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1 Introduction

A protocol is a distributed program which controls communication between machines in
a computer network. Two or more programs are executed on different computers which
communicate only via the medium connecting them. Usually, communication over the
medium is unreliable.

Protocol implementations are difficult to understand and to write correctly because
the interaction between programs and their non-deterministic, real time environment is
complex. For this reason, protocols are often specified using an abstract model. Two cases
in which abstractions are useful are

1. for the top down design of a protocol implementation

2. to verify the correctness of an implementation by showing that it is a member of a
class of more general algorithms which have already been shown to be correct.

However, few abstract specification techniques model the problems which occur in real
implementations. In particular, the correctness of many protocols depends on real time
issues such as the correct setting of timers and fast responses to incoming messages.

This paper presents techniques for modelling real-time protocols at different levels of
abstraction, from implementation behaviour to abstract requirements specifications. The
language used for these models is higher order logic. The techniques are illustrated by the
specification and verification of the class of sliding window protocols. The HOL system,
a machine implementation of higher order logic [2], was used to both specify and verify
this example and a full listing of the HOL theories for sliding window protocols is given-
in Appendix B,

2 Specifying Protocols in Higher Order Logic

One reason for describing protocols at different levels of abstraction is in order to verify
their correctness. The idea is that a specification should be sufficiently abstract that
it can be generally seen to describe the requirements the protocol should satisfy. An

1




implementation, whose behaviour is more complex and cannot readily be seen to be correct,
is then proved (formally or informally) to satisfy its specification.

In order to reason formally about the correctness of protocol implementations we
require

1. a specification of the behaviour of a protocol implementation
2. a specification of the function or requirements of that protocol

3. aformalism for relating these descriptions : a relation, satisfies, is defined to be true
if the given implementation model achieves its specification and false otherwise.

We shall call a specification which states how a protocol behaves a behavioural specification
and one which states what the protocol must achieve a functional specification.

In this paper we argue that higher order logic is a suitable formal language for modelling
protocols and show how techniques for specifying and verifying hard ware using higher order
logic can be adapted for communication protocols.

2.1 Signals

A real time computer system can be modelled by a set of signals. Signals represent the
value of some aspect of the system’s state at given sampling times. The quantity measured
could represent input or output streams or internal state variables. For example, a protocol
can be modelled by sampling the values input to the sender and output from the receiver.
The model could also include signals representing the current internal state of the sender,
receiver and channel. Possible sampling times for these quantities could be every machine
cycle, every n nanoseconds, each event interrupt etc.

A signal is a function from time to values. For example, the sender’s input could
be modelled by a function from sampling times to the type of data which the protocol
transmits. The model for time is discrete because we have assumed a system is sampled at
intervals. The natural numbers are used to model time. However, each step of modelling
time could have many interpretations: the sampling interval may be arbitrarily small or
may represent some unspecified and variable interval of abstract time such as a state
transition,

The idea of using signals to model real time systems has been widely applied in the
specification and verification of hardware [11, 9, 3]. One difference in applying this method
to protocols is that signals in and out of channels and to and from the protocol’s outside
world are likely to have more complex data types than the signals which have been used
in the literature to model hardware,

The ouput stream from the receiver could be represented by a signal from time to
an abitrary type, *data. An arbitrary type can be modelled in HOL by a type variable
which can stand for any concrete type such as a record, a character, integer, n-bit word
etc. Functions with domain ty1 and range ty2 are represented by the tvpe tyl — ty2.
The receiver’s output stream has type

time — *data

A channel’s value at any time is either a packet or a null value representing nothing
on the channel. The type constructor + is used to represent such a type. For example,
tyl + ty2 represents the type whose members are either of type ty1 or of type ty2. A
packet is a pair containing a sequence number of type seq and some data of type *data.
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This type is represented by the product type constructor X. Values of type tyl X ty2
have two fields: the first of type ty1 and the second of type ty2. A type non_packet, is
represented by the type one which has only one element. Thus the type channel, a signal
modelling values input or output from a physical channel, can be represented by 1

channel = time — (seq X *data) + non_packet

Another difference between modelling hardware and software using higher order logic
is that computer programs (software) manipulate variables stored in memory. These
variables, too, can be modelled as signals: functions from time to their current values. For
example, a program variable s whose type is the natural numbers can be modelled by the
signal s : time — num. If the program variable, s, has value 5 at some time t’ then
the signal s reflects this by s t? = 5.

2.2 Functional Specifications

The relationships which must hold between signals are specified by logical predicates
on those signals. These relationships may be stated functionally (as requirements) or
behaviourally.

The function of a sliding window protocol could be specified by the relationship between
the input signal, source:time —+ *data and the output signal, sink:time — *data.
Assume that the data values of the source are unique and thus distinguishable in the sink.
1. every output value is a copy of an earlier input :

OutputWasInput(source:time — data,sink:time — data) =
V t:time. 3 t’:time. t’<t A sink t = source t’

2. the order of outputs preserves the order of inputs, We assume inputs are unique and
offered (possibly with duplicates) in their original order.

OrderPreserved(source:time — data,sink:time — data) =
YV t1 t2:time.
t1 < t2 A (3 t1’. sink t1 = source ti’) A
(3 t2’. sink t2 = source t2’)
=
t1? < t2?

Higher order logic 2 is necessary for this modelling method because signals are first order
functions and thus predicates with signals as parameters are second order or higher.

2.3 Behavioural Specifications

Behavioural specifications can also be represented using predicates on signals. These
specifications describe how a process behaves rather than what it must achieve. For
example, a counter signal, count:time — num, which is initially set to 0 and then updated
whenever an input signal, tick:time — bool, is true can be specifed by:

! Alternatively, the type package in HOL could be used to define a channel as a structured type:
channel = PACKET seq *data | EMPTY void

2as opposed to first order or predicate logic



Counter( tick:time -+ bool, count:time — num ) =
count 0 = 0 A
V t:time.
count (t+1) = tick t = (count t)+1
| (count t)

The notation a = b | c means if a is true then return the value b otherwise ¢, It
should be noted that when specifying behaviour using predicates there is an implicit notion
of input and output signals: tick is an input parameter which is read by the Counter and
count is an ouput parameter which is written by the Counter. The notion of input and
output signals is implicit because it is part of an (informal) interpretation of the meaning
of logical formulae rather than a property of the logic itself.

2.4 Combining Specifications and Hiding Internal Signals

As well as modelling the behaviour of single components in a system, we require a method
for combining component specifications in order to specify complete systems.

Signals which occur as parameters to a number of predicates represent information
which is shared. In behavioural specifications a signal may be used as output in one
predicate and as input to another. For example, the Counter specified in the last section
could be connected to a timer device which outputs an interrupt (the boolean truth value)
every time the counter variable is a multiple of the constant MC.

Timer( count:time — num, clkint:time — bool, MC:num ) =
YV t:time. c¢lkint t = ( ((count t) MOD MC) = 0 )

Predicates are combined using logical conjunction. Thus, the specification of the com-
bined behaviour of these two devices, in which count is ouput by the Counter and input
to the Timer, is given by C1kInt. The internal signals count and MC are hidden in C1kInt
using existential quantification.

ClkInt(tick:time — bool,clkint:time — bool) =
3 count:time — num. 3 MC:num.
Counter(tick,count) A Timer(count,clkint,MC)

Similarly, functional specifications are combined using logical conjunction. A fune-
tional specification for a sliding window protocol is :

SPEC(source:time -+ data,sink:time — data) =
OutputWasInput(source,sink) A
OrderPreserved(source,sink)

2.5 Verification: the satisfies relation

Behavioural and functional specifications for real time software systems such as protocols
can be specified in higher order logic. How can we prove that an implementation satisfies
its specification?

A relation, satisfies, between two predicates, A and B, which is true if the implementa-
tion model A meets its specification B, is given by 3:

®Read the following formula as: A satisfies B is defined by A logically implies B




A satisfies B = A == B

This relation captures the idea that an implementation is “more specified” than its spec-
ification, However, it has the undesirable property that an inconsistent implementation
(one containing a statement and its negation) satisfies any specification since the logical
constant false implies both true and false specifications.

Using logical equivalence instead of implication as the satisfaction relation would solve
this problem, but then we could not express the idea of an implementation being more
specified than its specification.

There are two types of partial solution. First, a verifier must prove more properties of
her implementation model than just satisfaction. For example, a protocol should transmit
messages at a rate greater than some minimum, and if a perfect channel is assumed then the
protocol should terminate. We shall call such proofs the verification of “reasonableness”
properties. The choice of a good set of reasonableness proofs cannot be automated and
relies on the ingenuity of the protocol verifier.

A second solution is to prove properties of the model used for describing implemen-
tations. For example, if an implementation were described by a formal programming
language semantics then the verifier could prove properties such as variables having one
and only one value at any time (so that, say,s t = 0 A s t = 1 will not be physically
possible). If an implementation specification does not contain inconsistencies, and that
specification logically implies more abstract specifications, then the higher level specifica-
tions can also be deduced to be consistent.

2.6 HOL

HOL (2] is a theorem prover for higher order logic derived from LCF [4]. The version of
higher order logic used in HOL is based on [1]. Higher order logic contains all the terms
of first order logic and also contains higher order terms : predicates or functions with
predicates and functions as parameters. HOL is a typed logic so each term has a well
defined type. HOL theorems are ‘secure’ in that every theorem must have a formal proof.
The syntax of the subset of higher order logic used in this paper is given in Appendix A.

3 A Methodology for Modelling Protocols
3.1 A Four Level Model

In sections 1 and 2 we distinguished between a specification (which could generally be seen
to be correct) and implementations (which were more complex). Between these extremes
there exist a range of protocol descriptions at different levels of abstraction.

We also identified two specification styles which could be used to make formal descrip-
tions more readable: functional (or requirements) and behavioural descriptions. In the
former we describe what must be achieved by a protocol and in the latter we describe how
a protocol behaves.

In this section we shall identify four levels of description with which we choose to
characterize protocols: implementations (IMPL), algorithms (ALG), generic behavioural
specifications (GEN), and a minimal functional specification (SPEC).

An implementation, modelled by IMPL, is a description in programming language code
and hardware of an executable protocol. An algorithm, modelled by ALG, describes the
behaviour of a protocol without specifying all its implementation details. A functional
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specification, SPEC, states what the protocol must achieve but not how. A protocol spec-
ification, GEN, describes the behaviour of the protocol but at a higher level of abstraction
than in an algorithm description. Such abstract behavioural descriptions can be used to
describe a class of algorithms. Each class specification will serve as the specification for
many different algorithms. In turn, each algorithm specification will specify many different
implementations.

To illustrate the difference between these levels of description consider a sliding window
protocol. A minimal functional specification of a sliding window protocol is that it should
transfer its input stream of data to an output stream. The output stream must preserve the
order of the original input. The class of sliding window protocols achieves this specification
using a number of standard techniques.

1. Physically, a sender and receiver communicate using an unreliable, bidirectional
channel.

2. Data from the sender’s input stream is labelled for transmission over the unreliable
communication medium to enable the receiver to preserve the order of that stream.

3. A limit is placed on the number of data messages which may have been transmitted
by the sender but are not known to have been output by the receiver: this is called
a window.

4. The mechanism for notifying the sender that data has been received is called positive
acknowledgement: the receiver sends messages to the sender describing its current
state,

A behavioural specification for the class of sliding window protocols describes how these
techniques are combined to achieve the specification. Sliding window algorithms differ from
one another in matters such as their choice of data for transmission, differing strategies for
the receiver to show the sender its current state, and the class of communication media for
which the protocol is designed. For example, TCP, HDLC and the alternating bit protocol
are all sliding window algorithms. They vary in details such as their choice of window
size, transmission strategies etc. An algorithm specification describes specific choices for
each of these behavioural details. A protocol implementation can be described in terms of
a particular programming language, computer hardware and network environment. The
way in which messages are transmitted and received, and the implementation of timers
and buffers should also be specified since these details may vary between implementations
for the same physical environment.

The types, definitions and theorems which comprise the HOL theories representing
SPEC, GEN and ALG for the class of sliding window protocol are given in Appendix B.

3.2 The use of multi-level specifications

Figure 1 describes a simple program code implementation of a protocol such as Stenning’s
data transfer protocol. We propose a verification strategy as follows. First, an implemen-
tation would be translated, using a formal programming language semantics, into a model
in higher order logic: IMPL. We would then prove that the implementation model satisfied
a particular algorithm. The algorithm would be described by a conjunction of properties
chosen from a library of pre-defined protocol behaviours. The chosen algorithm would be
then be proved to be a member of its protocol class. In practice, most of the required
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GET PUT
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IF (label pa)=(s+1) * discard it THEN (ri=r+i;
THEN (s:=s+1; GET d) PUT(mess pr));
END. The channel may SEND (r,dummy)
also reorder or END,

duplicate its input.

Figure 1: An Implementation of Stenning’s Protocol

theorems would be part of the library. A theorem stating that the class algorithm satisfies
its abstract specification would also be pre-proved.

The proposed verification would prove safety and liveness of the protocol under certain
assumptions (see section 5.5). We do not claim that this verification covers all desirable
properties of the protocol: further properties can be verified separately.

The remainder of this paper describes the class of sliding window protocols of which
the implementation in Figure 1 is a member. We shall first use this example to identify
important features of the protocol.

A SENDER reads input from its environment, using a GET command. This data is
transmitted, with a label, s, over the channel dataS, dataR to a RECEIVER. The RE-
CEIVER outputs data to its environment using the PUT command and also sends acknowl-
edgement messages to the SENDER over the channel ackR, ackS. The RECEIVER’s
acknowledgement messages carry the label the RECEIVER is waiting to output. From
this labe] the SENDER deduces whether it needs to retransmit its latest message (if the
RECEIVER is still waiting for that message), or it can transmit a new message. The com-
mand, SEND, transmits a message containing a label and some data. The RECV command
accepts an incoming message p, if there is one available. In this case, the function 0K p is
true and the packet’s label is tested, otherwise 0K p is false. The function label returns
the first field of p when 0K p and mess returns the data field. The labelled arrows in the
diagram represent the direction of data flow. The behaviour of each box in the diagram
is given below it, either in program code or in English.

The signals which characterize the protocol implementation of Figure 1 are

o the ports used by the SENDER and RECEIVER programs for communication with
their calling environment : input and ouput of type time — *data



o

o the ports used by the SENDER and RECEIVER for communication with the net.
work : dataS, dataR, ackR, ackSoftypetime — (seq X data) + non_packet

o the local variables of each program : s, r of type time — num, d:time - *data,
dummy ; *data and ps, pr of type time — (seq X *data) + non_packet

We can now describe a functional specification for the class of protocols of which this
implementation is a member.

4 SPEC: a minimal functional specification

A sliding window protocol transfers a stream of data from one machine in a computer
network to another. In section 2.2 such a protocol was specified in terms of input and
. output signals. Suppose instead that we abstract from the time messages are input and
mode] the input stream as a (static) list of data and the output stream as a signal from
time to the list of data output by that time. Suppose the input to a protocol was a
stream of numbers [0,1,2,3,4]. Then the output list at time 0 would be [ and, as
the protocol progressed, there would be times at which the output list was [0], [0,1],
[0,1,2], [0,1,2,3] and finally [0,1,2,3,4]. In the last case the protocol has achieved
its purpose. A specification of this idea is

SPEC (source:*data list) (sink:time -+ *data list) =
d t:time. sink t = source

Order is preserved since source and sink are lists and they will only be equivalent if sink
has preserved the order of source. Using a list to specify input and output preserves
information about the context of particular data elements so we no longer need to assume
that each value of the source is unique. However, there are many incorrect protocols
which satisfy this specification. We have said nothing about the physical structure of the
protocol or that communication must be over an unreliable channel. Such properties are
specified in the next level specification, GEN.

5 GEN: a generic class specification

5.1 PHYSICAL AND LOGICAL STRUCTURE

The structure of the protocol model, GEN, reflects the physical structure of the protocol:
a sender on one computer, a receiver on another and a channel between them. Within this
physical structure there is a logical structure. The SENDER and RECEIVER programs
each have an initialization part, a message transmission part and a message reception
part. The latter are executed for each traversal of each program’s WHILE loop while the
initialization part is executed once before the loop is entered. The channel between the
SENDER and RECEIVER consists of two logical channels: one carrying data messages
from the sender to the receiver and one carrying acknowledgements in the opposite direc-
tion. Figure 2 shows how this logical model fits into the physical model of Figure 1. As
before, the arrows represent the direction of data flow.

In the HOL representation of this figure, the values shared between these entities are
indicated by the shared parameters of the model.
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Figure 2: A Logical Structure for Sliding Window Protocol Models

Y source sink. SW.GEN source sink =
(3 dataS dataR ackS ackR.

INIT sink A

DATA_TRANS source dataS A

CHANNEL dataS dataR A

DATA_RECV dataR sink A

ACK_TRANS ackR A

CHANNEL ackR ackS A

ACK_RECV ackS A

Note that the signals for channels are hidden inside the specification. For a full specification
of GEN see Appendix B.

5.2 NON-DETERMINISM and CONTROL

The times at which messages are transmitted in an implementation are based on detailed
timing of various events: for example whether a packet has been received and read from
an input buffer, whether a new packet arrival has overwritten the first, whether previous
operations have meant some events were ignored etc. In an abstract model these details
should be left unspecifed. This is modelled here by making the choices to transmit or not
to transmit and to accept a message or not to accept it a partially specified choice.

In situations where the designer has no control over the environment a choice may
appear to be entirely non-deterministic. For example, the choice of whether a channel
loses or delivers a packet is, for the protocol designer, completely non-deterministic and
will be modelled by:

(Out t = setnon.packet) V (Out t = In (t-(d t)))

On the other hand, in a program the designer can control which actions are taken, but
~may wish to only partially specify the choice to make her specification more general: that
is, apply to a wider range of implementations. A particular implementation is said to be
a refinement of such a specification.

The function PSC has been defined to represent non-determinism in specifications which
will be refined. In the following definition, PSC performs either action d=t1 or d=t2 where
* t1 and t2 have different values. The conjuncts in the definition state that either d=t1 or
d=t2 will occur, that t1 and t2 must be different,and that if action d=t1 occurs then the
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choice value a must be true. The type variables, * show that d,t1 and t2 can be of any
type, but that they must have the same type.

PSC (a:bool) (d:*) (ti1:%) (t2:x) =
(d=t1 V d=t2) A
- (t1 = t2) A
(d=t1) == a

Partially specified choice is useful in two situations. First, in a programming language
implementation all choices will be deterministic (e.g. an IF THEN ELSE command).
This will be modelled by the fully specified choice a = d=t1|d=t2 A -(ti=t2) which
is a special case of PSC a d t1 t2. Second, different algorithms constrain the choice in
different ways. For example, in one algorithm a new packet may be transmitted if a timeout
occurs or whenever new input becomes available whilst in another algorithm packets are
transmitted at any time. In both cases, any choice made with more information, PSC (a
A b) d t1 t2,is a special case of the original choice PSC a d t1 t2.

To see how partially specified choice is used in the generic specification, GEN, con-
sider the transmission of data messages 4. In the most general case, data messages may be
transmitted at any time there is data available. A sliding window protocol limits the num-
ber of messages outstanding at any time by using a window. A window can be represented
by a constant, say SW, and a rule that only the first SW data messages of those remain-
ing to be transmitted at time t (represented by rem:time — data list) are available
for transmission at that time. The predicate DATA.TRANS defines the data transmission
behaviour of the class of sliding window protocols. The operator @ represents addition
modulo a protocol constant M. The function TLI n 1 returns the tail of the list 1 starting
from its n-th element. Thus, ~NULL(TLI (i t) (rem t)) checks that the element of rem
t chosen for transmission is well defined.

DATA_TRANS =
V t:time.
PSC (((i t)<SW A =NULL(TLI (i t) (rem t)))
(dataS t)
(newpacket( s t & i t, HDI (i t) (rem t) )
(set.non.packet)

The fragment above describes part of a class of algorithms because many behavioural
details are left undefined. The constant SW and the transmission strategy function, i, are
only partially specified. The choice between action and delaying action is non-deterministic
so that the original specification still holds when the minimal transmission strategies
defined in GEN are strengthened in ALG and IMPL specifications. For example, the
condition for transmission in an algorithm could include the constraint that a timeout
has occured or that new data for transmission has arrived. In an implementation, the
transmission condition will include a condition that the time is one at which program
execution has reached the command which causes a packet to be transmitted.

Another example of the use of PSC can be found in the specification of the receiver’s
data reception. The RECEIVER accepts packets transmitted by the SENDER. from the

‘In Appendix B, the operator NDC is used instead of PSC. NDC a ¢1 ¢2 = (c1 V ¢2) A = (c1 A
c2) A (cl = a). We could replace all occurrences of NDC with PSC since SPC a d t1 t2 == NDC a
d=t1 d=t2
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channel. If a message is received whose sequence number is equal to the next number to
be output to the sink then the data part of the packet is output and the state signal
r:time ~—+ sequence is updated for the next output.

DATA_RECV =
Y t:time
(PSC (good_packet(ackS t) A (label(ackS t)
(r(z+1))
((rt) & 1)
(rt) ) A
(PSC (good_packet(ackS t) A (label(ackS t)
(sink(t+1))
(APPEND (sink t) (message(ackS t)))
(sink t) )

(rt)))

(r t3) )

1l

5.3 REAL-TIME DELAY

Two approaches to the problem of modelling time and progress can be found in the protocol
specification literature. The first method is to model protocols as state machines which
use their inputs at any time to calculate their next state. These are behavioural state
specifications. The behavioural specifications for DATA_TRANS and DATA_RECV given in the
last section show how state specifications can be written in HOL.

A second method gives a functional specification, using real time intervals, of the time
constraints which govern protocol behaviour. This method is used where the granularity
of state model time is too coarse. That is, when a model which does not explicitly specify
the time of its actions does not model the type of errors which are known to occur in
practice. For example, real time intervals should be used to specify channel delay and
timeouts.

Functional timing specifications state relationships between signals at different mo-
ments of real time. The output from a channel at time t, if a message is available, is a
copy of the channel’s input some time before t. Part of the channel specification, which
. was given in English in Figure 1,is Out t = In (¢t - (d t)). The specification is func-
tional because it does not show how the channel stores and delivers messages but only the
result of its doing so. The minimal constraints for the delay signal d are

Yt. 0<dt Adt <= maxdelay

The full channel specification given below uses these constraints to describe a channel
in which messages may be delivered or lost with variable but bounded delay and messages
may also be duplicated or reordered by the channel. In section 5.4 it is shown how better
behaved channels can be specified as special cases of the full channel.

CHANNEL In Out d maxdelay =
(Out t = In t-(d t) V Out t = setnon_packet) A
(0 <dt) A (dt < maxdelay)

Figure 3 gives an example of the behaviour of the channel specified above. Messages
are output by the channel at times 3, 4 and 6. The messages output at times 3 and 6 are
duplicates because they were both input at time 2. The messages output at times 3 and
4 have been reordered since they were input at times 2 and 1 respectively.
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Figure 3: Sample behaviour of the CHANNEL specification

5.4 PARTIAL SPECIFICATION

The signal i:time — sequence in DATA_TRANS determines the next data message to be
transmitted from the current window. In the specification, GEN, minimal constraints are
specified for 1 : that it should be within the current window ((i t)<SW) and should refer
to data which still remains to be sent ~NULL(TLI (i t) (rem t)). That is, i is only
partially specified. In an algorithm a data transmission strategy is used to define when
data packets are to be sent and which data message should be included in the packet
each time. An algorithm’s data transmission strategy will be given by a more detailed
definition of the choice signal i.

Types can also be partially specified. For example, a packet’s structure has some fields
which will be used by all levels of specification such as a field for data and a field for
labels. However, an implementation’s packet structure may contain extra fields. This
can be modelled by using arbitrary types (e.g. type variables in a polymorphic logic) for
packet structures which are not instantiated until an implementation level description.
The partial specification of structured types has not been used in the example described
in this paper.

5.5 LIVENESS

In any computer system which allows non-deterministic choice between actions we have to
decide how to model assumptions that the system makes progress. Traditionally, liveness
is expressed in terms of

1. an assumption that, if a non-deterministic choice is offered infinitely often, then each
branch of the conditional will eventually be chosen (fairness) and

2. a proof or assumption that events will be offered infinitely often.

However, in most implementations a program will not offer events or wait for them indef-
initely, but only for some predetermined maximum time. If progress has not been made
during this time interval then the program is aborted with a suitable signal to its caller. In
the sliding window protocol specification, GEN, if the sender’s state has not changed over
maxP time units, then the sender assumes that the receiver or the channel has crashed and
aborts the protocol. We define abort:time — bool to be true only when the protocol
should abort and false otherwise.

12




ABORT =
V t:time. abort t =
( (maxP'< t) A (~NULL(rem t)) A ( rem t = rem (t-maxP) )

A protocol is said to be live if (V t. - abort t). A protocol which is live in this
sense will also satisfy traditional liveness criteria. The definition is general because the
waiting interval maxP is not given a value. When details of an implementation environment
have been specified then it can be proved that a given interpretation of the bound maxP
is reasonable. That is, that the protocol does not abort in trivial cases.

5.6 VERIFICATION

Two lemmas about the behaviour defined by GEN are used to prove that the general class
behavioural model, GEN, satisfies its specification, SPEC 5. The first is a safety property
relating the values of the sender’s list of data remaining to be sent, rem, and the output
list, sink. The operator © represents integer subtraction modulo a protocol constant M.

SAFETY =
GEN —
YV t:itime.
APPEND (sink t) (TLI ((r t) © (s t)) (rem t)) = source

The second lemma states that as long as the protocol is not aborted then the list
rem will be empty by time maxP*LENGTH(rem 0) at the latest . The specification, GEN,
contains the liveness assumption (V t:time. - (aborted t)) where abort is specified
by the predicate ABORT given above.

LIVENESS =
GEN = (rem (maxP*LENGTH(rem 0)) = [])

The theorems SAFETY and LIVENESS are used to prove

GEN == SPEC

6 ALG: protocol algorithm specifications
6.1 TRANSMISSION STRATEGIES

A simple data transmission strategy can be used when window sizes are tailored to the
delays of a channel: start transmitting data from the base of the window, transmit each
message in turn until reaching the top of the window and then return to the bottom again,
If no data or acknowledgement messages have been lost then the base of the window will
have moved up by this time and new data will be transmitted. If acknowledgements have
been lost then returning to the base of the window will initiate a string of retransmissions.

*The following statements of the SAFETY and LIVENESS assumptions slightly misuse our notation
in that the parameters of GEN and SPEC are not listed. See Appendix B for a formal statement of these
theorems

®The value of the list rem at time 0 is equal to the original input list, source.
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BottomToTop =
(In. V.
(n0=0)A
(n(t + 1) =
(good._packet(dataS t)
= (nt ©st)<sW
=> (nt 1)
I (s %)
I nt)) A
(it=nteoest))

A more common transmission strategy uses timeouts to signal when retransmissions
should occur. A timeout occurs if the sender has made no progress for a certain period,
TIMEOUT, after transmitting a packet because an acknowledgement for that packet has not
arrived.

Timeout TIMEOUT dataS s rem t =
( (rem t) = rem(t-TIMEOUT)) A (TIMEGUT < t) A
( good.packet(dataS (t-TIMEOUT))) A
( s t = label(dataS (t~TIMEOUT)) ) A

In this transmission strategy all the data in a given window is transmitted once and then,
if a timeout occurs for a packet which has not yet been acknowledged, that packet is
retransmitted. If there is no new data to transmit and no timeout occurs, then (i t) is
set to SW so that nothing will be transmitted.

TransWithTimeouts =
V t. (Timeout t)
=> top(t+1l)=top t A i(t+1)=0
| good._packet(dataS t) A (top t & s t)<SW
= top(t+1)= ( (top t) @ 1) A
i(t+1) = (top t) © (s t)
| top(t+l)=top t A it = SW

6.2 BUFFERS as CHANNELS: FUNCTIONAL MODEL

In some sliding window protocol algorithms, when the receiver receives a packet which it
cannot immediately output to the sink, the receiver saves that packet in the hope that
it can be output once some earlier packets have arrived. This strategy increases the
efficiency of the protocol by reducing the number of packets which the sender may have
to retransmit.

A buffer may be used by a sender to store data which is ready for transmission or
which has been transmitted but not yet acknowledged.

In both these cases a buffer is simply a delay device which stores an input until such
time as its output condition is satisfied. The abstract specification of such a buffer, used
in ALG, is defined for all output times t which satisfy the output condition and for which
at a previous time (£ft’ t) an input condition was satisfied. In order to bound the space
required for buffers, input is only accepted if it is within the receiver’s current window. In
the specification below, the window size, RW:sequence, is a constant, but variable window
sizes could be implemented by using rw:time — sequence to represent the window’s
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size at different times. The variable window size (rw t) would always be bounded above
by the constant RW. The function DataOut:time — data represents output values which
have been input via the channel dataR:time — packet.

AbsBuffer dataR r RW DataOut ft’ maxW t =
(ft’ t) <t A t-(ft? t) < maxW A
INWINDOW (dataR (ft’ t)) (r (ft’ t)) RW A
T t = label(dataR(ft’ t)) A
Datalut t = message(dataR(ft’ t))

6.3 DELAYS: BEHAVIOURAL MODELS

The definitions for channels, buffers, timeouts and liveness show how real time constraints
in protocols can be specified using real time intervals. However, a protocol implementation
does not have access to the values of its variables from any previous times. It must instead
store and retrieve values at suitable times to achieve the same result. For example, a
program can only compare the current value of some state variable and its value 10 seconds
previously if, 10 seconds previously, the program had saved that variable’s value and later
retrieves it. The theory SW.ALG described in Appendix B contains an example which
illustrates the use of a behavioural specification of a counter to implement the delay
specified functionally in GEN by ABORT.

6.4 NEW CHANNELS

Some sliding window protocol algorithms are designed for a particular network environ-
ment. For example, many protocols only work correctly when their communication channel
does not reorder packets,

A channel which does not reorder or duplicate its inputs is a special case of the general
channel:

WELL_BEHAVED.CHANNEL In Out d maxd =
CHANNEL In Out d maxd A
(V t1 t2:time.
good_packet(Out t1) A good._packet(Out t2) A ti < t2
= (t1 - (d t1)) < (t2 - (d t2)))

If two channels are connected in sequence, for example as adjoining links of a subnet,
then the resulting process is also a channel. The new channel’s maximum delay is the sum
of the maximum delays of the original channels and the new delay function is a function
of the originals. '

COMPOSE_CHANNEL_THM =
CHANNEL a b di maxdl A CHANNEL b ¢ d2 maxd2 =—
CHANNEL a ¢ (A t. (d2 t) + (d1(t - (d2 t))))(maxd2 + maxdi)

Channels which may “crash” and refuse to deliver messages for a certain period can
be modelled using auxilliary signals. For example, in the {following specification the signal
has.crashed is true at times when the channel is not available. The effect of a crash on
the behaviour of the channel is given by:
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CHANNEL WITH_CRASHES In Out d maxd has.crashed =
CHANNEL In Out d maxd A
(V t. has.crashed t == - good.packet(Qut t))

Many other behaviours can be modelled in this way. For example, a signal garbled:time — bool
could be defined to distinguish between non_packet channel outputs which are the result
of a packet damaged during transmission (say when garbled t = T) and those which
represent no output at a given time (when garbled t = F).

7 RELATED WORK

The methodology for modelling protocols presented in this paper is based on methods
designed for modelling hardware using higher order logic [6, 11, 9, 3]. In order to model
protocols we extended the notion of values shared between components from wires to
structures such as packets. Although abstraction techniques and the multi-level specifi-
cation of hardware are covered in [11, 9] the treatment of partially specified choice and
delay for buffers and channels in our work is new.

Gordon’s methodology is used in [10] to combine specifications written in DRTL, an
extension of Jahanian and Mok’s RTL [7]. A requirements language and a design language
are defined; both describe only the timing behaviour of a real time system. Communication
is modelled implicitly by notification delays and not by a channel process as is done in our
model,

Real time logic, RTL, [7, 8] is a language designed for the specification of real time
systems. Systems are first specified using actions and events which can be combined
in sequence or in parallel subject to real time constraints. Such specifications are then
translated into RTL formulas in which actions are described by their start and completion
events and the time of the i-th occurence of an event is expressed by an occurrence function.
Two decision procedures have been proposed for verifying RTL specifications. The first
is based on quantifier free Presberger arithmetic [7]. A more efficient decision procedure
based on graph theory is proposed in [8].

In our methodology, actions and events are both represented by signals which are
similar in expressiveness to RTL event occurence functions. Our verification proofs are
performed at a higher level than the decision procedures for RTL. Thus, although our
proofs are machine checked, and so rigorous, they do require considerable human input to
direct the proof. The ability to describe real time constraints in a range of both functional
and behavioural specifications is an advantage of our method which is not available in
RTL.

Most protocol specification and verification methods in the literature describe specific
algorithms and do not cover implementation models or more general abstract specifica-
tions. Few models can express real time constraints. A model which addresses both these
problems is described in Shankar and Lam [15, 14] where an event-action model is used
to described real time protocols.

In [14] a class of sliding window protocols is verified under two different assumptions
about the behaviour of their communications channel. The model for protocol behaviour
lies somewhere between those called GEN and ALG in this paper. The proof method in-
volves deriving invariants for each action in the specification; projection can be used for
modularity. Real time is modelled by an external clock which may be read by processes.
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Rules are proposed to determine whether a real time constraint is implementable: for ex-
ample, whether one process controls all the events necessary to realise the constraint. Our
model is more concrete than this because we prove that a specification is implementable
by showing that a particular implementation satisfies that specification.

Two logical models which can be used for real time systems are interval temporal
logic [13, 5] and interval logic [12]. Whereas temporal logic formulae hold on an infinite
interval, ‘the future’, interval temporal logics enable a finite interval to be specified on
which a formula holds. Thus constraints of the type ‘event x must occur within 3 seconds
of event y’ can be specified. The expressiveness of ITL is similar to that of the higher
order logic model used in this paper. An advantage of interval temporal logic is that
deterministic specifications are executable in the programming language Tempura [13].

- Thus, a class of high level specifications in interval temporal logic could be checked by
executing them.

8 CONCLUSIONS

This paper has shown that higher order logic can be used for the specification of protocols
at a number of different levels of abstraction. We have successfully represented a range of
real time behaviours such as unreliable channels with bounded but variable delay, timeouts
and buffers.

Most specification languages are more suited to either requirements or behavioural
specifications. The ease of using whichever style seems most appropriate is an advantage
of our approach.

The use of a generic specification for the class of sliding window protocols has proved a
useful way to structure the verification of real time algorithms and implementations since

1. GEN is a simpler model than that for any specific protocol algorithm and its verifi-
cation proof, including real time properties, is not too hard, and

2. the extra predicates required for an ALG specification can be defined and verified
independently of one another: that is, particular algorithm strategies such as time-
outs for retransmission, negative acknowledgements, the use of buffers and different
channel behaviours can be kept as a library of definitions with proofs of their prop-
erties.

The model GEN presented in this paper is not a canonical generalization of all sliding
window protocols. For example, the transmission strategy for protocols such as TCP,
where a list rather than a single element of data is transmitted, is not covered by GEN.
Our model is a special case of one which would cover TCP and so could probably be
rewritten to include this more general behaviour. Also, the bound we place on the range
of sequence numbers is necessary and sufficient for channels which may duplicate and
reorder packets, but is larger than required for channels which do not reorder or duplicate
packets. However, the search for a completely generalized canonical model for sliding
window protocols, if one exists, is beyond the scope of this research.

Further experience is needed in relating GEN and ALG specifications to implementation
models. We have started to describe the semantics of a real time programming language in
higher order logic using the model of GEN and ALG specifications. Implementation models
could then be verified following the methodology suggested in section 3.2. Properties
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about the performance of protocols and the effect of particular transmission strategies,
window sizes etc. in a given environment could also be verified from an IMPL model.
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A Syntax for a fragment of the HOL logic

MACHINE
VERSION
T and F

p

p/\gq
PV g
p==>q
Px

Ix. Px
?x. P x

x=y

a=>blc
&= + = %

:bool
:num
rone
1Rty
ity list

hd, tl, NIL, [

NULL !

APPEND 11 12

LENGTH 11

ttyl -> ty2

(tyl # ty2

ttyl + ty2

|- thm

LOGICAL
SYMBOL
Tand F

-p

PAg

pVyg
p=4q
P(z) or Pz
Vz.P x
dz.Pz

:bool
inum
rone
IRty
ity list

hd, tl, NIL, []

NULL1

APPEND Iy I,

LENGTH I

tyr — tyo

ty1 X ty2
FST, SND

ttyy 1y

INL, INR, OUTL, OUTR

ISL, ISR
F thm

20

MEANING

Truth and Falsity

not p

pand q

porqg

p implies q

property P of x

for all x, property P x is true

there exists at least one x such that P
X is true

polymorphic equality : x and y have
the same type and same value

if a then b else c

arithmetic infix operators on natural
numbers

boolean type: T and F

natural number type : 0,1,2,3,...

the type with only one member: one
arbitrary type: a type variable

a list with elements of type ty

list operators: head, tail, and two no-
tations for the empty list

true if [ is the empty list and false oth-
erwise

a list which is the concatenation of two
lists, /3 and Iy, of the same type

the number of elements in the list /4
type of any function with domain {y;
and range ty,

cartesian product type

FST(z,y) = = and SND(zy) = y
disjoint union type. Use this type with
the following functions :

injections and projections of the sum
a test for left or right summand

thm is a theorem of higher order logic
(that is a statement which has been
formally proved)




B.2

HOL theories for SPEC, GEN and ALG

Types: a summary

time = num

sequence = num

non_packet = one packet = (sequence # *data) + one
channel = time — packet

Signals and Constants: a summary

source : *data list original input to the protocol

sink : time — *data list output of the protocol over time

rem : time — *data list data remaining to be transmitted by the
sender, including data sent but not yet ac-

knowledged

s : time — sequence the sender’s window marker

r : time — sequence the receiver’s window marker: s and r deter-
mine which incoming packets should be ac-
cepted

i : time — sequence determines the next data message to be trans-
mitted by the sender from its current window

DataOut : time — x*data data values returned to the receiver from its

, input buffer

SW : sequence sender’s window size

RW : sequence receiver’s window size

M : sequence Maximum range of sequence numbers which
can be used

dataS dataR : channel input and ouput, respectively, of the data
channel

ackR ackS : channel input and output, respectively, of the ac-
knowledgement channel

maxdd maxda : time maximum delivery delays of the data and ac-
knowledgement channels respectively

Sdif, Rdif: sequence Maximum range of sequence numbers which

could be transmitted during the time interval

maxdd or maxda respectively.
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B.3 HOL Theories

Rk rkkokriokkkkkkkk SWLGEN THEDRY sk ok skskokskdkok ook ok kok ok

The Theory SW.GEN
Parents -~ HOL arith myarith hdi_t1li SEQMOD

Type Abbreviations --

time ":num" sequence ":num" non_packet ":one"
seqtime ":num -> num" delaytime ":num ~> num" time ":num"
sequence ':num" non_packet ":one" seqtime ":num -> num"

delaytime ":num -> num"

Kokkskdokkokokkkkdokkkkk DEFINITIONS ok odoksk sk ok ook ok skskok ok

set_non_packet |- set_non_packet = INR one
good_packet |- !p. good_packet p = ISL p
new_packet |- !ss dd. new_packet ss dd = INL(ss,dd)
label |- tp. label p = FST(OUTL p)

message |- !p. message p = SND(OUTL p)
NDC

|- lc al a2. NDC ¢ al a2 = (a1 \/ a2) /\ ~(atl /\ a2) /\ (ail ==> ¢)
INIT

|- tsource rem s sink r.
INIT source rem s sink r
(rem 0 = source) /\ (s O
CHANNEL
|- 1In Out d maxdelay.
CHANNEL In Out d maxdelay =

0) /\ (sink 0 = [1) /\ (x 0 = 0)

(1t
((Out t = In(t - (d t))) \/ (Out t = set_non_packet)) /\
(d t) >0 /\
(d t) <= maxdelay)
DATA_TRANS

|- tdataS rem s i M dtrA.
DATA_TRANS dataS rem s i M dtrA =

(1t.
NDC
(dtra t)
(dataS t = new_packet(plusm(s t,i t,M))(HDI(i t)(rem t)))

(dataS t = set_non_packet))
DATA_RECV
|- 'dataR sink DataOut r M drvA.

DATA_RECV dataR sink Datalut r M drvA =

(it,
NDC
(drvA t)
((sink(t + 1) = APPEND(sink t)[Datalut t]) /\
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(r(t + 1) = plusm(r t,1,M)))
((sink(t + 1) = sink t) /\ (r(t + 1) =1 t)))
ACK_TRANS
|- tackR r M ackty atrd.
ACK_TRANS ackR r M ackty atrd =
(1t.
NDC
(atrA t)
(ackR t = new_packet(subm(r t,1,M)) (ackty t))
(ackR t = set_non_packet))
ACK_RECV
|- lackS rem s M arva,
ACK_RECV ackS rem s ¥ arvA =

(1t.
NDC
(arvA t)
((s(t + 1) = plusm(label(ackS t),1,M)) /\
(rem(t + 1) = TLI(subm(s(t + 1),s t,M))(rem t)))
((s(t + 1) =5 t) /\ (rem(t + 1) = rem t)))
ABORT
|- tabort maxP rem.
ABORT abort maxP rem =
(it.
abort t = (rem t = rem(t - maxP)) /\ maxP <= t /\ "NULL(rem t)) .
LIVE_ASSUMPTION |- !abort. LIVE_ASSUMPTION abort = (!t. “abort t)
dtrans_min
]- 11 SW rem t.

dtrans_min i SW rem t = (i t) < SW /\ “NULL(TLI(i t)(zem t))
IN_WINDOW
|- 'p b Muwus.
IN_WINDOW p b M ws = good_packet p /\ (subm(label p,b,M)) < ws
drecv_min
|- !tdataR r Datalut t.
drecv_min dataR r Datalut t =
good_packet(dataR t) /\
(label(dataR t) = r t) /\
(DataOut t = message(dataR t))

atrans_min |- !'t. atrans_min t = T
arecv_min
|- lackS s M SW t.
arecv_min ackS s M SW t = IN_WINDOW(ackS t)(s t)M SW

Sdif_DEF
|- 's M maxdd Sdif.
Sdif_DEF s M maxdd Sdif
Sdif < M /\
(1t n. n <= maxdd ==> (subm(s(t + n),s t,M)) <= Sdif)
Rdif_DEF
|- 'r M maxda Rdif.
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Rdif _DEF r M maxda Rdif =
Rdif < M /\
(!t n. n <= maxda ==> (subm(r(t + n),r t,M)) <= R4if)
M_ASSUM
|- 'M SW s r maxdd maxda Sdif Rdif.
M_ASSUM M SW s r maxdd maxda Sdif Rdif =
0 <M /\
(SW + 1) <M /\
Sdif_DEF s M maxdd Sdif /\
(Sdif + SW) < M /\
Rdif_DEF r M maxda Rdif /\
(Rdif + SW) < M /\
(RAif + 1) < M

Fokkokkkskdokokkkkkkokkkkk MATN DEFINITIONS skokokakokokokokskokok ko ok ok kok ok

SW_SPEC |- !source sink. SW_SPEC source sink = (7t. sink t = source)
SW_GEN
|- 'source sink.
SW_GEN source sink =
(?rem s i r SW M Sdif Rdif DataOut ackty maxP maxdd maxda abort
dataS dataR ackS ackR dd da.
INIT source rem s sink r /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink DataOut r M(drecv_min dataR r Datalut) /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
ABORT abort maxP rem /\
LIVE_ASSUMPTION abort /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif)

Kok kkkokkdkk kb kokkkok THEOREMS  sokskok sokskesk sk ok sk ko ko ok ok

remi_lemma
|- M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) ==
(tt.
(rem(t + 1) = TLI(subm(s(t + 1),s t,M))(rem t)) /\
(subm(s(t + 1),s t,M)) <= SW)
remn_Jlemma
- M_ASSUM M SW s r maxdd maxda Sdif RdAif /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) ==
('t n.
n <= maxdd ==> (rem(t + n) = TLI(subm(s(t + n),s t,M)) (rem t)))
remdd_lemma
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|- M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
CHANNEL dataS dataR dd maxdd ==
(!t. rem t = TLI(subm(s t,s(t - (dd t)),M))(rem(t - (dd t))))
ChannelLemma
|- 'A B d maxd t.
CHANNEL A B d maxd /\ good_packet(B t) ==
(Bt =A(t - (dt))) /\ good_packet(A(t - (d t)))
AckValueLemma
- 1t
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
arecv_min ackS 8 M SW t ==
(label(ackS t) = subm(r(t - (da t)),1,M))
dataSvalues
|- 1t.
good_packet(dataS t) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) ==
(label(dataS t) = plusm(s t,i t,M)) /\
(message(dataS t) = HDI(i t)(rem t)) /\
(i t) < SW /\ '
“NULL(TLI(i t)(rem t))
lemmaRmin
|- DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\

DATA_RECV dataR sink DataOut r M(drecv_min dataR r Datalut) ==>

('t.
(r(t + 1) = plusm(r t,1,M)) /\ drecv.min dataR r DataOut t \/
(r(t + 1) =1 t))
R_CASES_THM

|- DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
. CHANNEL dataS dataR dd maxdd /\

DATA_RECV dataR sink Datalut r M(drecv_.min dataR r Datalut) ==>

(tt.
(r(t + 1) = plusm(r t,1,M)) /\
drecv_min dataR r Datalut t /\
(sink(t + 1) = APPEND(sink t)[DataOut t]) \/
(r(t + 1) =1 t) /\ (sink(t + 1) = sink t))
lemmaR
|~ DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink Datalut r M(drecv_min dataR r DataQut) ==
(1t.
(r(t + 1) = plusm(r t,1,M)) /\
(r t = plusm(s(t - (dd t)),i(t - (dd t)),M)) /\
(it - (dd t))) < sW \/
(r(t + 1) =1 t))

i

lemmaS
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|- ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) ==
(1t.
(s(t + 1) = plusm(label(ackS t),1,M)) /\
(label(ackS t) = subm(r(t - (da t)),1,M)) /\
(subm(label(acksS t),s t,M)) < SW \/
(s(t + 1) =58 1t))
sdifd_lemma
|- Sdif_DEF s M maxdd Sdif /\ CHANNEL dataS dataR dd maxdd ==
(1t. (subm(s t,s(t - (dd t)),M)) <= Sdif)
rdifd_lemma
|- RAif_DEF r M maxda Rdif /\ CHANNEL ackR ackS da maxda ==
('t. (subm(r t,r(t - (da t)),M)) <= Rdif)
rda_lemma
[-0<H /N
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) ==
(subm(r(t -~ (da t)),s t,M) = subm(s(t + 1),s t,M)) /\
(subm(r t,s(t + 1),M) = subm(r t,r(t - (da t)),M)) \/
(s{(t + 1) = s t)
sincr_lemma
|- M_ASSUM M SW s r maxdd maxda Sdif Rd4if /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv._min ackS s ¥ SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink DataOut r M(drecv_min dataR r Datalut) ==
(It.
(subm(r t,s(t + 1),M)) + (subm(s(t + 1),s t,M)) =
subm(r t,s t,M))
RSdif_lemma
|- INIT source rem s sink r /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink DataOut r M(drecv_min dataR r Datalut) ==
('t. (subm(r t,s t,M)) <= SW)
rsi_lemma
|- INIT source rem s sink r /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
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ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\ '
DATA_RECV dataR sink Datalut r M(drecv_min dataR r DataOut) ==
('t. subm(plusm(r t,1,M),s t,M) = (subm(r t,s t,M)) + 1)
Rsincr_lemma
|- M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
INIT source rem s sink r /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s ¥ SW) /\
DATA_TRANS dataS rem s i M(dtrans.min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink Datafut r M(drecv_min dataR r Datalut) ==
((subm(r(t + 1),s(t + 1),M)) + (subm(s(t + 1),s t,M)) =
subm(r(t + 1),s t,M)) '
S_INC_THM
|- M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
INIT source rem s sink r /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink DataOut r M(drecv_min dataR r Datalut) ==>
(1t.
TLI(subm(r(t + 1),s(t + 1),M))(rem(t + 1)) =
TLI(subm(r(t + 1),s t,M))(rem t))
rsd_lemma
|~ INIT source rem s sink r /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink DataOut r M(drecv_min dataR r DataOut) ==
((subm(r t,s t,M)) + (subm(s t,s(t - (dd t)),M)) =
subm(r t,s(t - (dd t)),M))
change_i
- (plusm(s(t ~ (dd £)),i(t - (dd t)),M) = r t) /\
(i(t - (dd t))) < sW /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif ==
(subm(r t,s(t - (dd t)),M) = i(t - (dd t)))
R_INC_THM
- 1t,
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
INIT source rem s sink r /\
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ACK_TRANS ackR r M ackty atrans_min /\

CHANNEL ackR ackS da maxda /\

ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\

DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\

CHANNEL dataS dataR dd maxdd /\

DATA_RECV dataR sink Datalut r M(drecv_min dataR r Datalut) /\
drecv_min dataR r Datalut t ==

(Datalut t = HDI(subm(r t,s t,M))(rem t)) /\

“"NULL(TLI(subm{r t,s t,M))(rem t))

*okkkokokokkkokkokkkokkokokk SAFETY THEQREM sk skok sk sk sokskok ok sk sk okok ok ok ok

SAFETY_THM
|~ INIT source rem s sink r /\

M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_TRANS ackR r M ackty atrans_min /\
CHANNEL ackR ackS da maxda /\
ACK_RECV ackS rem s M(arecv.min ackS s M SW) /\
DATA_TRANS dataS rem s i M(dtrans_min i SW rem) /\
CHANNEL dataS dataR dd maxdd /\
DATA_RECV dataR sink Datalut r M(drecv_min dataR r Datalut) ==
(1t. APPEND(sink t)(TLI(subm(r t,s %t,M))(rem t)) = source)

ek ok s e ok o 3k ok sk ok ok 3 ok Sk ok st sk ok ok o ok ok ok sk ke sk ok sk sk ok ok o sk ok ok ok 3k sk ok 3k 3k 3k ok ok ok o ok ok Kok

NOT_ABORT
|- tabort maxP rem.
ABORT abort maxP rem /\ LIVE_ASSUMPTION abort ==>
('t. NULL(rem t) \/ t < maxP \/ *“(rem t = rem(t - maxP)))
remd_LENGTH_lemma
|- M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ACK_RECV ackS rem s M(arecv_min ackS s M SW) ==>
(tn t. (LENGTH(rem(t + n))) <= (LENGTH(rem t)))
remd_LENGTH_THM
|~ ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
M_ASSUM M SW g r maxdd maxda Sdif Rdif ==

(in t.
(("(rem(t + n) = rem t)) =>
(LENGTH(rem(t + n))) < (LENGTH(rem t)) |
(LENGTH(rem(t + n)) = LENGTH(rem t))))

decreasing_rem_lemma
|- tackS s r rem maxP maxdd maxda SW M Sdif Rdif.
ACK_RECV ackS rem s M{arecv_min ackS s M SW) /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ABORT abort maxP rem /\
LIVE_ASSUMPTION abort ==
(!n. (LENGTH(rem(maxP * n))) <= ((LENGTH(rem 0)) - n))
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¥kdkokkokkkdokokkkkkdokk LIVENESS THEOREM sk skskskoksok ok kokokokok ook

LIVENESS
|- lackS s r rem maxP maxdd maxda SW M Sdif Rdif.

ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
ABORT abort maxP rem /\

LIVE_ASSUMPTION abort ==

(rem(maxP * (LENGTH(zem 0))) = [1)

Fhokkiokkkkkokksokkkokkkk CORRECTNESS THEOREM ok kokok ok ko sk ok ok ok o

TOTAL_CDRRECTNESS_THM
|- !'source sink. SW_GEN source sink ==> SW_SPEC source sink

ok kpokkokkokkobokkokokkokkokk END SW.GEN THEDRY skskaokksokkokokskok skokokokok dok
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Fokokokkokkokksokkookokskokkk SWLALG THEORY  skokokskokok sokskok ok 3k sk ok ok ok o ok o o
The Theory SW.ALG

Parents ~- HOL SW.GEN

Definitions --

sk sk kol dokokdkokskkkdokkokokok TRANSMISSION STRATEGIES skoskokokokoskokokokok sk ok ok
BottomToTop

|- !i dataS s SW maxseq.
BottomToTop i dataS s SW maxseq =

(?n.
It.
(n0=0) /\
(n(t + 1) =

(good_packet(dataS t) =>
((subm(n t,s t,maxseq)) < SW => plusm(n t,1,maxseq) | s t) |
n t)) /\
(i t = subm(n t,s t,maxseq)))
Timeout
|- ITIMEOUT dataS s rem t.
Timeout TIMEQUT dataS s rem t =
(rem t = rem(t - TIMEOUT)) /\
TIMEQUT <= t /\
good_packet(dataS(t - TIMEOUT)) /\
(label(dataS(t - TIMEOUT)) = s t)
AckIfInput
|- YACK_TIMEOUT dataR ackR t.
AckIfInput ACK_TIMEOUT dataR ackR t =
good_packet(dataR(t - 1)) \/
ACK_TIMEOUT <= t /\
(1,
(t - ACK_TIMEOUT) <= t’ /\ t’ < t ==> “good_packet(ackR t’))

*xopkkokkokkkkkkkkkkkk RECEIVER BUFFER SPECS soksoksokskkokokkkskokdkskkok k%

CHANNEL_O
|- tIn Out d maxdelay.
CHANNEL_O In Out d maxdelay =

(It
((Out t = In(t - (d t))) \/ (Out t = set_non_packet)) /\
0 <= (d t) /\
(d t) <= maxdelay)
BufCond

|- 't t’ maxW dataR r M RW.
BufCond t t’ maxW dataR r M RW =
t? <=t /\
(t - t’) <= maxW /\
IN_WINDOW(dataR t’){(r t’)M RW /\
(g2, €2 <t /\ t?? <t ==> “(r t’° = label(dataR t’))) /\
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(r t = label{dataR t’))
AbsBuffer
|- !'dataR r M RW Datalut ft’ maxW t.
AbsBuffer dataR r M RW Datalut ft’ maxW t =
BufCond t(ft’ t)maxW dataR r M RW /\
(Datalut t = message(dataR(ft’ t)))

kdokkkskkokkskobkikokkokkkkk BUFFER IS CHANNEL THEOREMS  skokskokokskokok ok skskokok ok ok

Theorems --
COMPOSE_CHANNEL_O_THM
|- ta b c di d2 maxdl maxd?2.
CHANNEL a b d1 maxdl /\ CHANNEL_O b ¢ d2 maxd?2 ==>
CHANNEL a c(\t. (d2 t) + (d1(t - (d2 t))))(maxd2 + maxdi)
BufCond_AS_CHANNEL
|- 'dataR r M RW maxW ft°’.
CHANNEL_O
dataR
(\t.
(BufCond t(ft’ t)maxW dataR r M RW =>
dataR(ft’ t) |
set_non_packet))
(\t. (BufCond t(ft’ t)maxW dataR r M RW => t - (ft’ t) i o))
maxW
AbsBuf _AS_drecv_min
|- tdataR r M RW DataOut ft’ max¥W t.
AbsBuffer dataR r M RW DataOut ft’ maxW t <=>

drecv_min

(\t.
(BufCond t(ft’ t)maxW dataR r M RW =>
dataR(ft’ t) |
set_non_packet))

T

Data0ut

t

AbsBuf_CHANNEL_THM
|- !dataS dataR dA maxdA M RW DataOut ft’ maxW.
?data} dd maxdd. i
CHANNEL dataS dataR dA maxdA /\
DATA_RECV
dataR
sink
Datalut
r
M
(AbsBuffer dataR r M RW DataOut ft’ maxW) ==
CHANNEL dataS dataQ dd maxdd /\
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DATA_RECV data} sink DataOut r M(drecv_min dataQ r DataOut)

kkkskookkk Rk xkk BUFFER BEHAVIOUR:  sksksokskoksokokokskskokok ok ok skok

RoRkkkk kR kR kookkk A CLOCK EXAMPLE ok okok ok okok ok ok ok Kok sk ok ok ok
START_CLK |- !clk wait. START_CLK clk wait = (clk 0 = wait)
SET_CLXK |- teclk t wait. SET_CLK clk t wait = (clk(t + 1) = t + wait)
TICK_CLK |- !'elk t. TICK_CLK clk t = (clk(t + 1) = clk t)
RING.CLK |- !clk t. RING.CLK clk t = (clk t) < ¢t
maxP_CLK_DEF

{~ !rem maxP clk,.
maxP_CLK_DEF rem maxP clk =
START_CLX clk(maxP - 1) /\
0 < maxP /\
(1t.
((NULL(rem t) \/ “(rem(t + 1) = rem t)) =>
SET_CLK clk t maxP |
TICK_CLK clk t))
CLK_abort_def
|- tabort clk. .
CLK_abort_def abort clk = (!t. abort t = RING_CLK clk t)

k¥ kkkokkokkkkokkdokk CLOCK BEHAVIOUR IMPLIES  soskokskskskokokkskokdokokok ok kosk
kkkokkkkkkokkkkkkokkkxk ABORT SPECIFICATION A A KKK A A K KK Ak K

rem_same_clk_lemma
|- !rem maxP maxdd maxda clk ackS s r SW M Sdif R4if.
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
maxP_CLK_DEF rem maxP clk ==
(In t.
"NULL(rem(t + n)) ==>
((rem(t + n) = rem t) =>
(clk(t + n) = clk t) |
(c1k(t + n)) >= (t + maxP)))
CLK_lemma3
|- frem maxP clk. .
maxP_CLK_DEF rem maxP clk ==> (!t. (clk t) < (t + maxP))
CLK_lemmal
|- 'rem maxP maxdd maxda clk ackS s r SW M Sdif Rdif.
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
M_ASSUM M SW s r maxdd maxda Sdif Rdif /\
maxP_CLK_DEF rem maxP clk ==
(1t. t < maxP /\ "NULL(rem t) ==> “(clk t) < t)
CLK_lemma?2
{~ 't rem maxP clk.
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maxP_CLK_DEF rem maxP clk /\ NULL(rem t) ==> “(clk t) < t
maxP_CLK_thm
|- !rem maxP maxdd maxda abort clk ackS s r SW M Sdif Rdif.
ACK_RECV ackS rem s M(arecv_min ackS s M SW) /\
M_ASSUM M SW 8 r maxdd maxda Sdif Rdif /\
maxP_CLK_DEF rem maxP clk /\
CLK_abort_def abort clk ==
ABORT abort maxP rem

Fxdokdokkiokok kol ksokkkdkok . NEW CHANNELS  sokokakokskok skokokok ok ok ok ok ok ok

ORDERED_CH
|- !In Out d maxd.
ORDERED_CH In Out d maxd =
CHANNEL In Qut d maxd /\
(1t1 t2.
good_packet(Out t1) /\ good_packet(Out t2) /\ ti < t2
(t1 - (d t1)) <= (2 - (4 t2)))
GOOD_CHANNEL
|- tIn Out d maxd.
GOOD_CHANNEL In Out d maxd =
CHANNEL In Out d maxd /\
(1t1 t2.
good_packet(Qut t1) /\ good_packet(Dut t2) /\ ti1 < t2
(t1 - (d t1)) < (2 - (4 t2)))
CHANNEL_WITH_CRASHES
|- 'In Out d maxd has_crashed.
CHANNEL_WITH_CRASHES In Out d maxd has_crashed =
CHANNEL In Out d maxd /\
(1t. has_crashed t ==> “good_packet(Out t))

H
J
v

[i]
1
v

COMPOSE_CHANNEL_THM
|- ta b ¢ di d2 maxdl maxd?2.
CHANNEL a b d1 maxdi /\ CHANNEL b ¢ d2 maxd2 ==
CHANNEL a c(\t. (d2 t) + (d1(t - (d2 t))))(maxd2 + maxdi)

Frkkickkkook koo koksorkk END SW.ALG THEDRY  sokksk ok ok ook ok skok sk skokok sk ok
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sdokdokrorokkokkkkoksokokk - SEQMOD THEGRY  skokskoksksk dkskskok sokokok okok ok ok ok ok ok
*%%¥x%x%x SUPPORT FOR MODULO SEQUENCE NUMS IN GEN kkkckkckkxk

The Theory SEQMOD

Parents -- HOL int arith myarith
Constants --
plusm ":num # (num # num) -> num" N ":num -> (num -> num)"

subm ":num ¥ (num # num) -> num®
Definitions --
plusm |- 'a b m. plusm(a,b,m) = ABS(((Int a) plus (Int b)) MODI m)
N [-'!am. N am= ABS((neg(Int a)) MODI m)
subm |- 'a b m. subm(a,b,m) = plusm(a,N b m,m)

Theorems --
MOD_MOD
I- 'n., (Int 0) << (Int n) ==> ('a. (a MODI n) MODI n = a MODI n)
MOD_O0 |- !'n. (Int 0) << (Int n) ==> ((Int 0) MODI n = Int O)
Add_MOD_MOD
{~ Im,
(Int 0) << (Int m) ==>
(ta b. ,
((a plus (b MODI m)) MODI m = (a plus b) MODI m) /\
(((a MODI m) plus b) MODI m = (a plus b) MODI m))
Int_abs |- ti. (Int 0) Leq i ==> (Int(ABS i) = i)
Int_abs_MOD
|- im, (Int 0) << (Int m) ==> (!i. Int(ABS(i MODI m)) = i MODI m)
Leq_LESS_OR_EQ |- !m. (Int 0) Leq (Int m) = 0 <= m
MODI_IS_,a |- 'am. 0<m/\ a<m==> (ABS((Int a) MODI m) = a)

plus_in_plusm
[- tabcm. 0<m==> (plusm(a + b,c,m) = plusn(plusm(a,b,m),c,m))
subm_eq_sub

|- ta b m.
0<(a-b)/N(a-b)<m/\ O0<m-==> (subm(a,b,m) = a - b)
Nm |- 'm. O<m==>(Nmm=0)
N_lessm |- !nm 0<m==>(Nnm)<m ,
plusm_is_a |~ !'am. 0 < m /\ a < m ==> (plusm(a,0,m) = a)
plusmm |- !am. 0 < m ==> (plusm(a,m,m) = plusm(a,0,m))
plusm_less.m |- 'a bmn. 0 < m ==> (plusm(a,b,m)) < m
PLUSM_COMMUTATIVE |- 'a b m. plusm(a,b,m) = plusm(b,a,m)
PLUSM_ASSOC
|- !'abecm.
0 < m ==> (plusm(a,plusm(b,c,m),m) = plusm(plusm(a,b,m),c,m))
PLUSM_ID |- fa m. plusm(a,0,m) = ABS((Int a) MODI m)
PLUSM_INV |- 'am, 0 < m ==> (plusm(a,N a m,m) = 0)
plusm_eq ‘
|- tab c m.
0<m/\a<m/\ c<nm/\ (plusm(a,b,m) = plusm(c,b,m)) ==
a=c
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n_plusm
|- tabdbm 0<m==> (N(plusm(a,b,m))m = plusm(N a m,N b m,m))
plusm_plus.m [-!'abm 0 < m==> (plusm(a + m,b,m) = plusm(a,b,m))
plus_in_subm |- tabm. 0 <m ==> (N(a + b)m = N(plusm(a,b,m))m)
subm_plusm_to_num
|- 'a b cm,
O<km/Na<((+c)/\(b+c)<(a+mn)==
(subm(a,plusm(b,c,m),m) = (a + m) - (b + c))
subm_plusm_2_to_num
|- ta b cm.
O<m/\ (a+b)<c/\Nc< ((a+b)+m) ==
(subm(plusm(a,b,m),c,m) = ((a + b) + m) - c)
plus_eq._plusm
I-tabm. 0<m /\ (a+b)
plusm_sub_sub
|- tabcm.
0 < m ==> (plusm(subm(a,b,m),subm(b,c,m),m) = subm(a,c,m))
subm_plusm
|- im,
0 <m ==>
(!a b c. subm(plusm(a,b,m),c,m) = plusm(subm(a,c,m),b,m))
Plusm 0 |- fa bm. 0 < m ==> (plusm(plusm(a,b,m),0,m) = plusm(a,b,m))

A

m ==> (a + b = plusm(a,b,m))

plusm_subm |- labm. 0<m/\ a<ms==> (plusm(subm(a,b,m),b,m) = a)
subm_self |- !m. 0 < m ==> (!r. subm(r,r,m) = 0)
plusm_subm_self
I- 'mabec.
0 < m ==> (subm(plusm(subm(a,b,m),b,m),c,m) = subm(a,c,m))

plusm_subm_self2
I-mabec.
0 < m ==> (subm(c,plusm(subm(a,b,m),b,m),m)
change_sides_simpl
|- 'mabec.
(plusm(a,b,m) = ¢) /A 0 <m /\ b <m==> (b
change_sides
|- 'abcdm.
(subm(plusm(a,b,m),c,m) = d) /\ 0 < m /\b <nm==
(b = plusm(subm(c,a,m),d,m))

subm(c,a,m))

subm(c,a,m))

Bhkkkkkokdokkkkkokkokkdok END SEQMOD THEORY skokskok koot s sk sokok o sk ok ook
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*xkokk kol kokokkkk hdi_t1i THEORY skskokskskokokskokokok ok sk kokokkok K

The Theory hdi_tli

Parents -- HOL myarith arith
Constants =--
TLo ":(*)1list -> (%)1list" TLI ":num -> ((*)1list -> (*)1list)"
HDI ":num -> ((*)list =-> %)
Definitiong --
TLo [~ !'1, Tbo 1 = (("NULL 1) => TL 1 | [1)
TLI |- (!1. TLI 01 =1) /\ ('n 1. TLI(SUC n)l = TLo(TLI n 1))
HDI |- In 1. HDI n 1 = HD(TLI n 1)
Theorems ~--
LENGTH_TL |- !1., “NULL 1 ==> (LENGTH(TL 1) = (LENGTH 1) - 1)
NULL_LENGTH_O |- !1, NULL 1 ==> (LENGTH 1 = 0)
APPEND_NIL |- !1. APPEND 1[] =1
TLINIL |- in. TLI n[] = []
HDI_TLI_1
[- !x 1. "NULL(TLI x 1) ==> (APPEND[HDI x 1](TLI(x + 1)1) = TLI x 1)
HDI_TLI_2 |- 'x y 1. TLI x(TLI y 1) = TLI(x + i

LIST_EQ.IMP_LENGTH_EQ

- '11 12. (11 = 12) ==> (LENGTH 11 = LENGTH 12)
LENGTH_LESS_IMP_NOT_EQ

f- 111 12, (LENGTH 11) < (LENGTH 12) ==> ~(11 = 12)

LENGTH_NOT_NULL |- !11. -NULL 11 ==> 0 < (LENGTH 11)
HDI_TLI_3 |- !x 1. LENGTH(TLI x 1) = (LENGTH 1) - x
LENGTH_TLI

[- 111 12 x.

“NULL 12 /\ (11 = TLI x 12) /\ O € x ==
(LENGTH 11) < (LENGTH 12)

RFcRRRR Rk kkkkkkkkkkkk END hdi_t1i THEORY skokskkokskokskskokok kok sk ok ok ok
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