Technical Report VAN

Number 207

Computer Laboratory

Video replay in computer animation

Stuart Philip Hawkins

October 1990

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1990 Stuart Philip Hawkins

This technical report is based on a dissertation submitted
December 1989 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Contents

List of Figures : : v
List of Tables vil
List of Plates ix
Preface ’ xi
Acknowledgements : xiii
1 Computer Animation Systems 1
1.1 What is Animation? 1

- 1.2 Computer Animation., 2
1.3 Computer Graphics Technology 4

1.4 Requirementsfor Animation. N
1.5 Computer Animation Systems 8
1.5.1 Definitions 8

1.5.2 Comparison of Approaches 9

1.6 Real-Time Animation Systemso oo v v v un... 11
1.6.1 Special Purpose Architectures 11

1.6.2 General Purpose Architectures 11

1.6.3 Other Real-Time Techniques 12

1.7 Real-Time Playback Systems 12
1.8 Real-Time Playback in Animation Packages 14

'2 Stored-Frame Animation Systems 15
21 Introduction. e 15
22 Framework 15
2.3 FrameStorageDevices 16
231 Film e e 18

2.3.2 SemiconductorMemory 18

2.3.3 Videotape—Analogue and Digital 19

2.3.4 Videodisc and Optical Memory 21

- 235 MagneticDisc Le.. 24

2.4 Previous Stored-Frame Animation Systems 27
2.4.1 Introduction e e e e e e e e e 27.

2.4.2 Systems Using Video Rate Storage
2.4.3 Systems using Non-Video-Rate Storage
2.5 Motivations for a New Animation System
2.6 TheBasisforaNewSystem0......
2.6.1 StorageDevicet
2.6.2 Image Compression Strategy
Image Compression Considerations
3.1 Imtroduction. i i i it
3.2 Information Theoryo
- 8.3 Coding Framework and Considerations
3.3.1 General Differences. oo,
3.3.2 Other Considerationsc..0...
3.3.3 Application Tailoring0.........
3.4 Coding Approaches.o i i ittt ittt e e
3.4.1 Direct Methods e e e e e e e e e e e e
3.4.2 Principal Approaches
3.4.3 Coding Optimisations
3.4.4 Second Generation Techniques
3.5 CompressionResults Y
3.6 Compression Requirements for the Animation Server

An Overview of the Server

4.1 Introduction. i i i i i i it e i e e e e

42 Rainbowll. it ittt et

4.2.1 The Rainbow Workstation.

422 RainbowlIl

4.3 The Animation Server ¢ o vt v i it i ittt

4.3.1 Server Architecture. e e e e e e e e e e e e e
4.3.2 The Animation Server Control Hierarchy '

4.4 Image Coding Strategy v i i,

. 441 Introduction00 uinunio...

4.4.2 Predictive/RunlengthCoding

4.4.3 Codingof Binary Frames

4.4.4 Coding of Multiple-plane Frames

445 FrameDecoding

4.5 Frame ReconstructionModes “

- 4.6 FrameSegmentation00t

4.6.1 Examples of Segmentation Usage

47 Formats e e e e e e e e e e :

The Frame Transfer Logic

5.1 Imtroduction.
5.2 The FTL ProcessingModel e
5.3 The Compressed-FrameBuffer

i

5.4 Implerﬁentation ofthe FTL 87

55 Controllingthe FTL i ... 90
5.6 Booting the Main ServerLogic 93
The Frame Decoder 95
6.1 Organisation of the FrameDecoder 95
6.1.1 The Runlength Distribution Logic 95
6.1.2 PlaneDecoders v v i ittt e 97
6.1.3 The Pixel Modifier Unit (PMU) 106
6.2 Control of the Frame Decoder 107
6.3 Physical Organisation of the Server Logic 111
Control of the Server 113
7.1 Imtroduction. 113
7.2 Software Organisation e e e e e e 113
721 HandlerTask00u.viv... 114
7.3 The Role of Garland DuringReplay 116
7.4 Simple SequenceReplay0ov ... 117
7.5 Practical Server Operation. 119
75.1 Rewsequencing. 0., 119
7.6 Special-PlayOperation. 123
7.7 Error Recovery Strategies 123
7.8 VideoEditing 125
Performance Issues : 127
81 Introduction............... 127
8.2 Replay Performance 127
8.2.1 DiscPerformance. 127
8.2.2 Frame Decoder Performance. 131
8.2.3 Re-sequencing Performance 132
8.3 Preliminary Coding Results 133
831 TheTestImages 134
832 Results, 135
Summary and Conclusions : 139
9.1 Work Completed e e e e e e e e e e e e e 139
9.2 Re-examination of Research Objectives. 140
93 FutureWork, 143

94 Conclusionso ... e e e e e e e e e 144

i

List of Figures

1.1 The animation pipeline.o v it i i 2
1.2 A typical rendering pipeline 4
1.3 Principal elements of a frame buffer architecture. 5
1.4 Typical raster scan display architecture 5
2.1 General framework for a stored-frame animation system 15
3.1 Source coding/decodingmodel e e e e e 44
3.2 Source coding/decoding over a noisy channel L. 44
3.3 A Classification of image coding techniques 49
4.1 A typical RainbowIIsystemoouuveuonnn. 57
4.2 The Garland Image Space and Video Processor 58
4.3 Conceptual overview of Garland image blending memory 59
4.4 Overview of the Animation Server architecture 60
4.5 Main elements of the Frame Transfer Logic and Frame Decoder . . 61
4.6 Control flow within the Animation Server (excluding Garland) .. 62
4.7 Overview of the Animation Server Coding process for a single binary _
Plane e e e e e e e e e e e e e e e e 66
4.8 Typical predictiontemplate 67
4.9 Occurrence Table generation 68
4.10 Prediction Table production from an Occurrence Table. 68
4.11 Example runlength coding for stream 2 70
4.12 Example multiple stream runlengthcoding 71
4.13 The pixel interpolationmode 74
- 4.14 An example of frame segmentation 78
4.15 Sequence, frame and segment formats 80
5.1 Logical Arrangement of the Animation Server as a Data Network . 84
5.2 Overview of the organisationof the FTL 88
5.3 The FTL register interface. e e e e e 88
5.4 Formats of FTL control registers 89
5.5 FTL microcode sequence selection pipeline. 91
6.1 Organisation of the FrameDecoder 96
6.2 Conceptual organisation of a Runlength Decoder Unit 98
6.3 Internal and external Runlength Decoder Unit formats 99

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6

Organisation of a decoder unit’s input logic 99
Implementation detail of a Runlength Decoder Unit (1 of 8) 100

Locations of bits available for use in a prediction template 101
Conceptual organisation of a Predictor Unit 101
Organisation of a global scanlinebuffer. 103
Relationship between global and local scanline buffers 103
Implementation detail of a Predictor Unit (1 of 8) 104
External interface to a Plane Decoder 105
Organisation of the Pixel Modifier Unit 106
Formats of the key Frame Decoder control fields 108
The decoding pipeline and its microcode control signals 110
Physical organisation of the Animation Server. 112
Thereplaypipeline 114
Organisation of Server Controller software 115
Configuration of Garland for animationreplay. 117
Use of a roving full segment for continuous sequence correction. . . 121
Format of null-modesegment 122
Disc organisation for the three basic editing operations 126

vi

List of Tables

3.1
4.1
5.1
6.1

7.1
7.2

8.1
8.2
8.3
8.4
8.5

Typical Impairment Scales used for Subjective Image Testing . . .
Example host control primitives.
Examples of Frame Transfer Logic Configurations.
List of implemented PMU functions

Normal events reported to the handlertask
Errors reported by the main Serverlogic

Summary of relevant Maxtor XT-8380E disc parameters
Compression ratios obtained for test stills
Results for full pixel mode on the four sequences
Results for temporal differencing mode on the four sequences . . .
Coding improvements gained by the use of interpolation

vii

46
65
85
107

115
115

128
136
136
136

List of Plates

1 The Frame Transfer Logiccard

2 The Frame Decoder card . .
3 The VMEbus Interface card

ix

Preface

This dissertation presents a design for an animation system that supports video-
rate replay of frame sequences within a frame buffer based graphics architecture.

In recent years frame buffer architectures have become dominant, largely dis-
placing other forms of graphics display system. But a frame buffer representation
is not well suited to the support of animation. In particular, two main problems are
faced: (1) the generation of each new frame within a single frame time (typically
40ms); and (2) the updating of the frame buffer with the new frame representa-
tion, also within one frame time. Both these problems stem from the fact that the
large amount of data required to represent each frame has to be processed within a
strictly limited time. The difficulty with updating the frame buffer representation
has been largely addressed by the development of powerful new display processor
architectures, made possible by improvements in semiconductor technology. The

generation of frames at replay rates, however, represents a much greater challenge

and there are numerous situations for which real time animation is simply imprac-
ticable. In such cases an alternative approach is that of frame-by-frame animation
in which the frame sequence is pre-calculated off-line and stored for later replay at
the correct speed. This technique is commonly referred to as real-time playback.

In this dissertation the requirements for real-time playback are discussed and
a number of distinct approaches to the design of such systems identified. For
each approach examples of previous real-time playback systems are examined and
their individual shortcomings noted. In light of these observations the design
of a new hardware-based animation system is proposed and its implementation
described. In this system frames are stored digitally and image compression is used
to address the non-video-rate transfer rate and storage capacity limitations of the
frame storage device employed (an unmodified 5} inch magnetic disc drive). Such
an approach has previously received little attention. Frame sequences are stored
~ on the disc in a compressed form and during replay are de-compressed in real-time
using a hardware implementation of the coding algorithm. A variety of image
compression strategies are supported within a generalised coding framework. This
introduces operational flexibility by allowing the system to be tailored according
to the needs of a particular application. '

Chapter 1

Computer Animation Systems

1.1 What is Animation?

The first picture animation system was invented in 1831 by a Frenchman named
Joseph Antoine Plateau. This device, which he called the Phenakistoscope, con-
sisted of a sequence of drawings fixed to a spinning disc that could be viewed
through a small window framing the moving drawings. The Phenakistoscope idea
was refined by Horner with his invention of the Zoetrope in which drawings were
held on the inside of a spinning drum and viewed through regularly spaced slits
around the drum’s periphery. This idea was further refined by Reynaud who in-
vented the Praxinoscope. Here the slits were replaced by mirrors spinning in the
centre of the drum. Animation in its modern form emerged around the turn of .
the century when sequences of drawings were photographed onto movie film. It
was the development of these first animated films which assured the future of
animation and the continual development of techniques until the present day.

In all these cases the underlying principle is the same: the illusion of smooth
and continuous change is created by rapidly presenting a sequence of images to the
observer, where each image is a slight alteration of its predecessor. In fact, this
description serves as a reasonably comprehensive definition of animation. Note
the use of the word “change” in this definition to emphasise that animation is
not restricted to movement alone but also includes possible variation of scene
illumination, object colour, and shape—animation can exist without motion.

Perhaps the most readily identifiable type of animation is the two-dimensional
animated cartoon of the form produced by the Disney studios and other production

companies. However, animation is a general purpose technique that is widely used

in other areas. Apart from cinema, two major users of animation are the television
industry and educational and research establishments. Animation is widely used in
the television industry for the production of title sequences, logos and programme
inserts, and its use in the production of television commercials is increasing. In the
fields of education and research the visualisation and understanding of complex
behaviours is greatly aided by the use of animation through its introduction of an
extra (temporal) dimension.

In the conventional animation process each of the hundreds or thousands of

1

CHAPTER 1. COMPUTER ANIMATION SYSTEMS

Object Motion | | Image __-
Modelling Specification Rendering

Figure 1.1: The animation pipeline

frames which go to make up a typical animated sequence must be individually
drawn and coloured by hand. Finished drawings are photographed onto film one
frame at a time. When the sequence is complete the animation can be viewed by

_ replaying the film at the proper rate on an ordinary film projector. This manual
process is both slow and tedious, and animation produced in this way is expensive

. because of the large number of people required. An alternative approach is that of
computer animaiion in which a computer is used for the production of sequences
and/or their replay. This raises the question of what exactly is meant by computer
animation. '

1.2 Computer Animation

As pointed out by Magnenat-Thalmann and Thalmann [Magn854] the term “com-
puter animation” is imprecise and may be interpreted in a number of ways. A com-
mon first step in classifying computer animation systems is to distinguish between
computer-assisted animation and compuier-modelled animation.

Computer-assisted animation refers to the use of computers to assist with var-
ious stages of the conventional animation process. This has been achieved with
varying degrees of success. The introduction of paint systems and graphical ed-
itors has greatly increased the speed and accuracy with which drawings can be
produced. Facilities are provided for the input of drawings (either freehand via a
graphics tablet or from external sources via a scanner), colouring (via some form
of area filling function), composition and image storage/retrieval. Unfortunately,
such systems do little to reduce the overall time taken to produce an animated
film as they do not reduce the total number of frames that need to be drawn and,
therefore, the contribution required from the animators. For this assistance must
be provided for the task of in-betweening, that is, the generation of intermediate
frames from the key frames produced by an animator. Unfortunately, attempts at
automating this process have proved to be less than successful due to the difficulty

" of the task [Catm78)]. o :

Computer-modelled animation is more interesting because here the computer
assumes a fundamental role in the animation process, rather than simply providing
assistance for a human animator. Modelled animation is oriented towards the
production of 3-d animated sequences (contrasting with the mainly 2-d emphasis
of assisted animation) and involves three main activities [Magn85a]: (1) object
modelling; (2) motion specification and synchronisation; and (8) image rendering.
This process is illustrated in Figure 1.1.

‘Object modelling refers to the process of defining and constructing the 3-d

1.2. COMPUTER ANIMATION ‘ 3

objects which form the scene to be animated. In the simplest case these are
defined as wireframe models. For greater realism solid models are employed, the
primitives for which fall into three categories: polygonal meshes, algebraic surfaces
and surface patches. These techniques are drawn directly from the mainstream of
computer graphics and are described in detail in many of the standard graphics
texts (e.g., [Newm81,Fole82,Hear86)).

Motion specification and synchronisation is concerned with the movement of
objects within the 3-d world space in order to achieve the desired animation. In
specifying the required motion an analogy is often drawn with the equivalent pro-
cess of controlling the action in a live-action film. A script is used which allows
the animator, acting in the role of director, to manipulate the various objects in
the scene and to control the positions of one or more virtual cameras and light
- sources. The virtual cameras and light sources can be manipulated in exactly
the same way as the objects being animated in order to create different view-
points, panning and scrolling effects, lighting changes, etc. Scripting systems have
evolved from ordinary programming languages, particularly those with features
well suited to the requirements of animation (e.g., the class mechanism found in
SIMULA and in later object-oriented languages such as SMALLTALK). The abstrac-
tion provided by such mechanisms greatly assists in simplifying the specification
and control of complex animation. More recently effort has been concentrated in
defining special-purpose extensions to programming languages and in the devel-
opment of completely new animation languages. Examples of such systems are
discussed in detail in [Magn85a]. Most research into modelled animation has con-
centrated upon the motion specification and synchronisation aspect (as it is this
which distinguishes animation from the mainstream of computer graphics) and a
comprehensive bibliography of the work done in this area has been published by
Magnenat-Thalmann et ol [Magn855).

An alternative way to specify motion is through the use of simulation. Here
objects are manipulated according to a group of rules that are intended to ac-
curately model some physical reality. The use of simulation for the production
of animated sequences has traditionally received little attention in the computer
animation field. Simulation is widely used in the engineering and scientific disci-
plines for applications as diverse as chemical modelling and stress analysis; if the
results of a simulation can be produced graphically then a time-varying sequence
of such results can provide a powerful way of understanding complex behaviours.
Animation produced via scripts and programmed control, on the other hand, is
mainly geared towards the entertainment field. Another distinction which might
be made is that simulation aims to reflect reality accurately, whereas the aim of
scripted animation is often the exact opposite! These disparate approaches were
drawn together in the work of Pullen [Pull87] who investigated ways in which
simulation could be used as a general-purpose motion specification technique for
modelled animation. In his work simulation provided another tool for the anima--
tor, complementing the use of scripts or.programmed control. The animator uses
simulation as a powerful mechanism for automatically generating frame sequences,
but is given the opportunity to override the behaviour of this mechanism at any

4 CHAPTER 1. COMPUTER ANIMATION SYSTEMS

Geometry Rendering
IClip Against . Scan
3d . Perspective 24 .
Transform View er‘ectv Transform Conversion [™] Sampling [——s
+ 4 Volume ’) ‘ 4
] [}] i 1
H : ! : :
3-d World 3-d Viewing Clipped 3-d 2-d Viewing 2.d Screen
Coordinates Coordinates Coordinates Coordinates - Coordinates
Figure 1.2: A typical rendering pipeline
time.

In the final activity of the modelled-animation process, image rendering, a 2-d
image representation is produced from the 3-d model. As for object modelling
most of the techniques used are standard ones drawn from the mainstream of
computer graphics. The main techniques are discussed in detail in [Magn87], as
well as standard graphics texts (e.g., [Newm81,Fole82,Roge85]). The details of the
processing involved depend upon the technique employed, but a typical rendering
pipeline is illustrated in Figure 1.2. The purpose of this example is to illustrate the
complexity of the task involved. Typical computational costs of such a pipeline

are discussed in [Akel88]. This is of particular relevance if the rendering is to be

performed at speed (i.e., at viewing rates)—a point returned to shortly.

1.3 Computer Graphics Technology

By way of introduction to computer animation systems it is first necessary to
review some of the relevant technology used in the encompassing field of computer
graphics.

The only viable forms of display device for dynamic graphics are those based
upon the cathode ray tube (CRT). CRT displays fall into two categories according
to the way in which the image is refreshed. In a raster scan display the display
area is divided into a number of horizontal scanlines and the image refreshed in
a fixed (scanline) order starting at the top left and ending at the bottom right of
the screen. The image produced during this cycle is termed a frame and the whole
refresh process is repeated (typically) 25 times a second. Each scanline is divided
into a number of pizels (where this number is usually related to the number of
scanlines and chosen to make the pixels square). A pixel represents the smallest
accessible unit on the display and a typical display for graphics use has between
1/4 million and 1 million pixels. In a vector scan display (also known as random or
calligraphic scan), on the other hand, the refresh order is not fixed but is directly
determined by the image being displayed. In such displays an image is composed
of a number of vectors and each vector is generated in turn by directly controlling
the deflection of the CRT’s electron beam in z and y over time.

The main elements of a raster scan display system are illustrated in Figure 1.3.
The frame buffer is a two-dimensional memory array which stores numerical values

1.3. COMPUTER GRAPHICS TECHNOLOGY 5

Host Display || Frame Display
Computer Processor T Buffer T Controller

Update Refresh

Figure 1.3: Principal elements of a frame buffer architecture

proctscur| | Bufe [Conpater
-t | o
e Graphics System Bus
ggIth_ Mﬁlglsc:ry Interface
! i '

Host System Bus

Figure 1.4: Typical raster scan display architecture

corresponding to the required intensities of the pixels on the screen. Generally
there is a one to one mapping between the position of a screen pixel and the
position of its value in the frame buffer. The display controller reads the frame -
buffer in raster order in synchrony with the electron beam scanning the CRT and
the values read are translated to corresponding pixel intensities via a digital to
analogue converter.

The display processor is responsible for translating higher level instructions
from the host computer into the lower level representation of the frame buffer.
The complexity of this processor varies considerably from system to system. In
the simplest case it only provides a mechanism for setting the values of individual
pixels, and all other graphical processing must be done by the host. As the com-
plexity of the graphics processor is increased, more and more of these operations
can be off-loaded from the host ‘and executed in the hardware of the Processor.
Typical operations supported include scan conversion (conversion of higher level
line, polygon, and curve descriptions into the corresponding lower level frame
buffer representation), area filling and clipping.

Figure 1.4 illustrates a typical architecture for a medium performance raster
scan graphics system.

The arrangement of a vector scan display system is similar to that of Figure 1.3
except the frame buffer is replaced by a display file containing vector descriptions.

6 ' CHAPTER 1. COMPUTER ANIMATION SYSTEMS

The image is dynamically generated by the display controller which continuously
cycles through the display file and directly draws a line on the screen for each
vector description read. The display file is a higher level representation than
the frame buffer and changes to the display are easily and rapidly made; any
change to a vector description in the display file is instantly reflected on the screen
during the next refresh cycle. Further, many vector displays support the use of
segmented display files in which vectors can be grouped together and hierarchical
image descriptions produced. This introduces even more power by allowing easy
and rapid manipulation of compound elements. The result of this is that dynamic
graphics are easily achieved and this explains the historical widespread adoption of
vector scan displays in engineering, computer-aided design (CAD) and animation
applications. Indeed, until comparatively recently this was the only effective way

to achieve animation on a computer system. The principal disadvantages of this

technology are the restriction to wireframe i images only (no filled areas) and the
fact that only a limited number of vectors can be maintained (i.e., refreshed)
simultaneously (which limits the achievable image complexity).

In contrast, the lower level representation of the frame buffer means that a
raster scan display is intrinsically harder to update than a vector scan display.
In particular, vectors and other graphical primitives must be scan converted to
produce a raster representation. Consequently raster scan displays are less suited
to the support of animation. However, a frame buffer representation supports
filled areas (including smooth shading) and imposes no limit on image complexity.
In addition, more powerful display processors and improved memory technology
mean that the dynamic performance of raster scan displays is constantly improv-
ing. These reasons have led to the universal adoption of raster scan displays for
graphics workstations and the near-complete displacement of vector scan technol-
ogy. Vector-scan displays are mentioned here because of their historical importance
in the design of animation systems.

1.4 Requirements for Animation

In the definition of animation given at the start of this chapter, it was stated that
the illusion of smooth movement can be created by rapidly presenting a sequence of
images to the viewer. Given this, the following question arises: at what rate must
frames be presented in order to properly achieve the desired effect? In determining
this, two separate factors require consideration:

1. Refresh Rate: The refresh rate is the number of frames presented to the
viewer every second. When this rate is too low the result on the frame
sequence is image flicker and at very low rates the individual frames can be
detected. As the rate is increased frames “fuse together” to form a steady
image where the contributions from individual frames cannot be detected.
The point at which this happens is dependent upon a complex mixture of
factors which includes the brightness of the display, the angle of view, the
properties of the phosphor (for CRT displays) and the properties of the

1.4. REQUIREMENTS FOR ANIMATION 7

observer (that is, the combination of eye and brain which together form the
Human Visual System (HVS)!). This point is reached somewhere around
30 frames per second (fps) but a rate of at least 40-50 fps is recommended
in order to combat flicker effects properly. This rate is referred to as the
Critical Fusion Frequency [Jain81].

The standard rate at which films are replayed is 24 fps and in the U.K. the
standard video frame rate for CRT displays is 25 fps. Clearly both of these
fall short of the rates recommended above.

In the case of film this is overcome by presenting each frame twice during
a frame-time to give an effective rate of 48 fps. To achieve this the projec-
tor employs a twin bladed shutter whose rotation is synchronised with the
movement of the film. The image is blanked once during transition between
frames and again mid-way through the frame-time.

To achieve a similar effect with raster scan CRT displays the most common
solution is to employ scanline interlacing. In an interlaced display each frame
is split into two fields—an odd field containing all the odd numbered scanlines
and an even field containing all the even numbered scanlines. During a
refresh cycle the odd field is scanned first followed by the even field. So
although the frame rate remains unchanged at 25 fps examination of any
particular small area of the screen reveals it to be changing at twice that rate,
with a corresponding reduction in the amount of flicker perceived. This relies
on neighbouring scanlines having similar intensities. There are problems
associated with the use of interlaced displays for graphics. For example,
a one-pixel wide horizontal line falls in only one field and consequently is
updated at half the rate of the rest of the image. This introduces a distracting
flicker for the line. The problems are worse for moving objects as these can
interact with the field structure.

With graphics workstations it is possible to consider the adoption of alter-
native refresh schemes to avoid such problems. For example, non-interlaced
displays can be used and the frame rate doubled to 50 fps. Recent advances
in technology mean that it may be possible to consider such strategies for
broadcast television in the future [Clar87]. Higher frame rates have been
considered for film too [Fox88].

2. Antmation Rate: The animation rate defines the rate at which motion must
occur in an animated sequence for it to appear smooth to the observer. When
objects move at less than this rate judder results and the animation effect
breaks down. Rates as low as 10 fps have been used, although 15 fps is a
more widely accepted figure for the production of truly smooth animation.
Ideally, of course, the animation rate is the same as the refresh rate—that
1s, 24 or 25 fps. However, much animation is produced at lower rates. This

1For example, a television image is an illusion created almost entirely by the HVS since the
short persistence of the phosphors used means that only a few scanlines are ever fully illuminated
at the same time [Clar87].

8 CHAPTER 1. COMPUTER ANIMATION SYSTEMS

is especially true of traditional 2-d cartoon animation which is nearly always
produced by the technique of “shooting on twos”. That is, each frame is
duplicated on the film to give an animation rate of 12 fps at an update rate
of 24 fps. The reason for this is historically related to the sheer magnitude
of the task of putting together a cartoon film by hand. For example, even at
12 fps a 30 minute cartoon contains over 20,000 frames, each of which has

- to be individually created and photographed. Although techniques such as
cel animation ([Magn85a]) have simplified this task, much of the work is still
extremely slow and highly labour intensive.

Of these two rates it is the animation rate which has the greater significance
to the design of an animation system as it is this which determines the number of
new images which must be generated each second. The refresh rate can always be
satisfied by the use of frame buffering which allows frames to be shown more than
once.

1.5 Computer Animation Systems

1.5.1 Definitions

In the conventional animation process frames are created at a much lower rate
than the final replay rate. This approach, which is generally referred to as frame-
by-frame animation, is widely used in computer animation as well. Alternatively in

computer animation it may be possible to generate frames at a sufficiently high rate

so as to be able to achieve animation directly, without the need for intermediate
frame storage (where “sufficiently high” implies at least the animation rate). The
difference between this, real-time animation, and the frame-by-frame approach can
be seen by recognising that in the production of animation there are two distinct
activities involved: (1) frame sequence generation, and (2) frame sequence replay.
In real-time animation these activities occur sxmulta.neously whereas in frame-by-
frame animation they occur sequentially.

In frame-by-frame animation frame sequences are conventionally recorded onto
film or videotape and replayed using a film projector or videotape recorder. With
computer animation an alternative technique is that of real-time playback in which
the computer assumes the role of frame replay device. Such an approach offers
a number of advantages over conventional methods, as discussed in more detail
in Chapter 2. In this context frame replay by conventional means is sometimes

-referred to as off-line playback. _

From the above it would seem that real-time animation and real-time playback
represent two opposite extremes as approaches to the production of animation.
Consider again the frame generation pipeline of Figure 1.1. In a pure real-time
system all stages of the pipeline execute at frame rates with frames being dis-
played immediately. In a pure real-time playback system none the pipeline stages
operates at real-time rates and frames are stored for later viewing. Unfortunately,
however, the situation is not so clear cut in practice. The basic problem is that the

1.5. COMPUTER ANIMATION SYSTEMS | : 9

term “real-time playback” is imprecise, having been widely applied to .a range of
different hardware and software systems. In particular, many so-called real-time
playback implementations actually represent hybrid real-time and frame-by-frame
systems where part of the pipeline is executed frame-by-frame and part in real-
time. A common division point is between the motion specification and image
rendering stages. Vector scan displays support dynamic graphics and increasingly
it is possible to render frames at a sufficiently high rate on raster-scan architectures
with hardware support for the rendering pipeline. However, it is often impossi-
ble to specify motion quickly enough—it may require user interaction (e.g., for
interactive editing), the running of a complex simulation, or the execution of an
animation script interpreter which cannot operate at animation rates. In these
cases animation is specified frame-by-frame and some form of (higher-level) frame
description stored.

This dissertation is concerned only with the subset of real-time playback sys-
tems whose operation are genuinely frame-by-frame. That is, where all stages
of the frame-generation pipeline operate off-line and only completed raster frame
representations stored for processing by the playback mechanism. Such systems
will be termed stored-frame animation systems for the purposes of this disserta-
tion. Note that this definition does not preclude the possible use of further frame.
processing for the purposes of reducing frame transfer and storage requirements.

1.5.2 Comparison of Approaches

Of the two approaches identified above, frame-by-frame animation is of greater
relevance here as this is the form supported by the stored-frame system discussed
in this dissertation. Having adopted this approach it is useful to consider its
advantages and disadvantages in relation to those of the alternative of real-time
animation. ‘

General

The principal advantage of a real-time system is its ability to handle interaction.
Since frames are produced in real-time (i.e., at least 15 fps) the results of changes
made dynamically to the underlying model are instantly reflected in the sequence

_ produced. The major disadvantage of this approach is that such systems are

generally difficult to implement. This is as a direct consequence of the need to
produce each frame within 1/15s or less. In general, special purpose hardware
must be provided and simplified or specialised forms of algorithms employed. It
is often necessary to forgo features such as texture, shadowing, anti-aliasing and
fine image detail in the interests of speed.

The advantages and disadvantages of frame-by-frame animation are essentially
the opposite of the above. The frame creation process for frame-by-frame anima-
tion is not time-critical and any algorithms and techniques can be used. Any code
employed does not have to be highly optimised and frames can be created on gen-
eral purpose computers (although some special purpose architectures have been

- 10 CHAPTER 1. COMPUTER ANIMATION SYSTEMS

devised). With frame-by-frame systems, however, the entire sequence has to be
determined before it is viewed and consequently cannot be changed during replay.
In practice, a degree of interaction is possible by writing a number of alternative
sub-sequences to the storage device and then dynamically selecting between them
during replay. Thus interaction is possible but not generally down to the level
of individual frames. This approach is usually called interactive video and has
increasingly been the subject of attention recently.

Applications

The implementation effort required to produce many real-time systems means that
their application tends to be restricted to those situations where the sequence to
be animated genuinely cannot be known in advance. In such cases it is the ability
to interact with the system which takes precedence over other factors such as
scene-complexity. Examples of such systems include the graphics systems of flight
and ship simulators used for pilot training, and certain modelling systems for
engineering applications.

Many other applications do not require that sequences be generated in real-
time and so cannot justify the effort involved in achieving this. In such cases it is
far more practical to generate frames off-line using more general techniques. Often
the image sequence is naturally fixed and known in advance anyway. An example
of this would be a scripted animated sequence that is to be included in a film. In
other cases this can be arranged. For example, a “fy through” sequence for the
architectural model of a proposed building can be generated off-line; interaction
would be useful but is not essential. Often in such cases it is the image quality
which takes precedence over the ability to interact with the animation.

For some current generation image synthesis techniques the computational de-
mands are so high that the hardware which can generate frames rapidly enough
for real-time animation (or anything approaching it in many cases) does not yet
exist. For example, a scene produced using ray iracing ([Magn87, Chapters 10

- and 11]) may take several hours per frame, even on a powerful processor. In such

cases animation can only be realised with a frame-by-frame system.

Real-time systems are improving rapidly all the time. Some current generation
flight simulators, for example, have impressive image generation capabilities in-
cluding texturing and shadowing. Even so, widespread and low cost access to such
systems is still some way off in the future. In addition image synthesis techniques
continue to improve in order to satisfy appetites for ever greater frame complexity,
with the result that the disparity between computational demand and availability

. 1s not reduced. For these reasons frame-by-frame systems look set to continue for

some time. : :

In the remainder of this chapter examples of the real-time and real-time play-
back animation systems are examined. This discussion excludes consideration of
stored-frame animation systems as these are covered in detail in the next chapter.

1.6. REAL-TIME ANIMATION SYSTEMS 11

1.6 Real-Time Animation Systems

Under the previous definition of a real-time animation system, a wide range of
implementations are possible. Here these are considered under three categories.

1.6.1 Special Purpose Architectures

A special purpose architecture is one that is optimised for a particular animation
application. For a high performance system it is usually necessary to provide hard-
ware support for all stages of the frame generation process (Figure 1.1, including
the stages in subordinate pipelines such as the 3-d rendering pipeline illustrated
in Figure 1.2). Typically such systems are implemented as a pipeline of processing
stages corresponding closely to the stages shown in the figures. The very high cost
associated with the design and construction of such systems limits their applica-
tion to a few specialised areas. Examples already mentioned are those of flight
and ship simulators. Here the cost involved is justified by savings gained in other
areas (such as reductions in the number of (expensive) real flying hours required,
for example).

The high cost of such systems generally rules out their use for more everyday
animation applications, although this situation is continually changing as prices
fall. Eccles et al [Eccl83] have considered the application of simulator technology
to more general animation.

1.6.2 General Purpose Afchitectures

More accessible for ordinary animation applications are graphics workstations of
the form depicted in Figure 1.4. In such systems there is less specialised hardware
support for the animation pipeline with the result the attainable real-time perfor-
mance is generally lower (as more of the processing has to be done by software).

In 1979 Baecker [Baec79] surveyed the state-of-the-art of dynamic graphics sys-
tems at that time and outlined a methodology for describing such systems. One
of the conclusions reached was that the use of a frame buffer based representation .
was not desirable for dynamic graphics. To a large extent this is still true to-
day, although improvements in technology mean that this situation is continually
changing. Perhaps the greatest advances have been made possible by the devel-
opment of high performance VLSI graphics processor chips. A brief history of the
evolution of these devices is traced by Fontenier et al [Font88] who also present
their own design for a 2-d graphics processor. Typical of recent VLSI implemen-
tations of graphics processor chips-are the 34010 from Texas Instruments [Asal86],
the 82786 from Intel [Shir86] and the Geometry Engine from Silicon Graphics
[Clar82]. A good example of a current high-performance graphics system is the
Silicon Graphics’ IRIS workstation [Akel88]; this provides hardware support for
all stages of the rendering pipeline illustrated in Figure 1.2.

Another way to improve the performance of a display system is to consider

alternative arrangements of the frame buffer or novel forms of display processor

12 CHAPTER 1. COMPUTER ANIMATION SYSTEMS

or display controller. Over the past few years a number of experimental systems
have developed. Mention should be made of the following: DisArray [Page83], the
8-by-8 display [Gupt81,Spro83] and the Rainbow Display [Wilk84,Styn83).

1.6.3 Other Real-Time Techniques

A number of methods have been devised which can achieve real-time animation
on ordinary frame buffer based graphics systems by using the existing hardware
in novel ways. Perhaps the best known of these is look-up table animation as
described by Shoup [Shou79] which uses the system’s video look-up table? to ma-
nipulate pixels on the screen whilst leaving the frame buffer representation un-
changed. The small size of the look-up table means that entries can be easily and
rapidly reloaded, unlike the values in the frame buffer. Changes are usually made
during the field vertical retrace period and their effects are instantly reflected on
screen during the next frame period. This provides a basis for real-time anima-
tion, and a number of examples are given in [Shou79]. Extensions are possible
to this technique. For example, experiments with look-up tables in conjunction
with the special-purpose hardware of the Rainbow Display showed a wide range
of effects were possible. These included transparency and real-time anti-aliasing
[Glau85a,Glau855).

With some ingenuity on the part of the implementor, look-up table animation
can provide some interesting effects for some real-time applications. However, it
also has some severe limitations, particularly related to the complexity and range
of movement and length of sequence which can be achieved, and it is these which
limit its use as a general purpose animation technique.

1.7 Real-Time Playback Systems

The idea of real-time playback is not new and can be traced back to the early

‘work of Baecker [Baec69]. One of the earliest attempts at analysing a real-time

playback system was made by Potel [Pote77] who considered the design of a vec-
tor display based graphics system and presented a model for describing its key
parameters. This work was based upon experience with a commercially made sys-
tem comprising a DEC PDP 11/40 and a DEC VT-11 vector display processor.
Potel used a ten parameter model which included factors such things as display
file size per frame, display processor speed and secondary (i.e., disc) storage space
available. This model was used to evolve four conditions that are required for
real-time playback feasibility, taking into account such factors as secondary stor-
age latency, and synchronisation and buffering requirements. The remainder of
the analysis was concerned with two special cases which Potel called Real-Time

2A common feature of many graphics workstations is a look-up table (or colour table) RAM that
sits between the frame buffer and display logic. This table prov1des a mapping between values in
the frame buffer and the pixel values displayed. Its principal use is to overcome the restriction of
the limited range of colours supported by many frame buffers.

1.7. REAL-TIME PLAYBACK SYSTEMS 13

Reversal and Upstream/Downstream effects. A desirable property of a real-time
playback system is that the animation may be viewed in either the forwards or
backwards direction. Real-time reversal is a further property whereby the direc-
tion of traversal may be reversed at any instant in real-time. The difficulty in
achieving this stems from the fact that in most real-time playback systems it is
necessary to pre-fetch and buffer frames in advance of their being displayed in
order to overcome latencies and discontinuities associated with the frame storage
device. Upstream/downstream effects are caused by there being a fundamental
difference in the forward and reverse retrieval rates of data from most secondary
storage devices. This results in a difference in which forward and reverse viewing
may proceed. '

A later analysis, along similar lines to that given by Potel, is presented by
Egan et ol in [Egan84]. Here the analysis is done by way of comparison on two
real-time playback systems. The first of these is similar to that described by
Potel and comprises a PDP 11/45 with an Evans and Sutherland vector display.
This can achieve a replay speed of between 15 and 18 fps. The second system is
based upon a raster scan black and white (i.e., bi-level) display and microcomputer
architecture (TERAK 8510a using an LSI-11 processor). The description of this
as a real-time playback system is somewhat charitable since it employs floppy disc
drives for frame storage which have a capacity of only 26 frames and the overall
replay speed as low as 1 or 2 fps!

A real-time playback system based on a raster scan display has been described
by Ackland at al [Ackl80]. This design employs a custom microprogrammable
display processor (See Figure 1.4) called GUMBI (Graphical User Programmable
Bit-Slice Interpreter) for translating high-level primitives supplied from the host
(e.g.“draw filled polygon”) into the corresponding lower level frame buffer repre-
sentation. To improve the performance of the system a new polygon fill algorithm
(designated “edge-fill” by the authors) was developed and a microcode implemen-
tation produced for GUMBI. The system supports the real-time playback of 2d or
2}d3 frame sequences. Frames are represented in a high level polygonal format as
a means of overcoming bandwidth limitations during replay. Real-time playback
is achieved with the use of a software package which reads coded polygonal data
stored on the host’s disc and feeds this data through GUMBI in order to update
the frame buffer representation at frame rates. The performance of this system is

limited by the rate at which GUMBI can process polygons. An analysis of this

performance [Ackl80] estimates the maximum picture complexity to be 55 poly-
gons per frame for a frame rate of 15 fps (assuming 50 pixels per polygon edge
and 6 vertices per polygon). Also the system cannot handle general purpose frame
data but is restricted to the polygonal data for which the design is optimised.

The above examples serve to typify previous work on real-time playback mech-
anisms. The number of systems which have been described in the literature is
surprisingly small, given the usefulness of such a mechanism. Even so, two general
observations can be made:

323 d refers to the use of a finite number of discrete 2d drawing planes organised in a priority
ordering in the z dimension.

14 CHAPTER 1. COMPUTER ANIMATION SYSTEMS

1. Most real-time playback systems have been implemented on unmodified com-
mercially available (i.e., non-custom) hardware using software utilities to
achieve real-time playback. .In particular the use of vector scan displays is
common in such systems. In these cases the playback performance is limited
by the properties of the underlying system—DMA rates, bus speeds, main
memory cycle time, effects of resource conflicts, etc.

2. Many real-time playback systems are “impure” in the sense that playback in-
volves an element of real-time processing (as in the case of Ackland’s system
above, for example). In such cases the class of image supported, the achiev-
able image complexity or animation rate is limited in the same way as for
a real-time system (Section 1.5.2). This limits the complexity of animation
which can be achieved. '

1.8 Real-Time Playback in Animation Packages

Another application of real-time playback is with animation packages used for
developing animated sequences. In some such packages, particularly those where
animated sequences are generated interactively, a real-time playback facility is
provided to test the motion dynamics of a piece of animation. This enables the
animator to gain some idea of what the finished sequence will look like and so
judge whether the animation appears correct with respect to smoothness, speed of
motion, etc. This facility corresponds to the pencil test technique used in conven-
tional animation, where rough pencil sketches are produced and viewed at frame
rates prior to the laborious task of inking and painting of frames takes place (see
[Magn854])

With this form of real-time playback effort is concentrated on producing accu-
rate motion representation, often at the expense of image quality, since this is more
important when gauging the correctness of a piece of animation. Consequently,
wire-frame models are often employed for this purpose as these are computation-
ally much less expensive (and ideal for use on vector displays which are widely used
for this task). When the sequence has been checked and approved the individual
frames are then generated at full resolution with full detail and written to either
film or video tape for later viewing at the proper speed.

Examples of systems having this facility have been described by Levoy [Levo77]
and Gémez (the “TWIXT” animation system) [Gome85].

Chapter 2

Stored-Frame Animation Systems

2.1 Introduction

The previous chapter considered animation in general and mentioned some exam-
ples of both real-time and real-time playback systems. This chapter concentrates
upon that subset of real-time playback systems identified in Section 1.5.1 and
known as stored-frame animation systems for the purposes of this dissertation.
The chapter is divided broadly into two parts. The first part considers possible
frame storage devices for such a system. The second part examines previous ex-
amples of such systems and introduces the motivation for the development of a
new system as described in- this dissertation. The new system is discussed in the
context of previous approaches. '

2.2 Framework

The general organisation of a stored-frame animation system is shown in Fig-
ure 2.1. This is the simplest conceivable model for such a system, but nevertheless
one which serves as a useful point of reference for the following discussion.

The system controller block is responsible for ensuring that frames fetched from
the storage device arrive at the display in the correct format, in the correct order
and at the correct rate. Exactly what is required to achieve this obviously depends

Frame
» System
Stora}ge Co¥m'011cr
- Device
Retrieval Refresh
Rate Rate

Figure 2.1: General framework for a stored-frame animation system

15

16 ' CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

heavily upon the details of the frame storage and display devices. In addition to
the control aspects involved, the system controller may have to process the frame
data arriving from the storage device in order to get it into a form suitable for
display; a simple example of this is analogue to digital conversion.

In Figure 2.1 the display rateis the rate at which data must be sent to the screen
in order to keep the image properly refreshed, as discussed in Section 1.4. This rate
depends upon a number of factors such as the resolution of the display, the refresh
rate required, and whether or not interlacing is required. As an example, consider
the CCIR Recommendation 601 [Kret85] which defines a digital representation of a
T.V. signal for a resolution very close to that currently used in the U.K. analogue
PAL system!. In this representation there are 625 lines of 720 visible samples
per line, refreshed at 25fps interlaced. This is a component coding scheme with
luminance sampled at 13.5MHz and the two colour difference signals sub-sampled
at half this rate (6.25MHz)?. Samples are quantised to 8 bits. The refresh data
rate required is thus 216Mb/s3. Much higher resolutions are often used in modern
graphics workstations, 1280x1024 pixels at 24 bits/pixel is commonplace. At
25 fps (interlaced) this corresponds to a transfer rate of approximately 786 Mb/s.

The retrieval rate is the rate at which frame data can be recovered from the
storage device. Depending upon the type of device used, this may or may not
be equal to the required display rate (a point discussed at greater length later
on). The achievable transfer rates vary widely across the range of possible storage
devices; examples of actual rates are given in the discussions of individual devices
below.

2.3 Frame Storage Devices

In the following subsections the suitability of a number of storage devices for use
in a stored-frame animation system is considered. The candidates considered rep-
resent a complete list of the most practicable devices and are: film, semiconductor
memory, analogue and digital videotape, videodisc/optical memory systems and
rigid magnetic disc. '

First, however, some general requisites of a frame storage device can be listed.
These constitute the properties which would be found in the perfect device:

o Large Storage Capacity: A major problem with stored-frame animation sys-
tems is the vast amount of information required to represent even short
animated sequences. For example, a one minute sequence at 25 fps at the

! Actually, Recommendation 601 defines an extensible family of coding standards intended to
unify the current diverse standards of PAL, NTSC and SECAM

2Component coding is widely used in the broadcast television industry. A signal is defined in
terms of a luminance component (Y) and two colour difference components (U,V). The figures
quoted here refer to a form of Recommendation 601 known as the 4:2:2 studio standard, the most
widely implemented variation to date

3A general convention adopted in this dissertation is that lower case ‘b’ refers to bits and upper
case ‘B’ to bytes. Thus, the rate quoted is 216 Megabits per second.

2.3.

FRAME STORAGE DEVICES 17

CCIR recommendation 601 resolution outlined above requires storage of ap-
proximately 1.4 GBytes. A similar length sequence at the higher resolution
quoted would require nearly 6 GBytes. Thus, the capacity of the storage
device is a major consideration in the design of an animation system.

High Retrieval Rate: A related requirement is that the data for each frame
must be fetched from the device within (on average) one frame time. Again,
for some classes of storage device this represents a major problem. If the
retrieval rate is to be equal to the display rate then a transfer rate of several

hundred megabits per second may be required. For example, the rates for
the two resolutions cited above would be 216Mb/s and 786Mb/s.

Digital Representation: For a digital hardware animation system it is desir-
able that frame data also be represented and stored in a digital format. This
removes the necessity for conversion between analogue and digital represen-
tations, and the associated possibility of image quality degradation. Also
a digital representation is intrinsically more robust and error tolerant than
the analogue form. This advantage can be further consolidated by the use of
error detecting and correcting codes which allow the effects of frame errors,
distortions and noise in a replayed sequence to be minimised.

Random Access/Special Mode Access: In some applications, particularly
when long animated sequences are involved, it is useful to be able to ac-
cess the sequence starting at an arbitrary point without having to replay
from the start each time. This requires random access to the storage device.
Another useful facility is to be able to vary the rate and/or way in which
frame data are fetched from the storage device. This allows for “special-play”
modes such as still-frame and slow or fast motion.

Locally Writable: The process of recording frames onto the storage device
should be straightforward and accomplished locally by animation system
users themselves. For some classes of storage media (e.g., certain forms of
videodisc) this is infeasible and data can only be recorded using a com-
plex mastering process at remote sites. Such processing may take weeks or
months.

No Post-Processing: Again related to the recording process, it is desirable
that the media be readable immediately after recording. Some media require
post-processing after recording—an obvious example is film which requires
developing and printing,.

Media Re-usability: The writing of frames to the storage device should be a
reversible process, that is, recording should not be destructive. Examples.of
media for which this does not hold include film and some forms of optical
disc. A related consideration is that of the recorded data’s robustness and
permanence. For some classes of storage device there is a limit on the number
of times that the recorded information can be read because each read cycle
slightly degrades the recorded representation.

18 ‘ CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

o Low cost: Clearly low cost is advantageous for the storage device and media
because of the large amount of storage required for an animation system.
Cost is an especially important consideration when the storage medium is
not re-usable.

2.3.1 Film

This section is included for the sake of completeness. Film is still a widely used
 medium for recording the output of frame-by-frame animation systems, mainly for
applications within the film (movie) and television industries. Computer animated
sequences recorded on film are replayed using an ordinary film projector. Film
could be used as a storage device in a digital animation system by using a modified
form of telecine equipment to scan frames from film. The advantages of film as a
medium are its very high capacity, both per frame and overall%, and its low cost.
The disadvantages are that it is not easy to incorporate into a digital system, it is
not re-usable, it is fragile (care is required to avoid dust and scratching), it needs
post-processing and it is not randomly accessible.

2.3.2 Semiconductor Memory

Semiconductor memory is widely used for single frame storage in frame store ar-
chitectures. But its use for multiple frame storage (as the frame storage device in
an animation system) has, even in the recent past, been ruled out on economic
grounds. The large amount of storage required has meant that such an approach
would be prohibitively expensive. However, continued dramatic increases in avail-
able capacity and performance, matched by falling chip prices, mean that the
situation is constantly changing. Riley [Rile87a] traces this trend in relation to
the digital storage of television signals. It is now reasonable to consider the design
of semiconductor storage systems with capacities of the order of tens (or perhaps
hundreds) of megabytes, a figure which competes with the lower capacity magnetic
drives. :

In spite of this it is currently uneconomical to provide the hundreds or thou-
sands of megabytes of storage which are required for a general purpose animation
system. For some applications less storage can suffice. For example in [Rile87b]
Riley considers the design of a large capacity picture store for use in an image
processing system for television sequences. The proposed design employs multiple
storage modules, each with a capacity of 50MBytes. This gives a playback time at
full television resolution of only a few seconds (five or so), but this is sufficient for
the intended application. With sufficiently small frames a similar technique can
be employed on ordinary graphics workstations, provided they have a moderate
amount of main storage. Frames are computed off-line and placed in memory.

4A 70mm film frame (52.6mmx23.0lmm) has an equivalent resolution of approximately
4208x 1841 pixels (assuming 80 pixels/mm vertical resolution). At 24 fps this corresponds to

a data rate of approximately 4.5 Gb/s. A 90 minute film has an equivalent total storage capacity

of approximately 2 Terabytes (2 x 1012 bytes)! '

2.3. FRAME STORAGE DEVICES o 19

Each frame is then briefly displayed in turn by transferring it rapidly to screen
memory using a BitBlt operation. Alternatively, hardware panning and scrolling
hardware can be used to achieve a similar effect. Since only a very limited num-
ber of frames can be displayed in this way, the technique works best for cyclical
animation (e.g., rotating objects) which allows continuous motion from only a few
frames. '

The advantages of semiconductor memory as a frame storage device are the
very high transfer rates possible, random access (down to pixel resolution if re-
quired) with no seek delays or other latencies, digital image representation, high
reliability (no moving parts), infinite re-usability and local writability with im-
mediate playback. The principle disadvantage is that the affordable capacity is
limited, falling short of that demanded by many applications. A second limitation
is due to the fact that the most likely devices to be employed are volatile and so
data are lost at power-down. Thus, some form of secondary storage device (disc
or tape) must be employed for any animation system implemented in this way.

2.3.3 Videotape—Analogue and Digital

Videotape has also been widely used, as an alternative to film, to record the output
of frame-by-frame animation systems. As a real-time playback medium videotape
has a number of significant advantages over film, as well as some drawbacks. The
advantages of videotape include: low cost, very high capacity, video-rate frame
transfer, re-usability, and local recordability with immediate playback. The prin-
ciple disadvantage is that to achieve frame-by-frame writing a stop-frame recording
mode is required, something normally found only on the more expensive machines
designed specifically for professional videotape editing purposes.

Videotape recording evolved as a logical progression from audio tape recording,.
Work started in the early 1950’s and in its present form video recording was
pioneered by the Ampex Corporation in 1956. The main problem when recording
video data compared with audio data is the much higher bandwidth involved (300
times that of audio signals). This requires a much higher head-to-tape speed. Early
attempts at simply increasing linear tape speeds were not particularly successful®
and the solution now adopted, as demonstrated by Ampex, is to employ rotating
heads within a drum which scan across the tape at high speed whilst the tape moves
relatively slowly past the drum. The first machines employed four heads which
scanned transversely across the tape, the so called quadruplez or quad recorder.

A number of problems associated with quad recorders were overcome by the
introduction of helical-scan recording. With this technique the tape forms a helix
around the drum and the combination of tape and drum movement result in long
tracks being recorded at a shallow angle across the width of the tape. The use of
two recording heads in conjunction with a 180° wrap is common. A large number of
recording formats have been defined and standardised over the years. The domestic

5In 1954 RCA produced a longitudinal track recorder which had a tape speed of 360 i.p.s. and
was still incapable of recording a full bandwidth video signal. (Compare this rate with 1% i.p.s
used in audio cassette players.)

20 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

and educational formats are well known—for example, U-Matic (Sony, 1971), Beta-
max (Sony, 1976), VHS (JVC, 1978) and most recently the new 8mm standard
(various, 1984). The two main helical-scan standards for broadcast use are less
familiar—the Segmented B-Format and the Non-segmented C-format, developed
by the SMPTE (Society of Motion Picture and Television Engineers) and EBU
(European Broadcasting Union). ‘

The long tracks produced by helical scanning make it possible to record an
entire video field on a single track. Such a non-segmented format has a num-
ber of attractions; for example, the perceptibility of scanning errors (caused by
geometrical changes during reading) tend to be reduced. A side effect of this ar-
rangement is that a stop-motion feature becomes easy to implement. If the tape
is stopped but the heads kept spinning then the same field is shown repeatedly
to give the effect of still frame. However, this simple approach is not perfect and
without the motion of the tape there is a misalignment between the recorded track
and the path of the rotating head. This results in a portion of the guard band
(the unrecorded region between tracks) being read in place of video data and the
production of an unwanted noise band on the screen (although with careful tape
positioning this can be displaced to the top or bottom of the screen). Similarly,
if the tape is moved at less than full speed, “slow-motion” effects are produced
by repeating fields. In this case the noise bar drifts though the picture at a rate
determined by the tape speed. Proper performance in these cases can only occur
by providing a more sophisticated tracking mechanism known as Automatic Scan
Tracking (AST) which was developed by Ampex. _

Unfortunately this ability of even relatively unsophisticated recorders to read
single fields is not matched by an ability to write frames individually. It has already
been seen that such a capability is vital for implementing a stored-frame animation
system. The process of adding a single frame to the end of a partially completed
sequence is a special case of video editing and in general the editing of sequences
on videotape is not trivial. For helical scan recorders this must normally be done
electronically, although limited physical editing of tape is possible [Robi81]. The
basic problem is that new fields must be positioned very precisely in relation to the
rest of the sequence if the splicing is not to be visible because of unwanted phase
_.changes in the playback signal caused by field misalignments. This requires very
precise control over the various head and capstan servo mechanisms controlling
drum and tape speeds and the record signal sent to the heads in order to ensure
proper timing and synchronisation. In the general case is is also necessary to
_control a flying erase head which tracks some distance ahead of the record heads.
To identify field positions on the tape some form of longitudinal cue track is
employed upon which cue tones are recorded. Recently the trend has been to
fully electronic editing in which much more sophisticated codes are recorded on a
control track (e.g. SMPTE/EBU Time Code Addressing). For more details of the
-editing process refer to Chapter 14 of [Robi81].

The upshot of the above is that whilst videotape has a number of attractions
as a storage medium for use in a real-time playback system, a low-cost practical
implementation is impossible to achieve because of the difficulty of laying down

2.3. FRAME STORAGE DEVICES ' 21

frames one at a time. Even if this was not the case, for performance reasons it is
probably necessary to use one of the professional videotape formats—that is, U-
Matic or better. Analogue recording is inherently imperfect because of linear and
non-linear distortions introduced during the record and replay processes. Careful
design of the system helps to reduce these effects to acceptable levels. Even so,
over multiple read/write cycles image degradation does occur. The problem with
domestic and semi-professional formats is that more emphasis is placed on compact
tape size and longer play-time, to the detriment of image quality. In particular, two
techniques are widely used in such systems: “Colour-under” (for video bandwidth
reduction) and Slant Azimuth recording (for increasing track densities). Both of
these were introduced by Sony (See [Wood86]).

Recent advances in digital video recording may provide a solution to the prob-
lem of image quality. Much of this work is still at the experimental stage (e.g.
[Bell86]) but recent moves towards the standardisation of formats [Wilk87] may
result in Digital Videotape Recorders (DVTRs) gaining wider acceptance. Digital
recording has many advantages over analogue recording, not least the ability to
use error detecting and correcting codes [Gill87]. These allow loss of data caused
by tape dropouts—relatively large areas of tape in which the magnetic coating is
defective—to be corrected such that a much lower proportion of recorded frame
information is lost. In such a system it also makes sense to implement effects
such as stop- and slow-motion digitally (i.e., using frame storage) rather than by
mechanical tracking systems.

Such technology, however, is not yet widely available outside of the broadcast
studio and the basic requirement of accurate track placement during recording
remains (and so, therefore, does the difficulty with single frame recording).

Finally, mention should be made of magnetic videodisc technology [Robi81].
This was developed specifically for stop- and slow-motion before such effects be-
came practicable on helical-scan machines with AST. A typical system used a
16 inch diameter disc with a nickel cobalt recording surface. The usable recording
area was a 4.5 inch band which allowed for 450 concentric tracks on each side,
with one field recorded per track. The principal disadvantage of this technology
was the short sequence length attained (18 seconds at 25 fps), although this was
sufficient for the intended applications such as slow motion replay of sports events.
- The technology has now been superceded by more advanced helical scan videotape
recorders. However, a number of its more elegant features have survived and can
be identified in some current optical and magnetic disc technologies.

2.3.4 Videodisc and Optical Memory

One of the most promising developments over recent years has been that of optical
storage. A variety of technologies exist today, all of which have evolved from
the analogue videodisc systems that first appeared during the 1970s. Current
systems represent the state of the art of a technology whose origins can be traced
back to work started in the late 1950s. As the name suggests, such discs are
written and (usually) read optically, normally by a low powered semiconductor

22 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

laser diode whose beam is focussed to a spot size of around 1um. Work on optical
storage was largely motivated by a desire to produce an inexpensive consumer
video replay system. The concept was exactly the same as that of the vinyl audio

_record; thousands of inexpensive discs would be replicated with a pressing process

employing stampers made from an original master recording. The first videodisc
system to use a laser for both mastering and replay was demonstrated by Philips in
September 1972 and a number of domestic videodisc systems followed. However,
these were never commercially successful, principally because they were in direct
competition with the emerging videotape technology®. .

Work on a digital disc system for optical data storage was begun in 1975. This
was the forerunner of the current generation of optical disc drives. The arrival of
these drives has been much heralded over recent years (e.g., [Bart78,Stra83,Fuji84]),
but many of the associated claims and predictions (such as the imminent demise
of magnetic recording) have not been realised. Current limitations, in particular
the write-once nature of the media, have so far severely restricted the number of
application areas.

In addition to the basic distinction between analogue and digital recording of

~ data, many other technological variations are possible. These include differences

in the types of media used and the means by which data are recorded and read,
and are discussed in detail in [Isai85]. Broadly speaking optical storage systems
divide into two categories: analogue mass-replica discs which are pre-recorded and
read-only, and digital optical read/write discs which are supplied “blank” and
written by the disc drive’. In keeping with convention, this dissertation uses the
term videodisc to refer to the former and the term optical disc to refer to the latter
type.

Videodisc (Analogue)

A video signal is represented on the information plane of a videodisc as a series of
tiny pits moulded into a plastic substrate. This surface is made highly reflective by
coating it with aluminium and is covered by a clear layer to protect against dust,
scratching, and oxidisation. Recording relies upon a process of diffraction; much
less light is reflected from the base of a pit than from the information plane surface
because the size of the pits, and in particular their depth, is accurately controlled
to be some fraction of the laser wavelength (typically A/4 or A/8). A frequency
modulated video signal is carried on a videodisc by variations in the pit lengths
and inter-pit gap. Normally two audio channels are also recorded, superimposed
on the video signal. Information is recorded along a single spiral track, similar to
that on an ordinary audio LP record and the signal is replayed from the centre
outwards. Two types of videodisc are used. With a Constant Angular Velocity

®Optical disc techriology has survived in the domestic market in the form of the digital au-
dio optical disc—more commonly known as the Compact Disc (CD). The first CD system was
demonstrated by Philips in 1979. '

"Because of the preponderance of systems employing write-one media the acronym WORM
(Write Once Read Many) is often used to describe such systems.

2.3. FRAME STORAGE DEVICES : 23

(CAV) videodisc, the disc is rotated at a constant speed. Typically in such systems
one frame is recorded for each revolution and the speed of rotation is set such that
each revolution takes exactly one frame time—i.e., 1500rpm for PAL/SECAM (25
revs, per second) and 1800rpm for NTSC. The advantage of CAV is that special
play modes are easy to achieve. For example, still frame is produced by continually
skipping back one “track” at the end of a frame so that the frame is read again
during the next frame time. With the alternative Constant Linear Velocity (CLV)
videodisc the rotation rate is decreased as the read beam tracks towards the disc’s -
outer edge. This results in a uniform linear packing density across the whole disc
surface and a corresponding increase in total playing time compared with the CAV
videodisc. The disadvantage of CLV discs is that they are restricted to forward
play at the full frame rate. , _

The principal drawback of videodiscs for use in a stored-frame animation sys-
tem is that a complex mastering process is required to write video data to a
disc. The videodisc process was specifically designed to enable large numbers of
duplicate discs to be produced easily and cheaply. One-off production is highly un-
economical. Also, the mastering process normally requires that data be recorded
in a single operation and at video rates. This is necessary for producing a contin-
uous spiral track [Isai85, Chapter 2] and mastering at less than full rate has been
found to be difficult. Recall that the key objective of stored-frame animation is to
remove the need to generate frames at frame rates. This clearly doesn’t apply to
videodisc.

Another drawback of analogue videodiscs is that image quality tends to be
lower than, say, videotape. This is because the high areal packing density results
in arelatively high percentage of dropouts and these appear as noise in the replayed
sequence.

Optical Disc (Digital)

‘The problems encountered when writing frame data to a videodisc are overcome
with the optical disc. Optical discs are designed to appear outwardly similar to
the magnetic disc drives with which they are intended to compete. Data on an
optical disc are recorded on a spiral track, but this is made to appear similar
to a magnetic disc with tracks and sectors. Control information is recorded in
each sector along with the data bits for the purposes of synchronisation, sector
identification, error control, etc. Again, this is similar to magnetic disc technology.
Optical discs are supplied pre-formated, (that is, with tracks already marked and
sector header information written). The pre-grooving technique employed for this
was developed by Philips [Bult79)] and is normally accomplished by a mastering
process similar to that used for videodiscs.

A variety of media and recording methods have been developed for optical discs.
However, nearly all of the current commercially available drives employ ablative
thin film discs in which information is represented in a similar way to that for
the videodisc. Writing is accomplished by modulation of a higher intensity record
beam. Where this beam hits the information surface a highly localised heating

24 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

- occurs resulting (irreversibly) in the formation of a either a pit or raised bump
(depending upon the medium). The most commonly employed material for the
film is the element Tellurium, usually used in an alloy form.

Optical discs are of particular interest to the design of an animation system
because of their large storage capacities (1000 MBytes on each side of a digital
12 inch disc is typical), made possible by the high data packing density. Such
systems are now available commercially, three of the earliest were from Thomson-
CSF (Gigadisc 1001 series), Hitachi (301 series) and Optical Storage International
(LaserDrive 1200). The principal disadvantages relate to transfer rate and cost.
Typical transfer rates are in the range 3—5Mb/s, much lower than the rates achiev-
able with equivalent magnetic storage. Cost is a particular problem with current
discs due to their write-once nature. Such discs cost over £500 each in 1986, a
price at which an economic implementation of an interactive animation system
was simply not feasible.

Future Trend_s

-Optical storage has been under development for many years and during this pe-
riod considerable experience has been accumulated. Further technological im-
provements are already evident in the most recent generation of drives which are
physically much smaller than earlier systems. At least nine major manufactur-
ers now produce 5% inch optical drives. These have storage capacities of between
200MB and 800MB per disc and transfer rates in the range 2.2—6.5Mb/s.

The major limitation with present optical storage is the write once nature
of the media and much research is currently underway to find erasable alter-
natives. Candidate media include magneto-optical, chalcogenide films, thermo-
plastics, photochromics and photoferroelectrics (see [Bart78] for further details of
these). The most promising technique currently is magneto-optical recording (a
combined magnetic/optical process) and at least two manufacturers now produce
magneto-optical drives. Details of this technique are discussed by Nomura et al in
[Nomu87]. A number of question marks remain with many of the proposed new
media. Problems to be addressed include limited data retention, limited disc life
and partial destruction of recorded data during reading (i.e., a limited number of
read cycles).

2.3.5 Magnetic Disc

Perhaps the most familiar type of mass storage device for computer applications
is the magnetic disc drive. The discussion below is limited to the most commonly
found form of this device, the Winchester disc [Wood86).. The first Winchester
disc was developed by IBM (the model 3340) and appeared in 1973. Since then.
the adoption of such discs has become widespread. The principal characteristic of
this technology is the use of a hermetically sealed head and disc assembly (HDA)
which protects the operating mechanism and data surfaces from all external con-
tamination. At manufacture the drive is assembled in an ultra-clean environment

2.3. FRAME STORAGE DEVICES 25

and during normal operation air is continually re-circulated and filtered internally
to ensure no unwanted particles reach the data surfaces or heads. This arrange-
ment allows the head-disc gap to be reduced to a tiny distance (typically 0.2 to
0.4 pm) with a corresponding increase in the data packing density. Also, because
the discs are not removable, much tighter mechanical tolerances can be achieved.
Capacity is further increased by the use of multiple (up to 10) disc platters, each
with its own read/record head. _

The years since 1973 have seen a remarkable increase in the performance and
capacity of Winchester drives. This can be largely attributed to developments in
two main-areas. Firstly, improvements have been made to the materials used for
both the recording surfaces and the heads. The most common recording media
are based upon particulate iron oxide. More recently, however, manufacturers,
particularly those of small drives, have turned to metallic film media (e.g., Nickel
Cobalt) which can support much higher packing densities. Such drives usually

employ thin-film heads rather than the more common ferrite heads. The second

main area of development has been with the head positioning mechanisms used
for tracking and seeking. The greater track densities required for higher capac-
ity drives demand much more sophisticated control over head positioning if data
are to be recovered accurately and access times are to be fast (i.e., seek delays
low). For track densities of more than about 1000 tracks per inch (tpi) a linear or
rotary voice-coil actuator is used in place of the simpler stepper motor found in
lower capacity drives, and a servo mechanism employed to control head position-
ing. Generally one disc surface and head is dedicated to servo information. The
special “quadrature” pattern recorded on this surface during manufacture is used
to provide track following during normal tracking and track crossing information
during seeks as well as other timing information. In higher performance drives the
control system within the servo loop is normally intelligent (i.e. microprocessor
based). For example, during a seek to a new cylinder, the driver current applied
to the voice-coil actuator which governs the acceleration and deceleration phases
of the heads is carefully controlled according to a pre-determined profile. The
result is that the seek time is minimised across all seek distances and the heads
are brought to rest accurately over the new cylinder with a minimal chance of seek
error. :

Winchester drives are available from a large number of manufacturers with a
wide range of capacities and performance. Drives are produced in various sizes,

most commonly 14 inch, 8-10 inch, 5} inch and, most recently, 3% inch. Available

capacities vary from a few megabytes to well over one gigabyte; 1 GB is available
even on medium range drives (e.g. the 8 inch Sabre-1230 from Control Data),
and more recently on 5% inch drives. A typical transfer rate for a 5% inch drive is
5-10Mb/s, but 15Mb/s drives are now emerging (e.g. the Maxtor XT-8000 series).

In larger drives transfer rates of up to 24Mb/s are available, and 45Mb/ s has been
demonstrated in prototype form by NTT [Wood86).

26 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

Parallel Transfer Drives

The data transfer rates cited above represent the currently obtainable limits of
performance, obtained only with much innovation and considerable design effort on
the part of drive manufacturers. For even higher performance alternative strategies
must be sought. One recent development of particular relevance to the design of an
animation system has been the emergence of parallel transfer disc drives (PTDs). -
In such systems data are transferred from several heads in parallel instead of the
more usual one head at a time; this results in an immediate n-fold increase in the
transfer rate (where n is the number of participating heads).

At the time of writing parallel transfer drives are only available from one manu-
facturer, Fujitsu (with models M2350A (474MB) and M2360A (689MB)), although
Ampex and Century Data have also carried out development work in this field.
The Fujitsu drive is based upon their standard 10% inch Eagle drive which is aug-
mented with additional logic to support the multiple data channels. Data are

“transferred using either 1, 4 or 5 channels with peak transfer rates of 19.7Mb/s,
78.6Mb/s or 98.3Mb/s respectively (for the M2360A).

Maultiple Disc Drives

A variation on parallel transfer drives is to employ multiple ordinary drives oper-
ating in parallel. In [Kim86] Kim enumerates the advantages of a multiple drive
system over alternative approaches and presents an analysis of the performance of
such systems. The advantages include improved system performance and reliabil-
ity. Reliability can be improved by the adoption of a dual-mode error correction
scheme which not only detects and corrects the normal single bit errors but also
allows correction when entire bytes are lost, that is, when one of the drives fails.
The modular nature of the multiple drive approach means that a faulty unit can
be replaced without affecting the remainder of the system.

Suitable disc controllers have appeared recently. An example is the Concept 51
from Storage Concepts which can handle transfers from a row of between two to
nine 5% inch drives in parallel, giving a sustained data rate of up to 135Mb/s.
The controller supports up to eight such rows of drives (i.e., 72 drives maximum).
A maximal system can have a total capacity of up to approximately 50 GBytes.
A disadvantage of this approach, compared with a PTD, is the potential high
cost, largely due to the duplication of mechanical components (especially arm and
actuator mechanisms); for the system just described the cost of drives alone could
exceed £400,000 (1987 price).

The design of a controller is simplified if the drives are mechanically synchro-
nised to reduce data skew. A number of drives now provide control signals to
facilitate this. These signals are derived from spindle speed and position informa-
tion generated by the drive and form part of the spindle motor’s servo feedback
loop. With such a system skew can be limited to less than 3° ([Kim86]). requiring
only a few hundred bytes of deskewing buffering. However, synchronisation is not
necessarily required for the implementation of an animation system. Ng [Ng88] has
also considered the design of disc arrays. In his analysis he makes the observation

2.4. PREVIOUS STORED-FRAME ANIMATION SYSTEMS 27

that, whilst there is a performance penalty associated with unsynchronised drives,
for sustained data transfer data skew represents only an initial overhead which
becomes insignificant in relation to the data transfer time. More precisely, the
average time taken before all drives have come online does increase, but there-
after all drives supply data continuously and there is no outward difference from
a synchronised array.

2.4 Previous Stored-Frame Animation Systems

2.4.1 Introduction |

In the remainder of this chapter some previous approaches to the design of a
stored-frame animation system are presented. The number of systems that have
been described in published material is actually quite small and the following
discussion represents what is believed to be a complete survey of work relevant
to that presented later in this dissertation. A number of potential frame storage
devices have already been considered for their suitability for use in an animation
system. Referring back to Figure 2.1 (page 15), frame storage devices may be
divided into two classes according to their data retrieval rates: (1) those for which
video rate bandwidth is available directly, and (2) those for which less than video
rate bandwidth is available. These two cases aré now examined in turn.

2.4.2 Systems Using Video Rate Storage

This class obviously includes those devices such as film projectors and videotape
recorders which are specifically designed for video-rate replay. It has been men-
tioned that these devices are widely used for the production of frame-by-frame
animation, and some of their shortcomings have already been examined. This
approach— Off-line Playback—is of marginal interest to the current discussion be-
cause of its inflexibility; it generally provides only a straightforward replay facility.
A less well understood and more challenging approach is to embed the frame stor-

- age device in some form of computer system with the aim of providing much greater

control over the frame recording and replay processes. This provides the potential
for a much higher degree of interaction with the animated sequence during replay.

Movie Maps

An example of this more flexible approach is the Movie-Maps system developed
at MIT [Lipp80] which employs two videodisc players for frame storage. The
purpose of the system was to investigate the degree to which interaction could be
obtained with a pre-calculated image sequence. Thus, it was an early attempt at
what is now called Interactive Video. Movie-Maps is very much an application-
specific system. The map of the title refers to a model of a town. This space
can be explored by “driving” through the town interactively, with the route and
speed being specified entirely by the user. The frames in the animated sequence

428 - CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

were obtained by filming a drive through an actual town, using four 35mm single-
frame movie cameras mounted at 90° to each other in a horizontal plane. The
filming was restricted to certain times of day and the route carefully planned in
order to minimise discontinuities in the sequence caused by such things as abrupt
lighting changes or shadow movement. The completed film was used to master
the analogue videodiscs. One frame was recorded for every 10 feet of travel, which
corresponds to a speed of approximately 200 miles per hour when replayed at
30 fps. The actual replay system allows animation rates of between 0 fps and
10 fps (68 mph maximum). This variable speed operation is achieved by recording
one frame per videodisc “track” and by using track skipping in order to repeat
frames (See Section 2.3.4). As the user “drives” down a street the frames for that
view are fetched from one videodisc player. During this time the second player is
instructed to search for the frame sequences corresponding to the streets reachable
from the next upcoming junction. Should the user decide to make a turn at the
junction the frame sequence for the new street is selected and the videodisc players
reverse roles. (The implementation of this scheme is greatly helped by the gridded
nature of the town’s layout.) Also recorded on the videodisc are sequences of
computer synthesised views of the same town that provide an alternative way of
exploring the map. These were generated off-line, frame-by-frame, and recorded
on the videodisc at the same time as the real sequences. One of the goals of
the Movie-Maps project which was to explore the interaction between computer
generated and real sequences. :
Videodiscs provide access to a vast amount of stored information, but their
read-only nature means that material recorded on a disc cannot be altered after
manufacture. However, if this material is randomly accessible then there is the
potential to view it in a variety of ways and in an order not pre-determined at the
time of recording. This is the basis of interactive video. As already observed in
Chapter 1 fully random frame selection is generally impossible because of seek and
transfer constraints imposed by the storage device. Consequently, a more typical
solution is to allow a selection only from a fixed number of sequences at a limited
number of decision points (e.g.; at road junctions in the Movie-Maps system).
The major application areas of interactive video so far have been in education and
training. One of the first commercial interactive video systems available was the
Doomsday Project developed jointly by the BBC and Acorn Computers Ltd. and
launched in 1986. This is based upon a Philips Laservision videodisc player and
uses a microcomputer to control the system. The project aimed to re-create the
famous Doomsday census of 900 years earlier by gathering and storing information
about many aspects of life during the 1980s in Britain. This information takes the
form of digitised stills, text and figures and short video sequences which can be
browsed interactively using the microcomputer. The Laservision disc is interesting
in that it stores both digital and analogue information—the digital partition is used
- for text, stills and figures whilst the analogue partition is used for video segments.
Video sequence replay is a less central element than in the MIT system, but the
project is nevertheless a good illustration of the aims of interactive video. -

2.4. PREVIOUS STORED-FRAME ANIMATION SYSTEMS 29

2.4.3 Systems using Non-Video-Rate Storage

When a sufficiently high data retrieval rate is not available from the storage device
some action must be taken to ensure frame data can be transferred quickly enough
for proper display update. Two options are considered effective: (1) modify the
storage device in some way in order to increase available transfer rate; or (2)
reduce bandwidth requirements by compressing frame data prior to recording. In
the latter case a key function of the system control block of Figure 2.1 must be
the restoration of frames to their original form as they are recovered from the
storage device. This must be performed at frame rates (i.e., one frame every
40ms, typically). In the following subsections examples of both these approaches
are given.

Strategy 1: Modify Storage Device

The two most promising candidate classes of non-video-rate device under con-
sideration here are magnetic and optical (i.e., digital) disc drives. As already
mentioned, the most effective way of increasing transfer rate is to employ parallel
transfer across multiple data heads (which may or may not imply multiple disc
drives). Other techniques, such as increasing areal packing densities or spindle
speed, can also be considered, but these are harder to implement and the gains
are small by comparison.

The BBC Television Animation Store

Much of the still and animated graphics seen on television is produced by a device
called a film rostrum camera or animation stand. Conceptually this is a simple
piece of equipment consisting of a film camera mounted over a flat table surface
upon which artwork is placed. The table can be moved horizontally in z and y
and rotated in a horizontal plane about a vertical axis through its centre, and the
camera can be raised or lowered on its vertical mounting column. The camera can
operate in single-step mode, allowing an opportunity to modify the artwork be-
- tween exposures, or at normal speed. With this system animation of considerable
complexity can be achieved using sophisticated multi-plane and multi-exposure
techniques, very much akin to those used for 2-d cartoon cel animation in the film
industry.

The use of film in this process has a number of disadvantages. In particular
processing of the film is necessary before the animation can be viewed. This
makes it difficult during shooting to gain an idea of how the final animation will
look or to correct any mistakes. Thus, putting a sequence together can be a time
consuming process requiring many shoot/process/view cycles. Also the use of
- film inserts in a programme which is otherwise live or videotaped introduces a
noticeable change in image quality® as well as requiring extra (telecine) facilities.

8This is due to a significant change in perceived flicker as the switch is made between the 24
frames per second of film and the 50 fields per second of video.

30 ' CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

Tt was for these reasons that, as early as 1976, the BBC considered replacing the

film camera with a TV camera as a way of producing video sequences directly. The
initial requirements of a new system were that it should have at least the power
and flexibility of its film based predecessor. ‘In the event the resultant system,
the Television Animation Store [Wolf82,Dure84,Kirb88], easily met and exceeded
these requirements with considerable improvement in the speed of production and
range of effects which could be achieved.

For the new system a number of requirements were identified. Firstly, a stor-
age device was required which would allow frames to be written at both full rate
and frame-by-frame (i.e., single captured frames). This was to be possible without

recourse to expensive videotape editing facilities. Secondly, it should be possible

to preview and edit sequences. Again this requires access to the storage device on
a single frame basis, as well as full rate replay. Thirdly, a digital frame represen-
tation was desired in order to minimise image quality degradation over multiple
edit cycles. Finally, a reasonable sequence length was to be possible in order to
minimise the amount of post-processing required for the production of the final
sequence. These requirements led to the adoption of a magnetic disc drive for
frame storage. :

The drive used was an Ampex DM331 which has an eleven platter removable
disc pack. The modifications made to the drive in order to meet the required
performance have been described by Durey ([Dure84]) and are summarised below.
Frames in the system are represented in digital YUV component form (sampled
at Y=12MHz, U,V=4MHz, 8 bits per sample®). This representation requires a
data rate of 160Mb/s. The Ampex drive has 18 data surfaces, each with its own
record/replay head. The 18 heads were split into two groups of 9 each and nine
sets of record/replay logic were provided. This allowed data to be read and written
in parallel on nine channels using one or other of the head groups. Also, the data
rate per channel was increased by 50% to 15Mb/s, giving an overall transfer rate
of 135Mb/s." In order to carry 160Mb/s frame data at this rate two bandwidth
reduction techniques were applied. Firstly, data are not recorded for 11pus out of
the 12us line blanking periods, giving a reduction to 132.5Mb/s. During replay this
information is reconstructed externally. Note that field blanking periods cannot be
removed since these are required to maintain synchronisation during head/track
switches at the end of a field. Secondly, frames are recorded at 7% bits/sample
(i.e., alternate 7 and 8 bit samples) using a technique known as error feedback to
account for the lost least significant bit on alternate samples. This gives a further
reduction to 124.22 Mb/s and leaves 8% of the disc bandwidth available for error

~ correction data.

A side effect of increasing the data rate per channel was that the raw bit error
rate was also increased to between 10~ and 10~5. The required rate for the applica-
tion was 10~° or better. To account for this a combined error detection/correction
and concealment scheme was used. For detection/correction a Hamming double
detecting/single correcting code was used. The basis of this scheme is to split data

9These sampling rates do not conform with the CCIR proposed standard (see Section 2.2) as
this work preceded the publication of Recommendation 601.

| 2.4. PREVIOUS STORED-FRAME ANIMATION SYSTEMS 31

into blocks and add protection bits per block. To save bandwidth only the top
four bits of each sample were protected in this way as a fair degree of corruption
of the lower order bits can be tolerated without significant image degradation.
Uncorrectable samples were concealed by replacing them with values interpolated
from their neighbours. The organisation of the disc is such that these neighbouring
samples are always on different surfaces to the erroneous one, reducing the chance
that they too will be corrupted.

The rotational speed of the disc was also altered and locked to the field rate so
that one complete field could be transferred per revolution.. Head switches and/or
seeks to the next cylinder were made during the field blanking interval. Pairs of
tracks are used to store frames. Each pair can be viewed as a fixed sized “frame
slot” which is either allocated or free. This arrangement considerably simplifies the
‘process of editing frame sequences. With the configuration described above, the
disc had a total capacity of 815 frames (1630 fields) which gave a total replay time
of just over 30 seconds. This was considered adequate for the intended application
of sequence assembly and viewing.

The modified Ampex drive forms the frame storage sub-system of the Television
Animation Store. In the complete system facilities are required for loading and
viewing frames, video mixing and system control. Of particular interest is the
control system which manages the overall operation of the Animation Store to
allow frame input, editing, previewing, etc. The operation of the control system
has been described by Kirby [Kirb88].

Overall control is provided by an LSI 11/23 processor. The system is menu
driven using a specially designed control panel for function selection. There are
five main stages required for the production of any piece of animation: (1) data
entry; (2) disc space allocation; (3) frame loading; (4) animation assembly; and (5)
sequence replay. During the data entry stage a specification is given of the required
animation. This gives details of the required frame ordering, the display duration
for each frame in the sequence, mixing effects, etc. From this specification the
required amount of disc space can be allocated. It is a requirement that a sequence
be held as a contiguous block of cylinders because the 1.5ms track to track seek
time means that only one track may be crossed during field flyback periods. Since
-2 number of sequences may be held on the disc at any one time, a first-fit strategy
is used to find a sufficiently large free block (re-arranging if necessary to reduce
fragmentation). During stage (3) frame data are written to the disc from the video
rostrum camera (or other source). Because the disc only has one replay channel,
any effects involving video mixing, matting, etc., from multiple frame sources must
be calculated as a pre-processing stage prior to replay. This happens during stage
(4) and the final sequence is written to the previously allocated block. Finally,
the sequence may be previewed and, if satisfactory, recorded to videotape. To edit
sequences, changes are made to the specification in stage (1) and the process of disc
allocation and sequence assembly are automatically repeated. It should be noted
that to save disc space only single copies of repeated frames and sub-sequences
are held on disc. Frame repetition is achieved using frame buffers. In the case of
sub-sequences the first and last frames are buffered, allowing time for seeking back

32 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

at the end of each repetition and for skipping to the continuation point at the end
of the repetition.

If the Television Animation Store was being redesigned today an obvious al-
ternative approach would be to employ a commercially available parallel transfer
drive (such as the Fujitsu drive discussed in Section 2.3.5) or multiple Winchester
drives. The principal difficulty with modifying the disc drive is that it is not a
trivial process, possibly requiring the assistance of its original manufacturer (as
was the case for the Animation Store, for example). The advantages include im-
proved performance and a potentially simplified system design. An example of the
latter is where the disc rotational speed and bit transfer rate can be modified to
introduce a fixed relationship between frame data and disc layout (e.g., one field
per rotation).

Magneto-Optical Disc Video Recorder

An experimental system along similar lines to the BBC system has been described
by Nomura et al [Nomu87] but employing a pair of 12 inch magneto-optical disc
drives instead of a magnetic drive. Again the characteristics of the drives and
media have been carefully studied and the drives modified to improve their per-
formance and tailor them to the particular application. Similarly, YUV encoding
. was used, but at a slightly lower sampling frequency. The single recording sur-
face on each of the two drives is read by two heads, one reading the inner tracks
and the other the outer tracks. The transfer rate is 22Mb/s from the inner heads
and 33Mb/s from the outer heads. Thus, 55Mb/s is available per drive giving
a total transfer rate of 110Mb/s over all four channels. The raw bit error rate
also increases as a result of modification (105 is quoted at 10Mb/s transfer rate)
requiring the use of Reed-Solomon error correction codes. The overall capacity of
‘the system is claimed to be 6.5GBytes or 18,000 frames, corresponding to a replay
time of 10 minutes at 30 fps.

Strategy Two: Compress Frame Data

(a) Software Packages
ANIMA II and ANNTS

- ANIMA II [Hack77,Magn85a] was developed at Ohio State University in the mid-

1970’s and is a good example of an early 3-D animation system. The system
provides an environment for: (1) creating and manipulating (editing) polyhedral
models—the objects that are animated; (2) producing a script for describing the
required animation in terms of translations, rotations, etc.; (3) production of the
animated sequence from the model description and script; and (4) replay of com-
pleted sequences in real-time in order that they may be viewed (or recorded on an
ordinary videotape recorder). It is this final stage which is of particular interest
‘here. The system is implemented on a PDP 11 /45 minicomputer and written in
assembler code.

2.4. PREVIOUS STORED-FRAME ANIMATION SYSTEMS 33

Image files produced by stage (3) above are converted to a runlength format
(see Chapter 3) and stored on a 44Mword (16 bit words) disc drive connected to the
PDP 11/45. Frames are stored contiguously as this is a requirement for playback.
For replay runlengths are fetched from disc over the system bus (UNIBUS) and
fed to a decoder unit, via buffers in the 11/45’s main memory. Resource conflicts
during transfer are automatically handled by the UNIBUS priority arbitration
scheme. Simple hardware in the decoder unit decodes the runlengths and produces
a broadcast resolution (NTSC) signal which may be used directly or recorded.

The main problem with the replay mechanism is its limited performance. The
available disc transfer rate of around 5Mb/s is a bottleneck that limits the number
of runs which can be transferred per frame and hence the image complexity that
can be obtained. All images are composed of constant shaded planar polygons; no
other modelling primitives are available. There is no smooth shading, transparency
or texturing, and aliasing was reported to be a problem. Also, images cited as being
“typical”, and used to evaluate system performance, occupy only about 1/4 of the
available display area, with the background set to black.

Some of the shortcomings of ANIMA II were addressed in a later system called
ANTTS [Csur79]. This aimed to support images of much higher visual complexity
and offered a much richer set of modelling primitives: polygons, pointsand patches,
as well as procedurally defined objects. A similar playback scheme was used,
that is, generation of NTSC video from runlengths held on disc. For the more

- complex images, which exceeded the DMA transfer capability of the (proposed)

VAX 11/780 host, runs could be transferred from an external core memory. Such
sequences had to fit into the available memory capacity of around 6Mbytes.

The Differential Compiler

A different image compression approach is used in a more recent system described
by Denber and Turner [Denb86]. In this system a technique called Frame Replen-
ishment Coding [Prat78] is used that achieves compression by exploiting temporal
coherence within animated sequences. Temporal coherence is a property of many
sequences that for any given frame the following frame is likely to be substantially
the same; indeed, as pointed out in [Denb86], such a property is a requisite for
smooth animation. Frame replenishment coding works by recording differences
between frames rather than the frames themselves in the expectation that the
former will require less storage.

'The system is implemented in Interlisp and runs on a Xerox 1108 workstation.
Facilities are provided for entering and editing of frame data, but these are not
relevant to this discussion. More interesting are the elements which process the
frame data—the differential compiler and the real-time interpreter.

The 1108 workstation has a bitmap display which means that all animation
is restricted to binary frame data. Frames can be any size up to a maximum
determined by the resolution of the display (1024 x808 bits). Encoding of frame
data is performed by the differential. compiler which operates in two phases. In the
first phase the differences between each pair of frames are found. This comparison

34 CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

is done in terms of primitive blocks which are 16x16 sub-arrays of bits. For each
pair of corresponding blocks if any difference is found then the block from the later
frame is saved, along with its location, on a list of changes for that frame. At the
end of the pass the original frames are discarded as the change list is sufficient to

. enable a frame to be created from its predecessor (which in turn can be created

from its predecessor, and so on). The change list may contain hundreds of primitive
blocks and for so for efficiency a second phase is invoked in which adjacent blocks
are merged to form larger blocks. This merging process has two stages: primary
and secondary merging. The result of this phase is a smaller set of rectangular
update blocks which is known to be sufficiently small to allow all the updates to
be applied within the one frame time available.

The real-time interpreter facilitates replay of completed sequences. The change
list is held in memory and the 1108’s bitblt operation used to apply the set of
updates for each frame. An artificial delay is added when a frame can be updated
in less than one frame time in order that the frame rate is kept constant. The
delay can be specified on a per-frame basis to allow for a variable frame rate if
required (this can be used to show title frames, for example). Note that the real-
time interpreter is very simple because all the hard work has been done during
the compilation stage. This is a general design principle for a real-time playback
system: if there is to be a disparity between the coding and decoding stages then
effort should be concentrated in the coding stage in order to simplify the (time-
critical) decoding stage.

' Performance restrictions are imposed on this animation system by limitations
associated with the 1108 workstation, and in particular its bitmapped screen, bitblt
unit and the memory size. The 1-bit deep screen restricts the type of image to black
and white drawing. The bitblt operation has a limited bandwidth which limits the
number of changes that can be made per frame and hence the complexity of the
animation. The amount of real memory (3.5MB) places a constraint on overall
sequence length. This can be extended by including virtual memory, but to do so
aﬁ'ects the achievable frame rate because of paging overheads.

(b) Hardware Approaches

Many of the performance limitations of the two approaches just outlined can be
overcome with the provision of custom hardware for critical stages in the replay
process. In particular, more powerful image compression techniques can be imple-
mented using custom frame decoding hardware. This realisation was one of the
motivations for the design of a new hardware based animation system; it is this
system which is discussed and analysed in the remainder of this dissertation. In
Section 2.5 the aims of this research are set out. Recently a system based upon

similar lines, but with different objectives, has been announced, and this system
is discussed first.

' 2.4. PREVIOUS STORED-FRAME ANIMATION SYSTEMS 35

- " .Digital Video Interactive
Digital Video Interactive (DVI) was developed by RCA (prior to its takeover by

B General Electric) at its David Sarnoff Research Laboratory in Princeton, New

Jersey. The aim was to produce a system which could replay video from a CD-
'ROM, that is, a 5% inch digital read-only optical disc drive. There is a considerable
market for a system capable of producing long-play, high quality video from a
compact, inexpensive and mass-reproducible- medium. The principle application
areas targeted by General Electric, along with its new collaborators (Microsoft,
Intel and Lotus), are those of education, training, entertainment and retail sales.
A similar system, known as CD-I, is under joint development by Sony and Philips,
although this is intended to be purely a consumer product.

Storing and retrieving video rate data from a CD-ROM represents a consider-
able research challenge because of the relatively low transfer rate available (typ-
ically 150KB/s). A high degree of compression is also required to achieve a long
playing time. In DVI a very complex coding algorithm is used in order that de-
coding may be done relatively easily and therefore quickly. The complexity of the
coding algorithm is such that a high performance parallel processor (a Meiko Com-
puting Surface) has to be used to achieve compression of sequences in a reasonable
time. The details of the coding algorithm have not been published, although it
is believed to be a form of Adaptive Differential PCM (ADPCM) (see [Netr80]
or [Jain81]). The scheme makes considerable use of inter-frame (temporal) coher-
ence. The claimed compression ratio is 120:1 for motion video, which represents
an incredibly high degree of reduction. This must be placed in context, how-
ever. In particular, the figure quoted assumes source frame of 512x400 pixels at
24 bits/pixel and 30 fps. But a number of bandwidth techniques can easily be
applied prior to compression which would give considerable savings without sig-
nificantly affecting image quality. For example, DVI uses YUV component coding

for pixel values. The colour components (U,V), however, are sub-sampled by a
factor of four which gives a reduction to 12 bits/pixel with negligible loss in image
quality. Another technique, used during replay, is to generate both fields of a frame
from the same data. This yields a further halving of bandwidth requirements.

The video decoding hardware is based around a two chip set known as the
Video Display Processor (VDP). One of these (VDP1) is a 12.5 MIPS microcoded

processor which implements the decompression algorithm. Decoded frames are:

written to a video RAM (VRAM). The second chip (VDP2) reads this memory
and refreshes the screen. Host access to the VRAM is available via VDP1 for the
purposes of overlaying text and graphics onto the video data.

One disadvantage of the system is that it is effectively read-only, even though
writable media (such as magnetic disc) could be substituted for the CD-ROM.
This is because the very high complexity of the compression algorithm precludes
individuals coding their own sequences. It is currently proposed that video coding
be offered as a service at a number of centres in the world. A tape containing the
sequence to be recorded would be sent to one of these centres and a recorded disc
returned. Work is under way on a simplified real-time encoding implementation

36 _ ‘ CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

based around the VDP1 processor. However, this will give poorer results than
those obtained by the full algorithm, and is intended mainly for previewing prior
to final sequence compilation. (Sequences generated in this way are replayed at a
lower frame rate and have lower reconstructed image quality.) A second problem
is caused by the coding scheme itself due to the stringent demands for high com-
pression placed upon it. In certain situations, such as the rapid motion during a
camera zoom, there is a noticeable degree of image degradation introduced by the
coding algorithm. |

2.5 Motivations for a New Animation System

The shortcomings of previous stored-frame animation systems together with a
number of other observations formed the motivation for the design and construc-
tion of a new hardware animation system. These observations can be summarised
as follows:

1. Many previous animation systems suffer severe performance limitations due
to their having been implemented on top of an existing machine architec-
- ture, often a general purpose processor. Further, the majority of previous
systems have been implemented entirely in software, with no specialised
hardware support whatsoever. These observations suggest that considerable
performance benefits may be gained from the judicial use of custom hard-
ware within any new animation system design, a view attested to by the
performance of the BBC Television Animation Store.

2. No previous system had made a significant attempt at improving system
performance through the use of a hardware-based implementation of a com-
pression algorithm as a central architectural feature'®. Such an approach
contrasts with the alternative strategy of storage device modification, exam-
ples of which already existed (see Section 2.4.3).

3. Real-time playback is not a new technique, but from time to time it is valu-
able to re-evaluate ideas in the light of technological improvements. Since
the design of many early systems considerable advances have been made
in display processor architectures, semiconductor technologies and memory
systems (both primary and secondary). With secondary storage in particu-
lar, a number of new and promising technologies have emerged over recent
years—optical storage is a good example. The observation was made that the
capacities and transfer rates of current-generation devices are such that an
‘implementation of an animation system becomes feasible with only a small
to moderate degree of image compression.

10This was the case at the time of the new system’s inception. It should be emphasised that

Digital Video Interactive (DVI) was not announced until 1987, two years after the start of work
on the new system.

2.5. MOTIVATIONS FOR A NEW ANIMATION SYSTEM 37

4. A new and powerful display processor called Garland [King88] was under de-
velopment within the graphics group at the University of Cambridge Com-
puter Laboratory. Garland is designed to form a graphical back-end to a
larger system and provides support, in the form of video-rate communica-
tion links, for a variety of front-end processors. A hardware stored-frame
animation system was an obvious candidate for one such front-end proces-
Sor.

5. The observation was made that whilst graphics workstations are universally
employed for the generation of frame sequences for computer animation, such
systems are unsuited to frame replay. Difficulties have been experienced by
many people whilst attempting to produce animation in such an environ-
ment. A number of examples can be cited from amongst the author’s own
colleagues including those working upon the development of new animation
techniques themselves (e.g. the work of Pullen [Pull87]) as well as others
interested in the animation of the results of more general work on image
synthesis techniques. The traditional approach to the frame-by-frame ani-
mation, through the use of film or videotape, has a number of drawbacks for
the production of computer animation in a workstation-based environment:

(a) It requires expensive additional facilities, namely a film or stop-frame
video recorder. These may not be available at all or, when they are,
often represent shared central resources with limited accessibility.

(b) The recording and replay environment is disjoint from the development
environment. Whilst this is fine for final sequence production it is less
acceptable for the interactive development of animation. With film,
which requires developing and printing, the turn-around time is ex-
cessive, and the general drawbacks of both media—incompatible (non-
digital) representation, difficulties with editing, etc—have already been
discussed.

"These observations led to the design of a new system with the following frame-
work and objectives:

1. To investigate the extent to which performance limitations associated with
many previous animation systems can be overcome by the development of a
custom real-time playback architecture. The target performance is the replay
of medium to high resolution multiplane (colour/greyscale) raster frames at
full frame rate (25 fps).

2. To employ an unmodified, non-video-rate storage device in conjunction with
a hardware based implementation of a frame compression algorithm. Such
an approach has previously received little attention yet offers a number of

potential advantages over alternative strategies such as storage device mod-
ification.

38 : CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

3. To exploit the functionality and graphical processing power of Garland by
designing the system in the form of a Garland front-end processor.

4. To develop a workstation-based system that provides an integrated environ-
ment for the interactive development of animated sequences. This contrasts
both with current approaches (i.e., film/videotape) that only allow the pro-
duction of final sequences and with systems designed for mass distribution
of material (e.g. videodiscs). An interactive system allows a newly produced
sequence to be viewed immediately, then modified if desired and replayed
again to check the changes. This edit-view cycle is repeated for as long as it |
takes to produce the desired animation. Such an approach is not possible in
systems for which the storage medium requires either post-processing (e.g.,
some forms of optical disc) or a mastering process (e.g., videodisc) before the
recorded sequence can be viewed. Similarly, interactive working is not pos-
sible with the DVI system because the complexity of the coding algorithm
precludes users compressing their own sequences locally in a reasonable time.

2.6 The Basis for a New System

2.6.1 Storage Device

A Winchester disc drive was selected as the most appropriate form of storage device
for the proposed system. This was for three reasons. Firstly, of all the potential
frame storage devices considered in Section 2.3, magnetic storage most closely
matched the requirements of the new system. This can be seen by comparing the
objectives above with the properties of the candidate devices as discussed in Sec-
tion 2.3. The advantages of magnetic storage are: (1) re-usability; (2) immediate
play-back (no post-processing); (3) locally writable; (4) supports frame-by-frame
operation; (5) random access; and (6) direct digital representation. Secondly, the
use of an unmodified serial magnetic disc for video-rate frame replay has previ-
ously received little attention and was therefore felt to justify further investigation.
Thirdly, the provision of magnetic (Winchester) storage within current workstation
systems is commonplace. Consequently, a suitable drive may already be available
in such an environment without the need to supply an additional frame storage
device. ,

The principal disadvantages of a magnetic disc for frame storage are capacity
and transfer rate; these are both addressed by the use of image compression.

. 2.6.2 Image Compression Strategy

The use of image compression was adopted for two reasons. Firstly, it is required

for the chosen frame-storage device in order to overcome limited transfer band-

width and storage capacity. Secondly, it represents a largely unexplored approach
to animation system design. It is always advantageous to apply image compres-
sion to a sequence prior to recording, even when it isn’t necessary for increasing

2.6. THE BASIS FOR A NEW SYSTEM 39

the effective transfer rate. This is because of the reduction in storage require-
ments and corresponding increase in maximum sequence length. A modest 2:1
compression, for example, doubles the replay time. When the required bandwidth
is not available, compression represents a less expensive approach to that of device
modification. The BBC is known to have considered replicating its Television An-
imation Store but was unable to do so because of the cost involved. The cost of a
commercial PTD system (approximately £27,000 in 1988) is considerably higher
than the total cost of an equivalent capacity sequential disc plus frame decoding
-~ logie.

The choice of a compression technique must be based upon the requirements
of the application and this is the topic of discussion for the next chapter.

40

CHAPTER 2. STORED-FRAME ANIMATION SYSTEMS

Chapter 3

Image Compression
Considerations

3.1 Introduction

Development of techniques for image compression began in the early 1950s and
the field has received continuous attention through to the present day. Recently
there has been a heightening of interest as new applications have come to the fore.
Examples of these include the provision of integrated services (voice, video and
data) on local and wide area networks, remote sensing via satellite and work on a
broadcast high definition television (HDTV) service. All of these require the use
of image compression to reduce bandwidth requirements. Also, in recent years a
number of new and interesting “second generation” compression techniques have
been investigated which have hold considerable promise for substantially improved
compression performance in the future.

Image compression is encompassed by the more general field of data compres-
sion and is commonly treated from an engineering point of view using techniques
from the signal processing and communications fields. These fields have their
mathematical basis in Information Theory, whose foundations can be traced back
to the classical 1948 paper by Shannon [Shan48]. The discussion in this chapter is
concerned only with image compression and does not consider the numerous other
forms of image processing operation which are in common use. Such operations
include edge detection, region finding and feature extraction, and are employed in
- applications as diverse as artificial intelligence (AI) and automated cartography.
These techniques are covered in depth in the many texts devoted to the subject;
for example, [Gonz77,Prat78,Prat79,Rose82] are “standard” works.

In the Animation Server image compression was adopted as a means of over-

coming the storage and data transfer limitations associated with the chosen frame.

storage device. In selecting a compression scheme it is necessary to give thought
to such questions as how much image compression per frame might be reasonably
expected (i.e., what theoretical and practical limits are there), how complex do
algorithms need to be to achieve a given degree of compression and what special
or unique features of this application may be exploited. In the space of a sin-

41

42 CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

gle chapter it is impossible to do justice to the vast field of image compression
and the multitude of techniques which have been developed (one author reports
that a thousand papers a year are published on the subject). Rather, the aim is to
present a general overview of the field with the hope of providing sufficient context
for the description of the compression strategy actually adopted (see Chapter 4).
In the next section a brief description of the relevant information theory is pre-
sented, followed by some general considerations for an image compression scheme
and mention of the main approaches which are currently used or under develop-
ment. Note that in the following the terms “compression” and “coding” are used
interchangeably. '

3.2 Information Theory and its Application to
Image Compression

Given an image F' of resolution X by Y pixels by D bits/pixel, it would appear
at first glance that exactly X x Y x D bits are required to represent the image.
For an image composed of bits selected completely at random this would be true.
However, most images are not random and consequently there is usually some
structure and inter-relationship between bits. It is the exploitation of this structure
that provides the foundations of image compression.

In information theory terms the image F .is an example of an information
source (it is the source for later processing involving compression, transmission,
etc.). Consider another information source, namely ordinary English text. Again,
the source is not random and without structure. This can be seen by looking at
any typical document. Firstly, the letters do not occur with equal probability;
“a” is much more likely than “q” and “the” more likely than “eht”, for example.
Secondly, elements are not unrelated; given a “q” there is a very high chance that
the following character will be a “u” (a property of the English language). As for
images, this structure can be exploited to achieve compression.

~ In general terms an information source is modelled as a sequence of symbols
drawn from a finite set S with elements denoted by s. In practice symbols are typ-
ically things such as letters from an alphabet or pixels in an image. The sequence

_produced represents successive values of a random variable S, and associated with
each symbol s is a probability P(s) which says how likely it is that S will take the

value s; that is, P(s) = Prob.{S = s},s € S. The arrival of a symbol s contributes
an amount of information related to its probability P(s). Unlikely symbols carry
more information than more common ones since their arrival comes as a greater
“surprise”. In information theory the term information has a specific and precisely

defined meaning (it is a measurable quantity) and the concept of information is.

one of fundamental importance. The information contributed by the arrival of a
symbol s is defined as!:

1The use of base 2 in the log function of this and later equations gives the information rate
measure in bits of information. Other bases are possible by multiplying by the appropriate constant
conversion factor.

3.2. INFORMATION THEORY | 43

I(s) = log, (%)

The amount of information contributed on average by a symbol s is given by
the quantity P(s)I(s). Taking the average over the entire set of symbols S gives
the average information rate or entropy:

H(S) = X P(s)log, (T’Zs-))

8€ES

H(S) is called the zeroth order entropy of the random variable S; it is a measure
of the average information given by a sample S = s without consideration of
the contributions from other samples due to statistical dependence. For a more
accurate measure of entropy it is necessary to consider more than one symbol at
a time. Consider two random variables S;, S;, where: '

P(S]_,Sz) = PT{S;[= 81, Sz = 32},81,32 € S

The joint entropy of Sy, S; is then given by:

H(S1,8)= Y P(s1,50)log, (ﬁ)

831,82€S

This is easily generalised for a finite sequence of random variables {S;}I,,
denoted H(S1,Sz,S3,...,Sn). The entropy of the source, H, is then defined by:

o 1
H, = 131_{130 WH(Sl’ S2,53,...,5N)

Entropy is an important concept because it allows the information content of a

- source (e.g., an image) to be determined and it is this which defines the amount of

compression which: can be obtained. More precisely, Shkannon’s Noiseless Coding
Theorem states:

H,<L<H+ %

This says that for reversible coding the average number of bits per source
symbol required for the coding (L) cannot be less than the entropy of the source,
but for sufficiently large order (n) it is possible to come arbitrarily close to that
value. Thus, the theorem places a fundamental limit on the number of bits required
to represent a source. Unfortunately, it does not say how to reach this limit in
practice. ‘

Figure 3.1 shows the situation described so far with a source coder which com-
presses the source to H, (in the ideal case) and a corresponding decoder which re-
constructs the original source from the compressed form. Compression is achieved
because L < D. In practice the entropy of real-world cases is difficult to measure

44 CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

Source Source "
Coder 1 Decoder Sink

| !

D bits/symbol L bits/symbol

Figure 3.1: Source coding/decoding model

Noise
Source Channel i i " Channel Source - ———
Coder Coder Channel Decoder Decoder

Figure 3.2: Source coding/decoding over a noisy channel

for anything more than the very lowest orders of entropy because of the difficulty
of finding an accurate source model. The entropy of English has been estimated
at between one and two bits per letter [Wyne81] (c.f. at least five bits which are
required to represent the 26 letters directly), and the zeroth, first and second order
entropies of 6-bit/pixel monochrome images have been estimated at 4.4, 1.9 and
1.5 bits/pixel, respectively [Jain81].

It is possible to code a source with R bits/symbol where R < H,, but not
without introducing distortion into the reconstructed stream. In this case Rate
Distortion Theory provides a mechanism for reasoning about the distortion pro-
duced and how it can be minimised for a given rate R. (Note that the previous
discussion about error-free coding is just a special case where R > H,). Wyner dis-
cusses this generalisation of the source coding problem in more detail in [Wyne81].

Compression is achieved by the source coder of Figure 3.1 by exploiting sta-
tistical knowledge of the source in order to remove redundancy. The model of
Figure 3.1 assumes that the symbols sent from the coder arrive unchanged at the
decoder; that is, that there is a noiseless channel connecting the encoder and de-
coder. This is not usually the case in practice and a certain proportion of symbols
will be corrupted during transit due to channel noise. Detection and correction
of such corruption is difficult or impossible for a stream containing little or no
redundancy. For this reason it is usual to add some redundancy back into the
coded stream in a controlled way for the purposes of transmission or storage of
coded streams. This leads to the idea of channel coding as illustrated in Figure 3.2.
Clearly the amount of redundancy added by the channel coder must be less than
that removed by the source coder if a net compression is to be achieved. The
theoretical basis for this is provided by Shannon’s main theorem which states the
requirements for reliable transmission over a noisy channel at rates arbitrarily close
to the channel capacity. The details of this are beyond the scope of the current
discussion and for more information the reader is referred to Wyner [Wyne81] or

one of the many texts on information theory (e.g., [Hamma80}).

3.3. CODING FRAMEWORK AND CONSIDERATIONS 45

3.3 Coding Framework and Considerations

In examining the gamut of current and experimental compression schemes a num-
ber of broad differences emerge. These differences, together with a number of
general observations, are outlined below and provide a useful framework for the
- classification and discussion which follows.

3.3.1 General Differences

1. Spatial (Causal) versus Transform (Non-causal) Domain Coding: A distinc-

tion can be made on the space in which a method is applied. Spatial coding
methods operate on the original pixel data whereas transform coding meth-
ods operate on a set of transform coefficients derived from this data. A third
class of algorithms uses a combination of both and is genera.lly referred to
as hybrid coding.

. Ezact (lossless) versus Approzimate Coding: In exact coding the image re-

constructed by the decoder is identical to the original image seen by the
coder. A higher degree of compression can be obtained when this constraint
of exactness can be relaxed and approximate coding used. Here the decoder
is incapable of reconstructing an exact copy of the original because some
image information is discarded by the coder during the compression process.

Generally the aim is to minimise the distortion produced in the reconstructed -

image by the loss of this information. Unfortunately, there is no really ef-
fective distortion measure when, as is often the case, the image receiver is a
human observer (as opposed to some form of automatic image analysis sys-
tem). In this situation, objective measures such as mean-square error? are
of little use because they fail to account properly for the properties of the
HVS. Compression schemes which exploit properties of the HVS can yield
considerable improvement in the degree of compression obtained for little
subjective loss of image quality. This is achieved by preserving image fea-
tures which are important in the recognition process at the expense of other
information. There has been considerable interest in schemes of this type
during recent years. Many properties of the HVS are now better understood
and those relevant to image compression are described by several authors,
for example [Schr67,Conn72,Netr80,Hask81,Kunt85]. Unfortunately, how-
ever, there is no simple concise HVS model which allows the performance
of these schemes to be evaluated objectively and it is usually necessary to
resort to subjective testing. Generally, this involves asking subjects to judge
the quality of images and the effects of distortions under carefully controlled
conditions of lighting, viewing distance, etc. Typical impairment scales used,
which can be absolute or comparative, are illustrated in Table 3.1.

2The average mean-square error between two N x M images, {u;;} and {uf it is determined -

experimentally [Jain81] as follows: €2, ~ glz S| ,_1("t i —uh).

46 CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

3 Much better
5 Excellent 5 Imperceptible 2 Better
4 Good 4 Perceptible but not annoying 1 Slightly better
3 Fair 3 Slightly annoying 0 Same
2 Poor 2 Annoying -1 Slightly worse
1 Bad 1

Very Annoying ‘ -2 Worse
: -3 Much worse

| Table 3.1: Typical Impairment Scales used for Subjective Image Testing

3. Non-adaptive versus Adaptive Coding: Improvements in compression perfor-
mance can generally be obtained by making a scheme sensitive to changes
in source characteristics as coding progresses. This improvement is gener-
ally obtained at the expense of increased coder and/or decoder complexity.
Adaptive coding is commonly used for schemes which are only able to make
a single pass over the source, as is the case for many real-time compression
schemes, for example. In this situation it is difficult to have additional passes
for the purposes of gathering statistics about the properties of the source.

4. Intra-frame (spatial) versus Inter-frame (temporal/spatiotemporal): A com-
mon image coding situation is that of processing images which are not inde-
pendent but represent individual frames from a longer time-varying sequence.
Typically in such sequences there is considerable temporal coherence between
successive frames, especially at normal frame rates (e.g., 25 fps). Inter-frame
techniques aim to exploit this redundancy. This contrasts with intra-frame
techniques which exploit the spatial coherence within individual frames.

3.3.2° Other Considerations

Jain [Jain81] considers that three factors determine the efficiency. of a compression
algorithm: "its data compression ability, the level of distortion produced and its
implementation complexity.

In this dissertation compression ability is expressed solely in terms of a com-
pression ratio. This defines the ratio of the uncompressed and compressed images.
For example, a compression ratio of 2:1 indicates that the image data requirements
are halved by compression.

Distortion has already been discussed in relation to approximate coding,

Implementation complexity is of particular relevance to hardware realisations of
compression schemes. In addition to the raw computational cost of any algorithm

it is also necessary to consider practical factors. For example, it is generally
preferable if the compressed form of an image is instantly decodable; that is, pixels .

can be decoded sequentially as the stream is read, without first (potentially) having
to scan the entire coded image®. Similarly, it might be desirable that the decoding

3This is a more rigorous form of unique decodability. Unique decodability states that there must
be a single, unambiguous decoded form of the coded stream [Hamm80).

3.4. CODING APPROACHES 47

of the image occurs in scanline order. The effects of such factors can have a
- considerable influence on the implementational complexity (or even the feasibility)
of a (de-)coder.

3.3.3 Application Tailoring.

Further improvement in coding efficiency can be obtained if it is possible to ex-
ploit known properties of the particular application. Examples of such properties
include the following;:

o Image source: Images to be compressed may be generated from a number
of sources, including scanners, video cameras and via image synthesis. A
common situation is for the application to be interested in images from only
one source and in such cases the properties of that source can be exploited
by the coding scheme. The properties of sources vary considerably. For
example, a video source introduces a slight blurring for moving objects due
to an optical integration effect within the television camera whereas such
blurring is not normally present in a computer synthesised view of the same
scene. Similarly, a video source introduces noise into the image which is
not present in the computer synthesised form. The optimisation of a coding
algorithm to the properties of a particular source can yield considerable
savings.

o Image type: Similarly the source might be confined to one particular type of
scene. For example, in a video-conferencing application the image is normally-
restricted to that of a head and shoulders view of a person. Both the camera
and background remain static. In such a scene rapid movement or sudden
change is rare and when it does occur it is usually acceptable for this to be
transmitted at a lower quality than that for slower change.

- With computer synthesised scenes images may be restricted to one type of
modelling primitive or rendering technique (e.g. only flat shaded polygonal
models).

o Operational considerations: Different applications impose different constraints
upon the coding and decoding processes. For example, with real-time play-
back systems it is the replay (i.e., decoding) which is the time-critical op-
eration. In such cases it is common to employ a non-symmetrical cod-
ing/decoding arrangement whereby more complexity is placed in the coder
in order to simplify the decoder. In a symmetrical application (such as
video-conferencing) such an arrangement is not possible.

3.4 Coding Approaches

The space available in this section allows only the briefest outline of the main
techniques which are used for image compression. Further details can be found in

48 CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

the extensive literature for this field, references to which are given throughout the
following discussion. In addition, there have been several surveys published which
chronical the work done during the last four decades. The best known of these
are by Netravali and Limb [Netr80}, Jain [Jain81] and Musmann et al [Musm85].
The field is also covered by many of the standard texts on image processing (e.g.
Rosenfeld and Kak [Rose82)). ‘

3.4.1 Direct Methods

Substantial compression can often be achieved directly by obvious and simple
means such as pixel quantisation (dropping some bits from each pixel) or spa-
tial and/or temporal sub-sampling (either dropping pixels from within individual
frames or between successive frames). This constitutes a reduction in the resolu-
tion of the source. In many cases the source representation is at a higher resolution
than is actually required for an effective representation. For example, in graphics
workstations it is convenient (and common) to employ a 24 bit image represen-
tation, with 8 bits for each of the three primaries red, green and blue (RGB).
However, it turns out that a total of 8 bits is sufficient for a reasonable qual-
ity representation of colour images [Cowl84]. Similarly, 8 bits are often used for
monochrome images, whereas 6 bits can be used with little or no loss in subjec-
tive image quality. Both of these values depend upon viewing distance and the
resolution of the display [Cowl84]. - o

In a similar way the spatial or temporal resolution may be greater than that
needed for the final representation and can be reduced directly by some form of
sub-sampling. In the temporal domain, for example, frame repeating may be used
to yield an immediate halving of bandwidth requirements; an alternative is scanline
interlacing (as used in broadcast television) which achieves the same result and
is subjectively more acceptable. Of course any compression achieved in this way
must take into account factors such as image flicker and refresh rates (as discussed
in Section 1.4). These direct sub-sampling methods can be extended in a number
of ways and form the basis for interpolative/extrapolative coding discussed below.

Generally, such direct reductions are not implemented in an: ad hoc way but
take some consideration of the properties of the source and receiver (typically the
HVS). For example, to quantise from 24 to 8 bits a technique such as Heckbert’s
median cut [Heck82] might be used. This takes account of the distribution of
colours within the original 224 point colour space to select the best 28 colours.
The HVS is more sensitive to green than it is to either blue or red and it is .
usual to reflect this fact in the allocation of bits to the primaries.- A typical -
~assignment for 8 bits is 3:3:2 for R:G:B. Many other properties of the HVS can
be exploited to achieve compression. For example, the HVS is more sensitive to
luminance information than it is to colour. This knowledge is exploited in CCIR .
Recommendation 601 which defines a digital representation for video [Kret85].
Here the colour information is typically sampled at half the spatial resolution of
the luminance component, with little or no perceived loss of quality.

3.4. CODING APPROACHES 49

Picture Coding
I I I | | I

; .) Other
PCM Predictive | |Transform Fmexpclauve Statistical | fHierarchical{ | \roip 046

xtrapolative
Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive

Prediction rthunen- [=Trans. L_sub- uffman Binary Tree [~Runlength
Quantisation Loeve f. “mPh":‘B Shannon- L. Contour
Cond. Repl. i 1 Selection patial { Fano L BTC)

Motion Quintis- | TSP | Aribmetic ccc

Prediction ation

: -Adaptive
L !
L
Hybrid Coding

Figure 3.3: A Classification of image coding techniques

3.4.2 | Principal Approaches

The main coding approaches which have been developed are shown in the Fig-
ure 3.3. This classification is based on that used by Netravali and Limb [Netr80]
and represent what Kunt et al term “first generation” coding techniques. These
methods are outlined briefly below (and for further information the reader is re-
ferred to the given individual references).

1. Pulse Code Modulation (PCM): PCM coding refers simply to the process of
producing a digital representation of an analogue waveform. PCM techniques
were developed before the advent of digital processing and have been widely
applied to the coding of television signals.

2. Predictive Coding: [Netr80,Jain81] In predictive coding schemes the coder
scans the image and attempts to predict the value of upcoming pixels by
using information derived from pixels already seen. The difference between
each prediction and the true pixel value is taken (to give an error term) and
coded for transmission to the decoder. The decoder employs an identical
prediction function and adds each transmitted error term to the correspond-

ing prediction in order recover original pixel values. The most common form
of predictive coding is known as Differential PCM (DPCM).

3. Transform Coding: [Wint72] In transform coding the image is divided into a
number of small blocks of n x n pixels and each block is independently trans-
formed into a set of n? transform coefficients. The purpose of the transform is
to redistribute the information content of the block such that the maximum

50

CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

amount of “energy” is packed into the smallest number of coefficients. Com-
pression is obtained by discarding those coefficients with the least energy and
by representing the remaining coefficients with an accuracy proportional to
their contribution to the information content of the block. Decoding is per-
formed by applying the inverse transformation to coefficients received from
the coder. Any transform which is used must therefore be reversible. An
optimal transform, known as the Hotelling or Karhunen-Loeve transform,
does exist, but for various reasons this is difficult to implement. A number
of other transforms have been developed, the best known being the discrete
Fourier, discrete cosine, Hadamard and Haar transforms.

. Interpolative Coding: [Hask72] In interpolative coding only a proportion

of the pixels in the source is transmitted by the coder and during decoding
interpolation is used to generate (approximations to) the missing pixels from
neighbouring transmitted pixels. Transmitted pixels are selected using some
form of spatial and/or temporal sub-sampling.

. Statistical Coding: Statistical coding techniques obtain compression by di-

rectly utilising knowledge about the statistics of a source. Many of the
methods used are familiar from their application to non-image sources. Per-

“haps the best known of these is the simple and elegant scheme developed

by D.A Huffman and described in his now classical 1952 paper [Huff52]. A
lesser known, but slightly more efficient, technique is that of arithmetic cod-
ing. This technique has been described by various authors, including, for
example, [Lang84,Witt87,Corm87).

. Hierarchical Coding: [Same84,Cohe85] Hierarchical coding is used here to

refer to the application of hierarchical data structures, notably binary trees,
quadtrees and octtrees, to the task of image compression. Compression is
obtained by a recursive decomposition which directly exploits 2-d (spatial)
or 3-d (spatio-temporal) coherence within the source image data. Of these
structures, the quadtree is the most widely used for the purposes of image
compression. For effective compression a semi-pointered [Stew86,Will88] or
pointerless representation [Garg82,01iv83] must be used since any pointer-
based representation is too cumbersome. It is also possible to consider opti-
misations of these codes [Same85,Wood84,Aned8s].

. Other Coding Approaches: Numerous other coding schemes have been de-

veloped which do not fit neatly into any of the above categories. Mention
here is made of only one, runlength coding, perhaps the simplest and best
known of all coding methods. With this technique an image is scanned in
some order (not necessarily scanline order [Cole87]) and repeated successive
occurrences of a pixel value replaced by a single instance of that value and
a counter to indicate the number of pixels in the run.

3.4. CODING APPROACHES 51

3.4.3 Coding Optimisations

Considerable improvement in coding efficiency can be gained through extensions
to the basic coding schemes described above. Some of the approaches which have
been tried are discussed by Musmann et al in [Musm85]. Two techniques which
have received particular attention in recent years are adaptive coding and motion
compensation.

Adaptive Coding

Adaptation can be introduced into any particular coding scheme in a number of
ways. For example, with predictive coding both the prediction and the quantiser
functions can be made adaptive. A number of adaptive schemes are discussed
in [Musm85]. Quantiser designs have also been improved by optimising them
subjectively rather than statistically [Netr80,Musm85]. Similar changes can be
applied to other coding techniques. For example, Knee et al [Knee88] discuss
some adaptive sub-sampling strategies for use with interpolative coding,.

Motion Compensation

In motion compensated compression schemes an attempt is made to track move-
ment within a frame sequence and to use this information to guide the coding
process. If this is done well considerable gains in compression efficiency can be
achieved. Unfortunately, the problem of accurately tracking motion is generally
difficult. Even so, much effort has been invested in investigating the application of
motion compensation to coding schemes, most notably for predictive coding. In
[Musm85] mathematical models for dispacement estimation are discussed and two
classes of estimation algorithm, known as block matching and pixel recursive, are
examined.

3.4.4 Second Generation Techniques

For any image the degree of lossless coding which can be achieved is fundamentally
limited by its entropy as discussed at the beginning of this chapter. Compression
beyond this point can only be achieved with the use of approximate coding tech-
niques which necessarily introduce some distortion into the reconstructed image.
The aim of any approximating method is to minimise this distortion to an ac-
ceptable level. Kunt et al [Kunt85] argue that this can only be achieved by using
compression techniques which are based upon known properties of the HVS (i.e.,
the most usual receiver) rather than on information theory. They term techniques
operating in this way “second generation”. In [Kunt85] two main classes of second
generation technique are described: local operator based techniques and colour-
texture oriented techniques. In the latter class, for example, edges within an image
are coded separately and more accurately from the regions they enclose (reflecting
the fact that the HVS attaches more importance to edge information). With such
approaches very much higher compression rates are claimed.

52 CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

Another way in which coding improvements are likely to be obtained in the
future is with feature coding. This is based upon the idea that an image which is
difficult to describe at the low (pixel) level may have a simple and compact higher
level representation. If a high level description can be extracted from the low
level image data then the potential exists for a much more efficient coding. For
example, for textual images (as processed by FAX machines, for example) optical
character recognition represents the ultimate coding scheme. Parameter coding
is discussed in [Hask81]. An example of a coding scheme for image data is IFS
coding [Barn88] which is designed to allow very efficient coding of certain fractal
shapes. At the low level the complexity of such shapes is difficult to describe.
Unfortunately, the required process of mapping low level constructs into high level
descriptions is not well understood (it is an AI problem of pattern recognition)
and there are no readily available solutions.

3.5 Compression Results

Following such a general treatment of image compression techniques it would be
meaningless to attempt to cite specific compression factors for individual schemes.
The preceding coding scheme descriptions are illustrative only and within each
category a continuous range of implementations is possible, ranging from the very
simple to the very sophisticated. Consequently, any compression figures cited are
only meaningful when considered in relation to the framework in which they were
obtained. This framework includes factors such as the test images employed, the
subjective/objective measures of image quality used, the source models adopted,
and so on. Unfortunately, no standard framework exists for this and consequently a
meaningful comparison of the results quoted in the multitude of published material
is virtually impossible. For example, there isn’t even a commonly agreed set of test
images that can be used®. Also any choice of compression scheme must take into
consideration the intended application—it is insufficient to consider compression
ratios alone. For example, many algorithms give excellent results for static images
(very high compression ratios for good image quality) but are useless for coding
image sequences because coding artifacts become visible during replay. Artifacts
include such things as unexpected and distracting changes of colour or shade. This
is particularly true of approximate coding schemes.

Nevertheless, it is possible to indicate the range of typical performances ob-
tained. Generally speaking, compression factors achieved vary between 1:1 to
around 50:1. The value of 10:1 can be regarded as a watershed, with the majority
of schemes: achieving results below this level. Compression factors above 10:1 are
generally only achieved with the use of the most sophisticated coding schemes or
the second generation coding methods discussed by Kunt. From this it can be
seen that some of the compression results cited, such as the 10,000:1 claimed by
Barnsley and Sloan [Barn88), are clearly unreasonable when talking about general

4An exception to this is the standard set of “typical” documents developed for document pro-
cessing applications (e.g. FAX coding) by CCITT Study Group XIV. ’

'3.6. COMPRESSION REQUIREMENTS FOR THE ANIMATION SERVER 53

purpose image compression schemes. Again, it must be emphasised that con-
sideration of any compression ratio must take into account any assumptions or
compromises made. '

3.6 Compression Requirements for the
Animation Server

This chapter concludes with consideration of the factors affecting the choice of
compression algorithm for the Animation Server. The principal requirements for
the Animation Server coding scheme are as follows:

¢ Decoding must be possible at frame rates.

o Decoding should be as simple as possible since the decoder has to be imple-
mented in hardware.

-o Any asymmetry between the complexity of the encoder and decoder should
favour the latter. Coding is performed off-line by software, whereas decoding
must be performed in real-time by hardware. However, coding cannot be

arbitrarily complex because a reasonable coding rate is required to achieve -

acceptable turnaround times for interactive operation of the Server.

o The scheme should be image preserving. The Animation Server operates at
the raster level and does not make a priori assumptions about the frame
sequence to be processed. It therefore has no high level knowledge of the
contents of the frame being coded. As a result it is impossible to design an
approximating coding scheme which can guarantee to identify and preserve
the most subjectively important image features in each frame. This might
result in the loss of, for example, carefully constructed anti-aliasing infor-
mation. In addition the problems of coding artifacts introduced into frame

sequences by many approximating schemes have already been mentioned
(Section 3.5).

.o The scheme should exhibit graceful degradation in cases where the required
degree of compression cannot be attained. One way to achieve this is by
the progressive transmission of frames whereby coarse image detail appears
first followed by the finer detail; then when approximation is required it is
the latter which is lost first. Note that this requirement conflicts with the
previous point because the only way to meet it is to introduce approximations
to the required frames.

In designing a compression scheme which meets the above criteria, a number
of approaches have to be rejected, and for a variety of reasons. For example,
techniques such as transform coding or methods based upon motion compensa-
tion are unsuitable for this application because of their inherent complexity. The
coding scheme developed for the Animation Server, which meets all the above
requirements, is introduced in Chapter 4.

54

CHAPTER 3. IMAGE COMPRESSION CONSIDERATIONS

Chaptef 4

An Overview of the Animation
Server Architecture

4.1 Introduction

In this chapter the main architectural features of the Animation Server are intro-
duced and an overview of the system’s operation given. This discussion marks
the start of the actual research performed by the author and many of the ideas
introduced in here are amplified in the remaining chapters of the dissertation.

4.2 RainbowlIl

The Animation Server is designed to integrate with an experimental display pro-
cessor known as Rainbow II. RainbowII was developed at the University of Cam-
bridge Computer Laboratory and the choice of name reflects the influence of an
earlier system known as the Rainbow Workstation.

4.2.1 The Rainbow Workstation

The Rainbow Workstation is an experimental graphics system designed at the
University of Cambridge. Computer Laboratory to investigate hardware support
for screen windows [Wilk84,Styn85]. In the usual approach to window management
on conventional graphics systems the layout of windows on the .screen is a direct
reflection of the layout of rasters within the frame buffer. Thus, to update the
screen layout it is necessary rearrange the contents of the frame buffer. This is
often a time consuming operation which reduces the performance of the system,
even with special purpose support hardware for frame buffer memory management
(such as a BitBlt operation, for example). This problem is compounded by the
fact that windows are normally allowed to overlap each other: the movement of
a window will often expose parts of some windows and obscure parts of others.
Consequently it is necessary to record the inter-relationships between windows and
take action to ensure that correct visibility is maintained at all times.

55

56 CHAPTER 4. AN OVERVIEW OF THE SERVER

The Rainbow Workstation overcomes these problems through its use of dy-
namic mapping between images held in the frame buffer and their positions on the
screen. There is no fixed relationship between a location in the frame buffer and a -
location on the screen. Instead, the workstation has intelligent video refresh logic
which dynamically assembles images “on the fly” from different parts of the frame
buffer as the image is being built up in scanline order on the display. To move a
window all that is necessary is to instruct the video refresh logic to read the corre-
sponding memory image at a different time in the refresh cycle; no rearrangement
of frame buffer memory is necessary.

In later experiments this idea was extended to make use of look-up tables
for real-time image blending operations. This provided support for a number of
new effects including transparency, clipping against arbitrary shapes and dynamic
anti-aliasing [Glau85a,Glau85%). _

In many respects the Rainbow Workstation was highly successful as an ex-
perimental system. In particular, the ideas of hardware windowing and real-time
image combination were found to be powerful and worthy of further investigation.
It also had a number of limitations, in particular:

o The architecture used was found to be inflexible with the result that experi-
mentation with different ideas or approaches is difficult or impossible. Much
of the hardware is very specialised and not amenable to general purpose
programming, '

e There is an unequal distribution of processing power. For example, manip-
ulating windows on the screen is rapid and easy whereas the initial loading
of image data into the frame buffer is slow:.

o The effects which can be achieved with image blending are limited, mainiy
because the use of the look-up table for this purpose was not envisaged at
the time of the original design.

These observations formed the motivation for the design of a new workstation
known as RainbowII. This system is intended to overcome the limitations listed
above whilst building on the strengths and successful elements of the original
design.

4.2.2 RainbowlIIl"

In the RainbowII processing model an application is distributed across a pipeline
of elements connected together by private high-speed unidirectional links. Each
element handles a logical component of the computation. The name “Rainbow II”
refers not to a specific and rigorously defined system but rather to a framework or
platform that is designed to encourage experimentation with different hardware
configurations. The architectural foundation of this framework is provided by a
powerful graphics processing and display sub-system known as Garland, together
with a communication systen for rapid transmission of graphical inférmation and

4.2, RAINBOWII 57

| | Object Image
.ﬁlé’:l: @hcmct) Space Space
) |
Front End GPIPE o
Processor
HOST Pipeline Garland

icroVax I

-
GBUS

Figure 4.1: A typical RainbowII system

for overall system control. Garland forms the sink stage of a typical pipeline
and provides facilities for image buffering and support for hardware windowing,
image processing and image combination. Other processors “upstream” in the
pipeline act as either data sources or filter stages!. A three stage pipeline for
object modelling, for example, might be composed of a 3-d object modeller as the
source stage, a smooth shader as a filter stage and Garland as the sink stage. An
outline of a typical RainbowII arrangement is shown in Figure 4.1. Two pipelines
are illustrated in this example. The processing elements of a pipeline are linked
by fast asynchronous unidirectional links known as GPIPEs [King854]. A GPIPE
has a 32 bit wide data path and supports video-rate data up to a maximum
(instantaneous) rate of 160MBytes/s. GBus [King85b] is a medium speed global
communication bus which allows the individual pipeline elements to be initialised
and controlled, and the overall operation of the system to be synchronised. There
is exactly one such bus in a RainbowII system. The top level control of the system
is the task of the host processor (e.g., a Microvax II as shown in Figure 4.1). This
manages the user interface to the system as well as providing support for system
development, initialisation of processing elements (e.g., loading software), and so
on. »

The internal organisation of Garland is shown in Figure 4.2 and consists of the
Image Space and Video Processor. The operation of the latter is straightforward:
it generates a video signal output from data read off a selected GPIPE input. The .
image space is comprised of a homogeneous array of three Image Planes which
are interconnected in the way shown by GPIPE links. The main data path on
each Image Plane is centered around the Blending Memory, a conceptual view of
which is shown in Figure 4.3. The Graphics Memory allows frame storage up to
a maximum image size of 1024 x 1024 pixels, 8 bits/pixel. The look-up memory
allows an arbitrary function to be performed between two 8 bit input values to

1A filter stage is an element which copies its input to its output processing each data item en
roule.

58

CHAPTER 4. AN OVERVIEW OF THE SERVER

Image Video '
=™ Space —+ Processor -
" Tnput Image | Video -
Channel Plane }——@=#— Channel
1 1 1
. Input Image Video
Channel Plane jee==@=fi- Channel
2 o 2 2
Input Image Video
Channel Plane == Channel .
3 3 3 8 ‘GprpE

Figure 4.2: The Garland Image Space and Video Processor

yield an 8 bit. result. This is achieved through the use of a 64K element look-up
table. The close coupling of the blending function to the graphics memory and
the generality of the data routing (as determined by the selectors S1-S3) were
key aspects in the achievement of flexibility and power in the design. Each Image
Plane has a programmable architecture and significant processing power in its own
right. A hierarchy of three processors is used to control its operation; these are
the Image Processor, the Task Control Unit (TCU) and the Task Execution Unit
(TEU). The TCU and TEU are microcoded processors: that together form the
Flow Processor which is responsible for sequencing of the Image Plane’s operation
The Image Processor is used for more general control and processing functions.
The interconnection of Image Planes of Figure 4.2 in conjunction with the Image
Plane design itself affords considerable flexibility in the range of image manipu-
lation functions which can be supported by the Garland architecture. With this

arrangement up to three GPIPE links are available for connection of front-end
processors.

The initial concept of RainbowII and the design and development of Garland
are due to T.R. King. The motivation for this work came directly from an in-
volvement with the Rainbow Workstation and a desire to build on the experience
gained. The principal aims of RainbowII can be summarised as follows:

1. To produce a modular and extensible system which provides for future ex-
perimentation and expansion.

2. To produce a powerful and flexible image manipulation architecture. The

4.3. THE ANIMATION SERVER | 59

S1 S2 S3
—*
Data Look-Up Graphics Data
-~ In —™ Memory Memory Out
b '

Figure 4.3: Conceptual overview of Garland image blending memory

aim was to produce a system which was equally suited to the (normally-
separate) fields of computer graphics and image processing.

3. To exploit coarse-grained parallelism for improving system performance.
This is manifested in the adoption of a pipeline model of processing without
centralised control.

Full details of RainbowII and Garland are described in [King88].

4.3 The Animation Server

. The Animation Server is designed to fit into the above framework and takes the
form of a front-end processor that appears to Garland as a frame-rate image source
(Figure 4.4 (2)). Frame sequences are recovered from disc in compressed form,
decoded in real-time, and the resulting data stream transmitted to Garland via a
GPIPE link. Some of the Server’s functionality is distributed to Garland in order
to exploit the powerful image storage and manipulation functions offered. Garland
is treated as a logical extension to the Server and the resulting integrated system
avoids duplication of functionality.

4 3.1 Server Architecture

An overview of the Animation Server architecture is presented in Flgure 4.4 (b).
The frame storage device is a Maxtor XT-8380E 5} inch Winchester disc drive
which has an unformated capacity of 408MB and a transfer rate of 15Mb/s. Frame
data are transferred via a SCSI bus?. The Frame Transfer Logic (FTL) and Frame
Decoder together form the main Server logic that contains all the custom logic re-
sponsible for frame processing. Compressed frames read from the disc are buffered
and decoded by this logic and the resulting video-rate data stream is transmitted
via a GPIPE link to Garland for display. The disc sub-system, FTL/Frame De-
coder and GPIPE interface together form the principal high speed path for frame

2The Small Computer Systems Interface (SCSI) is a widely used interface bus for the control
of block structured peripheral devices (magnetic/optical discs, tape drives, etc). SCSI evolved
from the SASI bus (a proprietary bus of Shugart Associates and de facto standard) and has been
standardised by the X3T9.2 sub-committee of the American National Standards Institute [SCS84].

60

- CHAPTER 4. AN OVERVIEW OF THE SERVER

Rm;_{:)o:' 1§ Arélmatlon el Garland
b ' CIver GPIPE

T e T

(a)

ESDI

SCsI i
Disc | bus Frame Transfer Logic GPIPE
Controller jui———mm and i Interface [
) WD D215S Frame Decoder GPIPE
Disc Out
Maxtor
XT8380-E
el -
t t VMEbus
Main 68020 GBUS
Memory| [Processor Interface
SMB MVME133 .
Server Control . -

GBUS A
()

Figure 4.4: Overview of the Animation Server architecture

data transfer during replay. The control of this path is carried out by the Server
Controller via a VMEbus acting as the system control bus. The Server Controller
is implemented with a commercially available 32-bit 68020-based processor card.
Software running on this processor is responsible for the higher level control and
synchronisation of the Animation Server operation.

Further details of the FTL/Frame Decoder block (Figure 4.4) are shown in

Figure 4.5. There is a clean functional separation of this logic into two main
parts, separated by the FDEC_queue, with each half having a clearly defined role
as follows:

1. Frame Transfer Logic (FTL): The FTL is responsible for the routing of frame

data and control information between the disc, Server Controller and Frame
Decoder, according to the selected configuration and transient operational
status of the Server. A central element in the main frame data path is the
Compressed Frame Buffer (CFB). This is a large circular buffer that is used .
for the the temporary storage of frames as they are read from disc (or, in the
case of frame loading, before they are written to disc). ‘Ordinarily several

4.3. THE ANIMATION SERVER 61

Frame
Transfer
Logic
ed FDEC,
SCSI bus Sompress g Ouiput. gueue

e Pramo | Frame
Interface Coutrol | Buffer GPIPE

SCSI bus Buffar .
; - Interface

FTL FDEC
Microcontrol. ’ Microcontrol

Frame
Decoder

Figure 4.5: Main elements of the Frame Transfer Logic and Frame Decoder

compressed frames are buffered simultaneously. The CFB supports a number
of functions related to frame flow control and error recovery. Its main role
is during replay where it guarantees a head of compressed frame data to the
Frame Decoder, irrespective of any loss of disc transfer caused by control,
frame-sequencing or error recovery operations which the Server Controller
may have instigated.

The Frame Control Buffer (FCB) is a smaller buffer that stores control in-
formation related to frames arriving from disc. This information is recorded
interleaved with the frame data (See Section 4.7 for details of frame formats)
and is automatically extracted by the FTL as the transfer progresses. Con-
trol information placed in the FCB is transferred to the Server Controller
for further consideration and processing.

The operation of the FTL is controlled by a microprogrammed sequencer
and access from the Server Controller is effected via a 16 reglster interface.
The FTL is discussed in more detail in Chapter 5.

2. The Frame Decoder: Restoration of original frame data from the compressed

- form'is carried out by the Frame Decoder. The Frame Decoder is imple-
mented as 8 Plane Decoder units operating in parallel, each responsible for
decoding one bit of each 8 bit pixel. A second microcontroller controls the
operation of the decoder, driven both by command information embedded
within the frame format (See Section 4.7) and by the Server Controller. The-
detailed operation of the Frame Decoder is discussed in Chapter 6.

62 CHAPTER 4. AN OVERVIEW OF THE SERVER

. User Interface
Rallr_xllc))os:v . User Application Sequence/Sub-Sequence
Code Level Sequencing
MicroVax 11 Coutroller Interface
::;:28:; ders <GBUS> Server Control Primitives
S » Host Interface :
€Irver
Controller Server Handler Frame Level
Code Sequencing
M68020 Device Drivers
Events, Disc Control,
Frame Headers GMEbUS Server Logic Configuration
Register Interface
Server p— Segment Level
Hardware n Sequencin
. Microcode “q g
2 Microcontrollers
' HARDWARE Byte/Pixel Level
Sequencing

Figure 4.6: Control flow within the Animation Server (excluding Garland)

4.3.2 The Animation Server Control Hierarchy

'Operational control of the Animation Server is achieved using a three level pro-
cessor hierarchy consisting of: (1) Microcontrol within the FTL/Frame Decoder;
(2) the Server Controller; and (3) the Rainbow II host. Each level of the hierarchy

(Figure 4.6) has a clearly defined role as follows:

Microcontrol

The two microcontrollers represent the lowest level of programmable control and
- are responsible for sequencing the main Server logic at the system clock rate. This
includes the low level buffer and queue management, resolution of resource conflicts
and all aspects of the Frame Decoder operation. The two microcontrollers together
are designed to be sufficiently powerful to allow the operation of the main logic to
be “free running” with respect to the Server Controller. That is, once initialised
the FTL and Frame Decoder are capable of handling all aspects of frame transfer
and processing without intervention from the Server Controller. Such intervention
~ is only necessary when the Controller wishes to override the selected behaviour of
‘the hardware or when recovery action is required after an error condition. Certain
key events related to the status of the FTL/Frame Decoder and disc are reported
by the microcontrollers to the Server Controller for the purposes of system control
(see below). Control of the FTL/Frame Decoder and the disc interface from the

4.3. THE ANIMATION SERVER 63

Server Controller is achieved via a register interface mapped into the VMEbus
address space. This interface also provides access for initialisation, frame loading
(i.e., recording) and diagnostic purposes.

Server Controller

The 68020-based Controller is responsible for controlling and synchronising the
operation of the disc drive, the main Server hardware and Garland. High-level re-
quests sent by the Rainbow II host are interpreted by the Controller and translated
into the corresponding lower-level sequence of primitive actions that are required
to execute the requested task. The Controller executes code written in a mixture
of ‘C’ and 68020 assembler. _

The Controller operates at the frame level and is unaware of the internal rep-
resentation used for frame data; from its point of view a frame is an atomic entity.
All the information required for steering a frame through the Animation Server
is contained within a frame header prepended to each frame and recorded on the
disc along with the frame data. This header includes information which identifies
the frame, gives its (compressed) size, its position on the disc, and so on. Dur-
ing replay as each new frame is fetched from disc the header is extracted by the
FTL microcontroller and placed in the FCB. The arrival of a new frame causes
the main logic to send a “frame_transfer.complete” event to the Controller and
the Controller to subsequently retrieve the header from the FCB. The receipt of
“frame._transfer_complete” and other key events, in conjunction with the frame
header information, enables the Controller to maintain a model of the current sta-
tus of the Animation Server. This model includes information such as the frame
currently being transferred from disc, the frame currently being processed by the
Frame Decoder and the number and locations of frames currently held in the CFB.
In the most straightforward operation, that of continuous forward replay at a pre-
determined frame rate, the Controller adopts a largely supervisory role over the
operation of the main frame data path; all the fine-grain control and sequencing is
performed by the main logic microcontrollers. In other cases, such as interactive
operation for example, the controller assumes a more active role. Here commands
must be issued to the disc, main Server logic and Garland to ensure that the re- -
quired primitive operations occur at the right time and in the correct sequence.
Similarly, the Controller must intervene to restore the correct sequencmg after an
error condition has been detected.

The operation of the disc and Frame Decoder are mutually asynchronous, with
the indirect coupling of the two facilitated by the CFB. With this arrangement
the disc spindle speed does not have to be synchronised to the frame or field rate,
unlike the BBC- Television Animation Store, allowing the use of an unmodified
drive. Data transfer from the disc proceeds whenever there is space in the CFB,
and transfer of each new frame starts immediately on completion of the transfer of
the last, independent of the operational status of the Frame Decoder and without
reference to frame periods. Frame transfer from disc leads frame decoding by
several frames. Frames are mapped to the disc without reference to the disc’s

64 . CHAPTER 4. AN OVERVIEW OF THE SERVER

physical format; there is no requirement for a compressed frame to occupy a given
number of disc blocks (such as one frame per track, for example) or even an integral
number of blocks. In fact, such a requirement would be impossible to meet since
the size of compressed frames is variable—unless of course a fixed compressed frame
size was set and all smaller frames wastefully padded to meet this size. However,
frames are generally placed contiguously on the disc because the greatest system
performance is obtained for this case. Each discontinuity in a frame sequence
requires a further disc command to be issued followed by a subsequent seek and/or
rotational latency before the flow can resume. This degrades the system’s overall
performance. The Animation Server design does support the use of discontinuous
frame sequences (this is one of the functions of the CFB—See Chapter 5) and this

is used to increase the flexibility of the system. However, such a mechanism has -

inherent limitations due to the nature of the disc operation.

In the development version of the Animation Server the GBus interface (Fig-
ure 4.4) is replaced by a commercial interface card which allows access to a Cam-
bridge Fast Ring (CFR) and distributed system [Hopp88]. This allows loading
of software from central fileservers and is a convenient means for system develop-
ment independent of the Rainbow II environment and in particular in the absence
of GBus access to the Rainbow II host processor.

RainbowII Host

The Rainbow II host runs user level application code that interacts with the Server

Controller via GBus. Commands issued by the host to the controller take the form
of high-level control primitives which initiate actions within the Animation Server;
the host is unconcerned with the frame to frame operation of the Server being
handled by lower levels in the control hierarchy. For example, the Rainbow II host
identifies frames only in terms of a frame number and knows nothing of frame
sizes or of their locations within the disc or CFB. This control organisation fits
in well with the GBus process model [King88] in which simple commands initiate
a sequence of more complex actions. The set of primitives allows host control of
- frame replay, loading etc., some examples are given in Table 4.1. This set is easily
extended by providing the appropriate code in the Server Controller. A handler
task interprets each command and splits it up into a corresponding sequence of
more primitive operations. Commands are examined upon receipt and normally
placed on an work queue to await completion of preceding commands. Queuing
allows a sequence of control primitives to be transmitted in succession, effectively

forming a composite higher level command. In this way more complex control over

the Server can be implemented.

User-level programmed control of the Server is achieved via a library interface
providing access to the control primitives. More commonly, however, a higher level
graphical interface would be used. Interactive operation of the Server is supported
by the use of a simulated control panel that provides “buttons” for all the required
functions (PLAY, PAUSE, REWIND, etc) together with feedback as to the cur-

rent-frame number, position in sequence, and so on. Such an interface is easily

4.4. IMAGE CODING STRATEGY 65
Command |1 Meaning
READ SEQUENCE_HEADER name Returns host-specific portion of named se-
, quence header

MOVE n - | Move to start of frame n

PLAY n Replay next n frames (n=1 gives single step-
ping)

PAUSE ¢ Hold current frame for ¢ frame times

STOP -Halt replay at end of current frame

SET REPLAY_SPEED f Set replay speed (frame rate) to f fps

READ_.CURRENT_FRAME NUMBER | Returns number of frame currently being dis-
played

READ_SERVER_STATUS Returns current Server status (Server ini-
tialised, active etc)

Table 4.1: Example host control primitives

implemented under current windowing systems (e.g. X11.3 which is supported on
the RainbowII host Microvax). '

4.4 Image Coding Strategy

4.4.1 Introduction

Some general image coding requirements for the Animation Server were outlined in

Section 3.6. A number of constraints are imposed upon the operation of any coding

scheme by the demands of real-time playback. In particular, three parameters
have a major bearing upon the overall achievable system performance: the disc
transfer rate (i.e., the rate at which compressed frame data can be recovered from
disc), the degree of reversible (lossless) frame compression obtainable and the total
number of Frame Decoder processing cycles available per frame time. A central
aim of the Animation Server is to optimise the use of these limited resources
over a wide range of operating conditions and requirements. This is achieved by
avoiding the imposition of rigid limits on parameters such as frame size and replay

rate. Flexibility in the architecture and coding scheme allow the user to trade-

off such parameters against one another according to the needs of the particular
application.

- Within the Animation Server a number of alternative image coding techniques |

or strategies are implemented. These are supported within a general framework,

the basis of which is provided by a frame segmentation mechanism (Section 4.6).

The core of the coding scheme is provided by an implementation of a new predic-
tive/runlength compression algorithm. The details of this scheme are described
first and then the discussion is expanded to cover the general coding strategy.

66 ' CHAPTER 4. AN OVERVIEW OF THE SERVER

Prediction
—-ilfass 1 Pass 2 - Rgr(l)lgilll’lggth Record
Binary
Source
Frames PredictionTables

%fcﬂ:glitg —=Prediction Replay

Figure 4.7: Overview of the Animation Server Coding process for a single binary
plane

4.4.2 Predictive/Runlength Coding

During coding the encoder traverses each frame in scanline order attempting to
predict the value of each upcoming pixel from its knowledge of previous pixel val-
ues. Each prediction is compared with the corresponding actual pixel to generate
an error term and the resulting string of error terms is coded with an optimised
runlength coder. This runlength stream represents the compressed form of the
frame. The decoder uses an identical prediction function to the coder and conse-
quently makes exactly the same good and bad predictions. Of course the decoder
does not have access to the original frame data so corrects bad predictions using
the runlength data transmitted from the coder. This scheme is lossless (frames are
reconstructed exactly by the decoder) and essentially symmetrical, although the
encoder is slightly more complicated because it also has to determine the prediction
function. A simplified view of the encoding and decoding processes is illustrated
in Figure 4.7. The prediction function employed actually operates on binary data;
an 8-bit deep image is processed as 8 separate binary planes. During the encoding
stage planes are processed sequentially. For decoding, however, speed is critical
and planes are decoded in parallel. The coding and decoding stages are described
more fully below.

4.4.3 Coding of Binary Frames

The coding of a single Bina.ry plane will be described, with the éxtension to multiple
plane frame data discussed later. '

4.4. IMAGE CODING STRATEGY 67

Figure 4.8: Typical prediction template

Prediction

The prediction scheme developed is based upon a suggestion made by Professor
David Wheeler of the University of Cambridge Computer Laboratory®. This em-
ploys a 2-d prediction template formed from the neighbouring bits of the unknown
next pixel P, (see Figure 4.8). The aim is to determine the most likely value of
P, given the values of the prediction template bits. Note that no template bits
ahead of the current position can be used—during decoding the values of such bits
would be undefined. Prediction is a two stage process, requiring two passes over
the plane:

First Pass: The first pass is essentially a pre-processing stage whose purpose is
to gather frame statistics for later use. The output of this passis a Prediction Table
that is used by both the encoder and decoder. The frame is scanned in scanline
order and at each pixel position the bits of the prediction template together with
the “unknown” pixel P, are formed into an (m + 1)-bit index and used to access
a 2™*1 entry Occurrence Table (Figure 4.9). The indexed entry is incremented
to record the relatlonsh1p between that template bit pattern and the value of P,
(0/1).

At the end of the pass each odd/even pair of Occurrence Table entries T0,T1
record the number of times P, was found to be 0,1 respectively for the template
pattern T and the sum of these entries gives the total number of times the pattern
- T occurred in the plane. Let the values of each pair of entries be denoted by n,,
and n, for any m-bit template pattern ¢, 0 < t < 2™,

- The Occurrence Table is used to construct a 2™ entry Prediction Table which
during the second plane pass will be indexed by the m-bit prediction template.
Each Prediction Table entry is derived from the corresponding pair of Occurrence.
Table entries (Figure 4.10) and consists of two fields as follows:

1. A predicted pixel (0 or 1) for that prediction template pattern, and

3A similar scheme has been proposed by Wholey in an early (1961) paper [Whol61] (a reference
found after implementation of the present scheme).

68 | CHAPTER 4. AN OVERVIEW OF THE SERVER

2m+l g } t=2m-1

Figure 4.9: Occurrence Table generation

Occurrence Prediction
Table Table

1¥‘ si_pr
\“?

N O

2m41.)

} /2%-1

Figure 4.10: Prediction Table production from an Occurrence Table

2. A “quality of prediction” indicator which is used to guide the runlength
coding process. -

Consider a Prediction Table entry PT;, 0 < ¢ < 2™. Then, the predicted bit

-value for the template pattern ¢ is simply that which was found to occur the most

frequently in the plane. That is:

PTy.pr = { 0 if ngy > ny

1 otherwise

- Let n;, be the number of occurrences corresponding to the predicted value
(that is, ny, = MAX(ny,ny,)). Then of the (n;, + ny,) predictions which will be

-made using this prediction table entry, ny, will be correct. The probablllty of a

successful prediction is therefore given by
'nt,

Prob.(success) =—2>
nto + 'n‘t!

which ranges between 1/2 and 1. A probability of 1/2 means that the predictor
is essentially guessing—‘0’ and ‘1’ are equally likely (ny, = n,). At the other

4.4. IMAGE CODING STRATEGY | 69

extreme a probability of of 1 means every prediction made will be successful (that
is, if ny, = ny, then ny, = 0 or vice versa). This probability information is used to
guide both the runlength encoder and decoder. For this purpose a stream indez
is calculated and stored in the Prediction Table. The value of the stream index is

given by:

ne

PT‘:.SZ = log% (log% (m))
0 1

18
This equation is derived from p = }* [Whee86] which relates prediction prob-
ability to expected average runlength.

Second Pass: - During the second pass actual predictions are made using the
predictor template to index the Prediction Table. A prediction and stream index
are obtained for each pixel in the plane. Each prediction is compared with the
corresponding pixel and ‘0’ is output to indicate a successful prediction and ‘1’ to
indicate a failure®. The result of this pass is thus an error bitstream, the same size
as the original frame, together with associated stream indices.

Runlength Coding

Runlength coding is only efficient if the size of the runlength counter is accurately
matched to the average length of run. Failure to do this results either in the use
of multiple counters for a single run (when the counter is smaller than the average
runlength) or wasted counter bits (when the counter is larger). Efficient coding
is achieved in the Animation Server’s scheme by employing two optimisations
devised by David Wheeler [Whee86). These exploit knowledge of the operation
of the prediction process. Firstly, runs of ‘0’s are coded differently to runs of
‘1’s, with the scheme favouring the former. The assumption is made that a ‘0’,
identifying a correct prediction, is more likely than a ‘1’, a wrong prediction—
a fair assumption for a reasonable predictor and one verified by experimental
observations. Secondly, the incoming source data are split into a number of streams
that are coded separately. Each stream has a counter whose size is determined
by the stream index: stream 0 has a 0-bit counter, stream 1 a 1-bit counter,
...and so on up to stream N-1. In practice efficient coding can be obtained with
a relatively small number of streams (e.g., N=8 is sufficient). Each incoming bit
is encoded in the stream identified by its associated stream index. Recall that the
stream index is derived from the probability that the predicted bit will be correct.
This probability is directly related to the average expected runlength of successful
predictions (‘0’s}—good predictions are more often correct and hence form longer
runs than bad predictions. With multiple streams good predictions can be coded

“Note that with binary plane data a single bit (‘1) is sufficient to describe a failed prediction;
the correct pixel value is obtained simply by inverting the prediction. In the more general case of
an n-bit deep frame, it would be necessary to also transmit the actual pixel value (or the difference
between the predicted and actual value).

70 _ | - CHAPTER 4. AN OVERVIEW OF THE SERVER

001010000

)
Source: 1000000101001

-—a5-

Coded: 0

-
o
o
(=]
=

o
..‘.§--_

|
i
1110 :101§110§ 111 ElOli 0

Figure 4.11: Example runlength coding for stream 2

separately from bad, and the counter in each stream matched to the expected
average runlength; stream 0 codes the worst predictions (probabilityas1/2), stream
N-1 codes the best (probabilityx1). The encoder maintains N separate counters
and incoming bits are coded using the following scheme:

IF (bit = 0)
{
counter, := counter, + 1;
IF (counter, = 2%).
{
OUTPUT (‘0?);
counter, := 0;
}
}
ELSE /* bit = 1 %/
{

OUTPUT ‘1’<counter,>;
counter, := 0;

where s is the stream index associated with the input bit. Thus, in the coded
stream a ‘0’ represents 2* ‘0’s, ‘1’< n > represents n ‘0’s (0 < n < 2° — 1, where n
is an s-bit counter) followed by a ‘1’. An example coding of a stream is illustrated
in Figure 4.11 and an example of multiple stream coding for 4 streams is shown in
Figure 4.12. Note that the counter for stream 0 requires 0 bits (that is, ‘0’ and ‘1’
stand for themselves). A consequence of this is that the encoded form cannot be
longer than the original input data, a property which is far from true for ordinary
runlength coding,.

On completion of coding, the N streams are merged to form a single output
-stream for the plane, the merge ¢rdering being determined by the sequence in
which streams are referenced (i.e., as defined by the stream-index stream gener-
ated by the predictor). When a stream is referenced a completed run is obtained
from the appropriate stream coder and placed in the output stream. The length
of this run, n say, is noted and the following n — 1 references to this stream are
ignored by the merger. Then on the next reference a further new run is writ-
ten to the output stream. In this way the runlength ordering in the composite
stream is guaranteed to be consistent with the order in which new runlength data
will be demanded by a Runlength Decoder Unit. This process of stream. merging

4.4. IMAGE CODING STRATEGY | 71

Uncoded Source:
32221002010302012213212000023320102320032102302102300222
00000010000010010010100010110000000011000010010100110101

Code Streams:
0: 0100100101001011010 —= 0100100101001011010
1: 00110001 — 01110011
2: . 00000010100100000101 —= 0110 101 110 0 100 101
3: 000000001 — 01000

Merge Streams:

(321000002 01 1 12 00002 000021 0003 002 2)
000010011100111001010101110001001111010001 0100101

Figure 4.12: Example multiple stream runlength coding

is illustrated in Figure 4.12. The implementation of merging and stream coding
as separate stages requires the use of intermediate storage for completed stream
runlengths. However, attempting a pipelined parallel implementation of this cod-
ing presents major problems: the merger demands completed runs from stream
coders (in order to insert them into the composite stream at the correct position)
which the stream decoder may be unable to supply as it may not yet have seen
sufficient input bits to allow it to determine the length of the current run. Recall
that because of the interleaved nature of the stream input to the runlength coder
(Figure 4.12), predictor references to a particular stream (and consequently the
constituent bits of a particular stream run) may be spread over several hundred
or thousand source bits. Similar problems do not arise during decoding and so
unmerging and stream decoding can (and do) occur in parallel on a demand basis.

4.4.4 Coding of Multiple-plane Frames

Each plane in a n-bit deep frame is coded separately using the above scheme. The

resultmg plane streams are then merged to form a single composite stream for the

frame. Incoming bit-streams are split into byte sections and merging is performed

at a byte granularity. The Runlength Decoder Units within the Frame Decoder

‘(see Chapter 6) have byte wide input paths and stream data are distributed on

a byte-by-byte basis. The order in which the Runlength Decoder Units request
new runlength data, and hence the required merge order, cannot be calculated
directly; it is a complicated function of plane and frame statistics. The plane
statistics determine the distribution of data amongst the runlength streams. The

frame statistics determine the distribution of data between the planes; in general -

2 ,. CHAPTER 4. AN OVERVIEW OF THE SERVER

this distribution is uneven, with higher order planes (which tend to code more
efficiently) demanding less data than lower order planes. The merging is accom-
plished by effectively simulating the Frame Decoder’s operation. More precisely,
enough of this operation is considered to be able to determine for each Decoder cy-
cle which Runlength Decoder Units have pending requests for new runlength data.
‘The operation of a Runlength Decoder Unit is discussed more fully in Chapter 6.

The compressed frame data representation therefore consists of a two level
interleaving of N x P separate runlength streams, where N is the number of
streams/plane and P is the number of planes. In the Animation Server N = P = 8.
Each compressed frame is represented by a doubly-interleaved runlength stream
together with P prediction tables defining the prediction functions to be used for
each plane in that frame.

4.4.5 Frame Decoding

Each frame is decoded as separate binary planes using 8 Plane Decoders operating
in parallel. A Plane Decoder consists of a Runlength Decoder Unit coupled to a
Predictor Unit. The incoming data stream is split into bytes which are distributed
to the Runlength Decoder Units on a demand basis (recall that the correct byte
ordering is determined during coding). The decoding of an individual plane is
similar to its coding:

Prediction

The 'Prediction Table within the Predictor Unit is loaded from the transmitted .

table data to establish the prediction function for the plane. The frame is scanned
as for the coder’s second pass and at each pixel position a prediction and stream

index are obtained via a Prediction Table look-up. The stream index is sent to .

the runlength decoder which decodes the next bit from the specified stream and
returns it to the Predictor Unit. The returned bit indicates a successful or failed
prediction (‘0’ or ‘1’, respectively) and is used to invert the predicted value if
wrong.

Runlength Decoding

The decoder maintains N counters, one for each stream. On receipt of a stream
index s the appropriate counter is examined and ‘0’ or ‘1’ returned to the predictor
as appropriate. When a count expires a new run is started for the stream and either
1 or s 41 bits (for ‘0’ or ‘1’< n >, respectively) are read from the decoder unit’s
input. The first bit read in the new coded runlength is viewed as a flag that
distinguishes maximal (i.e.,-2* ‘0’s) and non-maximal runs (n ‘0’s followed by a
‘1’) and this is stored with each counter. The decoder algorithm is as follows:

IF (counter,=0 & flag,=0)
/* run has expired */
LOAD (flag,, counter,);

4.5. FRAME RECONSTRUCTION MODES 73

IF (counter, > 0)

{
counter, := counter, - 1;
RETURN ‘0’;

}

ELSE /* counter,=0, flag,=1 */

{ /* non-maximal run has expired */
flag, := 0;

_ RETURN ‘17;

}

where LOAD takes the form:

LOAD(flag,, counter,)
{
flag, := <next bit in input stream>;
IF (flag, = 0)
counter, := 2%;
ELSE
counter, := <next s bits from input stream>;

}

4.5 Frame Reconstruction Modes

~ As mentioned earlier the operation of the Frame Decoder is actually more general
than outlined above, with the runlength/predictive coding providing the central
core of the overall frame coding strategy. The preceding description of the decod-
ing algorithm represents the most straightforward operation of the Frame Decoder.
Extensions to this operation are obtained as a result of three factors. Firstly, val-
ues decoded by the Frame Decoder need not necessarily be interpreted directly as
pixels. Secondly, the operation of the Frame Decoder is programmable via its mi-
crocontroller, allowing control over the sequencing of its internal pipelined stages.
Thirdly, the operation of Garland is programmable, allowing control over its im-
age storage and manipulation functions. Together these allow the implementation
of a number of frame reconstruction modes that greatly enhance the utility and
performance of the Animation Server’s compression scheme. A mode defines the
way in which frame data are reconstructed from the compressed representation.
The principal modes are as follows:

1. Full Pixel: Decoded values are interpreted directly as 8-bit pixel values,
with one pixel decoded per Frame Decoder cycle. This corresponds to the
operation of the Frame Decoder described above.

2. Temporal Difference: Each decoded value is interpreted as the difference
*(d) between the required pixel (P;,) and the value of the corresponding pixel

74

CHAPTER 4. AN OVERVIEW OF THE SERVER

Figure 4.13: The pixel interpolation mode

in the previous frame (P;4:~1). The required pixel is obtained by adding
the difference to the previous-frame pixel: P ¢ = P;y:-1 + d. This is the
principal operating mode of the Animation Server. During coding a set of
difference frames is generated by taking the difference between each consecu-
tive pair of source frames. After differencing the source frames are discarded
and the set of difference frames coded instead. Differencing exploits tempo-
ral coherence within frame sequences. Coding the changes between frames
is generally more efficient than coding the frames themselves.

. Spatial Difference: Each decoded value is interpreted as the difference (d)

between the required pixel (P;,,;) and the previous pixel (Pr_14:), Poys =
P;_14¢ + d. This exploits 1-d spatial coherence within a frame (that is,
the property of many images that as a scanline is traversed the change in

* intensity is both gradual and continuous).

. Interpolation: During compression only half the source frame pixels are

examined and coded, and the missing samples are reproduced at the de-
coder by interpolation of transmitted values. This is a form of interpolative
coding (see Chapter 3 and [Hask72]). Figure 4.13 illustrates the operation
of this mode along a scanline. The interpolation function used is a simple
average of the two horizontal neighbours®. Decoded frames approximate the
original source data, but for source frames with a moderate degree of spatial
coherence the reconstructed frame closely matches the original. The mode
approximately halves the compressed frame storage requirement (compared
to that required for the same frame coded using full pixel mode), with a
corresponding saving in the disc bandwidth required for its transfer. In-
terpolation thus provides a mechanism for achieving the required degree of
compression when this cannot be obtained with one of the lossless modes.

The Animation Server also supports a pizel repeating mode (where B«A,
D«C, F«E, etc in Figure 4.13). However, this is less useful than interpo-
lation as it renders a poorer approximation to the source frame.

. Plane Masking: Individual Plane Decoder units within the Frame Decoder

can be disabled and the corresponding pixel bit is effectively masked (‘0’ is
output from the unit). More importantly, a disabled unit does not request
any compressed input data. Consequently, this can also be used to effect a
reduction in bandwidth requirements. In particular, the technique of reduc-
ing amplitude resolution can be employed (Chapter 3) whereby the number

SIn fact two different functions are provided, one for greyscale and one for colour pixels.

4.6. FRAME SEGMENTATION 75

of bits assigned to each pixel is reduced. This again results in an approx-
imation to the required frame. Very considerable savings can be achieved
by masking the low order planes where much of the compression effort is
often concentrated. Recall that for natural greyscale images, for example, a
reduction of 8 to 6 bits is possible with little loss of subjective image quality.

6. Variable Rate Decoding: Failure to meet the required degree of compres-
sion results in the Frame Decoder demanding new runlength data at a greater
rate than the disc can supply it. In the short term larger compressed frames
are handled by buffering within the Frame Transfer Logic (indeed, this is one
of the functions of the CFB—see Section 5.3). For a longer term solution
the decoding rate of the Frame Decoder can be reduced whilst maintaining
full speed operation of the disc and FTL. This allows the frame decoding
rate to be matched to the rate at which data are demanded from disc (which
in turn is a function of the degree of compression obtained). Note that the

* decoding rate is distinct from the frame rate and that these two rates can
be varied independently of each other (see Section 4.6.1). Reduced Decoder
rate operation is achieved by the introduction of idle cycles, the ratio of idle
to active cycles determining the rate of reduction. With this mechanism the
decoding rate is specified as a fraction of the full decoding speed and selected
from a continuous spectrum of possibilities—1/2, 3/4, 2/3, 1/3, 3/5 ...of
the full rate, for example. '

Mixing Modes

The above modes are not mutually exclusive and can be combined to create new
modes. The principal purpose of combining modes is to increase further the degree
of frame compression obtained. So, for example, approzimate temporal differences

can be generated by the combination of plane masking and temporal difference

modes. Very considerable reductions in compression requirements are possible
by such combinations. For example, the compression obtained by approximate
temporal differences could be improved further by combination with interpolation
or reduced decoder rate, or both. The implementation of a new mode may or may
not involve the provision of new Frame Decoder microcode, depending upon the
particular combination in question (see Chapter 6).

4.6 Frame Segmentation

Central to the operation of the Animation Server is the frame segmentation mech-
anism which addresses two main issues:

1.- It provides flexibility in the operation of the Animation Server and freedom
of control over its finite resources by allowing the user to trade off parameters
such as frame size and replay rate against one another according to the needs
of the particular application.

% : CHAPTER 4. AN OVERVIEW OF THE SERVER

2. It provides hardware assistance for frame generation in cases where the re-
quired degree of compression cannot be achieved.

The basis of this mechanism is the introduction of a sub-frame element known
as a segment. From the point of view of the disc drive, the FTL/CFB and Server
Controller a frame is an indivisible entity. Within the Frame Decoder and Gar-
land, however, the basic processing unit is the segment and a frame is viewed as
being composed of a set of (normally non-overlapping) segments. A segment is a
rectangular image raster defined by an origin, width and height and some other
control information. Segmentation is specified on a per-frame basis and can be
changed arbitrarily between frames. No upper limit is placed upon the number of
segments per frame. However, this is normally kept relatively small (e.g., under
16) as there is an overhead associated with each segment switch; segmentation is
intended to be a coarse-grained mechanism.

The segmentation mechanism provides a framework in which the following are
supported:

1. Frame Reconstruction Modes: All the modes described in Section 4.5 are
- associated with segments rather than entire frames. This allows different
modes to be freely mixed within individual frames and, therefore, different
parts of a frame to be reconstructed in different ways. For example, one part
may be generated with full pixels whilst others are differenced, some parts
may be generated exactly and other areas approximated, some areas may be
decoded at the full frame rate whilst others are decoded at a lower rate, and

so on. :

2. Prediction Table Loading: The loading of prediction tables, which define
the prediction function, is also associated with segments rather than entire
frames. At each segment boundary the prediction table of each of the Predic-
tor Units may be optionally (re-)loaded (that is, for each segment between
0 and 8 prediction tables are loaded). This dynamic loading facilitates a
simple form of adaptive prediction—when frame statistics vary widely over
a frame prediction functions can be localised to remove disruptive influences
from other areas of the plane.

3. Conditional Frame Replenishment: There is no requirement for the set of seg-
ments defining a frame to cover the whole frame area. Pixels in uncovered
areas retain their values from the previous frame. With this arrangement
a technique known as conditional frame replenishment [Hask72] can be sup-
ported whereby only the areas of the frame which have changed since the
previous frame are coded and updated. Conditional frame replenishment
represents another means in the Animation Server by which the obtainable
degree of frame compression can be increased.

The level of compression can be increased further by a generalisation of
this technique in which changes are only transmitted when they exceed a
preset threshold. This is a form of approximate coding, where the degree

4.6. FRAME SEGMENTATION 7

of approximation is determined by the threshold. This approach has the
desirable property that as the threshold is increased it is the fine detail (small
changes) which is lost first whilst coarse detail (large changes) is maintained.

4. Variable Frame Size: The size (and shape) of frames in an animated sequence
is a direct function of the segmentation employed. The smallest frame size
supported is that of a single, minimum-sized segment—4 x 4 pixels. An upper
frame size limit of 1024 x 1024 is imposed by Garland. All Frame Decoder
addressing is 10-bit so the maximum segment size is also 1024 x 1024%. A
large frame cannot be fully updated by the Frame Decoder within a single
frame time. The notional Animation Server frame size is 5122 pixels. More
precisely, the Frame Decoder’s master clock has a period of 1/(5122 x 25)s -
(~152.59ns) and one pixel can be decoded per Decoder cycle. Thus, during
each frame time a maximum of 262144 (i.e., 5122) pixels can be decoded.
Larger frames are handled either by using conditional frame replenishment
(when the full frame area is not active in a frame time) or by reducing the
frame rate.

5. Frame Error Recovery and Frame Sequencing: These relate to the adoption
of temporal differencing as the principal frame reconstruction mode. With
differencing if any pixels are not properly updated, because of a transmission
error for example, then that error propagates until the end of the sequence.
Similarly, changing the order in which frames are replayed is impossible as
each frame is derived from a predecessor that is determined at the time of
coding. Re-sequencing is required for error recovery, for interactive operation
(e.g. to cycle back interactively through a particular sub-sequence) and to
allow replay to start from an arbitrary point in the sequence. These problems
can be overcome by the inclusion of full-pixel segment(s) in each frame, as
discussed in greater detail in Chapter 7.

An example of frame segmentation is illustrated in Figure 4.14. In a typi-
cal coding strategy, temporal differences (together with full pixel segments—see
point 5 above) form the default operation mode. Approximation is only intro-
duced when the required degree of compression cannot be achieved at the desired

- frame rate. The degree of approximation is increased until the required level of

compression has been achieved. The use of a segmentation mechanism means that
approximation can often be introduced in such a way as to minimise the level of
subjective distortion in the sequence. This is done by exploiting known properties
of the HVS in the way discussed in Chapter 3. Some of these a.pproaches are
included amongst the followmg examples. '

6Thus, the Animation Server can define frames up to a maximum of 2048 x 2048 using a tiling
of 4 maximal segments.

78 CHAPTER 4. AN OVERVIEW OF THE SERVER

L

R
3

[

Figure 4.14: An example of frame segmentation

4.6.1 Examples of Segmentation Usage

In the remainder of this section a few representative examples are given to illustrate
the flexibility of the segmentation mechanism and to show how a number of existing
coding schemes or approaches may be implemented within this framework.

Adaptive Plane Coding Generally within a frame the higher order planes
compress more efficiently than the lower order planes because the latter contain
the fine detail and/or noise of the image. To compensate for this more effort
can be expended in the coding of the low order planes through the use of dynamic
prediction table reloading during the course of the frame-time. Multiple prediction
functions allow the localisation of coding effort within these planes. For the high
order planes a single prediction function is used for the entire frame by loading
the prediction table once at the start of the first segment.

Variable Frame Size As already discussed, the frame size of the Animation
Server is not fixed and frame sequences other than those of the notional size
(512%) can be handled. This includes smaller frames occupying only a part of
the screen display area—frames are replayed into a window in Garland and this
window treated just like any other (containing text, still graphics, etc). Thus
the animation can be moved around on screen, obscured by other windows, and
so on. One advantage of this is that as the frame size of a sequence is reduced
progressively less compression is required to support its replay (until at a frame size
of approximately 2562 (or equivalent) no compression is required). The bandwidth
saved by the use of smaller windows could be used to enable the simultaneous
replay of two (or more) sequences into multiple windows. Incidentally, note that
the frame size in a sequence can be varied arbitrarily between frames if so desired.

4.7. FORMATS ' 79

Exchanging Spatial and Temporal Resolution A number of compression
schemes have been investigated which exploit the observer’s varying tolerance to
frame distortion according to the rate of image change [Hask72]. In particular
it is known that the HVS is less able to discern fine detail in areas of rapid and
unpredictable movement than it is in stationary or slowly changing areas. Many
of the techniques proposed can be implemented via the Animation Server’s seg-
mentation mechanism. For example, one approach is that of exchanging spatial
and temporal resolution whereby sub-sampling is used to reduce the spatial reso-
lution in moving areas and the temporal resolution in stationary areas. With the
segmentation mechanism moving areas can be reproduced by interpolation (which
is a form of spatial sub-sampling) whilst stationary areas are reproduced using
conditional frame replenishment (a form of temporal sub-sampling).

Progressive Image Transmission The ability to control the degree of approx-
imation in a frame allows for progressive transmission of images. For example, dif-
ferencing is least effective (and hence compression hardest) at the pointsin a frame
sequence where there is an abrupt change in frame content, as at a scene cut for
example. At such points approximation is used to first render a coarse represen-
tation of the required frame, followed by progressively finer detail over subsequent
frames. Again a known property of the HVS is being exploited, namely that fine
detail cannot be absorbed by an observer immediately after such a change. Thus,
this coding problem is overcome with little subjective loss of quality in the replayed
sequence.

‘Trading Frame Size and Frame Rate The frame size, frame rate, decoding

rate and required frame compression ratio can all be traded off against one another
according to the demands of the application. For example, the frame rate can be
reduced from 25 fps to 12% fps? and a choice made between doubling the frame
size, maintaining the same frame size but halving the compression requirements
(by halving the decoding rate) or a combination of the two. As an example of the
third option, the frame size might be increased by a factor of approximately 1.7
to television resolution (768 x 576) and the decoder rate reduced by a same factor

‘to yield a corresponding reduction in compression requirements. The ability to

set the decoding rate on a per-segment basis allows it to be reduced only for the
areas of a frame which need it most (i.e. those which compress badly). Reducing
the Decoder rate allows insertion of less well compressed data into parts of the
frame (and at a decoding rate of approximately 1/4 full speed this corresponds to
inserting uncompressed image data into a segment). ” '

4.7 Formats

~ The sequence, frame and segment formats as viewed from the lowest level of the

control hierarchy are illustrated in Figure 4.15. A different view is presented at

7Still a useful rate—recall that much commercial film animation is shot “on twos” at 12 fps.

80 CHAPTER 4. AN OVERVIEW OF THE SERVER

Sequence Sequence
Header . Body
&
Host Controller '
Specific Specific Frame | Frame Frame | Frame
V(4

Body
&

I3
117
I

i
EE Segment Begment | [Segment @

BN
—Offset-
--Repeat-
~Spare_|

e,

~Z

S SCM
_~eader | Tables] Body -
"
Slse [q| Table | |g| Table | R Coded Segment Data
A< El"‘ Entries| {*| Entries | { (Doubly-interleaved Runlengths)

Figure 4.15: Sequence, frame and segment formats

higher levels in the hierarchy. For example, recall that at higher levels frames
appear as atomic entities and details of frame segmentation are unknown.

A complete piece of animation is termed a sequence and comprises of the con-
stituent frames, forming the sequence body, preceded by a sequence header. The
sequence header is divided into two parts, both of which are application specific.
The first part is read and interpreted by the Rainbow II host (via the Server Con-
troller) and contains all the information required by the host for processing the
sequence. This includes such things as image blending and look-up tables for use
within Garland. The Server places no limits upon the size or content of this block;
it is simply transferred from disc to the Host prior to sequence replay. The second
part contains sequence information that is used by the control code running on
the Server Controller. This is global information pertaining to the whole frame.
sequence (e.g., the total number of frames in the sequence, the default replay
frame rate, etc.). This information too is application specific, depending upon the
control required over sequence replay. For straightforward replay the information
required is minimal but for more complex control further details are required (such

~as frame address tables identifying frame locations on disc (See Chapter 7)).

Each frame has a 16 byte header containing control information for that frame.
It is this header which is stripped off by the FTL logic and placed in the FCB
as the frame arrives from disc. This embedded information is used for per-frame
control of the sequence replay. The format and content of the header is again

-application specific, depending upon the level of control required over the replay

4.7. FORMATS 81

process; the following discussion illustrates a typical format. The frame is iden-
tified by a 16 bit frame number. The next two bytes give the compressed size
of the frame, which is used, amongst other things, in the construction of a ta-
ble identifying the position of each frame held in the CFB (see Chapter 7). The
next six bytes identify the disc location of the start of the frame in the form
logical_block_number.byte_offsetd. A typical control strategy is for the con-
troller to dynamically retain the disc locations of the previous n frames for the
purposes of error recovery (See Section 7.7). The repeat count gives the number
of frame times that the frame is to be shown for; only one copy of a repeated
frame is physically stored on disc. Finally “check” is a checksum which allows
the controller to verify that the header has been recovered properly from the disc.
This is part of the error detection mechanism discussed in Section 7.7. The Frame
Transfer Count (FTC) is a 16 bit value that is loaded into a hardware counter
and allows the FTL microcontroller to detect the end of the frame transfer (and
therefore report the arrival of a new frame header to the Controller). The frame
body may be followed by a number of null bytes which are used for internal align-
ment within the Frame Decoder at frame boundaries. The presence of these bytes
is again dependent upon the control strategy adopted (Chapter 7).

Each segment is defined by a 6 byte header consisting of a Segment Descriptor
(SD), origin (X,Y) and size (W,H), and a Plane Idle Mask (PIM). The origin and
size values specify the top 8 bits of 10-bit fields, with the least significant 2 bits
reset automatically. Thus the placement and size of segments is restricted to 4-
pixel boundaries, not a severe limitation given that segmentation is intended to be
a coarse-grained mechanism. The header is optionally followed by prediction table
data. Between 0 and 8 tables can be loaded, with no restriction placed upon load
order. A prediction table is specified by a load descriptor (PLD) which identifies
the table and load size, followed by the table entries. For each table between
4 and 256 entries can be loaded (in power of two steps), corresponding to the
size of prediction template chosen (see Section 6.1.2). The compressed segment
size (CSS) is a checksum used during decoding to verify that the decoding was
completed successfully. The segment header, prediction tables and CSS are all
processed by the Frame Decoder microcontroller as discussed in Chapter 6. The
segment body represents the actual compressed segment data, contained in up to
64 interleaved runlength streams as described earl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>