PP since it was unable to
communicate its updated position in the search space. The limit of this computation loss occurs
with the automatic partitioning strategy. Checkpointing the system by utilising the last run array

does not help at all with this strategy.

A medium grain solution is to have the PPs also keep track of their current position within the
search space. When a checkpoint is taken, the PPs write out their current path, and a restart
would start the processing from exactly this position within the search space. This solution is more
difficult to implement since it involves a distributed checkpointing facility. Each of the
checkpointed files would be on separate host machines, and a hardware failure would cause the loss

of these files. This solution still involves the loss of some of the computation

The fine grain solution allows complete process migration with the loss of very little of the:
computation. Process migration is the term used to describe the ability of a process started on one-
processor to be migrated and started at some time in the future on another processor. This can be-

achieved by an external checkpointing facility which intercepts many of the operating system calls.

and saves the state of all processes.

A simple, problem specific approach was taken for the first checkpointing tool for the following

reasons:

® The Controller already keeps track of the current oracle being explored on each of the
Path Processors.

® No core files need to be kept for each of the Prologs. This reduces the complexity a great
deal as there is no need to maintain redundant files for the Prolog systems. This avoids
the need to maintain multiple copies of these files across the network in case of multiple
crashes involving hardware failures. Only the Controller process has to make sure that
its single file is safe.

® In the reassign jobs strategy, the Prologs are generally doing more work than the
Controller, so the time taken by the Controller to perform the update is inconsequential.
This might not be the case if the Prolog systems also had to be checkpointed.

® Only very simple code is needed to perform the timing (for the checkpoint interval) and
dumping procedures; it only has to be applied to one process.

The only weakness to this solution is the fact that it might not be applicable to all future Delphi
control strategies or implementations of the Delphi machine. For example, if multiple Controllers

are maintained in a system with thousands or millions of Path Processors, the checkpointing

10-8

system would need to be modified. With an external checkpointing facility (the fine grain
solution), this would not be the case. To create a generalised UNIX checkpointing facility however,

would require a great deal more work.

The current solution also needs more work to provide a safe checkpoint file. If the checkpoint
file is held on the same machine which has crashed, then it is possible that the checkpoint file could
be lost. If the machine has suffered a hardware failure then the checkpoint file may be
unobtainable. To solve this problem, the checkpoint file must be redundantly sent to numerous
host machines. Since the Delphi Controller never crashed throughout the benchmarking, these

stringent measures never needed to be implemented.
10.6 Prolog Preprocessor

Nothing has been said about what Delphi does with extra-logical operators such as the cut
operator, assert and retract. None of the benchmarked Prolog programs contained any of these
extra-logical features; they purposely had been removed as can been seen by the not_strict_member
* predicate in the adder problem. If the benchmark programs had contained extra-logical features,
they still could be run on the Delphi machine, but OR-parallelism would not be exploited in the

predicates containing these features.

Delphi does not have any implementation of a parallel cut such as that described in Shapiro
[1989]. If cuts are placed in any clauses within a predicate, then that predicate cannot be explored
in parallel by Delphi. These predicates can, however, be sequentially explored by compiling and

loading them for sequential execution.

The facilities for assuring sequential execution of a predicate already exist in the Delphi
machine. The Prolog run-time system contains a great deal of code with extra-logical features in it,
and this code is used by the Delphi machine. The Prolog system files have been compiled using the
original SB-Prolog compiler, and they are loaded using the original SB-Prolog loader. Any user
programs containing predicates which must be performed sequentially can be compiled and loaded

with the original SB-Prolog system.

The Prolog preprocessor has been written to help in the task of locating and properly coﬁlpiling
predicates which must be performed sequentially. Two separate files are created if there are
predicates which cannot be executed in parallel. One of these source Prolog files goes through the
SB-Prolog system and the other is run through the Delphi compiler and loader. Both files are
compiled by their respective compilers, and a single input file is created which has the proper
specifications for loading each of the two compiled files. The predicates containing extra-logical

features are not executed in parallel by Delphi, but they can be executed.

10-9

Chapter 11 Conclusions

Oracles have been shown to be a simple and effective way to control a parallel tree search
among multiple uniprocessors communicating over a network. The use of oracles for exploiting
OR-parallelism in Prolog programs has been demonstrated by various control strategies
implemented on the Delphi machine. A number of Prolog programs were run on the Delphi
machine and their execution times compared to other Prolog systems. The speed ups show that a
distributed system using oracles to control the parallel search can be an efficient way to exploit the -

OR-parallelism in nondeterministie Prolog programs.

The speed ups obtained by Delphi are related to the amount and location of the OR-parallelism
contained in the Prolog program. If there is no OR-parallelism to exploit, Delphi does not impose
many overheads and the program runs at approximately the same speed as on the unmodified
Prolog system (Cosmic Prolog). The worst case is a deterministic problem which contains useless
OR nodes. Delphi is only indexed on the first argument of a clause, so a deterministic program -
containing a predicate with two or more clauses having the same first argument will create an OR

node. This was seen in predicate mmc of the matrix multiplication problem:

mme(_,[1,[1).
mmc(A,[Bi|Bn],[Ci[Cn]) :- ip(A,Bi,Ci), mmc(A,Bn,Cn).

The first argument in each clause will match anything so these two clauses will be in the same
indexing set as defined by the Delphi indexing method. If indexing were performed on all three
arguments in the head of these two clauses, each clause would be allocated to a separate indexing
set. Most input clauses to this predicate will match only one of the two clause heads, but Delphi
always creates an OR node and tries to match with both heads. Every time the bredicate mmc is
called, the Path Processor must perform all of the functions associated with reaching a choice point.

These functions include:
® Maintenance of the current path data structure.
® Performing the calculations necessary to determine if a check-in should be performed.

® If a check-in is performed, the Path Processor must send a message to the Controller
and wait for a response.

® The creation of a limited choice point.

For every OR node reached, these overheads cause an increase in the execution time. Ifthere is
no OR-parallelism to exploit, the addition of more processors to the Delphi configuration cannot
compensate for the time lost in computational overheads. This is the case with deterministic

programs which have OR nodes such as the matrix multiplication problem. Even with these

11-1

overheads, the worst case performance of the Delphi machine is a slow down of one and a half times

over the same problem run on Cosmic Prolog.

For the benchmarked Prolog programs, more OR nodes are explored in the nondeterministic
programs than in the deterministic programs. Since more OR nodes are reached in the
nondeterministic programs, more overheads are incurred causing an even greater increase in the
execution time as compared to deterministic programs. This leads to a worst case performance for
nondeterministic programs which is a slow down of two times over the same problem run on Comic
Prolog. This slow down however,. only occurs when running a single processor Delphi
configuration. As more processors are added, OR-parallelism is exploited and a net decrease in the
execution time can be seen. This leads to relative speed ups which vary according to the amount
(and location) of OR-parallelism which can be exploited by Delphi. With a twenty processor Delphi
configuration, the 8-queens problem shows a speed up of seven times (over the single processor
Delphi configuration) while the 10-queens problem exhibits an eighteen times speed up. As

compared to the unmodified Prolog system, the 10-queens problem shows a speed up of nine times.

*—0 09

b. Site for OR-parallelism
atlevel 2

a. Site for OR-parallelism
atlevel 4

Figure 11.1 Position of OR-Parallelism in the Search Space

11-2

' 20 T T T T T T T
QUERY R - -
I
5 16 -
T - -
v
E 12 —
?- <10(X) S B _
P
P gL i
E
5 -]
U 4L ><xxxxxxxxxxxxxx_z(
P | x X -
o L 1 o
0 4 8 12 16 20
NUMBER OF PROCESSORS
20 T T T T T T T 1
QUERY g — —
}I(16 =¥
}‘ L -
Vv X
Vo2 | .
x X -
?- ¢100(X) S B x
el ot
% | X X _
x X X
U 4 x —
P X
— X X —
o L 1oy
0 4 8 12 16 20
NUMBER OF PROCESSORS

Figure 11.2 Relative Speed Up of Two Ortest Queries

11-3

The location of the OR nodes in the search space also affects the speed ups which Delphi ecan
obtain. The higher-up the parallelism is in the tree, the less redundant computation occurs.
Redundant computation occurs when any nodes in the search space are explored by more than one
Path Processor. Delphi can exploit OR-parallelism more efficiently if it is higher up in the search

space. This is demonstrated in Figure 11.1.

If we consider that each node in Figure 11.1 takes the same amount of time to explore, then a
single processor Delphi configuration will explore the tree in Figure 11.1a in 9 time units. A
Delpkhi configuration with two processors (using a central splitting algorithm) will explore the tree
in 7 time units. The speed up is approximately 1.3. For the tree in Figure 11.1b, a single processor
takes 7 and two processors 5 time units to explore the tree. The speed up in this case is 1.4. Though
the amount of parallelism which can be exploited is the same, the location of the parallelism affects

the speed ups which can be obtained by Delphi.

With the ortest queries c10(X) and c100(X), the location of the OR-parallelism is held constant
while the amount is increased by a factor of ten. These queries demonstrate how the quantity of

OR-parallelism is related to the speed ups which can be obtained by Delphi (see Figure 11.2).

With the growth of personal workstations distributed on networks, many
organisations have a large computing resource which often lies idle.
Delphi provides a means of harnessing the spare power of this resource to

speed up the execution of Prolog programs.

11-4

Appendix 4a » Loaded Source

4a.1 Indexing Example Program

The following source Prolog program is a contrived example which demonstrates how clauses of
a predicate are indexed and the use of oracle instructions. The intermediate code for this program
is shown both for backtracking and non-backtracking strategies. Intermediate code contains the

instructions generated when compiled code is loaded for execution on each of the Path Processors.

The source program contains the one predicate oxx/2 consisting of 14 individual clauses with
various types of first argument. Indexing will be performed on this first argument only. Notice
that the clauses to be made into a set (a group having the same type of first argument) have not
been grouped together. The order of the claiises as they appear in the sourcel program does not
affect the format of the indexing instructions which are generated. This specification leads to a
very structured and easy to interpret intermediate code, which is not the case with all indexing
systems. In some systems, the order of the clause's appearance in the predicate dictates what the
layout of the instructions will be; a tidy format often relying on the assumption that programmers

are careful about grouping together the clauses with a similar first argument.

oxx(X,1).
oxx(str(X,Y),1).
oxx(str(1,2),2).
oxx(V,a).
oxx([1,2],1).
oxx(V,b).
oxx([1,2,3],2).
oxx([],1).

oxx(V,c).

oxx([],2).
oxx(1,1).

oxx(5,[]).
oxx([],3).

oxx(5,a).

4a.2 Program Loaded for Non-backtracking

With non-backtracking strategies the only onum instruction needed is the (;n umsing instruction,
as no choice points are ever created or destroyed. The following code shows the example program
loaded and ready for execution using a non-backtracking control strategy. Bold type has been used
for comments and are not a part of the intermediate instructions. These comments highlight the
major divisions of the loaded program. A more detailed analysis of the indexing portion of this

program is given in Section 4a.3.

Appendix 4a-1

Symbol Table
/¥ data below: name, arity, type, and entry point */

1fc58: _$interrupt/2, ORDI, O

1fc90: str/2, ORDI, ©
1fc10: []/0, ORDI, O
1fc78: user/0, ORDI, O
1fcf0: oxx/2, PRED, 1fdd2
ifca8: a/o0, ORDI, O
1fcc0: b/o0, ORDI, O
1fc40: ,/2, ORDI, O
1fcd8: c¢/0, ORDI, O
1fc28: ./2, ORDI, O

Clause Instructions for Procedure oxx/2
1£d00 getnumcon 2 1
1fd06 proceed

1fdo8 getstr00 1 1fc90
1fd0e unitvar00 1

1fd10 unitvarQ0 1

1fd12 getnumcon 2 1
~1fd18 proceed

ifdla getstr00 1 1fc90
1fd20 uninumcon 1

1fd26 uninumcon 2

1fd2c getnumcon 2 2
1fd32 proceed

1fd34 getcon00 2 1fcal
1fd3a proceed

1fd3c getlist00 1

1fd3e uninumcon 1

1fd44 unitvar00 1

1£d46 getnumcon 2 1
1fd4c getlist00 1

1fd4e uninumcon 2

1fd54 uniniloo

1fd56 proceed

1fd58 getcon00 2 1fch8
1fdbe proceed

1fd60 getlist00 1

1fd62 uninumcon 1

1fd68 unitvarQ0 1

1fd6a getnumcon 2 2
1fd70 - getlist00 1

1fd72 uninumcon 2

1fd78 unitvar00 2

1fd7a getlist00 2

1fd7c uninumcon 3

1fd82 uninilcg

1fd84 proceed

1fd86 getnilog 1

1fd88 getnumcon 2 1

1fd8e proceed
1fds0 getcon00 2 1fcd0
1fd96 proceed
1fds8 getniloo

—

1fd9a getnumcon 2 2
1fdal proceed

1fda2 getnumcon 1 1
1fda8 getnumcon 2 1
1fdae proceed

1fdb0 getnumcon 1 5
1fdb6 getniloo 2

1fdb8 proceed

1fdba getnil0o0 1

1fdbc getnumcon 2 3
1fdc2 proceed -

1fdc4 getnumcon 1 5
1fdca getcon00 2 1fcal

1fddo proceed

Appendix 4a-2

Entry Point of Procedure oxx/2

iffa2 2000e

1fd00
1£d08
1fdla
1fd34
1fd3c
1fd58
1fd60
1fd86
1fd9o0
" 1fd98
1fda2
1fdb0
1fdba
ifdc4

1£d00
1fd34
1fdb8
1fdS0

- 1fdoo
1fd34
1fd58
1fd86
1fd80
1fd98
1fdba

1£d00
1fd34
1fd3c
1fd58
1fd60
1fd90

1fd00
1fd08
1fdia
1fd34
1fd58
1£d90

as first argument

1£doo
1fd34
1fd58
1fdgo
i1fda2
as first argument

1£d00
1fd34
1fd58
1fd90
1fdbo0

1fdd2 jumponspecial 1fee8 1ffac 1feae
Plenary set begins

1fde8 setmax e

1fdea onumsing 2 1 1fcf0
1fdf8 onumsing 2 2 1fcfo
1fe06 onumsing 2 3 1fcfo
1fel4 onumsing 2 4 1fcfo
1fe22 onumsing 2 5 1fcfo
1fe30 onumsing 2 6 1fcf0
1fele onumsing 2 7 1fcf0
1fedc onumsing 2 8 1fcf0
1feba onumsing 2 9 1fcf0
1feb8 onumsing 2 a 1fcfo
1fe76 onumsing 2 b 1fcfo
1fe84 onumsing 2 c 1fcf0
1fe92 onumsing 2 d 1fcf0
1feal onumsing 2 e 1fcfo
Defaults set begins

1feae setmax 4

1feb0 onumsing 2 1 1fcfo
ifebe onumsing 2 2 1fcf0
1fecc onumsing 2 3 1fcfo
1feda onumsing 2 4 ifcfo
Nil set begins

1fee8 setmax 7

1feea onumsing 2 1 1fcfo
1fef8 onumsing 2 2 1fcfo
1ff06 onumsing 2 3 1fcfo
1ff14 onumsing 2 4 1fcfo
1ff22 onumsing 2 5 1fcfo
1££30 onumsing 2 6 1fcf0
1ff3e onumsing 2 7 1fcf0
List set begins

1ff4c setmax 6

1ffde onumsing 2 1 1fcf0
1ffbc onumsing 2 2 1fcf0
1ff6a onumsing 2 3 1fcf0
1ff78 onumsing 2 4 1fcf0
186 onumsing 2 5 1fcfo
1£f94 onumsing 2 6 1fcf0
Structure set begins

1ffa2 switchonstructure iffac 3

1ffac 1feae

1ffb0 1ffb8

1ffb4 1feae

Subset of Structure set - clauses which unify with 'str' as first argument
1ffb8 setmax 6

1ffba onumsing 2 1 1fcf0
1ffc8 onumsing 2 2 1fcfo
1ffdé onumsing 2 3 1fef0
1ffed onumsing 2 4 1fcf0
1fff2 onumsing 2 5 1fcf0
20000 onumsing 2 6 1fcf0
Integer set begins

2000e switchoninteger 20018 5

20018 ifeae

2001c 2002¢

20020 20074

20024 1feae

20028 1feae

Subset of Integer set - clauses which unify with a '1°*
2002c setmax 5

2002e onumsing 2 1 1fcf0
2003c onumsing 2 2 1fcfo
2004a onumsing 2 3 1fcfo
20058 onumsing 2 4 1fcfo
20066 onumsing 2 5 ifcfo
Subset of Integer set - clauses which unify with a '5°’
20074 setmax 6

20076 onumsing 2 1 1fcfo
20084 onumsing 2 2 1fcf0
20092 onumsing 2 3 1fcfo
200a0 onumsing 2 4 1fcf0
200ae onumsing 2 5 1fcf0
200bc onumsing 2 6 1fcfo

Appendix 4a-3

1fdc4

4a.3 Program Loaded for Backtracking

A portion of the same example program is shown loaded for use in a backtracking control
strategy. This portion contains all of the instructions involved with the indexing of clauses. The
three onum instructions onumtry, onumretry, and onumtrust are used instead of only onumsing, for sets
containing more than one clause. In this program, all of the sets contain either no clauses
(resulting in a pointer to the fail set or fail code) or multiple clauses. For this reason there are no

onumsing instructions contained in the following code.

Figure 4a.1shows the jumponspecial instruction with pointers to the proper special sets. If a
non-special clause needs to be unified, then the program counter falls through the jumponspecial
instruction and the plenary set is used. The plenary set has not been shown in Figure 4a.1, but is
similar to the plenary set code shown in Section 4a.2. Non-special or general clauses have a
variable as their first argument. These general clauses will attempt to match all of the candidate

clauses in the predicate (i.e. the plenary set).

The example program does not have any clauses containing a constant as their first argument.
For this reason the pointer to the constant set (the third argument of jumponspecial) is actually &
pointer to the default set. The default set contains all of the variable-keyed clauses in the
predicate. These variable-keyed clauses will match any first argument. Notice that the entry
points for clauses which are variable-keyed in the predicate are contained in all of the sets. If there
had been no default set and no constant-keyed clauses in the predicate, then the third argument of

jumponspecial would lead to the fail code.

Figure 4a.2 shows more detail on the switchoninteger instruction. This instruction begins the
integer set for the example program. The switchonstructure and switchonconstant instructions are
analogous to switchoninteger except that the address of the constant or structure (from the symbol

table) is hashed instead of the integer.

There are three clauses in the source program which have an integer as their first argument.
Two of these clauses have the same integer, the number 5, as their first argument, and one clause
the number 1. A hash table is created containing five buckets (buckets 0 through 4) into which
these integer-keyed clauses will be hashed. Clauses grouped together in these buckets become the
subsets pointed to by the entries in the hash table. For small integers, the value used in.the hash

function is the numeric value of the integer itself. The hash function used was:

((((value & 0x3ffffffe) > > 2) + (value & 0x3)) % hash table size)

Appendix 4a-4

< entry point of procedure oxx/2

1fdd2 jumponspecial 1fee8 1ffac i1feae 1ffa2 2000e

1fee8 7
1feea 2 1fcfo 1fd00
nil 1fef8 2 1fcfo 1fd34
set 1£f06 2 1fcfo 1fd58
1ff14 onumretry 2 1fcfo 1fd86
onumretry 2 1fcfo 1£d90
onumretry 2 1fcfo 1fd98
2 1fcf0 1fdba
predicate in
symbol table
setmax 6
onumtry 2 1 1£d00
list onumretry 2 2 1fd34
onumretry 2 3 1fd3c
set onumretry 2 4 1fd58
onumretry 2 5 1£d60
onumtrust 2 6 1£d90
clause entry
points
constant
1feae setmax 4
set 1feb0 onumtry 2 1
= 1febe onumretry 2 2
default 1fecc onumretry 2 3
1feda onumtrust 2 4
set T
: oracle
arity number
structure ¢, switchonstructure iffac 3
set
Integer ,qqqe switchoninteger 20018 5 ¢
set

Figure 4a.1 Instruction jumponspecial

Appendix 4a-5

number of entries in the hash table

beginning of hash table l

2000e switchoninteger 20018 5
20018 1feae
002c
20074

1feae —p FAIL code

1feae \//‘

setmax 5
2002e onumtry 2 1 1fcf0 1£d00
setto [2003c onumretry 2 2 1fcf0 1fd34
match'l] 2004a onumretry 2 3 1fcf0 1fd568
20058 onumretry 2 4 1fcf0 1£ds0
20066 onumtrust 2 5 1fcfO 1fda2

20074 setmax 6
20076 onumtry 2 1 1fcfo 1fd00
20084 onumretry 2 2 1fcfo 1fd34
setto 70092 onumretry 2 3 1fcf0 1fd58
match's' 200a0 onumretry 2 4 1fcf0 ' 1fd90
200ae onumretry 2 5 1fcfo 1fdb0
200bc onumtrust 2 6 1fcfo 1fdc4

Figure 4a.2 Instruction switchoninteger

Using the hash function on the integer-keyed clauses of the example program sends the clauses
with a first argument of '1' into bucket number 1. This bucket is the second entry in the hash table.
Clauses with a first argument of '5' are put into bucket number 2. All other entries in the hash
table lead to the fail code. When a pointer from the hash table is followed, it leads to a set
containing the entry points of all clauses which have been hashed together, merged with all clauses
contained in the default set. All clauses in any set are in the same order in which they appear in

the source Prolog program.

As an example, assume that unification is attempted with the goal oxx(5,x). First, the symbol
table is searched for a predicate named oxx with arity 2. When this is found, the pointer
corresponding to the entry point of oxx/2 is followed leading to the jumponspecial instruction in
Figure 4a.1. As the first argument of the goal is an integer, the fifth address of jumponspecial is
placed in the program counter. The switchoninteger instruction of Figure 4a.2 is then encountered.

The number 5 is hashed using the hash function. This new number is used as the offset from the

Appendix 4a-6

first parameter of the switchoninteger instruction. Entry number three (the address 20074) is
placed in the program counter, and the next instruction reached is a setmax. Oracle manipulations

are performed at this point according to a particular control strategy.

Finally, for each clause to be executed, the offset from setmax is calculated, and an onum
instruction is performed. Again this instruction is performed according to the current control
strategy. The arity of the clause is given as the first parameter so that the proper number of
arguments can be pushed and popped from the stack. The oracle number is provided so that a path
from the root of the search space can be maintained. The third parameter shown here is for
debugging purposes. It allows the name of the predicate (of which this clause is a part) to be
derived within any onum instruction. The final parameter is the entry point to the clause

instructions. The program counter is replaced by this address when a clause is to be tried.

Appendix 4a-7

Appendix 5a Echo Servers

5a.1 Amoeba Echo Server

This echo server written using Amoeba IPC demonstrates just how simple user-level
communications across a network can be. Though this is a trivial example, it does include the
transaction primitives used by any Amoeba server. When the server is initialised, it dynamically
creates a unique port for it to listen on, (see @) and places this unique port into the global directory
space. Both the dynamic binding of a port name and advertising that name to any potential clients
is accomplished by procedure server_put_capability (see Section 5a.3). Numbers ® and ® show

uses of the standard IPC commands used by the server to receive and send messages respectively.

#include “/usr/amoeba/h/amoeba.h"
#include <stdio.h>

#include <ctype.h>

#include <signal.h>

#include "shout.h"

extern capability *server_put_capability();

char Buf[BUFFER];
header CInBufHeader;

main()
capability *p_svcap;
char name[10];
strcpy(name, "echo’); A capability (name/unique port

p_svcap = server_put_capability(name); ® | pair) is created for the server.

CInBufHeader.h_port = p_svcap->cap_port; This new port name is copied

) echo_server(); into the Amoeba header.

echo_server()

for (53)
short n, len; getreq blocks
1 t (&CInBufHead Buf, BUFFER) ® on theport
en = getreq nBufHeader, Buf, ; — .
it (len < 0) { name in
printf ("\necho_server: getreq failed len = %d\n", len); CInBufHeader
exit (0);
} putrep sends
n = putrep (&CInBufHeader, Buf, len); ® =—————— Buf to the port
if (n <0) { name in
printf ("\necho_server: putrep failed, n = %d\n", n);
exit (0); CInBufHeader
}

Appendix 5a-1

5a.2 Amoeba Shout Client

The major transaction primitive in Amoeba is the trans call. This call will block until either
the server with the port name specified in the header has been located, or the time specified in the
timeout call has elapsed. If the server is located within the specified time, the trans continues to

block until the server performs a putrep.

#include "/usr/amoeba/h/amoeba.h"
#include <ctype.h>

#include <sys/time.h>

#include <sys/resource.h>
#include <stdio.h>

#include "shout.h"

extern capability ¥get_server_capability ();
#define NILCAP ((capability *) 0)

char Buf[BUFFER];
header COutBufHeader;

main()

init_COutBufHeader();
shout_it();

shout_it()

int size, i, len, j;
struct rusage before, after;

for (size = 1; size <= END; size += STEP) {
printf("size = %d, ", size);
getrusage(RUSAGE_SELF, &before);
for (i = 0; i < NUMTIMES; i++) {
len = trans_C_output(size);
if (len != size) {
fprintf(stderr, "shout: Fragmentation (size = %d, len = %d)\n",size, Ten);
exit(1l);

for (j = 0; j < DELAY; j++)
}

getrusage(RUSAGE_SELF, &after);
Summary(&before, &after);

Summary(before, after)
struct rusage ¥bhefore, *after;

{
long sec;
Tong usec;
sec = after->ru_utime.tv_sec - before->ru_utime.tv_sec;
usec = after->ru_utime.tv_usec - before->ru_utime.tv_usec;
if (usec < 0) { sec--; usec += 1000000;)}
printf("User-time = %1d.%061d, ", sec, usec);
sec = after->ru_stime.tv_sec ~ before->ru_stime.tv_sec;
usec = after->ru_stime.tv_usec - before->ru_stime.tv_usec;
if (usec < 0) { sec--; usec += 1000000; }
printf("System-time = %1d.%061d\n", sec, usec);

}

Appendix 5a-2

init_COutBufHeader()
capability *p_cap;

while ((p_cap = get_server_capability("echo")) == NILCAP) {
printf("\ninit_COutBufHeader: please start the echo server!\n");
sleep(10);

COutBufHeader.h_port = p_cap -> cap_port;

int trans_C_output(size)
int size;

short n;

timeout (100);
do {
n = trans (& OutBufHeader, Buf, size, &COutBufHeader, Buf, BUFFER);
if (n < 0) {
printf ("\ntrans_C_output: trans failed\n");
switch (-n) {
case 1:
printf ("FAIL because of network or server crash\n");
exit(0);
break;
case 2:
printf ("trans_C_output: NOTFOUND trans timed out\n");
break;
case 3: .
printf ("trans_C_output: BADADDRESS address of buffer is invalid\n");
exit (0);
break;
case 4:
printf ("trans_C_output: ABORTED kernal aborted trans interrupt\n");
exit (0);
break;
default:
printf ("trans_C_output: unknown trans error n = %d\n", n);
exit (0);
break;
} /¥ end of switch */
} /¥ end if n < 0 %/
} while (n < 0);
return(n);

Appendix 5a-3

5a.3 Capability Functions

The following code allows servers to dynamically create unique port names and to advertise
these ports in the global directory space (see procedure server_put_capability). The client can find
a dynamically created port by searching for the object name in the global directory space (see

procedure get_server_capability).

#include "/usr/amoeba/h/amoeba.h"
#include <stdio.h>
#include <ctype.h>
#include <signal.h>

#define NILCAP . ((capability *) 0)

capability *server_put_capability(path)
char path[];

char host[20];
capability *p_cap;
capability dummy;
register n;

int count;

if ((p_cap = (capability *) malloc(sizeof(capability))) == NULL){
printf("\nserver_put_capability: malloc failed\n");
return(NULL);

gethostname(host,20);
uniqgport(&p_cap->cap_port);
uniqport(&p_cap->cap_priv.prv_random);
printf("\nin server with path %s\n\n", path);
if ((n = am_lookup(path, &dummy)) == 0){ /* previous entry exists */
if ((n = am_delete(path)) != 0){
printf("\ndirectory %s was found but could not be deleted\n", host);

exit(0);
}
}
count = 0;
do {
count++;

if ((n = am_append(path, p_cap)) != 0){
printf("\nrep: am_append failed appending path %s, error was %d\n", path, n);

if (count > 100) printf("server_put capability: tried to am_append 100 times!");
} while(n < 0);
return(p_cap);
} /* end server_put_capability */

capability ¥get_server_capability(path)
char path[];

short n;
capability *p_cap;

if ((p_cap = (capability *) malloc(sizeof(capability))) == NULL){
printf("\nget_server_capability: malloc failed\n");
return(NULL);

}

if ((n = am_lookup (path, p_cap) != 0)) {
free(p_cap);
return (NILCAP);

}

else {
return (p_cap);

} /* end get_server_capability */

Appendix 5a-4

'5a.4 Sockets Echo Server

This echo server uses 4.2BSD socket connections for communication.

#include <sys/wait.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <netdb.h>
#include <errno.h>
#include "shout.h"

void Copy(src, dst)
int src, dst;
{

char buffer[BUFFER];
int n;

while ((n = read(src, buffer, BUFFER)) > 0) {
/* The assumption is made that +if no error */
/* occurs during the following write then */
/* all characters have been written; this */
/* may not necessarily be true. */
if (write(dst, buffer, n) < 0) {
perror("echos: write()");
exit(1);
3
}
if (n < 0) {

perror{"echos: read()");
exit(1);

void Mourn()
union wait status;

while (wait3(&status, WNOHANG, 0) >= 0)

struct sockaddr_in myaddr_in; /% Defaults to all zero */
struct sockaddr_in peeraddr_in; /#* Defaults to all zero *#/

int main(argc, argv)
int argc;
char *argv[];

struct servent *sp;
int 1s;

if (argc 1= 2) {
fprintf(stderr, "Usage: echos <service>\n");

exit(1);

}

sp = getservbyname(argv[1], "tcp");

if (sp == 0) {)
fprintf(stderr, "echos: Service "%s' not in /etc/services\n", argv[1]);
exit(1);

myaddr_in.sin_family = AF_INET;
myaddr_in.sin_addr.s_addr = INADDR_ANY;
myaddr_in.sin_port = sp->s_port;

Appendix 5a-5

1s = socket(AF_INET, SOCK_STREAM);
if (1s < 0) {
perror(“”echos: socket()");
exit(1);
3

if (bind(1s, &myaddr_in, sizeof(myaddr_in)) < 0) {
perror("echos: bind()");
exit(1);

if (listen(ls, 5) < 0) {
perror("echos: listen()");
exit(1);

}

switch (fork()) {
case--1:
perror("echos: fork()");
exit(1);
case 0:
signal(SIGCHLD, Mourn);
for (;3) {
int addrlen = sizeof(peeraddr_in);
int s = accept(1s, &peeraddr_in, &addrlen);
if (s € 0) {
if (errno != EINTR) {
perror("echos: accept()");
exit(1);

} else
switch (fork()) {

case -1:
perror("echos: fork()");
exit(1);

case 0:
close(1s);
Copy(s, s);
exit(0);

default:
close(s);

}

}
default:
exit(0);

return 0;

Appendix 5a-6

5a.5 Sockets Shout Client

This client uses the 4.2BSD socket connections for communication to the echo server. Once a
connection to the server has been established, the client enters a loop to transmit various sized

packets to the echo server.

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <sys/types.hd>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.hd>
#include <netdb.h>
#include "shout.h"

void Mourn()

union wait status;

while (wait3(&status, WNOHANG, 0) >= 0)

void Summary(before, after)
struct rusage *before, *after;

{
lTong sec;
Tong usec;
sec = after->ru_utime.tv_sec - before->ru_utime.tv_sec;
usec = after->ru_utime.tv_usec - before->ru_utime.tv_usec;
if (usec < 0) { sec--; usec += 1000000; }
printf("User-time = %1d.%061d, ", sec, usec);
sec = after->ru_stime.tv_sec - before->ru_stime.tv_sec;
usec = after->ru_stime.tv_usec - before->ru_stime.tv_usec;
if (usec < 0) { sec--; usec += 1000000; }
printf("System-time = %1d.%061d\n", sec, usec);

}

struct sockaddr_in myaddr_in; /* Defaults to all zero */

struct sockaddr_in peeraddr_in; /* Defaults to all zero */

int main(argc, argv)
int argc;
char *argv[];

struct hostent *hp;

struct servent *sp;

int s, size, n, i, j;

char buffer[BUFFER];

struct rusage before, after;

if (argc != 3) {
fprintf(stderr, "Usage: shout <host> <service>\n");

exit(1);

b

hp = gethostbyname(argv[1]);

if (hp ==
fprintf(stderr, "shout: Host “%s' not in /etc/hosts\n", argv[1]);
exit(1);

}

Appendix 5a-7

sp = getservbyname(argv[2], "tcp");
| if (sp == 0) {
| fprintf(stderr, "shout: Service “%s' not in /etc/services\n", argv[2]);
exit(1l);

peeraddr_in.sin_family = AF_INET;
peeraddr_in.sin_addr.s_addr = ((struct in_addr *)(hp->h_addr))->s_addr;
peeraddr_in.sin_port = sp->s_port;

s = socket(AF_INET, SOCK_STREAM);
if (s < 0) {
perror("shout: socket()");
exit(1);
}

if (connect(s, &peeraddr_in, sizeof(peeraddr_in)) < 0) {
! perror("shout: connect()");
exit(1);

signal(SIGCHLD, Mourn);

printf("size = %d, ", size);
getrusage(RUSAGE_SELF, &before);
for (i = 0; i < NUMTIMES; i++) {
if (write(s, buffer, size) < 0) {
perror("shout: write()");

I
|
\
for (size = 1; size <= END; size += STEP) {
|

exit(1);
}
n = read(s, buffer, BUFFER);
if (n < 0) {
perror("shout: read()");
exit(1);
} else if (n != size) {
fprintf(stderr, "shout: Fragmentation (size = %d, n = %d)\n", size, n);
exit(1);
}

}
getrusage(RUSAGE_SELF, &after);
Summary(&before, &after);

for (j = 0; j < DELAY; j++)
}
| shutdown(s, 2); /* No more sends or recvs */

return 0;

}

5a.6 Mutual Header File

This is the shout.h header file used by both versions (Amoeba and Sockets) of the echo server

and shout client.

#define BUFFER 100
#define STEP 1
#define NUMTIMES 1000
#define START 0
#define END 100
#define DELAY 0

Appendix 5a-8

Appendix 5b A Better Way to Communicate?

CLIENT PROCESS i SERVER PROCESS
system call activity system call
create a socket socket() create a socket socket()

request a connection connect()

LI

il

bind a socket address bind()

i

ol

host duke
port 5234

Hh

ol

listen for connection requests listen()

i

host duke
port 5234

-,
| connections
i queue

accept a connection accept()

m, | Am

ol

i

Figure 5b.1 Making a Connection

Appendix 5b-1

CLIENT PROCESS

SERVER PROCESS

activity system call

activity system call

write()

g

initiate communications

)}

—>

receive a message

e

read()

Lk o

receive server's response

send a reply write()

i

end a connection close() or shutdown()

L.

close() or shutdown()

end a connection

il

Figure 5b.2 Using a Connection

Appendix 5b-2

Appendix 6a Global Log File

All answers and other messages produced during the execution of a Prolog program are
collected in a global log file. This file is located on the same host machine on which the Controller
is started. The Delphi configuration file does not list the name of the host machine on which the
Controller executes. The Controller can be started on any host machine and one possibility is to
run it with one or more Prologs executing on the same processor. The only way to tell precisely how

the configuration was set up is to look at the global log file produced.
6a.1 Example Configuration

Section 6a.2 is a portion of the global log file from a run of the 10-queens problem on ten host
processors. The configuration file used for the example run was the following:

cheetah

eyra

jaguar

leopard

Tynx

margay

ocelot

panther

puma
serval

As no number of Prologs has been shown explicitly for any of the host machines, the default
number of one Prolog process per machine is used. In the example run the Controller process
executed on the first host machine, named cheetah, and all of the host machines were used (each ran
a Prolog process). In the start up command to the Controller it is possible to specify a particular
number of host machines to be used for a run which is smaller than the number of entries in the
configuration file. Information about which host machines are used in the execution of a program

is contained in the global log file.

6a.2 Example Global Log File

Wed Jun 21 09:46:15 1989 puma prolog_same: accepted client connection on fd 3 Socket 22
Wed Jun 21 09:46:15 1989 panther prolog _same: accepted client connection on fd 3 Socket 20
Wed Jun 21 089:46:14 1989 ocelot prolog same: accepted client connection on fd 3 Socket 18
Wed Jun 21 09:46:13 1989 margay prolog_same: accepted client connection on fd 3 Socket 16
Wed Jun 21 09:46:12 1889 1lynx prolog_same: accepted client connection on fd 3 Socket 14
Wed Jun 21 09:46:11 iQBQ leopard prolog_same: accepted client connection on fd 3 Socket 12
Wed Jun 21 09:46:09 1989 jaguar prolog_same: accepted client connection on fd 3 Socket 10
Wed Jun 21 09:46:09 1989 eyra prolog_same: accepted client connection on fd 3 Socket 8

Wed Jun 21 09:46:08 1989 cheetah prolog_same: accepted client connection on fd 3 Socket 6
Wed Jun 21 09:46:19 1989 serval prolog_same: accepted client connection on fd 3 Socket 24
Wed Jun 21 08:46:22 1988 Controller on host cheetah, answer_sock: START TIMING

Wed Jun 21 09:46:25 1983 eyra ANSWER X =

Appendix 6a-1

[square(10,6),square(9,9),square(8,7),square(7,1),square(6,4),square(5,2),square(4,5),
square(3,8),square(2,10),square(1,3)] Prolog socket 8

Wed Jun 21 09:46:25 1983 cheetah ANSWER X =
[square(10,9),square(9,6),square(8,2),square(7,7),square(6,1),square(5,3),square(4,5)
,square(3,8),square(2,10),square(1,4)] Prolog socket 6

Wed Jun 21 09:46:25 1989 cheetah ANSWER X =
[square(10,7),square(9,9),square(8,2),square(7,6),square(6,1),square(5,3),square(4,5)
,square(3,8),square(2,10),square(1,4)] Prolog socket 6

Wed Jun 21 09:46:25 1989 ‘leopard ANSWER X =
[square(10,3),square(Q,S),square(B,B),square(7,1),square(6,9),square(5,4),square(4,2)
,square(3,7),square(2,10),square(1,6)] Prolog socket 12

Wed Jun 21 09:46:26 1989 jaguar ANSWER X =
[square(10,6),square(9,4),square(8,2),square(7,7),square(ﬁ,g),square(s,a),square(4,1),
square(3,8),square(2,10),square(1,5)] Prolog socket 10

Wed Jun 21 09:46:26 1989 serval ANSWER X =
[square(10,7),square(9,4),square(8,6),square(7,1),square(6,9),square(5,5),square(4,3),
square(3,8),square(2,10),square(1,2)] Prolog socket 24

Wed Jun 21 09:46:28 1989 ocelot ANSWER X =
[square(10,2),square(9,4),square(8,6),square(7,8),square(6,10),square(5,1),square(4,3)
,square(3,5),square(2,7),square(1,9)] Prolog socket 18

Wed Jun 21 09:46:28 1989 panther ANSWER X =
[square(10,4),square(9,7),square(s,g),square(7,2),square(G,G),square(s,l),square(4,3)
,square(3,5),square(2,8),square(1,10)] Prolog socket 20

Wed Jun 21 09:46:29 1989 jaguar ANSWER X =
[square(10,1),square(9,7),square(8,9),square(7,3),square(6,8),square(5,2),square(4,4),
square(3,6),square(2,10),square(1,5)] Prolog socket 10

Wed Jun 21 09:46:29 1983 leopard ANSWER X =
[square(10,9),square(9,4),square(S,Z),square(7,8),square(6,3),square(5,1),square(4,7)
,square(3,5),square(2,10),square(1,6)] Prolog socket 12

Wed Jun 21 09:46:29 1989 panther ANSWER X =)
[square(10,3),square(Q,G),square(B,Q),square(7,7),square(6,1),square(5,4),square(4,2)
,square(3,5),square(2,8),square(1,10)] Prolog socket 20

Wed Jun 21 09:46:29 1983 jaguar ANSWER X =
[square(10,8),square(g,1),square(8,3),square(7,9),square(6,7),square(5,2),square(4,4),
square(3,6),square(2,10),square(1,5)] Prolog socket 10

Wed Jun 21 09:46:29 1983 1ynx ANSWER X =
[square(10,5),square(9,9),square(8,2),square(7,4),square(6,8),square(ﬁ,1),square(4,3),
square(3,6),square(2,10),square(1,7)] Prolog socket 14

Wed Jun 21 09:46:29 1989 panther ANSWER X =
[square(10,6),square(9,3),square(8,9),square(7,7),square(6,1),square(5,4),square(4,2)
»square(3,5),square(2,8),square(1,10)] Prolog socket 20

Wed Jun 21 09:46:30 1989 margay ANSWER X =
[square(10,4),square(8,9),square(8,7),square(7,3),square(6,1),square(5,6),square(4,2),
square(3,5),square(2,10),square(1,8)] Prolog socket 16

Wed Jun 21 09:52:06 1989 serval ANSWER X =
[square(10,5),square(9,8),square(8,2),square(7,4),square(6,10),square(5,7),square(4,9)
,square(3,6),square(2,3),square(1,1)] Prolog socket 24

Wed Jun 21 09:52:06 1989 serval ANSWER X =

[square(10,8),square(9,5),square(8,2),square(7,4),square(6,10),square(5,7),square(4,9)
,square(3,6),square(2,3),square(1,1)] Prolog socket 24

Appendix 6a-2

Wed Jun 21 09:52:08 1989 serval ANSWER X =
[square(10,7),square(9,4),square(8,2),square(7,9),square(6,5),square(5,10),square(4,8)
,square(3,6),square(2,3),square(1,1)] Prolog socket 24

Wed Jun 21 09:52:18 1989 eyra ANSWER X =
[square(10,7),square(9,2),square(8,4),square(7,8),square(6,10),square(5,5),square(4,9),
square(3,6),square(2,1),square(1,3)] Prolog socket 8

Wed Jun 21 09:52:32 1989 Controller PROBLEM HAS BEEN SOLVED time 369.440

Wed Jun 21 09:52:32 1989 Controller Total Number of Checkins = 0

6a.3 Explanation of the Log File

Each entry in the global log file is time-stamped on the machine which originated the message.
The message is then logged into a local file and also sent over the network to the global log file.
These messages do not necessarily arrive in chronological order as seen in the first ten lines of the
global log file. The first socket connection was made from the Controller to the host machine
cheetah as the time stamp shows (the ninth message in the global log file). The Controller makes

connections to the host machines in order of the configuration file entries.

After the initial connections are made to the ten participating host machines, the execution
time clock is started. What is being timed is the sending of initialisation parameters to each of the
host machines, the start-up of the Prolog system (including the reading of all the system start-up
files), answers being time-stamped and sent over the network, and all control communications. In
the given example, the strategy being employed is automatic partitioning only so there are no
control communications. The fact that no control commﬁnications took place within this run is

shown as the last entry in the file.

By far the major portion of a global log file is taken up by the answers sent from the Prolog
processes. The actual log file (of which this is an excerpt) contains 724 “answer” messages as there
are 724 ways to place 10 queens on a 10 X 10 chess board so that no queen is being attacked. The
vertical ellipsis has been used in the example log file showing the location of the numerous omitted
answer messages. The complete log file has not been shown because of space considerations. Table
6a.1 shows the number of answers found for each processor running the 10-queens problem. The

number of answers found per processor for the 8-queens problem is shown for comparison.

It is important to realise that the global log file is a convenience for the user of Delphi. It allows
the user to see all of the solutions to the problem as soon as they become available. If it were
imperative to keep down the communications traffic across the network, this global log file need
not be created at all. Since the local log files on each of the host machines maintain a duplicate
copy of all answers, it is not mandatory for the global file to additionally be updated. The user
could at “off peak” times (when network traffic and load on the host machines is low) collect the
answers from each of the local log files and recreate the global log file from each of these pieces. In

fact, with the automatic partitioning strategy used on its own, it is possible to run each of the host

Appendix 6a-3

number of number of
host machine answers found answers found
name 8-queens 10-queens
problem problem
cheetah 8 , 93
eyra 0 ') 65
jaéuar 4 92
leopard 18 92
lynx 16 93
margay 0 65
ocelot 18 48
panther 4 64
puma 16 0
serval 8 112

Table 6a.1 Distribution of Answers

machines independently. There is no need for them to be working simultaneously on the problem
atall. The two initial parameters needed to run automatic partitioning could be hard-wired or read
from a local file. What this means is that the processors could be used whenever and only when
their load falls below some particular level. Running Delphi is this manner means that it need
never interfere with the functioning of other users on the network or on any of the host machines.
The Prolog processes could go about finding their solutions without causing any network traffic

congestion and only using the “spare” CPU cycles available on the host machines.

Appendix 6a-4

Appendix 6b Sessions

Three Delphi sessions are shown in this appendix. These sessions demonstrate the three
methods of using the Controller to establish connections to Prolog processes across the network. In
all three sessions it is assumed that the necessary files have been updated and placed in their
proper directories on each of the host machines. The default input file, prolog_standard_input, was
used in all three of these sessions. This file contained the following:

$load('buf_io').’
$load('oracle').
orc_load('queens.del').
$Toad('mytop').

mytop.
get_solutions(4,X).

The configuration desired in every case was to use five host machines with eight Prolog
processes running on them. Host patho1 with three Prologs, path02, duke and fylde each with one

Prolog, and host hendy with two Prolog processes.
6b.1 Direct Connectto Prologs

Initiating Prolog processes by the direct connect method is labour intensive. The user must log
onto each of the host machines and start every Prolog manually. Each Prolog must be interaétively
assigned a port (service) name then set into the background. When the user logs off the host
machine the Prologs are not disturbed since they capture any signals which might otherwise
terminate them. After the Prolog processes have been started, they listen on a port waiting for a
client process to make a connection. The Controller is used with a menu driven program to

establish these direct Prolog connections.

When the Controller is invoked with the command Controller and no command line
arguments, an interactive program is entered. The direct connect facility is used to establish
connections to all of the Prologs which are used in the configuration. The global log file is listed

after the Controller is exited.

delphi: init: rlogin path01
Last login: Sat Sep 16 16:20:44 from delphi
Ultrix V2.2 System #285: Tue Sep 5 16:52:32 BST 1989

Digital Equipment Corporation
Merrimack, New Hampshire.

path01: csk: cd DelNet
path0l: DelNet: prolog

init_connection_info: service for direct Prolog connection? test3
<<« direct Prolog Connection >>>

A

Stopped

path0l: DelNet: bg

[1] prolog &

path0l: DeiNet: prolog

Appendix 6b-1

init_connection_info: service for direct Prolog connection? test0
<« direct Prolog Connection »>>
4

Stopped

path01: DelNet: bg

[2] prolog &

path01: DelNet: prolog

init_connection_info: service for direct Prolog connection? testl
K< direct Pro]og Connection >>>
4
Stopped
pathO1: DelNet: bg '
[3] prolog &
path01: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin patho2

Last login: Sat Sep 16 16:22:44 from delphi

Ultrix-32 V3.0 (Rev 63) System #7: Wed Aug 16 17:28:04 BST 1989
Welcome to path02.

#*** This system is running testing auto NFS mount code (16). pb 24 Aug 89 *#++=

Terminal type = xterm
path02: csk: cd DelNet
path02: DelNet: prolog

init_connection_info: service for direct Prolog connection? testO
< direct Pro]og Connection >>>
A

Stopped

- path02: DelNet: BG

BG: not found

path02: DelNet: bg

[1] prolog &

path02: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin duke

Last Togin: Sat Sep 16 16:23:30 from delphi

Ultrix V1.2 System #39: Fri Sep 1 11:22:32 BST 1989
Welcome to duke. ’

Terminal type = xterm
duke: csk: cd DelNet
duke: DelNet: prolog

init_connection_info: service for direct Prolog connection? test2
< direct Prolog Connection >>>
A
Stopped
duke: DelNet: bg
[1] prolog &
duke: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin fylde

Last Togin: Sat Sep 16 16:24:22 from delphi

Ultrix V1.2 System #39: Fri Sep 1 11:22:32 BST 1989
Welcome to fylde. :

Terminal type = xterm
fylde: csk: cd DelNet
fylde: DelNet: prolog

init_connection_info: service for direct Prolog connection? test0
<K< direct Prolog Connection >>>
4

Stopped

fylde: DelNet: bg
[1] prolog &
fylde: DelNet:

Appendix 6b-2

/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin hendy

Last login: Sat Sep 16 16:25:16 from fylde

Ultrix V1.2 System #39: Fri Sep 1 11:22:32 BST 1989
Welcome to hendy.

Terminal type = xterm
hendy: csk: cd DelNet
hendy: DelNet: prolog

init_connection_info: service for direct Prolog connection? test0
<< direct Prolog Connection >>>
"7

Stopped

hendy: DelNet: bg

[1] prolog &

hendy: DelNet: prolog

init_connection_info: service for direct Prolog connection? testl
<< direct Prolog Connection >>>

“Z

Stopped

hendy: DelNet: bg

[2] prolog &

hendy: DelNet:

/usr/users/csk/.finish: not found

Connection closed

delphi: init: Controller
TYPE AN 'h' FOR HELP
top-level command ? h

(d)irect connection to a prolog <USE WITH CAUTION>
(h)elp, print this menu

(1)ist current masters

ki1l all (m)asters and their prologs

ki1l all (p)rologs

ki1l everything and (q)uit

(s)tart or resume processing

(t)alk to a host

VWOV 3 4D

top-level command ? d
hostname for direct connect to prolog? fylde
service for direct connect to prolog? test0
TYPE AN 'h' FOR HELP
top-level command ? d
hostname for direct connect to prolog? duke
service for direct connect to prolog? test2
TYPE AN 'h' FOR HELP
top-level command ? d
hostname for direct connect to prolog? path02
service for direct connect to prolog? test0
TYPE AN 'h' FOR HELP
top-level command ? d
hostname for direct connect to prolog? path01
service for direct connect to prolog? test0

TYPE AN 'h' FOR HELP

Appendix 6b-3

top-level command ? d

hostname for direct connect to prolog? path01

service for direct connect to prolog? testil

TYPE AN 'h'

FOR HELP

top-level command ? d

hostname for direct connect to prolog? path01

service for direct connect to prolog? test3

TYPE AN 'h'

FOR HELP

top-level command ? d

hostname for direct connect to prolog? hendy

service for direct connect to prolog? test0

TYPE AN 'h'

FOR HELP

top-Tevel command ? d

hostname for direct connect to prolog? hendy

service for direct connect to prolog? testl

TYPE AN 'h'

FOR HELP

top-level command ? h

V.oV 3 2TO

(d)irect connection to a prolog <USE WITH CAUTIOND
(h)elp, print this menu

(1)ist current masters

ki1l all (m)asters and their prologs

kill all (p)rologs

ki1l everything and (q)uit

(s)tart or resume processing

(t)alk to a host

top-level command ? s

answer_sock: initialprologs = 8

PROBLEM HAS BEEN SOLVED

delphi:

top-level command ? h

WOV S =oaA

(d)irect connection to a prolog <USE WITH CAUTION>
(h)elp, print this menu

(1)ist current masters

ki1l all (m)asters and their prologs

ki1l all (p)rologs

kill everything and (q)uit

(s)tart or resume processing

(t)alk to a host

top-level command ? q

init: cat Global.Log

Sat Sep 16 16:56:03 1989

Sat Sep
Sat Sep
Sat Sep

Sat Sep

16 16:56:17
16 16:56:26
16 16:56:34

16 16:56:44

1989
1989
1989

1989

fylde
duke
path02
path01

path01

pro]og_same: accepted client connection on fd 5 Socket 5§

prolog_same: accepted client connection on fd 5 Socket 6 -
prolog_same: accepted client connection on fd 5 Socket 7
prolog_same: accepted client connection on fd 5 Socket 8

prolog_same: accepted client connection on fd 5 Socket 9

Appendix 6b-4

Sat Sep
Sat Sep
Sat Sep
Sat Sep

Sat Sep

16

16

16:56:561
16:57:03
16:57:11
16:57:23

16:57:29

1989
1989
1989
1989

19889

path0l prolog_same: accepted client connection on fd § Socket 10
hendy prolog_same: accepted client connection on fd 5 Socket 11

hendy prolog_same: accepted client connection on fd 5 Socket 12

Controller on host delphi, answer_sock: START TIMING

hendy ANSWER X =

[square(4,2),square(3,4),square(2,1),square(1,3)] Prolog socket 12

Sat Sep 16 16:57:37 1988
[square(4,3),square(3,1),square(2,4),square(1,2)] Prolog socket 10

path01 ANSWER X =

Sat Sep 16 16:57:37 1983 Controller PROBLEM HAS BEEN SOLVED time 13.630

Sat Sep 16 16:57:37 1983 Controller Total Number of Checkins = 0

6b.2 Starting Master Processes

Starting Master Processes is an easier initialisation technique for the user. The user must still
Togon to each of the host machines individually, but only one process, the Prolog Master Server
(PMastersv), needs to be started on each host. The same service name (test0) has been used on all of

the host machines for convenience. The Prolog Master Server waits on this port until a connection

to the Controller is established.

The Controller is run with no command line arguments, so the interactive mode is entered. A
single connection is made to the Master process running on each of the participating host

machines. After this connection has been made, each Prolog can be started simply by issuing a

command to the proper Master.

delphi: init: rlogin path01
Last login: Sat Sep 16 16:51:41 from delphi
Ultrix V2.2 System #285: Tue Sep 5 16:52:32 BST 1989

pathQ01:
path01:
Usage:

path01:
path0Q1:
Ty User
p0.csk
pl csk
pl. *
pl csk

delphi:

csk:

Digital Equipment Corporation
Merrimack, New Hampshire.

cd DelNet
DelNet: PMasterSv

PMasterSv <{service>

init:

Status Proc#

RTTYPO
CHILD
RUN

2455
2591
2615

SOCKET 2614
path01: DelNet:
/usr/users/csk/.finish:
Connection closed

DeiNet: PMasterSv testO
DelNet: sps
Command

-msh

-msh

sps

PMasterSv test0

not found

rlogin path02

Last login: Sat Sep 16 16:52:44 from delphi
UTtrix-32 v3.0 (Rev 63) System #7: Wed Aug 16 17:28:04 BST 1989
Welcome to path02.

##** This system is running testing auto NFS mount code (16). pb 24 Aug 89 *#*=¥#

Appendix 6b-5

Terminal type = xterm

path02: csk: cd DelNet

path02: DelNet: PMasterSv test0
path02: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin duke

Last login: Sat Sep 16 16:53:36 from delphi

Ultrix V1.2 System #39: Fri Sep 1 11:22:32 BST 1989
Welcome to duke.

Terminal type = xterm

duke: csk: cd DelNet

duke: DelNet: PMasterSv testO0
duke: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin fylde

Last Togin: Sat Sep 16 16:54:30 from delphi

Ultrix V1.2 System #39: Fri Sep 1 11:22:32 BST 1989
Welcome to fylde.

Terminal type = xterm

fylde: csk: cd DelNet

fylde: DelNet: PMasterSv test0
fylde: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: rlogin hendy

Last Togin: Sat Sep 16 16:55:14 from delphi

Ultrix V1.2 System #389: Fri Sep 1 11:22:32 BST 1989
Welcome to hendy.

Terminal type = xterm

hendy: csk: cd DelNet

hendy: DelNet: PMasterSv testO
hendy: DelNet:
/usr/users/csk/.finish: not found
Connection closed

delphi: init: Controller
TYPE AN 'h' FOR HELP
top-level command ? h

(d)irect connection to a prolog <USE WITH CAUTION>
(h)elp, print this menu

(1)ist current masters

ki1l all (m)asters and their prologs

ki1l all (p)rologs

ki1l everything and (q)uit

(s)tart or resume processing

(t)alk to a host

W OV 3 ~T0O

top-level command ? 1
LIST OF HOSTS AND CONNECTIONS
there are no masters in the 1ist
top-level command ? t
hostname? hendy
service for host hendy? test0
connected to host hendy, TYPE AN ‘h“FOR HELP
command to prolog master? h

ON HOST hendy

Appendix 6b-6

ki1l all (c)hildren

(h)elp, print this menu

(1)ist children's process ids <AT THE SERVER SIDE>
(k)11 children and master then return to top level
(q)uit this loop and return to top level

(s)tart a prolog

Lo xX—=0

command to prolog master? s
prolog started on host hendy

command to prolog master? s
prolog started on host hendy

command to prolog master? q
top-tevel command ? 1

LIST OF HOSTS AND CONNECTIONS

hostname = hendy, socket = 5, number of prologs = 2
children's sockets = 6, 7,

top-level command ? t
hostname? fylde
service for host fylde? testO
connected to host fylde, TYPE AN 'h' FOR HELP
command to prolog master? s
prolog started on host fylde
command to prolog master? q
top-level command ? path01
top-level command ? t
hostname? path01
service for host path01? testO
connected to host path01, TYPE AN 'h' FOR HELP
command fo prolog master? s
prolog started on host pathO1
command to prolog master? gq
top-level command ? 1

LIST OF HOSTS AND CONNECTIONS

hostname = hendy, socket = 5, number of prologs = 2
children's sockets = 6, 7,
hostname = fylde, socket = 8, number of prologs = 1

children's sockets = 9,

hostname = path01, socket = 10, number of prologs =
children's sockets = 11,

top-level command ? t

hostname? path02

service for host path02? test0
connected fo host path02, TYPE AN 'h' FOR HELP

command to prolog master? s

Appendix 6b-7

prolog started on host pathQ2

command to prolog master? q
top-level command ? 1

LIST OF HOSTS AND CONNECTIONS

hostname = hendy, socket = 5, number of prologs
children's sockets = 6, 7,

hostname = fylde, socket = 8, number of prologs
children's sockets = 9,

hostname = path0l, socket = 10, number of prologs

children's sockets = 11,

hostname = path02, socket = 12, number of prologs

children's sockets = 13,
top-level command ? t
hostname? duke

service for host duke? testO

connected to host duke, TYPE AN 'h' FOR HELP

command to prolog master? S’
prolog started on host duke

command to prolog master? q
top-level command ? t

hostname? path01

connected to host pathG1, TYPE AN 'h' FOR HELP

2T 3 ~Ta

‘command to prolog master? s
prolog started on host path01

command to prolog master? s
prolog started on host path01

command to prolog master? q
top-level command ? 1

LIST OF HOSTS AND CONNECTIONS

hostname = hendy, socket = 5, number of prologs
children's sockets = 6, 7,

hostname = fylde, socket = 8, number of prologs
children's sockets = 9,

n

hostname = path01, socket = 10, number of prologs

children's sockets = 11, 16, 17,

hostname = path02, socket = 12, number of prologs

children's sockets = 13,

hostname = duke, socket = 14, number of prologs
children's sockets = 15,

top-level command ? h

(d)irect connection to a prolog <USE WITH CAUTIOND
(h)elp, print this menu

(1)ist current masters

ki1l all (m)asters and their prologs

ki1l all (p)rologs

ki1l everything and (q)uit

Appendix 6b-8

1

s (s)tart or resume processing
t (t)alk to a host
top-level command ? s
answer_sock: initialprologs = 8
PROBLEM HAS BEEN SOLVED

top-level command ? q

delphi: init: cat Global.Log

Sat Sep 16 17:04:11 1889 hendy prolog_same: accepted c]ient'connection on fd 3 Socket 6
Sat Sep 16 17:04:14 1889 hendy prolog_same: accepted client connection on fd 3 SQcket 7
Sat Sep 16 17:04:39 1989 fylide prolog same: accepted client connection on fd 3 Socket 9
Sat Sep 16 17:05:20 1989 path01 prolog same: accepted client connection on fd 3 Socket 11
Sat Sep 16 17:06:05 1989 path02 prolog_same: accepted client connection on fd 3 Socket 13
Sat Sep 16 17:06:32 1989 duke prolog_same: accepted client connection on fd 3 Socket 15
Sat Sep 16 17:06:42 1989 path01 prolog_same: accepted client connection on fd 3 Socket 16
Sat Sep 16 17:06:45 1989 path01 prolog_same: accepted client connection on fd 3 Socket 17
Sat Sep 16 17:07:10 1989 Controller on host delphi, answer_sock: START TIMING

Sat Sep 16 17:07:17 1989 hendy ANSWER X =
[square(4,2),square(3,4),square(2,1),square(1,3)] Prolog socket 7

Sat Sep 16 17:07:24 1989 path0O1 ANSWER X =
[square(4,3),square(3,1),square(2,4),square(1,2)] Prolog socket 11

Sat Sep 16 17:07:24 1989 Controller PROBLEM HAS BEEN SOLVED time 14.140

Sat Sep 16 17:07:24 1989 Controller Total Number of Checkins = 0

6b.3 Automatic Start Up

With this method of start up the Controller process does not have to be run interactively. The
configuration for the Delphi run is read from a file and no menu driven program is entered. The
configuration file used in the automatic start up was:

path01 3
path02

duke

fylde

hendy 2

hythe
tholos

For this session, the Controller command is invoked with a single argument on the command
line. This argument is the number of host machines to be used in the configuration. the lines of the
configuration file are read in order until that number of available host can be found and a
connection established. Once this command has been given, there is no more user interaction with
the Controller process. In this session the machine patho2 is purposely crashed during the
initialisation procedure. The Controller automatically reads the next line in the configuration file,

and starts the requested number of Prologs (1) on the new host machines(hythe).

Appendix 6b-9

A second argument on the commands line is allowed, but has not been used in any of these
sessions. The second argument is the name of the file to be used as the standard input to the Prolog
processes. The full initiation command is:

Controller <number of hosts> <file to be used as standard input>

The default filename is prolog_standard_input. Allowing an arbitrary file to be read is useful if

multiple problems are being executed by the same user, in separate configurations.

delphi: init: Controller 5

3 prolog(s) have been started on host pathOi

Daemon not running on host path02
could not connect to hostname path02 and start prologs...machine crashed recently?

1 prolog(s) have been started on host duke

1 prolog(s) have been starteéd on host fylde

2 prolog(s) have been started on host hendy

1 prolog(s) have been started on host hythe
answer_sock: initialprologs = 8
PROBLEM HAS BEEN SOLVED
delphi: dinit:
delphi: init: cat Global.Log
Sat Sep 16 17:08:14 1989 path01 prolog_same: accepted client connection on fd 3 Socket 7.
Sat Sep 16 17:08:14 1989 path01 prolog_same: accepted client connection on fd 3 Socket 8
Sat Sep 16 17:08:15 1989 path0l1 prolog_same: accepted client connection on fd 3 Socket 9
Sat Sep 16 17:08:17 1889 duke prolog_same: accepted client connection on fd 3 Socket 11
Sat Sep 16 17:08:20 1989 fylde prolog same: accepted client connection on fd 3 Socket 13
Sat Sep 16 17:08:23 1989 hendy prolog same: accepted client connection on fd 3 Socket 15
Sat Sep 16 17:08:23 1989 hendy prolog_same: accepted client connection on fd 3 Socket 16
Sat Sep 16 17:08:25 1989 hythe prolog_same: accepted client connection on fd 3 Socket 18
Sat Sep 16 17:08:32 1983 Controller on host delphi, answer_sock: START TIMING

Sat Sep 16 17:08:39 1989 hendy ANSWER X =
[square(4,2),square(3,4),square(2,1),square(1,3)] Prolog socket 15

Sat Sep 16 17:08:46 1989 path01 ANSWER X =
[square(4,3),square(3,1),square(2,4),square(1,2)] Prolog socket 7

Sat Sep 16 17:08:46 1989 Controller PROBLEM HAS BEEN SOLVED time 13.980

Sat Sep 16 17:08:46 1989 Controller Total Number of Checkins = 0

Appendix 6b-10

Appendix 7a Encodings

7a.1 Regular and Compressed Encodings

Generating regular and compressed encodings can be seen as different methods for locally (for
each set of clauses) balancing binary trees. To be balanced each vertex in the tree must have left
and right subtrees which differ in depth by at most one. An additional property of the compressed
encoding is that a strictly binary tree is formed. A strictly binary tree is a tree (inward branching

factor equal to one) which has vertices with an outward branching factor equal to zero or two.

With a regular encoding each of the n objects is allocated the same number of bits. This means
that all leaf nodes of the binary tree will be located at the same level. Each object (clause in the set)

is encoded with Nog,n1 bits giving an overall total of nllog,n1bits for all n encodings.

L O A D

2 3 4

objects objects objects objects " objects objects objects

Figure 7a.1 CompressedEncodings

Compressed encodings form strictly binary trees. The leaf nodes of these trees must be within
one level of each other. The maximum number of bits needed to encode n objects is I log,n for some
portion of those objects and MNogynl -1 for others. Figu_reA7a.l graphically shows compressed
encodings for from two through eight objects. Each encoding of n objects contains I logond + 1
more bits than the previous encoding (n -1 objects). This gives the following recurrence relation
for the total number of bits needed to encode n objects:

T, =2
T, =T, ,+Tognl+1 ;n>2 [*]

To obtain a closed form, we observe that some number of the n encodings are length T log,n

and some are of length log,n1-1 giving an overall count:

C, = Nrlog,n1 + M(Tlog,n1 - 1)

Appendix 7a-1

7a.2 Induction Proof of Cn

M and N in equation C| = NTlog,nT + M([log,n1 — 1), are found to have the values:

M = oflog,n7 _ n
and
N=n-M

using q to represent log,n1:

C,=(n-M)g+M(gqg-1)
=(n-29+n)g+29-n)(g-1)
=2nq - ¢29+¢29-29 _ng+n

C,=n(g+1)-21

A proof by induction that C_is a closed form of T, follows:
Cy = 2(Tlog,21 + 1) - 208,21
Cyp=2=T,
Assume C,;=(n-1X MNog,(n-1)1+1) - ollog,(n-1)1

So, T, = (n-1)(Tlog,(n-1)1+1) - 2M&@ DT 4 rlog n7 + 1

There are two cases to consider:

I when n # 2™ + 1

By definitionof T , n > 2(see[*])so m >0
Il when n =2+ 1

I For the trivial case wheren = 2™ + 1, logyn = lMogy(n - 1)1.

Using r = llog,n = lNogy(n-1)1
T, =-Dr+1)-2"+r+1
=nr+n-r-1-2"+r+1
T =n(r+1) - 2r whichian

I For the case wheren = 2™ + 1, TogynT = llog,(n-1)1 + 1.

T, = (n-1)(Tlog,(n-1)1 + 1) - 2Mo&,®-DT 4 rlog n7 41
= nllog,(n-1)1 + n - log,(n-1)1-1 -~ gllog,(n-1T 4 MNog,n1+1

Appendix 7a-2

[t]

Since n-1 = 2™, gllog,(n-1)T — glog,(n-1) _ ;4

Tn = n(l'log2n'l -1+ n - (Flog2n1 -1)-1-(n-1) + F10g2n1 +1
=nllognl -n+n-Tlognl+1-1-n+1 + Mog,nl +1
Rearranging:

T, =nllognl+n-n+1-n+1- og,n1 + MMog,n1 -1+ 1

Another formulation of logynT = log,(n-1)T +'1 gives:

2l'log2n1 — zl’log2(n-l)1 +1 2I'10g2(n- D1 9

Since n—1 = 2M08,@-DT oy 1) = glog,nl 4 4.

Tn = nFlog2n1 +n-2n-1) - Flog2n1 + F10g2n1 -1+4+1
T, = n(Tlog,n1 + 1) - 2Mog,n1

" which again is shown to be C and completes the pfoof.

7a.3 Aside

If instead of using a ceiling function as in C, (see[t1), we had used the floor:

using p to represent Llog,nd:

the formula for the number of bits needed to encode n objects would be:
F =n(p+2)-2°*!
Equating these two expressions results in an elegant identity between the floor and ceiling:

n(p+2)-2P*1 = n(g+1)-29
n(p+1)-2°P*1 = ng _ 24

n(p+1-gq) = 2% _ 24

Appendix 7a-3

Appendix 8a All Check-ins

This appendix contains the execution times for numerous runs of the 8-queens problem. The
reassign jobs control strategy was used with a range of check-in intervals from one through an

interval greater than the depth of the 8-queens search space.

Table 8a.1 through Table 8a.8 are the results from setting the initial check-in interval.to the .
values one through eighty. The numbers from one to twenty in the left-hand column are the
number of participating host machines. The numbers within the table are execution times in
seconds for the particular configuration. A zero in the table represents a timing that was

unobtainable for any of the following reasons:

® Not enough host machines were up.
® A Prolog process was killed during execution.

® A host machine crashed (or was rebooted) during processing.

There are fault tolerant mechanisms built into Delphi to handle process or machine crashes.
These were turned off during the benchmarking of this problem. Two reasons are given for this
decision. The first is that the timings should not include the restart of Prolog processes when
machines are rebooted. If a machine has crashed then Delphi will start up a Prolog process on an
alternative host machine. The second reason is a matter of network etiquette. Many of these
timings took place during the working hours of other network users. The major reason that a
Prolog process crashes is that a machine has been rebooted by another user. Apart from this
Prologs only die when a user has specifically killed them. If the Prolog dies and the machine it was
running on is still functioning, Delphi automatically restarts the Prolog on the same host machine.
This can be very annoying to other users who have purposely killed the Prolog processes to run

their own.

Table 8a.9 shows check-in intervals which are much higher than the maximum depth of the 8-
queens search space. What is being demonstrated in this appendix is that control communications
or check-ins are not needed in the 8-queens (nor any of the N-queens) problem. The optimal results
in terms of a low execution time are obtained even when there are no control communications

performed at all.

Appendix 8a-1

8a.1 Check-in Intervals 1 Through 80

1 2 3 4 5 6 | 7 8 9 10
1 8321 3970 2416 1769 1419 1225 1082 955 828 723
2 4217 2041 1268 871 771 683 619 544 463 405
3 2852 1395 865 636) 553 475 417 365 335 288
4 2682 1127 683 501 410 377 310 289 252 223
5 2705 1059 569 427 356 298 276 236 208 205
6 2698 1056 560 381 282 247 234 211 177 157
7 2705 1070 558 368 276 233 212 185 163 165
8 2720 1085 586 380 276 222 187 171 151 140
9 2720 1094 593 386 281 2217 193 169 149 122
10 2730 1111 605 398 294 229 203 173 147 125
11 2754 1110 601 395 304 251 209 172 161 132
12 2756 1129 604 408 296 248 199 180 149 119
13 2774 1147 619 405 304 252 217 176 168 133
14 2782 1132 610 426 313 249 220 196 165 126
15 2784 0 605 440 315 271 221 180 174 1356
16 2788 1147 625 419 328 250 2217 200 170 138
17 2822 1188 636 446 331 266 233 186 181 143
18 2816 1144 634 411 323 267 232 202 170 157
19 2829 1196 644 420 324 271 230 194 171 165
20 2840 1163 638 415 323 269 249 205 190 160

Table 8a.1 Check-in Intervals 1 Through 10

Appendix 8a-2

17

11 12 13 14 15 16 18 19 20
1 655 598 565 537 507 479 454 435 426 405
2 381 341 315 310 309 272 304 297 269 255
3 273 248 228 207 241 189 222 189 234 191
4 222 212 197 173 174 190 181 224 180 196
5 193 162 164 148 160 157 138 147 158 165
6 146 140 129 130 130 130 127 136 127 143
7 129 133 123 121 123 104 132 112 114 100
8 121 111 105 103 95 101 102 81 88 79
9 110 100 98 91 89 81 77 76 69 62
10 113 103 98 88 85 82 67 69 70 63
11 114 112 96 87 83 87 74 68 68 65
12 114 98 96 94 86 83 79 71 74 61
13 123 103 95 93 93 76 78 73 67 63
14 122 116 111 88 86 92 69 65 68 63
15 122 116 108 95 94 80 77 63 68 66
16 130 116 106 91 103 86 79 71 70 60
17 139 120 112 100 99 a0 78 79 69 68
18 0 130 106 104 103 86 83 69 68 58
19 0 114 110 105 a6 92 94 73 88 67
20 0 133 107 101 108 95 89 76 68 66

Table 8a.2 Check-in Intervals 11 Through 20

Appendix 8a-3

21 22 23 24 25 26 27 28 29 30
1 398 388 381 377 369 358 353 345 339 329
2 256 250 236 221 224 219 212 191 201 188
3 172 163 180 237 .186 176 192 250 187 208
4 198 142 238 187 179 206 129 209 212 241
5 182 156 122 149 142 205 258 0 188 128
6 116 130 127 156 120 129 151 0 159 104
7 97 0 90 106 123 120 163 111 86 111
8 82 0 96 72 96 114 75 0 80 70
9 64 0 63 65 74 79 64 0 53 54
10 62 0 61 59 67 57 59 0 54 48
11 64 0 62 62 62 57 63 0 51 41
12 62 0 58 62 50 59 51 67 46 46
13 58 0 66 53 55 49 50 61 50 55
14 61 0 57 60 52 53 48 0 43 43
15 66 0 53 56 53 52 54 0 44 51
16 63 0 56 55 45 53 55 0 45 38
17 61 0 60 55 53 51 49 0 42 51
18 69 0 63 60 51 50 50 0 48 61
19 67 0 66 55 53 50 47 0 44 42
20 58 0 0 0 0] 0 0 0 0

Table 8a.3 Check-in Intervals 21 Through 30

Appendix 8a-4

31 32 33 34 35 36 37 38 39 40
1 323 314 308 304 304 297 203 206 293 293
2 180 177 181 202 175 177 276 - 295 293 294
3 194 174 155 178 189 220 469 547 551 543
4 143 149 135 180 174 323 477 479 478 478
5 112 91 122 119 193 355 395 395 387 398
6 132 133 120 95 210 300 306 303 301 311
7 100 132 77 138 185 217 215 214 216 220
8 70 58 106 98 126 132 134 132 132 132
9 50 64 47 55 61 60 60 60 61 60
10 47 40 62 73 46 44 44 43 43 44
11 71 47 64 46 45 45 45 43 44 47
12 43 42 48 45 43 44 44 45 48 45
13 48 43 43 73 44 43 44 46 53 44
14 62 53 45 48 45 43 44 44 45 50
15 46 54 53 44 44 45 47 47 44 43
16 40 43 53 45 45 44 44 44 45 44
17 44 37 47 36 45 43 45 43 48 45
18 42 41 41 37 44 45 43 45 46 45
19 46 41 36 36 45 44 43 43 53 45
20 0 0 0 0 0 0 0 0 0 0

Table 8a.4 Check-in Intervals 31 Through 40

Appendix 8a-5

41 42 43 44 45 46 47 48 49 50
1 292 294 293 293 297 292 292 292 292 292
2 294 299 293 294 294 293 293 292 292 292
3 556 558 553 554 547 558 553 556 552 548
4 480 478 484 460 477 483 477 481 478 478
5 394 393 393 410 281 346 392 395 393 392
6 361 171 222 272 316 272 303 305 305 302
7 214 216 117 215 278 142 183 215 174 215
8 133 87 118 92 139 133 119 131 104 136
9 60 76 74 76 88 81 60 63 76 62
10 85 76 57 76 74 64 82 47 72 53
11 87 77 68 76 80 61 46 54 44 48
12 50 51 44 55 72 47 60 45 43 56
13 48 60 60 47 80 44 48 47 45 44
14 44 51 67 46 52 43 44 44 43 44
15 50 50 43 44 45 63 52 44 58 43
16 54 50 45 49 57 44 48 43 43 46
17 46 46 45 69 0 0 46 0 44 73
18 46 45 43 49 0 0 45 0 43 44
19 44 50 44 0 0 0 43 60 43 44
20]] 0 0 0] 0] 0 0

Table 8a.5 Check-in Intervals 41 Through 50 -

Appendix 8a-6

51 52 53 54 55 56 57 . 58 59 60
1 292 292 292 292 203 292 292 293 298 292
2 296 293 294 294 293 293 293 294 298 293
3 552 549 551 551 548 549 550 554 550 551
4 479 472 476 478 471 480 473 481 470 476
5 393 390 388 392 391 392 390 302 388 397
6 304 303 301 305 305 304 304 302 304 391
7 215 214 216 216 214 217 214 222 120 2217
8 131 93 130 131 130 130 131 181 130 149
9 61 74 60 60 61 61 74 74 61 76
10 60 43 43 44 43 43 60 60 45 75
11 44 65 44 44 44 44 45 46 43 44
12 43 44 44 44 43 44 51 48 50 49
13 43 43 43 43 43 43 44 44 44 47 .
14 44 43 43 44 42 44 44 43 43 43
15 43 66 43 44 43 43 44 47 51 48
16 45 59 43 43 44 44 44 43 43 43
17 43 43 43 43 44 45 61 48 43 46
18 67 44 43 43 44 44 46 43 43 47
19 67 44 43 43 43 43 45 43 49 44
20 0 0 0 0 0 0 0 0 0 0

Table 8a.6_ Check-in Intervals 51 Through 60

Appendix 8a-7

61 62 63 64 65 66 67 68 69 70
1 292 293 292 293 293 292 293 292 293 292
2 294 294 203 295 293 293 293 296 293 293
3 552 546 550 547 546 543 546 543 548 545
4 477 478 476 472 474 472 473 474 476 471
5 389 389 390 397 386 387 392 389 391 391
6 217 302 298 304 300 306 302 302 301 305
7 214 214 213 214 214 - 218 11 216 214 214
8 129 130 86 87 131 131 131 132 131 131
9 61 61 61 60 61 61 80 61 60 60
10 61 43 60 44 43 43 44 44 45 43
11 52 44 44 43 44 44 44 43 44 43
12 45 44 69 0 43 44 43 44 44 43
13 46 43 44 70 43 44 43 44 43 44
14 51 44 43 43 43 43 44 43 44 43
15 51 53 43 42 44 44 43 43 43 43
16 52 44 60 43 43 43 43 43 44 43
17 44 43 43 43 43 48 43 43 44 43
18 43 43 47 44 43 48 43 43 43 44
19 45 44 48 43 43 44 43 43 44 44
20 0 0 0 0 0 0 0 0 0 0

Table 8a.7 Check-in Intervals 61 Through 70

Appendix 8a-8

71 72 73 74 75 7% | 77 78 79 80

1 292 291 292 292 296 287 325 201 286 290

2 204 294 294 295 293 288 289 288 286 287

3 549 556 549 548 550 264 259 262 259 261

4 478 482 481 473 476 227 228 277 224 228

5 391 394 400 391 391 192 289 285 280 187

6 303 302 172 302 156 219 165 212 143 205

7 213 217 217 217 215 115. 202 175 174 105

8 132 131 132 131 132 66 94 108 107 77

9 61 61 61 60 61 63 74 66 65 43

10 43 43 61 44 44 112 66 64 64 57
11 43 43 48 43 50 46 66 62 59 43
12 43 43 43 43 44 50 67 49 59 57
13 43 43 62 43 44 44 64 50 49 43
14 43 44 53 43 44 47 54 46 45 45
15 43 43 50 43 43 49 53 49 44 44
16 44 44 53 43 43 45 48 49 50 47
17 43 43 43 45 44 44 45 49 43 46
18 44 45 45 43 43 42 43 44 44 43
19 43 43 43 43 43 44 44 50 43 44
20 0 0 0 0 0 42 44 43 43 42

Table 8a.8 Check-in Intervals 71 Through 80

Appendix 8a-9

8a.2 Check-in Interval 81 and Selected Others

81 - 82 83 90 100 1000 | 10000
1 289 286 289 287 296 288 288
2 288 289 286 287 289 286 288
3 261 261 261 262 262 264 259
4 227 230 226 229 225 232 228
5 213 176 . 171 197 187 206 182
6 170 160 164 182 141 172 165
7 110 115 110 96 101 127 102
8 61 62 64 46 62 72 64
9 49 62 49 42 43 63 54
10 50 51 49 44 44 41 51
11 44 41 44 45 42 44 44
12 44 44 42 45 43 43 45
13 42 42 41 45 41 44 44
14 42 1 44 42 42 44 42
15 43 42 42 42 41 44 41
16 42 42 44 42 43 42 41
17 42 43 41 41 42 41 41
18 42 43 43 | 42 43 41 43
19 43 42 41 43 42 41 44
20 42 41 42 42 43 42 41

Table 8a.9 Check-in Interval 81 and Selected Others

Appendix 8a-10

Appendix 8b ’Programs

8b.1 Prolog Top Level

The following code is the Prolog top level which each Path Processor runs. This code is shown
to explain why no write statements are included in any of the source Prolog programs. The reason
is that this top-level code automatically prints solutions both to the global log file (via an answer
buffer) and to the local log file. The time taken to print all solutions to a query is included in the

execution times shown within this dissertation.

/* This is the top-level read-eval-print loop for backtracking Delphi control strategies*/

mytop :-
repeat,
$run_type(Run), $newgoal(Run),
read(X, Vvars),
$rerun_goal(Run, X, Vars).

$run_type(test).
$newgoal(test) :-~ writename('Newgoal Please ? -').

$do_proc(X,[]) :- !,$do_call(X),!,
writename(yes),nl,fail,

/* The following is the second clause of do_proc if you want
to allow backtracking to take place.*/
$do_proc(X,vars) :- $do_call(X),
$printans_toboth(vars),fail.

/* $no_more_ans fails with any character except a line feed. When
it fails, more answers are attempted. If it succeeds, no more
answers are attempted.*/

$no_more_ans :- get0(10),!.

$no_more_ans :- $no_more_ans,fail.

$do_call(X) :- call(X).
$do_call(_) :- fail.

$rerun_goal(test, X, Vars) :- $do_proc(X,Vars),
$rerun_goal(test, X, Vars) :-

orc_rerun_goal, !,

$rerun_goal(test, X, Vvars).

$printans_tobuf([]) :- done_answer_tobuf, |.
$printans_tobuf([=(Name, Val)|Tail]) :-
writename_tobuf(' '), writename_tobuf(Name),
writename_tobuf(' = '),
write_tobuf(Val),
$printans_tobuf(Tail), !.

$printans_toboth([]) :- done_answer_tobuf, !.

$printans_toboth([=(Name, Val)|Tail]) :-
n1,writename_tobuf(' '),writename(Name),writename_tobuf(Name),
writename(' = '),writename_tobuf(' = '),
write(Val),write_tobuf(Vval),
$printans_toboth(Tail), !.

Appendix 8b-1

8b.2 N-Queens Source

The N-queens problem is to place N queens on an NxN chess board so that no two queens are

attacking each other. The N-queens queries attempted were the following:

problem name goal query comments

This query was not used in benchmarking any
2-queens get_solutions(2,X). implementation of the Delphi machine. It was used to
test some of the tools associated with Delphi

This query was not used in benchmarking any
3-queens get_solutions(3,X). implementation of the Delphi machine. It was used to
test some of the tools associated with Delphi

4-queens : get_solutions(4,X). This query Wfis mainly used for testing the A‘moeba-
‘ transactions-under-UNIX implementation

8-queens get_solutions(8,X).

9-queens get_solutions(9,X).

10-queens get_solutions(10,X).
get_solutions(Board_size, Soln) :- solve(Board_size, [], Soln).

solve(Bs, [square(Bs, Y) | L], [square(Bs, Y) | L]).
solve(Board_size,.Initial, Final) :-
newsquare(ln1t1a1 Next, Board_size),
solve(Board_size, [Next | Initial], Final).

newsquare([square(I,J) | Rest], square(X, Y), Boardsize)
I < Boardsize, X 1s I +1, snint(Y, Boardsize),

notthreatened(I, J, X, Y), safe(X, Y, Rest).
newsquare([], square(1, X) Boardsize) i- snint(x, Boardsize).
snint(X, X). :
snint(N, NPlusOneOrMore) :- M is NPlusOneOrMore - 1, M > 0,

snint(N,M).
notthreatened(I, J, X, Y) := I \== X, J \==Y,

Ul is I - J, V1 is X - Y, Ul \== V1,

U2 is I +J, V2 is X + Y, U2 \== V2.

safe(X, Y,
safe(X, Y, [square(I J) | L]) :
notthreatened(l, J, X, Y), safe(X, Y, L).

Appendix 8b-2

8b.3 Pentominoes Source

The pentominoes problem is a shape fitting problem. Twelve shapes have to be arranged on a
board so that the board is covered and all shapes are used exactly once. The name comes from the
fact that the shapes are made up of five identical squares. There are twelve unique ways to arrange
the five squares. Each of these arrangements is called a pentomino. In this problem, the board is
size 3x20. The source for this program was adapted from Lusk, Overbeek et. al. [1987]. The query

for this problem was the following:

problem name goal query
pentominoes solution(Soln).
solution(H) :-

initial_state(S1i),
can_reach(Si,Sf),
final_state(Sf),

Sf = state(_,_,H).

initial_state(state(Board,[1,2,3,4,5,6,7,8,9,10,11,12],[])) :-
gen_board(20,Board).

gen_board(0,[]).
gen_board(N,[no_piece,no_piece,no_piece,border|T]) :-
N> o,
I is (N - 1),
gen_board(I,T).

final_state(state(_,[],_)).

can_reach(S1,S2) :-
trans(S1,S),
S = 82,
can_reach(S1,82) :-
trans(S1,S),
can_reach(S,S2).

trans(State,New_State) :-
State = state(Board,Pieces,History),
delete(Piece,Pieces,New_Pieces),
pent(Piece,Orientation,Pattern),
play_pent(Board,Pattern,New_Board),
New_State = state(New_Board,New Pieces,
" [[Piece,Orientation] | History]).

delete(X,[X]Y],Y).
delete(X,[Y|z], [Y|Z1]) :- delete(X,Z,Z1).

play_pent(Board,Pattern,New_Board) :-
match(Board,Pattern,Boardl),
trim(Board1,New_Board).

trim({1,[]). ‘
trim([border|T],Board) :~ trim(T,Board).
trim([piece|T],Board) :- trim(T,Board).
trim(Board,Board) :- Board = [no_piece|].

Appendix 8b-3

match(Board,[],Board).

match([piece|Tb],[dnm|Tp],[piece|Tnb]) :-
match(Tb,Tp,Tnb).

match([piece|Tb],[op|Tp],[piece|Tnb]) :-
match(Tb,Tp,Tnb).

match([no_piece|Tbh],[np|Tp],[piece|Tnb]) :-
match(Tb,Tp,Tnb).

match([no_piece]Tb],[dnm]Tp],[no_piece[Tnb]) -
match(Tb,Tp,Tnb).

match([border|Tb],[dnm|Tp],[border|Tnb]) :-
match(Tb,Tp,Tnb).

pent(1,1,[np,np,np,dnm,np,dnm,np]).
pent(1,2,[np,op,np,dnm,np,np,np]).
pent(1,3,[np,np,dnm,dnm,np,dnm,dnm,dnm,np,np]).
pent(1,4,[np,np,dnm,dnm,dnm,np,dnm,dnm,np,np]).

pent(2,1,[np,op,dnm,np,np,np,dnm,dnm,np]).

pent(3,1,[np.np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).
pent(3,2,[np,np,np,dnm,np,dnm,dnm,dnm,np]).
pent(3,3,[np,dnm,op,op,np,dnm,np,np,np]).
pent(3,4,[np,op,op,dnm,np,op,op,dnm,np,np,np]).

pent(4,1,[np,op,dnm,op,np,op,dnm,np,np,np]).
pent(4,2,[np,op,op,dnm,np,np,np,dnm,np]).
pent(4,3,[np,dnm,np,np,np,dnm,dnm,dnm,np]).
pent(4,4,[np,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(5,1,[np,np,dnm,np,np,np]).
pent(5,2,[np,np,dnm,dnm,np,np,dnm,dnm,np]).
pent(5,3,[np,np,op,dnm,np,np,np]).
pent(5,4,[np,np,dnm,dnm,np,np,dnm,dnm,dnm,np]).
pent(6,5,[np,np,np,dnm,np,np]).
pent(5,6,[np,np,np,dnm,dnm,np,np]).
pent(5,7,[np,dnm,dnm,dnm,np,np,dnm,dnm,np,np]).
pent(5,8,[np,dnm,dnm,np,np,dnm,dnm,np,np]).

pent(6,1,[np,dnm,op,np,np,dnm,np,np]).
pent(6,2,[np,op,op,dnm,np,np,op,dnm,dnm,np,np]).
pent(6,3,[np,np,op,dnm,dnm,np,np,dnm,dnm,dnm,np]).
pent(6,4,[np,np,dnm,np,np,dnm,dnm,np}).

pent(7,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,np,np]).
pent(7,2,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np]).
pent(7,3,[np,np,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).
pent(7,4,[np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(8,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np,dnm,dnm,np]).
pent(B,Z,[np,dnm,dnm,dnm,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).
pent(8,3,[np,dnm,dnm,dnm,np,dnm,dnm,np,np,dnm,dnm,dnm,np]).
pent(8,4,[np,dnm,dnm,np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(9,1,[np,np,op,dnm,dnm,np,np,dnm,dnm,np]).
pent(9,2,[np,dnm,np,np,np,dam,dnm,np]).
pent(9,3,[np,op,op,dnm,np,np,np,dnm,dnm,np]).
pent(8,4,[np,np,dnm,np,np,dnm,dnm,dnm,np]).
pent(9,5,[np,op,dnm,np,np,op,dnm,dnm,np,np]).
pent(9,6,[np,op,dnm,op,np,np,dnm,np,np]).
pent(9,7,[np,op,dnm,np,np,np,dnm,dnm,dnm,np]).
pent(9,8,[np,op,dnm,np,np,np,dnm,np]).

pent(10,1,[np,np,dnm,op,np,dnm,dnm,np,np]).
pent(10,2,[np,np,op,dnm,dnm,np,op,dnm,dnm,np,np]).
pent(10,3,[np,op,op,dnm,np,np,np,dnm,dnm,dnm,np]).
pent(10,4,[np,dnm,np,np,np,dnm,np]).

pent(11,1,[np,dnm,dnm,dnm,np,dnm,dnm,np,np,dnm,dnm,np]).
pent(11,2,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,np,dnm,dnm,dnm,np]).
pent(11,3,[np,dnm,dnm,dnm,np,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).
pent(11,4,[np,dnm,dnm,np,np,dnm,dnm,np,dnm,dnm,dnm,np]).

pent(12,1,[np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np,dnm,dnm,dnm,np]).

Appendix 8b-4

8b.4 Parser Source

The parser problem is a simplified version of a program written by Bob Moore of SRI
International. It was adapted for use in this research by the authors of Alshawi and Moran [1988]
of SRI International at the Cambridge Computer Science Research Centre, Cémbridge, England.
This problem is similar to the one investigated by Alshawi and Moran in their Delphi research
[1988]. The problem is to parse natural language sentences presented as a list of words. For a more

detailed description of the parser see Alshawi and Moran [1988]. The parser queries attempted

were the following:

problem name goal query comments

parse([wren,built,a,chapel,

parser-2 in,a,college, The parser problems are named by the
in,a,college], number of in,a,college sequences
Output). contained in the query.

parse([wren,built,a,chapel,
in,a,college,
in,a,college,
in,a,college],
Output).

The parser-3 query includes three
in,a,college sequences

parser-3

parse([wren,built,a,chapel,
in,a,college,
parser-4 in,a,college,
in,a,college,
in,a,college],
Output).

The parser-4 query includes four
in,a,college sequences

% start

parse(Input,StartCat) :-
start_cat(StartCat),
shift_reduce(sigma,[StartCat],[],Input).

% done

shift_reduce(sigma,[],[],[]).

% reduce

shift_reduce(Goal,[],stack(Goall,Firstl,Rest1,Stackl),Input) :-
predict_match(Goal,Goal1,Firstl,Rest1,Stack1,Input).

Appendix 8b-5

% shift

shift_reduce(Goa],[ListFirstlListRest],Stack,[InputFirst]InputRest]) 1=
cat(InputFirst,Constituent),
%N.B. removed from parser
%%%can_start(Constituent,ListFirst),
predictmmatch(Constituent,GoaT,ListFirst,ListRest,Stack,InputRest).

% shift gap

shift_reduce(Goal,[ListFirst|ListRest],Stack,Input) :-
gap_can_start(ListFirst,Constituent),
predict_match(Constituent,Goa],ListFirst,ListRest,Stack,Input).

% match

predict_match(Constituent,Goa],Constituent,Rest,Stack,Input) H
shift_reduce(Goal,Rest,Stack,Input).

% predict

predict_match(Constituent,Goal,First,Rest,Stack,Input) :-
rule_can_start(Constituent,First,Goall,List1),
shift*reduce(Goa11,List1,stack(Goa],First,Rest,Stack),Input).

rule_can_start(Constituent,First,Goall,List1) :-

rule(Goall,[Constituent|List1]),
can_start(Goall,First).

start_cat(s(syn(tnsd,[1,[1,_.[1.[1),_)).

can_start(vp(A,B),vp(C,D)).

can_start(vp(syn(A,1ng,B,C,y,D,n,E,F,G),H),pred(syn(I,J,K,L,M,N,O,P),Q)).
can_start(vp(syn(A,passive,B,C,y,D,y,E,F,G),H),pred(syn(l,J,K,L,M,N,O,P),Q)).
can_start(np(A,B),np(C,D)).
can_start(np(syn(A,[],[],B,C,n,D,[],[],n),E),s(syn(tnsd,F,G,dec1,H,I),J)).
can_start(np(syn(A,[],[],B,C,n,D,[],[1,n),E),rel(syn(F),G)).
can_start(np(syn(A,[],[],B,C,n,D,[],[],q),E),s(syn(tnsd,F,F,whq,G,G),H)).
can_start(np(syn(A,[]1,[1,8,C,n,D,[1,[],r),E),rel(syn(F),G)).

can_start(s(A,B),s(C,D)).
can_start(s(syn(tnsd,[np(syn(A,[],[],B,C,n,y,[],[],n),D)],[],dec1,[],[g]),E),re](syn(F),G)).

can_start(aux(A,B),aux(C,D)).
can_start(aux(syn(A,tnsd,B,C,D),E),s(syn(tnsd,F,G,ynq,H,I),J)).
can_start(aux(syn(A,B,C,D,E),F),vp(syn(G,H,I,J,n,K,n,L,M,N),0)).
can_start(pred(A,B),pred(C,D)).

can_start(be(A,B),be(C,D)).

can_start(be(syn(A,tnsd,B,C),D),s(syn(tnsd,E,F,ynq,G,H),I)).
can_start(be(syn(A,B,C,D),E),vp(syn(F,G,H,I,n,J,n,K,L,M),N))
can_start(be(syn(A,B,C,D),E),vp(syn(F,G,H,I,y,J,n,K,L,M),N))
can_start(pp(A,B),pp(C,D)).
can_start(pp(syn(n,[],[],A,n,[],[],q);B),s(syn(tnsd,C,C,whq,D,D),E)).
can_start(pp(syn(n,A,B,C,n, ,E,n),F),pred(syn(G,H,I,J3,K,y,L,M),N)).
can_start(pp(syn(n,[1,[1,A,n,[],[],r),B),rel(syn(C),D)).
can_start(v(A,B),v(C,D)).
can_start(v(syn(A,B,C,D,np_pp,E),F),vp(syn(G.H,I,J,y,K,L,M,N,O),P)),
can_start(v(syn(A,B,C,D,np_np,E),F),vp(syn(G,H,I,J,y,K,L,M,N,O),P)).
can_start(v(syn(A,B,C,D,trans,E),F),vp(syn(G,H,I,J,y,K,L,M,N,O),P)).
can_start(v(syn(A,B,C,D,1ntrans,E),F),vp(syn(G,H,I,I,y,J,n,K,L,L),M)).
can_start(adjp(A,B),adjp(C,D)).
can_start(adjp(syn(A,B,C,D),E),pred(syn(F,6,H,1,J,y,K,L),M)).
can_start(adjp(syn([1,[1.[],[1),A),nbar(syn(B,C,D),E)).
can_start(adjp(syn([],[],[],[]),A),np(syn(n,B,B,y,sing,n,y,C,C,n),D)).
can_start(adjp(syn([],[],[],[]),A),np(syn(n,B,B,n,p]ur,n,n,C,C,n),D)).
can_start(n(A,B),n(C,D)).
can_start(n(syn(A,B,C,D),E),nbar(syn(F,G,H),I)).
can_start(n(syn(A,B,C,y),D),name(syn(E,F,G),H)).
can_start(n(syn(A,B,C,y),D),np(syn(n,E,E,F,G,n,H,I,I,n),J)).
can_start(nbar(A,B),nbar(C,D)).
can_start(nbar(syn(y,sing,y),A),np(syn(n,B,B,y,sing,n,y,C,C,n),D)).
can_start(nbar(syn(n,plur,n),A),ap(syn(n,8,B,n,plur,n,n,C,C,n}),D)).

can_start(rel(A,B),rel(C,D)).

Appendix 8b-6

can_start(name(A,B),name(C,D)).
can_start(name(syn(A,B,C),D),np(syn(n,E,E,F,G,n,H,1,I,n),d)).
can_start(pro(A,B), pro(C D)).
can_start(pro(syn(A,B,C,D),E),np(syn(F,6,G,H,I,n,J,K,K, L),M)).
can_start(det(A,B), det(C D)).
can_start(det(syn(A,B,C,B),E),np(syn(n,F,F,G,H,n,1,J,3,K), L)).
can_start(poss(A,B), poss(C D)).

can_start(p(A,B),p(C,D)).
can_start(p(syn(A),B),pp(syn(C,D,E,F,G,H,I,J),K)).
can_start(adj(A,B),adj(C,D)).
can_start(adj(syn,A),adjp(syn([1.[1,[1,[]).B)).

rule(s(syn(tnsd,A,B,dec1,C,D),E),[np(syn(F,[], [1,6,H,n,1,[],[],n),d),vp(syn(F,tnsd,A,B,K,H,n,I

,C,D),L)]).

ru1e(s(syn(tnsd,A,B,ynq, ,D),E),[aux(syn(F,tnsd,G,H,I), J),np(syn(F,[],[],K,6,n,I,[]1,[],n),L),v
p(syn(M,H,A,B,N,O,n,n,C,D),P)]

rule(s(syn(tnsd,A,B,ynq,C,D), E),[be(syn(F,tnsd,G,H),I),np(syn(F,[],[],J,G,n,H,[],[],n),K),pred
(syn(L,M,A,B,N,y,C,D),0)]).

rule(s(syn(tnsd,A,B,ynq,C,D),E),[be(syn(F,tnsd,G,H),I), np(syn(F,[1,[]1,3,6,n,H,[],[].n),K),np(s
yn(L,A,B,M,N,n,0,C,D,n),P)]).

rule(s(syn(tnsd,A,A,whq,B,B),C), [np(syn(D [1.[1.E,F,n,G,[1,[1.q),H),s(syn(tnsd,[np(syn(I,[],[]
S%SF’nlyl[]1[]’n)’K)]'[]'ynq [] [])
rule(s(syn(tnsd,A,A,whq,B,B),C),[pp(syn(n,[1,[1.0,n,[1,01,q),E),s(syn(tnsd,[pp(syn(n,[],[],D,n
:[1,[1,n),F)],[],ynq,[1.[g]),6)]).

ru1e(s(syn(tnsd,A,A,whq,B,B),C),[np(syn(D (1.01,E,F,n,G,[1,[]1.q),H),vp(syn(D,tnsd,[1,[1.I,F,n,
G,[’ 1'J

ru12(5325y333,8 ¢,D,n,E,n,F,6,H),I),[aux(syn(A,B,E,J,F),K),vp(syn(L,J,C,D,M,N,n,n,G, H),0)]1).
ru1e(vp(syn(A,B,C,D,n,E,n,F,G,H),I),[be(syn(A B,E,F),Jd),pred(syn(K,L, C D,M,y,G,H), N)})
rule(vp(syn(A,B,C,D,y,E,n,F,G,H),I),[be(syn(A,B,E,F),d), np(syn(k,C, D,L,M n,N, G,H,n) 0)]).
rule(vp(syn(A,B,C,D,y,E,F,G,H,1),d),[v(syn(A,B,K, E ,np_pp,G),L), np(syn(M c,N,0,P,F,Q,H,R,n),S),
pp(syn(n,N,D,K,n,R,I,n),T)]).
rule(vp(syn(A,8,C,D,y,E,F,6,H,1),d),[v(syn(A,B,K,E,np_np,G),L),np(syn(M,[]1,[1.N,0,F,P,[1,[1,n)
,Q),np(syn(R,C,D,S,T,n, U,H,I,n), 3.

rule(vp(syn(A,B,C,D,y,E,F,G,H,I),J),[v(syn(A,B,K,E,trans, G),L),np(syn(M,C,D,N,0,F,P,H,1I,n),Q)]
).

rule(vp(syn(A,B,C,C,y,D,n,E,F,F),G),[v(syn(A,B,H,D,intrans,E),I)]1).

rule(vp(syn(A,B,C,D,y, ,F,G H,)»J),[vp(syn(A,B,C,K,y,E,F,G,H,L),M),pp(syn(n,K,D,N,n,L,I, n),0)
.

rule(pred(syn(A,B,C,D,E,F,G,H),I),[vp(syn(A,ing,C,D,y,E,n,F, G,H),3)]).
rule(pred(syn(A,B,C,D,E,F,G,H),I),[vp(syn(A,passive,C,D ,¥,E,y,F,G,H),J3)]).
rule(pred(syn(A,B,C,D,E,y,F,G),H),[adjp(syn(C,D,F,6),I)]).
rule(pred(syn(A,B,C,D,E,y,F,G),H),[pp(syn(n,C,D,I,n,F ,G,n),3)71).
rule(nbar(syn(A,B,C),D),[n(syn(E,A,B,C),F)]).
rule(nbar(syn(A,B,C),D),[adjp(syn([1,[1,[1,[1),E),nbar(syn(A,B,C),F)7).
rule(nbar(syn(A,B,C),D),[nbar(syn(A,B,C),E),pred(syn(F,G,[], [(1.H,y.[1.[D).DD).
rule(nbar(syn(A,B,C),D),[nbar(syn(A,B,C),E),rel(syn(B), F)])
rule(np(syn(n,A,A,B,C,n,D,E,E,n),F), [name(syn(G C,D),H)]).
rule(np(syn(A,8,8B,C,D,n,E,F,F,G),H),[pro(syn(A,D, E ,6),I)]).

ru]e(np(syn(n,A,A,B,C,n,D,E,E F).6),[det(syn(B,C,D,F),H),nbar(syn(B,C,D),I)]).
rule(det(syn(A,B,C,q),D),[how,det(syn(A,B,C,n), E)])

ru1e(np(syn(n,A,A,y,sing,n,y,B B,n),C), [nbar(syn(y sing,y),D)]).
rule(np(syn(n,A,A,n,plur,n,n,B,B,n),C),[nbar(syn(n,plur, n),D)]).
ru]e(np(syn(n,A,A,B,C,n,D,E,E,),G) [np(syn(H,[1.[1,1,d,n,y,[1.[]1.F),K),poss(syn,L),nbar(syn(B
,C,D),M)])-

rule(np(syn(A,[np(syn(B,[1,[1,C,D,n,y,[1,[1.n),E)|F1,F,6,0,n,y,H,[g[H].n),1),[]).
ru1e(np(syn(A,B,B,C,D,y,y,E,E,n),F),[])
rule(pp(syn(n,[pp(syn(n,[1,[1,A,n,[1,0],n),B)|C],C,A,n,D,[g|D],n),E),[]).
rule(pp(syn(A,B,C,D,E,F,G,H),I),[p(syn(D),d), np(syn(K B, C L,M,E,N,F,G,H),0)]).
Pu1e(ade(Syn([],[],[],[]).A),[adJ(Syn,B)])
rule(rel(syn(A),B),[np(syn(C,[1,[1,0,A,n,E,[1,[1.r),F),vp(syn(C,tnsd,[1,[1,6,A,n,E,[1.[1),H)])
rute(rel(syn(A),B),[np(s yn(C [1.[1.0,E,n,y,[1,[1.r),F),s(syn(tnsd,[np(syn(G,[],[1,H,A,n,y,[],[
1,n),1)1,[1,dec1,[1,[9]),3)]).

rule(rel(syn(A),B); Lep(syn(n,[]1,[1,C,n,[1,[]1,r),D),s(syn(tnsd,[pp(syn(n,[1,[1,C,n,[1.[],n),E)]
»[1,decl,[1,[g]),F)]).

Pu19(re1(syn(A),B),ES(Syn(tnsd [np(syn(C,[1,[]1,D,E,n,y, [] [1.,n),F)],[],dec,[1,[91),6)]).
rule(n(syn(A,B,C,D},E),[n(syn(F,G,H,y),I), n(syn(A J C,D),K)]).

rule(name(syn(A,B,C), D),[name(syn(E F,y),G), name(syn(A B, C) H)}1).
rule(name(syn(A,B,C),D),[name(syn(E,F,y),6),n{syn(A,H,B C) I)7).
rule(name(syn(A,B,C),D),[n(syn(E,F,G, y) H),name(syn(A,B,C),I)]).

Appendix 8b-7

gap_can_start(np(A,B),np(syn(C,[np(syn(D,[1,[]1,E,F,n,y,[1,[1,n),6)|H]I,H,I,F,n,y,3,[g|d],n),K))

éap_can_start(np(A,B),np(syn(C,D,D,E,F,y,y,G,G,n),H)).
*gap_can_start(pp(A,B),pp(syn(n,[pp(syn(n,[],[]1,C,n,[],[1,n),D)]E

gap_can_start(pred(ﬁyn(A.B.C,D,E,y,F,G).H),pp(syn(n.[pp(syn(n,[ﬂ,%j,

»[glL],n),M)).

cat(wren,name(syn(A,sing,y),sem)).
cat(build,v(syn(A,B,C,D,trans,n),sem(E,F,G,H))).
cat(built,v(syn(A,tnsd,B,C,trans,D),sem(E,F,G,H))).
cat(built,v(syn(I,en,Jd,K,trans,L),sem(M,N,0,P))).
cat(built,v(syn(Q,passive,R,S,trans,T),sem(U,V,W,X))).
cat(a,det(syn(n,sing,y,n),sem(A,B,C))).
cat(chapel,n(syn(A,B,sing,y),sem)).
cat(college,n(syn(A,B,sing,y),sem)).
cat(in,p(syn(in),sem)).
cat(which,pro(syn(n,A,B,q),sem(C,D))).
cat(which,pro(syn(E,F,B,r),sem(G,H))).
cat(which,det(syn(I,J,K,q),sem(L,M,N))).
cat(did,aux(syn(A,tnsd,B,inf,C),sem(D,E))).
cat(did,v(syn(F,tnsd,G,H,trans;1),sem(J,K,L,M))).
cat(lives,v(syn(A,tnsd,B,sing,intrans,y),sem(C,D,E,F))).

Appendix 8b-8

E,C,n
I,n,

8b.5 Adder Sourcve

The adder problem is one of a number of possible queries to a program designed to determine
the signal flow through a MOS transistor net. The circuit in this case is a full adder. The method
and a description of other signal flow analyses performed by this program are described in Clocksin
and Leeser [1986]. This program was adapted for use in this research by the authors of Clocksin
and Leeser [1986]. The query for this problem was the following:

problem name goal query
adder tdir(adder(A,B,C,D,E),X,Y)
transdir(_,_,_,_,out,in,right).

transdir(_, ,_,_,in,out,left).

tdir(Ckt,P,Dir) :-
ckt_lookup(Ckt,Clist,Body,Tlistl,_),
prim_elem(Body,Flat_body,T1istl,Tlist),
trydir(Clist,Flat_body,P,T1ist,Dir).

trydir([Name|Ports],Body,PTist,T1ist1,Tlist) :-
rmv_png(Body,PNG,Rest),
setdir(Rest,Ports,PNG,[],P1ist,[],Intlist,T1ist1,T1ist2),
flatten(T1ist2,T1ist),

valid(Intiist,PNG).
rmv_png([1,[1,[1).
rmv_png([pwr(X)|T],[X|PGlist],Rest) :- rmv_png(T,PGlist,Rest).
rmv_png([gnd(X)|T],[X|PGlist],Rest) :~ rmv_png(T,PGlist,Rest).
rmv_png([clock(X)[T],[X|PGTist],Rest) :- rmv_png(T,PGlist,Rest).
rmv_png([H|T],PGlist,[H]|Rest]) :- functor(H,trans,), rmv_png(T,PGlist,Rest).

setdir([],_,_,P,P,I,I,T,T).

setdir([H|T],Ports,PNG,P1,P2,11,12,T1,T2) :-
adj_elems(H,Ports,PNG,P1,P3,11,13),
setdir(7,Ports,PNG,P3,P2,13,12,T1,T2).

adj_elems(trans(_,A,8,C,D),Ports,PNG,P1,P2,11,12) :-
strict_member(B,PNG),
transdir(_,A,B,C,out,Y,D),
add_elem(Ports,A,out,P1,P3,11,13),
add_elem(Ports,B,out,P3,P4,13,14),
add_elem(Ports,C,Y,P4,P2,14,12).

adj_elems(trans(_,A,B,C,D),Ports,PNG,P1,P2,11,12) :-
strict_member(C,PNG),
transdir(_,A,B,C,X,0ut,D),
add_elem({Ports,A,out,P1,P3,11,13),
add_elem(Ports,B,X,P3,P4,13,14),
add_elem(Ports,C,out,P4,P2,14,12).

adj_elems(trans(_,A,B,C,D),Ports,PNG,P1,P2,11,12) :-
not_strict_member(B,PNG),
not_strict_member(C,PNG),
transdir(_,A,B,C,X,Y,D),
add_elem(Ports,A,out,P1,P3,11,13),
add_elem(Ports,B,X,P3,P4,13,14),
add_elem(Ports,C,Y,P4,P2,14,12).

Appendix 8b-9

add_elem(Ports,A,B,P1,P2,L,L) :- strict_member(A,Ports),
elem(A,B,P1,P2).

add_elem(Ports,A,B,L,L,11,12) :- not_strict_member(A,Ports),
etem(A,B,I1,12).

not_strict_member(_,[]).

not_strict_member(X, [Y|T]) :- X \== Y, not_strict_member(X,T).

elem(A,B,[],[[A,B]]).

elem(A,B,[[H|T1]|T],[[H, BITL]|T]) : ==H

elem(A,B,[[H|T]|T1],[[H|T]IT2]) : \== A, elem(A,B,T1,T72).

/*

e]em(A B,[[H|T1],L[HIT], [A,B]]) :- H \== A,

valid([],_).

valid({[H|T1]|T2],PNG) :- strict_member(H,PNG),
all_outs(T1),valid(T2,PNG).

valid([[H|T1]|T2],PNG) :- Tegal_list(T1), valid(T2,PNG).

legal_list([in|L]) :- member(out,L).
tegal_list([out|L]) :~ member(in,L).

all_outs([]).
all_outs([out|T]) :- all_outs(T).

all_ins([]1).
all_ins([in]T]) :- all-ins(T).

ckt_lookup(Ckt,Clist,Body,T1ist,Siglist) :-
module((Ckt :- B),Tlist,Siglist),
listify(B,Body),
shape(Ckt,Clist).

prim_comps(Circuit,CL,T1ist1,T1ist2) :-
ckt_lookup(Circuit,_,Body,Tlist,_),
prim_elem(Body,CL,TTist,T1ist3),
append(T1ist1,T1ist3,Tlist2).

prim_elem([],[],L,L).

prim_elem([pwr(P)|T],[pwr(P)|L],L1,L2) :~ prim_elem(T,L,L1,L2).
prim_elem([{gnd(G)|T],[gnd(G)|L],L1,L2) :- prim_elem(T,L,L1,L2).

prim_elem([H|T],[H|L],L1,[X|L2])
primmod(H),
transdir(H,X),
prim_elem(T,L,L1,L2).
prim elem([H|T],CL,L1,L2) :-
functor(H,Prin,_),
Prin \== 'pwr', Prin \== 'gnd', Prin \== 'trans',
prim_comps(H,Sub1,L1,L3),
prim_elem(T,L,L3,L2),
append(Subl,L,CL).

transdir(trané(_,_,_,_,X),X).

append([],L,L).
append([H|T],Z,[H|L]) :- append(T,Z,L).

Tistify((A,B),[A|L]) :- Tistify(B,L).
Tistify(A,[A]) :- functor(A, ,_

member(X,[X]|_1]).
member(X,[Y|T]) :- X\==Y,member(X,T).

strict_member(X,[Y|_]) :-
strict_member(X,[Y|T]) :-

X Y.
X ’

=Y,strict_member(X,T).
flatten(X,Y) :- flatten(X,Y,[]).

flatten([],L,L).

flatten([H|T],L1,L2) :-
flatten(H,L1,L3),flatten(T,L3,L2).

flatten(X,[X|Z],Z) :- atomic(X), X \== '[]".

Appendix 8b-10

shape(trans(X,G,S,D,Dir),[trans,X,G,S,D,Dir]).

module(

(invert(A,B) :- trans(n,A,B,P1,X1),
trans(p,A,B,P2,X2),
pwr(P2),gnd(P1)),

[X1,X2],

[sig(A, [1,1,7,h,h,h,h,h,h,h,h,1,1,1,1,1,1,1,1]),
sig(B, [h,h,h,h,h,f,£,1,1,1,1,1,1,1,7,r,r,r,h,h,h,h,h,h])]

).
shape(invert(A,B),[invert,A,B]).

module((buffer(A,C) :- invert(A,B),invert(A,C)),

[sig(A, [1,1,7,h,h,h,h,h,h,h,h,1,1,1,1,1,1,1,1]),
sig(B, [h,h,h,h,h,f,£,1,1,1,1,1,1,1,7,r,r,r,b,h,h,h,h,h]),
sig(C, [1,7,1,1,7,r,r,h,h,h,h,h0,h,h,h,f,f,f,1,1,1,1,1,17)]

).
shape(buffer(A,C),[buffer,A,C]).

module((dlatch(D,L,Lbar,Q,Qbar) :- trans(n,L,D,X,X1),
trans(p,Lbar,D,X,X2),
trans(n,Lbar,Q,X,X3),

trans(p,L,0,X,X4),
invert(X,Qbar),
invert(Qbar,Q)),
[X1,X2,X3,X4],
[sig(L,[1,1,h,h,h,h,h,h,h,h,h,h,h,h,h,h,h,h,1,1,1,1,1
sig(Lbar,[h,h,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,h,h,h,h,h
sig(D,[x,x,x,s,s,s,s,s,s,s,s,s,s,s,s,s,s,s,x,x,x,x])
sig(Q,[x,x,x,x,x,x,x,x,x,x,x,x,x,c,c,c,c,s,s,s,s,s])
sig(Qbar,[x,x,x,x,X,x,X,X,X,X,X,X,X,€,C,¢,C,5,5,5,5,5])

shape(dlatéh(A,B,C,D,E),[d]atch,A,B,C,D,E]).

module(
(tri-state(A,X,En,Enbar) :-
trans(n,A,N1,P1,X1),
trans(p,A,N2,P2,X2),
trans(n,En,N1,X,X3),
trans(p,Enbar,N2,X,X4),
pwr(P2),gnd(P1)),
[X1,X2,X3,X4],
[sig(En,[1,1,
sig(Enbar,[h,h,
sig(A,[x,x,
z,

).
shape(tri-state(A,B,C,D),[tri-state,A,B,C,D]).

module((adder(A,B,C,SUM,CARRY) :-
carry_part(A,B,C,NCA,CARRY),
sum_part(A,B,C,NCA,SUM)),[],_).
shape(adder(A,B,C,SUM,CARRY),[adder,A,B,C,SUM,CARRY]).
A

module((sum_part(A,B,C,NCA,SUM) :-
pwr(P),gnd(G),
trans(p,NCA,T1,P,X1),
trans(p,C,P,T5,X2),
trans(p,B,T1,T75,X3),
trans(p,A,T1,T2,X4),
trans(p,NCA,T5,T2,X5),
trans(p,T2,P,SUM,X6),
trans(n,A,T2,T3,X7),
trans(n,NCA,T2,76,X8),
trans(n,T2,SUM,G,X9),
trans(n,B,T3,T6,X10),
trans(n,NCA,T3,G,X11),
trans(n,C,76,G,X12)),

[X1,Xx2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12],).
shape(sum_part(A,B,C,NCA,CARRY),[sum_part,A,B,C,NCA,CARRY]).

Appendix 8b-11

module((carry_part(A,B,C,NCA,CA) :-

pur(P),gnd(G),

trans(p,A,T1,P,X13),

trans(p,B,T1,P,X14),

trans(p,A,T2,P,X15),

trans(p,C,T1,NCA,X16),

trans(p,B,T2,NCA,X17),

trans(p,NCA,P,CA,X18),

trans(n,C,NCA,T3,X19),

trans(n,B,NCA,T4,X20),

trans(n,NCA,CA,G,X21),

trans(n,A,T3,G,X22),

trans(n,B,T3,6G6,X23),

trans(n,A,T4,G,X24)),

[X13,X14,X15,X18,X17,X18,X19,X20,X21,X22,X23,X24],_).

shape(carry*part(A,B.C,NCA,CA),[carry_part,A,B,C,NCA,CA]).

Appendix 8b-12

8b.6 Matrix Multiplication Source

This matrix multiplication problem is a common Prolog benchmark. The origin of the
following Prolog source was an electronic bulletin board. Similar source code can also be found in a

paper by Conei'y and Kibler [1985].

problem name goal query
mm20 test20(X).
mm40 . test40(X).
mm(A,B,C) :~ transpose(B,BT), mmt(A,BT,C).

/* Product of all rows of A with entire B */
mmt([1,_,[]).
mmt([Ai]An],B,[Ci|Cn]) :- mmc(Ai,B,Ci), mmt(An,B,Cn).
/* Product of all columns of B with row A */

mme(_,[],[1).

mmc(A,[Bi[Bn],[Ci|Cn]) :~ dp(A,Bi,Ci), mmc(A,Bn,Cn).
/* Inner Product of two vectors #*/
ip(L1,[]1,0).

ip([Ai|An],[Bi|Bn],C) :- ip(An,Bn,X), C is X + Ai * Bi.
/* Transpose a matrix */

transpose([[]1]_1.[]). '
transpose(M,[Ci|Cn]) :- columns(M,Ci,R), transpose(R,Cn).

columns([1,[],[]). N)
columns([[Cii|Cin]|C],[Cii|X],[Cin[Y]) :- columns(C,X,Y).

/* Examples %/
test5(P) :-

mm([[1,z,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,é,3,4,5]],[[5,6,7,8,9],[5,6,7,8,9],[5,6
,7,8,91,[5,6,7,8,91,[5,6,7,8,9]],P). :

test10(P) :-

mm([[1,2,3,4,5,1,2,3,4,56],[1,2,3,4,5,1,2,3,4,5],[1,2,3,4,5,1,2,3,4,5],[1,2,3,4,5,1,2,3,4,5], [1
,2,3,4,5,1,2,3,4,57,[1,2,3,4,5,1,2,3,
4,61,[1,2,3,4,5,1,2,3,4,6],[1,2,3,4,5,1,2,3,4,51,[1,2,3,4,5,1,2,3,4,5],[1,2,3,4,5,1,2,3,4,5]],
[[5,6,7,8,9,5,6,7,8,9],[5,6.7
.8,9,5,6,7,8,91,(5,6,7,8,9,5,6,7,8,91,[5,6,7,8,9,5,6,7,8,9],[5,6,7,8,9,5,6,7,8,9],[5,6,7,8,9,5
.6,7,8,9],[5,6,7,8,9,5,6,7,8,9],[5.6,7
.8,9,5,6,7,8,9],[5,6,7,8,9,5,6,7,8,9],[5,6,7,8,9,5,6,7,8,97],P).

test20(P) :- SIMILAR TO THE CODE ABOVE WITH TWO 20 x 20 MATRICES

test40(P) :- SIMILAR TO THE CODE ABOVE WITH TWO 40 x 40 MATRICES

Appendix 8b-13

Appendix 9a Portability Notes

9a.1 Technical Note on Signal Catching

It is unfortunate that when a child process dies a clean exit is not always ensured. Often,
exiting children remain as zombie processes until a higher-up process performs a proper clean up
procedure. This clean up includes a method to “reap” its children. If the reap is not berformed,
each of the children may hold on to a process slot, and there are a limited number of process slots

available on a particular host machine.

Exiting children is a common problem for any process which forks off numerous child processes
(such as a daemon process) and does not catch the signal SIGCHLD. Very quickly all of the process
slots available on that machine are used up, and no more work can be done until the zombie
processes (which are each holding on to a process slot) are eliminated. A solution to this problem is
demonstrated in A 4.2BSD Interprocess Communication Primer [ULTRIX-32 Supplementary
Documents: Volume III System Managers 1984]. Here it mentions that the signal SI6CHLD should

be caught and a handler invoked which contains the reaper code.

If the signal SIGCHLD is ignored (this is the default action) and child processes are not reaped,
then there is a potential of using up all of the available process slots. If the signal SIGCHLD is to be
caught, then there is a danger of system calls being interrupted when the signal is received. In
particular, the system calls which read and write to slow devices have a high probability of being
interrupted if children processes are being created and exiting frequently. For this reason, an
extra bit of code needs to be added to most input/output commands such as read, write, accept, recv,
and so forth, so that the catching of the SIGCHLD signal does not interfere with the I/0 request. The
signal handler for catching S1GCHLD and reaping the child process is shown below along with an
example of checking for the EINTR error on /o to slow devices. The EINTR error occurs when a system
call is interrupted by a signal which the user has elected to catch. In addition to the SIGCHLD signal,

Delphi processes have handlers for the following signals:

SIGHUP caught to avoid accidentally killing the process
SIGINT caught to avoid accidentally killing the process
SIGQUIT caught to avoid accidentally killing the process
SIGALRM caught to create a timer for certain control strategies
SIGTERM caught to avoid accidentally killing the process
SIGURG caught in conjunction with the out of band data byte

The use of any of these signals requires that the EINTR error be checked for during every call to

system routines such as read and write.

Appendix 9a-1

The following code is the signal handler which catches SIGCHLD and performs a reap of the child
process which caused the signal to occur. This ensures that a zombie process is not created when

the child exits.

void Mourn()

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)
) ;

To specify the routine Mourn as the signal handler for SIGCHLD, the following code must be

executed before the arrival of any SIGCHLD signal.

signal(SIGCHLD, Mourn);

An example is given of checking for the EINTR error during a write to a slow device. The EINTR

error will occur if signal SIGCHLD arrives during the write call of the following output routine.

int bsdwrite(fd, buf, n)
register int fd, n;
char #*puf;

register int done = 0;
register int nwritten;

do {
if ((nwritten = write(fd, buf+done, n-done)) >= 0)
done += nwritten;
else if (errno != EINTR)
return (nwritten);
} while (done < n);
return (done);

9a.2 Portto Bobcats

A port of most of the Delphi code was made from the pVAXes to a group of HP 9000 Series 350
workstations which are also known as Bobcats. THe flavour of UNIX running on these Bobcats is
called HP-UX. This operating system contains the Hewlett-Packard implementation of 4.2BSD
Interprocess Communication (IPC) facilities and is very similar to the ULTRIX IPC
implementation. The most notable changes can be seen in some signal and socket options and with
the initiation of signal handlers. The signal caught when a child process dies in particular has
been properly implemented in this version. The signal (SIGCLD or SIGCHLD) can be ignored in the HP-
UX implementation and no zombie processes will be created. The following Table 9a.1 shows a few

of the differences which were discovered during the Delphi port from the pVAXes to the Bobeats.

Appendix 9a-2

ULTRIX

HP-UX

bcmp(a,b,c)

memcmp(a,b,c)

bcopy(a,b,c)

memcpy(b,a,c)

bzero(a,b)

memset(a,0,b)

ffs routine

no equivalent

getrusage routine for timings

ftime routine

Signal SIGCHLD

SIGCLD

SIGCHLD should not be ignored else
zombie processes are created

SIGCLD can be properly ignored

signal handlers can be assigned with the
simplified signal routine. The routine
sigvec could also have been used

sigvector must be used to assign
handlers and some signal options

sprintf returns a character pointer

sprintf returns the number of bytes

Table 9a.1 Differences in Two UNIX Implementations

Appendix 9a-3

Appendix 9b | Qut of Band Data

9b.1 Using Out of Band Data

The TCP stream socket implementation contains a facility for sending out of band data to a
process with a socket connection. Special commands must be coded on the receiving side of the
connection to initialise the out of band data facilities. A logically independent socket connection is
created between the client and the server process after these initialisation instructions have been
executed. This special connection is used to send particular signals to the server process in addition
to the out of band data. Figure 9b.1 shows the state of the client and server connections after the

out of band data facility has been initialised.

out of band data socket
5 G naEEsesssmemesamns teeman c
E ' L
A\ - data stream B
E N
R o1 Jofofo |oj1 |1 Qotr]o]olr]o 1|1 T

normal data socket

data
byte
pointer

Figure 9b.1 Initialisation of Out of Band Data Facility

The logical communications channel for out of band data is not used until a special send
command is executed by the client. The flags parameter of the send command must be set to MSG_00B
to send out of band data to the server process. Either a send or a write command can be used to send
normal data down a socket connection, . When the out of band data is sent three things occur:

(1) The signal SIGURG is sent to the server process.

(2) The out of band data byte (this message can only be a single byte) is placed on the logical
socket connection.

(3) A marker is placed on the original socket to save the position within the data stream
where the out of band data occurred.

Appendix 9b-1

Figure 9b.2 shows the socket connections after the client process has sent an out of band data
message to the server. Signal SIGURG is sent down the logical connection and can immediately be
caught by a handler at the server side. The out of band data, however, may not be immediately
available for reading by the server process. All of the data in the stream which oceurs before the

out of band data marker must first be read.

out of band data byte
5 csesmesarasananns teseasaennas A P
B ‘—\/\/\/—SIGURG oo f1fo]1}jo|r o g
R f=rreereereinaitaascannnananannnnns T Ty I
\"% l E
E N
R o v Jofofofolr|rfoft]oofr]o |1]n out of band data marker T
data
byte
pointer

Figure 9b.2 Sending Out of Band Data

Reading data precisely up to the out of band data marker can be automatically performed
without theé need to handle and check each byte separately. This is done by specifying a large
number of bytes to be received in the input routine. When the recv (or read) call tries to read past
the out of band data marker, the call will only return the number of bytes up to the marker. The
out of band data byte optionally can be read after all of the data in the stream has been read up to
the out of band data marker. It is not mandatory to read the out of band data byte. Either the
original socket data or the logical socket data (the out of band data byte) can now be read. If the out
of band data byte is to be read, a special recv call must be executed with the flags set to MsG_ooB. If a
normal recv (or any read call) is executed, then the original socket's data stream ‘will be read.
Figure 9b.3 shows the two possibilities for reading data after the data pointer has reached the out

of band data marker.

After either socket is read from, the out of band data byte will no longer be available for
reading. The byte will disappear from the logical socket and the marker will be taken out of the
original socket's data stream. Figure 9b.4 shows the status of the client and server connections

after some input routine has been performed.

Appendix 9b-2

this out of band data byte is read if a
)/—’—x special recv call is executed

TE<TH®
HZBE -0

out of band data marker oJrjo jog1]o 1|1 glo|r|jo |1 |11]0]1

the data stream starting from this
data byte is read if the next input of data

prt))iyrfteer 1s not done with a special recv call

Figure 9b.3 Inputting Data From Either Socket

S C
E L
R " tesrresseetsieeancarsanarasancanasnnsarnnnanansanans I
\4 E
E N
R ofJojJvjofr |1 Jo|v@goj1|ojofolofo|1 Wol|r1]|o]o]i|lo]|1]o T

data

byte

pointer

Figure 9b.4 After the Input Routine - Qut of Band Data Byte is No Longer Available

Out of band data is often used to signal that the buffer is to be flushed up to the point where the
out of >band marker has been placed. The signal SIGURG is first received announcing the existence of
the out of band data byte. The buffer can then be flushed by performing a read or recv with the
number of bytes parameter set equal to the size of the buffer. The data will be read only up to the

position of the out of band data marker. The data received after the out of band data marker can

Appendix 9b-3

now be dealt with as appropriate. Out of band data usage and flushing buffers is documented using
HP's implementation of the version 4.2BSD Interprocess Communication facilities in [Using ARPA
Services HP 9000 Series 300 1989]. The ULTRIX version of this same facility is documented in
A4.2BSD Interprocess Communication Primer contained in [ULTRIX-32 Supplementary
Documents: Volume III System Managers 1984]. The documentation available on out of band data
is not very thorough. An example program using out of band data on the pVAXes is given in the

following two sections of this appendix.

9b.2 Out of Band Data Example - Server Code-

The complete code for the out of band d’ata server is shown in Figure 9b.5 and Figure 9b.6.

#include <sys/param.h>
#include <sysftypes.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <sysfioctl.h>
#include <netinet/in.h>
#indude <signal.h>
#include <stdio.h> L
#include <netdb.h> intls;

void ServerLoop(service)
char *service;

struct sockaddr__in server;
struct sockaddr__in client;
struct servent *sp;

i int command, pid, i;
#include <errno‘h>. fprintf(stdout‘p" < < < Connection pending > > >\n");
memset((char *)&server, 0, sizeof(server));
memset((char *)&client, 0, sizeof(client));
server.sin__family = AF__INET;
server.sin__addr.s__addr = INADDR__ANY;

int ClSock;

/* routine definitions for this file */
void Accepted();

void init__connection();

void ServerLoop();

int sock__int__urg();

typedef int Boolean;

#define FALSE 0

#define TRUE 1

Boolean OOBFlag = FALSE;

void Accepted(s)
ints;

ClSock =s;
} /* end Accepted */

void init__connection__sv()

char service[50);
inton = 1;

scanf("%s", service);
ServerLoop(service);
}/* end init__connection__info */

int bsdread(fd, buf, n)
register int fd, n;
char *buf;

register intdone = 0;
register int nread;

do
if ((nread = read(fd, buf + done, n-done)) > 0) {
done + = nread;
}else if (nread = = 0) {
return(0);
} else if (nread < 0) {
if (errno 1 = EINTR)
printf("\nbsdread: errno = %d\n", errno);
if (errno = = ECONNRESET) return(0);
return {nread);

} while (done < n);
}return (done);

fprintf(stdout, "\ninit__connection__info: service? *);

sp = getservbyname(service, “tcp");

it(sp == 0)

fprintf(stdout, " Service %s/tcp not in file /etd/services\n®, service);
exit(1);

server.sin__port = sp->s__port;

Is = socket{AF__INET, SOCK__STREAM, 0);

if (Is < 0){

fprintf(stdout, "\nprolog__same:: socket(\n"“);
exit(1);

if (bind(ls, &server, sizeof(server)) < 0) {
fpri?t)f(stdout, "\nprolog__same:: bind(\n");
exit(1);

if (listen(ls, 5) < 0) {
fprintf(stdout, "\nprolog__same:: listen(\n");
exit(1);

int clientsize = sizeof(client);
ints = accept{ls, &client, &clientsize);
if(s<0){
if (errno ! = EINTR)
fprintf(stdout, "\nprolog__same:: accept(\n");
exit(1);

Yelse{
close(ls);
Accepted(s);
endifs/
/* end block */
} /* end ServerLoop */

signal SIGURG will cause
an EINTR error. This
must be checked for.

Figure 9b.5 Server Code - Standard Routines

Figure 9b.5 shows the standard routines needed to initialise a server process. Figure 9b.6 contains

the code specific to using the out of band data facility.

Appen&ix 9b-4

The server is executed on any host machine with the user providing a service name. This name
is associated with'a port number, and that port will be used to established the socket connection.
The server then blocks waiting for data to be sent to it, and outputs the character string which has
been received. On receiving out of band data, the server reads the out of band byte and prints out
an ASCII representation of the character. It is not mandatory to read the out of band data byte.
The code within the handler sock_int_urg can be left out if the byte is not needed. The signal SIGURG
is caught in the handler and the flag 00Bf1ag is set. This flag can then be examined at a convenient
spot within the server program's code. By setting the flag, an asynchronous event such as a signal

can be polled for at a particular known position within the code.

int sock_int_urg()
{
char oobchar;
00BFlag = TRUE;
if (recv (C1Sock, &oobchar, 1, MSG_00B) <= 0) { :
perror ("sock_int_urg recv()"); This code is only necessary
exit (4); if the out of band data
character needs to beread
printf ("\nOOB received oobchar = %c\n", oobchar);
}
main()
. . . t up a signal handler for
signal (SIGURG, sock_int_urg); ¢ se
init_connection_sv ();) signal SIGURG
if (fcntl (C1Sock, F_SETOWN, getpid ()) < 0) { ¢———— set socket to allow
perror ("server main fcnt1()"4y receipt of SIGURG
exit (4);
only to this process id.
printf ("\nmain: server has been initialised\n");
for (;;) {
char buf[100];
if (bsdread (C1Sock, buf, sizeof(buf), 0) < 0) ¢ 4—— receiving 'normal’ data
perror("server main recv()");
exit(4);
printf ("\nserver main: buf = %s\n", buf);
if (00BFlag) {

00BFlag = FALSE;

/* Place in code to perform an This is where the code woulf
action after out of band data has — bgperformedafterrecelptof
been received */ signal SIGURG.

}
}
}

Figure 9b.6 Server Code - Routines Using Out of Band Data

Appendix 9b-5

9b.3 Out of Band Data Example - Client Code

The complete code for the out of band data client is shown in Figure 9b.7 and Figure 9b.8.
Figure 9b.7 contains the standard code needed to initialise a client process. Figure 9b.8 contains

the code specific to usage of the out of band data facility.

#include <sys/param.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <sysfioctl.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <netdb.h>
#include <errno.h>

/* routine definitions for this file */
void direct__connect();

int SvSock;
void direct__connect()

struct sockaddr__in client;
struct sockaddr__in server;
struct hostent *hp;
struct servent *sp;

ints;

char host[20], service[10];

memset{(char *)&client, 0, sizeof(client));
memset((char *)&server, 0, sizeof(server));
server.sin__family = AF__INET;

printf(*\n hostname for connect? ");
;canf(“%;“, hgst); host)

p = gethostbyname(host);
if(hp = =0){

fprintf(stderr, " Host " %s' notin file /etc/hosts\n, host);
return;

server.sin__addr.s_addr = ((struct in__addr *)(hp->h__addr))->s__addr;
printf("\n service for connect? ");
scanf("%s", service);
sp = getservbyname(service, “tcp");
itfsp==0){
fprintf(stderr, “Service %s/tcp not in file /etdservicesin™, service);
return;

server.sin__port = sp->s__port;)

s = socket(AF__INET, SOCK__STREAM, 0);

if(s <0){
perror(“direct__connect__to__prolog: socket()");
return;

i}f(connect(s, &server, sizeof(server)) < 0) {
perror("direct__connect__to__prolog: connect()");
close(s);
return;

SvSock = s;
return;

} /* end direct__connect */

Figure 9b.7 Client Code - Standard Routines

main()

direct_connect ();
for (;;) {
char buf[100], oobch;

scanf ("%s", buf);

oobch = '#',;

exit (4);

}
} else {
exit (4);

} /* end forever */

if ((strlen(buf) == 1) && (buf[0

if (send (SvSock, &oobch, 1, MSG_00B) <= 0) {
perror ("client main send() O0OB");

if (write (SvSock, buf, sizeof (buf)) <= 0) {
perror ("client main write()");

printf ("\nany string or just a single '#' for 00B? ")

== '*1)) {
sending out of band
—— data byte "' and
signal SIGURG.

4—— sending 'normal’ data

Figure 9b.8 Client Code - Main Routine

Appendix 9b-6

The client program can be executed on any host machine. Two initialisation parameters must

be supplied by the user to establish a connection to the server process:

® Host name of the machine where the server code has been started.

~ ® Name of the service or port which the server code is waiting on for a connection.

After these two parameters are given, the conneetion is established and the client loop begins
execution. The user is prompted continually for any string of data. If the special string “*” followed
by a carriage return is entered, then out of band data will be sent to the server process. Any other

string will be sent to the server without special treatment.

Appendix 9b-7

Appendix 10a ' Tree Analysis

10a.1 Two Queens Problem

DEPTHANALYSIS

Number of answers = 0

Number of branches = 10, Maximum branch length = 6, Minimum branch Tength = 1 |
Number of branches of length 1
Number of branches of length 3
Number of branches of length 4
Number of branches of length 5
Number of branches of length 6
Average branch length = 4 -
Most common length = 5

oo
DWW

BREADTHANALYSIS

Maximum branching factor = 2

Total number of nodes = 19: internal nodes = 9
nondeterministic = 9, deterministic = 0
Number of leaves = 10: failed leaves = 10, answers = 0

Maximum width (number of nodes) on a Tlevel 4 on level 3

2 0
F2_ 1
272 2

F22F 3

F 2 F2 4

FFF2 5
F_F 6

10a.2 Three Queens Problem

DEPTHANALYSIS

Number of answers = 0
Number of branches = 29, Maximum branch length = 12, Minimum branch length = 1

Number of branches of length 1 = 1 Number of branches of length 8 = 4
Number of branches of length 3 = 1 Number of branches of length 9 = 1
Number of branches of length 4 = 3 Number of branches of length 10 = 4
Number of branches of length 5 = 3 Number of branches of length 11 = 3
Number of branches of length 6 = 2 Number of branches of Tength 12 = 2
Number of branches of length 7 = 5
Average branch length = 7
Most common length = 7

BREADTHANALYSIS

Maximum branching factor = 2

Total number of nodes = 57: internal nodes = 28
nondeterministic = 28, deterministic = 0

Number of leaves = 29: failed leaves = 29, answers = 0

Maximum width (number of nodes) on a level = 8 on level 7

Appendix 10a-1

2 0
F 2 1
272 2
F222 3
F2 F22°F 4
F2F2F2 5
2F F 2 22 6
2 FFF2FF2 1
F2 F 2 FF 8
2 2F 2 9
FFF2F2 10
FF2F 11
F_F 12

10a.3 Four Queens Problem

DEPTHANALYSIS

Number of answers = 2
Number of branches = 108, Maximum branch length = 21, Minimum branch length = 1

Number of branches of lengths 1 =1 Number of branches of Tengths 12 = 9
Number of branches of lengths 3 = 1 Number of branches of lengths 13 = 11
Number of branches of lengths 4 = 2 Number of branches of lengths 14 = 9
Number of branches of lengths 5 = 4 Number of branches of lengths 15 = 6
Number of branches of lengths 6 = 2 Number of branches of lengths 16 = 2
Number of branches of lengths 7 = 5 Number of branches of lengths 17 = 6
Number of branches of lengths 8 = 6 Number of branches of lengths 18 = 6
Number of branches of lengths 9 = 8 Number of branches of lengths 18 = 10
Number of branches of lengths 10 = 9 Number of branches of lengths 20 = 2
Number of branches of lengths 11 = 5 Number of branches of lengths 21 = 4

Average branch length = 12
Most common length = 13
Number of answers at depth 21

n
N

BREADTHANALYSIS

Maximum branching factor = 2

Total number of nodes = 215: internal nodes = 107
nondeterministic = 107, deterministic = 0

Number of leaves = 108: failed leaves = 106, answers = 2

Maximum width (number of nodes) on a level = 18 on level 12

2 0

F_2 1

272 2

F222 3

F2F 222 4
F2F2F22F 5

22 F222F2 6
2F2FF22FF222 7

F2 2 F2FF2F22F22 8
2.2 F22FF2FFF22FF2 9
FFF222F2F2F2F2FF 10
F2FF222222F2F.2 11
FFF2F2F222FF2F22F2 12
2 FFF2FFFF2F2F22FF2 13
F2F2FF2F2FFF2F 14
F2F2F2F2FF 15

F 2 F 22 27272 16
F222FF22FFF2 17

2 F F2 2 FF2F 2 Fo2 18
FFF2FFF2FFFF 19

2 F 2°F 20

AF AF 21

Appendix 10a-2

10a.4 Eight Queens Problem

DEPTHANALYSIS

Number of answers = 92
Number of branches = 44396, Maximum branch length = 78, Minimum branch length = 1

Number of branches of lengths 1 = 1 Number of branches of lengths 41 = 1001
Number of branches of lengths 3 =1 Number of branches of lengths 42 = 1055
Number of branches of lengths 4 = 2 Number of branches of lengths 43 = 1172
Number of branches of lengths 5 = 3 Number of branches of lengths 44 = 1294
Number of branches of lengths 6 = 2 Number of branches of lengths 45 = 1379
Number of branches of lengths 7 = 5 Number of branches of lengths 46 = 1386
Number of branches of lengths 8 = 6 Number of branches of lengths 47 = 1309
Number of branches of lengths 9 = 11 Number of branches of lengths 48 = 1243
Number of branches of lengths 10 = 15 Number of branches of lengths 48 = 1155
Number of branches of lengths 11 = 19 Number of branches of lengths 50 = 1080
Number of branches of lengths 12 = 26 Number of branches of lengths 51 = 1017
Number of branches of lengths 13 = 32 Number of branches of lengths 52 = 1144
Number of branches of lengths 14 = 45 MNumber of branches of lengths 53 = 1178
Number of branches of lengths 15 = 50 Number of branches of lengths 54 = 1280
Number of branches of lengths 16 = 65 Number of branches of lengths 55 = 1300
Number of branches of lengths 17 = 87 Number of branches of lengths 56 = 1310
Number of branches of lengths 18 = 95 Number of branches of lengths 57 = 1373
Number of branches of Tengths 19 = 118 Number of branches of Tengths 58 = 1215
Number of branches of lengths 20 = 137 Number of branches of lengths 59 = 1097
Number of branches of lengths 21 = 177 Number of branches of lengths 60 = 873
Number of branches of lengths 22 = 171 Number of branches of lengths 61 = 770
Number of branches of lengths 23 = 250 Number of branches of lengths 62 = 667
Number of branches of lengths 24 = 234 Number of branches of lengths 63 = 601
Number of branches of lengths 25 = 327 Number of branches of lengths 64 = 506
Number of branches of lengths 26 = 312 Number of branches of lengths 65 = 741
Number of branches of lengths 27 = 416 Number of branches of lengths 66 = 712
Number of branches of lengths 28 = 390 Number of branches of lengths 67 = 895
Number of branches of lengths 29 = 485 Number of branches of lengths 68 = 746
Number of branches of Tengths 30 = 463 Number of branches of lengths 69 = 697
Number of branches of lengths 31 = 577 Number of branches of lengths 70 = 565
Number of branches of lengths 32 = 569 Number of branches of lengths 71 = 491
Number of branches of lengths 33 = 719 Number of branches of lengths 72 = 404
Number of branches of lengths 34 = 755 Number of branches of lengths 73 = 401
Number of branches of lengths 35 = 864 Number of branches of lengths 74 = 148
Number of branches of lengths 36 = 872 Number of branches of lengths 75 = 78
Number of branches of lengths 37 = 916 Number of branches of lengths 76 = 33
Number of branches of lengths 38 = 911 Number of branches of lengths 77 = 18
Number of branches of lengths 39 = 948 Number of branches of lengths 78 = 8

Number of branches of lengths 40 = 968

Average branch length = 48
Most common length = 75
Number of answers at depth 73 = 82

BREADTHANALYSIS

Maximum branching factor = 2

Total number of nodes = 88731: internal nodes = 44395
nondeterministic = 44395, deterministic = 0

Number of leaves = 44396: failed leaves = 44304, answers = 92

Maximum width (number of nodes) on a level = 2700 on level 45

Appendix 10a-3

10a.5 Parser-2 Problem

Number
Number

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

DEPTHANALYSIS

answers

branches = 30911, Maximum branch length

branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches

=5

of

Average branch length
Most common length = 58

Number of answers at depth 74
Number of answers at depth 77
Number of answers at depth 80

Tength
length
Tength
Tength
length
length
length
Tength
Tength
Tength
length
Tength
Tength
Tength
length
Tength
length
length
length
length
Tength
Tength
Tength
Tength
Tength
Tength
length
length
tength
length
Tength
Tength
lTength
length
Tength
length
length
Tength
length
length
Tength

= 54

BREADTHANALYSIS

Maximum branching factor = 43
Total number of nodes = 33592:

nondeterministic
Number of leaves =
Maximum width (number of nodes) on a level = 1479 on level 58

30911:

OO DNDOT WM -

N e e e
OCWL~NOOWMNEO

n
—-

N
w N

o

—

w n 4 nw v H DN

OO = NCO SN

252
15

126
282

L | e | | | | | | | | | | [| | Y { N | O T S | IO 1 I V1
F-Y
o

NN -

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

internal nodes
= 2681, deterministic =

0

of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches-
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches
of branches

2681

failed leaves = 30806, answers =

Appendix 10a-4

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

5

Tength
Tength
Tength
Tength
Tength
Tength
Tength
length
Tength
Tength
Tength
Tength
length
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
length
Tength
Tength

Tength’

Tength
Tength
length
Tength
Tength
Tength
Tength
Tength
length
Tlength
Tength
Tength
Tength

42
43

A4

45
46
47
48
49
50
51
52
53
54
55
56
57

L L | | | | | - | | | I | [I | | ¢ ¥ T | (| | O | S T | IO N N VI [O | S N A [°}

= 81, Minimum branch length

289
108
1147
243
423
456
1038
1253
326
555
835
1160
498
329
903
579
1404
390
1176
768
749
1151
679
704
429
1138
297
1060
519
329
959
669
336
328
558
158
520
36
118
258

1

10a.6 Parser-4 Problem

Number
Number

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

DEPTHANALYSIS

answers

= 42

branches = 395456,

branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

Tength
Tength
Tength
length
Tength
length
length
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
length
Tength
length
Tength
length
Tength
Tength
Tength
Tength
length
lTength
Tength
Tength
Tength
Tength
length
Tength
length
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength

Maximum branch length

WO WwN

LS T (I | [O | S [T 1}

L L | L | | | ¥ L L | (O | | | [¢ | | O T T O T [O N T SO T J VN (RN | B}

WO E =N W

o

1147

423
456
1038
1253
326
555
835
1160
486

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

= 131, Minimum branch length

branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches
branches

Appendix 10a-5

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

of -

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

length
length
Tength .
Tength
Tength
Tength
length
length
length
Tength
length
Tength
length
length
length
lTength
length
Tength
length
Tength.
Tength
Tength
Tength
Tength
length
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
Tength
length
Tength
Tength
length
length
Tength
length
length
Tength
Tength
Tength
length
length
length
Tength
Tength
Tength
Tength
length
Tength

67
68
69
70
71
12
73
74
75
16
71
78
79
80
81
82
83
84
85
86
817
88
89
90
91
92
93
94
95
96
g7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

LS L T | L | | | | (I | | | | | ¥ | N (O N | | T 1 [N (O NN | Y RO [SO]

1687
1824

.3484.

LA L | L | L | L | | [| O L 1 O R | Y [NN [N 1}

1506
1154
3683
2703
4206
1441
5811
2285
4189
2856
4825
8118
2565
5562
4358
9677
4204
3991
6902
7736
12445
3810
9308
6164
11236
7926
51569
9246
7728
14524
4810
11598
6695
9241
9573
6742
8021
4727
13909
3882
10783
6534
5344
9649
7304
5283
3164
8725
2353
7972
4455

Number of branches of length 55 = 341 Number of branches of length 121 = 2525
Number of branches of length 56 = 1407 Number of branches of length 122 = 6975
Number of branches of length 67 = 627 Number of branches of length 123 = 4053
Number of branches of length 58 = 1374 Number of branches of length 124 = 2464
Number of branches of length 59 = 420 Number of branches of length 125 = 2296
Number of branches of length 60 = 2424 Number of branches of length 126 = 3906
Number of branches of length 61 = 876 Number of branches of length 127 = 1106
Number of branches of length 62 = 1265 Number of branches of length 128 = 3640
Number of branches of length 63 = 1229 Number of branches of length 129 = 252
Number of branches of length 64 = 2224 Number of branches of length 130 = 826
Number of branches of length 65 = 3185 Number of branches of length 131 = 1806
Number of branches of length 66 = 803

Average branch length = 95

Most common length = 99

Number of answers at depth 118 = 1

Number of answers at depth 121 = 4

Number of answers at depth 124 = 9

Number of answers at depth 127 = 14

Number of answers at depth 130 = 14

10a.7 Larger Problems

The 2-queens, 3-queens, and 4-queens problems are small enough that an ASCII rendering can-

be displayed on a single A4 sheet of paper. The 8-queens ASCII tree takes up a few sheets of A4,
and has not been shown. The parser problem trees (parser-2, parser-3, and parser-4) are also very

large, with the parser-4 problem large enough that the breadth-first analysis was not completed.

This is because the sorting process on the depth-first tree takes a very long time to complete. Both .

the adder and the pentominoes problems have trees much larger than any of the previously
described programs. The data from these two large problems has not been shown for reasons either
of space within this document, or available disk space to perform the analysis and sorting
algorithms. Another program was written which performs a subset of the full analysis and can be
used with problems of any size. This program finds two important details of any Prolog search
space: the number of solutions, and the maximum depth of the tree. This program was run using

most of the Prolog problems described in this dissertation. The results are shown in Table 10a.1.

Appendix 10a-6

number of

maximum

problem solutions depth of the
OR-only tree
adder 8 1227
mm20 1 36
mm40 1 1681
ortest c(10) 10 5002
ortest c(50) 50 5002
ortest c(100) 100 5002
parser-2 5 81
parser-3 14 106
parser-4 42 131
pentominoes 16 323
2-queens 0 6
3-queens 0 12
4-queens 2 21
8-queens 92 78
9-queens 352 96
10-queens T 724 118

Table 10a.1 Vital Statistics for All Problems

Appendix 10a-7

Bibliography

Ali, K.AM., Pool machine: a multiprocessor architecture for OR-
parallel execution of logic programs. The Royal Institute of
Technology, Stockholm, TRITA-CS-8603, 1985.

Ali, K.A M., OR-parallel execution of Prolog on a multi-sequential
machine. International Journal of Parallel Programming, 15(3), pp.
189-214, 1987.

Ali, K.AM,, Fahlen L., and Karlsson R.,, The BC-Machine: A
multiprocessor architecture for fast OR-parallel execution of logic
programs. Swedish Institute of Computer Science, Reproduced from a
set of overhead slides, 1986. .

Ali, K.AAM,, and Wong, M., An investigation of an OR parallel
execution model for Horn clause programs. Swedish Institute of
Computer Science, Stockholm, 1988.

Alshawi, H.,, and Moran, D.B., The Delphi model and some
preliminary experiments. Proc. of the Fifth international Conference
and Symposium, MIT Press, pp. 1578-1589, 1988.

ARPA/Berkeley Services Reference Pages HP 9000 Series 300.
Manual Part Number: 50952-90031, Hewlett-Packard Company, Fort
Collins, CO, USA, 1987.

Bic, L., Execution of logic programs on a dataflow architecture.
Proceedings of the 11th Annual International Symposium on Computer
Architecture, ACM, Ann Arbor, pp. 290-296, 1984.

Borgwardt, P., Parallel Prolog using stack segments on shared-
memory multiprocessors. Proceedings 1984 International Symposium
Logic Programming, pp. 2-11, 1984.

Burns, A., Programming in Occam 2. Addison-Wesley Publishing
Company, 1988.

Butler, R., Lusk, E.L., Olsan, R., and Overbeek, R.A.,- ANLWAM: A
parallel implementation of the Warren Abstract Machine, Internal
Report, Argonne National Laboratory, 1986.

Carlton, M. and Van Roy, P., A distributed Prolog system with AND-
parallelism. IEEE Software, pp. 43-51, January 1988.

Bibliography - 1

Chang, J-H., Despain, A.M., and DeGroot, D., AND-parallelism of
logic programs based on static data dependency analysis. Digest of
papers of COMPCON Spring 85, pp. 218-225, 1985.

Ciepielewski, A., and Haridi, S., A formal model for OR-parallel
execution of logic programs. Information Processing 83, pp. 299-305,
1983.

Clark, K.L., and Gregory, S., A relational language for parallel
programming. In Proceedings of the. 1981 Conference on Functional
Programming Languages and Computer Architectures, ACM, pp. 171-
178,1981.

Clark, K.L., and Gregory, S., PARLOG: parallel programming in
logic. ACM Trans. on Prog. Lang. and Systems, 8(1), pp. 1-49, 1986.

Clark, K.L., McCabe, F.G. and Gregory, S., IC-Prolog language
features, In Clark and Téarnlund, editors, Logic Programming,
Academic Press, 1982.

Clark, K.L., and Tarnlund, S. A., editors, Logic Programming,
Academic Press, 1982.

Clocksin, W.F., Principles of the DelPhi parallel inference machine.
Computer Journal 30(5), pp. 386-392, 1987.

Clocksin, W.F., and Alshawi, H., A method for efficiently executing
horn clause programs using multiple processors, New Generation
Computing, 5, pp. 361-376, 1988.

Clocksin, W.F., and Leeser, M.E., Automatic determination of signal
flow through MOS transistor networks. Integration, 4, pp. 53-63, 1986.

Clocksin, W.F., and Mellish, C.S., Programming in Prolog, Springer-
Verlag, 1981.

Codish, M. and Shapiro, E.H., Compiling OR-parallelism into AND-
parallelism. Third International Conference on Logic Programming,
London, pp. 283-297, 1986.

Conery, J.S., The AND/OR process model for parallel execution of logic
programs. PhD thesis, University of California, Irvine, 1983.

Conery, J.S., Parallel execution of logic programs. Kluwer Academic
Publishers, Boston, 1987.

Bibliography - 2

Conery, J.S., and Kibler, D.F., Parallel interpretation of logic
programs. Proceedings of the 1981 Conference on Functional
Programming and Computer Architecture, pp. 163-170, 1981.

Conery, J.S., and Kibler, D.F., AND parallelism and nondeterminism .
in logic programs. New Generation Computing, 3, pp. 43-70, 1985.

Crammond, J., A comparative study of unification algorithms for OR-
parallel execution of logic languages. IEEE Transactions on
Computers, C-34, pp. 911-917, 1985.

DeGroot, D., Restricted AND-parallelism. In 2nd International
Conference on Fifth Generation Computer Systems, ICOT, pp. 471-478,
1984.

Dijkstra, E.W., A Discipline of Programming. Englewood Cliffs, NJ,
Prentice-Hall, 1976.

Dwork, C., Kanellakis, P.C., and Mitchell, J.C., On the sequential
nature of unification. Journal of Logic Programming, 1, pp. 35-50,
1984.

Finkel, R., and Manber, U., DIB - A distributed implementation of
backtracking. ACM Transactions on Programming Languages and
Systems, 9(2), pp. 235-256, 1987.

2nd International Conference on Fifth Generation Computer Systems,
Nov., Tokyo, Japan, Aiso, H., editor, Elsevier North Holland,
Amsterdam, 1984.

Fuchi, K., and Furukawa, K., The role of logic programming in the
Fifth Generation Computer Project. Third International Conference
on Logic Programming, pp. 1-24, 1983. _

Furukawa, K., Nitta, K., and Matsunoto, Y., Prolog interpreter based
on concurrent programming. In Ist¢ International Logic Programming
Conference, pp. 38-44,1982.

Gehani, N., and McGettrick, A.D., editors, Concurrent programming.
Addison-Wesley, 1988.

Goto, A., Tanaka, H., and Moto-Oka, T., Highly parallel inference
engine PIE: Goal rewriting model and machine architecture. New
Generation Computing, 2, pp. 37-58, 1984.

Gregory, S., Foster, I.T., Burt, A.D., Ringwood, G.A., An abstract
machine for the implementation of PARLOG on uniprocessors. New
Generation Computing, 6, pp. 389-420, 1989.

Bibliography - 3

Guest, S., Delphi Checkpointing. Diploma Project in Computer
Science, University of Cambridge, England, 1989.

Halim, Z, A data-driven machine for OR-parallel evaluation of logic
programs. New Generation Computing, 4, pp. 5-33, 1986.

Hardi, S., and Ciepielewski, A., An OR-parallel Token Machine.
Proceedings Logic Programming Workshop’83, pp. 537-552, 1983.

Hermenegildo, M.V., An abstract machine for restricted AND-
parallel execution of logic programs. Proc. 3rd International— Logic
Programming Conference, In Lecture Notes for Computer Science, Vol.
225, pp. 25-39, Springer-Verlag, 1986.

Hermenegildo, M.V., and Nasr R.., Efficient management of
backtracking in AND-parallelism. Proc. 3rd International Logic
Programming Conference, In Lecture Notes for Computer Science, Vol.
225, pp. 40-54, Springer-Verlag, 1986.

Hoare, C.AR, Communicating sequential processes.
Communications of the ACM, 17(10), pp. 549-557, 1978.

Horowitz, E., and Zorat, A., Divide-and-conquer for parallel
processing. IEEE Transactions on Computers C-32, pp. 582-585, 1983.

Hwang, K., and Briggs, F.A., Computer architecture and parallel
processing. McGraw-Hill, 1984.

Ist International Logic Programming Conference, Faculte des Sciences
de Luminy, Marseille, France, September 14-17, 1982.

Kahn, G., and MacQueen, D.B., Coroutines and networks of parallel
processes. Information Processing 77; Proceedings of the IFIP
Congress 77, B. Gilchrist (Ed.), Amsterdam, pp. 993-998, 1977.

Kasif, S., Kohli, M., and Minker, J., Prism - a parallel inference
system for problem solving. In 2nd International Workshop on Logic
Programming, pp. 123-152, 1983.

Kasif, S., and Minker, J., The Intelligent Channel: a scheme for result
sharing in logic programs. 9th International Joint Conference on
Artificial Intelligence, Los Angeles, USA, pp. 29-31, 1984.

Kennaway, J.R., and Sleep, M.R., Novel architectures for declarative
languages. Software and Microsystems 2(3), pp. 59-70, 1983.

Korf, R.E., Depth-first iterative-deepening: An optimal admissible
tree search. Artificial Intelligence 27, pp. 97-109, 1985.

Bibliography - 4

Kowalski, R., Logic for Problem Solving. North Holland, 1979.

Leffler, S.J., McKusick, M.K., Karels, M.J., and Quarterman, J.S.
The Design and Implementation of the 4.3BSD Operating System.
Addison-Wesley Publishing Company, 1989.

Levy, J., Shared memory execution of committed-choice languages.
Third International Conference on Logic Programming, London, Pp.
298-312, 1986.

Lin, Y., Kumar, V., and Leung, C., An intelligent backtracking
algorithm for parallel execution of logic programs. Proc. 3rd
International Logic Programming Conference, In Lecture Notes for
Computer Science, Vol. 225, pp. 55-68, Springer-Verlag, 1986.

Lindstrom, G, OR-parallelism on applicative architectures.
Proceedings 2nd International Logic Programming Conference, pp.
159-170, 1984.

Lusk, E., Overbeek, R., et al., Portable programs for parallel
processors. Holt Rinehart and Winston, 1987.

Milner, R., A Calculus of Communicating Systems. Lecture Notes in
Computer Science, 92, Springer-Verlag, New York, 1980.

Monteiro, L., A horn clause like logic for specifying concurrency.
Proc. of the Second International Logic Programming Conference, pp.
1-8,1982.

Mullender, S.J., editor, The Amoeba distributed operating system:
selected papers 1984-1987. Stichting Mathematisch Centrum,
Amsterdam, 1987.

Okumura, A., and Matsumoto, Y., Parallel programming with layered
streams. Proc. 1987 International Symposium on Logic Programming,
pp. 224-231, 1987.

Onai, R., Moritoshi, A., Shimizu, H., Masuda, K., and Matsumoto, A.,
Architecture of a reduction-based parallel inference machine: PIM-R.
New Generation Computing, 3, pp. 197-228, 1985.

Overbeek, R.A., et al., Prolog on multiprocessors. Internal Report,
Argonne National Laboratory, 1985.

Papadopoulos, G.A., Parallel execution of logic programs: a survey.
Internal Report SYS-C87-08, School of Information Systems,
University of East Anglia, 1987.

Bibliography - §

Parke, H.W., and Worwell, D.E.-W., The Delphic Oracle Volume I The
History. Oxford, 1956.

Pereira, F., editor, C-Prolog User's Manual Version 1.4. SRI
International, Menlo Park, California, 1984.

Pereira, L.M., Monteiro, L., Cunha, J. and Aparicio, J.N., Delta
Prolog: a distributed backtracking extension with events. Proc. 3rd
International Logic Programming Conference, In Lecture Notes for
Computer Science, Vol. 225, pp. 710-717, Springer-Verlag, 1986.

Porto, A., Epilog: a language for extended programming in logic. In
Ist International Logic Programming Conference, pp. 31-37, 1982.

Saraswat, V.A., The concurrent logic programming language CP:
definition and operational semantics. Conf. Record 14th Annual ACM
Symposium on Principles of Programming Languages, pp. 49-63, 1987.

Shapiro, E.Y., A subset of Concurrent Prolog and its interpreter.
Technical Report TR-003, ICOT, Tokyo, 1983.

Shapiro, E.Y., Concurrent Prolog: a progress report. I[EEE Computer,
19(8), pp. 44-58, 1986.

Shapiro, E.Y., An OR-parallel execution algorithm for Prolog and its
FCP implementation. Proc. of the 4th International Conference on
Logic Programming, pp. 311-337, 1987a.

Shapiro, E.Y., editor, Concurrent Prolog - Selected Papers, Vols 1 and
2. The MIT Press, Cambridge, U.S.A., 1987b.

Shapiro, E.Y.,- OR-parallel Prolog in Flat Concurrent Prolog. Journal
of Logic Programming, 6(3), pp. 243-267, 1989.

Shen, K., An investigation of the Argonne model of OR-parallel
Prolog. Department of Computer Science, University of Manchester,
1986.

Sohma, Y., Satoh, K., Kumon, K., Masuzawa, H., and Itashiki, A., A
new parallel inference mechanism based on sequential processing. In
Fifth Generation Computer Architectures, J V Woods (ed.), Elsevier
North Holland, IFIP, pp. 3-14, 1986. '

Sun, C., and Tzu, Y., The OR-Forest description for the execution of
logic programs. Proc. 3rd International Logic Programming
Conference, In Lecture Notes for Computer Science, Vol. 225, pp. 710-
717, Springer-Verlag, 1986.

Bibliography - 6

Syre, J. and Westphal, H., A review of parallel models for logic
programming. Technical Report CA-07, European Computer-Industry
Research Center, West Germany, 1985.

Takeuchi, A. and Furukawa, K., Parallel logic programming
languages. Proc. 3rd International Logic Programming Conference, In
Lecture Notes for Computer Science, Vol. 225, pp. 242-254, Springer-
Verlag, 1986.

Ueda, K., Guarded Horn Clauses. ICOT, Japan, TR-103, 1985.

Ueda, K., Making exhaustive search programs deterministic. Proc.
3rd International Logic Programming Conference, In Lecture Notes for
Computer Science, Vol. 225, pp. 270-282, Springer-Verlag, 1986.

ULTRIX-32 Programmer's Manual: Sections 1 and 7. Order Number
AA-BG53E-TE, Digital Equipment Corporation, Merrimack, NH,
USA, 1987.

ULTRIX-32 Programmer's Manual: Sections 2,34, and 5. Order
Number AA-BG54E-TE, Digital Equipment Corporation, Merrimack,
NH, USA, 1987.

ULTRIX-32 Supplementary Documents: Volume III System
Managers. Order Number AA-BG68E-TE, Digital Equipment
Corporation, Merrimack, NH, USA, 1984.

Using ARPA Services HP 9000 Series 300. Manual Part Number:
50952-90001, Hewlett-Packard Company, Fort Collins, CO, USA,
1989.

Wang, J., Towards a computational model for logic languages. CSM-
128, Department of Computer Science, University of Essex, 1989.

Warren, D.H.D., An abstract Prolog instruction set. Technical Note
309, Al Center, SRI International, Menlo Park, Ca., 1983.

Warren, D.H.D., Or-parallel execution models of Prolog. Technical
Report, Department of Computer Science, University of Manchester,
England, 1987a.

Warren, D.H.D., The SRI model for OR-parallel execution of Prolog -
Abstract design and implementation. Proc. 1987 International
Symposium on Logic Programming, pp. 92-102, 1987b.

Wise, M.J., Epilog: Re-interpreting and extending Prolog for a

multiprocessor environment, In Implementations of Prolog (J.A.
Campbell ed.), John Wiley & Sons, pp. 341-351, 1984.

Bibliography - 7

Wise, M.J., Prolog Multiprocessors. Prentice-Hall, Englewood Cliﬁ"s,
1986.

Woo, N.S., and Sharma, R, An And-Or parallel execution system for
logic program evaluation. Proc. 1987 International Symposium on
Logic Programming, pp. 162-165, 1987.

2nd International Workshop on Logic Programming, Universidade
Nova de Lisboa, Albufeira, Algarve, Portugal, June 29-July 1, Nucleo
de Inteligencia Artificial, 1983.

Wrench, K.L., A distributed AND/OR parallel Prolog network.
Internal Report, University of Cambridge, England, 1989.

Yang, R. and Aiso, H., P-Prolog: a parallel logic language based on the
exclusive relation. Proc. 3rd International Logic Programming
Conference, In Lecture Notes for Computer Science, Vol. 225, pp. 255-
269, Springer-Verlag, 1986.

Yashuhara, H., and Nitadori, K., ORBIT: A parallel computing model
of Prolog. New Generation Computing, 2, pp. 277-288, 1984,

Bibliography - 8

