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Abstract

The idea of using formal logic to reason about small fragments or single layers of a
software/hardware system is well-established in computer science and computer engi-
neering. Recently, formal logic has been used to establish correctness properties for
several realistic systems including a commercially-available microprocessor designed by
the British Ministry of Defence for life-critical applications. A challenging area of new
research is to verify a complete system by linking correctness results for multiple layers
of software and hardware into a chain of logical dependencies.

This dissertation focuses specifically on the use of formal proof and mechanical proof-
generation techniques to verify microprocessor-based systems. We have designed and
verified a complete system consisting of a simple compiler for a hierarchically structured
programming language and a simple microprocessor which executes code generated by
 this compiler. The main emphasis of our discussion is on the formal verification of the
microprocessor. The formal verification of the compiler is described in a separate paper
included as an appendix to this dissertation.

Combining correctness results for the compiler with correctness results for the micro-
processor yields a precise and rigorously established link between the formal semantics of
the programming language and the execution of compiled code by a model of the hard-
ware. The formal proof also links the hardware model to the behavioural specification
of an asynchronous memory interface based on a four-phase handshaking protocol.

The main ideas of this research are (1) the use of generic specification to filter out
non-essential detail, (2) embedding natural notations from special-purpose formalisms
such as temporal logic and denotational description, and (3) the use of higher-order
logic as a single unifying framework for reasoning about complete systems.

Generic specification, in addition to supporting fundamental principles of modular-
ity, abstraction and reliable re-usability, provides a mechanism for enforcing a sharp
distinction between what has and what has not been formally considered in a proof of
correctness. Furthermore, it is possible to create generic specifications in a pure formal-
ism with the expressive power of higher-order logic without inventing new constructs.

Natural notations from special-purpose formalisms offer the advantage of concise
and meaningful specifications when applied to particular areas of formal description.
Semantic gaps between different notations are avoided by embedding them in a single
logic. Special-purpose rules based on these notations can be derived as theorems with
the aim of implementing more efficient proof strategies.

Finally, it is argued that the primary purpose of using mechanical proof generation
techniques to reason about software and hardware is to support the intelligent partici-
pation of a human verifier in the rigorous analysis of a design at a level which supports
clear thinking.

This dissertation is the result of my own work and, unless otherwise stated in the
text, includes nothing which is the outcome of work done in collaboration. No part
of this dissertation has already been, or is currently being, submitted for any degree,
diploma or other qualification at any other university.
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Chapter 1

Introduction

Life-critical systems are increasingly dominated by microprocessor-based electronics.
To increase confidence in the design of these systems, we describe methods based on
formal proof and mechanical proof-generation which can be used to link multiple levels
of software and hardware description into a chain of logical dependencies.

To demonstrate the use of these methods, we have designed and verified a complete
system consisting of a compiler for a hierarchically structured programming language
and a microprocessor which executes code generated by this compiler. The formal proof
yields a precise and rigorously established link between the formal semantics of the
programming language and the execution of compiled code by a model of the hardware.
The formal proof also links the hardware model to the behavioural specification of an
asynchronous interface to external devices, e.g., off-chip memory, a sensor or actuator
in a real-time control system.

Higher-order logic provides a single unifying framework for reasoning about diverse
aspects of software and hardware description. The expressiveness of this formalism
supports several powerful techniques including the use of generte specification and the
ability to embed natural notations from other formalisms such as temporal logic and
denotational description.

1.1 Motivation

Methods for reliable design encompass a large part of computer engineering, and indeed,
systems engineering. The purpose of these methods is to ensure that designs meet very
high standards of reliability. For instance, the FAA (Federal Aviation Administration)
requires the probability of catastrophic failure to be less than 107° per 10-hour flight
for a life-critical civil aviation flight control system. The reliability of these systems is
vital in highly integrated systems such as the fly-by-wire flight control system of the
Airbus 320 in which almost all of the mechanical and hydraulic controls in the flight
deck have been replaced by microprocessor-based electronics.

There are two main approaches for achieving reliability [125]. One approach is fault
tolerance which is concerned with building mechanisms into a design to cope with faults
when they occur, e.g., component failure. The other approach is design error exclusion
which seeks to exclude design errors to the maximum extent possible.

Conventional methods for both fault tolerance and design error exclusion have serious
limitations. For instance, recent studies [92] have shown that diverse redundancy may
be less effective as a measure for fault tolerance than previously thought. Design error
exclusion techniques based on manual verification and validation can expose errors but
non-exhaustive methods cannot possibly guarantee that a non-trivial design is free from
errors.
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A very different approach to design error exclusion is the use of formal proof to
increase confidence in the reliability of a design. In particular, these methods can be
used to show that a design is free from errors to the extent that formal descriptions of
the design and its requirements are related by a formal proof.

1.2 Problem Definition

In this dissertation, we consider the use of formal proof as a design error exclusion
technique in the design of microprocessor-based systems. These systems typically consist
of embedded software running on one or more dedicated microprocessors. They are
conceptually organized into multi-layered ‘stacks’ of software and hardware levels. A
reliable design must ensure that the internal design of each layer satisfies its external
design and that the external design of each layer fits properly into the stack.

We address the specific problem of building a verified stack! in which layers of this
stack are linked together by formal proof to form a chain of logical dependencies from
software levels down to a formal description of the hardware in terms of elementary
components.

The feasibility of building verified stacks for realistic applications has already been
demonstrated by a team of researchers at Computational Logic, Inc., [6,7]. Our efforts
are based on a much simpler example of a verified stack, but we have dealt with many of
the same basic problems. By working on a simpler example and using a more expressive
formalism, we have had a greater degree of freedom to explore different approaches to
solving some of these basic problems.

From these investigations, we are able to contribute some novel ideas on building
verified systems. Our methods rely upon the expressive power of higher-order logic,
but they are general enough to use in other formalisms of similar expressive power.
Complementary work by Cohn [29,30,31] on verifying the commercially-available VIPER
microprocessor (also using higher-order logic and many of same basic proof techniques)
suggests that our methods could be scaled upwards to the complexity of a real system.

1.8 Main Ideas

This section outlines the main ideas which underlie our approach to verifying multi-
layered stacks beginning with a brief overview of these main ideas.

1.3.1 Overview

Generic specification plays a dominant role in this dissertation. This is similar in con-
cept to the ‘generic mechanism’ of the Ada’ programming language which allows a
subprogram or package to be parameterized by types and subprograms as well as val-
ues and objects [4]. In programming, this is a powerful technique for reliable re-use
of software [51]. In the context of formal proof, genericity offers several more advan-
tages in addition to re-usability. It can be used to filter out non-essential detail from

1The term ‘verified stack’ is due to researchers at Computational Logic, Inc., [6,7].
2Ada is a registered trademark of the U.S. Government - Ada Joint Program Office.
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formal descriptions at each level in a design hierarchy. It also reduces the amount of
special-purpose infrastructure needed to reason about particular application areas, e.g.,
hardware-oriented data types. While some formalisms have a built-in facility for generic
specification as a primitive construct [52,142], we show how generic specifications can
be created in higher-order logic with existing constructs. The key mechanisms for im-
plementing genericity are parameterized specifications and the use of uninterpreted data
types and uninterpreted primitives in place of defined data types and defined symbols.

Another important idea is the use of a single unifying framework. This is essential to
avoid semantic gaps between different areas of formal description and formal reasoning.
However, there is a fundamental difference of style in how a single unifying framework
should be used to reason about a multi-layered stack of software and hardware layers.
One approach is to re-cast diverse forms of description in one basic mold. The other
approach, which we recommend, is to embed natural notations from well-established
formalisms such as temporal logic and denotational description. We benefit from the
built-in economy of these special-purpose notations when they are applied to particular
areas of formal description.

To ensure that formal descriptions fit neatly into a wider context, we emphasize the
importance of writing specifications which translate easily into established notations.
At hardware levels, these established notations may be machine-readable languages
such as VHDL or other conventional forms of description such as timing diagrams for
interface protocols. At software levels, these established notations are mainly the natural
notations of well-established formalisms such as Hoare logic and denotational semantics.

Finally, we believe that it is necessary, for all practical purposes, to use a formalism
with (at least) the expressive power of higher-order logic to support the above recom-
~mendations. We also argue that the primary role of mechanical proof-generation is to
support the intelligent participation of a human verifier in the rigorous analysis of a
design at a level which supports clear thinking.

1.3.2 Structured Computer Organization

The structured view of a computing system as a multi-layered stack is well established
in computer science and computer engineering. An early example of this concept and its
usefulness was the invention of microprogramming by Wilkes in 1951 [71]. The eventual
result was a drastic reduction in the complexity of the hardware which was important
in the days of vacuum tube electronics. In a modern computing system, the number of
levels has grown to typically include [136]:

e Problem-oriented languages

Assembly languages

Operating system machine

Conventional machine

Microprogramming

Digital logic
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Each of these levels can be thought of as a hypothetical or virtual machine which
provides a complete model of computation. For instance, programs can be written in a
problem-oriented language such as Ada without knowing anything about lower levels.
One of the main reasons for imposing this structure on a computing system is to control
the complexity of its design: each level is implemented with facilities provided by the
next lower level. Another important reason for imposing this structure is to give greater
independence to each layer: ideally, an Ada program should have the same result on
different machines and similarly, a machine language program should have the same
result on two different implementations of a particular machine architecture.

There are many ways in which this structured view of a computing system can be
expanded to reveal details in specialized areas of interest. For example:

e Network models, such as the ISO Reference Model®, can be structured into distinct
layers [135,145].

e Operating systems are designed as a series of layers extending outwards from the
operating system nucleus to the user level [95].

o Compilers are usually divided into a number of layers or phases sometimes involv-
ing intermediate languages [1].

e Architectural descriptions of a microprocessor can be presented as a hierarchy of
interpretation levels which link the semantics of the instruction set to the operation
of basic logic components [2].

e Instruction processing is overlapped in a pipelined microprocessor by organizing
the internal architecture into several stages [91].

In many cases, the discovery or invention of layers in a complex design is based on
well-conceived abstractions. For instance, Zimmerman [145] describes principles used
to decide upon the seven layers of the ISO Reference Model for computer networks.
Anceau [2] describes principles for the introduction of new interpretation levels in the
context of microprocessor design. Katevenis [91] describes the use of extra hardware
in pipelined microprocessors for managing special conditions (e.g., internal forwarding)
to support higher level views of how instructions are concurrently processed by the
hardware.

The fact that well-conceived abstractions are involved is significant when formal
methods are employed to reason about multi-layered structures. A clean separation
between abstraction levels will mean fewer special cases to consider in the formal proof
and fewer ad hoc assumptions in the resulting correctness theorems.

We also suggest that formal methods may be used in the design process itself to
demonstrate that the discovery or invention of a new layer is indeed based on a well-
conceived abstraction. Birtwistle [9], Davie [40], Fourman [47,48], Hanna [69], Milne
[105] and others have also suggested that formal verification may play a useful role in a
verification-driven approach to design.

8 International Standards Organization OSI (Open Systems Interconnection) Reference Model.
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1.3.3 Totally Verified Systems

The idea of using logic to reason about computer programs and computer hardware
is also well established in computer science and computer engineering. The use of
Boolean logic as a descriptive method for logic circuits is due mainly to Shannon in the
1930’s. In the 1960’s, pioneering work on the application of logic to software was done
by Floyd, Hoare, Landin, McCarthy, Scott, Stratchey and others. The use of logic to
verify compilers and language implementations also began in the 1960’s with work by
McCarthy and Painter.

This early work was generally concerned with small fragments or single layers. How-
ever, the idea of a totally verified system, that is, the application of logic to every layer
in a computing system was described as early as 1969 in a seminal paper by Hoare [75]:

When the correctness of a program, its compiler, and the hardware of
the computer have all been established with mathematical certainty, it will
be possible to place great reliance on the results of the program, and pre-
dict their properties with a confidence limited only by the reliability of the
electronics.

The idea of a verified stack provides a strategy for building totally verified systems.
Just as the structured view of a computing system controls the complexity of its design,
a structured view is also the chief means of controlling the complexity of its formal
verification. In the horizontal dimension, correctness results are established for the in-
ternal design of each layer with respect to its external design. In the vertical dimension,
the external design of every layer is linked together to form a chain of logical depen-
dencies from the highest level of formal description down to the lowest level of formal
description.

1.3.4 Generic Specification

Generic description is a powerful concept in high level language design. For instance,
the ‘generic mechanism’ of Ada allows a subprogram or package to be parameterized by
types and subprograms as well as values and objects. This feature supports fundamental
principles of modularity and abstraction as well as provides a convenient mechanism
for the reliable re-use of software. Generic description is also a powerful concept in
the context of formal proof where modularity, abstraction and re-usability are highly
desirable attributes.

In addition to these well-known advantages, generic description can be used in a
formal proof to filter out non-essential detail - a modern-day Occam’s razor.* In the
case of verifying a multi-layered stack of software and hardware levels, this use of generic
specification is particularly important as a mechanism for enforcing a sharp distinction
between what has and what has not been formally considered in the proof.

Each layer in a multi-layered stack is a virtual machine described in terms of opera-
tions performed on data. When verifying that the internal design of a particular layer
correctly implements its external design, the precise nature of these operations often

4The principle that the fewest possible assumptions are to be made in explaining an idea [William of
Occam, English philosopher, died circa 1350].
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turns out to be irrelevant. In such cases, defined symbols are only being used as place-
holders in the correctness proof. To make it clear when a symbol is just a place-holder,
we use uninterpreted primitives in place of defined symbols. For similar reasons, we use
uninterpreted data types in place of defined data types.

We argue in this dissertation that verifying the internal design of individual layers is
a highly localized concern which should be separated as much as possible from detail
only relevant to other levels of proof. In this approach, uninterpreted primitives and
uninterpreted data types only become defined when they are linked into the verified
stack. This contrasts with the closed-world approach to formal verification where every
operator and every data type is completely defined within each level.

In addition to forcing a sharp distinction between what has and what has not been
formally considered at each level in a verified stack, the use of generic specification avoids
much of the infra-structure required in the closed-world approach for reasoning about
particular areas of application, e.g., hardware-oriented data types. Because less infra-
structure is required, it is easier to reproduce correctness proofs in other formalisms
which lack this infra-structure.

The primary example of generic specification in this dissertation is the formal spec-
ification of a simple microprocessor called TAMARACK-3. The basic data types and
primitive data operations used in the formal specification are uninterpreted data types
and uninterpreted primitives respectively.

A second example of generic specification is the specification of a behavioural model
for an asynchronous memory device. We first specify a generic model which captures
the essential features of how the memory device responds to a memory request and
then instantiate this generic model with non-essential details. In addition to achieving
a more readable specification, the generic model could be re-used for other external
devices such as sensors and actuators in a real-time control system.

A third example, reported elsewhere [81], is the generic specification of a regu-
lar structure. For a large regular structure, e.g., the 31Kbit microcode ROM of the
MC68000 [2], some form of genericity is essential for controlling the complexity of its
structural description. This form of genericity can also be viewed as a synthesis algo-
rithm [87].

1.3.5 Embedding Other Notation

A concise and meaningful specification often depends on the right choice of notation.
This fact was made vividly clear during the course of our research by experimenting
with different ways to specify the TAMARACK-3 memory interface which is based on a
four-phase handshaking protocol. ‘ ,

Our first attempt (reported elsewhere [82]) used explicit time variables without the
introduction of any special notation. For instance, existential quantification was used to
specify the unknown length of wait states in a handshaking sequence. This first attempt
achieved some of our goals, in particular, the goal of giving an independent specification
for external memory (as a physically separate device). However, the specifications were
cumbersome and not intuitively clear. When presenting this work, we often resorted to
replacing parts of the specification with natural language phrases so that the specifica-
tion might be understood. The formalization also failed to cleanly separate constraints




1.3. Main ldeas 10

|| \
e / \

Figure 1.1: Simplified Handshaking Timing Diagram

on the handshaking signals from constraints on the accompanying data signals.

Our second attempt (and the one used in our verified stack) is based on the notation
of temporal logic. The idea of using temporal logic to specify handshaking protocols had
already been described by several people including Bochman [11], Dill and Clarke [44],
and Fujita et al. [49]. The idea of embedding other calculi in higher-order logic had been
demonstrated by Gordon [61] (for program logics) and by Hale [65] (for another form
of temporal logic). The combined influence of these ideas lead us to experiment with
temporal logic by defining some temporal logic operators as higher-order functions.
The outcome of this experiment was far superior to our earlier attempt: the formal
specifications were intuitively clear and concise. Moreover, the proof of correctness was
easier and more general.

To elaborate on this point, Figure 1.1 shows a timing diagram typically found in
conventional descriptions of constraints on a pair of handshaking signals, req (“request”)
and ack (“acknowledge”), used to synchronize data transfers between a microprocessor
and an external device such as a memory chip.

The corresponding description in formal notation is given by the following set of
temporal logic assertions which express constraints on the pair of handshaking signals.
Although these assertions involve symbols with precise mathematical meanings (in the
context of formal proof), they can be informally translated into natural language by
reading the operators ~, &, — and U as “not”, “eventually”, “implies” and “until”.

(req — (req U ack))

(req — (Qack))

(ack — (ack U (~req)))

(ack — (O(~req)))

((~req) — ((~req) U (~ack)))
((~req) — (O(~ack)))
((~ack) — ((~ack) U req))
((~ack) — (Oreq))

For example, the assertion,

(req — (req U ack))
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expresses the constraint that when req is true, then it must remain true until ack
becomes true. In other words, once a request has been initiated, the request must
continue until it is acknowledged. The remaining seven assertions are explained in
Chapter 6.

In addition to using the notation of temporal logic to specify the asynchronous mem-
ory interface, we have used the specialized notation of denotational description [53] to
specify the semantics of a structured programming language at the top of our verified
stack. In a conventional framework, the semantic clause

Cclet;c2] = Cc1] o Cfe2]

would be used to give the denotation (or mathematical meaning) of a command sequence
C1;C2 where the semantic function C is applied to syntactic objects surrounded by
emphatic brackets [ and |. We are able to closely imitate this style using relations
instead of partial functions.?

From this and similar experiences, we believe that natural notations from well-
established formalisms such as temporal logic and denotational description are valuable
for specifying and reasoning about the diverse aspects of structure and behaviour in
a microprocessor-based system. The ability to represent different notations in a single
unified framework is one of the more essential uses of higher-order logic in our work.
In addition to Gordon and Hale, several others including Camilleri [21] and Loewen-
stein [96] have also reported benefits of embedding other calculi in the framework of
higher-order logic.

1.3.6 FEstablished Notations

At the hardware level, designers use a variety of established notations for diverse aspects
of structure and behaviour. Some of these notations, such as a conventional hardware
description language, are machine-readable. Other forms of conventional description are
not necessarily machine-readable, for instance, they could be pictorial representations
of block structure and memory interface timing diagrams.

To be understood in a wider context, formal descriptions must translate easily into
these established notations. In some cases, it may be possible to mechanically translate
a formal description into an established notation. In other cases, this translation is
more informal, e.g., understanding a set of temporal logic assertions in relation to a
memory interface timing diagram. In either case, the correspondence between a formal
description and the same description in an established notation should be plainly seen
with only a minimum of explanation.

One area of formal description suitable for mechanical translation is the structural
description of hardware. For example, Figure 1.2 shows the implementation of an
AND-gate by a NAND-gate and NOT-gate.

In higher-order logic, the structure of this implementation is described by the follow-
ing equation:

ANDGate (i1,i2,outp) = Jx. NANDGate (i1,i2,x) A NOTGate (x,outp)

5Gordon has also used higher-order logic to represent a denotational semantics in a similar style [61].
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Figure 1.2: AND-Gate Implementation

In VHDL® this same structure is described by the following declarations:

entity ANDGate is
port (il,i2:in Bit;outp:out Bit);
end ANDGate;

architecture Structure of ANDGate is
component NOTGate port (i:in Bitjoutp:out Bit);
component NANDGate port (i1,i2:in Bit;outp:out Bit);
signal x : Bit;

G1: NANDGate port map (il,i2,x);
G2: NOTGate port map (x,outp);
end Structure;

The syntactic differences between these two descriptions are mostly superficial. The
VHDL declarations contain more keywords and use longer identifiers for keywords, e.g.,
the symbol 3 corresponds to the keyword signal. The VHDL declarations also involve a
full set of type declarations. The higher-order logic description could also be annotated
with type declarations but normally this additional information is implied by context.

Overlooking minor differences of syntax, the close correspondence between formal
and conventional forms of descriptions is not surprising. Both are based on the same
fundamental style for describing hierarchical structure. Systems (or devices) at all
levels are viewed externally as ‘black boxes’ connected to the external environment
though a set of labelled ports, e.g, i1, i2 and outp. Internally, they are decomposed
into a set of components, e.g., NANDGate and NOTGate and internal signals, e.g., x.
Internal connections are indicated by ports with common labels, e.g., the internal signal
x connects the output of the NAND-gate to the input of the NOT-gate.

In general, this correspondence between higher-order logic and established notations
like VHDL scales upwards for ‘bigger’ cases of structural description. This correspon-
dence has been demonstrated by Van Tassel in the (mostly) mechanical translation of a
VHDL specification for an earlier version of the TAMARACK-3 microprocessor into a HOL
specification [140,141]. Many other formal description languages besides higher-order
logic can also be used to write similar descriptions of structure which easily translate
into established notations.

Other forms of conventional description are not necessarily machine-readable. For
instance, asynchronous interactions between a microprocessor and external devices are

SVHDL is the VHSIC (Very High Speed Integrated Circuit) Hardware Description Language now
adopted as an IEEE standard (Std 1076-1987) {3].
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usually described by a mixture of natural language, flowcharts and timing diagrams.
Here, we are using the term ‘established notations’ in a very loose sense to refer to this
mixture of descriptions: though informal, they generally conform to standard conven-
tions of style.

In this case, we have aimed to write formal descriptions which can be understood in
relation to conventional forms of description with a minimum of explanation. Earlier,
we described how a set of temporal logic assertions can be informally translated into a
natural language description which directly corresponds to the timing diagram in Fig-
ure 1.1 Hence, natural notations such as temporal logic, besides offering the advantage
of built-in economy, can also be successful as machine-readable versions of established
notations such as flowcharts and timing diagrams.

1.4 The TAMARACK Stack

The verified stack described in this dissertation is based on a compiler for a very
simple programming language called IMP and a very simple microprocessor called
TAMARACK-3. The compiler and the microprocessor are both organized into a series of
layers. The complete stack (for the purposes of this dissertation) is shown in Figure 1.3.

e Compiler
— IMP language (hierarchically structured)
— SM code (flat intermediate form)
— TM code (target machine)
e Microprocessor
— programming level
— microprogramming level

— phase level (register-transfer level structure)

Figure 1.3: The TAMARACK Stack

This stack can be extended both upwards and downwards. A paper by Gordon
[61] shows how to extend this stack upwards by deriving Hoare proof rules for reasoning
about IMP programs from a denotational semantics similar to one we have given for IMP.
In work reported elsewhere [80,81,84,87,88], we have extended this stack downwards
to the transistor level for an earlier version of the TAMARACK-3 microprocessor. In
collaboration with researchers at SRI (Menlo Park), we have also begun to consider how
to bridge the semantic gap between the bottom layer in the TAMARACK stack and the
engineering models used to describe components in the library of a commercial silicon
compiler [89].
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1.4.1 A Very Simple Compiler

The IMP programming language is a hierarchically structured language with only a few
basic constructs, e.g., expressions, assignment statements, while-loops. A semantics for
this language is given in a typical denotational style by semantic functions which satisfy
a set of semantics clauses. The main difference from the semantics given for IMP by
Gordon [61] is the use of modular arithmetic to model the finite size of machine words
and memory.

The compiler for this language is implemented by two layers or ‘phases’.” The first
phase compiles the hierarchically structured program into a flat intermediate form called
SM (Simple Machine) code. The second phase assembles SM code into TM (Target
Machine) code. These two compilation phases are shown in Figure 1.4 where a simple
IMP program is first compiled into SM and then assembled into TM. Operational
semantics are given for both SM code and TM code.

The semantics and compiler for IMP are not parameterized to the same extent as the
underlying hardware model. This is partly because this represents an earlier stage in
our research and partly because a few more computational details are needed to verify
the compiler. Nevertheless, the compiler specification is parameterized by the number
of bits in a full-size word and, indirectly, by the size of memory.

This part of the verified stack is described in a separate paper included as an appendix
to this dissertation; the paper is based on a technical report [85] which gives full details
of the compiler and its formal verification. Both the paper and technical report are
based on an earlier version of TAMARACK-3 but only slight modifications were needed
to adapt this work to the current version of the hardware.

1.4.2 A Very Simple Microprocessor

The main emphasis in this dissertation is on the TAMARACK-3 microprocessor which oc-
cupies the bottom half of this verified stack. This microprocessor has eight programming
level instructions and a single addressing mode. The only kind of hardware exception is
a single level, non-vectored hardware interrupt. The microprocessor can be interfaced
to external memory to operate in one of three possible modes: fully synchronous, fully
asynchronous, and extended cycle mode. AllI/0 is memory-mapped. Figure 1.5 shows a
functional diagram for the externally available signals of TAMARACK-3 (excluding clock
signals, reset signal and voltage sources). These signals would be pins or groups of pins
in a microchip implementation of this design.

As we have shown in Figure 1.3, the microprocessor part of the verified stack is sep-
arated into three layers. The programming level model is a description of its operation
as seen by a machine language programmer. This includes both the instruction set
semantics and the processing of interrupts. The next layer down is the microprogram-
ming level which describes the sequential execution of microcode. The phase level, at
the very bottom of the verified stack, reveals the structural organization of the internal
architecture in terms of register-transfer level components.

The original version of this simple microprocessor was described by Gordon [55,58]

7A compiler phase is an entirely different idea than the phase level of the microprocessor architecture.
Both uses of the term ‘phase’ are standard terminology [1,2].
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Figure 1.4: Two Phase Compilation of an IMP Program
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- data from memory wmem - read /write select
- data acknowledge dataout - data to memory
- extended cycle mode dreq - data request
- interrupt request addr - address to memory
iack - interrupt acknowledge

Figure 1.5: Functional View of the TAMARACK-3 Microprocessor.
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for a predecessor of the HOL system called LCF.LSM [57]. This example was re-done
in HOL, implemented as a CMOS microchip (as an exercise in verification-driven de-
sign), and given the name TAMARACK-1 [78,79,88]. The design was then streamlined in
TAMARACK-2 by eliminating some non-essential control features (and used as the tar-
get machine for an earlier version of the IMP compiler described in [85]). The version
described here, TAMARACK-3, is distinguished from earlier designs by the addition of a
hardware interrupt mechanism and the ability to interact asynchronously with external
devices using handshaking signals.

Because TAMARACK-3 was designed as a verification example, it is not seriously in-
tended for practical applications.® We have deliberately avoided some forms of complex-
ity found in ‘real designs’ which do not necessarily contribute interesting verification
problems aside from the very important problem of managing the sheer size of such
proofs. For instance, multiple addressing modes are not provided because the problem
of establishing correctness results for a particular instruction in different addressing
modes is largely a matter of repeating the same proof strategy with slight variations for
each case (as Cohn [30] has reported for the verification of the commercially-available
VIPER microprocessor).

Although we have purged as much repetitious complexity as possible from the design
of TAMARACK-3, the formal verification of this design is not a trivial problem. In place of
repetitious complexity, we have introduced features which give rise to some intrinsically
complex verification problems. In particular, the use of handshaking signals for data
exchanges with external memory has lead us to consider the problem of reasoning about
asynchronous interactions between a microprocessor system and external devices. By
avoiding repetitious complexity, we have been left with a great deal of flexibility to
consider different approaches to this particular problem, and more generally, to consider
different strategies and techniques for structuring a formal proof into several layers.

1.4.3 Linking the Compiler to the Microprocessor

The target machine of the IMP compiler is an instance of the generic TAMARACK-3
programming level model. The latter is more general partly because uninterpreted data
types and uninterpreted primitives are used in the formal specification of TAMARACK-3
in place of defined data types and defined symbols. To link the top part of the verified
stack with the bottom part, an instance of the TAMARACK-3 programming level model is
created to satisfy the specification of the target machine, i.e., the operational semantics
of TM code.

This is partly achieved by associating defined data types and defined symbols men-
tioned in the IMP semantics with uninterpreted data types and uninterpreted primitives
that appear in the formal specification of the TAMARACK-3 microprocessor. For exam-
ple, the defined symbol +, used in combination with the modulus function to specify
the semantics of an IMP plus-expression, is associated with an uninterpreted primitive
called add which is used to specify the semantics of a TAMARACK-3 ADD instruction.

8But with a few more ALU functions, more kinds of conditional branches, and an alternative to
absolute addressing, it is possible to imagine the use of a TAMARACK-like microprocessor in a very
simple real-time control application. As Turner et al. [138] remarked with regard to railroad signalling,
“the most complex interlock arrangement requires a simple combination of Boolean and time-based
sequential logic, all well within the capability of the arithmetic unit of a small microprocessor”.
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The TAMARACK-3 programming level model is also more general because normal pro-
gram flow can be interrupted by an external interrupt request. Even though interrupts
are fully supported in the bottom half of the verified stack, it is currently necessary to
disable interrupts (by assuming that the interrupt request pin ireq is wired to ‘ground’)
in order to link the compiler to the microprocessor. This limitation is due to the way
that we have defined the semantics of the IMP language: it is not a limitation of the
microprocessor verification. However, it should be possible in future work to allow
interrupts by modifying the semantics of IMP either using a continuation semantics
[53,132] (and thus, remaining in a denotational framework) or else using a structured,
or Plotkin-style, operational semantics [117].

Establishing that the target machine of the IMP compiler is an instance of the
TAMARACK-3 microprocessor is the main illustration in this dissertation of how in-
dividual layers dealing with widely separated concerns can be linked together to form
a chain of dependencies from the highest level of formal description down to the lowest
level of formal description.

1.5 Related Work

Our higher-order logic approach is directly inspired by Gordon [69]. The idea of using
higher-order logic to specify and reason about hardware was first advocated by Hanna
[67]. This section describes other work related specifically to our main areas of interest:
microprocessor verification, verified synthesis, compiler verification and verified systems.
There is a great deal of important work by others in the more general area of verifying
hardware; we mention some examples of this work elsewhere in this dissertation as it
relates to specific points of interest.

1.5.1 Microprocessor Verification

Gordon’s [58] verification of a simple computer using the LCF_LSM system was an early
example of how formal proof and mechanical proof-generation could be used to reason
about the design of a microprocessor. In addition to our work on TAMARACK-3, Gordon’s
example has been used to illustrate several other approaches to animating and verifying
microprocessor hardware. This includes work by Barrow [5], Camilleri [19,20], Curzon
[39], Davie [40], Richards [121], Van Tassel [140,141], and Weise [143).

The diversity of structure and behaviour in a typical microprocessor provides a rich
source of verification problems. Currently, the field of microprocessor verification is
dominated by two main examples: Hunt’s verification of FM8501 [76] and Cohn’s veri-
fication of VIPER [29,30,31]. These two examples are widely seen as the current state-
of-the-art in microprocessor verification. Hunt was the first to consider the problem
of reasoning about the implementation of a handshaking protocol in a microprocessor
system. The VIPER project shows how the design of a microprocessor can be subjected
to formal analysis in a series of decreasingly abstract levels.
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1.5.1.1 FMS8501

FM8501 is a 16-bit microprocessor similar in complexity to a PDP-11. The instruction
set of this microprocessor is rich enough to support realistic applications.

The programming level model of FM8501 and its internal architecture are formally
specified in pure Lisp. The Boyer-Moore theorem-prover [13] was used to generate a
formal proof of correctness which bridged the gap between the semantics of the FM8501
instruction set and a gate-level description of its implementation.

A particularly interesting aspect of the FM8501 example is the asynchronous memory
interface which uses handshaking signals to synchronize data exchanges between the
microprocessor and external memory. In the absence of existential quantification (which
is not provided in Boyer-Moore logic), Hunt used an oracle to ‘guess’ the length of
wait states in handshaking interactions. The correctness proof established that the
implementation of the microprocessor is correct for all possible oracles.

The FM8501 also served as a prototype for the FM8502 which occupies the bottom
layer of the verified stack developed by researchers at Computational Logic, Inc. [6,7].

1.5.1.2 VIPER

The other well-known state-of-the-art example is Cohn’s [29,30,31] verification of the
VIPER microprocessor. This commercially-available microprocessor was designed by the
British Ministry of Defence for use in life-critical applications [36,37]. Cullyer, one of
the designers of VIPER, produced an informal paper-and-pencil correctness proof which
related the top-level specification to the next lower level of description called the ‘major
state machine’. This level of proof was then re-done by Cohn using the HOL system
and later extended down to an even lower level of description called the ‘block level
description’.

The first level of proof showed that the major state machine, with corrections, faith-
fully implements the top level specification of VIPER. This level of proof was exclusively
concerned with flow of control and not with arithmetic or logical computations.

The second level of proof dealt with the block level description of VIPER which di-
rectly relates to the circuit design. In addition to flow of control, this level of proof
was concerned with arithmetic and logical computations performed by functional units.
At the block level, the proof only considered the operation of VIPER under normal
conditions. These conditions appear explicitly in the correctness results as stated as-
sumptions. Under these conditions, a limited set of correctness results were obtained
which “amount to an analysis of the block machine under all circumstances covered
by the specification” [30]. One of the reasons that made it impractical to carry out a
complete proof of the block level was the current lack of support in the HOL system for
reasoning about bit-level operations.

A major source of complexity in the VIPER proof is the problem of managing the
sheer size of the correctness proof for a real design. There are 120 sequences of major
state transitions to consider and each of these is implemented by a sequence of minor
state transitions. However, the verification task would have been much harder if not
for the assumption (as a condition of normal operation) that every memory request is
satisfled in a fixed and minimal number of clock cycles.® Consequently, state transitions

®Although the VIPER design supports other protocols, the high-level specification given by VIPER
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in the top level specification correspond to a finite set of fixed sequences at lower levels.

A particularly interesting outcome of the VIPER project is that it revealed weaknesses
in the links between designer, verifier and manufacturer. One problem faced by Cohn
was to derive a formal description of the block level from a mixture of engineering
documents, partly pictorial and partly textual, supplied by the VIPER designers. Errors
were found in both the top level specification of VIPER and in the major state machine,
but these errors were not propagated down to the fabricated chips. Drawing from this
experience, Cohn has contributed a sound appreciation of the scope and limitations of
using formal proof to verify microprocessor systems.

Cullyer [38] describes plans for using VIPER in a railroad signalling application which
also involves use of the HOL system to verify software against a formalization of well-
established rules of railroad signalling. Gordon [63] has proposed to verify a compiling
algorithm for a structured assembly language called VISTA which is targetted to VIPER.

1.5.1.3 Other Work

Crocker et al. [35] describe a re-verification of the FM8501 using SDVS (State Delta
Verification System). The semantics of SDVS were well-suited to specifying the external
memory as a separate process from the FM8501. In previous work, this group verified
a microcoded packet switch called the C/30 used in the US Defense Data Network;
however, this work is not yet publicly documented.

Another example of verifying an asynchronous memory interface is described by
Sekar and Srivas [128]. Bickford and Srivas [8] have begun work on verifying a 3-stage
instruction pipelined RISC processor with plans to eventually extend this example with
interrupts and an asynchronous memory interface.

Herbert [72] verified a network interface chip in the Cambridge Fast Ring using both
the LOF.LSM and HOL systems. The formal description of this chip was mechanically
generated from the designer’s original specification written in Modula-2.

Narendran and Stillman [114] hand-translated the VHDL description of an image
processing chip into first-order logic and used RRL (Rewrite Rule Laboratory) to generate
correctness results. Formal verification revealed several errors unknown to the chip
designers.

Birtwistle and Graham [10,64] describe work on formalizing the design of a functional
language co-processor based on Landin’s SECD machine. The formal verification is
being undertaken in the HOL system with plans to verify a complete system based on
the fabricated chip.

Bowen [12] has used Z, a specification language developed at Oxford University, to
specify the entire MC6800 instruction set including interrupts and memory configura-
tions.

Leonard [94] is investigating techniques for specifying computer architecture in higher-
order logic. This work is particularly concerned with multi-processor systems which
interact through shared memory. This work also considers techniques for mapping ar-
chitectural specifications to implementations.

Rushby and von Henke [124] have used the SRI EHDM (Erhanced Hierarchical Design
Methodology) system to verify the Interactive Convergence Clock Synchronization Al-

designers to Cohn ignored these other protocols, and hence, the proof had to also ignore them [32].




1.5. Related Work 21

gorithm of Lamport and Melliar-Smith. Clock synchronization is fundamental to fault
tolerance mechanisms in life-critical systems implemented by a set of communicating
microprocessors. This work demonstrated the value of mechanical proof-generation with
the discovery of several technical flaws in previously published hand-proofs.

1.5.2 Verified Synthesis

Early work on verified synthesis by Milne [104] proved the correctness of a very simple
silicon compiler in a process algebra called CIRCAL.

May and Shepherd [130] used algebraic laws of the OCCAM programming language
[122] to transform a high-level specification of the INMOS T800 Transputer floating-
point unit into a microcode level description.

Martin et al. [97] have used synthesis techniques amenable to formal verification
to generate the first entirely asynchronous (also called self-timed or delay-insensitive)
microprocessor from a high-level specification based on CSP. The surprising robustness
of the fabricated chips to variations in temperature and VDD voltage values [98] may
also be significant for life-critical applications.

Brown and Leeser [15] describe work on compiling programs into application specific
chips generating a microcoded controller and datapath as an intermediate stage in the
synthesis process. The synthesis procedures are being developed using the NUPRL
theorem-prover [34].

Brock and Hunt [14] describe techniques for verifying circuit generation functions
formally specified by a list of constants in the Boyer-Moore logic [13]. They have
verified a family of ALU’s in the Boyer-Moore theorem prover using these techniques.

Fourman et al. [47,48] have combined CAD technology with a rule-manipulation
system based on a higher-order polymorphic predicate calculus of partial terms. Their
system, called LAMBDA, supports the interactive refinement of designs directed by the
user through a graphical interface but constrained by the underlying logic.

Hanna et al. [69] use the VERITAS" system in a goal-directed manner to interactively
generate a design and a correctness proof. The synthesized design is then translated
into the MODEL hardware description language.

Johnson et al. [77] have considered the interplay between design verification and
design synthesis. They have developed a transformation system DDD (Digital Design
Derivation) based on functional algebra which has been used to reduce the FM8501
programming level model to a gate level description.

1.5.3 Compiler Verification

The earliest example of compiler correctness (that we are aware of) was described more
than twenty years ago by McCarthy and Painter [99]. They verified an algorithm for
compiling arithmetic expressions into code for an abstract machine. This early work

established a paradigm for subsequent work on compiler correctness (as summarized by
Cohn [28]):

o Abstract syntax.

o Idealized hardware.
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Abstract specification of the compiler.

Denotational source language semantics.

Operational target machine semantics.

Correctness stated as a relationship between the denotation of a program and the
execution of its compiled form.

Proofs by induction on the structure of source language expressions.

In a separate report [85], we give a detailed history of subsequent developments in this
area. This includes work described by: Kaplan [90]; Burstall and Landin [17]; Milner
and Weyhrauch [107]; Morris [110,111]; Chirica [24]; Milne and Strachey [106]; Goguen
et al. [50]; Russell [126]; Cohn [28]; Polak [118,119]; Thatcher et al. [137]; Chirica and
Martin [25]; Despeyroux [42] and Collier [33]. These developments include the use of
algebraic methods and domain theory, more language features, verification by formal
proof based on axioms and inference rules, mechanical assistance for proof-checking and
proof-generation, and correctness proofs about parsing and syntax analysis.

1.5.4 Verified Systems

Most of the previous work on the compiler correctness problem is ten to twenty years
old. This work has generally followed the paradigm laid down by McCarthy and Painter
of distancing the problem from the details of real hardware by using a target machine
with idealized features.

Since this early work, proof-generation systems have developed considerably and
have been used to construct some very large proofs. These developments, combined
with recent successes in the formal verification of microprocessors such as VIPER and
FMB8501, have revived interest in the compiler correctness problem and given it a greater
relevance than before.

1.5.4.1 The CLI Stack

The most remarkable achievement so far has been made by researchers [6,7] at Compu-
tational Logic, Inc. (CLI). The “short” version of the CLI stack consists of four layers:

Micro-Gypsy - a high level programming language [144]

Piton - a high-level assembly language [109]
FM8502 - 32-bit microprocessor based on the FM8501 prototype
Gates - register-transfer level model of an implementation

Each layer in this stack is intended to support realistic applications. A small oper-
ating system called Kit has also been implemented and proven correct. However, this
operating system does not fit precisely onto the “short” stack due to minor architectural
differences.

In addition to the four main layers of the CLI stack, there are several minor layers.
For instance, the assembly of Piton programs involves an intermediate form called i-code
which provides an intermediate layer between Piton and FM8502.
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A distinctive aspect of the CLI approach is that each layer in the stack is cast into
the same basic mold: each layer is described as a finite-state machine defined by an
interpreter function in pure Lisp. This contrasts with the approach described in this
dissertation of using special-purpose notations from well-established formalisms such
as temporal logic and denotational description. Another distinctive feature of the CLI
approach is its adherence to the closed-world principle where every operator and every
data type is completely defined within each layer. This contrasts with our use of generic
specification to filter out non-essential detail from each layer of a multi-layered stack.

1.5.4.2 The SAFEMOS Stack

Research is jointly underway at Cambridge University, INMOS, Oxford University and
SRI International (Cambridge Research Centre) on a project to develop a prototype
design and verification environment for real-time mixed hardware/software systems.

The verified stack will include a real-time language with simple constructs based
on OCCAM, a program verifier for that language, a verified processor and a verified
translator for compiling the real-time language into the processor instruction set.

The project will combine the INMOS CAD system and HOL proof-generation system
and will also involve other formal methods suitable for specifying real-time systems
including Z and CSP.

1.6 Outline of this Dissertation

Chapter 2 provides an introduction to the HOL logic and the HOL proof-generation
system. This chapter concludes with remarks on the use of formal proof and mechanical
proof-generation to reason about the correctness of software and hardware.

Chapter 3 describes the operation and design of the TAMARACK-3 microprocessor in
a conventional style of microprocessor description. This chapter introduces the idea of
describing hardware generically and explains how the internal architecture of a micro-
processor can be viewed as a hierarchy of interpretation levels.

Chapter 4 elaborates on the advantages of generic specification and shows how this
technique is used to formally specify the TAMARACK-3 microprocessor. This chapter is
central to the argument of this dissertation.

Chapter 5 illustrates fundamental proof strategies for verifying microprocessor sys-
tems. The main ideas presented in this chapter are: stating correctness results, struc-
turing a proof into multiple levels, and using logic to symbolically execute a design.

Chapter 6 elaborates on the idea of embedding natural notations from special-purpose
formalisms. This is illustrated by embedding a form of temporal logic in the HOL logic
for the purpose of reasoning about the interaction of TAMARACK-3 with external memory
using handshaking signals.

Chapter 7 concludes this dissertation with remarks on the scope and limitations of
the TAMARACK-3 proof of correctness and its relationship to other levels of proof.




Chapter 2

Formal Proof in the HOL System

The research described in this dissertation is based exclusively on ‘the HOL logic’. This
is a formulation of higher-order logic originally set out by Church {26} and adapted by
Gordon [60,62] for representation in the HOL system.

In this chapter we provide brief descriptions of both the HOL logic and the HOL
system. These descriptions have been tailored for the purposes of this dissertation;
they are accurate in what is described but they do not represent a complete account of
either the logic or the proof-generation system.

We also comment on the security and extensibility of the HOL system which we regard
as its most important and distinctive features. Finally, we conclude this chapter with
some remarks on why formal proof in a mechanized system such as HOL may be useful.

2.1 Introduction

Although higher-order logic was originally developed to study theoretical questions
about the foundations of mathematics [70], a non-theoretician should be able to un-
derstand most aspects of this formalism without too much difficulty. Much of our
notation will be familiar from the informal notation of mathematics, e.g., =, A, V, =,
Y, 3. Some of the most important concepts will be familiar to readers with experience
in strongly-typed programming languages and functional programming.

Higher-order logic extends first-order logic by allowing variables to range over func-
tions and predicates. It also includes notation from the A-calculus for describing func-
tions. Functions which accept other functions as arguments or return functions as
results are called ‘higher-order’ functions. The Lisp function mapcar is an example of
a higher-order function in a programming language. In both logic and programming,
higher-order functions result in specifications or definitions which are shorter, simpler
and often easier to understand. Predicates in higher-order logic are just a particular
kind of function, namely, a function which returns values corresponding to true and
false. Thus, higher-order predicates are just higher-order functions which return values
corresponding to true and false.

2.2 The HOL Logic

We begin with the syntax of the HOL logic which centers upon two main ideas: a set
of well-formed terms composed from elementary terms and a set of types which are
associated with terms in the logic.

24
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2.2.1 Terms

More detailed descriptions of the HOL logic [60,62] reveal that there are just four differ-
ent kinds of terms: variables, constants, abstractions, and applications. However, this
conciseness is mostly hidden from a user of the HOL system and is not essential to our
discussion.! Instead, we describe the syntax of the logic from a notational point of view
where, for the purposes of this dissertation, the syntax consists of:

variables - e.g. X, ¥, Xyz

constants -eg. T,F,0,1,2

negation - =t where t is a term

conjunction -t1 A t2 where t1 and t2 are terms
disjunction -t1 V t2 where t1 and t2 are terms
implication - t1 == %2 where t1 and t2 are terms
equality - t1 = t2 where t1 and t2 are terms
universal quantification - Vx.t where x is a variable and t is a term
existential quantification - dx.t where x is a variable and ¢ is a term
function application - f t where £ and t are terms

pair - t1,t2 where t1 and t2 are terms
A-expression - Ax.t where x is a variable and t is a term
g-expression - €x.t where x is a variable and t is a term
conditional expression -b = t1 | t2 where b, t1 and t2 are terms
let expression -let x = t1 in t2 where x is a variable

and t1 and t2 are terms

The meanings of - (“not”), A (“and”), V (“or”), = (“implies”), = (“equals”),
V (“for all”), 3 (“there exists”) are common to many formal and informal notations
of mathematics including the HOL logic.

A function application of the form £ t denotes the application of the function f to
the term t. If £ is a predicate, then f t is an assertion which is either true or false.
Certain function constants such as + (“addition”) have a special syntactic status which
allows them to be written as infix expressions, e.g., 1+2.

In many other notations a function application must be written as £(t). But in the
HOL logic, £(t) is equivalent to f t unless matching parentheses are needed to enclose
a compound term such as 1+2, i.e., £ (1+2). Since, £(t) and f t are equivalent, there is
no harm in using unnecessary parentheses (as we sometimes do) when this might help
to make an expression easier to read.

Terms such as (f t1 t2 t3) are nested function applications. By convention, func-
tion application associates to the left which means that the term (f t1 t2 t3) is
equivalent to (((f t1) t2) t3). On the other hand, elements in an n-tuple associate
to the right; for example, (t1,t2,t3,t4) is really just a compound term of nested pairs
(t1, (52, (£3,14))).

A-expressions denote functions. For example, the A-expression Ax.x+1 denotes the
successor function. This notation, borrowed from the A-calculus, is just a succinct way

1The curious reader may find it interesting to know that &, =, and = are the only primitive constants
in the HOL logic. More detailed descriptions of the logic [60,62] show how other constants such as T, V,
and 3 (which are often primitive constants in other formalisms) can be defined in terms of these three
primitive constants.
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to say “the function such that ...” without having to invent a name for the function.

A-expressions are often used in functional programming languages such as Lisp as ar-
guments to higher-order functions like mapcar.

g-expressions are a bit more exotic. The term ex.P x denotes a value satisfying
the predicate P if such a value exists; otherwise, it denotes an arbitrary value of the
appropriate type. For example, ex.x < 10 denotes some natural number less than ten
but ex.x < O denotes an arbitrary natural number since the predicate “less than zero”
cannot be satisfied in the natural numbers.

Conditional expressions of the form b = t1 | t2 may be read as “if b then t1 else
t2”. Let expressions of the form let x = t1 in t2 denote the result of replacing all
free occurrences of x in t2 by ti; it is equivalent to (Ax.t2) t1i.

2.2.2 Types

Types are needed in the HOL logic to prevent certain inconsistencies such as Russell’s
paradox. When specifying hardware, types can be used to check the consistency (in an
informal sense) of a design, e.g., if different types are used to represent 16-bit and 13-bit
busses, then type-checking will reveal when a 16-bit bus has been mistaken for a 13-bit
bus.

A type in the HOL logic is either a type constant, compound type or type variable.
Built-in (or pre-defined) type constants include Boolean values, the natural numbers
and string tokens.

:bool - Boolean values T,F
inum - natural numbers 0,1,2, ...
ttok - string tokens, e.g., ‘a‘, ‘abc*, ‘abc123*

Compound types are built up from existing types using type constructors. Built-in
type constructors include Cartesian product, '

tylxiy2

which denotes the type of all pairs whose first element belongs to ty1 and second element
belongs to ty2. There is also a type constructor for function types,

tyl—ty2

which denotes the type of all total functions with arguments of type tyl and results of
ty2. There are other type constructors built into the HOL logic but these are not needed
for the purposes of this dissertation.

The third kind of type in the HOL logic is a type variable which stands for an arbitrary
type. Any type which involves a type variable is called a polymorphic type. Type
variables and polymorphism play an important role in this dissertation; in particular,
they provide a way to write specifications that avoid details which are not relevant to a
particular proof problem. Small greek letters, o, 3, v, are often used for type variables,
but in this dissertation we adhere to the machine-readable HOL notation in which type
variables are prefixed by an asterisk. The HOL notation allows us to give meaningful
names to type variables such as:
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:*wordn, :*word3, :*address, :*memory, :*word4

However, these names are merely informal suggestions about the role of specific type
variables in a particular proof.

2.2.3 Typed Terms

Every well-formed term in the HOL logic is associated with a type that is consistent
with the types associated with its sub-terms. For example, a function from numbers
to Booleans can only be applied to a number in a function application. This is similar
to the idea of a strongly-typed programming language such as Ada where, for instance,
the types of actual parameters in a function call must match the declared types of the
corresponding formal parameters.

The type of a term can often be inferred from the types of its sub-terms, in particular,
from fixed types associated with constants. For example, it can be inferred that the
variable b is a Boolean value when it appears in the term —b. There is an algorithm,
due to Milner [108], for such inferences. When the type of a term is ambiguous, its type
can be indicated by a type annotation. For instance, the expression b:bool indicates
that the variable b is a Boolean variable. We also use type annotations in our discussion
to denote types themselves, e.g., :bool.

Once types have been unambiguously associated with every elementary sub-term, the
type of a term can be derived hierarchically from the types of its sub-terms according
to type deduction rules associated with each type constructor. This process is called
type-checking or type deduction. For the HOL logic, type-checking is decidable which
means that it can be performed automatically by the HOL system.?

2.2.4 Axioms and Inference Rules

In the HOL formulation of higher-order logic, a formal proof is a sequence of lines;
each line has the form I' |- t where I is a set of assumptions and t is a conclusion.
Assumptions and conclusions are terms belonging to the type :bool. For each line
I' |- t, the conclusion t is a true proposition if all of the assumptions in I’ are true. If
there are no assumptions, then the proposition is a theorem.

A sequence of such lines is a proof if every line is either an axiom or can be obtained
from a previous line by a rule of inference. The HOL formulation of higher-order logic
has five axioms and eight primitive inference rules. For example, when an implication
t1 == t2 and its antecedent t1 appear on previous lines of a proof, the consequent
t2 can follow on a later line inheriting assumptions from these two previous lines. This
rule, called Modus Ponens, is illustrated below.

't |- t1 = t2 r'2 |- %1
't uT2 |- 52

2For other logics with more powerful type systems, for instance, logics with dependent types, type-
checking is not always decidable. However, Hanna et al. [68] reports that this loss of decidability is not
necessarily a practical difficulty.
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The main advantage of a formal proof is that every single step has a precise justifi-
cation which can be mechanically checked. The main disadvantage is that the formal
proof of a non-trivial theorem typically involves a large number of steps. However, the
complexity of doing large formal proofs can be overcome with mechanical assistance
from a computer both to check that each proof step is correct and to automatically
generate large portions of the proof.

2.2.5 Theories and Definitions

A theory in the HOL logic is a set of constants, types and axioms. Theories can be
organized into hierarchies where they inherit types, constants and axioms from their
ancestors. In the HOL system, the term ‘theory’ has a slightly extended meaning which
we explain in Section 2.3.3.

There is an initial or underlying theory in the HOL logic which provides the built-in
types, constants and axioms of the logic. New term constants and new type constants
can be introduced if they are not already present in a theory or in any of its ancestors.
A definitional aziom for a new term constant or new type constant can be optionally
introduced when the constant is introduced. The syntactic form of a definitional axiom
is severely restricted to ensure that it is a conservative extension of the logic: this means
that it does not introduce any new inconsistency that was not already present.

We refer to definitional axioms for new term constants as just plain definitions since
they are the only kind of definitional axioms used in this dissertation. To a user of the
HOL system (and in this dissertation) these definitions look similar to the definition of
a function in a functional programming language. The syntactic constraints mentioned
above require, in effect, a definition to be an equation of the form,

fxi..xn=+%

where f is a term constant and all the free variables of t are included among x1 ...xn.
As mentioned earlier, predicates are just functions which return Boolean values.

Non-definitional axioms can also be introduced in a theory but these are generally
avoided since they have the potential of introducing inconsistency. In almost all cases,
it is better for unproven assertions to appear as explicit assumptions. Non-definitional
axioms are not used anywhere in the work described in this dissertation. This means
that all of our theories are definitional theories.

2.3 The HOL Proof Generating System

The HOL system is an interactive programming environment interfaced to the HOL logic.
It is used to construct formal proofs in the HOL logic. The user interacts with the HOL
system through a strongly typed, functional programming language called ML. Terms,
types, theorems and other features of the logic are data objects which are manipulated
by ML functions.
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2.3.1 Proving Theorems

At the start of a HOL session, the only theorems in the system are the axioms of the HOL
logic and a standard set of previously derived theorems built into the HOL system. New
theorems are generated from existing theorems by ML functions corresponding to the
eight primitive inference rules. The type discipline of ML ensures that inference rules
can only be applied to data objects representing previously generated theorems. This
guarantees that the only way to obtain a theorem in the system is by the generation of
a formal proof.

When introducing a definition, the HOL system enforces the logical requirement that
it must be a conservation extension by ensuring that it satisfies syntactic constraints
mentioned earlier. In this dissertation, we use a system function called Define to
introduce definitions; this is a ‘wrapper’ function for the built-in HOL system functions
that are normally used to create new definitions.

Primitive inference rules correspond to the smallest steps in a formal proof; to make
large proofs feasible, ML functions can be programmed to apply sequences of primi-
tive inference rules as single steps in a proof. A large number of these ML functions,
called derived inference rules, are built into the HOL system. Some these of rules can
potentially collapse hundreds (or even thousands) of primitive inferences into a single
step. The user can also implement derived rules to either extend the built-in repertoire
of general purpose rules or to perform a specific sequence of inferences in a particular
proof (e.g. symbolic execution of a microinstruction in the microprocessor correctness
proof).

2.3.2 Forward and Backward Proof

The development of a formal proof as a linear sequence of proof lines is a bottom-
up process, called forward proof, which starts with axioms and uses inference rule to
eventually prove the desired theorem. When developing a proof in this manner, it is
often difficult to tell beforehand whether or not a sequence of proof steps will ultimately
be successful. In practice, proofs are usually developed in a top-down manner, called
backwards or goal-oriented proof, starting with the conclusion of the desired theorem
and reducing the problem of proving this theorem to simpler sub-goals.

In general, top-down reasoning reflects how we intuitively solve problems: “I could
prove X if I had a proof of Y and Z”. In this case, the goal X is reduced to the sub-goals
Y and Z. Sub-goals are repeatedly reduced to one or more sub-goals until they are all
achieved by trivial inferences. Once all of the sub-goals have been achieved, the top-
down development of the proof is used to guide the mechanical generation of a forward
proof for the desired theorem.

The HOL system supports the top-down development of proofs by providing semi-
automatic mechanisms to reduce a goal to sub-goals. Furthermore, the system con-
structs a forward proof of the desired theorem as a side-effect of generating sub-goals.

2.3.3 System Theories

The mathematical notion of a theory as a set of constants, types and axioms is extended
in the HOL system to also serve as a database where derived theorems can be stored
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for future use. Like the mathematical notion, system theories can be organized into a
theory hierarchy. A theory created during a HOL session can be saved on disk in the
computing environment and sometime later retrieved by loading the theory file into a
subsequent HOL session or made accessible to a new theory as one of its ancestors. Large
verification efforts such as the VIPER project [29,30,31] or the work described in this
dissertation are made possible by this ability to build up a hierarchy of theories which
serve both the mathematical purpose of imposing logical structure and the practical
purpose of managing a very large and complex verification task.

In addition to the purely logical content of the HOL logic, the HOL system provides
a number of built-in theories and a library of assorted theories which may be used as
required. This includes, for instance, an axiomatization of Peano arithmetic and a set
of theorems derived from this axiomatization. A sharper distinction between the purely
logical content of the HOL system and additional theories built upon this foundation is
given in [60,62].

2.3.4 Security

One of the most important features of the HOL system is that the generation of any
theorem ultimately depends only on a finite set of known axioms and the eight primitive
inference rules of the HOL logic. This has several important consequences including:

o All theorems have bona-fide proofs in higher-order logic.

e Any user can implement extensions to the built-in support for proof-generation
(e.g., derived inference rules, decision procedures) without danger of compromising
proof security.

e A record of primitive inferences generated by the system could be checked inde-
pendently by another program which implements a very simple, non-interactive
proof checker.

The security of proof-generation in the HOL system is inherited from its software
parent, the LCF system [54] and is shared in common with several other systems de-
rived from or influenced by the LCF approach, e.g., ISABELLE [116], LAMBDA [47],
NUPRL [34], VERITAS" [68]. This feature distinguishes HOL and other systems which
‘guarantee’® proof security by this or some other means from other verification systems
which are either based on ad hoc rules or an insecure implementation of inference rules.

2.3.56 Extensibility

Some verification systems take full control during proof-generation and only ask for
help from the user when standard heuristics fail to produce a complete proof. With the
HOL system, the user has direct control over proof-generation down to the most detailed
level of primitive inference steps. Most often, the user guides proof-generation at a much

3Even the extreme measures taken in the HOL system to ‘guarantee’ proof security are not infallible as
demonstrated two years ago by the discovery of a very subtle form of insecurity (now repaired) concerning
type variables.
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higher level using derived rules and other kinds of transformations based on inference
rules. When built-in proof support is not enough, the user has the full generality of
a complete programming language to implement new, re-usable proof procedures. As
Gordon remarks [62]:

Trivial deductions sometimes require elaborate tactics, but on the other
hand one never reaches an impasse. HOL experts can prove arbitrarily com-
plicated theorems if they are willing to use sufficient ingenuity. Furthermore,
the type discipline ensures that no matter how complicated and ad hoc are
the tactics, it is impossible to prove an invalid theorem.

Although the HOL system currently lacks much needed support to automate specific
kinds of proofs, e.g., simple facts of arithmetic, it is only a matter of time before this
support is gradually acquired by the system. Like several other extensible systems
such as the UNIX operating system and EMACS text editor (now highly refined and
widely used systems), the HOL system is an open system programmed largely in the
same language that users use to interact with the system. We think that the following
comment by Stallman with regard to EMACS suggests how the HOL system might also
grow to maturity:

User customization helps ...by making the whole user community into
a breeding and testing ground for new ideas. Users think of small changes,
try them, and give them to other users. If an idea becomes popular, it can
be incorporated into the core system. When we poll users on suggested
changes, they can respond on the basis of actual experience rather than
thought experiments.

2.3.6 More Detailed Descriptions

More detailed descriptions of the HOL system may be found in a paper by Gordon [60]
and the system documentation [62]. The on-line version of the system documentation in-
cludes the HOL sources for several tutorial-style case studies including the TAMARACK-3
correctness proof described in this dissertation.

The HOL system is a descendent of the Edinburgh LCF system which is described
in a book by Gordon et al. [54]. The general idea of representing a logic in the ML
programming language, the meta-language of both HOL and LCF, is discussed by Gordon
in [56]. Many of LCF system features inherited by the HOL system are described in a
book by Paulson [115].

2.4 Reasons for Mechanized Formal Proof

About a decade ago, some probing questions were asked by De Millo, Lipton and Perlis
[41] about the relevance of formal verification. Although these commentators had soft-
ware verification in mind, their remarks also apply to hardware verification. We are
sympathetic with some of their concerns, but obviously disagree with their main con-
clusion that formal verification does not have a significant role to play in computer
science and computer engineering.
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One area of concern in their paper which especially interests us is the role of fully
automated proof (which is an extreme form of mechanized proof):

It seems to us that the scenario envisioned by the proponents of veri-
fication goes something like this: The programmer inserts his 300-line in-
put/output package into the verifier. Several hours later, he returns. There
is his 20,000-line verification and the message “VERIFIED”.

We think that the key point raised here by De Millo et al. is that fully automated proof
(when this is even possible) does nothing to increase confidence in our understanding
of what a generated theorem really says or why it is true. This worry is underlined
by remarks made by Cohn on the notion of proof in hardware verification in which she
stresses the difference between a formal description and a designer’s intention: “that one
may end up proving properties of a formal description bearing an imperfect relation to
the intended design - and possibly never know it” [31]. A possible danger of misplaced
confidence in formal verification is the so-called ‘Titanic effect’ [41] where conventional
redundancies and safeguards to handle errors that ‘cannot’ happen are removed.

We agree wholeheartedly with the view that the answer “VERIFIED” generated au-
tomatically without thoughtful human participation is not enough. One of the most
concrete reasons for this view is the fact that some purported correctness results turn
out to be true theorems but they are true in a meaningless way: the best known class
of meaningless results are instances of the ‘false implies everything’ problem [18].

On the other hand, the answer “VERIFIED FALSE” may be useful even if it is ob-
tained without thoughtful human participation. First of all, we assume that “VERIFIED
FALSE” means that a contradiction was found which is a different case than the answer
“GIVING UP” or never producing an answer. A negative result almost certainly indi-
cates a specification error, that is, an inconsistency in the formal specification of either
the design or its intended behaviour or an inconsistency in the formally stated relation-
ship between them. This may or may not indicate an error in the implementation of the
design (e.g., a microchip) since neither the implementation nor the designer’s intentions
are necessarily consistent with the formal description (as Cohn has remarked from expe-
rience with the VIPER project [31]). In either case, it would certainly seem worthwhile
investigating why the verification system produced the answer “VERIFIED FALSE” es-
pecially if the verification system also returns some hints about why the proof failed.
Admittedly, simulation is a much easier way to possibly find some errors but formal
verification, unlike simulation, is certain to reveal specification errors if they exist.

Another purpose of mechanized formal proof is to support the thoughtful participa-
tion of a human verifier in a formal proof. Here, the user takes the initiative and the
proof process itself is the main object of interest; the eventual outcome, “VERIFIED” or
“VERIFIED FALSE”, is not necessarily as significant. In this view, the human verifier,
who might indeed also be the designer, has to construct an argument for why the design
is correct. The use of mechanically-checked formal proof ensures that his or her rea-
soning is absolutely correct to the extent that the formal descriptions match physical

4The Boyer-Moore theorem-prover [13] is an example of a verification system which produces proof
readable summaries. Cohn is currently working on a facility for the HOL system which automatically
generates proof summaries that may play a similar role in assisting a human verifier to debug a proof
session [32].
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reality and intention. Clearly, some automation, in fact, a great deal of automation
is needed to allow the user to guide proof-generation at a level which supports clear
thinking without being side-tracked by tedious proofs of relatively simple facts.

There are several reasons to believe that the primary role of mechanized proof in
formal verification is to support thoughtful human participation in the proof process.
These reasons include:

¢ A significant amount of human participation is necessary for non-trivial verifi-
cation problems; to be extensible, this should be a well-conceived part of the
methodology rather than provisions for sporadic intervention.

e An experienced human verifier is likely to recognize the tell-tale signs that a
purported correctness result is actually meaningless.

e Insights gained from formal verification may actually contribute usefully to the
design process itself in a verification-driven approach to design.

Lastly, there is the view that the answer “VERIFIED”, or more importantly, the
proven theorem is a significant result after all. But we argue, as Cohn [31] has also
argued, that a correctness result is only meaningful if its scope and limitations are
clearly understood. We think that one of the best ways to gain an appreciation of what
has and what has not been verified is by thoughtful participation in the verification
process.

Indeed, many other serious proponents of formal verification have expressed similar
views. Among others, Rushby [123] has emphasized the role of a verification system as
an “implacably skeptical colleague”. Also speaking from substantial experience, Shankar
[129] observes:

The utility of proof-checkers is in clarifying proofs rather than in vali-
dating assertions. The commonly held view of proof-checkers is that they
do more of the latter than the former. In fact, very little of the time spent
with a proof-checker is actually spent proving theorems. Much of it goes
into finding counterexamples, correcting mistakes, and refining arguments,
definitions, or statements of correctness. A useful automatic proof-checker
plays the role of a devil’s advocate for this purpose.




Chapter 3

A Simple Microprocessor

This chapter describes the operation and design of TAMARACK-3 in a conventional style
of microprocessor description. It is divided into three main sections: programming level
model, memory interface and internal architecture.

The only significant difference (in style) from a conventional description is the use
of uninterpreted data types and uninterpreted primitives in place of defined data types
and defined symbols.

We also describe how the internal architecture can be viewed as a series of increas-
ingly concrete interpretation levels. This hierarchy of interpretation levels will be im-
portant in subsequent chapters as the basis of a proof strategy for verifying the design
of TAMARACK-3.

3.1 Programming Level Model

The programming level model, or external architecture, of TAMARACK-3 is a description
of its operation as seen by a programmer. This model hides all aspects of the internal -
architecture which the programmer does not need to know about when writing programs
for this microprocessor.

The programming level model can be viewed as an interpreter for manipulating a set
of variables which corresponds to the externally visible state of the microprocessor. It
consists of four main parts:

e Basic data types and primitive operations.
e Variables manipulated by the interpreter.

Format of instructions.

Instruction semantics.

Our presentation of the programming level model is organized around these four
main parts. Although we describe hardware interrupts separately from the semantics
of ordinary program instructions, hardware interrupts in TAMARACK-3 can be regarded
as just another kind of instruction in the programming level model.

3.1.1 Basic Data Types and Primitive Operations

We begin with the basic data types and primitive operations used in the programming
level model. The data type :bool is used to represent voltage values or logical condi-
tions. The data type :num is used when some lower level form of data is interpreted
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as the representation of a natural number. The remaining data types correspond to
machine words, groups of bits within a machine word, and memory states. A complete
list of basic data types used in the programming level model is shown below.

:bool - Boolean values {T,F}

:num - natural numbers {0,1,2,...}
1*wordn - full-size machine words

: %¥word3 - instruction opcodes
:*address - memory addresses
:#memory - memory states

A conventional description would typically be very precise about details such as
the number of bits in a machine word and the size of memory. However, we avoid
specifying these details by regarding :*wordn, :*word3, :*address and :*memory as
uninterpreted types. The actual representation of these basic data types may be thought
of as implementation dependent details. We use the prefix * to distinguish these as
uninterpreted types.!

Functional elements such as the ALU (Arithmetic Logic Unit) at the lowest level of
architectural description perform various operations on data. It is also possible and de-
sirable to avoid specifying any details about these operations. Instead, these operations
are regarded as uninterpreted primitives. Primitive operations used to describe the de-
sign and operation of TAMARACK-3 are listed below along with an informal description
of their types. Although we use the syntax of the HOL logic to describe these types, a
slightly different set of types is used in the formal theory for reasons explained later in
Chapter 4.

iszero s *wordn—bool test if zero

inc s*¥wordn—*wordn increment

add : (*wordn X *wordn) —*wordn addition

sub : (*wordn X *wordn) —*wordn subtraction

wordn :num— *wordn representation of a number
valn :¥wordn—num value of a full-size word
opcode  :*wordn—*word3 extract opcode field
val3 : *word3—num value of an opcode
address :*wordn-—*address extract address field
fetch : (*memory x *address) —*wordn read memory

store : (*memory X *address X *wordn) —*memory write memory

The above list also gives a suggested interpretation for each of the uninterpreted
primitives. Although we avoid specific details about the operations denoted by these
uninterpreted primitives, we sometimes relax our presentation style by referring to an
uninterpreted primitive in terms of its suggested interpretation.

The use of uninterpreted data types and uninterpreted primitives is an important
concept in this dissertation. As mentioned earlier in Chapter 1, they are key mechanisms
for creating generic specifications with the aim of filtering out non-essential detail from

LQur use of the prefix * can be taken as a hint in this informal description that uninterpreted types
will be represented by type variables in the HOL logic.
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a formal description. Furthermore, by not specifying any details about basic data types
or primitive operations on data, we have an informal description which is generalized
over a whole range of possible word and memory sizes and possible interpretations for
the primitive operations.

Parenthetically, we note that the term ‘“interpretation’ has several different meanings
in this dissertation. For example, we will eventually describe how programming level
operations are ‘interpreted’ by sequences of microinstructions at the microprogramming
level; this idea of an interpretation is standard from conventional concepts about struc-
tured computer organization. On the other hand, we also use the term ‘interpretation’
for the informal concept of assigning a set of values to a type variable or assigning a value
to a term variable. Uninterpreted types and uninterpreted primitives can be thought of
as variables that stand for “for any” type and “for any” operation respectively.

3.1.2 Externally Visible State

The set of variables manipulated by the programming level model corresponds to the
externally visible state of the microprocessor. In TAMARACK-3, these variables are:

mem - memory

pc - program counter

acc - accumulator

rtn - return address register

jack - interrupt acknowledge flag

The memory stores memory states, represented by the data type :*memory. Each of
the registers stores full-size memory words, represented by the data type :*wordn. The
interrupt acknowledge flag is stored internally by a flipflop whose value belongs to the
data type :bool.

3.1.3 Instruction Word Format

Instructions are exactly one full-size machine word. Although specific details about
word size and instruction word format are not given in this description, we can assume
that the instruction word consists of a 3-bit opcode (since there are eight different
instructions) with the remaining bits used as an operand address. The operand address
is the absolute address of a memory word which may be used as the address of either
data or an instruction.

3-bit opcode operand address

Opcodes and operand addresses are represented by the uninterpreted types :*word3
and :*address. They are extracted from an instruction word by the uninterpreted
primitives opcode and address.
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[ Instruction | Opcode Value | Effect )
JZR 0 jump if zero
JMP 1 jump
ADD 2 add accumulator
SUB 3 subtract accumulator
LDA 4 load accumulator
STA 5 store accumulator
RF1 6 return from interrupt
NOP 7 no operation

Table 3.1: TAMARACK-3 Instruction Set

3.1.4 Instruction Set Semantics

The eight TAMARACK-3 programming level instructions are in Table 3.1. Their opcode
values and a brief explanation of each instruction are also given in the table. The opcode
s extracted from the current instruction word by opcode and its numerical value is then
obtained by applying val3 to the extracted opcode.

The four data processing instructions, ADD, SUB, LDA and STA, involve both the
accumulator acc and memory mem. The other four instructions, JZR, JMP, RFI and
NOP, are control instructions with no effect on either the accumulator or memory. The
only conditional branch, JZR, tests whether the accumulator acc contains the machine
representation of zero.

The address of the current instruction is always given by the program counter pc
at the beginning of each instruction cycle. Operationally, the program counter pc is a
full-size register but only the address field of this register is used to access the current
instruction word from memory. When a jump is taken as a result of either a JMP or
JZR instruction, the entire instruction word is loaded into the program counter pc but
only the address field has any significance.

The eight programming level instructions are described below. Only changes to the
current state of the external architecture are described. Unaffected components of the
externally visible state are not mentioned. Some of these descriptions are simplified by
using the abbreviations, ‘

inst = fetch (mem, (address pc))

operand = fetch (mem,(address inst))

for the current instruction word and the operand addressed by this instruction. The
informal notation,

<destination> + <expression>

is used to denote when a value computed from the current machine state is loaded into
a register, flipflop or memory to form a component of the next machine state.
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JZR - jump if zero

pc « if iszero acc then inst else inc pc

If the result of applying iszero to the current contents of the accumulator acc is T,
then the current instruction word is loaded into the program counter pc. Otherwise,
the instruction is completed by incrementing the program counter pc.?

JMP - jump

pc < inst

The current instruction word is unconditionally loaded into the program counter pc.

ADD - add accumulator

acc « add (acc,operand)
pc + inc pc

The add operation is applied to the current contents of the accumulator acc and the
memory word addressed by the operand address field of the current instruction. The
result is loaded into the accumulator acc. The instruction is completed by incrementing
the program counter pc.

SUB - subtract accumulator

acc « sub (acc,operand)
pc < inc pc

The sub operation is applied to the current contents of the accumulator acc and the
memory word addressed by the operand address field of the current instruction. The
result is loaded into the accumulator acc. The instruction is completed by incrementing
the program counter pc.

LDA - load accumulator
acc «+ operand

pc + inc pc

The memory word addressed by the operand address field of the current instruction
is loaded into the accumulator acc. The instruction is completed by incrementing the
program counter pc.

2This is an instance of when we have relaxed our presentation style by referring to an uninterpreted
primitive, namely, inc, in terms of its suggested interpretation.
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STA - store accumulator

mem « store (mem,address inst,acc)
pc « inc pc

The current contents of the accumulator acc are stored in external memory at the
location specified by the operand address field of the current instruction. The instruction
is completed by incrementing the program counter pc.

RFI - return from interrupt

pc < rtn
iack «+ F

The current contents of the return address register rtn are loaded into the program
counter pc and the interrupt acknowledge flag iack is reset to F. This instruction does
not check whether the interrupt acknowledge flag iack is currently set.

NOP - no operation

pc « inc pc

Skip to the next instruction by incrementing the program counter pc.

3.1.5 Hardware Interrupts

In the normal flow of program execution, instructions are sequentially executed accord-
ing to the semantics given in the previous section. The only kind of hardware exception
is a single level, non-vectored, non-maskable hardware interrupt which is generated by
setting the interrupt request pin irq to T.

Hardware interrupts can be regarded as just another kind of instruction in the
TAMARACK-3 programming level model. This is because the current instruction cy-
cle is completed before an interrupt request is allowed to interrupt the normal flow of
program execution. Instructions are also indivisible (with respect to external interrupt
requests) in many commercially-available microprocessors such as the MC68000 [27].

Normally, the interrupt will be detected within a few clock cycles but this may be
delayed for an arbitrary number of clock cycles when the microprocessor is operating
in either fully asynchronous mode or extended cycle mode. Because only a single level
of interrupt is supported, the value of the interrupt request pin irq will be ignored if
the interrupt acknowledge flag is already T indicating that a previous interrupt is still
being serviced.

if iack = F then

pc +— O
rtn + pc¢
jack « T
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The interrupt request is processed by saving the current value of the program counter
pc in the return address register rtn, setting the interrupt acknowledge flag iack to
T and loading the machine representation of zero into the program counter pc. The
interrupt service routine is assumed to begin at location zero in memory.

At the end of the interrupt service routine, a return-from-interrupt instruction RF11is
executed causing the saved return address stored in rtn to be loaded into the program
counter pc and the interrupt acknowledge flag to be reset to F.

3.2 Memory Interface

The microprocessor can be interfaced to external memory to operate in one of three
possible modes: fully synchronous, fully asynchronous, or extended cycle mode. The
mode of operation is selected by the input pins dack and idle. The dack pin is used as
a handshaking signal in fully asynchronous mode and extended cycle mode. In extended
cycle mode, the idle pin is used in place of a handshaking signal to indicate when the
external memory is idle and ready to begin another interaction.

Although a bi-directional bus would typically be used to transfer data between a
microprocessor and external memory, the design of TAMARACK-3 uses two separate
uni-directional busses, datain and dataout.® Data is sent to external memory on the
dataout bus and received from external memory on the datain bus. Memory addresses
are sent to external memory on the addr bus.

The operations performed by external memory are denoted by the uninterpreted
primitives fetch and store. Although the synchronization details depend on the mem-
ory mode, the result of a read request is described by the equation,

datain = fetch (mem,addr)

and the result of a write request is described by the following update to the internal
state of memory.

mem « store (mem,addr,dataout)

Synchronization details for each of the three memory modes are described below.

3.2.1 Fully Synchronous Mode

In fully synchronous mode, every memory interaction is completed in a single cycle.
The microprocessor is made to operate in this mode by wiring both of the pins idle
and dack to T. A detailed timing analysis is needed to ensure that the external memory
can always satisfy memory requests within a single clock cycle.

Figure 3.1 shows the interconnections between external memory and TAMARACK-3
when operating in fully synchronous mode. The memory request pin dreq is not needed
in this mode because every clock cycle is assumed to be either a read or write request.
The type of request is indicated by the wmem pin which is normally reset to F except
when writing to memory.

8 A single bi-directional bus would be more realistic than two uni-directional busses but for simplicity
we have chosen to avoid modelling bi-directional behaviour in this part of the design. However, a bi-
directional model of bus operation is used for the system bus inside the TAMARACK-3 datapath.
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datain wmem
dataout
dack
dreq
. TAMARACK-3 ——m Memory
idle
T ———— addr
ireq iack

Figure 3.1: Fully Synchronous Operation.

3.2.2 Fully Asynchronous Mode

Fully asynchronous interaction with external memory is achieved when no assumptions
are made about the speed of the external memory relative to the microprocessor clock
speed. This allows the microprocessor to be interfaced to a mixture of fast and slow
devices in the address space of external memory. The transfer of data (and memory ad-
dresses) between the microprocessor and external memory is synchronized by handshak-
ing signals following the four-phase bundled data convention illustrated in Figure 3.2.
It is only assumed that wire delays between the microprocessor and external memory
are approximately uniform.

Figure 3.3 shows the interconnections between external memory and TAMARACK-3
when operating in fully asynchronous mode. In this mode, the idle pin is permanently
wired to F. The acknowledgement signal dack is generated by the external memory (or
by peripheral devices in the case of memory-mapped I/0).

A memory request is signaled by setting the memory request pin dreq to T. The
type of request is indicated by the wmem pin which is normally reset to F except when
writing to memory. After signaling a memory request, dreq must remain T and the
wmen flag, address bus addr and dataout bus dataout must remain at stable values
until dack becomes T signaling that the request has been satisfied. In the case of a read
request, incoming data from the external memory will be stable from the instant when
the acknowledgement signal dack becomes T until the request signal dreq returns to its
original value of F. Finally, the microprocessor waits for dack to also return to F before
starting another memory request.

The use of handshaking signals to synchronize data transfers between the micro-
processor and external memory requires very little extra circuitry and no additional
control states. Best case performance by the external memory will result in exactly the
same number of clock cycles as fully synchronous mode.

3.2.3 Extended Cycle Mode

Extended cycle mode can be viewed as a compromise between the real-time constraints
of fully synchronous mode and the delay-insensitive nature of fully asynchronous mode.
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dreq j \
datain < >

dack / \

Figure 3.2: Synchronizing Data Transfer with Handshaking Signals.

datain wmemn
dataout
dack
dreq
idle TAMARACK-3 > Memory
F——— addr
ireq iack

Figure 3.3: Fully Asynchronous Operation.
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datain wmem .
dataout
dack »
| dreq
idle TAMARACK-3 Memory
——] addr
ireq iack

Figure 3.4: Extended Cycle Operation.

In TAMARACK-3, this mode is selected by permanently wiring the idle pin to T as
shown in Figure 3.4. As before, the acknowledgement signal dack is generated by
external memory.

The only difference concerns the completion of the memory cycle after the request
signal dreq has been reset to F. Unlike fully asynchronous mode, the control logic does
not force the microprocessor to wait until the acknowledgement signal dack also returns
to F before starting another memory request. Instead, it is assumed that the external
memory will always complete the current memory cycle in time for another request
to begin as early as the next clock cycle. This is a significant difference from fully
asynchronous mode because the speed of external memory is no longer independent of
the microprocessor clock speed.

Many commercially-available microprocessors feature a memory mode which is sim-
ilar to this mixture of handshaking signals and real-time constraints. For example,
the VIPER microprocessor has a memory mode which allows the acknowledgement of
a memory request to be delayed multiple clock cycles, but once the memory request
terminates, it is assumed that another memory request can begin after 200 nanoseconds
[120].

Extended cycle mode is provided in TAMARACK-3 simply because it was easy to
implement with a trivial addition to the hardware. However, we ignore extended cycle
mode in the rest of our informal description and in the formal proof of correctness since,
in general, our research has not focussed on the use of formal methods at detailed level
timing levels involving real-time constraints. Related work by Hanna and Dache [67],
by Herbert [72,74] and by Leeser [93] suggest techniques for reasoning about real-time
constraints at hardware levels.

3.3 Internal Architecture

This section begins with a structural view of the internal architecture and an overview
of how programming level instructions are interpreted by the hardware. This is followed
by a more detailed view of the internal architecture as a series of increasingly concrete




3.3. Internal Architecture 44

interpretation levels. Finally, we outline some bottom level assumptions which bridge
the gap between our most detailed level of description and actual hardware.

3.3.1 Register-Transfer Level Structure

Figure 3.5 shows a structural view of the TAMARACK-3 register-transfer level architec-
ture. It consists of two main parts: a microcoded control unit and a single-bus datapath.

The control unit is implemented by the microcode program counter mpc, a ROM
(Read Only Memory) for storing microcode, a decoder which separates the ROM output
into various microinstruction fields, and combinational logic for computing the address
of the next microinstruction.

The datapath includes the program counter pc, accumulator acc, return address reg-
ister rtn, and interrupt acknowledge flag iack which are components of the externally
visible state at the programming level. In addition to these, several internal registers
are needed to interpret programming level instructions. These additional, full-size word
registers are:

mar - memory address register

ir - instruction word register

arg - argument register for ALU input
buf - buffer for ALU output

The datapath also includes several functional elements:

alu - four functions: add, sub, inc and outputting zero (a constant)
interface - switching between system bus and memory data pins

opc - implements opcode for extracting opcode field

addr - implements address for extracting address field

zeroflag - implements iszero to test for zero

dreq - two-input OR-gate

The storage devices and functional elements of the datapath are interconnected by a
single system bus. The width of the system bus is exactly one full-size machine word.
The datapath is controlled by signals from the control unit which, in turn, receives
feedback from the datapath.

3.3.2 Overview of Instruction Interpretation

Each TAMARACK-3 instruction is executed by a sequence of steps which varies depending
on the particular instruction, the machine state and external inputs. In general, the
following actions are taken by the internal architecture to interpret each programming
level instruction.

o Check for interrupt request, otherwise continue ...
o Fetch instruction addressed by program counter pc.

e Decode instruction.
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Figure 3.5: Register-Transfer Level Architecture.
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e Fetch operand if needed.
e Execute instruction.

e Increment program counter pc if necessary.

Not all of these actions are performed for each instruction. In particular, the control
instructions JZR, JMP, RFI and NOP do not require an operand to be fetched from
memory. Similarly, the program counter does not need to be incremented for the JMP
and RFI instructions or for the JZR instruction when the jump is taken. There are
several opportunities for overlapping some of these steps (e.g. incrementing the program
counter while executing the current instruction) but this has not been done for the
current design of TAMARACK-3.

The interpretation of an ADD instruction illustrates with greater detail how the
internal architecture of TAMARACK-3 is used to implement its instruction set. An
ADD instruction is interpreted by a sequence of data transfers over the system bus,
interactions with memory, and operations on data performed by the various functional
elements. The informal notation,

<destination> + <expression>

is used here to denote when a value computed from the current machine state is loaded
into a register, flipflop or memory to form a component of the next machine state.
But unlike its previous use to describe state changes in the programming level model
between instruction cycles, this informal notation now describes state changes at the
register-transfer level between clock cycles.

Exactly eight steps are required to interpret the ADD instruction. These eight steps
are executed in the sequential order shown below; however, some of these steps might
be repeated (i.e., they are repeat-loops) when the microprocessor is operating in fully
asynchronous mode.*

mar < pc repeat if —=(idle or —dack)
ir « fetch (mem,(address mar)) repeat if —dack

mar + ir repeat if —(idle or ~dack)
arg <— acc repeat if —=(idle or —dack)
buf « add (arg,fetch (mem,(address mar))) repeat if ~dack

acc «+ buf

buf < inc pc

pc < buf

The equation,

clock cycles = 8+ni1+n2+n3+n4+nb

4The fetch operation performed by external memory is not necessarily completed until the last
iteration of the repeat-loop.
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gives the total number of clock cycles needed to interpret an ADD instruction. Since
every step is executed at least once, at least eight clock cycles are required. The variables
ni, n2, n3, n4 and n& denote the number of additional clock cycles spent waiting for
the external memory at various steps in the instruction cycle (due to the repeat-loops
shown above).

In fully synchronous mode, none of the eight steps are ever repeated because the pins
idle and dack are both wired to T. In this case, the variables n1, n2, n3, n4 and nb
will all be equal to zero. Hence, the instruction cycle will be completed in exactly eight
clock cycles.

In fully asynchronous mode, some of the above steps may be repeated but this will
have no untoward effect except to increase the number of clock cycles. In this case when
the microprocessor is using handshaking signals to interact with memory, the variables
ni, n2, n3, n4 and nb will depend on the latency of external memory. For best case
performance, these variables will all be zero resulting in exactly the same number of
clock cycles as fully synchronous mode. More generally, it is only known that each wait
loop will eventually terminate. This fact depends on the correct implementation of the
handshaking protocol by both the microprocessor and external memory; establishing
this fact is a major step in the TAMARACK-3 proof of correctness.

In either mode of operation, the cumulative effect of the ADD instruction interpre-
tation sequence is described by the following updates to the accumulator acc and the
program counter pc.

acc « add (acc,fetch (mem,(address fetch (mem,(address pc)))))
pc « inc pc

Simplifying these expressions with the earlier mentioned abbreviations inst and

operand, yields the programming level description of the ADD instruction semantics
given earlier in Section 3.1.4.

acc «+ add (acc,operand)
pc + inc pc

The interpretation of the other seven programming level instructions and the pro-
cessing of a hardware interrupt can be described in a similar way by a sequence of steps.
Showing by formal proof for each programming level instruction that the cumulative
effect of each sequence satisfies the semantics of that particular instruction is another
major part of the TAMARACK-3 proof of correctness.

3.3.3 Multiple Interpretation Levels

The programming level model of a microprocessor sits at the top of a hierarchy of
interpretation levels implemented by the internal architecture. The internal operation
of a microprocessor can generally be described in terms of the following levels (2].

Programming level - sequential execution of user programs
Microprogramming level - sequential execution of microcode

Phase level - concurrent elementary hardware operations
Instant level - asynchronous sequencing in a clock phase

Basic logic components - circuit level behaviour
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microinstruction sequences —

microprogramming level interpreter

control signals
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Figure 3.6: Hierarchy of Interpretation Levels.

This description of TAMARACK-3 focuses on the three highest levels of interpretation
(i.e., only down to the phase level). The programming level has already been described
in terms of the instruction set semantics and the hardware interrupt facility. Below the
programming level, increasingly concrete views of the internal operation of TAMARACK-3
are described at the microprogramming level and at the phase level.

At the microprogramming level, a programming level instruction is interpreted by ex-
ecuting a sequence of microinstructions. This sequence of microinstructions is generated
by a FSM (Finite State Machine) implemented by the control unit. Microinstructions
are executed by an operational part corresponding to the datapath.

The phase level description decomposes the interpretation of a single microinstruction
into the parallel execution of a set of elementary operations. This decomposition reveals
the structural organization of the internal architecture in terms of register-transfer level
components.

The concept of multiple interpretation levels is used by architects to achieve a “pro-
gressive translation of functions in several stages” [2]. We will later describe how this
concept also provides a very effective strategy for controlling proof complexity in the
formal verification of TAMARACK-3.

3.3.3.1 Microprogramming Level

Every programming level instruction is interpreted by a different sequence of actions
even though they share many individual steps in common. This sequence partially
depends on the instruction opcode which is only known part way through the sequence
after the instruction word has been fetched from memory. The sequence of steps taken
may also depend on the machine state, in particular, on the contents of the accumulator
acc in the case of a jump-if-zero JZR instruction.

The interpretation of each instruction, that is, the sequence of actions taken for
each instruction, and similarly, the actions taken to process a hardware interrupt are
determined by the control unit. The control unit FSM generates datapath commands
(represented by microinstructions) each clock cycle. Each command causes an action
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to be performed by the datapath during the current clock cycle.

The interpretation algorithm implemented by the control unit FSM is based on con-
ditional branches, that is, a Moore machine approach in contrast to a Mealy machine
approach based on conditional instructions. Inputs are used to select the next machine
state but do not determine the current output of the state machine. Some of these
inputs consist of feedback from the datapath, in particular, the opcode field of the in-
struction word register ir contents, a test-accumulator-for-zero flag zeroflag, and the
current value of the interrupt acknowledge flag iack. The FSM also receives external
inputs from the idle, dack and ireq pins which determine the behaviour of the FSM.
The FSM for the TAMARACK-3 control unit is described by the flow graph in Figure 3.7.

The start of an instruction cycle occurs when the FSM is in state 0 and about to
exit to either state 1 or state 2. If an interrupt is requested and the iack flag is
not already set, then the FSM exits to state 1 to process the interrupt. Otherwise,
the FSM exits to state 2 and causes the current instruction word to be fetched from
memory. In state 3, the FSM dispatches on the opcode field to the start of the remaining
interpretation sequence for the current instruction. For instance, the interpretation of
an ADD instruction would cause a transition from state 3 to state 6. From this point
onwards, the FSM follows a sequence of state transitions leading back to state 0. In
the case of a JZR instruction, the FSM selects one of two possible exits from state 4
depending on the test-accumulator-for-zero feedback from the datapath. Assuming that
the FSM never loops indefinitely in a particular state, then in all cases, including the
processing of interrupts, the FSM always returns to state 0 to begin the next instruction
cycle.

For example, the interpretation of an ADD instruction in fully synchronous mode
results in the following sequence of states.

0,2, 3,6, 13, 15, 11, 12, and back to 0.

In fully asynchronous mode, additional clock cycles caused by delayed handshaking
signals from the external memory could result in a sequence such as:

0,2,2,2,3,3,6,13, 13, 13, 15, 11, 12, and back to 0.

Each FSM state causes a specific action to be performed by the datapath. The map-
ping from FSM states to actions is shown in Figure 3.8. This mapping, combined with
the flow graph in Figure 3.7, gives a complete description of the internal architecture of
TAMARACK-3 at one level of abstraction. This level of description contains no structural
details aside from the conceptual distinction between the function of the control unit
and the operation of the datapath. Although the components of the internal state are
visible in this view, updates to the machine state are described functionally. This ab-
stract view of the internal architecture is the basis of an intermediate step in the formal
verification of TAMARACK-3.

3.3.3.2 Phase Level

Each command generated by the FSM is a microinstruction which is interpreted by
a set of register-transfer level operations. The phase level description decomposes a
microprogramming level action such as,




Figure 3.7: Control Unit Finite-State Machine Flow Diagram.
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Figure 3.8: Mapping from FSM States to Datapath Actions.
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buf «— add (arg,fetch (mem,(address mar)))

into the parallel execution of a set of elementary operations (described by equations)
followed by a single update to buf:

addr = address mar
datain = fetch (mem,addr)
bus = datain

alu = add (arg,bus)

buf + alu

This decomposition reveals the structural organization of the microprocessor. Each
of the elementary operations shown above corresponds to a functional element of the
register-transfer architecture or, in the case of fetch, to a primitive operation performed
by external memory.

The phase level description of TAMARACK-3 also refines certain abstract features
of the microprogramming level description. In particular, it reveals that the FSM is
implemented by:

e A microcode program counter mpc to hold the current state of the FSM.

¢ The microcode ROM which encodes the abstract mapping from FSM states to
actions given in Figure 3.8.

A decoder which separates the ROM output into various microinstruction fields.

The next address logic which computes the next FSM state according to the flow
graph given in Figure 3.7.

The microcode program counter is a register which stores values belonging to an
uninterpreted data type:

t*word4d - FSM state

Several uninterpreted primitives for this data type are needed later on to describe
the computation performed by the next address logic.

word4d :num—*word4 representation of a number
vald :¥word4d—num numerical value of an FSM state

Every clock cycle, the current value of the microcode program counter mpc is used
to fetch the current microinstruction from the microcode ROM. The microcode is hori-
zontal which means, in this case, that every control signal is determined by a unique bit
in the microinstruction word. The format of microinstruction words is shown below.

LT TP TP P LT ] adart | eddr2
) datapath - next - microingtruction ’
control bits address logic addresses

control bits
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The fifteen datapath control bits are extracted from the output of the microcode
ROM and sent to the datapath over a set of control lines. These control bits generate
individual control signals including ‘write’ signals for storage elements, ‘read’ signals for
devices which can assert values onto the system bus, and signals to control the operation
of the functional elements such as the ALU.

In addition to control bits for the datapath, the microinstruction word contains sev-
eral other fields which are used to encode a partial computation of the next FSM state.
The four next address logic control bits determine how the next address logic computes
the next FSM state. The two microinstruction address fields, addr1 and addr2 (both of
the type :*word4), specify destination fields for various kinds of conditional branches in
the microcode which may be selected by the next address logic as the next FSM state.
The next address logic is simply a block of combinational logic whose function can be
derived from the flow graph in Figure 3.7.

The interpretation of a microinstruction at the phase level during a single clock cycle
results in a sequence of events which include:

e Fetch the current microinstruction.
e Compute the address of the next microinstruction.

e Read data onto the system bus.

Evaluate operations performed by functional elements.

Update storage elements such as memory, registers and flipflops.

Some of these events clearly precede other events. For instance, the current microin-
struction has to be fetched from the microcode ROM before it can be interpreted. On
the other hand, many of these events take place concurrently: for example, the address
of the next microinstruction is computed by the next address logic while the datap-
ath executes the actions specified by the current microinstruction. Indeed, much of
the activity during a clock cycle is not necessarily synchronized by an explicit control
mechanism: a change in the inputs to a functional element such as the ALU might be
propagated to its outputs after a few nanoseconds depending on its implementation.

Even though some constraints on the order of events during a clock cycle could be
described, this has not been done in this description of TAMARACK-3. Instead, functional
elements such as the ALU are modelled without delay and the update of storage elements
is described as an atomic action. A fundamental feature of this abstraction is the
assumption that updates to storage elements do not propagate to their outputs until
the end of the clock cycle, i.e., there is no possibility of a closed feedback path resulting
in a race condition.

3.3.4 Some Bottom Level Assumptions

The relatively abstract view of how a microinstruction is interpreted during a single
clock cycle is the lowest level in this description of TAMARACK-3. The phase level view
is also the lowest level of specification in the formal proof of correctness. The semantic
gap between this abstraction and actual hardware is bridged by several informally stated
assumptions.
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First of all, it is assumed that the design is implemented by digital circuitry in
some kind of synchronous logic design style (e.g., two-phase, non-overlapping logic).
Depending on the design style, certain rules must be followed to ensure, for instance,
that updates to storage elements do not propagate to their outputs until the end of the
clock cycle. Assuming that these rules have been followed and certain other constraints
have been satisfied,’ synchronous logic gives rise to the abstract view where functional
elements are modelled without delay and the update of storage elements is described as
an atomic action.

Synchronous logic only ensures that this abstraction is valid for the internal logic;
some additional considerations are required to ensure that this abstraction is valid for
the interface between internal logic and external devices.

Asynchronous input events, such as a transition from F to T on the hardware interrupt
request pin ireq, may occur at any time. In particular, they may occur at any point
during the clock cycle used to synchronize the internal logic. Asynchronous input events
may or may not be detected during the clock cycle depending on when they occur with
respect to the minimum set-up time of any internal storage device that samples (directly
or indirectly) this input. Carefully designed interface circuitry would be required to
minimize the metastability problem, that is, the possibility of unstable equilibria in
cross-coupled circuits [127].

In addition to sampling asynchronous inputs, the internal logic generates asyn-
chronous outputs such as the interrupt acknowledge flag iack. External outputs may be
sampled at any point in continuous time and every change in their value is significant.
During a clock cycle, synchronous logic may generate several transient values before
settling on a set of final values. For signals used internally, these transient values have
no effect, but additional interface circuitry may be required to ensure that transient
values do not propagate to asynchronous outputs.

These informal assumptions underlie the abstract view of how a microinstruction is
interpreted during a single clock cycle. In the formal theory, asynchronous input and
output events are modelled with respect to the same discrete time scale used to model
internal synchronous logic. The model represents the observed behaviour of the external
environment as seen by the internal logic. An asynchronous output event is described
by changing the value of an output signal between adjacent points of discrete time. It
is assumed that the output signal is otherwise stable with respect to continuous time.

8Conventional CAD tools are commonly used to check that synchronous logic has been correctly
implemented with respect to the rules of a particular design style and that other constraints are satisfied,
e.g., timing constraints.




Chapter 4

Formal Specification

When converting a natural-language description, or mental image, into
a precise form, no algorithmic procedure is possible. One can develop only
heuristic approaches and constantly check to see if the resulting formal de-
scription is consistent with the original informal idea. Frequently the process
of writing a formal specification generates questions about what is desired in
situations not originally considered. Thus, the process of constructing a flow
table may clarify the problem even if no further use is made of the table.

[Stephen H. Unger, Asynchronous Sequential Switching Circuits, 1969]

Viper’s top-level specification and its major-state level were both supplied
in a logical language; but its block-level model was given partly formally and
partly pictorially (as was natural). Combining these two parts required both
ingenuity and some guesswork. The guesses were based on the coincidence
of line names, on the names of bound variables in functional definitions, and
on the annotations in the text of the definitions. None of these notational
devices can be regarded as a formal specification.

[Avra Cohn, The Notion of Proof in Hardware Verification, 1989]

Among the most interesting and creative aspects of using formal methods to verify
microprocessor systems is the translation of an informal description, such as the one
just given in the previous chapter, into a formal specification.

We begin this chapter by elaborating on the use of generic specification, in particular,
some of the motivations for filtering out non-essential detail from the formal specification
of TAMARACK-3. We also describe how generic specifications can be created in the HOL
logic using only existing constructs.

The rest of this chapter shows how these techniques are used to formally specify the
design and operation of TAMARACK-3. This includes formal specifications of the internal
architecture, the programming level model and external memory.

4.1 Generic Specification

4.1.1 Motivation

The formal verification of TAMARACK-3 focuses very specifically on the register-transfer
level operation of the internal architecture. Below and above this level there are aspects
of a complete design for TAMARACK-3 which are not formally considered. For instance,
the formal proof does not consider whether the register-transfer components have been

55
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designed correctly. Similarly, the formal proof only shows that the design satisfies the
semantics of the instruction set but it does not consider whether these instructions could
be combined to write useful programs.

To clearly demarcate the boundaries between what has and what has not been for-
mally considered in this proof, we have used generic descriptions in both the informal
description and formal specification of TAMARACK-3 to eliminate as much detail as
possible without simplifying the verification problem.!

This is quite different from conventional microprocessor descriptions which are usu-
ally very specific about details such as word size and various operations performed on
data. Nevertheless, it is possible to explain and reason about a great deal of the internal
architecture without specifying these details. The ability to make use of the abstract
description without knowing these details is one way in which formal verification is dis-
tinguished from conventional simulation where these details would generally need to be
known.

To illustrate the point that symbols are often just place-holders in a formal proof,
we consider the uninterpreted primitive add which appears in both the bottom and top
level descriptions of TAMARACK-3. At the bottom level, it is used to describe one of the
functions performed by the ALU. At the top level, it is used to give the semantics of the
TAMARACK-3 ADD instruction. The formal proof only shows that the ADD instruction
is correctly implemented in the sense that the add operation is applied to the correct
operands and the result stored in the correct destination by the end of the instruction
cycle. Since add is only a place-holder in the formal proof, it is possible (and desirable)
to regard this symbol as an uninterpreted primitive instead of a defined symbol.

A more pragmatic reason for using generic specifications is to avoid having to build up
computational models ‘from scratch’ for particular cases when the verification problem
has very little to do with computation. In the case of TAMARACK-3, building up a
computational model for machine words, e.g., defining arithmetic operations on machine
words, would be wasted effort for the purposes of verifying its register-transfer level
operation. In this respect, the specification of TAMARACK-3 differs from earlier examples
of microprocessor verification in the HOL system [29,30,58,78,79] by not using the built-
in HOL types and postulated axioms (inherited from the LCF_LSM system) for bit strings
and machine words. Not using this built-in infra-structure also means that this example
could be more easily reproduced in other formalisms which lack infra-structure for
reasoning about hardware.

Finally, there is the additional benefit that the generic description of TAMARACK-3
is re-usable for a wide range of possible word sizes and possible interpretations for
the primitive operations. Later in Chapter 7, we show how correctness results for
TAMARACK-3 can be specialized for the case of a 16-bit machine.

The cost of generic specification for TAMARACK-3 is surprisingly small: just two
assumptions about the data types and primitive operations are needed to verify its
register-transfer level operation. One of these assumptions, for instance, states that the
numerical value of every 3-bit word is less than eight. These two assumptions appear
explicitly in the correctness theorems.

1Our approach was prompted by discussions with researchers at SRI International, Menlo Park. The
EHDM verification system developed at SRI also supports a form of generic specification using parame-
terized modules [142].
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4.1.2 Formal Basis

Our use of the prefix * for uninterpreted data types in the informal description of
TAMARACK-3, e.g., :*word, hinted at our intention to use type variables for uninter-
preted types in the formal specification. We also need a formal basis for uninterpreted
primitives, e.g., add, which denote operations on these basic data types.

Onmne possibility would be to simply introduce the names of these operations as con-
stants in the formal theory; the operations denoted by these constants would have fixed,
unknown values. Although this approach is appealingly simple, the association of op-
eration names with fixed, unknown values would be inconvenient if we ever wanted to
extend the formal theory by giving an interpretation to the heretofore uninterpreted
data types and primitive operations.?

Instead of a theory with constants denoting fixed, unknown values for primitive op-
erations, we would like to ‘parameterize’, in an intuitive sense, the theory by the data
types and primitive operations mentioned in the theory. The theory could be ‘instanti-
ated’ by giving an interpretation to the data types and primitive operations (as we show
in Chapter 7). This would be useful when combining correctness results for register-
transfer architecture of TAMARACK-3 with another theory about the implementation of
various register-transfer level components.

Although there is no existing mechanism to parameterize (in a literal sense) a HOL
theory, the desired effect can be achieved in the HOL logic by parameterizing definitions
in the theory by an extra variable, rep, which denotes the ‘representation’ of a theory.

The representation parameter can be thought of as a package containing values for
each of the primitive operations. A particular operation can be specified by applying a
selector function to the representation. To avoid introducing more names than necessary,
we have just re-used names from the informal description for the corresponding selector
functions. Whereas these names were used in the informal description to directly refer
to primitive operations, they are used in the formal specification to denote selector
functions which must be applied to the representation variable. Instead of saying,

‘the operation denoted by add’
we refer to this operation as:
‘the operation selected by add’

For instance, the terms inc, add and sub denote selector functions for the three
operations performed by the ALU. Applying each of these terms to the representation
variable rep yields the three ALU operations specified by rep.

Like any other term in the HOL logic, the representation variable rep is associated
with a type. We have taken the straightforward approach of representing this variable
in the HOL logic as an n-tuple where each element corresponds to one of the primitive
operations on uninterpreted data types. The particular ordering of elements in this

2There is also a technical reason why this scheme might not work very well for the HOL system, in
particular, that unbound type variables are not allowed in definitions.
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n-tuple is completely arbitrary. The type of rep is denoted by the following type
abbreviation.?

AbbreviateType (

rep_ty,

¥ (*wordn—bool) X % iszero %
(*wordn—*wordn) X % inc %
(*wordn X *wordn—*wordn) X % add %
(*wordn X *wordn—*wordn) X % sub %
(num—*wordn) X % wordn %
(xwordn—num) X % valn %
(*wordn—*word3) X % opcode %
(*word3-—»num) X % val3 Y%
(*wordn—+*address) X % address %
(#*memory X *address—*wordn) X % fetch %
(*memory X *address X *wordn—s*memory) X % store %
(num—*word4) X % word4d %
(*word4d—num)") ;; % vald %

Selectors for primitive operations are defined in the formal theory by composing
various sequences of the two primitive selectors FST and SND. For instance, the first
three selectors, iszero, inc, and add, have the following definitions:*

Define ("iszero (rep:rep_ty) = FST rep");;

Define ("inc (rep:rep_ty) = FST(SND rep)");;

Define ("add (rep:rep_ty) = FST(SND(SND rep))");;

The rest of the selectors are defined in a similar manner such that the following
theorem is true:

3The built-in HOL system utility for creating type abbreviations would not allow this particular
abbreviation since it contains type variables, However, there is an alternative way to introduce names
to stand for fully expanded type expressions (using ML variables and ML antiquotation). To mask these
unimportant details, we have ‘invented’ the meta-language function AbbreviateType for the purpose of
introducing type abbreviations without restrictions on the occurrence of type variables in abbreviations.

4We have also ‘invented’ the meta-language function Define for creating definitions; this function
masks a few unimportant details about using the built-in HOL system utilities for creating definitions.
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|- rep =

((iszero rep),
(inc rep),
(add rep),
(sub rep),
(wordn rep),
(valn rep),
(opcode rep),
(val3 rep),
(address rep),
(fetch rep),
(store rep),
(word4 rep),
(val4 rep))

As just mentioned, two assumptions about uninterpreted types and uninterpreted
primitives are needed to verify TAMARACK-3. These assumptions are expressed by
predicates Val3_CASES_ASM and Val4Word4_ASM which are both parameterized by the
representation variable rep.

Define ("Val3_CASES_ASM (rep:rep_ty) = Vw. ((val3 rep) w) < 8");;

Define (
"Val4Word4_ASM (rep:rep_ty) =
Vn. n < 16 = (((val4 rep) ((word4 rep) n)) =n)");;

The predicate Val3_CASES_ASM expresses the assumption that the numerical value
of every 3-bit word is less than eight. The predicate Vald4Word4_ASM expresses the
assumption that :val4 and :word4 are inverses for numbers less than sixteen.

4.2 TAMARACK-3 Specification

The formal specification of TAMARACK-3 is hand-translated from the informal descrip-
tion given earlier in Chapter 3. It consists of three main parts:

e The design of the internal architecture in terms of its structural organization and
behavioural models for primitive components.

e The programming level model based on the semantics of the instruction set and
the processing of hardware interrupts.

o A specification of the external environment, in particular, a behavioural model for
external memory.

We begin by describing how structure and behaviour are represented in the formal
specification. Following these preliminaries, we present the three main parts of the
formal specification of TAMARACK-3.
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4.2.1 Specifying Structure and Behaviour

The specification of TAMARACK-3 models devices at all levels of the specification hierar-
chy by predicates which express relations on time-dependent signals. These predicates
are parameterized, in part, by variables representing physical input and output signals.
They may also be parameterized by other signals representing the internal state or ex-
ternal conditions governing the behaviour of the device. Time-dependent signals are
modelled as functions from discrete time to signal values. As shown in the following
type abbreviation, discrete time is represented by the natural numbers.

AbbreviateType (‘time‘,":num");;

The behaviour of a primitive device is specified directly in terms of defined operators
such as logical connectives and arithmetic functions. The uninterpreted primitives just
described in Section 4.1.2 may also be used to directly specify the behaviour of a device.
Typically, the behaviour of a primitive component is expressed by an equation for output
signals in terms of input signals, internal state, and external conditions. Universal
quantification over explicit time variables is used to state that the behaviour holds at
all points in discrete time.

The behaviour of a non-primitive device is specified indirectly by composing be-
haviours for simpler devices. The interconnection of components through similarly-
named ports is expressed by logical conjunction. Existential quantification is used to
hide internal signals. This can be viewed as a structural specification of the device.

4.2.2 Internal Architecture

The formal specification of the internal architecture of TAMARACK-3 begins with be-
haviour models for primitive components such as the ALU and the registers. Higher up
the specification hierarchy, non-primitive devices such as the control unit and datapath
are specified structurally as the composition of simpler devices.

As explained earlier in Chapter 3, the internal operation of TAMARACK-3 is described
at a relatively abstract level where functional elements such as the ALU are modelled
without delay and the update of a storage element is an atomic action. The formal
specifications in this section are based on this abstract view of behaviour.

4.2.2.1 Primitive Components of the Datapath

The ALU implements four different operations: the operation performed by the ALU is
determined by the two ALU control signals £0 and £1. The operation selected from the
representation variable rep by the selector function inc takes a single full-size word as
an argument and returns a full-size word as a result. The operations selected by add
and sub take two full-size words as arguments and return a single full-size word as a
result. The fourth operation implemented by the ALU takes no arguments: it yields a
constant result, namely, the full-size word representation of the number zero.




4.2. TAMARACK-3 Specification 61

Define (
"ALU (rep:rep_ty) (£0,f1,inp1l,inp2,out) =
Vt:time.
out t =
(((£0 t,f1 t) = (T,T)) = ((inc rep) (inp2 t)) |

((f0 t,f1 t)
((£0 t,f1 t)

(T,F)) = ((add rep) (inpl t,inp2 t)) |
(F, 7)) = ((sub rep) (inpl t,inp2 %)) |
((wordn rep) 0))");;

Definitions for OpcField and AddrField specify devices which implement the op-
erations selected by opcode and address respectively for extracting the opcode and
address fields from a full-size word. Depending on how the opcode and address fields
are represented, the implementation of these two devices could be nothing more than
some wiring connections to appropriate bits.

Define (
"OpcField (rep:rep_ty) (inp,out) =
Vt:time. out t = (opcode rep) (inp t)");;

Define (
"AddrField (rep:rep_ty) (inp,out) =
Yt:time. out t = (address rep) (inp t)");;

The definition of TestZero specifies a device which implements the operation selected
by testzero.

Define (
"TestZero (rep:rep_ty) (inp,out) =
Vt:time. out t = (iszero rep) (inp t)");;

4.2.2.2 Modelling System Bus Operation

The system bus of the TAMARACK-3 datapath is used to transfer data between various
devices in the datapath. Modelling the operation of this bus presents some special
problems because control over the bus signal is decentralized. A correct design will never
allow more than one device at a time to read a value onto the system bus. Some very
simple models of the datapath bus (e.g., modelling a bus as a many-input multiplexor)
are based on the informal assumption that this aspect of the design is correct. However,
we would like to establish this fact as part of our formal proof.

One possibility is to invent an extra value (sometimes called ‘Z’) to denote the floating
(or high-impedance) state. The tri-state word types built into the HOL system (but not
used here) are an example of this approach [57,58,79]. The value of bus is determined
by a function which combines the outputs of all the bus drivers. If more than one driver
has a non-floating output, then the result returned by the combining function is either
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an ‘error’ value or unknown. This scheme is appealing partly because it is familiar from
switch level simulation models such as MOSSIM [16]. It is also similar in concept to
resolution functions in the VHDL hardware description language [3].

We have chosen to model the datapath in a different and (to our knowledge) novel way
which takes advantage of our relationship style of formal specification. In this approach,
the behavioural model of a bus device is regulated by a time-dependent condition on
its environment: the device may only assert a value onto the system bus if no other
device is also attempting to assert a value onto the bus. This condition may be thought
of as an additional control signal to the device although it does not correspond to any
physical signal.

At the register-transfer level, each bus device has a ‘read’ signal which controls when
the device attempts to assert a value onto the system bus. In TAMARACK-3, these ‘read’
signals are:

rmem, rpc, racc, rir, rrtn, and rbuf

The time-dependent condition regulating the behaviour of bus drivers in the
TAMARACK-3 datapath can be defined in terms of these signals: a value can be suc-
cessfully read onto the system bus if and only if at most one of these signals is equal to
T. This condition is expressed by the following definition of BusOkay. (The right-hand
side of this equation looks complicated but it is just a Boolean expression for 6-way
exclusive or-ing.)

Define (
"BusOkay (rmem.rpc.racc,rir,rrtn.rbuf,busokay) =
Vt:time.
busokay t =
((rmem t) = (~(rpc t V racc t V rir t V rrtn t V rbuf t)) |
((rpc t) => (—(racc t V rir t V rrtn t V rbuf t)) |
((racc t) = (—(rir t V rrtn t V rbuf t)) |
((rir t) = (~(rrtn t V rbuf t)) |
((rrtn t) = (=(rbuf t)) |
I,

BusOkay may be thought of as a virtual device in the datapath. Although it does not
correspond to a physical component of the datapath, its specification can be derived
directly from a structural description of the datapath by determining which devices
share the system bus as a common output port.

Admittedly, some aspects of this particular approach to modelling bus operation
may appear to be rather artificial, e.g., ‘virtual’ devices. However, other approaches to
modelling bus operation may look artificial as well, e.g., modelling a bus as a device
with inputs and outputs. In general, there does not appear to be any one “best” way to
model (in pure logic) the de-centralized nature of control over the operation of a bus.

4.2.2.3 More Primitive Components of the Datapath

The definition of Interface specifies a device which provides a two-way interface be-
tween the system bus and the memory data pins. The device attempts to read data
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received from memory onto the system bus when the read signal r is equal to T. In the
output direction, the current value of the system bus is connected to the output pins
when the write signal w is equal to T; otherwise, the machine representation of zero is
assigned to the output pins as a default value.

Define (
"Interface (rep:rep_ty) (busokay,w,r,bus,datain,dataout) =
Vt:time.
((busokay t) = (r t) = (bus t = datain t)) A
(dataout t = ((w t) = (bus t) | ((wordn rep) 0)))");;

Following our scheme for modelling the operation of the system bus, the predicate
Interface is parameterized by the virtual signal busokay which is the time-dependent
condition specified in the definition of BusOkay. When data is being read from memory
and no other device is attempting to assert a value onto the system bus, then the
memory data will be successfully read onto the bus.

The basic storage element in the datapath of TAMARACK-3 is a selectively loadable
register for storing full-size words. If the ‘write’ signal is equal to T, then the current
input will be loaded into the register; otherwise, the contents of the register are un-
changed. The out signal serves as both an output signal and a signal representing the
internal state of the register. The register can also be interfaced to the system bus: the
register attempts to read its contents onto the system bus when its ‘read’ signal is equal
to T. Like the definition of Interface, the definition of Register is parameterized by
the virtual signal busokay which determines when the register can successfully assert
its contents onto the system bus.

Define (
"Register (busokay,w,r,inp,bus,out:time—*wordn) =
Vt:time.
((busokay t) => (r t) = (bus t = out t)) A
(out (t+1) = ((w t) = (inp t) | (out £)))");;

A set of 1-bit control signals runs from the control unit to the datapath. It is
convenient to view these control signals collectively as a single input to the datapath.
Once inside the datapath, this bundle of control signals is separated into the fifteen
individual control signals.

In the formal specification, this bundle can be represented as a signal whose value at
any discrete point in time is an n-tuple with fifteen elements. The following definition
of DecodeCntls specifies a block of wiring which separates this bundle of control signals
into fifteen individual signals by ‘assigning’ elements of n-tuple representation to cor-
responding control signals. This definition is expressed in terms of an equation where
the left and right hand sides of the equation are n-tuples. Two n-tuples are equal if and
only if they have exactly the same number of elements and matching elements of each
n-tuple are equal both in type and in value. In effect, we are using properties of n-tuples
to model bit manipulation operations, in particular, the extraction of individual bits
from a group of bits.
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AbbreviateType (
‘cntls_ty*,
":boolXboolXboolXboolXxboolXxboolXxboolX
boolXboolXboolXboolXboolXboolXboolxbool");

Define (
"DecodeCntls (

cntls:time—centls_ty,

wmem,Tmem,wmar,wpc,rpc,wacc,racc,

wir,rir,wrtn,rrtn,warg,alu0,alul,rbuf) =

Vt:time.
(wmem t,rmem t,wmar t,wpc t,rpc t,wacc t,racc t,
wir t,rir t,wrtn t,rrtn t,warg t,alu0 t,alul t,rbuf t) =
(cntls t)");;

The remaining three components needed to implement the datapath are a JK flip-
flop, a two-input OR gate and voltages sources, i.e, ‘power’ and ‘ground’.

Define (
"JKFF (j,k,out) =
Vt:time. out (t+1) = (((j t) A =(out t)) V (=(k t) A (out t)))");:

Define ("OR (inpi,inp2,out) = Vt:time. out t = ((inpl t) V (inp2 t))");;

Vt:time. out t

Define ("PWR out ™) 55

DI

Vt:time. out t

Define ("GND out

4.2.2.4 Datapath Implementation

The register-transfer level implementation of the datapath is formally specified by the
definition of Datapath in terms of the above-mentioned primitive components.
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Figure 4.1: External View of the Datapath Specification
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Define (
"DataPath (rep:rep_ty)
(cntls.datain,mar,pc.acc,ir.rtn.iack,
arg,buf ,dataout,wmem,dreq,addr,zeroflag,opc) =
dbus busokay alu pwr gnd rmem wmar wpc Irpc
wacc racc wir rir wrtn rrtn warg aluO alul rbuf.
DecodeCntls (
cntls,
wmem,rmem,wmar ,wpc ,Trpc,wacc,racc,
wir,rir,wrtn,rrtn,warg,alu0,alul,rbuf) A
BusOkay (rmem,rpc,racc,rir,rrtn,rbuf,busokay) A
Interface rep (busokay,wmem,rmem,bus,datain,dataout) A
OR (wmem,rmem,dreq) A
Register (busokay,wmar,gnd,bus,bus,mar) A
AddrField rep (mar,addr) A
Register (busokay,wpc,rpc,bus,bus,pc) A
Register (busokay,wacc.racc.bus,bus,acc) A
TestZero rep (acc,zeroflag) A
Register (busokay,wir,rir,bus,bus,ir) A
OpcField rep (ir,opc) A
Register (busokay,wrtn,rrtn,bus,bus,rtn) A
JKFF (wrtn,rrtn,iack) A
Register (busokay,warg,gnd,bus,bus,arg) A
ALU rep (aluO,alul,arg,bus,alu) A
Register (busokay,pwr,rbuf,alu,bus,buf) A
PWR pwr A
GND gnd");;

The predicate Datapath is parameterized by a number of signals. Some of these
parameters correspond to signals which are externally available as physical inputs and

outputs of the datapath as shown in the ‘black box’ view of Figure 4.1.

Other signal
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parameters represent internal state variables; these internal state variables are also
shown in Figure 4.1.

4.2.2.5 Microcode Source and Micro-Assembler

We use a straightforward representation for each microinstruction word as an n-tuple
where each element corresponds to one of the sub-fields described earlier in Chapter 3.
For example, the n-tuple,

((F,F,T,F,T,F,F,F,F,F,F,F,F,F,F),(T,F),(T,F),(addrl,addr2))

is the representation of a typical microinstruction word. The first three elements of this
representation are also n-tuples; they represent sub-fields which consist of individual
bits. The fourth element is a pair of microcode addresses belonging to the type : *word4.

Instead of specifying the microcode directly in terms of bit patterns, a simple micro-
assembler allows the microcode to be specified in a more readable form. The micro-
assembler consists of the following definitions.®

Define (
"Cntls (tokl,tok2,tok3) =

((tok2 = ‘wmem‘),

(tokl = ‘rmem‘),

(tok2 = ‘wmar‘),

(tok2 = ‘wpc‘),

(tokl = ‘rpc‘),

(tok2 = ‘wacc‘),

(tokl = ‘racc‘),

(tok2 = ‘wir‘),

(tokl = ‘rir¢),

(tok2 = ‘wrtn‘),

(tokl = ‘rrtn‘),

(tok2 = ‘warg‘),

((tok3 = ‘inc‘) V (tok3 = ‘add‘)),
((tok3 = ‘inc‘) V (tok3 ‘sub‘)),
(tokl = ‘rbuf‘))");;

5Tt is not essential to use string tokens in the microcode specification; they are merely convenient to
use as a set of distinct literals with meaningful names e.g., ‘wmem* for “write memory”.




4.2. TAMARACK-3 Specification 67

Define ("waitdack = (T,T)");;
Define ("waitidle = (T,F)");:;
Define ("continue ym

i
~~
rq
rry

Define ("jump = (T,T)");;
Define ("jireq = (T,F)");;
Define ("jzero = (F,T)");;
Define ("jopcode = (F,F)");;

AbbreviateType (
rom_ty,
":cntls_tyX (boolXbool) X (boolxbool) X (*word4 X *word4)") ; ;

Define (
"CompileMicroCode (rep:rep_ty) (cntl,wcode,jcode,(n,m)) =
((Cntls cntl,wcode, jcode, ((word4 rep) n,(word4 rep) m)):rom_ty)");;

The microcode source is specified by the definition of MicroCode. This function is a
mapping from natural numbers to specifications of individual microinstructions.

Define (
"MicroCode n =
((n = 0) = ((‘rpc,‘wnar’, ‘none‘), waitidle, jireq, (1,2)) |
P
(n =1) = ((‘rpc’,‘wrtn’, ‘zero*), continue, jump, (12,0)) |
P P
(n =2) = ((‘rmem‘, ‘wir‘, ‘none‘), waitdack, jump, (3,0)) |
P
(n =3) = ((‘rir*,‘wmar’, ‘none‘), waitidle, jopcode, (4,0)) |
(n = 4) = ((‘none‘,‘none‘, ‘none‘), continue, jzero, (5,11)) |
(n = 8) = ((‘rir‘,‘wpc’,‘none‘), continue, jump, (0,0)) |
(n = 8) = ((‘racc’,‘warg’,‘none‘'), waitidle, jump, (13,0)) |
(n =7) = ((‘racc‘,‘warg’, ‘none‘), waitidle, jump, (14,0)) |
(n = 8) = ((‘rmenm‘, ‘wacc‘,‘none‘), waitdack, jump, (11,0)) |
(n = 9) = ((‘racc’,‘wmen’,‘none‘), waitdack, jump, (11,0)) |

(n = 10) = ((‘rrtn‘,‘upc’,‘none‘), continue, jump, (0,0)) |

(n = 11) = ((‘rpc‘,‘none‘,‘inc‘), continue, jump, (12,0)) |
(n = 12) = ((‘rbuf‘,‘wpc’, ‘none‘), continue, jump, (0,0)) |
(n = 13) = ((‘rmem‘,‘none‘,‘add*), waitdack, jump, (16,0)) |
(n = 14) = ((‘rmen‘, ‘none‘,‘sub'), waitdack, jump, (16,0)) |

((‘rbuf’, ‘wacc, ‘none‘), continue, jump, (11,0)))");;

The formal specification of the microcode source is based on the informal description
of the FSM given earlier in Chapter 3, in particular, the flow graph in Figure 3.7 and the
mapping from FSM states to actions in Figure 3.8. Each line of the microcode specifi-
cation consists of four parts corresponding to the four sub-fields of the microinstruction
word. For example, the term,

((‘rpc*, ‘wmar‘, ‘none‘) ,waitidle,jireq, (1,2))
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specifies the microinstruction at location 0 in the microcode.

The first part specifies the action to be performed by the datapath in terms of a data
transfer from a source to a destination and an ALU operation. In this case, the contents
of the program counter pc are read onto the bus and written into the memory address
register mar. The string ‘none*‘ indicates that no specific ALU operation is required.

The second part of each microinstruction specifies one of three wait conditions,

waitidle - repeat if =(idle or —dack)
waitdack - repeat if ~dack
continue - do not repeat

which may cause this particular microinstruction to be repeated.
The third part of the microinstruction specifies how to compute the address of the
next microinstruction (when not waiting in a repeat-loop).

jump - use addri
jireq - use addr1 if ireq is T, else use addr2
jzero - use addr1 if acc is zero, else use addr2

jopcode - add opcode to offset in addri

The last part of the microinstruction specifies two microinstruction addresses or, in
the case of jopcode, the offset to be added to the opcode field in computing the address
of the next microinstruction.

Microinstruction specifications are individually assembled by the micro-assembler
function CompileMicroCode. For example, the result of applying CompileMicroCode to
the microinstruction at location 0 is described by the following theorem (after unfolding
with definitions for the micro-assembler functions). |

|- CompileMicroCode rep(MicroCode 0) =
((F,F,T,F,T,F,F,F,F,F,F,F,F,F,F),(T,F),(T,F),wordd rep 1,word4 rep 2)

Specifying the microcode source in pure logic and using a proof-generation system
to unfold this specification is a very secure way (at least as secure as proof-generation)
to assemble a microcode code source into bit patterns. The result of assembling the
TAMARACK-3 microcode source is shown below (where a let-expression has been intro-
duced for pretty-printing purposes).
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|- CompileMicroCode rep(MicroCode n) =
let addrs (p,q) = (word4 rep p,word4 rep q) in
((n = 0) = ((,F,T,F,T,F,F,F,F,F,F,FF,F,F),(TF),(T,F),addrs(1,2)) |
(n = 1) = ((F,F,F,F,T,F,F,F,F,T,F,F,F,F,F),(F,F),(T,T),addrs(12,0)) |
(n = 2) = ((F,T,F,F,F,F,F,T,F,F,F,F,F,F,F),(T,T),(T,T),addrs(3,0)) |
(n = 3) = ((F,F,T,F,F,F,F,F,T,F,F,F,F,F,F),(T,F),(F,F),addrs(4,0)) |
(n = 4) = ((F,F,F,F,F,F,F,F,F,F,F,F,F,F,F), (.,F),(,T),addrs(5,11)) |
(n = ) = ((F,F,F,T,F,F,F,F,T,F,F,F,F,F,F),(,F),(T,T),addrs(0,0)) |
(n = 8) = ((F,F,F,F,F,F,T,F,F,F,F,T,F,F,F),(T,F),(T,T),addrs(13,0)) |
(n =7) = ((F,F,F,F,F,F,T,F,F,F,F,TF,F,F),(T,F),(T,T),addrs(14,0)) |
(n = 8) = ((F,T,F,F,F,T,F,F,F,F,F,F,F,F,F),(T,T),(T,T),addrs(11,0)) |
(n = 9) = ((T,F,F,F,F,F,T,F,F,F,F,F,F,F,F),(T,T),(T,T),addrs(11,0)) |
(n = 10) = ((F,F,F,T,F,F,F,F,F,F,T,F,F,F,F),(F,F),(T,T),addrs(0,0)) |
(n = 11) = ((F,F,F,F,T,F,F,F,F,F,F,F,T,T,F),(F,F),(T,T),addrs(12,0)) |
(n = 12) = ((F,F,F,T,F,F,F,F,F,F,F,F,F,F,T),(F,F),(T,T),addrs(0,0)) |
(n = 13) = ((F,T,F,F,F,F,F,F,F,F,F,F,T,F,F),(T,T),(T,T),addrs(15,0)) |
(n = 14) = ((F,T,F,F,F,F,F,F,F,F,F,F,F,T,F),(T,T),(T,T),addrs(16,0)) |
((F,F,F,F,F,T,F,F,F,F,F,F,F,F,T),(F,F),(T,T),addrs(11,0)))

4.2.2,6 Primitive Components of the Control Unit

Chapter 3 outlined the implementation of the control unit FSM by a microcode program
counter, microcode ROM, ROM output decoder and next address logic.

The microcode program counter mpc is modelled as a register which is unconditionally
updated each clock cycle with its current input.

Define ("MPC (inp,out:time—*word4) = Vt:time. out (t+1) = inp t");;

The microcode ROM is specified as a combinational device which takes a FSM state
as input and returns a microinstruction word as a result. The actual contents of the
ROM have already been specified by the earlier definition of MicroCode.

Define (
"ROM (rep:rep_ty) (inp,out) =
Vt:time.
out t = (CompileMicroCode rep) (MicroCode ((vald rep) (inp t)))");;

The output of the ROM is an n-tuple with elements corresponding to microinstruction
sub-fields. The definition of DecodeROM specifies a device which separates the output
of the ROM into various microinstruction sub-fields. The specification of this device is
similar to the earlier definition of DecodeCntls.

Define (
"DecodeROM (rom:time—rom_ty,f0,f1,f2,£3,addrl,addr2,cntls) =
Vt:time. (cntls t,(£0 t,f1 t),(f2 ¢t,£3 t),(addrl t,addr2 t)) = rom t");;




4.2, TAMARACK-3 Specification 70

dack —
idle —— CntlUnit
ireq —— ———— cntls
iack ———
zeroflag ——— mpc

opc —

Figure 4.2: External View of the Control Unit Specification

The definition of NextMPC specifies the computation of FSM states according to the
flow graph in Figure 3.7. Although the definition of NextMPC looks rather complex for
a primitive component, it is just a block of combinational logic which could be imple-
mented by a set of logic gates, some multiplexors and an adder. The formal verification
of TAMARACK-3 could be extended by proving that a particular implementation of the
next address logic satisfies the behavioural specification shown below.

Define (
"NextMPC (rep:rep_ty)
(f0,£1,£2,£3,dack,idle,ireq,iack,
zeroflag,opc,addril,addr2,mpc,next) =

Vt:time.
let waitcond =
((C(£0 t,f1 t) = waitdack) A —(dack t)) V
(((£0 t,f1 t) = waitidle) A —((idle t) V —(dack t)))) in
(next t =
(waitcond => (mpc t) |
((£2 t,£3 t) = jump) = (addri t) |
((£2 t,£3 t) = jireq) =
(((ireq t) A -(iack t)) == (addri t) | (addr2 t)) |
((£2 t,£3 t) = jzero) =

((zeroflag t) = (addrl t) | (addr2 t)) |
((word4 rep)
(((val3 rep) (opc t)) + ((vald rep) (addri t))))))")::

4.2.2.7 Control Unit Implementation

The register-transfer level implementation of the control unit FSM is formally specified
by the definition of Cnt1Unit.
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————— iack

datain — TamarackImp
—— dataout
dack ——————

l—————— wWwmemn
idle ~————
———— dreq
ireq —— mpc,mar,pc,acc,ir,rtn,arg,buf

—— addr

Figure 4.3: External View of the Top Level Specification

Define (
"CntlUnit (rep:rep_ty) (dack,idle,ireq,iack,zeroflag,opc,mpc,cntls) =
3f0 £1 £2 £3 addrl addr2 next rom.

NextMPC rep (
£0,£1,£2,13,dack,idle,ireq,iack,
zeroflag,opc,addrl,addr2,mpc,next) A

MPC (next,mpc) A

ROM rep (mpc,rom) A

DecodeROM (rom,f0,f1,f2,£3,addrl,addr2,cntls)");;

As shown in Figure 4.2, all the signal names in the parameter list of CntlUnit
correspond to physical inputs and outputs of the control unit FSM with the exception
of the microcode program counter mpc which is an internal state variable at this level.

4.2.2.8 Top Level Structure

The control unit and datapath are combined to implement the internal architecture of
TAMARACK-3. The control signals, cntl, and feedback signals, zeroflag and opc, are
internal connections between the control unit and datapath.

Define (
"TamarackImp (rep:rep_ty)
(datain,dack,idle,ireq,mpc,mar,pc,
acc,ir,rtn,arg.buf,iack.dataout,wmem,dreq,addr) =
Jzeroflag opc cntls.
CntlUnit rep (dack,idle,ireq,iack,zeroflag,opc,mpc,cntls) A
DataPath rep (
c¢ntls,datain,mar,pc,acc,ir,rtn,iack,
arg,buf ,dataout,wnmem,dreq,addr,zeroflag,opc)");;

Figure 4.3 shows which signals in the parameter list correspond to physical input
and output pins of the microprocessor and which signals correspond to internal state
variables.
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4.2.3 Programming Level Model

The formal specification of the programming level model is based on the informal de-
scriptions given in Chapter 3 of the instruction set semantics and the hardware interrupt
facility.

The semantics of each instruction is given individually by the definition of a function
which returns the next (externally visible) state of the microprocessor, i.e., the next
values of the memory state mem, program counter pc, accumulator acc, return address
register rtn and interrupt acknowledge flag iack. The following definitions specify how
these values are computed from the current state of the microprocessor.

Define (
"JZR_SEM (rep:rep_ty)
(mem: *memory,pc:*wordn,acc: *wordn,rtn:*wordn,iack:bool) =
let inst = (fetch rep) (mem,(address rep) pc) in
let nextpc = ((iszero rep) acc) => inst | ((inc rep) pc) in
(mem,nextpc,acc,rtn,iack)");;

Define (
"JMP_SEM (rep:rep_ty)
(mem: *memory ,pc :*wordn,acc : *wordn,rtn:*wordn,iack:bool)
let inst = (fetch rep) (mem,(address rep) pc) in
(mem,inst,acc,rtn,iack)");;

Define (
"ADD_SEM (rep:rep_ty)
(mem:*memory,pc:*wordn,acc: *wordn,rtn:*wordn, iack:bool)
let inst = (fetch rep) (mem,(address rep) pc) in
let operand = (fetch rep) (mem,(address rep) inst) in
(mem, (inc rep) pc,(add rep) (acc,operand) ,rtn,iack)");;

Define (

"SUB_SEM (rep:rep_ty)
(mem:*memory.pc:*wordn,acc:*wordn,rtn:*wordn.iack:bool)
let inst = (fetch rep) (mem,(address rep) pc) in
let operand = (fetch rep) (mem,(address rep) inst) in

(mem, (inc rep) pc,(sub rep) (acc,operand),rtn,iack)");;

Define (
"LDA_SEM (rep:rep_ty)
(mem:*memory,pc:*wordn,acc :*wordn,rtn:*wordn,iack:bool)
let inst = (fetch rep) (menm,(address rep) pc) in
let operand = (fetch rep) (mem,(address rep) inst) in
(mem, (inc rep) pc,operand,rtn,iack)");;
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Define (

"STA_SEM (rep:rep_ty)
(mem:*memory,pc:*wordn,acc : *wordn,rtn:*wordn,iack:bool) =
let inst = (fetch rep) (mem,(address rep) pc) in
let newmem = (store rep) (mem,(address rep) inst,acc) in

(newmem, (inc rep) pc,acc,rtn,iack)");;

Define (
"RFI_SEM (rep:rep_ty)
(mem:*memory,pc:*wordn,acc:*wordn,rtn:*wordn,iack:bool)
(mem,rtn,acc,rtn,F)");;

Define (
"NOP_SEM (rep:rep_ty)
(mem:*memory,pc : *wordn,acc : *wordn,rtn:*wordn,iack:bool)
(mem, (inc rep) pc,acc,rtn,iack)");;

The processing of a hardware interrupt is described in a similar way by the definition
of a function which computes the next state of the microprocessor from its current state.

Define (
"IRQ_SEM (rep:rep_ty)
(mem:*memory,pc:*wordn,acc:*wordn,rtn:*wordn.iack:bool) =
(mem, ((wordn rep) 0),acc,pc,T)");;

The opcode of the current instruction word determines which instruction is executed
during a particular instruction cycle. The following set of definitions specify the opcode
value for each instruction.

Define ("JZR_OPC = 0");;
Define ("JMP_OPC = 1");;
Define ("ADD_OPC = 2");;
Define ("SUB_OPC = 3");;
Define ("LDA_OPC = 4");;
Define ("STA_OPC = B");;
Define ("RFI_OPC = @");;
Define ("NOP_OPC = 7");;

The opcode value of the current instruction is obtained by fetching the memory
word addressed by the program counter, extracting the value of its opcode field and
interpreting the opcode as a number between 0 and 7. This procedure is specified in
the definition of OpcVal

Define (
"OpcVal (rep:rep_ty) (mem,pc) =
(val3 rep) ((opcode rep) ((fetch rep) (mem,(address rep) pe)))M);;
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Every instruction cycle results in the execution of a programming level instruction
unless a hardware interrupt is detected at the beginning of this cycle. The following
definition of NextState specifies the overall control mechanism for determining what
happens during a particular instruction cycle.

Define (
"NextState (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack) =
let opcval = OpcVal rep (mem,pc) in
((ireq A —iack) = IRQ_SEM rep (mem,pc,acc,rtn,iack) |

(opcval = JZR_OPC) = JZR_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = JMP_OPC) => JMP_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = ADD_OPC) => ADD_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = SUB_OPC) => SUB_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = LDA_OPC) => LDA_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = STA_OPC) => STA_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = RFI_OPC) => RFI_SEM rep (mem,pc,acc,rtn,iack) |

NOP_SEM rep (mem,pc,acc,rtn,iack))");;

Finally, we use the function NextState to define the predicate TamarackBeh which
specifies the intended behaviour of the microprocessor as a relation on the time-dependent
signals mem, pc, acc, rtn and iack.

Define (
"TamarackBeh (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack) =
Vu:time.
(mem (u+1),pc (u+i),acc (u+1),rtn (u+1),iack (u+1)) =
NextState rep (ireq u,mem u,pc u,acc u,rtn u,iack u)");;

The programming level model not only hides structural details of the internal archi-
tecture but also timing details about the number of microinstructions executed for each
instruction. To be more precise, the programming level model describes the operation of
the microprocessor in terms of an abstract time scale where each instruction is uniformly
executed in a single unit of time. This abstract time scale is different than the time
scale used to specify the behaviour of register-transfer level components where a single
unit of time corresponds to a single clock cycle. To emphasize this difference, we have
used the explicit time variable u instead of t in the above definition of TamarackBeh
(but there is no logical distinction between these two variable names). As we will see
in Chapter 5, part of the verification task is to establish a formal relationship between
these two granularities of discrete time.

4.2.4 External Memory Specification

A behavioural model for fully synchronous memory expressed by the predicate SynMemory.
The definition of this predicate is shown below.
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Define (
"SynMemory (rep:rep_ty) (w,addr,dataout,mem,datain) =
Vt:time.
(~(w t) => (datain t = (fetch rep) (mem t,addr t))) A
(mem (t+1) =

((w t) = ((store rep) (mem t,addr t,dataout t)) | (mem t)))"):;

External memory implements the uninterpreted operations selected by fetch and
store. The write signal w controls which operations are performed by the memory each
clock cycle. Data is sent to external memory on the dataout bus and received from
external memory on the datain bus. Memory addresses are sent to external memory
on the addr bus. The internal state of memory is represented by the virtual signal mem.

A fully asynchronous version of external memory also implements the uninterpreted
operations selected by fetch and store but uses handshaking signals to synchronize
its interaction with the microprocessor. A formal specification for a fully asynchronous
memory device is deferred until Chapter 6.




Chapter 5

Formal Verification

The purpose of this chapter is to illustrate fundamental proof strategies for verifying
microprocessor systems by describing a very straight-forward version of the TAMARACK-3
correctness proof.

The opening section on formulating a verification plan for TAMARACK-3 presents the
main ideas of this chapter: stating correctness results, structuring a proof into multiple
levels, and using logic to symbolically execute a design.

The next section summarizes the TAMARACK-3 correctness proof in terms of ‘journal-
level’ proof steps based on the machine-generated correctness proof. The main point of
interest in this section (with regard to the argument of this dissertation) is the role of
uninterpreted primitives as mere place-holders in the formal proof.

Finally, the last section of the chapter describes an enhancement to the TAMARACK-3
correctness proof based on a general technique for synchronizing multiple levels of tim-
ing.

5.1 Verification Plan

This section describes the logical form used to state correctness results for TAMARACK-3,
a plan to achieve these results and some of the basic proof techniques which are used
to carry out this plan in the HOL system.

5.1.1 Stating Correctness Results

Although the terms ‘correctness’ and ‘verification’ may be understood in an informal
context to mean different things to different people, these terms have a precise, technical
meaning when formal logic is used to verify a hardware design. The formal verification
(or proof of correctness) for TAMARACK-3 refers to the derivation of a theorem by
formal proof in the HOL formulation of higher-order logic. This theorem relates the
specification of the internal architecture, given by the predicate TamarackImp, to the
specification of its intended behaviour, given by the predicate TamarackBeh.

We actually give three different versions of the top level correctness theorem but
they are have the same basic form: that the constraints imposed by the implementation
predicate TamarackImp satisfy the requirements expressed by the behaviour predicate
TamarackBeh. The general form of this theorem is a logical implication:

|- Implementation Specification => Behaviour Specification

The precise form of this theorem (in each of the three cases) depends on a formally
established relationship between the two different granularities of time used to specify
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register-transfer level behaviour and the programming level model. The correctness
theorems also include a behavioural model of external memory and a description of how
memory is interfaced to the microprocessor.

For readers curious at this point about the appearance of these correctness results, the
following theorem is (a slightly expanded form of) the result obtained by the procedure
outlined later in this chapter.

|- Vdatain pwr dataout wmem dreq addr.

Val3_CASES_ASM (rep:rep_ty) A

Val4Word4_ASM rep A

TamarackImp rep (
datain,pwr,pwr,ireq,mpc,mar,pc,
acc.ir.rtn,arg,buf,iack,dataout,wmem,dreq,addr) A

SynMemory rep (wmem,addr,dataout,mem,datain) A

PWR pwr A

(((vald rep) o mpc) O = 0)

=

let £ = TimeOfCycle rep (ireq,mem,pc,acc,rtn,iack) in

TamarackBeh rep (ireq o f,mem o f,pc o f,acc o f,rtn o f,iack o £)

5.1.2 Multi-Level Verification

Although most of the tedious low level work of proof-generation can be done mechan-
ically by the HOL system, the formal verification of non-trivial hardware (and other
kinds of proofs) requires a considerable amount of guidance from the user.

Much of the creative work in using the HOL system centers upon the problem of
discovering high-level proof strategies when routine HOL interactions like STRIP_TAC,
BOOL_CASES_TAC and ASM_REWRITE_TAC are not enough to complete a proof. Proof-
generation experience or mathematical insight is sometimes the source of a success-
ful proof strategy. However, an equally important source for hardware verification,
and more specifically, the verification of microprocessor systems is conventional design
methodology where many useful strategies for controlling the complexity of reasoning
informally about computer architecture are already well-known.

In particular, we have found that the concept of multiple interpretation levels, used
by architects to achieve a “progressive translation of functions in several stages” [2]
is a very effective strategy for controlling the complexity of verifying the correctness
of TAMARACK-3. As explained earlier in Chapter 3, TAMARACK-3 has two levels of
interpretation beneath the programming level: the microprogramming level and phase
level. We use this structured view of the internal operation of the microprocessor to
organize the bulk of the formal proof into two main steps:

1. Prove that each microinstruction is correctly interpreted at the phase level.

2. Prove that each programming level operation is correctly interpreted at the
microprogramming level.
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The proof is completed in a third (and relatively short) step by establishing a formally
defined relationship between the two different granularities of discrete time used to
specify the internal architecture and programming level model:

3. Relate clock cycles view of behaviour to instruction cycle view of behaviour.

Verifying the phase level operation of TAMARACK-3 in Step (1) does not depend on
a behavioural model for external memory. However, different versions of Steps (2) and
(3) are needed for fully synchronous mode and fully asynchronous mode.

5.1.3 Symbolic Execution

Many different kinds of computation systems are implemented by a hierarchy of in-
terpretation levels. Showing that one level correctly implements the next higher level
is equivalent to showing that the higher level is an abstract view of the lower level.
Each operation at a given level in the hierarchy is typically interpreted (directly or
indirectly) by one or more operations at the next lower level. To demonstrate that this
level is correctly implemented by the next lower level, each operation is shown to be
correctly implemented by the corresponding sequence of lower level operations. This is
established by deriving the cumulative effect of each sequence and comparing it to the
intended effect of the corresponding higher level operation.

It is relatively straightforward to reason about a fixed sequence (or a finite set of fixed
sequences) of lower level operations. To derive the cumulative effect of a sequence of
lower level operations, we use inference rules of higher-order logic to symbolical ly execute
this sequence. The term ‘symbolic execution’ is used here in a purely descriptive sense
for a proof technique which is actually nothing more than repeatedly unfolding various
parts of the specification (or consequences of this specification derived at lower levels).!

It is natural to use forward proof to symbolically execute a sequence of operations
starting with assumptions about the initial state and applying inference rules to derive
subsequent states in the computation. Similar techniques were also used to verify the
VIPER microprocessor. As Cohn remarks [30], forward proofs of this kind are a rather
unsophisticated use of the HOL system which may produce unforeseen results. However,
the use of forward proof in this case is indicated by the nature of the problem.

Even though forward proof lies at the heart of symbolic execution, it is very con-
venient (in the HOL system) to carry out these forward proofs in the overall context
of a backward (or goal-oriented) proof using the built-in sub-goals package. After an
initial bit of backward proof, forward inference steps are achieved by repeated use of
resolution tactics with some direct manipulation of the intermediate results.

The following section illustrates the general concept of symbolic execution and the
mechanics of using this proof technique in the HOL system.

1Reasoning about fixed sequences is a very simple form of symbolic execution. The more difficult case
of reasoning about variable length sequences (due to microcode repeat-loops) is described in Chapter 6.
Formal verification of the IMP compiler involves a hierarchical form of symbolic execution for reasoning
about intermediate code generated by the compiler.
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5.2 TAMARACK-3 Verification

In this chapter, we describe the formal verification of TAMARACK-3 when operating
in fully synchronous mode. Verifying TAMARACK-3 in this mode is relatively simple
because each programming level operation is implemented by a fixed sequence (or finite
set of fixed sequences) of microinstructions. The considerably more difficult task of
verifying TAMARACK-3 for fully asynchronous mode is outlined later in Chapter 6.

5.2.1 Phase Level

As explained earlier in Chapter 3, the phase level operation of TAMARACK-3 is described
in terms of elementary operations performed by register-transfer level components. The
interpretation of a microinstruction at the phase level during a single clock cycle results
in a sequence of events which includes:

Fetch the current microinstruction.

Compute the address of the next microinstruction.

Transfer data onto the system bus.

Evaluate operations performed by functional elements.

Update storage elements such as memory, registers and flipflops.

Verifying the operation of the microprocessor at this level is a matter of deriving the
cumulative effect of these elementary operations for each of the sixteen microinstruc-
tions. We show that the cumulative effect of these operations satisfies the intended
effect of each microinstruction.

To illustrate this process, we outline the steps taken to establish that microinstruc-
tion 0, i.e., the microinstruction at location 0 in the microcode, is correctly interpreted
at the phase level. The intended effect of microinstruction 0,

MicroCode O = ((‘rpc‘,‘wmar‘, ‘none‘), waitidle, jireq, (1,2))

is to transfer the contents of the program counter pc to the memory address register
mar and update the microcode program counter mpc according to conditions given in
the flow graph of Figure 3.7. Furthermore, the execution of this microinstruction must
leave the internal state of the memory mem and the contents of the program counter
pc, accumulator acc, return address register rtn and interrupt acknowledge flag iack
unchanged. The effect of this microinstruction on the remaining components of the
internal state, namely, the arg and buf registers, is unimportant and can be ignored.
Finally, the memory data output bus dataout must be set to its default value and the
memory control flags, wmem and dreq, must be set to F.

These requirements are formally expressed in the goal term of the following call to
the ML function set_goal. This is the first step in an interactive proof to formally
derive this goal® as a theorem using the HOL sub-goal package.

2The term ‘goal’ has technical meaning in the HOL system (as an ML type abbreviation) but we use
it more generally to mean a yet-to-be-proven theorem.
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set_goal (
1,
"Val3_CASES_ASM (rep:rep_ty) A
Val4Word4_ASM rep A
TamarackImp rep (
datain,dack,idle,ireq,mpc,mar,pc,
acc,ir,rtn,arg,buf,iack,dataout,wnmem,dreq,addr)
m—
Vt.
(((val4d rep) o mpc) t = 0)
=
(((val4d rep) o mpc) (t+1) =
((~((idle t) V —(dack t))) = O |
((ireq t) A —(iack t)) =1 | 2)) A
(mar (t+1) = pc t) A
(pc (t+1) = pc t) A
(acc (t+1) = acc t) A
(rtn (t+1) = rtn t) A
(iack (t+1) = iack t) A

(dataout t = ((wordn rep) 0)) A
(wmem t = F) A
(dreq t = F)");;

A sequence of interactions with the sub-goal package eventually results in the genera-
tion of this goal as a theorem. To illustrate the strategy which underlies this sequence of
interactions and more generally, how formal proof can be used to symbolically execute
hardware, we describe a condensed view of an interactive HOL session for solving this
goal.

We begin by expanding the above goal with the definitions for TamarackImp, Cnt1Unit
and DataPath. We then apply standard goal reduction techniques to strip antecedents
from the goal and break them up into a number of assumptions which are put into the
assumption list. The result is shown below where each assumption appears as a term
between a matching pair of brackets [ and 1. Most of these assumptions correspond
to primitive components of the internal architecture with internal connections (hidden
in the specification by existential quantification) now exposed as free variables in the
assumption list.
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0X..
"(vald rep(mpc(t + 1)) =
((—~(idle t V —dack t)) = 0 | ((ireq t A —iack t) = 1 | 2))) A
(mar(t + 1) = pc t) A
(pe(t + 1) =pc t) A
(acc(t + 1) = acc t) A
(rtn(t + 1) = rtn t) A
(iack(t + 1) = iack t) A
(dataout t = wordn rep 0) A
(wmem t = F) A
(dreq t = F)"
[ "Wal3_CASES_ASM rep" ]
[ "ValdWord4_ASM rep" ]

[ "NextMPC
rep
(£0,f1,£2,£3,dack,idle,ireq,iack,zeroflag,opc,addrl,addr2, mpc,

next)" ]

[ "MPC(next,mpc)" ]

[ "ROM rep(mpc,rom)" ]

[ "DecodeROM(rom,f0,f1,f2,f3,addrl,addr2,cntls)" ]

[ "DecodeCntls

(cntls,wmem,rmem,wmar,wpc,rpc,wacc,racc,wir,rir,wrtn,rrtn,warg,
alu0,alul,rbuf)" ]

[ "BusOkay(rmem,rpc,racc,rir,rrtn,rbuf,busokay)" ]
[ "Interface rep(busokay,wmem,rmem,bus,datain,dataout)" ]
[ "OR(wmem,rmem,dreq)" ]
[ "Register(busokay,wmar,gnd,bus,bus,mar)" ]
[ "AddrField rep(mar,addr)" ]
[ "Register(busokay,wpc,rpc,bus,bus,pc)" ]
[ "Register(busokay,wacc,racc,bus,bus,acc)" ]
[ "TestZero rep(acc,zeroflag)" ]
[ "Register(busokay,wir,rir,bus,bus,ir)" ]
[ "OpcField rep(ir,opc)" ]
[ "Register(busokay,wrtn,rrtn,bus,bus,rtn)" ]
[ "JKFF(wrtn,rrtn,iack)" ]
[ "Register(busokay,warg,gnd,bus,bus,arg)" ]
[ "ALU rep(alu0,alul,arg,bus,alu)" ]
[ "Register(busokay,pwr,rbuf,alu,bus,buf)" ]
[ "PWR puwr" ]
[ "GND gnd" ]
[ "val4d rep(mpc t) = O" ]
() : void

After this initial bit of backward proof, forward inference steps are achieved by re-
peated use of resolution tactics. Theorems generated by resolution in this manner are
logical consequences of the assumptions already in the assumption list. These theorems
contribute various facts which incremently advance the state of the symbolic execution.
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As theorems are generated, they are added to the current list of assumptions and may
be used by subsequent resolution steps to generate more theorems.

Since this part of the proof is only concerned with generating new theorems for the
assumption list, we just show what is added onto the end of the assumption list after
each main step. We begin by using the definition of ROM to generate the following
equation for the current output of the ROM.

rom t = CompileMicroCode rep(MicroCode 0)

Instead of adding this equation directly to the assumption list, we use the microcode
specification MicroCode and definitions for the micro-assembler functions given in Chap-
ter 4 to transform it into an equation which gives the assembled form of microinstruc-
tion 0.

0K..
[ "rom t =
(F‘FlTOFlT’F’F)F)FIFIFlF)F'FyF) ,(T,F) ,(T,F),Word4 rep 1,
word4 rep 2" ]
() : void

The definition of DecodeROM is then used to separate the ROM output into datapath
control bits, cntls, next address logic control bits, £0, £1, £2 and £3, and microcode
addresses, addri and addr2.

0K..
[ "entls t = F,F,T,F,T,F,F,F,F,F,F,F,F,F,F" ]
[ "o t = T" ]
["fl t = F® J
[nfz t = T" 3
["13 t = Fn ]
[ "addri t = word4 rep 1" ]
[ "addr2 t = word4 rep 2" ]
() : void

The next address logic control bits and microcode addresses extracted from the cur-
rent output of the ROM are used to derive an expression for the output of the next
address logic. This expression is obtained from the definition of NextState. The value
of this expression depends on external inputs, idle, dack, and ireq, and the current
value of the interrupt acknowledge flag iack.
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OK..
[ "next t =
((~(idle t V —dack t)) =
mpc t |
((ireq t A —iack t) = word4 rep 1 | word4 rep 2))" ]
() : void

At the end of the clock cycle, the value computed by the next address logic is loaded
into the microcode program counter mpc. The definition of MPC is used to establish this
fact.

CK..
[ "mpc(t + 1) =
((=(idle t V -dack t)) =
mpec t |
((ireq t A —iack t) => word4 rep 1 | word4d rep 2))" ]
) : void

Meanwhile, the datapath is performing actions specified by the datapath control bits.
To derive the result of these actions, we start with the definition of DecodeCntls to
separate the bundle of control bits into individual control signals.

0K..
[ "wmem t = F" ]
[ "rmem t = F" ]
[ "wmar t = T" ]
[ "wpc t = F" ]
[ llrpc t - T" ]
[ "wace t = F" ]
[ "racc t = F" ]
[ "wir t = F" ]
[ "rir t = F" ]
[ "wrtn t = F" ]
[ "rrtn t = F" ]
[ "warg t = F" ]
[ "alu0 t = F" ]
[ "alul t = F" ]
[ "rbuf t = F" ]

() : void
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The definitions of PWR and GND yield equations for the voltage sources pwr and gnd.

These two signals are used to permanently enable or disable various functions in the
datapath.

OK..

[ "pwr t = T" ]
[ "gnd t = F" ]

O : void

All of the ‘read’ signals are equal to F except for rpc satisfying the condition that
only one bus device can attempt to transfer a value onto the system bus. The definition

of BusOkay is used to establish that the virtual signal busokay is equal to T indicating
that this condition is satisfied.

0X..
[ "busokay t = T" ]

() : void

Using these values for rpc and busokay, the definition of Register yields an equation
for the value of the system bus.

0K..
[ "bus t = pc t" ]

() : void

Hence, the contents of the program counter pc are successfully transferred onto the
bus. The data transfer is completed by writing the value of the bus into the memory
address register mar. The contents of other registers in the datapath (ignoring buf) and
the value of the interrupt acknowledge flag iack remain unchanged. These facts can

be established from the above equations for the control signals and the definitions of
Register and JKFF.
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0K..

[ "mar(t + 1) = pc t" ]

[ "pe(t + 1) = pc t" ]

[ "acc(t + 1) = acc t" ]

[ "ir(t + 1) = ir t" ]

[ "rtn(t + 1) = rtn t" ]

[ "arg(t + 1) = arg t" ]

[ "buf(t + 1) = alu t" ]

[ "iack(t + 1) = jack t" ]
() : void

Finally, the control signals cause certain values to be generated as external outputs.
The definitions of OR and Interface yield the following equations for dreq and dataout
(an equation for wmem has already appeared in a previous step).

OK..

[ "dreq t = F" ]

[ "dataout t = wordn rep O" ]
O : void

This completes the symbolic execution part of the proof: the results of symbolic
execution are used to solve all the remaining goals of the backward proof. At the
beginning of the symbolic execution part of the proof, the top level goal was:

"(vald rep(mpc(t + 1)) =
((=(idle t V —dack t)) => 0 | ((ireq t A —iack t) = 1 | 2))) A
(mar(t + 1) = pc t) A
(pe(t + 1) = pc t) A
(ace(t + 1) = acc t) A
(rtn(t + 1) = rtn &) A
(iack(t + 1) = iack t) A
(dataout t = wordn rep 0) A
(wmem t = F) A
(dreq t = F)"

But by the end of symbolic execution, most of the conjuncts in this goal have already
been solved as a side-effect of various manipulations of the goal stack (e.g., uses of
ASM_REWRITE_TAC). The original goal has been reduced to:
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"val4d
rep
((—(idle t V —dack t)) =
mpec t |
((ireq t A —iack t) => word4 rep 1 | word4 rep 2)) =
((—(idle t V —dack t)) => 0 | ((ireq t A —iack t) = 1 | 2))*

This reduced goal is easily solved by case analysis on Boolean terms and using the
assumption expressed by Val4Word4_ASM.

OK..
goal proved

... additional output deleted here ...

| - Val3_CASES_ASM rep A
ValdWord4_ASM rep A
TamarackImp
rep
(datain,dack,idle.ireq,mpc.mar,pc,acc,ir.rtn.arg.buf,iack.dataout,
wmem,dreq,addr) —>
(Vt.
(((val4 rep) o mpc)t = 0) =>
(((vald rep) o mpc)(t + 1) =
((—~(idle t V —dack t)) => 0 | ((ireq t A —iack t) = 1 | 2))) A
(mar(t + 1) = pc t) A
(pc(t + 1) = pc t) A
(acc(t + 1) = acc t) A
(rtn(t + 1) = rtn t) A
(iack(t + 1) = iack t) A
(dataout t = wordn rep 0) A
(wmem t = F) A
(dreq t = F))

Previous subproof:
goal proved
O : void

A similar pattern of reasoning is used to derive correctness results for the remaining
fifteen microinstructions. Each of these theorems shows that the microinstruction satis-
fies a set of equations for the next state of the microprocessor at time t+1 in terms of its
state at time t. Each theorem expresses the minimal (or close to minimal) set of results
needed at higher proof levels; irrelevant details (such as the effect of microinstruction 0
on arg and buf) are ignored.

These sixteen correctness results collectively capture the informal description con-
veyed by the flow graph in Figure 3.7 and corresponding datapath actions described in
Figure 3.8.
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5.2.2 Microprogramming Level

The second main step of the verification procedure is to examine the interpretation
of programming level operations by sequences of microinstructions. Here we consider
the operation of the microprocessor in fully synchronous mode where each program-
ming level operation is implemented by a fixed sequence of microinstructions, or in
the case of a JZR instruction, by one of two possible sequences. Symbolic execution of
these microinstruction sequences is used to show that their cumulative effect satisfies
the semantics of the instruction set formally defined in Chapter 4. Symbolic execu-
tion of microinstructions is also used to show that hardware interrupts are correctly
implemented.

A behavioural model for external memory was not needed to verify the phase level
operation of the microinstruction since correctness results at that level are simply con-
cerned with sampling and generating inputs and outputs on pins of the microchip.
However, a behavioural model for external memory is needed to verify the micropro-
gramming level. Whereas the terms fetch and store did not appear in the correctness
results for the phase level, they do appear in correctness results for the microprogram-
ming level.

The predicate SynSystem is defined below to specify a system consisting of the
TAMARACK-3 microchip interfaced to a fully synchronous memory device. The specifica-~
tion of the memory device was given earlier in Chapter 4 by the definition of SynMemory.
The internal architecture is made to operate in fully synchronous mode by wiring the
two pins dack and idle to T, i.e., the voltage source pwr.

Define (

"SynSystem (rep:rep_ty)
(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,men) =
ddatain pwr dataout wmem dreq addr.

TamarackImp rep (
datain,pwr,pwr,ireq,mpc,mar,pc,
acc,ir,rtn,arg,buf,iack,dataout,wmem,dreq,addr) A
SynMemory rep (wmem,addr,dataout,mem,datain) A
PWR pwr");;

Each programming level operation is interpreted by a non-empty, fixed sequence of
microinstructions (or pair of possible sequences in the case of the JZR instruction). It
is convenient to define the function MicroCycles which specifies the length of sequence
about to be executed given the current state of the microprocessor (assuming that the
microprocessor is operating in fully synchronous mode).
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Define (
"MicroCycles (rep:rep_ty) (ireq,mem,pc,acc,rtn:*wordn,iack) =
(ireq A —iack) = 3 |
let opcval = OpcVal rep (mem,pc) in

((opcval = 0) = (((iszero rep) acc) => 5 | 8) |
(opcval = 1) = 4 |
(opcval = 2) = 8 |
(opcval = 3) = 8 |
(opcval = 4) = 6 |
(opcval = 6) = 6 |
(opcval = 8) = 4 |
B)");;

MicroCycles provides the basis for relating behaviour models of TAMARACK-3 ex-
pressed in terms of different granularities of time.* Later in Section 5.3, we describe
a more general way of relating different granularities of time that does not involve
MicroCycles.

To reason about the implementation of a particular programming level operation
at the microprogramming level, we assume that the value of the microcode program
counter mpc is equal to zero at time t, that is, at the beginning of the instruction cycle.
The results of symbolic execution are used to determine the state of the microprocessor
and memory at the end of the instruction cycle denoted as time t+m where m is the value
returned by MicroCycles. Correctness results are obtained by showing that the state
of the system at the end of the interpretation sequence is consistent with the definition
of NextState. To eventually get rid of the assumption about the value of the microcode
program counter mpc at the beginning of the cycle, we must also show that its value
returns to zero at the end of the cycle.

These requirements could be translated directly into an individual statement of cor-
rectness for each programming level operation. But all of these correctness statements
would be nearly identical except for minor (textual) distinctions such as the opcode
value of the current instruction in each case. We can avoid a great deal of redundant
text by defining a predicate SynCorrectnessi which is a generalized form of correctness
statement. It is parameterized by the variables,

ircond - interrupt condition
opcval - opcode value
iszerocond - result of testzero operation

which distinguish one programming level operation from another.

8The function MicroCycles is similar in purpose to the function NUMBER_OF _STEPS in the VIPER proof
and the oracle function in the verification of FM8501 (except that the FM8501 oracle also takes account
of handshaking delays).
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Define (
"SynCorrectnessl (rep:rep_ty) (ircond,opcval,iszerocond) =
Vireq mpc mar pc acc ir rtn arg buf iack mem.
Val3_CASES_ASM (rep:rep_ty) A
Val4Word4_ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)
N
Vt:time.
(((vald rep) o mpc) t = 0) A
((ireq t A —(iack t)) = ircond) A
(OpcVal rep (mem t,pc t) = opcval) A
((iszero rep) (acc t) = iszerocond)
=
let m = MicroCycles rep (ireq t,mem t,pc t,acc t,rtn t,iack t) in
((((val4 rep) o mpc) (t+m) = 0) A
((mem (t+m),pc (t+m),acc (t+m),rtn (t+m),iack (t+m)) =
NextState rep (ireq t,mem t,pc t,acc t,rtn t,iack t)))");;

To illustrate details of this verification step, we consider the sequence of microin-
structions for an ADD instruction. As shown earlier in Chapter 3, the ADD instruction
is interpreted in fully synchronous mode by the sequence of microinstructions stored in
the microcode ROM at the following locations.

0,2, 3,613, 15, 11 and 12

The ADD instruction case is specified by the assumption that the opcode of the
current instruction is the ADD instruction opcode and that a hardware interrupt is not
about to be processed in this cycle. Since the result of the testzero operation is not
relevant in this case, the value for iszerocond is given by a variable b. The desired
correctness result is expressed by the goal term in the following call to set_goal.

set_goal ([],"Vb. SynCorrectnessl (rep:rep_ty) (F,ADD_OPC,b)");;

We begin with a little backward proof to expand the correctness condition expressed
by SynCorrectnessi and move the expanded result into the assumption list. Definitions
for MicroCycles and NextState along with some arithmetic facts are then used to
simplify the goal for the ADD instruction case.
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0K..
"let m = 8
in
((((vald rep) o mpc)(t + m) = 0) A
(mem(t + m),pc(t + m),acc(t + m),rtn(t + m),iack(t + m) =
ADD_SEM rep(mem t,pc t,acc t,rtn t,iack t)))"
[ "Val3_CASES_ASM rep" ]
[ "ValdWord4_ASM rep" ]
[ "TamarackImp
rep
(datain,pwr,pwr,ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,dataout,
wmen,dreq,addr)" ]

[ "SynMemory rep(wmem,addr,dataout,mem,datain)" ]
[ "Vt. pwr t = T" ]
[ "((val4 rep) o mpc)t = O" ]
[ "ireq t A —iack t = F" ]
[ "val3 rep(opcode rep(fetch rep(mem t,address rep(pc t)))) = 2" ]
[ "iszero rep(acc t) = b" ]
() : void

After this initial bit of backward proof, we begin the symbolic execution of the
microcode for the ADD instruction. The symbolic execution begins with the value
of the microcode program counter mpc equal to zero. We use correctness results for
microinstruction 0 (obtained earlier from the verification of the phase level) to derive
the state of the machine at time t+1.

0K..

k.hiack(t + 1) = iack t" ]

[ "rtn(t + 1) = rtn t" ]

[ "acc(t + 1) = acc t" ]

[ "pc(t + 1) = pc t" ]

[ "mar(t + 1) = pc t" ]

[ "mem(t + 1) = mem t" ]

[ "((vald rep) o mpc)(t + 1) = 2" ]
O : void

As we have assumed that the microprocessor is operating in fully synchronous mode
and that an interrupt request is not about to be processed in this cycle, we can show
that the value of the microcode program counter mpc becomes equal to two at time
t+1. To advance the state of the symbolic execution to time t+2, we use the correctness
results for microinstruction 2 and the behavioural model of external memory to obtain:
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oK. .
[ "iack(t + 2) = iack t" ]
[ "rtn(t + 2) = rtn t" ]
[ "ir(t + 2) = fetch rep(mem t,address rep(pc t))" ]
[ "acc(t + 2) = acc t" ]
[ "pe(t + 2) = pc t" ]
[ "mar(t + 2) = pc t" ]
[ "mem(t + 2) = mem t" ]
[ "((vald rep) o mpc)(t + 2) = 3" ]
) : void

By time t+2, the instruction addressed by the program counter pc has been read from
memory and loaded into the instruction register ir. The opcode field of the instruction
register now contains the opcode for the current instruction which, in the case of ADD,
has the value two. Correctness results for microinstruction 2 show that the address of
the next microinstruction is obtained by adding four to the value of the opcode; hence,
the address of the next microinstruction is six.

oK. .
[ "iack(t + 3) = iack t" ]
[ "rtn(t + 3) = rtn t" ]
[ "ir(t + 3) = fetch rep(mem t,address rep(pc t))" ]
[ "acc(t + 3) = acc t" ]
[ "pc(t + 3) = pc t" ]
[ "mar(t + 3) = fetch rep(mem t,address rep(pc t))" ]
[ "mem(t + 3) = mem t" ] '
[ "((vald rep) o mpc)(t + 3) = 6" ]
() : void

This sequence continues with the symbolic execution of microinstruction at locations
6, 13, 15, 11 and 12 (in this order). New assumptions added to the assumption list for
each step are shown below.
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0X. .
[ "iack(t + 4) = iack t" ]
[ "arg(t + 4) = acc t" ]
[ "rtn(t + 4) = rtn t" ]
[ "acc(t + 4) = acc t" ]
[ "pc(t + 4) = pc t" ]
[ "mar(t + 4) = fetch rep(mem t,address rep(pc t))" ]
[ "mem(t + 4) = mem t" ]
[ "((val4 rep) o mpc)(t + 4) = 13" ]
() : void
0X..
[ "iack(t + B) = iack t" ]
[ "buf(t + B) =
add
rep
(acc t,
fetch rep(mem t,address rep(fetch rep(mem t,address fep(pc ) ]
[ "arg(t + 5) = acc t" ]
[ "rtn(t + B) = rtn t" ]
[ "ace(t + B) = acc t" ]
[ "pc(t + B) = pc t" ]
[ "mar(t + B) = fetch rep(mem t,address rep(pc t))" ]
[ "mem(t + B) = mem t" ]
[ "((val4d rep) o mpc)(t + B) = 16" ]
O : void
OK..
[ "iack(t + 8) = iack t" ]
[ "rtn(t + 6) = rtn t" ]
[ "acc(t + 8) =
add
rep
(acc t,
fetch rep(mem t,address rep(fetch rep(mem t,address rep(pc t)))))" ]
[ "pc(t + 6) = pc t" ]
[ "mem(t + 8) = mem t" ]
[ "((val4d rep) o mpc)(t + 6) = 11" ]
() : void




5.2. TAMARACK-3 Verification 93

0K..
[ "iack(t + 7) = iack t" ]
[ "buf(t + 7) = inc rep(pc t)" ]
[ "rtn(t + 7) = rtn t" ]
[ "acc(t +7) =
add
rep
(acc t,
fetch rep(mem t,address rep(fetch rep(mem t,address rep(pc t)))))" ]
[ "mem(t + 7) = mem t" ]
[ "((vald rep) o mpc)(t + 7) = 12" ]
() : void

Eventually we obtain a set of equations for the state of the system at the end of this
particular execution sequence, that is, at time t+8. These equations describe the net
effect of executing the microinstruction sequence which implements an ADD instruction.

0K..
[ "iack(t + 8) = iack t" ]
[ "rtn(t + 8) = rtn t" ]
[ "acc(t + 8) =
add
rep
(acc t,
fetch rep(mem t,address rep(fetch rep(mem t,address rep(pc t)))))" ]
[ "pe(t + 8) = inc rep(pc t)" 1]
[ "mem(t + 8) = mem t" ]
[ "((val4d rep) o mpc)(t + 8) = O" ]
() : void

At this point, the current goal is unchanged from the start of the symbolic execution
part of this proof. We recall that this goal was:

"let m = 8
in
((((vald rep) o mpc)(t + m) = 0) A
(mem(t + m),pc(t + m),acc(t + m),rtn(t + m),iack(t + m) =
ADD_SEM rep(mem t,pc t,acc t,rtn t,iack t)))"

The backward proof is easily completed by expanding this goal with the definition of
ADD_SEM and using the assumption list to satisfy the resulting subgoals.
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0KX..
goal proved

. additional output deleted here ...
|- Vb. SynCorrectnessl rep(F,ADD_OPC,b)
Previous subproof:

goal proved
O : void

There are nine further cases to consider: one case for the JZR instruction when the
value of the accumulator is zero; another case for JZR instruction when the accumulator
is non-zero; one case for each of the six remaining instructions; and finally, a case for
the processing of a hardware interrupt. Correctness results for these nine further cases
are expressed by the following theorems:

|- Vb. SynCorrectnessl rep(F,JZR_OPC,T)
|- Vb. SynCorrectnessi rep(F,JZR_OPC,F)
|- Vb. SynCorrectnessi rep(F,JMP_OPC,b)
|- Vb. SynCorrectnessl rep(F,SUB_OPC,b)
|- Vb. SynCorrectnessl rep(F,LDA_OPC,b)
|- Vb. SynCorrectnessl rep(F,STA_OPC,b)
|- Vb. SynCorrectnessl rep(F,RFI_OPC,b)
|- Vb. SynCorrectnessl rep(F,NOP_OPC,b)

|- Vn b. SynCorrectnessi rep(T,n,b)

The penultimate step in verifying the microprogramming level is to combine the above
correctness results for individual programming level operations into a single theorem.
The theorem shown below is obtained by case analysis on the three parameters of
SynCorrectnessl. Since ircond and iszerocond are Boolean variables, case analysis
on these variables yields a finite number of cases to consider in the analysis. The
variable opcval, a natural number, also yields a finite number of cases: either it is
equal to one of the eight opcode values, i.e., opcval < 8, or it is not a valid opcode
value, i.e., 8 < opcval, in which case the theorem is vacuously true because of the
condition expressed by Val3_CASES_ASM.

|- Vbl n b2. SynCorrectnessl rep(bi,n,b2)
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The predicate SynCorrectnessi is useful as a parameterized correctness condition
when the correctness of programming level operations are considered individually. But
when these individual correctness results are combined in the above theorem, the pa-
rameterized variables of SynCorrectnessl no longer have a useful role. The final step
in verifying the microprogramming level is to eliminate this overhead to obtain the
following theorem.

|- Val3_CASES_ASM rep A
Val4Word4_ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)
=
Vt.
(((val4 rep) o mpc) t = 0)
EEN
let m = MicroCycles rep (ireq t,mem t,pc t,acc t,rtn t,iack t) in
((((vald rep) o mpc) (t+m) = 0) A
((mem (t+m),pc (t+m),acc (t+m),rtn (t+m),iack (t+m)) =
NextState rep (ireq t,mem t,pc t,acc t,rtn t,iack t)))

Although we extend our correctness proof with one more step to obtain the top level
statement of correctness, the above theorem can stand alone as a substantial result
about the correctness of the TAMARACK-3 design. For all possible instruction cycles, we
have shown that the net effect of the instruction cycle corresponds to the state change
specified by NextState and that MicroCycles correctly specifies the length of each
instruction cycle.

5.2.3 Completing the Proof

As mentioned earlier in Chapter 4, the programming level operation and internal archi-
tecture are formally specified at different granularities of time. A formal relationship
needs to be established between these two granularities of discrete time in order to
complete the verification of TAMARACK-3 (operating in fully synchronous mode).

The chief source of difficulty in the formal definition of this timing relationship is
that a unit of discrete time at the abstract programming level time scale does not corre-
spond to a constant number of clock cycles on the concrete microprogramming level time
scale. If every programming level operation was implemented by the same number of
microinstructions, then the relationship between the two time scales could be expressed
by a very simple arithmetic equation. However, this is not the case for our implemen-
tation of the microprocessor. For instance, the ADD instruction is implemented by a
sequence of eight microinstructions as shown in Figure 5.1 whereas the JMP instruction
is implemented by a sequence of four microinstructions as shown in Figure 5.2.

Instead, we define a primitive recursive function TimeOfCycle which computes the
concrete time of every abstract time point using MicroCycles to determine the number
of microinstructions executed between adjacent points on the abstract time scale. To
compute the concrete time of u+1, we recursively compute the concrete time of u and

4The definition of Time0£Cycle is actually just a ‘wrapper’ for the definition of CURRIED_TimeOfCycle;
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Figure 5.1: ADD Instruction Cycle Timing.
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Figure 5.2: JMP Instruction Cycle Timing.

then add the number given by MicroCycles for the length of the next microinstruction
sequence to be executed. As with the definition of TamarackBeh in Chapter 4, we
emphasize the distinction between abstract and concrete time by using the variable u
for abstract time and the variable t for concrete time.

Define (
" (CURRIED_TimeOfCycle (rep:rep_ty) ireq mem pc acc rtn iack O = 0) A
(CURRIED_TimeOfCycle rep ireq mem pc acc rtn iack (SUC u) =
let t = CURRIED_TimeOfCycle rep ireq mem pc acc rtn iack u in
(t + (MicroCycles rep (ireq t,mem t,pc t,acc t,rtn t,iack t))))");:;

Define (
"TimeOfCycle (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack) u =
CURRIED_TimeOfCycle rep ireq mem pc acc rtn iack u"):;

The function denoted by,

TimeOfCycle (rep:rep_ty) (ireq,mem,pc,acc,rtn,iack)

this is a consequence of pragmatic restrictions imposed by the HOL system on the format of parameter
lists in primitive recursive definitions. The definition of CURRIED TimeOfCycle uses the successor function
SUC since this is the format expected by the HOL system, i.e., (SUC u) instead of (u+1).
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is the desired mapping from abstract time to concrete time represented by the downward
arrows in Figures 5.1 and 5.2. For instance, in the ADD microinstruction sequence where
t is the concrete time of u, the next point on the abstract time scale u+1, is mapped to
t+8 on the concrete time scale. In the JMP microinstruction sequence, u+1 is mapped
to t+4.

Using this specification of the relationship between abstract and concrete time scales,
we can derive correctness results expressed in terms of the abstract time scale from re-
sults already obtained which are expressed in terms of the concrete time scale. In
particular, we want to show that from one abstract time point to the next, the micro-
processor executes a single programming level instruction.

We first need to show that every point on the abstract time scale corresponds to
the start of a microinstruction sequence. It is sufficient to show that every abstract
time point maps to a concrete time point when the microcode program counter is zero
since every microinstruction sequence begins at this location. It is necessary to assume
that the microcode program counter initially has the value zero; that is, time begins
when the microcode program counter is reset. The following theorem can be proved by
mathematical induction on u.

|- Val3_CASES_ASM (rep:rep_ty) A
Val4Word4_ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem) A
(((val4 rep) o mpc) O = 0)
s
let £ = TimeOfCycle rep (ireq,mem,pc,acc,rtn,iack) in
Vu. ((val4 rep) o mpc) (£ u) = O");;

Once we have shown that every point on the abstract time scale corresponds to the
beginning of an instruction cycle, it is a relatively simple matter to complete the last
step in this version of the correctness proof for TAMARACK-3. The top-level correctness
theorem is expressed by the goal term in the following call to set_goal.

set_goal (
(1,
"Val3_CASES_ASM (rep:rep_ty) A
Val4Word4 ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem) A
(((val4 rep) o mpc) O = 0)
=
let £ = TimeOfCycle rep (ireq,mem,pc,acc,rtn,iack) in
TamarackBeh rep (ireq o f,mem o f,pc o f,acc o f,rtn o f,iack o £)1);;

We begin the backward proof for this theorem by expanding the goal with the defi-
nition of TamarackBeh. We can see from the result of this step that the proof is simply
a matter of combining correctness results for the microprogramming level with facts
derived from the definition of Time0fCycle. In a nutshell, we must show that the ex-
ternally visible state of the microprocessor at time u+1 is determined by the function
NextState from its state at time u.
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OK..

"Val3_CASES_ASM rep A

ValdWord4_ASM rep A

SynSystem rep(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem) A

(((val4d rep) o mpc)0O = 0) =

let £ = TimeOfCycle rep(ireq,mem,pc,acc,rtn,iack)

in

(Vu.

(mem o £)(u + 1),(pc o £)(u + 1),(acc o £)(u + 1),(rtn o £)(u + 1),
(iack o f)(u + 1) =
NextState
rep
((ireq o f)u,(mem o £)u,(pc o f)u,(acc o f)u,(rtn o f)u,(iack o £)u))"

() : void

Next, we use standard HOL techniques to further expand the goal and move an-
tecedents into the assumption list. However, the use of standard goal reduction tech-
niques alone would result in a goal with some cumbersome sub-terms. These particular
sub-terms are unnecessary and it is helpful (as a technique for managing proof com-
plexity) to replace them with simple variables, namely, t and m. These variables are
introduced by means of the following two theorems (which are trivial facts of logic).

|- 3t. TimeOfCycle rep(ireq,mem,pc,acc,rtn,iack)u = t

n
=]

|- 3m. MicroCycles rep(ireq t,mem t,pc t,acc t,rtn t,iack t)

After these simplifications, the new goal is:

0KX..
"mem(t + m),pc(t + m),acc(t + m),rtn(t + m),iack(t + m) =
NextState rep(ireq t,mem t,pc t,acc t,rtn t,iack t)"

[ "Val3_CASES_ASM rep" ]

[ "Val4Word4_ASM rep" 1]

[ "SynSystem rep(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)" ]

[ "((val4 rep) o mpc)O = O" ]

[ "Time0fCycle rep(ireq,mem,pc,acc,rtn,iack)u = t" ]

[ "MicroCycles rep(ireq t,mem t,pc t,acc t,rtn t,iack t) = m" ]
() : void

We have already shown that every point on the abstract time scale corresponds to
the beginning of an instruction cycle. In particular, we know that the value of the
microcode program counter mpc at time t is O.
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0X..
[ "((vald rep) o mpc)t = O" ]

Q) : void

We have also shown (in Section 5.2.2) that the externally visible state of the micro-
processor at the end of the instruction cycle is related to its initial state at the beginning
of the instruction cycle by the function NextState. This fact is used to solve the current
goal and complete the final step in this version of the correctness proof for TAMARACK-3.

0K. .
. additional output deleted here ..

goal proved
|- Val3_CASES_ASM rep A
Vald4Word4 _ASM rep A
SynSystem rep(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,memn) A
(((val4 rep) o mpc)0 = 0) —>
let £ = TimeOfCycle rep(ireq,mem,pc,acc,rtn,iack)
in
TamarackBeh rep(ireq o f,mem o f,pc o f,acc o f,rtn o f,iack o f)

Previous subproof:
goal proved
O : void

We recall that the predicate SynSystem specifies the implementation of a synchronous
TAMARACK-3 system in terms of TamarackImp, SynMemory and PWR. The above theorem
relates the formal specification of this system to its behavioural specification given by
the predicate TamarackBeh. In particular, we show that the constraints imposed by
TamarackImp on the register-transfer level signals of the internal architecture, together
with behavioural models for the memory and voltage source, satisfy the constraints
imposed by TamarackBeh on the corresponding programming level signals.

5.3 Synchronizing Multiple Levels of Timing

The simple approach just described in Section 5.2.3 for relating different granularities
of time is not very general because it depends on the implementation of programming
level operations by fixed microinstruction sequences whose predetermined lengths are
specified by the definition of MicroCycles. In general, programming level operations
may not necessarily be implemented at lower levels by fixed sequences.

An example of when it is not possible to define a simple function like MicroCycles
to compute the exact length of each instruction cycle is the operation of TAMARACK-3
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Figure 5.3: Control Part of an Interpreter.

in fully asynchronous mode when delayed handshaking signals may cause microinstruc-
tions to be repeated. Although there are ways to partially circumvent this problem
using an oracle function to ‘guess’ the length of each instruction cycle, the result may
not be completely general® or correspond very well to an intuitive view of this timing
relationship.

The term temporal abstraction (or temporal projection) has been used in verification
circles [43,45,65,72,100,112,133] to denote the idea of relating different rates of com-
putation in a formal specification. This idea naturally arises from the more general
concept of viewing computer hardware as a hierarchy of interpretation levels where a
timing relationship between two levels of interpretation is sometimes called a synchro-
nization scheme (or synchronization mechanism). The control part of each level in the
interpretation hierarchy can be viewed as a virtual machine with the generalized form
shown in Figure 5.3. To paraphrase the description by Anceau in [2]:

A given level is only allowed to generate a new command once it has
received an end-of-execution signal for the present command from the levels
below. In turn, it sends a similar signal to the control part immediately
above requesting the next instruction. The end-of-instruction signal received
by the lowest level of synchronous logic is simply the clock signal of the
machine. The next-instruction signal issued by the microprogramming level
implies the fetching of the next instruction from memory.

SIf all functions must be total, then use of an oracle function to guess the length of each instruction
cycle implies that every instruction cycle is finite, in particular, that handshaking sequences always run to
completion. A completely general approach would not imply that every handshaking sequence terminates
but, instead, would require (as we do) that this fact be established by formal proof.
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In this section, we describe a formalization which corresponds directly to the imagery
of Figure 5.3 where a next-instruction signal at the microprogramming level implies the
fetching of the next programming level instruction from memory. At this level, the
next-instruction signal is not a physical signal, but rather, a time-dependent condition
on the internal state of the machine.

In fully synchronous mode, the end of the instruction cycle occurs when the value of
the microprocessor program counter returns to zero. Hence, the next-instruction signal
generated by the microprogramming level is the time-dependent condition expressed by

the term,
((val4 rep) o mpc) Eq O

where Eq is an infix temporal operator for relating a signal to a particular value in terms
of equality.

Define ("(P:time—*) Eq ¢ = At. P t = c");;

If an instruction cycle begins at time t, then it terminates at time t+m if and only
if t+m is the first time that the microcode program counter mpc becomes equal to zero
since time t. This condition is expressed by the term,

Next (((vald rep) o mpc) Eq 0) (t,t+m)

where the predicate Next is defined as:

Define (
"Next g (t1,£2) = t1 < t2 A (V&. t1 <t At < t2 = —(g t)) A (g t2)");;

It is possible to show that this condition holds for each of the fixed microinstruction
sequences that implement programming level operations in fully synchronous mode.
In place of the predicate SynCorrectnessi, a slightly different form of parameterized
correctness condition is used to verify the implementation of each programming level
operation.
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Define (
"SynCorrectness2 (rep:rep_ty) (ircond,opcval,iszerocond) =
Vireq mpc mar pc acc ir rtn arg buf iack mem.
Val3_CASES_ASM (rep:rep_ty) A
ValdWord4_ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)
=
Vt:time.
(((val4 rep) o mpc) t = 0) A
((ireq t A —(iack t)) = ircond) A
(OpcVal rep (mem t,pc t) = opcval) A
((iszero rep) (acc t) = iszerocond)
P
Im.
Next (((vald rep) o mpc) Eq 0) (t,t+m) A
((mem (t+m),pc (t+m),acc (t+m),rtn (t+m),iack (t+m)) =
NextState rep (ireq t,mem t,pc t,acc t,rtn t,iack t))"):;

In this version of the correctness condition, the length of the instruction cycle is
an existentially quantified variable instead of a value computed by MicroCycles. The
proofs of correctness for each programming level operation are almost the same as before
except that we must keep track of the microcode program counter mpc throughout the
instruction cycle and show that it is never equal to zero before the end of the instruction
cycle. Combining individual correctness results for each programming level operation
and eliminating, as before, the overhead of a parameterized correctness condition yields
the following theorem.

|- Val3_CASES_ASM (rep:rep_ty) A
Val4Word4 _ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)
=
Vt.
(((val4 rep) o mpc) t = 0)
EESN
dm.
Next (((val4 rep) o mpc) Eq 0) (t,t+m) A
((mem (t+m),pc (t+m),acc (t+m),rtn (t+m),iack (t+m)) =
NextState rep (ireq t,mem t,pc t,acc t,rtn t,iack t))

The next step is to define a general purpose function TimeOf which uses a next-
instruction signal g to construct a mapping £ from an abstract time scale to a concrete
time scale. The relationship between abstract and concrete time is shown in Figure 5.4.
The following definition of TimeOf is similar to definitions given in previous work by
Dhingra [43], Herbert [72,73] and Melham [100] (the name ‘Time0f’ is used here for
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Figure 5.4: Abstract and Concrete Time Scales.

continuity with previous work). It is defined in terms of the predicates First and Next
using primitive recursion and Hilbert’s e-operator.®

Define ("First gt = (Vp. p <t = (g p)) A (g t)");;

Define (
"(TimeOf g O = et. First g t) A
(TimeOf g (SUC u) = et. Next g (TimeOf g u,t))");;

The first point on the abstract time scale corresponds to the first time that the next-
instruction signal g is true with respect to the concrete time scale. Subsequent points on
the abstract time scale are defined recursively. The next point after u on the abstract
time scale, i.e., ut1, corresponds to the next time that the next-instruction signal g
becomes true with respect to the concrete time scale.

Applying TimeOf to the next-instruction signal generated at the microprogramming
level of TAMARACK-3,

TimeOf (((val4d rep) o mpc) Eq 0)

yields a mapping from points on the abstract time scale to points on the concrete
time scale, This mapping is the synchronization scheme which relates behaviour at the
abstract programming level time scale to behaviour at the concrete microprogramming
level time scale.

As with most definitions that use Hilbert’s e-operator, some additional proof infra-
structure is needed to reason about specifications involving Time0f. For instance, it is
necessary to establish the fact that the next-instruction signal is true infinitely often
[78,100]. Fortunately, the main result of this proof infrastructure can be summed up in
a compact theorem:

|- Vg r.
(Jt. g t) A (Vt. gt => Im. Next g (t,t+m) A r (t,t+m))
=
Vu. r (TimeOf g u,Time0f g (u+1))

80ur definition of TimeOf is simplified by avoiding the existential quantification found in corresponding
definitions given by [43,72,78,100]. When the constraint that g is ‘true infinitely often’ holds, this function
yields exactly the same mapping from abstract time to concrete time. When this constraint does not
hold, both versions (with and without existential quantification) yield an incomplete mapping.
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For any next-instruction signal g and next state relation r, this theorem can be used
to reduce the problem of establishing,

Vu. r (TimeOf g u,TimeOf g (u+1))
to a pair of simpler problems:

dt. g ¢
VE. g t => dm. Next g (t,t+m) A r (t,t+m)

The last step in verifying TAMARACK-3 is essentially a question about the validity
of the synchronization scheme relating behaviour at the programming level time scale
to behaviour at the microprogramming level time scale. The above theorem provides a
way to translate this question into a pair of simpler problems. In particular, it is used
mid-way through a backward proof of the top-level correctness statement to reduce the
goal,

OK..
"Vu.
mem(TimeOf g(u + 1)),pc(TimeOf g(u + 1)),acc(TimeOf glu + 1)),
rtn(Time0f g(u + 1)),iack(TimeOf g(u + 1)) =
NextState
rep
(ireq(Time0f g u),mem(TimeOf g u),pc(Time0f g u),acc(TimeOf guw,
rtn(Time0f g u),iack(TimeOf g u))"
[ "((val4 rep) o mpc) Eq 0 = g" ]
[ "Val3_CASES_ASM rep" ]
[ "Val4Word4_ASM rep" ]
[ "SynSystem rep(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,men)" ]
[ "3t. ((vald rep) o mpc)t = O" ]

() : void

to the following pair of sub-goals.

n3g, g g

"((val4 rep) o mpc) Eq 0 = g" ]

"Val3_CASES_ASM rep" ]

"Val4Word4_ASM rep" ]

"SynSystem rep(ireq,mpc,mar,pc,acc,ir.rtn.arg,buf,iack,mem)" 1
"3t. ((val4 rep) o mpc)t = O" ]

YT e

() : void
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"Wt
gt —
(dm.
Next g(t,t+m) A
(mem(t + m),pc(t + m),acc(t + m),rtn(t + m),iack(t + m) =
NextState rep(ireq t,mem t,pc t,acc t,rtn t,iack t)))"
"*((vald rep) o mpc) Eq 0 = g" ]
"Val3_CASES_ASM rep" ]
"Vald4Word4_ASM rep" ]
"SynSystem rep(ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem)" ]
"3t. ((vald rep) o mpc)t = O" ]

e rrm

() : void

The first sub-goal is satisfied by members of the assumption list combined with the
definition of Eq. The second sub-goal is satisfied by previously mentioned correctness
results for the microprogramming level. The satisfaction of these two sub-goals yields
the following correctness theorem for TAMARACK-3.

|- Val3_CASES_ASM (rep:rep_ty) A
Val4Word4_ASM rep A
SynSystem rep (ireq,mpc,mar,pc,acc,ir,rtn,arg,buf,iack,mem) A
(3t. ((val4 rep) o mpc) t = 0)
=
let £ = Time0Of (((val4 rep) o mpc) Eq 0) in
TamarackBeh rep (ireq o f,mem o f,pc o f,acc o f,rtn o f,iack o f)

This is nearly identical to the previous version of the top level correctness statement

in Section 5.2.3 except for the sub-term which specifies the relationship between the
two time scales.




Chapter 6

Embedding Other Notations

The ability to embed notation from formalisms is a major advantage of using higher-
order logic to reason about microprocessor-based systems. We illustrate this point by
embedding a form of temporal logic in the HOL logic for the purpose of verifying the
operation of TAMARACK-3 in fully asynchronous mode, i.e., the use of handshaking
signals to synchronize the transfer of data between the microprocessor and external
memory.

The main specification problem in this chapter is to define a behavioural model for
fully asynchronous memory which is both succinct and independent from the micro-
processor specification. The main verification problem is to derive an abstract view of
the instruction cycle where handshaking interactions are collapsed into fixed sequences
of steps.

Temporal logic is especially useful for specifying and reasoning about relative order
in a set of events. We take advantage of this natural notation by regarding a set of
temporal logic operators as abbreviations for higher-order functions. This approach
results in succinct specifications and simplifies the verification task by hiding some low-
level aspects of proof in derived inference rules for temporal logic operators.

6.1 Specification Using Temporal Logic Operators

We use the temporal logic operators,

“henceforth”
“eventually”
“next”
“until”

cO¢o

and a number of connectives (~, —, and) corresponding to logical connectives in propo-
sitional logic. Later on, we give precise definitions for these operators and connectives
as abbreviations for higher-order functions. For now, the intuitive meanings suggested
above are enough to illustrate the use of these operators in the formal specification of
a handshaking protocol.

Figure 6.1 shows a stylized timing diagram for a four-phase handshaking sequence. A
request at time t1 by the sender is acknowledged at time t2 by the receiver. A request
to end the interaction is signaled at time t3 and eventually acknowledged at time 4.

The handshaking protocol is formally specified by a number of constraints imposed on
both the sender and receiver. For now, these can be understood as constraints imposed
on the sender and receiver viewed together as a single system; later on, we say which
constraints are imposed on which process.

106
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Sender: dreq / \

Receiver: dack ' / \_

t1 t2 t3 t4

Figure 6.1: Four-Phase Handshaking Timing Diagram.

A handshaking interaction is initiated whenever dreq becomes true. dreq must
continue to be true until this is acknowledged. This constraint is expressed by:

(dreq — (dreq U dack))

A request must eventually be acknowledged. Furthermore, once dack becomes true,
it must remain true until dreq becomes false.

(dreq — (O dack))
(dack — (dack U (~dreq)))
Once a request has been acknowledged, dreq must eventually become false again to

signal the end of the interaction. The next request cannot be signaled until dack also
returns to false.

(dack — (O (~dreq)))
((~dreq) — ((~dreq) U (~dack)))
When dreq becomes false, dack must also become false and stay false until the next
request.
((~dreq) — (O (~dack)))
((~dack) — ((~dack) U dreq))
Upon completion of the handshaking interaction, the protocol requires another re-
quest to be initiated sometime in the future. This final constraint is usually included

in the handshaking protocol specification to obtain the property that system activity
never ceases.

((~dack) — (< dreq))

The use of temporal logic operators to specify the relative order of events in a hand-
shaking protocol has been described by others including Bochman [11], Dill and Clarke
[44], and Fujita et al. [49).
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6.2 Temporal Logic in Higher-Order Logic

Temporal logics are often treated as primitive systems defined axiomatically or based
on semantic definitions for temporal logic operators. However, our higher-order logic
framework allows us to regard temporal logic operators as simply abbreviations for
higher-order functions. The following definitions yield temporal logic operators for a
form of temporal logic known as Linear Temporal Logic.

Define ("O P = At. Vn. P (t+n)");;

Define ("O P = At. In. P (t+n)");;

Define (O P

At. ((P (t+1)):bool)");;
Define ("P U Q = At. Vn. (Vm. m < n => —(Q (t+m))) = P (t+n)");;

Define ("~P = At. —(P t)");;

Define ("P — Q = At. P t => Q t");;

Define ("P and Q = At. Pt A Q t");;

Each operator is defined in terms of a function which maps discrete points in time,
modelled by the natural numbers, to Boolean values. These operators can be combined
with variables such as P and Q to form assertions in temporal logic. In both first-order
logic and higher-order logic, every assertion, for instance,

Vb. b V -b

is a Boolean expression which is either true or false. However, an assertion in temporal
logic such as,

(P — & (Q UR))

is only true or false relative to a particular instant of time. When stated as an assertion,
this is informally understood to mean that the assertion is true at every instant of time.
However, to formally represent temporal logic assertions as assertions in our higher-order
logic framework, we introduce a notion of validity! where a temporal logic assertion is
valid if and only if it is true at all times.

Define ("VALID P = Vt. P t");;

1 Although this definition of validity allows us to express temporal logic assertions in higher-order logic
(and is essentially the same as the approach used by Hale [65]), it does not capture the ‘whole meaning’
of validity in a model-theoretic sense [66].
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Powerful inference rules for direct manipulation of temporal logic assertions can be
derived in higher-order logic from the above definitions. Many such rules effectively
‘package up’ what would otherwise be tedious and repetitive patterns of inference. For
instance, the following theorem provides a particularly useful rule; this rule achieves,
in a single step, an inference which would otherwise involve a proof by mathematical
induction.

|- VP Q. VALID((P and (~Q)) — () P)) == VALID(P — (P U Q))

A recent survey article [22] describes ‘traditional logic’ (which includes higher-order
logic) and temporal logic as alternative kinds of pure formalism for reasoning about
hardware. But when temporal logic operators are simply abbreviations for higher-
order functions, anything which can be done with the temporal logic operators can
also be done without them using explicit time variables. In fact, we have taken a
mixed-mode approach of using both temporal operators and explicit time variables.
The right mixture of temporal operators and explicit time variables yields relatively
succinct specifications and much easier proofs.

Previous work by Hale [65] demonstrated that the idea of embedding a temporal logic
in higher-order logic was of practical use. Leeser [93] has also embedded temporal logic
in a proof-generation environment to reason about hardware. Both Hale and Leeser used
another form of temporal logic called Interval Temporal Logic developed by Moszkowski
[112,113] to reason about digital systems in general. However, the form of temporal logic
captured in our definitions for O, ¢, etc., is adequate for the very specific purpose of
reasoning about handshaking interactions between TAMARACK-3 and external memory.
Moreover, this form of temporal logic is easier to embed in higher-order logic.

6.3 Sender and Receiver Specifications

Earlier we gave a formal specification of the handshaking protocol in terms of con-
straints expressed by a set of temporal logic assertions. Seitz [127] distinguishes between
Junctional constraints on outputs which must be satisfied by a process and domain con-
straints which are allowable assumptions about inputs. In the handshaking protocol,
constraints imposed on dreq are functional constraints for the sender process and do-
main constraints for the receiver process. Constraints imposed on dack are functional
constraints for the receiver process and domain constraints for the sender process.

It turns out that only some of the domain constraints are actually needed in each case.
Furthermore, these domain constraints are only needed to establish specific functional
constraints. For example, the domain constraint,

(dreq — (dreq U dack))

that dreq, once true, must remain true can be assumed in showing that the receiver
satisfies the functional constraint, .

(dreq — (& dack))
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that it will detect and eventually acknowledge the request.

The following definitions give the functional constraints for the sender and receiver
respectively and, where required, the domain constraints which can be assumed in show-
ing that a process satisfies a particular functional constraint. An equivalent formulation
of these constraints could be given using O and and instead of VALID and A but this
would only be a matter of personal taste since the result (enclosed by VALID) would be
equivalent to the definitions shown below.

Define (
"Sender (dreq,dack) =

VALID (dreq — (dreq U dack)) A
VALID ((~dreq) — ((~dreq) U (~dack))) A
(VALID (dack — (dack U (~dreq))) =
VALID (dack — (O (~dreq)))) A
(VALID ((~dack) — ((~dack) U dreq)) —>
VALID ((~dack) — (O dreq)))");;

Define (
"Receiver (dreq,dack) =

VALID (dack — (dack U (~dreq))) A
VALID ((~dack) — ((~dack) U dreq)) A
(VALID (dreq — (dreq U dack)) —
VALID (dreq — (< dack))) A
(VALID ((~dreq) — ((~dreq) U (~dack))) =—>
VALID ((~dreq) — (<& (~dack))))");;

When the sender and receiver parts of the handshaking protocol specification are
both satisfied, this results in the set of constraints mentioned at the beginning of this
section for the system as a whole. This is shown by the following theorem.

|- Sender(dreq,dack) A
Receiver(dreq,dack)
=
VALID (dreq — (dreq U dack)) A
VALID (dreq — (< dack)) A
VALID (dack — (dack U (~dreq))) A
VALID (dack — (O (~dreq))) A
VALID ((~dreq) — ((~dreq) U (~dack))) A
VALID ((~dreq) — (O (~dack))) A
VALID ((~dack) — ((~dack) U dreq)) A
VALID ((~dack) — (<O dreq))

6.4 Memory Specification

The predicate Receiver only specifies constraints on the acknowledgement signal dack.
The rest of the memory specification is given by the definitions of ReceiverData,
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ReadFunc, WriteFunc and AsynMemory. These predicates specify constraints on the
address and data signals in relation to the handshaking signals.

First of all, it is convenient to introduce another temporal operator to express asser-
tions of the form “P will be true if and when Q becomes true”. This operator is defined
directly in terms of — and U.

Define ("P when Q = ((@ — P) U Q)");;

The behavioural specification of asynchronous memory is actually a very localized
case of generic specification: we specify a set of generic constraints on data transfer
for a generic receiver process and later instantiate this specification for the particular
requirements of the TAMARACK-3 memory interface. One advantage of this approach is
that the generic specification of the receiver processor could be re-used to model other
devices besides the asynchronous memory device, e.g., a sensor or actuator in a real-
time control system. However, the main reason for using a generic specification in this
case is to produce a more readable specification by filtering out details about the precise
nature of the data being transferred between TAMARACK-3 and external memory.?

In particular, we are able to treat the three separate signals wmem, dataout and
addr of the TAMARACK-3 interface as one signal: in this view, the item of data sent
to external memory actually consists of three sub-items, namely, the read/write flag,
memory data (only needed for a write operation), and a memory address. Grouping
these three signals into one signal avoids repetitiously specifying constraints for each
sub-item.

In a generic view of data transfer, the sender transfers a single item of data to the
receiver and the receiver eventually replies with another item of data. We use the
uninterpreted data types ** and ** for data produced by the sender and receiver
respectively. Additionally, we use the uninterpreted data type * for the internal state
of the receiver. These uninterpreted types are just type variables in the HOL logic.

The uninterpreted primitives £1 and £2 denote operations performed by the receiver
on the uninterpreted data types *, ** and ***, £1 denotes the operation performed by
the receiver to compute its reply to the sender. £2 denotes the operation performed by
the receiver to update its internal state as a result of an interaction with the sender.
The polymorphic types of £1 and £2 are:

£1 (X Rk)—kkxk

£ (R X HR) %

A set of constraints for data transfer is captured in the following definition of
ReceiverData. The uninterpreted primitives f1 and £f2 appear explicitly as param-
eters in this definition. To be consistent with earlier uses of the names datain and
dataout, data is sent to the generic receiver from the sender on the dataout bus while
the reply to the sender is sent on the datain bus.

2Cardell-Oliver [23] has described a similar idea in using the HOL logic to specify a generalized sliding
window protocol based on properties common to a family of protocol implementations.
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Define (
"ReceiverData (f1:(xXx%%)—**x £2) (req,ack,mem,dataout,datain) =
(Vx y.
VALID (
((~req) and (O req)) —
(O (mem Eq x)) —
(O ((dataout Eq y) — ((dataout Eq y) U ack))) —
(O ((((datain Eq (£1 (x,y))) U (~req)) when ack) and
(((mem Eq (£2 (x,y))) U (~req)) when ack))))) A
(Vx. VALID (((~req) and (mem Eq x)) — (O (mem Eq x))))");;

The definition of ReceiverData captures the essential features of how data is trans-
ferred between a sender and receiver by means of handshaking signals. Paraphrasing
this specification, suppose that the sender initiates an interaction with the receiver:

((~req) and (O req))

Also suppose that the internal state (called mem) of the receiver process is equal to x
and that the value of the incoming data is stable and equal to y:

(O (mem Eq x))
(O ((dataout Eq y) — ((dataout Eq y) U ack)))

If these conditions hold, then datain will be equal to £1(x,y) and the new value of the
internal state will be £2(x,y) when ack becomes true. Furthermore, these values will
remain stable at least until req becomes false:

(O ((((datain Eq (f1 (x,y))) U (~req)) when ack) and
(((mem Eq (£2 (x,y))) U (~req)) when ack)))

Finally, the internal state of the receiver will be stable as long as req remains false:
Vx. VALID (((~req) and (mem Eq x)) — (O (mem Eq x)))

This generic specification is specialized for the TAMARACK-3 memory interfacing by
using the functions ReadFunc and WriteFunc as values for the uninterpreted primitives
f1 and £2. We note that WriteFunc and ReadFunc are also generic specifications; the
definition of AsynMemory illustrates how one generic specification can be a refinement
(or refine aspects of) another generic specification.

Define (
"ReadFunc (rep:rep_ty) (memval, (wmemval,addrval,datainval)) =
(wmemval => datainval | ((fetch rep) (memval,addrval)))");;

Define (
MWriteFunc (rep:rep_ty) (memval,(wmemval,addrval,datainval)) =
(wmemval => ((store rep) (memval,addrval,datainval)) | memval)");:
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Define (
"AsynMemory (rep:rep_ty) (
req,ack,mem,wnen,addr,datain,dataout) =
Receiver (req,ack) A
ReceiverData (ReadFunc rep,WriteFunc rep)
(req,ack,mem, (At:time.(wmem t,addr t,datain t)),dataocut)");;

The memory specification is a formal rendering of the description given earlier in
Chapter 3. In particular, it is precise statement about details such as the constraint
that:

After signaling a memory request, dreq must remain equal to T and the
wnen flag, address bus addr and dataout bus dataout must remain at stable
values until dack becomes equal to T signaling that the request has been
satisfied.

As with the specification of fully synchronous memory, SynMemory, the operations
performed by memory are selected from the representation variable by fetch and store.
For example, when dack becomes equal to T at time t+n in response to a read request
initiated at time t, the value of the datain bus is described by the following equation:

datain (t+n) = (fetch rep) (mem t,(address rep) (mar t))

One of the main differences from the FM8501 specification [76] is that our relational
specification style allows the memory model to have an entirely independent speci-
fication. Thus, it is possible to reason independently about the internal operation of
TAMARACK-3 at the phase level without need of a memory model. It is only necessary to
compose specifications for TAMARACK-3 and external memory in order to reason about
their interaction at the microprogramming level. This contrasts with the functional
specification style used for FM8501 where “the characterization of external devices is
wrapped up in the same function which specifies the microprocessor” [76].

6.5 Verification

Verifying the operation of TAMARACK-3 in fully asynchronous mode is much more diffi-
cult than fully synchronous mode because of the unknown length of microcode repeat-
loops during an instruction cycle. The overall strategy is to first show that every
handshaking sequence runs to completion, then collapse repeat-loops to single steps in
an abstract view of behaviour. Symbolic execution is then used to reason about the
fixed sequences of operations in this abstract view of behaviour. Finally, we use the
function TimeOf described earlier in Chapter 5 to specify a synchronization scheme for
asynchronous mode.
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6.5.1 Phase Level

Earlier correctness results described in Chapter 5 for the phase level operation of
TAMARACK-3 are re-used in this version of the correctness proof without change or
addition. We recall that phase level correctness results do not depend on any particular
model of external memory. The interaction of the microprocessor with external memory
only concerns the operation of its internal architecture at the microprogramming level.

6.5.2 Implementation of the Sender Specification

One of the first steps in verifying the operation of TAMARACK-3 in fully asynchronous
mode is to show that the microprogramming level correctly implements the sender part
of the handshaking specification. The derivation of the following theorem is tedious but
very routine. This proof step does not involve a behavioural model for external memory.

|- Val3_CASES_ASM rep A

Val4Word4_ASM rep A

TamarackImp rep (
datain,dack,gnd,idreq,mpc,mar,pc,
acc,ir,rtn,arg,bui,idack,dataout,wmem,dreq.addr) A

GND gnd A

(((vald rep) o mpc) O = 0)

=

Sender (dreq,dack)

Once it has been established that the microprogramming level satisfies the constraints
expressed by Sender, this result can be combined with the specification of external
memory, in particular, the constraints expressed by Receiver to obtain some very
useful facts for reasoning about handshaking interactions. Among other things, one
of the useful facts implied by the combined constraints of Sender and Receiver is
that every handshaking sequence runs to completion, that is, every repeat-loop in the
microcode eventually terminates.

6.5.3 Collapsing Repeat-Loops to Single Steps

The microprocessor specification and behavioural model of external memory are com-
bined together in the definition of AsynSystem to reason about interactions of the
TAMARACK-3 microchip with fully asynchronous memory. As shown in the definition of
AsynMemory, the memory specification includes the constraints expressed by Receiver,
i.e., the memory device must satisfy the receiver part of the handshaking protocol.
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Define (

"AsynSystem (rep:rep_ty)
(ireq,mpc.mar.pc.acc.ir,rtn,arg,buf.iack,dack,mem) =
Jddatain gnd dataout wmem dreq addr.

TamarackImp rep (
datain,dack,gnd,ireq,mpc,mar,pc,
acc.ir,rtn,arg,buf,iack,dataout,wmem.dreq,addr) A
AsynMemory rep (dreq,dack,mem,wmem,addr,dataout,datain) A
GND gnd");;

The fact that every repeat-loop in the microcode terminates makes it possible to
derive theorems which, in effect, collapse repeat-loops to single steps in an abstract
view of behaviour at the microprogramming level.

For instance, the following theorem provides a collapsed view of the repeat-loop in
state 6 of the FSM flow graph. This theorem states that the repeat-loop will ter-
minate after zero or more clock cycles with no changes to the internal state of the
microprocessor.

|- Val3_CASES_ASM rep A
Val4Word4_ASM rep A
AsynSystem rep (idreq,mpc,mar,pc,acc,ir,rtn,arg,buf,idack,dack,mem) A
(((val4d rep) o mpc) O = 0)
SN
Vt.
(((val4 rep) o mpc) t = 8)
—
Jn.
(dack (t+n) = F) A
(Vm. m < n => (dack (t+m) = T)) A
(((val4d rep) o mpc) (t+n) = 8) A
(mem (t+n) = mem t) A
(mar (t+n) = mar t) A
(pc (t+n) = pc t) A
(ace (t+n) = acc t) A
(rtn (t+n) = rtn t) A
(idack (t+n) = idack t)

Another example is the theorem shown below which provides a collapsed view of
the repeat-loop in state 13. It is convenient to state this result as a transition which
begins in state 6 and terminates in state 15. During this transition, a value is fetched
from memory mem, added to the current contents of the accumulator acc, and the result
temporarily placed in the ALU buffer buf.
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|- Val3_CASES_ASM rep A
Val4Word4_ASM rep A
AsynSystem rep (idreq,mpc,mar,pc,acc,ir,rtn,arg,buf,idack,dack,mem) A
(((vald rep) o mpc) O = 0)

BN
Vt.
(((vald rep) o mpc) t = 8) A
(dack t = F)
=
dn.

(Vm. m < n = —(((vald rep) o mpc) (t+m) = 0)) A
(((val4 rep) o mpc) (t+n) = 1B) A
(mem (t+n) = mem t) A
(pc (t+n) = pc t) A
(but (t+n) =
add rep (acc t,fetch rep (mem t,(address rep (mar t))))) A
(rtn (t+n) = rtn t) A
(idack (t+n) = idack t)

The above pair of theorems describe two successive steps in the symbolic execution
of the microprogramming level. In the course of reasoning about the microinstruction
sequence for an ADD instruction, the first theorem advances the state of the symbolic
execution to the end of the repeat-loop in state 6 and the second theorem advances the
symbolic execution from this point to state 15.

6.5.4 Symbolic Execution

A complete set of theorems for collapsing repeat-loops into single steps represents an
abstract view of behaviour where programming level operations are implemented by
fixed sequences of actions. Hence, the symbolic execution proof technique described
earlier in Chapter 5 for fully synchronous mode can also be used here to show that
programming level operations are correctly implemented by microinstruction sequences
which involve handshaking interactions with external memory.

Correctness results for each programming level operation are combined by case anal-
ysis to obtain the following theorem.
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|- Val3_CASES_ASM rep A
ValdWord4_ASM rep A
AsynSystem rep (idreq,mpc,mar,pc,acc,ir,rtn,arg,buf,idack,dack,mem) A
(((val4 rep) o mpc) O = 0)

=
Vt.
(((val4 rep) o mpc) t = 0) A
(dack t = F)
=
In.

Next ((((val4 rep) o mpc) Eq O0) and (~dack)) (t,t+n) A
((mem (t+n),pc (t+n),acc (t+n),rtn (t+n),idack (t+n)) =
NextState rep (idreq t,mem t,pc t,acc t,rtn t,idack t))

The above theorem is almost identical to the top-level correctness theorem for fully
synchronous mode given in Chapter 5 except for the term used to denote the next-
instruction signal. Instead of,

(((val4 rep) o mpc) Eq 0)
the next-instruction signal is denoted by the term,
(((val4 rep) o mpc) Eq 0) and (~dack)

which states that the next instruction cycle does not begin until the control unit FSM
is about to leave state O.

6.56.5 Top Level Correctness Statement

This version of the proof is completed by repeating the proof procedure outlined earlier
in Chapter 5 for using the function TimeOf to construct a mapping from abstract time
to concrete time. The top-level correctness statement for this version of the proof is
shown below.

|- Val3_CASES_ASM rep A
Val4Word4_ASM rep A
AsynSystem rep (idreq,mpc.mar,pc.acc.ir.rtn,arg,buf,idack,dack,mem) A
(((val4 rep) o mpc) O = 0)
=
let £ = TimeOf ((((val4 rep) o mpc) Eq 0) and (~dack)) in
TamarackBeh rep (idreq o f£,mem o f,pc o f,acc o f,rtn o f,idack o f)




Chapter 7

Summary

7.1 What Has Been Proved ?\

We have described three different correctness theorems for the design of TAMARACK-3.
The first two theorems state correctness results for the operation of TAMARACK-3 in
fully synchronous mode. These two theorems differ only in how they define a timing re-
lationship between different levels of specification. The third theorem states correctness
results for the operation of TAMARACK-3 in fully asynchronous mode. As mentioned
earlier, we have not formally considered the operation of TAMARACK-3 in extended cycle
mode.

Each correctness theorem includes explicit assumptions about the external environ-
ment, in particular, a behavourial model of external memory and how it is interfaced
to the microprocessor. In each case, the correctness theorem states that the predi-
cate TamarackBeh is an abstract model of the internal architecture as specified by the
predicate TamarackImp. Therefore, true statements about the behaviour of the ab-
stract model can be related to true statements about the specification of the internal
architecture.

In the course of establishing these general results, we have obtained some more specific
results about particular aspects of the design including:

e That the datapath bus is driven by (at most) one bus device whenever it is being
used to transfer datal

e That the microprocessor design correctly implements the sender part of the hand-
shaking protocol.

o A precise description of the next-instruction signal marking the end of an instruc-
tion cycle (which might not be obvious in the case of fully asynchronous mode).

Most of the proof effort concerns the fetch-decode-execute sequence for each program-
ming level operation during an instruction cycle. But the proof goes further than this
by considering the overall operation of the microprocessor, that is, how one instruction
cycle is related to the next instruction cycle. For instance, it shows that an interrupt
request does not interrupt the completion of a memory interaction (i.e. the repeat-loop
in state 0). It also shows that an interrupt request takes precedence, as one would
expect, over the normal flow of program control (when a previous interrupt is not still
being serviced).

1Strictly speaking, the proof has not directly addressed the question of whether bus conflicts can ever
occur.
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It is also important to describe the limitations of this proof of correctness. As we
remarked earlier, the formal verification of TAMARACK-3 focuses very specifically on
the register-transfer level operation of the internal architecture. Below and above this
level there are aspects of a complete design for TAMARACK-3 which are not formally
considered.

Chapter 3 described some aspects of the semantic gap between the abstract view of
sequential behaviour in our lowest level of formal specification and timing relationships
in actual hardware. This gap is bridged by a number of informal assumptions which are
not explicitly mentioned in the correctness results. Although our formal theory could be
extended with several more, increasingly detailed, levels of timing,? there will always be
a gap between formal proof (a mathematical concept) and actual hardware (a physical
device). As Cohn [30] remarks,

...a material device can only be observed and measured, not verified.
It can be described in an abstracted way, and the simplified description
verified, but again, there is no way to assure the accuracy of the description.

It is also important to understand that our formal theory says nothing about the
basic data types used to represent data in the microprocessor and primitive operations
involving these data types with the exception of two assumptions which appear explicitly
in the correctness theorems. It may surprise some readers that these details do not need
to be known, but their insignificance underlines the fact that very few aspects of the
computation performed by the hardware are actually taken account of in the formal
proof. The only significant forms of computation considered in the proof are:

e Computation of microinstruction addresses by the next address logic.
* Resolving de-centralized control over access to the system bus in the datapath.

e Extraction of individual bits and other sub-fields from the current microinstruction
word by decoding logic.

This absence of detail about basic types and primitive operations should not be seen
as a shortcoming or unfinished step in our formal proof. We have deliberately avoided
these details to clearly demarcate the boundaries between what has and what has not
been considered in the formal verification of TAMARACK-3. Building more details than
necessary (for this particular proof) into the computation model would have risked the
false impression that these details have been formally considered in the proof. Instead,
other levels of concern should be considered in separate theories. The next section
suggests how a hierarchy of parameterized theories (in the non-technical, general sense)
could be stacked upon one another by linking them together through representation
variables.

*Herbert [72,74] describes proofs techniques in the HOL logic for relating more detailed levels of
timing to synchronous level models. Dhingra [43] has used the HOL logic to give a formal foundation for
the design rules of a dynamic CMOS integrated circuit design style.
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7.2 Relating This Proof to Other Levels

The representation variable rep which appears as an extra parameter in definitions
throughout the formal specification of TAMARACK-3 is effectively a parameterization of
the formal theory. It provides a means of relating this theory to both lower and higher
level models of computation. We illustrate this point with several examples of how our
formal theory for TAMARACK-3 might be linked into a verified stack.

7.2.1 Lower Levels

By assigning an appropriate value to the representation variable rep, the formal theory
about TAMARACK-3 can be made to stack upon a lower level theory about the imple-
mentation of register-transfer level devices. This lowel level theory might, in turn, be a
generic specification parameterized by its own representation variable and stacked upon
an even lower level of representation at the transistor level.

To illustrate this idea with a simple example, the constant REP16 is defined as a value
for rep based on the built-in HOL data types described in [30,57,79]. In this case, we
have created data types for a 16-bit version of TAMARACK-3.

Define ("ISZERO16 w = ((VAL16 w) = O)");;

Define ("INC16 w = WORD16 ((VAL16 w) + 1)");;

Define ("ADD16 (w1,w2) = WORD16 ((VAL16 wi1) + (VAL16 w2))");;
Define ("SUB16 (wl,w2) = WORD16 ((VAL18 w1) - (VAL18 w2))"):;
Define ("OPCODE w = WORD3 (V (SEG (0,2) (BITS18 w)))");;

Define ("ADDRESS w = WORD13 (V (SEG (3,15) (BITS16 w)))")::

Define (
"REP16 =

ISZERO18, % iszero Y
INC18, % inc Y
ADD16, % add 9%
SUB16, % sub %
WORD18, % wordn Y
VAL16, % valn %
OPCODE, % opcode ¥
VAL3, % val3 %
ADDRESS, % address %
(A(x,y). FETCH13 x y), % fetch %
(A(x,y,z). STORE13 y z x), % store %
WORD4, % word4 %

VAL4M) ; ; % vald 9
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The current version of these built-in HOL data types (as given by the eval library
in the HOL88 system) is not fully axiomatized or secure,® but with a complete axiom-
atization it would be possible to derive the assumptions expressed by the predicates
Val3_CASES_ASM and Val4dWord4_ASM as proven theorems.

|- Val3_CASES_ASM REP16

|- ValdWord4_ASM REP16

If these assumptions were established as theorems for this particular value of the
representation variable, we could then obtain the following correctness result for a 16-
bit version of TAMARACK-3 (along with similar results for fully synchronous mode).

|- AsynSystem REP16 (idreq,mpc,mar,pc,acc,ir,rtn,arg,buf,idack,dack,mem) A
((VAL4 o mpc) O = 0)
"
let £ = TimeOf (((VAL4 o mpc) Eq 0) and (not dack)) in
TamarackBeh REP16 (idreq o f,mem o f,pc o f,acc o f,rtn o f,idack o f)

Hence, one of the purposes of relating our formal theory to lower levels is to re-
place assumptions about uninterpreted data types by theorems derived from lower level
representations of data. '

Another purpose is to derive correctness results for implementations of register-
transfer level primitives, for example, to verify that an implementation of the ALU
correctly implements a set of arithmetic/logical operations.

Because the current version of the built-in HOL data types for machine words is
not fully axiomatized or secure, we have used an alternate representation where bit
patterns are modelled by functions which map bit positions to bit values. In addition
to completeness and security, this representation offers the advantage of being able to
parameterize specifications by the number of bits in a machine word instead of the fixed
word widths provided by the built-in HOL data types. Functions such as Valn and
Wordn are defined to establish relationships between this function-based representation
and higher-algebraic levels, i.e., the natural numbers. Correctness results for implemen-
tations of register-transfer level primitives are expressed in terms of Valn and Wordn.
We have used this approach to verify a complete implementation of an earlier version
of TAMARACK-3 down to the transistor level [80,81,84,87,88].

7.2.2 Higher Levels

While lower levels of representation may yield theorems to replace assumptions about
data types, stacking higher levels upon our correctness results for TAMARACK-3 may

3An incomplete set of postulated axioms exists in the form of evaluation rules which use mk_thm
to create unproven theorems. The recursive data types package developed for HOL by Melham [103]
provides a foundation for building a secure set of data types for reasoning about machine words and bit
patterns.




7.2. Relating This Proof to Other Levels 122

conversely require the introduction of more assumptions about the data types. As
explained earlier, the use of uninterpreted data types and uninterpreted primitives for
operations on these data types makes computational aspects of our programming level
model somewhat transparent. To reason about the execution of programs requires the
introduction of more primitives and more assumptions to provide the programming level
model with more computation details.

At the very least, it would likely be necessary to provide some details of the operation
selected by inc, used to increment the program counter pc, in order to reason about the
sequential execution of TAMARACK-3 instructions. For example, the predicate INC_ASM,

Define (
"INC_ASM n (rep:rep_ty) =
Vw. ((valn rep) ((inc rep) w)) = ((((valn rep) w) + 1) MOD (2 EXP n))"):;

could be defined to provide an arithmetic interpretation for the operation selected from
the representation variable by inc.* In this case, machine words (of various sizes) are
modelled at this higher level by natural numbers where the finite precision of operations
performed by hardware is modelled by modular arithmetic. The parameter n is the
number of bits in a full-size machine word; for instance, n would be equal to sixteen for
a 16-bit version of TAMARACK-3.

Similar assumptions expressed by ADD_ASM and SUB_ASM provide arithmetic interpre-
tations for the operations selected by add and sub.® The predicate FETCH_STORE_ASM
provides an interpretation for memory operations.

Define (
"ISZERO_ASM (rep:rep_ty) =
Vw. ((iszero rep) w) = (((valn rep) w) = O)");;

Define (
"ADD_ASM n (rep:rep_ty) =
Ywi w2.
((valn rep) ((add rep) (wi,w2))) =
((((valn rep) wi) + ((valn rep) w2)) MOD (2 EXP n))");;

Define (
"SUB_ASM n (rep:rep_ty) =
Yl w2.
((valn rep) ((sub rep) (wi,w2))) =
((((valn rep) wi) - ((valn rep) w2)) MOD (2 EXP n))");;

4The assumption expressed by INC_ASM is stronger than necessary if it is only necessary to know that
the address field of the full-size machine word is incremented. This assumption would be too restrictive
for an implementation where the address bits are not necessarily the low-order bits of the full-size machine
word stored in the program counter pc.

5Subtraction in the natural numbers as axiomatized in HOL does not correspond exactly to sub-
traction in two’s complement arithmetic. The definition of two’s complement subtraction given in [84]
provides a more accurate model of how this ALU operation would likely be implemented in hardware.
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Define (
"FETCH_STORE_ASM (rep:rep_ty) =
Vm al a2 w.
((al = a2) =
((fetch rep) (((store rep) (m,al,w)),a2)
((fetch rep) (((store rep) (m,al,w)),a2)

w) |
(fetch rep) (m,a2)))");;

Like the assumptions expressed by Val3_CASES_ASM and ValdWord4_ASM, these ad-
ditional assumptions could be proven as theorems from a lower level representation of
data. For instance, a complete axiomatization of built-in HOL data types for machine
words would yield the theorems,

|- INC_ASM 16 REP16
|- ISZERO_ASM REP16
|- ADD_ASM 16 REP16
|- SUB_ASM 16 REP16

|- FETCH_STORE_ASM REP16

as properties of the constant REP16. In the case of INC_ASM, ADD_ASM and SUB_ASM, the
axiomatization would need to include the following property. A similar theorem has
been derived for the function-based representation described in [81,84].

|- Vm. VAL16 (WORD16 m) = (m MOD (2 EXP 18))

Together with some additional assumptions about operations for extracting the op-
code and operand address bits from a full-size machine word, the above assumptions
would introduce enough substance to the programming level model of TAMARACK-3
to reason about the execution of programs. In particular, it would provide enough
computational power to support the compiler verification study reported in [85,86].

7.3 Putting Formal Specifications to Work

At the beginning of this dissertation, we emphasized that formal descriptions must
easily translate into established notations to be understood in a wider context. In this
section, we briefly mention two experiments in verification-driven design based on earlier
versions of TAMARACK-3.
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7.3.1 A Fabricated TAMARACK-1 Microchip

An 8-bit version of TAMARACK-1 was implemented as a 5,000 transistor CMOS mi-
crochip in December 1985 while the author was a visiting student at Xerox PARC. The
purpose of this exercise was to study the role of formal specification in the implemen-
tation of a design. The design was small enough to be completed in two months but
was sufficiently varied to be representative of many aspects of VLSI design. The fabri-
cated chip was tested in April 1986 at the University of Calgary and found to be fully
functional.

A significant difference between the HOL specification and the design hierarchy used
to build the chip was the functional-slice® organization of the datapath in the HOL spec-
ification in contrast to the bit-slice organization of the datapath in the design hierarchy.

A more interesting result was the discovery that the formal verification of the design
missed a design error: there was no reset button to initialize the microinstruction pro-
gram counter. After the design was submitted for fabrication and long after its formal
verification, we decided to simulate the design using a switch level simulator involving
a more accurate model of a signal value. The design failed to simulate properly because
the initial state of the microcode program counter was undefined and there was no way
to force this signal to a defined state. Fortunately, when the actual chips were returned
and tested we found that the fabricated chip would eventually reset to a defined state
due to electrical factors not modelled at the switch level and the chip worked correctly.

The discovery of this error lead us to extend the original correctness proof down
to the switch level. In addition to showing that the revised design of TAMARACK-1
could be reset to a well-defined state, it was necessary to prove that, once initialized,
the hardware model would remain in a well-defined state. Establishing this fact was
more work than expected partly because it involved functional aspects of the design in
addition to switch level considerations. It depended, for instance, on showing that at
most one bus device would ever attempt to assert a value onto the datapath bus.

7.3.2 Silicon Compiler Interface

In collaboration with researchers at SRI International [89], we undertook a simple exper-
iment to investigate how formal methods could be interfaced with practical CAD tools
by hand-translating the HOL specification for TAMARACK-2 into a design hierarchy for
a commercial silicon compiler called GENESIL.”

The GENESIL Silicon Design System is a silicon compiler, an automated
tool that contains the IC design expertise to transform a functional spec-
ification into a database from which an IC can be produced. The system
designer using GENESIL need not know the lowest details of IC design.

[GENESIL System Users Manual, page 1-1]
We originally hoped that formally verified design would be very close to the level

of description required by the silicon compiler. These two levels of description indeed
turned out to be very closely related from a structural point of view. However, we found

¢Anceau [2] elaborates on the difference between functional-slice and bit-slice views.
"GENESIL Silicon Design System, Silicon Compiler Systems Corp., San Jose, California, 1988
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a wider semantic gap than expected between the view of sequential behaviour in the
formally verified model and the view of sequential behaviour supported by the silicon
compiler.

This semantic gap contributed to a design error even though the design was correct
with respect to the built-in rules for the two-phase, non-overlapping design style. In
particular, there was a mismatch between the single-phase view of sequential behaviour
in the formal specification and the two-phase view supported by the silicon compiler.
Although this experiment in verification-driven design revealed a semantic gap for this
particular level of bottom level specification, this does not represent any kind of inherent
limitation of formal methods.

7.4 Conclusion

This dissertation has described methods based on formal proof and mechanical proof-
generation which can be used to increase confidence in the design of a microprocessor-
based system. In particular, these methods can be used to demonstrate that a design is
free from errors to the extent that formal descriptions of the design and requirements
are related by a formal proof.

The principal contribution of this research is to recommend the use of generic spec-
ification and the use of natural notations from other formalisms in a single unifying
framework. We have also shown how generic specification can be implemented in a
pure formalism, namely higher-order logic, without adding new primitive constructs.

Previous work, using more constrained approaches, has made significant progress to-
wards the formal specification and verification of microprocessor-based systems. How-
ever, genericity and the use of natural notations are both likely to be key mechanisms
when verification problems are scaled upwards to the complexity of realistic applications.

Finally, we have argued that the primary purpose of using mechanical proof gener-
ation techniques to reason about software and hardware is to support the intelligent
participation of a human verifier in the rigorous analysis of a design at a level which
supports clear thinking.
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Totally Verified Systems:
Linking Verified Software to Verified Hardware

Jeffrey J. Joyce
University of Cambridge

Abstract. We describe exploratory efforts to design and verify a compiler
for a formally verified microprocessor as one aspect of the eventual goal of
building totally verified systems. Together with a formal proof of correctness
for the microprocessor, this yields a precise and rigorously established link
between the semantics of the source language and the execution of compiled
code by the fabricated microchip. We describe, in particular: (1) how the
limitations of real hardware influenced this proof; and (2) how the general
framework provided by higher-order logic was used to formalize the compiler
correctness problem for a hierarchically structured language.

Keywords. compiler correctness, hardware verification, machine-
assisted theorem proving, higher-order logic, safety-critical systems.

1. Introduction

Many safety-critical systems are implemented by a combination of hardware and
software. The reliability of these systems depends not only on correct hardware
and correct software, but also on the correctness of the compiler which provides
the link between hardware and software levels. This paper describes exploratory
efforts to design and verify a compiler for a formally verified microprocessor called
‘“Tamarack’. The source language is a very simple, hierarchically structured lan-
guage with only a few basic constructs, e.g., expressions, assignment statements,
while-loops, but this is enough to demonstrate how our approach could be applied
to more realistic languages. We have used higher-order logic to formally specify
this compiler and prove that it generates Tamarack machine code which executes
correctly with respect to a denotational semantics for the source language.

The verification of this compiler builds upon an earlier proof of correctness showing
that a transistor level model of the target machine satisfies a behavioural spec-

1 Aythor’s current address: Computer Laboratory, University of Cambridge, Pembroke Street,
Cambridge CB2 3QG, England. After January 1, 1990: Department of Computer Science, University
of British Columbia, 6356 Agricultural Road, Vancouver B.C., Canada V6T 1W5.




ification based on the semantics of the target machine instruction set [16]. The
verification of both the compiler and the target machine in higher-order logic have
been mechanically checked by the HOL system [13]. The HOL system has also been
used to automatically generate substantial portions of these proofs.

The compiler correctness problem has a very long history beginning in the mid-
1960’s, but almost all of the previous work on this problem has been restricted to
abstract, idealized target machines. These idealizations can include infinite word
size and memory size, read-only code and symbolically addressed memory. By
contrast, our target machine is not idealized hardware; indeed, an 8-bit version of
the Tamarack microprocessor has been implemented as a CMOS microchip. Hence,
our use of non-idealized hardware contributes to the more novel aspects of the work
reported here.

Previous work has also generally relied upon specialized frameworks such as domain
theory and algebraic concepts which are well-suited to the compiler correctness
problem. But in the context of verifying both a compiler and the hardware of
the target machine, a very general framework is needed to handle this many-sided
problem. Such a framework is provided by the HOL system, a mechanization of
higher-order logic, which has been used to reason about all kinds of computational
systems.

Like most other examples of compiler verification, we ignore the problems of parsing
and syntax analysis and use the abstract syntax of the source language as our
starting point. The compiler is defined as a function which is applied to the parse
tree of a program to generate code for the target machine. Semantic functions are
applied in a similar way to the parse tree to generate the denotation of a program.

The work described here explores one aspect of the eventual goal of building totally
verified systems. Assuming that our transistor level specification is an accurate
model of the hardware, the compiler correctness proof combined with our earlier
proof of correctness for the target machine results in a precise and rigorously es-
tablished connection between the source language semantics and the execution of
compiled code on the fabricated microchip. Hence, the semantics of the source lan-
guage can be used to directly reason about the effect of running compiled programs
on real hardware.

A detailed description of the Tamarack compiler and its formal verification is given
in a separate report [17]. In this paper, we briefly outline the structure of this
proof describing, in particular: (1) how the limitations of real hardware influenced
this proof; and (2) how the general framework provided by higher-order logic was
used to formalize the compiler correctness problem for a hierarchically structured
language.




2. The Compiler Correctness Problem

The compiler correctness problem is easier to formulate than the general problem
of program correctness. Unlike the general case, the compiler correctness problem
has a built-in starting point for stating correctness, namely, the semantics of the
source language. Intuitively, this problem is a question of whether the execution of
compiled code agrees with the semantics of the source language. Compiler correct-
ness is often expressed by the commutativity of a diagram similar to the one shown
in Figure 1 where the two paths in the diagram from the source language programs
to target language meanings (around opposite corners) are functionally identical.

Source Language Target Language
Programs Programs
[ ] i
Compiler
Source Language Target Language
Semantics Semantics
Y Abstraction Functions Y
[ ] > @
Source Language Target Language
Meanings Meanings

Figure 1: Compiler Correctness expressed by Commutativity.

The earliest example of compiler correctness (that we are aware of) was described
more than twenty years ago by J. McCarthy and J. Painter [20]. They verified an
algorithm for compiling arithmetic expressions into code for an abstract machine.
This early work established a paradigm for subsequent work on compiler correctness
(as summarized by A. Cohn [7]): (1) abstract syntax; (2) idealized hardware; (3)
abstract specification of the compiler; (4) denotational source language semantics;
(5) operational target machine semantics; (6) correctness stated as a relationship
between the denotation of a program and the execution of its compiled form; and
finally, (7) proofs by induction on the structure of source language expressions.

Subsequent developments include those described by: D. Kaplan [18]; R. Burstall
and P. Landin [4]; R. Milner and R. Weyhrauch [23]; F. Morris [25,26]; L. Chirica
[5]; R. Milne and C. Strachey (22]; J. Goguen et al. [11]; B. Russell [31); A. Cohn
[7]; W. Polak [29,30]; J. Thatcher et al. [33]; L. Chirica and D. Martin [6]; and
P. Collier [9]. These developments include the use of algebraic methods and domain
theory, more language features, verification by formal proof based on axioms and
inference rules, mechanical assistance for proof-checking and proof-generation, and
correctness proofs about parsing and syntax analysis.




However, all of the work mentioned above involves the use of a target machine with
idealized features. Typically, the target machine has no finite limitations on word
size or memory size. Another idealization is the use of read-only code, which avoids
the problem of showing that a compiled program is not over-written during its
execution. The target machine is occasionally provided with abstract mechanisms
such as an infinite stack or display mechanism (admittedly, finite approximations
of these mechanisms are available in real hardware). In some compiler verification
examples, the memory of the target machine is addressed symbolically by program
variables, dodging the problem of symbol table generation. Similarly, the target
language may be block structured to avoid the complication of generating unique
labels for instructions.

These idealizations, while simplifying the problem, can also be justified as reason-
able strategies for structuring both the compiler and a proof of its correctness into
several layers. Non-idealized aspects of hardware, in the context of programming
language semantics and implementation, were recognized long ago; for instance, see
papers by C. Hoare [15] and M. Newey [27]. But to our knowledge, these details and
the attendant proof complexity have not been confronted until recently, in the work
described here, and in J Moore’s formal verification of the Piton assembler for the
FMS8502 microprocessor [24]. As part of the verified stack described by W. Bevier
et al. [2], Piton provides considerable support as an intermediate language with
stack-based instructions, typed data and recursive procedures 1, Moore’s proof
takes account of the finite limitations of hardware; he also deals with issues such
as allocating memory for program variables and loading compiled code and data
into a single memory image. The semantics of Piton are given operationally by a
formally defined interpreter expressed as a recursive function in the Lisp-like syntax
of Boyer-Moore logic [3].

Our exploratory efforts with a simple ‘toy’ language are quite modest when com-
pared to Moore’s work on Piton. However, we have tackled a somewhat different
problem by considering a hierarchically structured source language. We expect that
methods similar to those described in this paper could be used to verify a compiler
for a structured assembly language such as Vista [19] which is being used to write
applications software for the (partially) verified Viper microprocessor (8,10,19]. An-
other important difference is the operational-style semantics of Piton in contrast to
our denotational approach. We believe that the abstract and concise nature of a
denotational semantics will be an advantage when compiler correctness results are
used to relate conventional forms of reasoning about software (e.g., a verification
condition generator based on Hoare logic) to the execution of compiled software on
verified hardware.

1 As another level in the verified stack described by Bevier et al. [2], W. Young has verified a code
generator for a hierarchically structured source language with Piton as the target language [34].




3. The Source Language

Our source language is a very simple imperative language. It is not intended to be
a useful programming language; it only provides a few basic constructs in order to
demonstrate how our approach could be applied to more realistic languages. For in-
stance, the only kind of compound arithmetic expression is a plus-expression. Con-
ditional statements are not included because while-loops cover all the proof difficul-
ties (and more) presented by conditional statements. We also simplify code genera-
tion by imposing an unusual restriction on plus-expressions and equal-expressions:
the left-hand sides of these expressions must be atomic. An informal description of
the abstract syntax for this language is shown below.

Aexp ::= {0,1,2,...} | Vars | Vars + Aexp
Bexp ::= Vars = Aexp | not Bexp
Cexp ::= skip | Vars := Aexp | Cexp ; Cexp | while Bexp do Cexp

There are three syntactic categories: arithmetic expressions, Boolean expressions
and command expressions (or simply, commands). Vars is a set of string tokens
which are used as variable names in programs, e.g., ‘i‘ and ‘sum‘ in the program
shown in Figure 2. This program, called “SUM_0_to_9”, computes the sum of the
numbers 0 to 9 inclusive.

i = 0;

sum := 0;

while not (i = 10) do
sum := sum + i;
i:=1+1

Figure 2: The SUM_0_to_9 Program.

A denotational semantics for this simple language involves the definition of seman-
tic functions for each syntactic category, namely, SemAexp, SemBexp and SemCexp.
These functions map syntactic objects to their denotations as suggested by the type
declarations,

SemAexp: Aerp— Asem
SemBexp: Bexp— Bsem
SemCexp: Cezp—Csem

where Aezp, Bezp and Cexp are syntactic domains and Asem, Bsem and Csem
are the corresponding semantic domains.

These semantic functions can be described informally by a set of semantic clauses
using the emphatic brackets | and | to surround syntactic objects when applying




semantic functions to them [12]. Semantic operators on the right-hand sides of these
clauses are used to construct denotations from variables, constants and denotations
of sub-expressions. -

SemAexp [v] = SemVar v
SemAexp [c] = SemConst ¢
SemAexp [v + aexp] = SemPlus (v,SemAexp [aexp])

SemBexp [v = aexp] = SemEq (v,SemAexp [aexp])
SemBexp [not bexp] = SemNot (SemBexp [bexp])

SemCexp [skip] = SemSkip

SemCexp [v := aexp] = SemAssign (v,SemAexp [aexp])

SemCexp [cexpl ; cexp2] = SemThen (SemCexp [cexpl],SemCexp [cexp2])
SemCexp [while bexp do cexp] = SemWhile (SemBexp [bexp],SemCexp [cexp])

To formally define the functions SemAexp, SemBexp and SemCexp, we need a suit-
able representation for syntactic objects. This representation must allow SemAexp,
SemBexp and SemCexp to be defined as functions which satisfy the above (sometimes
recursive) semantic clauses. The next section of this paper describes how syntactic
objects can be represented in logic as parse trees.

4. Representing Hierarchical Structure

Many of the specialized frameworks used in earlier work on compiler verification
directly support the representation of syntactic objects. While a general framework
does not necessarily provide this support, it is still possible to represent syntactic
objects using only rudimentary data types. We have demonstrated how this can be
domne in higher-order logic using a relatively concrete model for the representation
of syntactic objects as parse trees such as the one shown in Figure 3.

In a conventional programming language, a parse tree can be implemented by an
indexed list of records. The structure of the tree would be represented by pointers
(record indices) in each record to zero, one or two sub-expression(s). Such data
structures can be modelled in higher-order logic % using: (1) n-tuples to represent
records; and (2) functions from indices to n-tuples to represent indexed lists of
records. Since the representing type does not restrict how records are structurally
composed into parse trees, it is necessary to have validity predicates, ValidAexp,
ValidBexp and ValidCexp, to check whether a parse tree conforms to the abstract
syntax of the source language.

2The HOL formulation of higher-order logic associates a type with every term. Every type is a
primitive type (e.g., Booleans, natural numbers, string tokens) or built up from existing types using
type constructors, Cartesian product is expressed by ty1xty2 while tyl—ty2 denotes the type of all
total functions with arguments of type tyl and results of ty2.




Based on this representation for parse trees, we can define higher-order mapping
functions, MapAexp, MapBexp and MapCexp, which allow a set of operations to be
applied to the nodes of a parse tree in the same way that the Lisp function ‘mapcar’
allows an operation to be applied to the elements of a list. We use these mapping
functions to define operations on parse trees by specifying operations for each kind
of expression. These operations are applied recursively to the entire parse tree.

l

Then
) L____\'
{
Assign ‘i Then
Const 0 Assign ‘sum®
Const 0
_J
(
While
) L__W
(
Not Then
Eq ‘i¢ Assign ‘sum® Assign ‘i
Const 10 Plus ‘sunm® Plus ‘i
Var ‘i Const 1

Figure 3: The Parse Tree for the SUM.0_to_9 Program.



For example, the definition of SemCexp (given in the next section) uses the mapping
function MapCexp to recursively apply semantic operators to the parse tree of a
command. This use of MapCexp is illustrated by the following term which denotes
the result of applying SemCexp to the parse tree in Figure 3.

SemThen (
SemAssign (‘i‘,SemConst 0),
SemThen (
SemAssign (‘sum‘,SemConst 0),
SemWhile (
SemNot (SemEq (‘i‘,SemConst 10)),
SemThen (

SemAssign (‘sum‘,SemPlus (‘sum‘,SemVar ‘i‘)),
SemAssign (‘i‘,SemPlus (‘i‘,SemConst 1))))))

In addition to defining operations on expressions, we will also want to prove the-
orems about the result of applying such operations to expressions. To prove that
a property holds for all expressions in a particular category, it is sufficient to show
that the property holds for each kind of expression in the category assuming that
it holds for all sub-expressions. This form of logical argument is called structural
induction. Based on our representation for parse trees, we can prove structural
induction theorems for each of the syntactic categories of the source language.

For instance, structural induction for arithmetic expressions is expressed by the
following theorem. The predicates IsVar, IsConst and IsPlus are selectors for the
three different kinds of arithmetic expressions and the function Right0f is used to
obtain the sub-expression of a plus-expression.

Fenm VP

(Vexp. IsVar exp = P exp) A

(Vexp. IsConst exp = P exp) A

(Vexp.
IsPlus exp A ValidAexp (RightOf exp) —
(P (RightOf exp) == P exp))

=

Vexp. ValidAexp exp => P exp

Structural induction only holds for valid parse trees; however, we may assume, as
part of the inductive hypothesis, that the parse tree for the sub-expression is valid
(in the case of a plus-expression). Structural induction theorems for Boolean and
command expression have similar constraints.

The use of validity predicates to check whether a parse tree conforms to the abstract
syntax of the source language is slightly cumbersome. Validity predicates provide
a simple way to represent structure in a generalized framework using only rudi-




mentary data types. A more elegant approach avoids the use of validity predicates
by formally introducing new types (as sub-types of the representing type) which
contain (by definition) only valid syntactic objects.

We have used a relatively concrete representation for syntactic objects as collec-
tions of records organized into parse trees. The details of this representation are
unimportant and are hidden at early point in our proof by the derivation of ab-
stract specifications for the mapping functions MapAexp, MapBexp and MapCexp and
the derivation of the above-mentioned structural induction theorems. In a more
abstract approach, the unimportant details of a concrete representation can be
entirely avoided by directly introducing a recursive type whose elements are (by
definition) valid syntactic objects. This approach was taken by Cohn [7] working
in LCF which is also a typed logic. This more abstract approach could also be
followed in our higher-order logic framework - a task made easier by T. Melham’s
recent implementation of a recursive data types package for the HOL system [21].

To summarize this section, syntactic objects can be represented as parse trees which,
in turn, can be represented by rudimentary data types in a generalized framework
such as higher-order logic. Operations on parse trees can be defined in terms of
a set of mapping functions; reasoning about parse trees is supported by a corre-
sponding set of structural induction theorems. Full details on this representation,
the mapping functions and the structural induction theorems are given in [17].

5. Semantics

A denotational semantics for the source language can be defined in higher-order
logic using higher-order functions and relations as the denotations of expressions
and commands respectively. This is a somewhat different framework than usual,
i.e., Scott’s logic for computable functions, but it is denotational in the sense that
program constructs are mapped to abstract mathematical entities [12]. M. Gordon
has also used higher-order logic to represent a denotational semantics in a similar
manner [14].

The execution of a program is modelled by a sequence of states where each state
is a mapping from variable names to their values. In this simple language only
natural numbers can be assigned to variables. Hence, a state is represented by a
function from string tokens to the natural numbers as shown by the following type
abbreviation.

state = tok—num

The execution of a source language program results in a sequence of updates to the
current state. We use a standard model from denotational semantics for the effect




of an update. The function Update creates a new state identical to the current
state except for the updated variable which is assigned a new value. The following
definition introduces some of our notation: Update is defined in terms of a function-
denoting A-expression and a conditional expression of the form “b = t1 | t2”.

ey Update (s:state,x,y) = Az. (x =z) =y | (8 2z)

The denotations for arithmetic and Boolean expressions are functions which spec-
ify the value of the expression in terms of the current state. The denotation of a
command is a relation on pairs of initial and final states. The following type ab-
breviations summarize the types of denotations used for each of the three syntactic
categories. These denotations are each parameterized by a number, namely, the
word size of the target machine.

Asem = num—state—num
Bsem = num—state—bool
Csem = num— (stateXx state) —bool

We can now begin to define semantic operators for expressions and commands in the
source language. The definition of SemVar states that the denotation of a variable
is its value in the current state. This operator is a curried function which takes its
arguments ‘one at a time’. When SemVar is applied to the first of its arguments,
i.e., SemVar v, the result is a term with the type given by the type abbreviation
Asem (where ws is the word size of the target machine).

Faey SemVar (v:itok) = Adws. Aq. q v

The denotation of a constant is the value of the constant modulo the word size
of the target machine. This use of the MOD function is due to our eventual goal of
relating the semantics of the source language to the execution of compiled programs.
Modular arithmetic is a convenient way of taking into account the finite word size of
non-idealized hardware; an early example of this use of modular arithmetic appears
in Hoare’s seminal paper on axiomatic semantics [15].

F4ey SemConst (c:num) = Aws. Aq. c MOD 2"®
A plus-expression is an example of a compound expression; its denotation is ob-
tained from its immediate constituents, in this case, from the sub-expression on the

right-hand side of the ‘+’. Modular arithmetic is also used here to model the finite
word size of the target machine.

Fae; SemPlus (v:tok,s:Asem) = Aws. Aq. ((q v) + (s ws q)) MOD 2"°

The semantic operator for equal-expressions is parameterized by the string token
appearing on the left-hand side of the ‘=’ and by the denotation of its arithmetic




sub-expression. The semantic operator for not-expressions is parameterized by the
denotation of its Boolean sub-expression.

Fgey SemEq (v:tok,s:Asem) = dws. Ag. (q v) = (s ws q)
Fdey SemNot (s:Bsem) = Aws. Aq. -(s ws q)

The semantic operators for commands yield relations on pairs of states. The sim-
plest case is the Skip command which has no effect on the state. Therefore, the
initial and final states of a Skip command are related if they are identical 3.

Faey SemSkip = Aws. A(ql,q2). q1 = q2

In the case of an assignment statement, the final state is obtained from the initial
state by the Update function.

Faey SemAssign (v:tok,s:Asem) =
Aws. A(ql,q2). q2 = Update (qi,v,s ws qi)

In defining the semantics of a then-command (two commands in sequence), the two
sub-commands must share a common intermediate state. Higher-order existential
quantification is used to hide this intermediate state in the definition of SemThen.
In a more standard framework, the denotation for a sequence of commands would
be obtained by the functional composition of two partial functions. Partial func-
tions allow for the possibility of non-terminating commands; however, all functions
in higher-order logic are total. For this reason, we are using relations instead of
partial functions. Our use of existential quantification for the denotation of a then-
command is the analogue of functional composition for relations.

Faes SemThen (s1:C'sem,s2:Csem) =
Aws. A(ql,q2). dq3. s1 ws (q1,93) A 82 ws (q3,q2)

The function Step is defined (by primitive recursion) to describe the condition
where n iterations of a while-loop result in a final state, that is, a state in which
the Boolean condition is false. Zero iterations of the while-loop is equivalent to
the execution of a Skip command; otherwise, n iterations of the while-loop has the
same effect as executing the body of the while-loop once followed by n-1 iterations
of the while-loop. The semantic operators SemSkip and SemThen are used to define
the zero and non-zero cases respectively. Since the actual number of iterations is
not relevant to the semantics of a while-loop, this number is hidden by existential
quantification in the definition of SemWhile.

SPredicates (including relations) in the HOL formulation of higher-order logic are simply func-
tions which return Boolean values. Hence, the lambda expression, A(q1,q2) . ql = q2 denotes the
equality relation for pairs of states.




Fdef Step n (s1:Bsem,s2:Csem) ws (q1,q2) =
(n = 0) = (((s1 ws ql) = F) A SemSkip ws (q1,q2)) |
(((s1 ws q1) = T) A
SemThen (82,Step (n-1) (s1,s2)) ws (q1,q92))

Faes SemWhile (s1:Bsem,s2:Csem) =
Aws. A(q1,92). dn. Step n (s1,s82) ws (q1,q2)

Although our use of higher-order logic is an unusual framework for denotational
semantics, some familiar properties can be derived for the semantic operators from
the definitions given in this section. For instance, assuming for a moment that our
source language also includes conditional statements, the while-loop ,

lwhile bexp do cexp!
should have the same meaning as,
lif bexp then (cexp ; while bexp do cexp) else skip!

This property is expressed formally by the theorem,

Finm V 81 82.
SemWhile (s1,82) =
SemCond (ei,SemThen (s2,SemWhile (s1,s82)),SemSkip)

where SemCond is a semantic operator for conditional statements defined as:

Faey SemCond (s1:Bsem,s2:Csem,83:Csem) =
Aws. A(ql,q2).
((s1 ws q1) = T) = (82 ws (q1.,92)) | (83 ws (ql1,q2))

The operators, SemVar, SemConst, SemPlus, SemEq, SemNot, SemSkip, SemAssign,
SemThen and SemWhile, describe how the denotation of an expression is obtained
from its top-level form and the denotations of its sub-expressions. The denotation
of a complete expression (including commands, and hence, complete programs) is
obtained by using the mapping functions mentioned in Section 4 to recursively apply
these operators to every node in a parse tree. From the abstract specifications for
MapAexp, MapBexp and MapCexp given in [17], it is quite easy to show that the
following definitions satisfy the semantic clauses given earlier in Section 3.

Fdaey SemAexp = MapAexp (SemVar,SemConst,SemPlus)

Faes SemBexp = MapBexp (SemAexp,SemEq,SemNot)

Fdey SemCexp
MapCexp (SemAexp,SemBexp,SemSkip,SemAssign,SemThen,SemWhile)




Later in this paper we will show how the mapping functions are used in a similar
way to compile a complete program by recursively applying compilation operators
to every node in a parse tree.

6. Compiler Overview

The Tamarack compiler is implemented by two phases. The original motivation
for splitting the compilation process into two phases was to control the complexity
of the formal proof of correctness. However, the use of an intermediate form is
common practice in compiler design for more conventional reasons. For instance,
it may be possible to compile more than one source language into the intermediate
form and/or compile the intermediate form into the machine code of more than one
target machine. This also suggests certain opportunities for re-using correctness
results.

The first phase compiles the hierarchically structured program into a flat interme-
diate form called SM code. In general, this is a process of compiling an expression
by first compiling its sub-expressions (if any) and then using the result to generate
code for the expression itself. The second phase of the compiler assembles SM code
into executable Tamarack machine code called TM code. To generate TM code
from the intermediate form, a symbol table is constructed to map symbols in the
source program to memory addresses. Each SM instruction is mapped to a frag-
ment of TM code where each TM instruction is a 3-bit opcode and an address field
packed together into a single memory word. This second phase of the compilation
process performs (very simple versions of) the tasks associated with the assembler
and linking loader in a conventional programming environment. The two phases
of the compilation process are shown in Figure 4 where the example SUM_0_to_9
program is first compiled into SM code and then assembled into TM code.

As an intermediate form, SM code shares some common features with the source
language. In both cases, storage is addressed symbolically by variable names and
‘program space’ is separate from data and cannot be over-written. However, SM
code also shares some common features with the target language, in particular, they
are both linear sequences of accumulator-based instructions.

The semantics of SM code are described operationally by the specification of an
abstract machine (called an SM machine) which directly executes this intermedi-
ate form. The SM machine consists of a fixed program, an infinite, symbolically
addressed store, a program counter and an accumulator. For simplicity, we have
designed the SM machine to operate exclusively on natural numbers where multiple
data types might otherwise have been used. The Boolean values T and F are repre-
sented by the natural numbers 0 and 1 respectively. Modular arithmetic is used to
model the finite word size of the target machine.
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(*CONST*,ARB,0)
(‘ST*,*“i‘,ARB)
(‘CONST*,ARB,0)
(*ST*¢, ‘sum‘,ARB)
(‘CONST*,ARB,10)
(‘EQ‘,*i*,ARB)
(*NOT*,ARB,ARB)
(*NOT‘,ARB,ARB)
(*JZR* ,ARB,base+16)
(‘LD*,‘i‘,ARB)
(‘ADD*, ‘sum‘,ARB)
(¢ST*, ‘sum‘,ARB)
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(‘ADD‘, ‘i‘,ARB)
(‘ST*, ‘i ,ARB)
(*JMP*,ARB,base+4)
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base+3:
base+-4:

base--T:
base+8:

base+11;

base-16:

base-23:

base-+30:
base+31:
base+32:
base+33:
base+34:

base+37:
base-38:
base+39:
base+40:

(LD n (base+2))

(JMP n (base+3))

(0 MoD 27*3)

(ST n (symtab ‘i‘))
(LD n (base+6))

(JMP n (base+7))

(0 MoDp 27+3)

(ST n (symtab ‘sum‘))
(LD n (base+10))
(JMP n (base+11))
(10 MOD 2°+3)

(SUB n (symtab ‘i‘))
(JZR n (base+16))
(LD n (base+1B))
(JMP n (base+16))

i

(JZR n (base+20))
(LD n (base+19))
(JMP n (base+23))

0

(LD n (base+22))
(JMP n (base+23))

1

(JZR n (base+27))
(LD n (base+28))
(JMP n (base+30))

0]

(LD n (base+29))
(JMP n (base+30))

i

(JZR n (base+40))
(LD n (symtab ‘i‘))
(ADD n (symtab ‘sum‘))
(ST n (symtab ‘sum‘))
(LD n (base+36))
(JMP n (base+37))

(1 MOD 27t3)

(ADD n (symtab ‘i‘))
(ST n (symtab ‘i‘))
(JMP n (base+8))

Figure 4.




7. Compiling Expressions and Commands

We begin to specify the compiler by defining a function for each kind of expression
which compiles that expression into SM code. Each of these functions operates
only on the top-level form of the expression; sub-expressions (if any) are compiled
separately and the results supplied as arguments to the function. There is a close
parallel between the role of these functions in compiling a hierarchically structured
program and the semantic operators mentioned earlier in Section 5. For this reason,
we call these functions compilation operators.

The intuitive sense in which the compilation operators for arithmetic and Boolean
expressions are correct is fairly obvious. For instance, the compilation operator for
plus-expressions is correct if and only if execution of the compiled code loads the sum
of the sub-expression and the value of the program variable into the accumulator.
In general, a compilation operator is correct if and only if the effect of executing the
code generated for an expression or command agrees with its denotation generated
by the corresponding semantic operator. In the case of an arithmetic expression,
the value of the accumulator after executing the compiled code must be equal to
the value given by its denotation in the current state. For a Boolean expression,
the accumulator must contain either 0 or 1 depending on whether the denotation
of the expression evaluates to true or false respectively.

Because commands do not necessarily terminate, the sense in which compilation
operators for commands are correct is less obvious. By ‘termination’, we mean that
the denotation of a command relates the initial state q1 to a final state q2, i.e., that
there exists a final state q2.

ey Terminates p ws q1 = 3q2. SemCexp p ws (ql,q2)

Termination, in this sense, is a property of the abstract mathematical entities de-
noted by source language programs; the question of whether the SM machine halts
when the compiled form of the program is executed is prima facie a different matter.
For an SM machine ‘to halt’, means that it eventually reaches the end of the SM
code.

Using these distinct notions of termination and halting, the correctness of a compila-
tion operator for a command is expressed by separate conditions for the terminating
and non-terminating cases. In the terminating case, the SM machine must halt and
the final state of its store must agree with the final state given by the corresponding
denotation. In the non-terminating case, the SM machine must not halt.

After formalizing these intuitive notions of correctness, we prove that the compila-
tion operator for each kind of expression is correct with respect to the corresponding
semantic operator. These correctness results are obtained by a sequence of infer-




ences patterned on the symbolic ezecution of the compiled code for an expression.
This use of the term ‘symbolic execution’ is purely descriptive; our proof technique
is based entirely on the inference rules of higher-order logic.

This proof technique is straightforward for atomic expressions. Each step in the
symbolic execution of the compiled code corresponds to the symbolic execution of
a single SM instruction. A formal model of the SM machine is specified in terms
of a next state function which is used to step through the code generated by the
compilation operator for the atomic expression. After the appropriate number of
steps, we show that the resulting state of the SM machine satisfies the correctness
condition for this expression.

For compound expressions (including compound commands) symbolic execution
involves steps corresponding to the execution of sub-expressions in addition to the
execution of single SM instructions. We assume that the appropriate correctness
conditions hold for the sub-expressions and use these assumptions to reason about
the execution of each sub-expression as single steps in the symbolic execution of
the compound expression. The remaining steps (steps corresponding to single SM
instructions) are symbolically executed by an application of the next state function.

For example, the following theorem states that the top-level form of a plus-expression
is compiled correctly by the compilation operator CmpPlus with respect to the deno-
tation produced by the semantic operator SemPlus. The correctness condition for
arithmetic expressions is expressed by the predicate AexpCorrect. The variables ¢
and s are the compiled code and denotation respectively of the sub-expression on
the right-hand side of the ‘+’.

Finm V¢ 8 v.
AexpCorrect (c,s) —
AexpCorrect (CmpPlus (v,c),SemPlus (v,s))

Similar results are obtained for every other kind of expression in the source language.
For most expressions, symbolic execution corresponds to a fixed sequence of steps.
However, correctness results for while-loops are more difficult and involve proofs
by mathematical induction. The terminating case for while-loops is proved by
mathematical induction on the number of iterations. The non-terminating case is
even more difficult because there is more than one way that a while-loop can fail to
terminate: at any point, the body of the while-loop may fail to terminate, or else
the while-loop itself may continue to loop forever.

There are two essential ideas being used here to reason about compound expres-
sions. One is the idea of using assumptions about the correctness of sub-expressions
to prove correctness results for compound expressions. The other is the idea of
‘mixed-mode’ symbolic execution where single steps correspond to either single SM
instructions or to sub-expressions.




8. Compiling Complete Programs

In section 4 we showed how semantic functions for each syntactic category can be
defined by applying the mapping functions MapAexp, MapBexp and MapCexp to the
semantic operators. In a similar manner, compilation functions for each syntactic
category can be obtained by applying the mapping functions to the compilation
operators.

F4ey CmpAexp = MapAexp (CmpVar,CmpConst,CmpPlus)

F4ey CmpBexp = MapBexp (CmpAexp,CmpEq,CmpNot)

LI}

F4es CmpCexp
MapCexp (CmpAexp,CmpBexp,CmpSkip,CmpAssign,CmpThen,CmpWhile)

The correctness of these compilation functions is easily established from correct-
ness results for each compilation operator using the structural induction theorems
mentioned in Section 4.

These correctness results lead directly to the following theorem where the variable P
denotes any source language program. The predicate SMHalts is defined directly in
terms of the formally specified model of the SM machine. For a given SM program,
SMHalts describes a relation on pairs of states (q1,q2) where the SM machine
begins execution in state q1 and eventually halts in state q2. Hence, SMHalts is a
semantic function for SM code.

Fenm Vp. ValidCexp p = (SemCexp p = SMHalts (CmpCexp p))

This theorem is the main result from the first part of our compiler correctness
proof: it relates the denotational semantics of our source language to an operational
semantics given by SMHalts applied to the compiled code generated by CmpCexp.
We are using the term ‘operational semantics’ in a somewhat old-fashioned sense *
where the semantics is given by an abstract machine and a translation from the
source language into code for the abstract machine [32].

This result can also be expressed by the commutative diagram in Figure 5 which is
similar to diagrams found in other discussions of the compiler correctness problem.
In this case, there is no need for an abstraction function from source language
meanings to target language meanings since they are identical. Consequently, the
diagram has only three sides.

4A more recent form of operational semantics known as Plotkin-style or natural semantics has
both structure and some denotational-style features [28].
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Figure 5: Compiler Correctness expressed by Commutativity.

The second part of our correctness proof considers the assembly of SM programs
into TM code establishing a correspondence between the direct execution of an SM
program and the execution of an assembled SM program by the target machine.
Later, this result is combined with the above theorem to obtain a direct correspon-
dence between the denotation of a source language program and the execution of
its compiled form by the target machine.

9. Assembling Intermediate Code

The external architecture of the Tamarack microprocessor consists of three state
components: the memory, program counter and accumulator. A single instruction
word format is used by all Tamarack instructions: a 3-bit opcode followed by n ad-
dress bits. The actual size of the address field is given by a parameter throughout
the formal proof of correctness. The transistor level model of the Tamarack imple-
mentation is also parameterized by the size of the address field. The correctness of
this implementation has been established for all possible sizes.

The assembly of SM code into TM code requires the generation of a symbol table,
symtab, which maps string tokens appearing in SM instructions to memory ad-
dresses. Symbols (i.e., string tokens) are only added to the table when they appear
on the left-hand side of an assignment statement in the source language program.
Since each assignment statement corresponds to an ST instruction in the resulting
SM code, symbols are only added to the table when they appear in the SM code
as an operand in an ST instruction. The symbol table is generated by a single pass
over the SM program. When a new symbol is added to the table, it is assigned the
address of the next available location in the data area of memory.

The assembly of SM code into TM code also requires an address table, addrof,
which maps locations in the SM code to corresponding locations in the TM code.




The location of the TM code generated for a particular SM instruction can be
determined by adding up the sizes of the code fragments generated for all preceding
SM instructions. This table can also be generated by a single pass over the SM
program.

The symbol table, symtab, and address table, addrof, are used in a third pass over
the SM program to generate the TM code. Most SM instructions are assembled
into a single TM instruction. However, a CONST instruction, used to load a constant
into the accumulator, is assembled into a three word fragment of TM code: an LD
instruction; a JMP instruction; and the constant itself which is stored in a separate
memory word (i.e., as an immediate constant). The JMP instruction prevents the
constant from being executed as an instruction. The SM instructions EQ and NOT
are also assembled into multiple words of TM code. This is because 0 and 1,
representing true and false respectively, are stored as immediate constants °.

For conceptual clarity, we have separated the assembly of SM code into three succes-
sive passes. However, there are well-known techniques, e.g., ‘back-patching’, which
can be used to reduce the number of passes in a compiler [1].

Each of the three passes used to assemble SM code into TM code can be formally
defined as an operation applied iteratively to a sequence of SM instructions; in
concrete terms these functions can be defined by primitive recursion on the size of
the SM code. As one might expect, correctness results for each of these passes over
the SM code will involve proofs by induction on the size of the SM code.

Correctness results for symbol table generation show that the iteratively generated
symbol table has several properties needed to prove that SM code is correctly as-
sembled into TM code. For instance, we show that different symbols are mapped
to different addresses. Several other less obvious properties are described in [17].

The rest of the proof is concerned with showing that SM code is correctly assembled
into TM code. Intuitively, it is fairly obvious what conditions need to be satisfied:
execution of the TM code must correspond to the execution of the SM program.
There are several provisos, most of which arise from limitations of the finite word
size and finite memory size of the target machine.

Earlier steps in the correctness proof have already been influenced by the finite
limitations of the target machine: the finite word size of the target machine is a
feature of both the denotational semantics of the source language and the oper-
ational semantics of SM code. However, correctness results for the first compiler
phase place no bounds on the size of the SM code or the size of the store. Therefore,
finite limitations of the target machine are more important in the second part of the

5The use of immediate constants was slightly easier (in the initial effort of developing this proof)
than the more economical approach of storing a single instance of these constants in memory.




correctness proof when showing that SM code is correctly assembled into TM code.
The size of addressable memory is limited by the number of bits in the address
field of a target machine instruction. The memory area reserved for code must be
large enough to accommodate the code generated by the assembler. Similarly, the
area reserved for data must provide a separate memory word for each symbol in the
symbol table. These two areas of memory must not overlap and cannot exceed the
boundaries of addressable memory. We assume explicitly that these conditions are
satisfied in proving that SM code is correctly assembled into TM code.

The sense in which the execution of TM code ‘corresponds’ to the execution of an
SM program is, roughly speaking, the condition that updates to the memory state,
program counter and accumulator of the target machine correspond to updates to
the store, program counter and accumulator of the SM machine. There are three
distinct steps in proving that execution of the assembled form of an SM program
corresponds to its direct execution by the SM machine. These three steps are very
briefly summarized in the next few paragraphs.

The first step establishes that the execution of the compiled form of individual
SM instructions corresponds to their direct execution by the SM machine. This
step in the proof is concerned with the fragments of TM code generated for each
SM instruction. For each SM instruction, we prove that the symbolic execution of
the TM code fragment by repeated applications of the next state function for the
target machine corresponds to a single application of the next state function for the
SM machine. This step also proves that execution of the code fragment does not
over-write any part of the TM code.

The second step establishes that the fragments of TM code generated for each SM
instruction are correctly composed into a single fragment of TM code for the entire
SM program. This step is proved by mathematical induction on the size of the SM
program,

The third step establishes that the execution of an assembled SM program corre-
sponds to its direct execution by the SM machine for any number of execution steps
(within the limitations of the target machine). This step is proved by mathematical
induction on the number of execution steps.

The correctness result obtained from these three steps states precise details about
the relationship between the execution of an assembled SM program and its direct
execution by the SM machine. In very simple terms, there exists an SM machine
which provides an abstract model of the target machine while executing the com-
piled SM program. Therefore, true statements about the direct execution of the SM
program are also true statements about the execution of its compiled form by the
target machine. This theorem is used in combination with earlier results to obtain
a correctness result for the complete compilation process.




10. Combining Two Levels of Correctness Results

The final step in the verification of the Tamarack compiler combines correctness
results for the two phases of the compilation process.

Earlier correctness results for the first compiler phase established that direct ex-
ecution of the SM code generated from a terminating source language program
will result in a final state which agrees with its denotation. In the case of a non-
terminating program, the SM machine will not halt. For the second compiler phase,
we have just seen that ‘true statements about the direct execution of the SM pro-
gram are also true statements about the execution of its assembled form by the
target machine’.

The combination of these two results implies that a terminating source language
program will be compiled into target machine code which will execute to completion
and yield a final state which agrees with its denotation. This depends, of course, on
whether the compiled program can be loaded into addressable memory. A precise
statement of this result uses the symbol table generated by the compiler for this
program to relate memory states of the target machine to the denotation of the
source language program. In the case of a non-terminating program, the target ma-
chine will never complete execution of the compiled code. The correctness theorem
for the terminating case is shown below.

Fevm V p n mem.

ValidCexp p A
CompiledAndLoaded n p (mem O) A
Terminates p (n+3) ((mem O) o (SymTab p))
=
V pc acc.

T™ n (mem,pc,acc) A

(pc 0 = 0)

=

Jt.

FirstReaches (pc,t,End0fProg p) A

SemCexp p (n+3) ((mem O) o (SymTab p),(mem t)o (SymTab p))

To paraphrase this theorem: if the compiled code for a syntactically valid, termi-
nating program is loaded into memory at location 0 and executed by the target
machine (whose behaviour is given by the predicate TM) beginning at time 0, then
the target machine will eventually reach the end of the code at some time t. When
execution of this code is completed, an abstract view of the initial memory state will
be related to an abstract view of the final memory state by the denotation of the
program. An ‘abstract view’ of the memory state is obtained by using the symbol
table to access the contents of the target machine memory; in the above theorem,
this is expressed by use of the operator ‘o’ which denotes functional composition.




11. Summary

Our main correctness theorem provides a direct link between the semantics of the
source language and the behavioural specification of the Tamarack microprocessor.
When coupled with an earlier proof of correctness relating this behavioural specifi-
cation to a transistor level model of the hardware, we obtain a precise and rigorously
established connection between the denotation of a source language program and
the effect of executing its compiled form on actual hardware.

A link between software and hardware levels provides a sound basis for using the
semantics of the source language to reason about programs. In related work, Gordon
[14] shows how Hoare logic can be embedded in higher-order logic by regarding the
syntax of Hoare formulae as abbreviations for higher-order logic formulae. The
axioms and inference rules of Hoare logic are then derived from semantic operators
similar to the semantic operators defined in Section 5 of this paper. This means that
theorems proved in Hoare logic using these axioms and rules are logical consequences
of the underlying denotational semantics.

To relate this work to our correctness results for the Tamarack compiler, we would
need to slightly re-formulate the axioms and rules of Hoare logic to take account
of the finite size of memory words as we have done for the semantic operators
in Section 5. It would then follow that theorems proved in Hoare logic about a
particular program are true statements about the result of executing the compiled
program on the fabricated microchip. This depends, of course, on both explicit con-
ditions, e.g., whether the compiled code fits into addressable memory, and implicit
assumptions, e.g., that the transistor level specification is an accurate model of the
hardware.

In this exploratory effort, we have not ventured beyond a traditional view of formal
semantics that the meaning of a program is either a partial function from initial
states to final states or, as in our approach, a relation between initial and final states.
However, we are interested in embedded systems where a ‘batch processing’ view of
program behaviour is not entirely appropriate. These systems continuously interact
with an environment; they are typically implemented by a fixed program compiled
and loaded into the memory of one or more microprocessors. Unlike a batch job,
execution of the compiled code is meant to execute forever, or at least, until the
microprocessor is reset or switched off. Instead of a final outcome, we are interested
in the on-going behaviour of the microprocessor while executing the compiled code.
We are concerned, for instance, that the system responds correctly to external
stimuli or that certain invariants are maintained. Therefore, an important direction
of future work will be to investigate the relationship between suitable kinds of
semantics for proving the correctness of a compiler and formalisms which can be
used to reason about continuously-operating systems.
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