
Isabelle Tutorial and User’s Manual

Lawrence C. Paulson & Tobias Nipkow
Computer Laboratory

University of Cambridge

Copyright c© 1990 by Lawrence C. Paulson & Tobias Nipkow

15 January 1990

Abstract

This manual describes how to use the theorem prover Isabelle. For
beginners, it explains how to perform simple single-step proofs in the
built-in logics. These include first-order logic, a classical sequent cal-
culus, zf set theory, Constructive Type Theory, and higher-order logic.
Each of these logics is described. The manual then explains how to de-
velop advanced tactics and tacticals and how to derive rules. Finally, it
describes how to define new logics within Isabelle.

Acknowledgements. Isabelle uses Dave Matthews’s Standard ml
compiler, Poly/ml. Philippe de Groote wrote the first version of the
logic lk. Funding and equipment were provided by SERC/Alvey grant
GR/E0355.7 and ESPRIT BRA grant 3245. Thanks also to Philippe
Noël, Brian Monahan, Martin Coen, and Annette Schumann.

Contents

1 Basic Features of Isabelle 5

1.1 Overview of Isabelle . 6

1.1.1 The representation of logics 6

1.1.2 Theorem proving with Isabelle 7

1.1.3 Fundamental concepts . 7

1.1.4 How to get started . 8

1.2 Theorems, rules, and theories . 9

1.2.1 Notation for theorems and rules 9

1.2.2 The type of theorems and its operations 12

1.2.3 The type of theories . 12

1.3 The subgoal module . 13

1.3.1 Basic commands . 13

1.3.2 More advanced commands . 14

1.4 Tactics . 16

1.4.1 A first example . 18

1.4.2 An example with elimination rules 19

1.4.3 An example of eresolve tac 20

1.5 Proofs involving quantifiers . 22

1.5.1 A successful quantifier proof 22

1.5.2 An unsuccessful quantifier proof 23

1.5.3 Nested quantifiers . 24

1.6 Priority Grammars . 24

2 Isabelle’s First-Order Logics 27

2.1 First-order logic with natural deduction 28

2.1.1 Intuitionistic logic . 28

2.1.2 Classical logic . 33

2.1.3 An intuitionistic example . 34

2.1.4 A classical example . 36

2.2 Classical first-order logic . 38

2.2.1 Syntax and rules of inference 38

2.2.2 Tactics for the cut rule . 38

2.2.3 Proof procedure . 41

2.2.4 Sample proofs . 43

1

2 Contents

3 Isabelle’s Set and Type Theories 45

3.1 Zermelo-Fraenkel set theory . 45

3.1.1 Syntax and rules of inference 45

3.1.2 Derived rules . 46

3.1.3 Tactics . 50

3.1.4 Examples . 51

3.2 Constructive Type Theory . 54

3.2.1 Syntax and rules of inference 55

3.2.2 Tactics . 60

3.2.3 An example of type inference 62

3.2.4 Examples of logical reasoning 64

3.2.5 Arithmetic . 67

3.3 Higher-order logic . 69

3.3.1 Tactics . 70

3.3.2 Examples . 72

4 Developing Tactics, Rules, and Theories 79

4.1 Tacticals . 79

4.1.1 The type of tactics . 80

4.1.2 Basic tacticals . 80

4.1.3 Derived tacticals . 81

4.1.4 Tacticals for numbered subgoals 82

4.2 Examples with tacticals . 83

4.3 A Prolog interpreter . 85

4.4 Deriving rules . 90

4.5 Definitions and derived rules . 94

5 Defining Logics 101

5.1 Types and terms . 101

5.1.1 The ml type typ . 101

5.1.2 The ml type term . 102

5.2 Theories . 103

5.3 The meta-logic . 105

5.4 Defining the syntax . 106

5.4.1 Mixfix syntax . 106

5.4.2 Lexical conventions . 109

5.4.3 Parse translations . 110

5.4.4 Logical types and default syntax 111

5.4.5 Printing . 112

5.4.6 Miscellaneous . 114

5.4.7 Restrictions . 116

5.5 Identifiers, constants, and type inference 116

5.6 Putting it all together . 117

Contents 3

A Internals and Obscurities 121
A.1 Types and terms . 121

A.1.1 Basic declarations . 121
A.1.2 Operations . 121
A.1.3 The representation of object-rules 123

A.2 Higher-order unification . 124
A.2.1 Sequences . 124
A.2.2 Environments . 125
A.2.3 The unification functions . 126

A.3 Terms valid under a signature . 128
A.3.1 The ml type sg . 129
A.3.2 The ml type cterm . 129
A.3.3 Declarations . 130

A.4 Meta-inference . 131
A.4.1 Theorems . 131
A.4.2 Derived meta-rules for backwards proof 133

A.5 Tactics and tacticals . 134
A.5.1 Derived rules . 135
A.5.2 Tactics . 135
A.5.3 Filtering of object-rules . 136

Bibliography 139

Index 140

You can only find truth with logic
if you have already found truth without it.

G.K. Chesterton, The Man who was Orthodox

Chapter 1

Basic Features of Isabelle

Although the theorem prover Isabelle is still far from finished, there are users enough
to justify writing a manual. The manual describes pure Isabelle and several object-
logics — natural deduction first-order logic (constructive and classical versions),
Constructive Type Theory, a classical sequent calculus, zf set theory, and higher-
order logic — with their syntax, rules, and proof procedures. The theory and ideas
behind Isabelle are described elsewhere [7, 9, 10].

Fortunately, beginners need not understand exactly how Isabelle works. Nor
need they know about all the meta-level rules, proof tactics, and interactive proof
commands. This manual starts at an introductory level, and leaves the worst details
for the Appendices.

To understand this report you will need some knowledge of the Standard ml
language (Wikström [15] is a simple introduction). When studying advanced mate-
rial, you may want to have Isabelle’s sources at hand. Advanced Isabelle theorem
proving can involve writing functions in ml.

Isabelle was first distributed in 1986. The 1987 version was the first with a
higher-order meta-logic and

∧
-lifting for quantifiers. The 1988 version added limited

polymorphism and =⇒-lifting for natural deduction. The current version includes
a pretty printer, an automatic parser generator, and an object-level higher-order
logic. Isabelle is still under development and will continue to change.

The present syntax is more concise than before — and not upwards-compatible
with previous versions! Existing Isabelle users can convert their files using a tool
provided on the distribution tape.

The manual is organized around the different ways you can work as you become
more experienced.

• Chapter 1 introduces Pure Isabelle, the things common to all logics. These
include theories and rules, tactics, and subgoal commands. Several simple
proofs are demonstrated.

• Chapter 2 introduces the versions of first-order logic provided by Isabelle. The
easiest way to get started with Isabelle is to work in one of these. Each logic has
a large collection of examples, with proofs, that you can try. Some automatic
tactics are available. As you gain confidence with the standard examples, you
can develop your own proofs and tactics.

5

6 Chapter 1. Basic Features of Isabelle

• Chapter 3 describes Isabelle’s more advanced logics, namely set theory, Con-
structive Type Theory, and higher-order logic. It is possible to plunge into
these knowing only about single step proofs, but you might want to skip this
chapter on a first reading.

• Chapter 4 describes in detail how tactics work. It also introduces tacticals
— the building-blocks for tactics — and describes how to use them to define
search procedures. The chapter also describes how to make simple extensions
to a logic by defining new constants.

• Chapter 5 (written by Tobias Nipkow) describes how to build an object-logic:
syntax definitions, the role of signatures, how theories are combined. Defining
your own object-logic is a major undertaking. You must have a thorough
understanding of the logic to have any chance of successfully representing it
in Isabelle.

• The Appendices document the internal workings of Isabelle. This information
is for experienced users.

1.1 Overview of Isabelle

Isabelle is a theorem prover that can cope with a large class of logics. You need
only specify the logic’s syntax and rules. To go beyond proof checking, you can
implement search procedures using built-in tools.

1.1.1 The representation of logics

Object-logics are formalized within Isabelle’s meta-logic, which is intuitionistic
higher-order logic with implication, universal quantifiers, and equality. The im-
plication φ =⇒ ψ means ‘φ implies ψ’, and expresses logical entailment. The quan-
tification

∧
x .φ means ‘φ is true for all x ’, and expresses generality in rules and

axiom schemes. The equality a ≡ b means ‘a equals b’, and allows new symbols to
be defined as abbreviations. For instance, Isabelle represents the inference rule

P Q

P & Q

by the following axiom in the meta-logic:∧
P .

∧
Q .P =⇒ (Q =⇒ P & Q)

The structure of rules generalizes Prolog’s Horn clauses; proof procedures can
exploit logic programming techniques.

Isabelle borrows ideas from lcf [8]. Formulae are manipulated through the
meta-language Standard ML; proofs can be developed in the backwards direction
via tactics and tacticals. The key difference is that lcf represents rules by functions,

1.1. Overview of Isabelle 7

not by axioms. In lcf, the above rule is a function that maps the theorems P and
Q to the theorem P & Q .

Higher-order logic uses the typed λ-calculus, including its formalization of quan-
tifiers. So ∀x .P can be represented by All(λx .P), where All is a new constant and
P is a formula containing x . Viewed semantically, ∀x .F (x) is represented by All(F),
where the variable F denotes a truth-valued function. Isabelle represents the rule

P

∀x .P

by the axiom ∧
F . (

∧
x .F (x)) =⇒ All(F)

The introduction rule is subject to the proviso that x is not free in the assumptions.
Any use of the axiom involves proving F (x) for arbitrary x , enforcing the proviso
[9]. Similar techniques handle existential quantifiers, the Π and Σ operators of
Type Theory, the indexed union operator of set theory, and so forth. Isabelle easily
handles induction rules and axiom schemes (like set theory’s Axiom of Separation)
that involve arbitrary formulae.

1.1.2 Theorem proving with Isabelle

Proof trees are derived rules, and are built by joining rules together. This comprises
both forwards and backwards proof. Backwards proof works by matching a goal
with the conclusion of a rule; the premises become the subgoals. Forwards proof
works by matching theorems to the premises of a rule, making a new theorem.

Rules are joined by higher-order unification, which involves solving equations in
the typed λ-calculus with respect to α, β, and η-conversion. Unifying f (x) with the
constant A gives the two unifiers {f = λy .A} and {f = λy .y , x = A}. Multiple
unifiers indicate ambiguity: the four unifiers of f (0) with P(0, 0) reflect the four
different ways that P(0, 0) can be regarded as depending upon 0.

To demonstrate the implementation of logics, several examples are provided.
Many proofs have been performed in these logics. For first-order logic, an auto-
matic procedure can prove many theorems involving quantifiers. Constructive Type
Theory examples include the derivation of a choice principle and simple number the-
ory. The set theory examples include properties of union, intersection, and Cartesian
products.

1.1.3 Fundamental concepts

Isabelle comprises a tree of object-logics. The branching can be deep as well as broad,
for one logic can be based on another. The root of the tree, Pure Isabelle, implements
the meta-logic. Pure Isabelle provides the concepts and operations common to all
the object-logics: types and terms; syntax and signatures; theorems and theories;
tactics and proof commands; a functor for building simplifiers.

8 Chapter 1. Basic Features of Isabelle

The types (denoted by Greek letters σ, τ , and υ) include basic types, which
correspond to syntactic categories in the object-logic. There are also function types
of the form σ → τ . Types have the ml type typ.

The terms (denoted by a, b, and c) are the usual terms of the typed λ-calculus.
They can encode the syntax of object-logics. The encoding of object-formulae into
the meta-logic usually has an obvious semantic reading as well. Isabelle implements
many operations on terms, of which the most complex is higher-order unification.
Terms have the ml type term.

An automatic package (written by Tobias Nipkow) performs parsing and display
of terms. You can specify the syntax of a logic as a collection of mixfix operators,
including directives for Isabelle’s pretty printer.

The theorems of the meta-logic have the ml type thm. And since meta-theorems
represent the theorems and inference rules of object-logics, those object-theorems
and rules also have type thm. The meta-level inference rules are implemented in lcf
style: as functions from theorems to theorems.

Theories have the ml type theory. Each object-logic has its own theory. Ex-
tending a logic with new constants and axioms creates a new theory. This is a basic
step in developing proofs, and fortunately is much easier than creating an entire new
logic.

Proofs are constructed using tactics. The simplest tactics apply an (object-
level) inference rule to a subgoal, producing some new subgoals. Another simple
tactic solves a goal by assumption under Isabelle’s framework for natural deduction.
Complex tactics typically apply other tactics repeatedly to certain goals, possibly
using depth-first search or like strategies. Such tactics permit proofs to be performed
at a higher level, with fewer top-level steps. The novice does not need to write new
tactics, however: deriving new rules can also lead to shorter proofs, and is easier
way than writing new tactics. Tactics have the ml type tactic.

1.1.4 How to get started

In order to conduct simple proofs you need to know some details about Isabelle.
The following sections introduce theories, theorems, subgoal module commands,
and tactics — including ml identifiers with their types. Although these concepts
apply to all the object-logics, they are demonstrated within first-order logic. Ideally,
you should have a terminal nearby where you can run Isabelle with this logic. If
necessary, see the installation instructions for advice on setting things up.

What about the user interface? Isabelle’s top level is simply the Standard ml
system. If you are using a workstations that provides a window system, it is easy
to make a menu: put common commands in a window where you can pick them up
and insert them into an Isabelle session. This may seem uninviting, but once you
get started on a serious project, you will see that the main problems are logical.

1.2. Theorems, rules, and theories 9

1.2 Theorems, rules, and theories

The theorems and rules of an object-logic are represented by theorems in the meta-
logic. Each logic is defined by a theory. Isabelle provides many operations (as ml
functions) that involve theorems, and some that involve theories. Chapters 4 and 5
present examples of theory construction. For now, we consider built-in theories.

1.2.1 Notation for theorems and rules

The keyboard rendering of the symbols of the meta-logic is summarized below. The
precise syntax is described in Sections 5.3 and 5.4.4.

a == b a = b meta-equality
φ ==> ψ φ =⇒ ψ meta-implication
[| φ1; . . . ; φn |] ==> ψ φ1 =⇒ (· · ·φn =⇒ ψ · · ·) nested implication
!xyz.φ

∧
xyz .φ meta-quantification

%xyz.φ λxyz .φ meta-abstraction
?P ?Q4 ?Ga12 ?P ?Q4 ?Ga12 scheme variables

Meta-abstraction is normally invisible, as in quantification. It comes into play when
new binding operators are introduced: for example, an operator for defining primi-
tive recursive functions.

Symbols of object-logics also must be rendered into keyboard characters. These
typically are as follows:

P & Q P & Q conjunction
P | Q P ∨Q disjunction
˜ P ¬P negation
P --> Q P ⊃ Q implication
P <-> Q P ↔ Q bi-implication
ALL xyz.P ∀xyz .P for all
EX xyz.P ∃xyz .P there exists

To illustrate this notation, let us consider how first-order logic is formalized.
Figure 1.1 presents the natural deduction system for intuitionistic first-order logic
as implemented by Isabelle.

The rule &I is expressed by the meta-axiom∧
PQ .P =⇒ (Q =⇒ P & Q)

This translates literally into keyboard characters as

!P Q. P ==> (Q ==> P&Q)

Leading universal quantifiers are usually dropped in favour of scheme variables:

?P ==> (?Q ==> ?P & ?Q)

10 Chapter 1. Basic Features of Isabelle

introduction (I) elimination (E)

Conjunction
A B

A & B

A & B

A

A & B

B

Disjunction
A

A ∨ B

B

A ∨ B

A ∨ B

[A]

C

[B]

C

C

Implication

[A]

B

A ⊃ B

A ⊃ B A

B

Contradiction
⊥
A

Universal quantifier
A

∀x .A∗
∀x .A

A[t/x]

Existential quantifier
A[t/x]

∃x .A
∃x .A

[A]

B

B
∗

*Eigenvariable conditions :
∀I: provided x not free in the assumptions

∃E: provided x not free in B or in any assumption save A

Figure 1.1: Intuitionistic first-order logic

1.2. Theorems, rules, and theories 11

The parentheses are optional because ==> groups to the right. We can also use the
[|. . . |] shorthand:

[| ?P; ?Q |] ==> ?P & ?Q

Scheme variables are logically equivalent to ordinary variables, but may be in-
stantiated during unification, while ordinary variables remain fixed. They have
subscripts so that they can be renamed easily prior to resolution.

The definition of rules in an Isabelle theory usually involves ordinary variables:

[| P; Q |] ==> P & Q

Isabelle converts these into scheme variables so that the rule will work with unifica-
tion. This convention for theories avoids cluttering the rules with question marks.
When stating a goal, scheme variables are used only for answer extraction. Free
variables in the goal will remain fixed throughout the proof, and will be converted
to scheme variables afterwards.

A few more examples should make the syntax clearer. The rule ∨I is represented
by the axiom ∧

PQR . P ∨Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

In the Isabelle theory definition it is

[| P|Q; P==>R; Q==>R |] ==> R

The axiom representing ∀I has a nested meta-quantifier:∧
P . (

∧
x . P(x)) =⇒ ∀x .P(x)

In the Isabelle theory definition it is

(!y. P(y)) ==> ALL x.P(x)

The ‘Foundations’ paper [9] and earlier versions of Isabelle enclose all object-
formulae in special brackets, as in

[[P]] =⇒ ([[Q]] =⇒ [[P & Q]])

Although this notation clearly distinguishes the object and meta-levels, it is verbose
and has therefore been dropped. Note that P =⇒ Q is ambiguous: are P and Q
meta or object-formulae? Isabelle always assumes that object-formulae are intended.
This is a matter of types: meta-formulae have type prop while object-formulae
typically have type form. You can force a variable to have type prop by a type
constraint, as in

?psi$$prop ==> ?theta$$prop

The occasions for doing this are few.

12 Chapter 1. Basic Features of Isabelle

1.2.2 The type of theorems and its operations

The inference rules, theorems, and axioms of a logic have type thm. Theorems and
axioms can be regarded as rules with no premises, so let us speak just of rules. Each
proof is constructed by a series of rule applications, usually through subgoal module
commands.

The type thm is an abstract type. Since ml will not print values of abstract types,
you have to use the prth command. The rules of a theory are normally bound to
ml identifiers. Suppose we are running an Isabelle session with natural deduction
first-order logic, which is described in Chapter 2. Then we can print disj_intr1,
which is one of the ∨I rules:

> prth disj intr1;
?P ==> ?P | ?Q
val it = () : unit

User’s input is preceded by a > character, which is the prompt of the Poly/ML
system. The prompt character for input lines after the first is #. The response val

it = () will henceforth be omitted!

The command prths prints a list of theorems. Here are the definitional axioms
of first-order logic:

> prths [True def, not def, iff def];
True == False --> False

~?P == ?P --> False

?P <-> ?Q == (?P --> ?Q) & (?Q --> ?P)

Summary of the theorem printing commands:

prth: thm -> unit
prths: thm list -> unit

1.2.3 The type of theories

Each logic is an ml object of type theory. For natural deduction first-order logic,
the identifiers are Int_Rule.thy (for intuitionistic logic) and cla_thy (for classical
logic). A theory includes information about types, constants, and syntax. In par-
ticular, each theory includes information about how to parse a string into a logical
formula. Unlike lcf, an Isabelle session is not restricted to a single theory. A theory
is stated at the start of each proof: the theory of the initial goal. Most tactics work
within this theory, while certain Isabelle functions take a theory as argument.

Type theory is also an abstract type, so theory values cannot be printed. There
is no way of opening up a theory value to see what is inside.

1.3. The subgoal module 13

1.3 The subgoal module

Most Isabelle proofs are conducted through the subgoal module, which maintains
a proof state and manages the proof construction. Isabelle is largely a functional
program, but this kind of interaction is imperative. From the ml top-level you can
invoke commands (which are ml functions, with side effects) to establish a goal,
apply a tactic to the proof state, undo a proof step, and finally obtain the theorem
that has been proved.

Tactics, which are operations on proof states, are described in the following
section. We peek at them here, however, during the demonstration of the subgoal
commands.

1.3.1 Basic commands

To start a new proof, type

goal theory formula ;

where the formula is written as an ml string.
To apply a tactic to the proof state, type

by tactic ;

A tactic can do anything to a proof state — even replace it by a completely unrelated
state — but most tactics apply a rule or rules to a numbered subgoal.

At the end of the proof, call result() to get the theorem you have just proved.
If ever you are dissatisfied with a previous step, type undo() to cancel it. The

undo operation can be repeated.

To demonstrate these commands, consider the following elementary proof. We
enter the goal P ⊃ P ∨Q in classical first-order logic.

> goal cla thy "P --> P | Q";
Level 0
P --> P | Q
1. P --> P | Q

val it = [] : thm list

Isabelle responds by printing the proof state, which has the same formula (namely
P ⊃ P ∨ Q) as the main goal and as the only subgoal — as always for the initial
proof state. Note that goal has returned an empty theorem list; we can ignore this
unless we are deriving a rule. The level number of the state is the number of tactics
that have been applied to it, so we begin at Level 0.

The first step is ‘by’ resolve_tac (described in the next section), which applies
the rule imp_intr (⊃I) to subgoal 1:

> by (resolve tac [imp intr] 1);
Level 1
P --> P | Q
1. P ==> P | Q

14 Chapter 1. Basic Features of Isabelle

In the new proof state, subgoal 1 is P ∨Q under the assumption P . (The meta-
implication ==> indicates assumptions.) We now apply the rule disj_intr1 to that
subgoal:

> by (resolve tac [disj intr1] 1);
Level 2
P --> P | Q
1. P ==> P

At Level 2 the one subgoal is ‘prove P assuming P ’. That is easy, by the tactic
assume_tac.

> by (assume tac 1);
Level 3
P --> P | Q
No subgoals!

Isabelle tells us that there are no longer any subgoals: the proof is complete. Once
finished, call result() to get the theorem you have just proved.

> val mythm = result();
val mythm = ? : thm

ml will not print theorems unless we force it to:

> prth mythm;
?P --> ?P | ?Q

Note that P and Q have changed from free variables into the scheme variables ?P and
?Q. As free variables, they remain fixed throughout the proof; as scheme variables,
the theorem mythm can be applied with any formulae in place of P and Q . Here we
go back to Level 2:

> undo();
Level 2
P --> P | Q
1. P ==> P

You can undo() and undo() right back to the beginning. But undo() is irreversible.
Incidentally, do not omit the parentheses:

> undo;
val it = fn : unit -> unit

This is just a function value!

1.3.2 More advanced commands

The following commands are mainly of importance to experienced users, so feel free
to skip this section on the first reading.

1.3. The subgoal module 15

The subgoal package stores the current proof state and many previous states;
commands can produce new states or return to previous ones. The state list at level
n is a list of pairs

[(ψn ,Ψn), (ψn−1,Ψn−1), . . . , (ψ0, [])]

where ψn is the current proof state, ψn−1 is the previous one, . . . , and ψ0 is the initial
proof state. The Ψi are sequences of proof states, storing branch points where a
tactic returned a sequence longer than one.

Chopping elements from the state list reverts to previous proof states. Besides
this, the undo command uses a list of previous states of the package itself.

To print the current proof state, type pr(). Calling prlev n prints the proof
state at level n. The variable goals_limit, initially 10, holds the upper bound for
the number of subgoals to print.

Starting at the top level, back looks down the state list for an alternative state.
The first one found becomes the current proof state. The previous state is discarded
and the level is reset to that where the alternative was found.

Calling chop() deletes the top level of the state list, cancelling the effect of the
last by command. It provides a limited undo facility, and the undo() command can
cancel its effect. Note that undo() cannot undo itself. Calling choplev n truncates
the state list to level n. This is quicker than typing chop() or undo() several times.

Calling topthm() returns the top level proof state, which is a theorem. This is not
the best way to extract the theorem you have proved: try result() or uresult().

Calling result() returns the final theorem. It tidies this theorem, generalizing
its free variables and discharging its assumptions, and it raises an exception un-
less the proof state has zero subgoals and the theorem proved is the same as the
one stated in the goal command. They could differ if the proof involved answer
extraction, for example. In that case you should use uresult(), which omits the
comparison of the initial goal with the final theorem.

Calling getgoal i returns subgoal i as a term. When debugging a tactic you
might employ this function.

In the middle of a proof you may discover that a lemma needs to be proved first.
Isabelle provides commands to let you put aside the current proof, prove the lemma,
and finally resume the previous proof. Call getstate() to return the entire state of
the subgoal package. (This object belongs to the abstract type gstack.) Bind this
state to an ml identifier, say save. To resume the proof, call setstate(save).

16 Chapter 1. Basic Features of Isabelle

Summary of these subgoal module commands:

back: unit -> unit
by: tactic -> unit
chop: unit -> unit
choplev: int -> unit
getgoal: int -> term
getstate: unit -> gstack
goal: theory -> string -> thm list
goals limit: int ref
pr: unit -> unit
prlev: int -> unit
result: unit -> thm
setstate: gstack -> unit
topthm: unit -> thm
undo: unit -> unit
uresult: unit -> thm

1.4 Tactics

Tactics are operations on the proof state, such as, ‘apply the following rules to these
subgoals’. For the time being, you may want to regard them as part of the syntax
of the by command. They have a separate existence because they can be combined
— using operators called tacticals — into more powerful tactics. Those tactics can
be similarly combined, and so on.

Tacticals are not discussed until Chapter 4. Here we consider only the most basic
tactics. Fancier tactics are provided in the built-in logics, so you should still be able
to do substantial proofs.

Applying a tactic changes the proof state to a new proof state. A tactic may
produce multiple outcomes, permitting backtracking and search. For now, let us
pretend that a tactic can produce at most one next state. When a tactic produces
no next state, it is said to fail.

The tactics given below each act on a subgoal designated by a number, starting
from 1. They fail if the subgoal number is out of range.

To understand tactics, you will need to have read ‘The Foundation of a Generic
Theorem Prover’ [9] — particularly the discussion of backwards proof. We shall
perform some proofs from that paper in Isabelle.

The basic resolution tactic, used for most proof steps, is

resolve tac thms i

The thms represent object-rules. The rules in this list are tried against subgoal i of
the proof state. For a given rule, resolution can form the next state by unifying the
conclusion with the subgoal, replacing it by the instantiated premises. There can
be many outcomes: many of the rules may be unifiable, and for each there can be

1.4. Tactics 17

many (higher-order) unifiers. The tactic fails if none of the rules can be applied to
the subgoal.

In a natural deduction proof, a subgoal’s assumptions are represented by meta-
implication. Resolution lifts object-rules over any assumptions: in effect, the as-
sumptions are copied to the new subgoals. Eigenvariables in a subgoal are repre-
sented by meta-quantifiers; resolution also lifts object-rules over these.

The tactic to solve subgoal i by assumption is

assume tac i

Isabelle can recognize when a subgoal holds by assumption, but you must tell it to
by applying this tactic. They are not simply erased. Proving a subgoal by assump-
tion can involve unification, instantiating variables shared with other subgoals —
and possibly making them false. The tactic fails if subgoal i cannot be solved by
assumption.

The elimination resolution tactic is

eresolve tac thms i

Like resolve tac thms i followed by assume tac i , it applies an object-rule and
then solves its first premise by assumption. But eresolve_tac does one thing more:
it deletes that assumption from the other subgoals resulting from the resolution. The
assumption is used once then discarded. The tactic is appropriate for typical elimi-
nation rules, where applying the rule generates new assumptions that are stronger
than the old. Also, it does two steps in one.

The following tactics are less important. They permit reasoning about definitions
and deriving rules, and are demonstrated in Chapter 4.

Three rewriting tactics are

rewrite goals tac thms
rewrite tac thms
fold tac thms

For each, thms is a list of equational theorems of the form t ≡ u. These must be
theorems rather than rules: they must have no premises. Both rewrite_goals_tac

and rewrite_tac apply these as left-to-right rewrite rules. However rewrite_tac

rewrites the entire proof state, including the main goal, while rewrite_goals_tac

rewrites the subgoals only, which is normally preferable. Calling fold_tac ap-
plies the theorems as right-to-left rewrite rules in the proof state. Typically
rewrite_goals_tac is used to expand definitions in subgoals, while fold_tac in-
verts this operation.

Calling cut facts tac thms i inserts the thms as assumptions in subgoal i .
This allows eresolve_tac or rewrite_goals_tac to operate on the thms . Only
those rules that are outright theorems, with no premises, are inserted; eresolve_tac
cannot cope with general rules as assumptions. In many cases the thms are in fact
the premises of a rule being derived, as illustrated in Chapter 4.

18 Chapter 1. Basic Features of Isabelle

Summary of these tactics:

assume tac: int -> tactic
cut facts tac: thm list -> int -> tactic
eresolve tac: thm list -> int -> tactic
fold tac: thm list -> tactic
resolve tac: thm list -> int -> tactic
rewrite goals tac: thm list -> tactic
rewrite tac: thm list -> tactic

The tactics resolve_tac, assume_tac, and eresolve_tac suffice for most
single-step proofs. The examples below demonstrate how the subgoal commands
and tactics are used in practice. Although eresolve_tac is not strictly necessary,
it simplies proofs that involve elimination rules.

1.4.1 A first example

Let us do the first example proof from ‘Foundations’ [9]. We enter the goal:

> goal Int Rule.thy "P&Q --> (R-->P&R)";
Level 0
P & Q --> R --> P & R
1. P & Q --> R --> P & R

There is one subgoal; we apply ⊃I to it:

> by (resolve tac [imp intr] 1);
Level 1
P & Q --> R --> P & R
1. P & Q ==> R --> P & R

The one subgoal has an assumption, P & Q , but its outer form is still an impli-
cation. We apply the same rule again.

> by (resolve tac [imp intr] 1);
Level 2
P & Q --> R --> P & R
1. [| P & Q; R |] ==> P & R

There are two assumptions (P & Q and R), and the outer form is conjunctive.
So apply the rule &I:

> by (resolve tac [conj intr] 1);
Level 3
P & Q --> R --> P & R
1. [| P & Q; R |] ==> P
2. [| P & Q; R |] ==> R

1.4. Tactics 19

Now there are two subgoals, with the same assumptions as before. Subgoal 2
holds trivially by assumption:

> by (assume tac 2);
Level 4
P & Q --> R --> P & R
1. [| P & Q; R |] ==> P

Noting the assumption P & Q , we work backwards from P by applying a version
of &E:

> by (resolve tac [conjunct1] 1);
Level 5
P & Q --> R --> P & R
1. [| P & Q; R |] ==> P & ?Q3

The subgoal contains a scheme variable, ?Q3, which can be instantiated to any
formula. Therefore the subgoal is provable by assumption.

> by (assume tac 1);
Level 6
P & Q --> R --> P & R
No subgoals!

We bind our theorem to an ml variable and inspect it.

> val example1 = result();
val example1 = ? : thm
> prth example1;
?P & ?Q --> ?R --> ?P & ?R

1.4.2 An example with elimination rules

The proof that disjunction is commutative requires use of ∨E.
We enter (P ∨Q) ⊃ (Q ∨ P) to Isabelle and apply ⊃I:

> goal Int Rule.thy "P|Q --> Q|P";
Level 0
P | Q --> Q | P
1. P | Q --> Q | P

> by (resolve tac [imp intr] 1);
Level 1
P | Q --> Q | P
1. P | Q ==> Q | P

The assumption P ∨Q being available, we apply ∨E, here using resolve_tac.

> by (resolve tac [disj elim] 1);
Level 2
P | Q --> Q | P
1. P | Q ==> ?P1 | ?Q1
2. [| P | Q; ?P1 |] ==> Q | P
3. [| P | Q; ?Q1 |] ==> Q | P

20 Chapter 1. Basic Features of Isabelle

This elimination rule has three premises, of which the first is any disjunction:
hence the subgoal ?P1|?Q1. Proving this subgoal will instantiate ?P1 and ?Q1 in
the other subgoals. We prove subgoal 1 by assume_tac, instantiating ?P1 to P and
?Q1 to Q.

> by (assume tac 1);
Level 3
P | Q --> Q | P
1. [| P | Q; P |] ==> Q | P
2. [| P | Q; Q |] ==> Q | P

The old subgoal 1 disappears, and subgoals 2 and 3 slide down to fill the gap.
Both of these are provable thanks to their new assumptions. Since P ∨ Q follows
from P and also from Q , that assumption is now redundant in both subgoals. In
the following example we shall apply ∨E using eresolve_tac, which will delete this
assumption.

For now, let us prove subgoal 1 by ∨I and assumption.

> by (resolve tac [disj intr2] 1);
Level 4
P | Q --> Q | P
1. [| P | Q; P |] ==> P
2. [| P | Q; Q |] ==> Q | P
> by (assume tac 1);
Level 5
P | Q --> Q | P
1. [| P | Q; Q |] ==> Q | P

The remaining subgoal is proved similarly.

> by (resolve tac [disj intr1] 1);
Level 6
P | Q --> Q | P
1. [| P | Q; Q |] ==> Q
> by (assume tac 1);
Level 7
P | Q --> Q | P
No subgoals!

Now result() should be called to return the theorem that has just been proved.
Once a new goal is entered, this theorem will be lost.

1.4.3 An example of eresolve tac

Using eresolve_tac instead of resolve_tac in the above proof makes it three steps
shorter, and perhaps clearer. The first use of eresolve_tac is the most important,
for it involves an elimination rule (∨E) and the deletion of an assumption.

1.4. Tactics 21

Let us again enter (P ∨ Q) ⊃ (Q ∨ P) and apply ⊃I. (If you have done the
previous example on a terminal, type undo() six times to get back to Level 1.)

> goal Int Rule.thy "P|Q --> Q|P";
Level 0
P | Q --> Q | P
1. P | Q --> Q | P

> by (resolve tac [imp intr] 1);
Level 1
P | Q --> Q | P
1. P | Q ==> Q | P

The first premise of ∨E is the formula being eliminated: the disjunction. The
tactic eresolve_tac searches among the assumptions for one that unifies with the
first premise, simultaneously unifying the conclusion of this rule with the subgoal.
(The conclusion of ∨E unifies with any formula, for it is simply R.) It uses the
selected assumption to prove the first premise, and deletes that assumption from
the resulting subgoals. In short, the assumption is eliminated.

> by (eresolve tac [disj elim] 1);
Level 2
P | Q --> Q | P
1. P ==> Q | P
2. Q ==> Q | P

Although subgoals 1 and 2 now have only one assumption (compared with two
in the previous proof), they can be proved exactly as before. But eresolve_tac

simplifies these steps also, for they consist of application of a rule followed by proof
by assumption.

> by (eresolve tac [disj intr2] 1);
Level 3
P | Q --> Q | P
1. Q ==> Q | P

The same thing again . . .

> by (eresolve tac [disj intr1] 1);
Level 4
P | Q --> Q | P
No subgoals!

The importance of eresolve_tac is clearer in larger proofs. It prevents assump-
tions from accumulating and getting reused. The eliminated assumption is redun-
dant with most elimination rules save ∀E. Their deletion is especially important in
automatic tactics.

22 Chapter 1. Basic Features of Isabelle

1.5 Proofs involving quantifiers

One of the most important aspects of Isabelle is the treatment of quantifier reason-
ing. We can illustrate this by comparing a proof of ∀x .∃y .x = y with an attempted
proof of ∃y . ∀x . x = y (which happens to be false). The one proof succeeds and
the other fails because of the scope of quantified variables. These proofs are also
discussed in ‘Foundations’ [9].

Unification helps even in these trivial proofs. In ∀x .∃y .x = y the y that ‘exists’
is simply x , but we need never say so. This choice is forced by the reflexive law for
equality, and it happens automatically. The proof forces the correct instantiation
of variables. Of course, if the instantiation is complicated, it may not be found in a
reasonable amount of time!

1.5.1 A successful quantifier proof

The theorem ∀x . ∃y . x = y is one of the simplest to contain both quantifiers. Its
proof illustrates the use of the introduction rules ∀I and ∃I.

To begin, we enter the goal:

> goal Int Rule.thy "ALL x. EX y. x=y";
Level 0
ALL x. EX y. x = y
1. ALL x. EX y. x = y

The only applicable rule is ∀I:

> by (resolve tac [all intr] 1);
Level 1
ALL x. EX y. x = y
1. !ka. EX y. ka = y

The !ka introduces an eigenvariable in the subgoal. The exclamation mark is
the character for meta-forall (

∧
). The subgoal must be proved for all possible values

of ka. Isabelle chooses the names of eigenvariables; they are always ka, kb, kc, . . . ,
in that order.

The only applicable rule is ∃I:

> by (resolve tac [exists intr] 1);
Level 2
ALL x. EX y. x = y
1. !ka. ka = ?a1(ka)

Note that the bound variable y has changed into ?a1(ka), where ?a1 is a scheme
variable. It is also a function, and is applied to ka. Instantiating ?a1 will change
?a1(ka) into a term that may — or may not — contain ka. In particular, if

1.5. Proofs involving quantifiers 23

?a1 is instantiated to the identity function, ?a1(ka) changes into simply ka. This
corresponds to proof by the reflexivity of equality.

> by (resolve tac [refl] 1);
Level 3
ALL x. EX y. x = y
No subgoals!

The proof is finished. Unfortunately we cannot observe the instantiation of ?a1

because it appears nowhere else.

1.5.2 An unsuccessful quantifier proof

The formula ∃y .∀x . x = y is not a theorem. Let us hope that Isabelle cannot prove
it!

We enter the goal:

> goal Int Rule.thy "EX y. ALL x. x=y";
Level 0
EX y. ALL x. x = y
1. EX y. ALL x. x = y

The only rule that can be considered is ∃I:
> by (resolve tac [exists intr] 1);
Level 1
EX y. ALL x. x = y
1. ALL x. x = ?a

The scheme variable ?a may be replaced by any term to complete the proof.
Problem is, no term is equal to all x . We now must apply ∀I:

> by (resolve tac [all intr] 1);
Level 2
EX y. ALL x. x = y
1. !ka. ka = ?a

Compare our position with the previous Level 2. Where before was ?a1(ka)

there is now ?a. In both cases the scheme variable (whether ?a1 or ?a) can only
be instantiated by a term that is free in the entire proof state. But so doing can
change ?a1(ka) into something that depends upon ka. In our present position we
can do nothing. The reflexivity axiom does not unify with subgoal 1 because ka is
a bound variable. Here is what happens if we try:

> by (resolve tac [refl] 1);
by: tactic returned no results
Exception- ERROR raised

You do not have to think about the β-reduction that changes ?a1(ka) into ka.
Instead, regard ?a1(ka) as any term possibly containing ka.

24 Chapter 1. Basic Features of Isabelle

1.5.3 Nested quantifiers

Multiple quantification produces complicated terms. Consider this contrived exam-
ple. Without more information about P we cannot prove anything, but observe how
the eigenvariables and scheme variables develop.

> goal Int Rule.thy "EX u.ALL x.EX v.ALL y.EX w. P(u,x,v,y,w)";
Level 0
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
> by (resolve tac [exists intr, all intr] 1);
Level 1
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. ALL x. EX v. ALL y. EX w. P(?a,x,v,y,w)

The scheme variable ?a has appeared.
Note that resolve_tac, if given a list of rules, will choose a rule that applies.

Here the only rules worth considering are ∀I and ∃I.
> by (resolve tac [exists intr, all intr] 1);
Level 2
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. !ka. EX v. ALL y. EX w. P(?a,ka,v,y,w)
> by (resolve tac [exists intr, all intr] 1);
Level 3
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. !ka. ALL y. EX w. P(?a,ka,?a2(ka),y,w)

The bound variable ka and scheme variable ?a2 have appeared. Note that ?a2 is
applied to the bound variables existing at the time of its introduction — but not,
of course, to bound variables introduced later.

> by (resolve tac [exists intr, all intr] 1);
Level 4
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. !ka kb. EX w. P(?a,ka,?a2(ka),kb,w)
> by (resolve tac [exists intr, all intr] 1);
Level 5
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
1. !ka kb. P(?a,ka,?a2(ka),kb,?a4(ka,kb))

In the final state, ?a cannot become any term containing ka or kb, while ?a2(ka)
can become a term containing ka, and ?a4(ka,kb) can become a term containing
both bound variables. This example is discussed in ‘Foundations’ [9].

1.6 Priority Grammars

In the remainder of this manual we shall frequently define the precise syntax of
some logic by means of context-free grammars. These grammars obey the following

1.6. Priority Grammars 25

conventions: identifiers denote nonterminals, typewriter fount denotes terminals,
constructs enclosed in {.} can be repeated 0 or more times (Kleene star), and alter-
natives are separated by |. The predefined categories of alphanumeric identifiers and
of scheme variables are denoted by identifier and variable respectively (see Section
5.4.2).

In order to simplify the description of mathematical languages, we introduce an
extended format which permits priorities or precedences. This scheme generalizes
precedence declarations in ml and prolog. In this extended grammar format,
nonterminals are decorated by integers, their priority. In the sequel, priorities are
shown as subscripts. A nonterminal Ap on the right-hand side of a production may
only be rewritten using a production Aq = γ where q is not less than p.

Formally, a set of context free productions G induces a derivation relation −→G

on strings as follows:

αApβ −→G αγβ iff ∃q ≥ p. (Aq=γ) ∈ G

Any extended grammar of this kind can be translated into a normal context free
grammar. However, this translation may require the introduction of a large number
of new nonterminals and productions.

Example 1.1 The following simple grammar for arithmetic expressions demon-
strates how binding power and associativity of operators can be enforced by priori-
ties.

A9 = 0

A9 = (A0)

A0 = A0 + A1

A2 = A3 * A2

A3 = - A3

The choice of priorities determines that “-” binds tighter than “*” which binds
tighter than “+”, and that “+” and “*” associate to the left and right, respectively.

To minimize the number of subscripts, we adopt the following conventions:

• all priorities p must be in the range 0 ≤ p ≤ m for some fixed m.

• priority 0 on the right-hand side and priority m on the left-hand side may be
omitted.

In addition, we write the production Ap = α as A = α (p).
Using these conventions and assuming m = 9, the grammar in Example 1.1

becomes

A = 0

| (A)

| A + A1 (0)
| A3 * A2 (2)
| - A3 (3)

Priority grammars are not just used to describe logics in this manual. They are
also supported by Isabelle’s syntax definition facility (see Chapter 5).

26 Chapter 1. Basic Features of Isabelle

Chapter 2

Isabelle’s First-Order Logics

Although Isabelle has been developed to be a generic theorem prover — one that
you can customize to your own logics — several logics come with it. They reside in
various subdirectories and can be built using the installation instructions. You can
use Isabelle simply as an implementation of one of these. This chapter describes
the three versions of first-order logic provided with Isabelle. The following chapter
describes set and type theories.

First-order logic with natural deduction comes in both constructive and classical
versions. First-order logic is also available as the classical sequent calculus LK .
Each sequent has the form A1, . . . ,Am |− B1, . . . ,Bn . This formulation is equivalent
to deductive tableaux.

Each object-logic comes with simple proof procedures. These are reasonably
powerful (at least for interactive use), though neither complete nor amazingly sci-
entific. You can use them as they are or take them as examples of tactical program-
ming. You can perform single-step proofs using resolve_tac and assume_tac,
referring to the inference rules of the logic by ml identifiers of type thm.

Call a rule safe if when applied to a provable goal the resulting subgoals will
also be provable. If a rule is safe then it can be applied automatically to a goal
without destroying our chances of finding a proof. For instance, all the rules of the
classical sequent calculus lk are safe. Intuitionistic logic includes some unsafe rules,
like disjunction introduction (P ∨ Q can be true when P is false) and existential
introduction (∃x . P(x) can be true when P(a) is false for certain a). Universal
elimination is unsafe if the formula ∀x .P(x) is deleted after use, which is necessary
for termination.

Proof procedures use safe rules whenever possible, delaying the application of
unsafe rules. Those safe rules are preferred that generate the fewest subgoals. Safe
rules are (by definition) deterministic, while the unsafe rules require search. The
design of a suitable set of rules can be as important as the strategy for applying
them.

Many of the proof procedures use backtracking. Typically they attempt to solve
subgoal i by repeatedly applying a certain tactic to it. This tactic, which is known
as a step tactic, resolves a selection of rules with subgoal i . This may replace one
subgoal by many; but the search persists until there are fewer subgoals in total than
at the start. Backtracking happens when the search reaches a dead end: when the
step tactic fails. Alternative outcomes are then searched by a depth-first or best-first

27

28 Chapter 2. Isabelle’s First-Order Logics

strategy. Techniques for writing such tactics are discussed in the next chapter.
Each logic is distributed with many sample proofs, some of which are described

below. Though future Isabelle users will doubtless find better proofs and tactics
than mine, the examples already show that Isabelle can prove interesting theorems
in various logics.

2.1 First-order logic with natural deduction

The directory FOL contains theories for first-order logic based on Gentzen’s natural
deduction systems (which he called nj and nk). Intuitionistic logic is first defined,
then classical logic is obtained by adding the double negation rule.

Natural deduction typically involves a combination of forwards and backwards
reasoning, particularly with the rules &E, ⊃E, and ∀E. Isabelle’s backwards style
handles these rules badly, so alternative rules are derived to eliminate conjunctions,
implications, and universal quantifiers. The resulting system is similar to a cut-free
sequent calculus.

Basic proof procedures are provided. The intuitionistic prover works with derived
rules to simplify uses of implication in the assumptions. Far from complete, it can
still prove many complex theorems automatically. The classical prover works like a
straightforward implementation of lk, which is like a deductive tableaux prover. It
is not complete either, though less flagrantly so.

A serious theorem prover for classical logic would exploit sophisticated methods
for efficiency and completeness. Most known methods, unfortunately, work only
for certain fixed inference systems. With Isabelle you often work in an evolving
inference system, deriving rules as you go. Classical resolution theorem provers are
extremely powerful, of course, but do not support interactive proof.

The type of expressions is term while the type of formulae is form. The ml
names for these types are Aterm and Aform respectively. The infixes are the equals
sign and the connectives. Note that --> has two meanings: in ml it is a constructor
of the type typ, while in FOL it is the implication sign. Figure 2.1 gives the syntax,
including translations for the quantifiers.

2.1.1 Intuitionistic logic

The intuitionistic theory has the ml identifier Int_Rule.thy. Figure 2.2 shows the
inference rules with their ml names. The connective ↔ is defined through & and
⊃; introduction and elimination rules are derived for it. Derived rules are shown in
Figure 2.3, again with their ml names.

The hardest rule for search is implication elimination (whether expressed by mp

or imp_elim). Given P ⊃ Q we may assume Q provided we can prove P . In classical
logic the proof of P can assume ¬P , but the intuitionistic proof of P may require
repeated use of P ⊃ Q . If the proof of P fails then the whole branch of the proof
must be abandoned. Thus intuitionistic propositional logic requires backtracking.
For an elementary example, consider the intuitionistic proof of Q from P ⊃ Q and

2.1. First-order logic with natural deduction 29

symbol meta-type precedence description
= [term, term]→ form Left 50 equality (=)
& [form, form]→ form Right 35 conjunction (&)
| [form, form]→ form Right 30 disjunction (∨)
--> [form, form]→ form Right 25 implication (⊃)
<-> [form, form]→ form Right 25 if and only if (↔)

Infixes

symbol meta-type description
Trueprop form → prop meta-predicate of truth

~ form → form negation (¬)
Forall (term → form)→ form universal quantifier (∀)
Exists (term → form)→ form existential quantifier (∃)
True form tautologous formula (>)
False form absurd formula (⊥)

Constants

external internal standard notation
ALL x. P Forall(λx .P) ∀x .P
EX x. P Exists(λx .P) ∃x .P

Translations

form = ALL identifier { identifier } . form (10)
| EX identifier { identifier } . form (10)
| ~ form40 (40)
| others . . .

Grammar

Figure 2.1: Syntax of FOL

30 Chapter 2. Isabelle’s First-Order Logics

refl a=a
sym a=b ==> b=a
trans [| a=b; b=c |] ==> a=c

Equality

conj intr [| P; Q |] ==> P&Q
conjunct1 P&Q ==> P
conjunct2 P&Q ==> Q

disj intr1 P ==> P|Q
disj intr2 Q ==> P|Q
disj elim [| P|Q; P ==> R; Q ==> R |] ==> R

imp intr (P ==> Q) ==> P-->Q
mp [| P-->Q; P |] ==> Q

False elim False ==> P

True def True == False-->False
not def ~P == P-->False
iff def P<->Q == (P-->Q) & (Q-->P)

Propositional rules

all intr (!y. P(y)) ==> ALL x.P(x)
spec ALL x.P(x) ==> P(a)

exists intr P(a) ==> EX x.P(x)
exists elim [| EX x.P(x); !y.P(y) ==> R |] ==> R

Quantifier rules

Figure 2.2: Meta-axioms for intuitionistic FOL

2.1. First-order logic with natural deduction 31

conj elim [| P&Q; [| P; Q |] ==> R |] ==> R
imp elim [| P-->Q; P; Q ==> R |] ==> R
all elim [| ALL x.P(x); P(a) ==> R |] ==> R

Sequent-style elimination rules

contr [| ~P; P |] ==> False
not intr (P ==> False) ==> ~P
not elim [| ~P; P |] ==> R

iff intr [| P ==> Q; Q ==> P |] ==> P<->Q
iff elim [| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R

Derived rules for ¬ and ↔

conj imp elim [| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R
disj imp elim [| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R
imp imp elim [| (P-->Q)-->S; [| P; Q-->S |] ==> Q;

S ==> R |] ==> R
all imp elim [| (ALL x.P(x))-->S; !x.P(x); S ==> R |] ==> R
exists imp elim [| (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R

Intuitionistic simplification of implication

disj cintr (~Q ==> P) ==> P|Q
exists cintr (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)
ex middle ~P | P
imp celim [| P-->Q; ~P ==> R; Q ==> R |] ==> R
iff celim [| P<->Q; [| P; Q |] ==> R;

[| ~P; ~Q |] ==> R |] ==> R
swap ~P ==> (~Q ==> P) ==> Q

Derived rules for classical logic

Figure 2.3: Derived rules for FOL

32 Chapter 2. Isabelle’s First-Order Logics

(P ⊃ Q) ⊃ P . The implication P ⊃ Q is needed twice.

P ⊃ Q

(P ⊃ Q) ⊃ P P ⊃ Q

P

Q

The theorem prover for intuitionistic logic avoids imp_elim, trying to simplify
implication with derived rules (Figure 2.3). The idea is to reduce the antecedents
of implications to atoms and then use Modus Ponens: from P ⊃ Q and P deduce
Q . Some of the derived rules are still unsafe, and so the method is incomplete.

The following belong to the structure Int_Prover. This structure is open,
but using the full identifier will avoid name clashes, for instance between
Int_Prover.step_tac and Pc.step_tac.

The tactic mp_tac performs Modus Ponens among the assumptions. Calling
mp_tac i searches for assumptions of the form P ⊃ Q and P in subgoal i . It replaces
that subgoal by a new one where P ⊃ Q has been replaced by Q . Unification may
take place, selecting any implication whose antecedent is unifiable with another
assumption. If more than one pair of assumptions satisfies these conditions, the
tactic will produce multiple outcomes.

The tactic safestep_tac performs one safe step. Calling safestep_tac i tries
to solve subgoal i completely by assumption or absurdity, then tries mp_tac, then
tries other safe rules. It is badly named: due to unification, it is not really safe. If
mp_tac instantiates some variables, for example, then the resulting subgoals could
be unprovable. It may produce multiple outcomes.

Calling safe_tac i tries to solve subgoal i by backtracking, with
safestep_tac i as the step tactic. This tactic is useful for demonstrations and
debugging. It solves the easy parts of the proof while leaving the hard parts.

The tactic step_tac performs one step of the basic strategy. Calling step_tac i

tries to reduce subgoal i by safestep_tac i, then tries unsafe rules. It may produce
multiple outcomes.

The main theorem-proving tactic is pc_tac. Calling pc_tac i tries to solve
subgoal i by backtracking, with step_tac i as the step tactic.

The following are some of the many theorems that pc_tac proves automatically.
The latter three are from Principia Mathematica (*11.53, *11.55, *11.61) [14].

(~ ~ P) & ~ ~ (P --> Q) --> (~ ~ Q)

(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))

(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))

(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))

2.1. First-order logic with natural deduction 33

Summary of the tactics (which belong to structure Int_Prover):

mp tac: int -> tactic
pc tac: int -> tactic
safestep tac: int -> tactic
safe tac: int -> tactic
step tac: int -> tactic

2.1.2 Classical logic

The classical theory has the ml identifier cla_thy. It consists of intuitionistic logic
plus the rule

[¬P]

P

P

Natural deduction in classical logic is not really all that natural. Derived rules
such as the following help [8, pages 46–49].

[¬Q]

P

P ∨Q

P ⊃ Q

[¬P]

R

[Q]

R

R

¬P

[¬Q]

P

Q

The first two exploit the classical equivalence of P ⊃ Q and ¬P ∨ Q . The third,
or swap rule, is typically applied to an assumption ¬P . If P is a complex formula
then the resulting subgoal is P , which can be broken up using introduction rules.
The classical proof procedures combine the swap rule with each of the introduction
rules, so that it is only applied for this purpose. This simulates the sequent calculus
lk [13], where a sequent P1, . . . ,Pm |− Q1, . . . ,Qn can have multiple formulae on
the right. In Isabelle, at least, this strange system seems to work better than lk
itself.

The functor ProverFun makes theorem-proving tactics for arbitrary collections
of natural deduction rules. It could be applied, for example, to some introduction
and elimination rules for the constants of set theory. At present it is applied only
once, to the basic rules of classical logic. The main tactics so defined are fast_tac,
best_tac, and comp_tac; they belong to structure Pc.

The tactic onestep_tac performs one safe step. It is the classical counterpart
of Int_Prover.safestep_tac.

The tactic step_tac performs one step, something like Int_Prover.step_tac.
Calling step_tac thms i tries to reduce subgoal i by safe rules, or else by unsafe
rules. The rules given as thms are treated like unsafe introduction rules. The tactic
may produce multiple outcomes.

The main theorem-proving tactic is fast_tac. Calling fast_tac thms i tries
to solve subgoal i by backtracking, with step_tac thms i as the step tactic.

A slower but more powerful tactic is best_tac. Calling best_tac thms tries to
solve all subgoals by best-first search with step_tac.

34 Chapter 2. Isabelle’s First-Order Logics

A yet slower but ‘almost’ complete tactic is comp_tac. Calling comp_tac thms

tries to solve all subgoals by best-first search. The step tactic is rather judicious
about expanding quantifiers and so forth.

The following are proved, respectively, by fast_tac, best_tac, and comp_tac.
They are all due to Pelletier [11].

(EX y. ALL x. J(y,x) <-> ~J(x,x))
--> ~ (ALL x. EX y. ALL z. J(z,y) <-> ~ J(z,x))

(ALL x. P(a) & (P(x)-->P(b))-->P(c)) <->
(ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))

(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))

Summary of the tactics (which belong to structure Pc):

best tac : thm list -> tactic
comp tac : thm list -> tactic
fast tac : thm list -> int -> tactic
onestep tac : int -> tactic
step tac : thm list -> int -> tactic

2.1.3 An intuitionistic example

Here is a session similar to one in my book on lcf [8, pages 222–3]. lcf users may
want to compare its treatment of quantifiers with Isabelle’s.

The proof begins by entering the goal in intuitionistic logic, then applying the
rule ⊃I.

> goal Int Rule.thy
"(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))";

Level 0
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
> by (resolve tac [imp intr] 1);
Level 1
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. EX y. ALL x. Q(x,y) ==> ALL x. EX y. Q(x,y)

In this example we will never have more than one subgoal. Applying ⊃I changed
--> into ==>, so ∃y . ∀x . Q(x , y) is now an assumption. We have the choice of
eliminating the ∃x . or introducing the ∀x .. Let us apply ∀I.

> by (resolve tac [all intr] 1);
Level 2
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. EX y. ALL x. Q(x,y) ==> (!ka. EX y. Q(ka,y))

2.1. First-order logic with natural deduction 35

Applying ∀I replaced the ALL x by !ka. The universal quantifier changes from
object (∀) to meta (

∧
). The bound variable is renamed ka, and is a parameter of

the subgoal. We now must choose between ∃I and ∃E. What happens if the wrong
rule is chosen?

> by (resolve tac [exists intr] 1);
Level 3
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. EX y. ALL x. Q(x,y) ==> (!ka. Q(ka,?a2(ka)))

The new subgoal 1 contains the function variable ?a2. Although ka is a bound
variable, instantiating ?a2 can replace ?a2(ka) by a term containing ka. Now we
simplify the assumption ∃y .∀x .Q(x , y) using elimination rules. To apply ∃E to the
assumption, call eresolve_tac.

> by (eresolve tac [exists elim] 1);
Level 4
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !ka kb. ALL x. Q(x,kb) ==> Q(ka,?a2(ka))

This step has produced the parameter kb and replaced the assumption by a
universally quantified one. The next step is to eliminate that quantifier. But the
subgoal is unprovable. There is no way to unify ?a2(ka) with the bound variable
kb: assigning %(x)kb to ?a2 is illegal.

Using undo we can return to where we went wrong, and correct matters. This
time we apply ∃E.

...
Level 2
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. EX y. ALL x. Q(x,y) ==> (!ka. EX y. Q(ka,y))

> by (eresolve tac [exists elim] 1);
Level 3
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !ka kb. ALL x. Q(x,kb) ==> EX y. Q(ka,y)

We now have two parameters and no scheme variables. Parameters should be
produced early. Applying ∃I and ∀E will produce two scheme variables.

> by (resolve tac [exists intr] 1);
Level 4
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !ka kb. ALL x. Q(x,kb) ==> Q(ka,?a3(ka,kb))

> by (eresolve tac [all elim] 1);
Level 5
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. !ka kb. Q(?a4(ka,kb),kb) ==> Q(ka,?a3(ka,kb))

36 Chapter 2. Isabelle’s First-Order Logics

The subgoal has variables ?a3 and ?a4 applied to both parameters. The obvious
projection functions unify ?a4(ka,kb) with ka and ?a3(ka,kb) with kb.

> by (assume tac 1);
Level 6
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
No subgoals!

The theorem was proved in six tactic steps, not counting the abandoned ones.
But proof checking is tedious: pc_tac proves the theorem in one step.

Level 0
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
1. (EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
> by (pc tac 1);
Level 1
(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))
No subgoals!

2.1.4 A classical example

To illustrate classical logic, we shall prove the theorem ∃y . ∀x . P(y) ⊃ P(x). This
fails constructively because no y can be exhibited such that ∀x . P(y) ⊃ P(x).
Classically, ∃ does not have this meaning, and the theorem can be proved rather as
follows. If there is any y such that ¬P(y), then chose that y ; otherwise ∀x . P(x)
is true. Either way the theorem holds. If this proof seems counterintuitive, then
perhaps you are an intuitionist.

The formal proof does not conform in any obvious way to the sketch above. The
key step is the very first rule, exists_cintr, which is the classical ∃I rule. This
establishes the case analysis.

> goal cla thy "EX y. ALL x. P(y)-->P(x)";
Level 0
EX y. ALL x. P(y) --> P(x)
1. EX y. ALL x. P(y) --> P(x)
> by (resolve tac [exists cintr] 1);
Level 1
EX y. ALL x. P(y) --> P(x)
1. ALL x. ~(ALL y. P(x) --> P(y)) ==> ALL x. P(?a) --> P(x)

We now can either exhibit a term ?a to satisfy the conclusion of subgoal 1, or
produce a contradiction from the assumption. The following steps are routine: the

2.1. First-order logic with natural deduction 37

conclusion and assumption are broken down using the obvious rules.

> by (resolve tac [all intr] 1);
Level 2
EX y. ALL x. P(y) --> P(x)
1. ALL x. ~(ALL y. P(x) --> P(y)) ==> (!ka. P(?a) --> P(ka))

> by (resolve tac [imp intr] 1);
Level 3
EX y. ALL x. P(y) --> P(x)
1. ALL x. ~(ALL y. P(x) --> P(y)) ==> (!ka. P(?a) ==> P(ka))

> by (eresolve tac [all elim] 1);
Level 4
EX y. ALL x. P(y) --> P(x)
1. !ka. [| P(?a); ~(ALL x. P(?a3(ka)) --> P(x)) |] ==> P(ka)

In classical logic, a negated assumption is equivalent to a conclusion. To get this
effect we invoke eresolve_tac with the swap rule. The current conclusion (P(ka))
becomes a negated assumption.

> by (eresolve tac [swap] 1);
Level 5
EX y. ALL x. P(y) --> P(x)
1. !ka. [| P(?a); ~P(ka) |] ==> ALL x. P(?a3(ka)) --> P(x)

Introduction rules analyse the new conclusion of subgoal 1.

> by (resolve tac [all intr] 1);
Level 6
EX y. ALL x. P(y) --> P(x)
1. !ka. [| P(?a); ~P(ka) |] ==> !kb. P(?a3(ka)) --> P(kb)

> by (resolve tac [imp intr] 1);
Level 7
EX y. ALL x. P(y) --> P(x)
1. !ka. [| P(?a); ~P(ka) |] ==> !kb. P(?a3(ka)) ==> P(kb)

The subgoal now has three assumptions. It may be hard to read: the third
assumption is separated from the other two by a meta-quantifier (!kb.). We now
produce a contradiction between the assumptions ~P(ka) and P(?a3(ka)).

> by (eresolve tac [not elim] 1);
Level 8
EX y. ALL x. P(y) --> P(x)
1. !ka. P(?a) ==> (!kb. P(?a3(ka)) ==> P(ka))

> by (assume tac 1);
Level 9
EX y. ALL x. P(y) --> P(x)
No subgoals!

38 Chapter 2. Isabelle’s First-Order Logics

The civilized way of proving this theorem is comp_tac. The other classical tactics
cannot prove it because they never expand a quantifier more than once.

> goal cla thy "EX y. ALL x. P(y)-->P(x)";
Level 0
EX y. ALL x. P(y) --> P(x)
1. EX y. ALL x. P(y) --> P(x)
> by (comp tac []);
size=21
size=31
size=43
Level 1
EX y. ALL x. P(y) --> P(x)
No subgoals!

2.2 Classical first-order logic

The theory LK implements classical first-order logic through Gentzen’s sequent calcu-
lus lk (see Gallier [3] or Takeuti [13]). Resembling the method of semantic tableaux,
the calculus is well suited for backwards proof. Assertions have the form Γ |− ∆,
where Γ and ∆ are lists of formulae. Associative unification, simulated by higher-
order unification, handles lists. We easily get powerful proof procedures.

2.2.1 Syntax and rules of inference

Figure 2.4 gives the syntax for LK: sequents, quantifiers, and descriptions. The
types include formulae and expressions, and a type sobj used in the representation
of lists. The actual list type, sequ, is just sobj → sobj . The infixes are equality and
the connectives.

Traditionally Γ and ∆ are sequence variables. Since fixed variable declarations
are inconvenient, a dollar prefix designates sequence variables. In a sequence, any
expression not prefixed by $ is a formula.

Figure 2.5 presents the rules. The connective ↔ is defined using & and ⊃. Fig-
ure 2.6 presents derived rules, including rules for ↔ and weakened quantifier rules.
The automatic proof procedures, through these weakened rules, throw away each
quantification after a single use. Thus they usually terminate quickly, but are incom-
plete. The multiple use of a quantifier can be obtained through a duplication rule.
The tactic res_inst_tac can instantiate the variable ?P in these rules, specifying
the formula to duplicate.

2.2.2 Tactics for the cut rule

The theory set, which is built on LK, derives many rules through the cut rule. You
might ask: what about cut-elimination? The cut rule can be eliminated from proofs
of sequents, but it is still needed in derivations of rules.

2.2. Classical first-order logic 39

symbol meta-type precedence description
= [term, term]→ form Left 50 equality (=)
& [form, form]→ form Right 35 conjunction (&)
| [form, form]→ form Right 30 disjunction (∨)
--> [form, form]→ form Right 25 implication (⊃)
<-> [form, form]→ form Right 25 if and only if (↔)

Infixes

symbol meta-type description
True sequ → sequ → prop meta-predicate of truth
Seqof form → sequ singleton formula list
~ form → form negation (¬)

Forall (term → form)→ form universal quantifier (∀)
Exists (term → form)→ form existential quantifier (∃)
The (term → form)→ term description operator (ε)

Constants

external internal standard notation
Γ |- ∆ True(Γ, ∆) sequent Γ |− ∆
ALL x. P Forall(λx .P) ∀x .P
EX x. P Exists(λx .P) ∃x .P
THE x. P The(λx .P) εx .P

Translations

prop = sequence6 |- sequence6 (5)
sequence = item{ , item}

| empty
item = $identifier

| $variable
| form

form = ALL identifier { identifier } . form (10)
| EX identifier { identifier } . form (10)
| ~ form40 (40)
| others . . .

Grammar

Figure 2.4: Syntax of LK

40 Chapter 2. Isabelle’s First-Order Logics

basic $H, P, $G |- $E, P, $F
thin right $H |- $E, $F ==> $H |- $E, P, $F
thin left $H, $G |- $E ==> $H, P, $G |- $E
cut [| $H |- $E, P; $H, P |- $E |] ==> $H |- $E

Structural rules

conj right [| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F
conj left $H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E

disj right $H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F
disj left [| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E

imp right $H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $
imp left [| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E

not right $H, P |- $E, $F ==> $H |- $E, ~P, $F
not left $H, $G |- $E, P ==> $H, ~P, $G |- $E

iff def P<->Q == (P-->Q) & (Q-->P)

Propositional rules

all right (!x.$H|- $E, P(x), $F) ==> $H|- $E, ALL x.P(x), $F
all left $H, P(a), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G|- $E

exists right $H|- $E, P(a), $F, EX x.P(x) ==> $H|- $E, EX x.P(x), $F
exists left (!x.$H, P(x), $G|- $E) ==> $H, EX x.P(x), $G|- $E

Quantifier rules

Figure 2.5: Meta-axioms for the calculus LK

2.2. Classical first-order logic 41

duplicate right $H |- $E, P, $F, P ==> $H |- $E, P, $F
duplicate left $H, P, $G, P |- $E ==> $H, P, $G |- $E

iff right [| $H,P|- $E,Q,$F; $H,Q|- $E,P,$F |] ==> $H|- $E, P<->Q, $F
iff left [| $H,$G|- $E,P,Q; $H,Q,P,$G|- $E |] ==> $H, P<->Q, $G|- $E

all left thin $H, P(a), $G |- $E ==> $H, ALL x.P(x), $G |- $E
exists right thin $H |- $E, P(a), $F ==> $H |- $E, EX x.P(x), $F

Figure 2.6: Derived rules for LK

For example, there is a trivial cut-free proof of the sequent P & Q |− Q & P .
Noting this, we might want to derive a rule for swapping the conjuncts in a right-
hand formula:

Γ |− ∆,P & Q

Γ |− ∆,Q & P

The cut rule must be used, for P & Q is not a subformula of Q & P .
A closer look at the derivations1 shows that most cuts directly involve a premise

of the rule being derived (a meta-assumption). In a few cases, the cut formula is not
part of any premise, but serves as a bridge between the premises and the conclusion.
In such proofs, the cut formula is specified by calling an appropriate tactic.

The tactic cut_tac s i reads the string s as an LK formula P , and applies the
cut rule to subgoal i . The new subgoal i will have P on the right, while the new
subgoal i + 1 will have P on the left.

The tactic cut_right_tac s i is similar, but also deletes a formula from the
right side of the new subgoal i . It is typically used to replace the right-hand formula
by P .

The tactic cut_left_tac s i is similar, but also deletes a formula from the left
side of the new subgoal i + 1, replacing the left-hand formula by P .

2.2.3 Proof procedure

The LK proof procedure is less powerful than hand-coded theorem provers but is
more natural and flexible. It is not restricted to a fixed set of rules. We may derive
new rules and use these to derive others, working with abstract concepts rather than
definitions.

Rules are classified into safe and unsafe. An unsafe rule (typically a weakened
quantifier rule) is only used when no safe rule can be. A pack is simply a pair whose
first component is a list of safe rules, and whose second is a list of unsafe rules.
Packs can be joined in an obvious way to allow reasoning with various fragments of
the logic and its extensions.

Backtracking over the choice of a safe rule accomplishes nothing: applying them
in any order leads to essentially the same result. Backtracking may be necessary

1for example on LK/set/resolve.ML

42 Chapter 2. Isabelle’s First-Order Logics

over basic sequents when they perform unification. Suppose 0, 1, 2, 3 are constants
in the subgoals

P(0),P(1),P(2) |− P(?a)
P(0),P(2),P(3) |− P(?a)
P(1),P(3),P(2) |− P(?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can only
be discovered by search.

For clarity, imagine that Isabelle declares the type pack.2

type pack = thm list * thm list;

The pack triv_pack consists of reflexivity and the basic sequent.
The pack LK_pack contains, as safe rules, the propositional rules plus all_right

and exists_left. The unsafe rules are all_left_thin and exists_right_thin.
Calling pjoin(pack1,pack2) combines two packs in the obvious way: the lists

of safe rules are concatenated, as are the lists of unsafe rules.
Calling filseq_resolve_tac rules maxr i determines which of the rules

could affect a formula in subgoal i. If this number exceeds maxr then the tactic
fails. Otherwise it behaves like resolve_tac (but runs much faster).

The tactic reresolve_tac rules i repeatedly applies the rules to subgoal i
and the resulting subgoals. It keeps track of the number of new subgoals generated
so as to only affect subgoal i.

The tactic repeat_goal_tac packs i applies the safe rules in the packs to a
goal and resulting subgoals. If no safe rule is applicable then an unsafe rule is tried.
For example, disj_left is tried before all_left_thin, though the former rule
produces two subgoals.

The tactic safe_goal_tac packs i applies the safe rules in the packs to a goal
and resulting subgoals. It ignores the unsafe rules.

For tracing a proof, step_tac packs i applies one rule to subgoal i . It considers
the safe rules before unsafe rules.

Tactic pc_tac i attacks subgoal i with triv_pack and LK_pack.
Summary of the above tactics, etc.:

cut left tac: string -> int -> tactic
cut right tac: string -> int -> tactic
cut tac: string -> int -> tactic
filseq resolve tac: thm list -> int -> int -> tactic
LK pack: pack
pc tac: int -> tactic
pjoin: pack*pack -> pack
repeat goal tac: pack list -> int -> tactic
reresolve tac: thm list -> int -> tactic
safe goal tac: pack list -> int -> tactic
step tac: pack list -> int -> tactic
triv pack: pack

2Type synonyms do not work with ml modules.

2.2. Classical first-order logic 43

2.2.4 Sample proofs

Several of Pelletier’s problems [11] are solved by pc_tac. Here is Problem 39.

> goal LK Rule.thy "|- ~ (EX x. ALL y. F(x,y) <-> ~F(y,y))";
Level 0
|- ~(EX x. ALL y. F(x,y) <-> ~F(y,y))
1. |- ~(EX x. ALL y. F(x,y) <-> ~F(y,y))

> by (pc tac 1);
Level 1
|- ~(EX x. ALL y. F(x,y) <-> ~F(y,y))

No subgoals!

Problems 25 and 28 are also solved by pc_tac.

EX x. P(x),
ALL x. L(x) --> ~ (M(x) & R(x)),
ALL x. P(x) --> (M(x) & L(x)),
(ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)) |- EX x. Q(x)&P(x)

ALL x. P(x) --> (ALL x. Q(x)),
(ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x)),
(EX x.S(x)) --> (ALL x. L(x) --> M(x))
|- ALL x. P(x) & L(x) --> M(x)

Unfortunately, LK has no tactic similar to comp_tac of FOL, for repeated quanti-
fier expansion. Problem 35 requires such a step.

> goal LK Rule.thy "|- EX x y. P (x,y) --> (ALL x y.P(x,y))";
Level 0
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. |- EX x y. P(x,y) --> (ALL x y. P(x,y))

> by (resolve tac [exists right] 1);
Level 1
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. |- EX y. P(?a,y) --> (ALL x y. P(x,y)),

EX u y. P(u,y) --> (ALL x y. P(x,y))

The rule exists_right has expanded the existential quantifier while leaving a
copy unchanged. Now pc_tab can finish the proof, but instead let us perform it rule
by rule.

The next rule to apply is ∃R. It applies to either of the formulae in subgoal 1;
fortunately Isabelle chooses the first occurrence.3

> by (resolve tac [exists right thin] 1);
Level 2
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. |- P(?a,?a1) --> (ALL x y. P(x,y)),

EX u y. P(u,y) --> (ALL x y. P(x,y))

3The tactic returns the other occurrence as an additional outcome, which can be reached by
backtracking.

44 Chapter 2. Isabelle’s First-Order Logics

The next rule is ⊃R. Because LK is a sequent calculus, the formula P(?a,?a1)

does not become an assumption. Instead, it moves to the left of the turnstile (|−).

> by (resolve tac [imp right] 1);
Level 3
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. P(?a,?a1) |- ALL x y. P(x,y), EX u y. P(u,y) --> (ALL x y. P(x,y))

Next the universal quantifiers are stripped. Meanwhile, the existential formula
lies dormant.

> by (resolve tac [all right] 1);
Level 4
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. !ka. P(?a,?a1)

|- ALL y. P(ka,y), EX u y. P(u,y) --> (ALL x y. P(x,y))
> by (resolve tac [all right] 1);
Level 5
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. !ka kb. P(?a,?a1) |- P(ka,kb), EX u y. P(u,y) --> (ALL x y. P(x,y))

Note that the formulae P(?a,?a1) and P(ka,kb) are not unifiable, so this is not
a basic sequent. Instead we strip the existential quantifiers.

> by (resolve tac [exists right thin] 1);
Level 6
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. !ka kb. P(?a,?a1)

|- P(ka,kb), EX y. P(?a14(ka,kb),y) --> (ALL x y. P(x,y))
> by (resolve tac [exists right thin] 1);
Level 7
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. !ka kb. P(?a,?a1)

|- P(ka,kb),
P(?Ga18(ka,kb),?a15(ka,kb)) --> (ALL x y. P(x,y))

Applying ⊃R again produces a basic sequent, solving the goal.

> by (resolve tac [imp right] 1);
Level 8
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
1. !ka kb. P(?a,?a1), P(?Ga25(ka,kb),?Ga23(ka,kb))

|- P(ka,kb), ALL x y. P(x,y)
> by (resolve tac [basic] 1);
Level 9
|- EX x y. P(x,y) --> (ALL x y. P(x,y))
No subgoals!

Chapter 3

Isabelle’s Set and Type Theories

The discussion of Isabelle’s object-logic continues with its set and type theories.
They are all large and complicated, as well as involving subtle mathematical ideas.
Each section will only make sense to people who are familiar with the logic in
question.

The theories are as follows:

• Zermelo-Fraenkel set theory is a subtheory of LK . The Zermelo-Fraenkel
axiom system is an established formulation of set theory.

• Martin-Löf’s Constructive Type Theory is partially implemented. Universes
are the main omission.

• Higher-order logic is the largest and most recent of the Isabelle logics. It
is rather more elaborate than Church’s well-known formulation. This is an
object-logic and should not be confused with Isabelle’s meta-logic, which is
also a version of higher-order logic.

Theorem proving in these theories is extremely difficult, as may be imagined,
for each encompasses large portions of mathematics. The proof procedures supplied
with Isabelle must be regarded as first attempts.

3.1 Zermelo-Fraenkel set theory

The Isabelle theory called set implements Zermelo-Fraenkel set theory [12] over the
classical sequent calculus LK. The theory includes a collection of derived rules that
form a sequent calculus of sets. The simplistic sequent calculus proof procedure of
LK works reasonably for set theory.

3.1.1 Syntax and rules of inference

Figure 3.1 gives the syntax for set, which extends LK with finite sets, ordered pairs,
and comprehension. The constant :: is a ‘set cons’, for a :: B = {a} ∪ B . Starting
from the empty set ∅, it constructs finite sets in the obvious way:

{a, b, c, d} = a :: (b :: (c :: (d :: ∅)))

45

46 Chapter 3. Isabelle’s Set and Type Theories

By the separation axiom, the set Collect(A,P) forms the set of all x ∈ A that
satisfy P(x). By the replacement axiom, the set Replace(f ,A) forms the set of
all f (x) for x ∈ A. The syntax of set can express three kinds of comprehension:
separation, replacement, and both together.

Infixes include union and intersection (A ∪ B and A ∩ B), and the subset and
membership relations. The ‘big union’ and ‘big intersection’ operators (

⋃
C and⋂

C) form the union or intersection of a set of sets;
⋃

C can also be written
⋃

A∈C A.
Of these operators only ‘big union’ is primitive.

The language of set theory, as studied by logicians, has no constants. The empty
set axiom asserts that some set is empty, not that ∅ is the empty set; and so on
for union, powerset, etc. Since formal proofs in this language would be barbarous,
the Isabelle theory declares constants. Some of the constants are primitive (like the
empty set), while others are defined (like intersection).

The axioms appear in Figure 3.2. They contain unusual definitions where one
formula is defined to denote another. The extensionality axiom states that A = B
means the same thing as A ⊆ B & B ⊆ A. The power set axiom states that
A ∈ Pow(B) means the same thing as A ⊆ B . Such definitions are not conservative.
The theory also defines abbreviations for ordered pairs, successor, etc.

The axioms can be expressed in many different ways. For example, the rule
equal_members could be expressed as the formula

∀xyA . (x = y & y ∈ A) ⊃ x ∈ A

But applying this axiom would involve several LK rules. (Most books on set theory
omit this axiom altogether!) The axiom of regularity is expressed in its most useful
form: transfinite induction.

The replacement axiom involves the concept of class function, which is like a
function defined on the entire universe of sets. Examples include the power set
operator and the successor operator succ(x) = x ∪ {x}. In set theory, a function
is its graph. Since the graph of a class function is ‘too big’ to be a set, it is rep-
resented by a 2-place predicate. The theory set assumes that every class function
can be expressed by some Isabelle term — possibly involving LK’s description op-
erator (‘The’). Recent experience gives some evidence in favour of the traditional
formulation of the replacement axiom, however.

3.1.2 Derived rules

The theory derives a sequent calculus from the axioms. Figures 3.3–3.4 present most
of the rules, which refer to the constants of set rather than the logical constants.

A rule named X _thin has been weakened. In a typical weakened rule:

• A formula in the conclusion is omitted in the premises to allow repeated appli-
cation of the rule without looping — but this proof procedure is incomplete.

• Some scheme variables appear in the premises but not in the conclusion. In
backwards proof these rules introduce new variables in the subgoals.

3.1. Zermelo-Fraenkel set theory 47

symbol meta-type precedence description
‘ [term, term]→ term Left 65 function application
Int [term, term]→ term Right 60 intersection (∩)
Un [term, term]→ term Right 55 union (∪)
- [term, term]→ term Right 55 difference (−)
:: [term, term]→ term Right 55 inclusion of an element
<= [term, term]→ form Right 50 subset (⊆)
: [term, term]→ form Right 50 membership (∈)

Infixes

0 term empty set
INF term infinite set
Pow term → term powerset operator
Union term → term ‘big union’ operator
Inter term → term ‘big intersection’ operator
Pair [term, term]→ term pairing operator
succ term → term successor operator
Choose term → term choice operator
Collect [term, term → form]→ term separation operator
Replace [term → term, term]→ term replacement operator

Constants

external internal standard notation
{ a1, . . ., an } a1::· · ·::(an::0) {a1, . . . , an}
[x || x:A, P] Collect(A,λx .P) {x ∈ A | P}
[b || x:A] Replace(λx .b,A) {b | x ∈ A}
[b || x:A,P(x)] Replace(λx .b,Collect(A,λx .P)) {b | x ∈ A & P}

Notation

term = < term , term >

| [identifier || identifier : term , form]

| [term || identifier : term]

| [term || identifier : term , form]

| others . . .

Grammar

Figure 3.1: Syntax of set

48 Chapter 3. Isabelle’s Set and Type Theories

null_left $H, a : 0, $G |- $E
setcons_def a: (b::B) == a=b | a:B
Pair_def <a,b> == { {a}, {a,b} }

Empty Set, Finite Sets, and Ordered Pairs

subset_def A<=B == ALL x. x:A --> x:B
equal_members

[| $H |- $E, a=b, $F; $H |- $E, b:A, $F |] ==> $H |- $E, a:A, $F
ext_def A=B == A<=B & B<=A

Subsets, Equality, Extensionality

Pow_def A: Pow(B) == A<=B
Collect_def a: Collect(A,P) == a:A & P(a)
Replace_def c: Replace(f,B) == EXISTS a. a:B & c=f(a)

Power set, Separation, Replacement

Union_def A: Union(C) == (EX B. A:B & B:C)
Un_def a Un b == Union({a,b})
Inter_def Inter(C) == [x || x: Union(C), ALL y. y:C --> x:y]
Int_def a Int b == [x || x:a, x:b]
Diff_def a-b == [x || x:a, ~(x:b)]

Union, Intersection, Difference

succ_def succ(a) == a Un {a}
INF_right_0 $H |- $E, 0:INF, $F
INF_right_succ $H |- $E, a:INF --> succ(a):INF, $F

Choose $H, A=0 |- $E, $F ==> $H |- $E, Choose(A) : A, $F
induction (!u. $H, ALL v. v:u --> P(v) |- $E, P(u), $F) ==>

$H |- $E, P(a), $F

Infinity, Choice, Transfinite Induction

Figure 3.2: Meta-axioms for set

3.1. Zermelo-Fraenkel set theory 49

null_right $H |- $E, $F ==> $H |- $E, a:0, $F
setcons_right $H |- $E, a=b, a:B, $F ==> $H |- $E, a : (b::B), $F
setcons_left [| $H, a=b, $G |- $E; $H, a:B, $G |- $E |] ==>

$H, a:(b::B), $G |- $E

subset_right (!x.$H, x:A |- $E, x:B, $F) ==> $H|- $E, A<=B, $F
subset_left_thin [| $H, $G |- $E, c:A; $H, c:B, $G |- $E |] ==>

$H, A<=B, $G |- $E

equal_right [| $H |- $E, A<=B, $F; $H |- $E, B<=A, $F |] ==>
$H |- $E, A=B, $F

equal_left_s $H, A<=B, B<=A, $G |- $E ==> $H, A=B, $G |- $E
eqext_left_thin [| $H,$G|- $E, c:A, c:B; $H, c:B, c:A, $G|- $E |] ==>

$H, A=B, $G |- $
eqmem_left_thin [| $H,$G|- $E, a:c, b:c; $H,$G, b:c, a:c |- $E |] ==>

$H, a=b, $G |- $E

Finite Sets, Subsets, Equality, Extensionality

Union_right_thin [| $H |- $E, A:B, $F; $H |- $E, B:C, $F |] ==>
$H |- $E, A : Union(C), $F

Union_left (!x.$H, A:x, x:C, $G |- $E) ==> $H, A:Union(C), $G |- $E
Un_right $H |- $E, $F, c:A, c:B ==> $H |- $E, c : A Un B, $F
Un_left [| $H, c:A, $G|- $E; $H, c:B, $G |- $E |] ==>

$H, c: A Un B, $G|- $E

Inter_right (!x.$H, x:C |- $E, A:x, $F) ==> $H, C<=0 |- $E, $F ==>
$H |- $E, A: Inter(C), $F

Inter_left_thin [| $H, A:B, $G |- $E; $H, $G |- $E, B:C |] ==>
$H, A: Inter(C), $G |- $E

Int_right [| $H|- $E, c:A, $F; $H|- $E, c:B, $F |] ==>
$H|- $E, c: A Int B, $F

Int_left $H, c:A, c:B, $G |- $E ==> $H, c : A Int B, $G |- $E

Diff_right [| $H|- $E, c:A, $F; $H, c:B|- $E,$F |] ==> $H|- $E, c:A-B, $F
Diff_left $H, c:A, $G |- $E, c:B ==> $H, c: A-B, $G |- $E

Union, Intersection, Difference

Figure 3.3: The derived sequent calculus for set

50 Chapter 3. Isabelle’s Set and Type Theories

Pow_right $H |- $E, A<=B, $F ==> $H |- $E, A : Pow(B), $F
Pow_left $H, A<=B, $G |- $E ==> $H, A : Pow(B), $G |- $E

Collect_right [| $H |- $E, a:A, $F; $H |- $E, P(a), $F |] ==>
$H |- $E, a : Collect(A,P), $F

Collect_left $H, a: A, P(a), $G |- $E ==> $H, a: Collect(A,P), $G |- $E

Replace_right_thin [| $H |- $E, a:B, $F; $H |- $E, c=f(a), $F |] ==>
$H |- $E, c : Replace(f,B), $F

Replace_left (!x.$H, x:B, c=f(x), $G|- $E) ==>
$H, c: Replace(f,B), $G|- $E

Power set, Separation, Replacement

Figure 3.4: The derived sequent calculus for set (continued)

Recall that a rule is called unsafe if it can reduce a provable goal to unprovable
subgoals. The rule subset_left_thin uses the fact A ⊆ B to reason, ‘for any c, if
c ∈ A then c ∈ B .’ It reduces A ⊆ B |− A ⊆ B , which is obviously valid, to the
subgoals |− A ⊆ B , ?c ∈ A and ?c ∈ B |− A ⊆ B . These are not valid: if A = {2},
B = {1}, and ?c = 1 then both subgoals are false.

A safe variant of the rule would reduce A ⊆ B |− A ⊆ B to the subgoals
A ⊆ B |− A ⊆ B , c ∈ A and A ⊆ B , c ∈ B |− A ⊆ B , both trivially valid. In
contrast, subset_right is safe: if the conclusion is true, then A ⊆ B , and thus the
premise is also true: if x ∈ A then x ∈ B for arbitrary x .

The rules for big intersection are not completely analogous to those for big union
because of the empty set. Clearly

⋃
(∅) equals ∅. We might expect

⋂
(∅) to equal the

universal set, but there is none in zf set theory. The definition happens to make⋂
(∅) equal ∅; we may as well regard it as undefined. The rule Inter_right says

A ∈ ⋂(C) if C is non-empty and x ∈ C implies A ∈ x for every x .
Another collection of derived rules considers the set operators under the subset

relation, as in A ∪ B ⊆ C . These are not shown here.

3.1.3 Tactics

The set theorem prover uses the ‘pack’ techniques of LK. The set theory sequent
calculus can prove many theorems about sets without using logical connectives.
Such proofs are shorter because they do not involve the rules of LK. Combining
packs gives various collections of rules to repeat_goal_tac. Equality reasoning is
difficult at present, although the extensionality rules can do a surprising amount
with equalities. Rewriting ought to be provided.

The sequent rules for set theory belong to set_pack.
The extensionality rules equal_right and eqext_left_thin belong to

ext_pack. These rules, which treat A = B like A ⊆ B & B ⊆ A, are not in

3.1. Zermelo-Fraenkel set theory 51

set_pack because they can be costly.
Calling set_tac i tackles subgoal i with triv_pack and set_pack. Calling

setpc_tac i tackles subgoal i with both set theory and predicate calculus rules:
triv_pack, set_pack, and LK_pack.

There are single-step tactics for debugging. Calling set_step_tac i applies to
subgoal i a rule from triv_pack or set_pack. Calling setpc_step_tac i applies
to subgoal i a rule from triv_pack, set_pack, or LK_pack.

Summary of the above tactics, etc.:

ext pack: pack
set pack: pack
set step tac: int -> tactic
set tac: int -> tactic
setpc step tac: int -> tactic
setpc tac: int -> tactic

3.1.4 Examples

For a simple example about intersections and powersets, let us prove half of the
equation Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B). Compared with first-order logic, set
theory seems to involve a maze of rules. This proof will go straight to the solution. It
might be instructive to try the proof yourself choosing other rules, observing where
you end up.

We enter the goal and make the first (forced) step, namely ⊆ on the right.

> goal Set Rule.thy "|- Pow(A Int B) <= Pow(A) Int Pow(B)";
Level 0
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. |- Pow(A Int B) <= Pow(A) Int Pow(B)

> by (resolve tac [subset right] 1);
Level 1
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka. ka : Pow(A Int B) |- ka : Pow(A) Int Pow(B)

Note the parameter ka: the subgoal says every element (ka) of Pow(A ∩ B) is
also an element of Pow(A) ∩ Pow(B). Next, the Pow on the left is replaced by an
instance of the subset relation (<=).

> by (resolve tac [Pow left] 1);
Level 2
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka. ka <= A Int B |- ka : Pow(A) Int Pow(B)

Intersection being like conjunction, the intersection on the right produces two
subgoals. Henceforth we work on subgoal 1.

> by (resolve tac [Int right] 1);
Level 3
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka. ka <= A Int B |- ka : Pow(A)
2. !ka. ka <= A Int B |- ka : Pow(B)

52 Chapter 3. Isabelle’s Set and Type Theories

The Pow is converted to a subset, which is then reduced.

> by (resolve tac [Pow right] 1);
Level 4
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka. ka <= A Int B |- ka <= A
2. !ka. ka <= A Int B |- ka : Pow(B)
> by (resolve tac [subset right] 1);
Level 5
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka kb. ka <= A Int B, kb : ka |- kb : A
2. !ka. ka <= A Int B |- ka : Pow(B)
val it = () : unit

Subgoal 1 has two parameters, ka and kb. We now reduce the subset relation
on the left, asking for an element of ka and asserting that it is also an element of
A ∩ B . This element may depend upon ka and kb.

> by (resolve tac [subset left thin] 1);
Level 6
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka kb. kb : ka |- kb : A, ?c5(ka,kb) : ka
2. !ka kb. ?c5(ka,kb) : A Int B, kb : ka |- kb : A
3. !ka. ka <= A Int B |- ka : Pow(B)

Subgoal 1 now has two formulae on the right. Recall that it suffices to prove
either of them assuming all those on the left. Resolution with a basic sequent
instantiates the term ?c5(ka,kb) to kb, solving this subgoal.

> by (resolve tac [basic] 1);
Level 7
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka kb. kb : A Int B, kb : ka |- kb : A
2. !ka. ka <= A Int B |- ka : Pow(B)

Note that both occurrences of ?c5(ka,kb) have been instantiated. Showing that
every element of A ∩ B is also an element of A is now a simple matter.

> by (resolve tac [Int left] 1);
Level 8
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka kb. kb : A, kb : B, kb : ka |- kb : A
2. !ka. ka <= A Int B |- ka : Pow(B)
> by (resolve tac [basic] 1);
Level 9
|- Pow(A Int B) <= Pow(A) Int Pow(B)
1. !ka. ka <= A Int B |- ka : Pow(B)

3.1. Zermelo-Fraenkel set theory 53

The remaining subgoal is like the one we tackled back in Level 3. Instead of
repeating those steps, let us go for the automatic tactic.

> by (set tac 1);
Level 10
|- Pow(A Int B) <= Pow(A) Int Pow(B)

No subgoals!

Calling set_tac could have been the first and only step of this proof.

For another example, we prove that big union is monotonic: A ⊆ B implies⋃
(A) ⊆ ⋃(B). As above, the first inference reduces the ⊆ on the right.

> goal Set Rule.thy "A<=B |- Union(A) <= Union(B)";
Level 0
A <= B |- Union(A) <= Union(B)
1. A <= B |- Union(A) <= Union(B)

> by (resolve tac [subset right] 1);
Level 1
A <= B |- Union(A) <= Union(B)
1. !ka. A <= B, ka : Union(A) |- ka : Union(B)

Big union is like an existential quantifier, so the occurrence on the left must be
reduced before that on the right.

> by (resolve tac [Union left] 1);
Level 2
A <= B |- Union(A) <= Union(B)
1. !ka kb. A <= B, ka : kb, kb : A |- ka : Union(B)

The next two steps infer that since A ⊆ B and kb ∈ A, it follows that kb ∈ B .

> by (resolve tac [subset left thin] 1);
Level 3
A <= B |- Union(A) <= Union(B)
1. !ka kb. ka : kb, kb : A |- ka : Union(B), ?c2(ka,kb) : A
2. !ka kb. ?c2(ka,kb) : B, ka : kb, kb : A |- ka : Union(B)
> by (resolve tac [basic] 1);
Level 4
A <= B |- Union(A) <= Union(B)
1. !ka kb. kb : B, ka : kb, kb : A |- ka : Union(B)

The only possible step is to reduce the big union operator on the right.

> by (resolve tac [Union right thin] 1);
Level 5
A <= B |- Union(A) <= Union(B)
1. !ka kb. kb : B, ka : kb, kb : A |- ka : ?B5(ka,kb)
2. !ka kb. kb : B, ka : kb, kb : A |- ?B5(ka,kb) : B

54 Chapter 3. Isabelle’s Set and Type Theories

To show ka ∈ ⋃(B) it suffices to find some element of B , for the moment called
?B5(ka,kb), containing ka as an element. These two subgoals are proved by reso-
lution with the basic sequent.

> by (resolve tac [basic] 1);
Level 6
A <= B |- Union(A) <= Union(B)
1. !ka kb. kb : B, ka : kb, kb : A |- kb : B
> by (resolve tac [basic] 1);
Level 7
A <= B |- Union(A) <= Union(B)
No subgoals!

Again, calling set_tac could have proved this theorem immediately.
Proofs about ‘big intersection’ tend to be complicated because

⋂
is ill-behaved

on the empty set. One theorem which has a difficult proof is

~(C<=0) |- Inter([A(x) Int B(x) || x:C]) =
Inter([A(x) || x:C]) Int Inter([B(x) || x:C]

In traditional notation this is

C 6= ∅ ⊃
⋂

x∈C

(A(x) ∩ B(x)) = (
⋂

x∈C

A(x)) ∩ (
⋂

x∈C

B(x))

Another large example justifies the standard definition of pairing, 〈a, b〉 =
{{a}, {a, b}}. Proving that 〈a, b〉 = 〈c, d〉 implies a = c and b = d is easier
said than done!

3.2 Constructive Type Theory

Isabelle was first written for the Intuitionistic Theory of Types, a formal system
of great complexity.1 The original formulation was a kind of sequent calculus. It
included rules for building the context, namely variable bindings with their types.
A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

In early versions of Isabelle, the object-logic ITT implemented this sequent cal-
culus. It was not satisfactory because assumptions like ‘suppose A is a type’ or
‘suppose B(x) is a type for all x in A’ could not be formalized. Now Isabelle per-
mits a natural deduction formulation of Type Theory. The judgement above is
expressed using

∧
and =⇒:∧

x1 . x1 ∈ A1 =⇒∧ x2 . x2 ∈ A2(x1) =⇒ · · · ∧ xn . xn ∈ An(x1, . . . , xn−1)

=⇒ a(x1, . . . , xn) ∈ A(x1, . . . , xn)

1This section presupposes knowledge of Martin-Löf [6].

3.2. Constructive Type Theory 55

Assumptions can use all the judgement forms, for instance to express that B is a
family of types over A: ∧

x . x ∈ A =⇒ B(x) type

This Isabelle logic is called CTT (Constructive Type Theory) to distinguish it
from its obsolete predecessor. To justify the CTT formulation it is probably best to
appeal directly to the semantic explanations of the rules [6], rather than to the rules
themselves. The order of assumptions no longer matters, unlike in standard Type
Theory. Frankly I am not sure how faithfully CTT reflects Martin-Löf’s semantics;
but many researchers using Type Theory do not bother with such considerations.

All of Type Theory is supported apart from list types, well ordering types, and
universes. Universes could be introduced à la Tarski, adding new constants as
names for types. The formulation à la Russell, where types denote themselves, is
only possible if we identify the meta-types of Aterm and Atype.

CTT uses the 1982 version of equality, where the judgements a = b ∈ A and
c ∈ Eq(A, a, b) are interchangeable. Its rewriting tactics prove theorems of the form
a = b ∈ A. Under the new equality rules, rewriting tactics would have to prove
theorems of the form c ∈ Eq(A, a, b), where c would be a large construction.

3.2.1 Syntax and rules of inference

There are meta-types of types and expressions. The constants are shown in Fig-
ure 3.6. The infixes include the function application operator (sometimes called
‘apply’), and the 2-place type operators. Note that meta-level abstraction and appli-
cation (λx .b and f (a)) differ from object-level abstraction and application (lam x.b
and b‘a)

The empty type is called F and the one-element type is T ; other finite sets are
built as T + T + T , etc. The CTT syntax (Figure 3.5) is similar to that used at
the University of Gothenburg, Sweden. We can write SUM y:B. PROD x:A. C(x,y)

instead of

Sum(B,%(y)Prod(A,%(x)C(x,y)))

Recall that the type (Πx ∈ A)B is abbreviated A→ B , and (
∑

x ∈ A)B is abbrevi-
ated A×B , provided B does not depend upon x . Isabelle accepts these abbreviations
in parsing and uses them whenever possible for printing.

The equality versions of the rules are called long versions; the rules describing the
computation of eliminators are called computation rules. Some rules are reproduced
here to illustrate the syntax. Figure 3.7 shows the rules for N . These include
zero_ne_succ, the fourth Peano axiom (0 6= n + 1) because it cannot be derived
without universes [6, page 91]. Figure 3.8 shows the rules for the general product.

The extra judgement Reduce is used to implement rewriting. The judgement
Reduce(a, b,A) holds when a = b : A holds. It also holds when a and b are
syntactically identical, even if they are ill-typed, because rule refl_red does not
verify that a belongs to A. These rules do not give rise to new theorems about
the standard judgements — note that the only rule that makes use of Reduce is

56 Chapter 3. Isabelle’s Set and Type Theories

symbol meta-type precedence description
‘ [term, term]→ term Left 55 function application
* [type, type]→ type Right 35 product of two types
+ [type, type]→ type Right 30 sum of two types
--> [type, type]→ type Right 25 function type

Infixes

external internal standard notation
PROD x:A.B Prod(A, λx .B) (Πx ∈ A)B
A --> B Prod(A, λx .B) A→ B
SUM x:A.B Sum(A, λx .B) (Σx ∈ A)B

A * B Sum(A, λx .B) A× B
lam x.b lambda(λx .b) (λx)b

Translations

prop = type10 type (5)
| type10 = type10 (5)
| term10 : type10 (5)
| term10 = term10 : type10 (5)

type = PROD identifier : type . type (10)
| SUM identifier : type . type (10)
| others . . .

term = lam identifier . term (10)
| < term , term >

| others . . .

Grammar

Figure 3.5: Syntax of CTT

3.2. Constructive Type Theory 57

symbol meta-type description
Type type → prop judgement form
Eqtype [type, type]→ prop judgement form
Elem [term, type]→ prop judgement form
Eqelem [term, term, type]→ prop judgement form
Reduce [term, term, type]→ prop extra judgement form

N type natural numbers type
0 term constructor

succ term → term constructor
rec [term, term, [term, term]→ term]→ term eliminator

Prod [type, term → type]→ type general product type
lambda (term → term)→ term constructor

Sum [type, term → type]→ type general sum type
pair [term, term]→ term constructor
split [term, [term, term]→ term]→ term eliminator
fst snd term → term projections

inl inr term → term constructors for +
when [term, term → term, term → term]→ term eliminator for +

Eq [type, term, term]→ type equality type
eq term constructor

F type empty type
contr term → term eliminator

T type singleton type
tt term constructor

Figure 3.6: The constants of CTT

58 Chapter 3. Isabelle’s Set and Type Theories

N form N type
N intr0 0 : N
N intr succ a : N ==> succ(a) : N
N intr succ long a = b : N ==> succ(a) = succ(b) : N
N elim

[| p: N; a: C(0);
!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]

==> rec(p,a,b) : C(p)
N elim long

[| p = q : N; a = c : C(0);
!u v.[| u:N; v:C(u) |] ==> b(u,v)=d(u,v): C(succ(u)) |]

==> rec(p,a,b) = rec(q,c,d) : C(p)
N comp0

[| a: C(0);
!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]

==> rec(0,a,b) = a : C(0)
N comp succ

[| p: N; a: C(0);
!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]

==> rec(succ(p),a,b) = b(p, rec(p,a,b)) : C(succ(p))
zero ne succ [| a: N; 0 = succ(a) : N |] ==> 0: F

Figure 3.7: Meta-axioms for the type N

Prod form
[| A type; !w. w:A ==> B(w) type |] ==> Prod(A,B) type

Prod form long
[| A = C; !w. w:A ==> B(w) = D(w)|] ==> Prod(A,B) = Prod(C,D)

Prod intr
[| A type; !w. w:A ==> b(w):B(w)|] ==> lambda(b): Prod(A,B)

Prod intr long
[| A type; !w. w:A ==> b(w) = c(w) : B(w)|] ==>
lambda(b) = lambda(c) : Prod(A,B)

Prod elim
[| p : Prod(A,B); a : A |] ==> p‘a : B(a)

Prod elim long
[| p=q: Prod(A,B); a=b : A |] ==> p‘a = q‘b : B(a)

Prod comp
[| a : A; !w. w:A ==> b(w) : B(w)|] ==> lambda(b)‘a = b(a) : B(a)

Prod comp2
p : Prod(A,B) ==> (lam x. p‘x) = p : Prod(A,B)"),

Figure 3.8: Meta-axioms for the product type

3.2. Constructive Type Theory 59

Plus form [| A type; B type |] ==> A+B type
Plus form long [| A = C; B = D |] ==> A+B = C+D
Plus intr inl [| a : A; B type |] ==> inl(a) : A+B
Plus intr inr [| A type; b : B |] ==> inr(b) : A+B
Plus intr inl long

[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B
Plus intr inr long

[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B
Plus elim

[| p: A+B; !x. x:A ==> c(x): C(inl(x));
!y. y:B ==> d(y): C(inr(y)) |]

==> when(p,c,d) : C(p)
Plus elim long

[| p = q : A+B; !x. x: A ==> c(x) = e(x) : C(inl(x));
!y. y: B ==> d(y) = f(y) : C(inr(y)) |]

==> when(p,c,d) = when(q,e,f) : C(p)
Plus comp inl

[| a: A; !x. x:A ==> c(x): C(inl(x)); !y. y:B ==> d(y): C(inr(y)) |]
==> when(inl(a),c,d) = c(a) : C(inl(a))

Plus comp inr
[| b: B; !x. x:A ==> c(x): C(inl(x)); !y. y:B ==> d(y): C(inr(y)) |]
==> when(inr(b),c,d) = d(b) : C(inr(b))

The type +

refl red a = b : A ==> Reduce(a,b)
red if equal a = b : A ==> Reduce(a,b)
trans red [| a = b : A; Reduce(b,c) |] ==> a = c : A

The judgement Reduce

fst def fst(a) == split(a, %(x,y)x)
snd def snd(a) == split(a, %(x,y)y)

Definitions

Figure 3.9: Other meta-axioms for CTT

60 Chapter 3. Isabelle’s Set and Type Theories

subst prod elim
[| p: Prod(A,B); a: A; !z. z: B(a) ==> c(z): C(z) |]
==> c(p‘a): C(p‘a)

Sum elim fst p : Sum(A,B) ==> fst(p) : A
Sum elim snd

[| p: Sum(A,B); A type; !x. x:A ==> B(x) type |]
==> snd(p) : B(fst(p))

Figure 3.10: Derived rules for CTT

trans_red, whose first premise ensures that a and b (and thus c) are well-typed.
Figure 3.9 shows the rules for Reduce and the definitions of fst and snd. It also
shows the rules for +, the sum of two types.

Many proof procedures work by repeatedly resolving certain Type Theory rules
against a proof state. The theory defines lists — each with type thm list — of
related rules.

• form_rls: formation rules for the types N , Π, Σ, +, Eq , F , and T .

• form_long_rls: long formation rules for Π, Σ, +, and Eq . (For other types
use refl_type.)

• intr_rls: introduction rules for the types N , Π, Σ, +, and T .

• intr_long_rls: long introduction rules for N , Π, Σ, and +. (For T use
refl_elem.)

• elim_rls: elimination rules for the types N , Π, Σ, +, and F . The rules for
Eq and T are omitted because they involve no eliminator.

• elim_long_rls: long elimination rules for N , Π, Σ, +, and F .

• comp_rls: computation rules for the types N , Π, Σ, and +. Those for Eq and
T involve no eliminator.

• basic_defs: the definitions shown in Figure 3.9.

3.2.2 Tactics

The Type Theory tactics provide rewriting, type inference, and logical reasoning.
Derived rules are shown in Figure 3.10. The rule subst_prod_elim is derived from
prod_elim, and is easier to use in backwards proof. The rules Sum_elim_fst and
Sum_elim_snd express properties of fst and snd.

3.2. Constructive Type Theory 61

Subgoal reordering

Blind application of rules seldom leads to a proof. Many rules, especially elimination
rules, create subgoals containing new schematic variables. Such variables unify with
anything, causing an undirectional search. The standard tactics filt_resolve_tac
and compat_resolve_tac (Appendix A) can reject ambiguous goals; so does the
CTT tactic test_assume_tac. Used with the tactical REPEAT_FIRST they achieve a
simple kind of subgoal reordering: inappropriate subgoals are ignored. Try doing
some single step proofs, or study the examples below, to see why this is necessary.

Object-level simplification is accomplished through proof, using the CTT equality
rules and the built-in rewriting functor. The rewrites are the computation rules
and the long versions of the other rules. Also used are transitivity and the extra
judgement form Reduce. Meta-level simplification handles only definitional equality.

Calling test_assume_tac i, where subgoal i has the form a ∈ A and the head
of a is not a scheme variable, calls assume_tac to solve the subgoal by assumption.
All other cases are rejected.

Many CTT tactics work by subgoal reordering. The most important are the
following, which all have type thm list->tactic. They uses built-in rules as well
as additional rules given in the argument.

Calling typechk_tac thms uses formation, introduction, and elimination rules
to check the typing of constructions. It is designed to solve goals like a ∈ ?A where a
is rigid and ?A is flexible. Thus it performs type inference using essentially Milner’s
algorithm, which is expressed in the rules. The tactic can also solve goals of the
form A type.

Calling equal_tac thms solves goals like a = b ∈ A, where a is rigid, using the
long introduction and elimination rules. It is intended for deriving the long rules
for defined constants such as the arithmetic operators. The tactic can also perform
type checking.

Calling intr_tac thms uses introduction rules to break down a type. It is
designed for goals like ?a ∈ A where ?a is flexible and A rigid. These typically arise
when trying to prove a proposition A, expressed as a type.

Calling rew_tac thms applies left-to-right rewrite rules. It solves the goal a =
b ∈ A by rewriting a to b. If b is a scheme variable then it is assigned the rewritten
form of a. All subgoals are rewritten.

Calling hyp_rew_tac thms rewrites each subgoal with the given theorems and
also with any rewrite rules present in the assumptions.

Tactics for logical reasoning

Interpreting propositions as types lets CTT express statements of intuitionistic logic.
The proof procedures of FOL, adapted for CTT, can prove many such statements
automatically.

However, Constructive Type Theory is not just another syntax for first-order
logic. A key question: can assumptions be deleted after use? Not every occurrence
of a type represents a proposition, and Type Theory assumptions declare variables.
In first-order logic, ∨-elimination with the assumption P ∨ Q creates one subgoal

62 Chapter 3. Isabelle’s Set and Type Theories

assuming P and another assuming Q , and P ∨ Q can be deleted. In Type Theory,
+-elimination with the assumption z ∈ A + B creates one subgoal assuming x ∈ A
and another assuming y ∈ B (for arbitrary x and y). Deleting z ∈ A + B may
render the subgoals unprovable if other assumptions refer to z . Some people might
argue that such subgoals are not even meaningful.

The tactic mp_tac performs Modus Ponens among the assumptions. Calling
mp_tac i searches for assumptions of the form f ∈ Π(A,B) and a ∈ A in subgoal
i . It replaces that subgoal by one with a parameter z where f ∈ Π(A,B) has been
replaced by z ∈ B(a). Unification may take place, selecting any implication whose
antecedent is unifiable with another assumption.

The tactic add_mp_tac is like mp_tac except that the assumption f ∈ Π(A,B)
is retained.

Calling safestep_tac thms i attacks subgoal i using formation rules and cer-
tain other ‘safe’ rules (F_elim, Prod_intr, Sum_elim, Plus_elim), calling mp_tac

when appropriate. It also uses the theorems thms, which are typically premises of
the rule being derived.2

Calling safe_tac thms i tries to solve subgoal i by backtracking, with
safestep_tac thms i as the step tactic.

Calling step_tac thms i tries to reduce subgoal i by safestep_tac i, then
tries unsafe rules. It may produce multiple outcomes.

Calling pc_tac thms i tries to solve subgoal i by backtracking, with
step_tac thms i as the step tactic. This tactic is for logical reasoning, not type
checking.

Summary of the tactics (which belong to structure CTT_Resolve):

add mp tac: int -> tactic
mp tac: int -> tactic
pc tac: thm list -> int -> tactic
safestep tac: thm list -> int -> tactic
safe tac: thm list -> int -> tactic
step tac: thm list -> int -> tactic

3.2.3 An example of type inference

Type inference involves proving a goal of the form a ∈?A, where a is a term and ?A
is a scheme variable standing for its type. The type, initially unknown, takes shape
in the course of the proof. Our example is the predecessor function on the natural
numbers.

> goal CTT Rule.thy "lam n. rec(n, 0, %x y.x) : ?A";
Level 0
lam n. rec(n,0,%x y. x) : ?A
1. lam n. rec(n,0,%x y. x) : ?A

2The name, borrowed from FOL, is even less inappropriate for Type Theory. This tactic performs
unsafe steps and is therefore incomplete.

3.2. Constructive Type Theory 63

Since the term is a Constructive Type Theory λ-abstraction (not to be confused
with a meta-level abstraction), the only rule worth considering is Π-introduction.
As a result, ?A gets instantiated to a product type, though its domain and range
are still unknown.

> by (resolve tac [Prod intr] 1);
Level 1
lam n. rec(n,0,%x y. x) : Prod(?A1,?B1)
1. ?A1 type
2. !ka. ka : ?A1 ==> rec(ka,0,%x y. x) : ?B1(ka)

Subgoal 1 can be solved in many ways, most of which would invalidate subgoal 2.
We therefore tackle the latter subgoal. It asks the type of a term beginning with
rec, which can be found by N -elimination.

> by (eresolve tac [N elim] 2);
Level 2
lam n. rec(n,0,%x y. x) : PROD ka:N. ?C2(ka,ka)
1. N type
2. !ka. 0 : ?C2(ka,0)
3. !ka kb kc. [| kb : N; kc : ?C2(ka,kb) |] ==> kb : ?C2(ka,succ(kb))

We now know that type ?A1 is the natural numbers. However, let us continue
with subgoal 2. What is the type of 0?

> by (resolve tac [N intr0] 2);
Level 3
lam n. rec(n,0,%x y. x) : N --> N
1. N type
2. !ka kb kc. [| kb : N; kc : N |] ==> kb : N

The type ?A is now determined: it is (Πka : N)N , which is equivalent to N → N .
But we must prove all the subgoals to show that the original term is validly typed.
The current subgoal 2 is provable by assumption. The remaining subgoal falls by
N -formation.

> by (assume tac 2);
Level 4
lam n. rec(n,0,%x y. x) : N --> N
1. N type

> by (resolve tac [N form] 1);
Level 5
lam n. rec(n,0,%x y. x) : N --> N
No subgoals!

Calling typechk_tac [] can prove this theorem in one step.

To extract the theorem we must call uresult(), not result(). The latter
function insists that the theorem be identical to the goal, while here ?A has been

64 Chapter 3. Isabelle’s Set and Type Theories

instantiated.

> result();
result: proved a different theorem
Exception- ERROR raised
> prth(uresult());
lam n. rec(n,0,%x y. x) : N --> N

3.2.4 Examples of logical reasoning

Logical reasoning in Type Theory involves proving a goal of the form ?a ∈ A, where
type A expresses a proposition and ?a is a scheme variable standing for its proof
term: a value of type A. This term, of course, is initially unknown, as with type
inference. It takes shape during the proof.

Our first example expresses, by propositions-as-types, a theorem about quanti-
fiers in a sorted logic:

∃x ∈ A . P(x) ∨Q(x)

(∃x ∈ A . P(x)) ∨ (∃x ∈ A . Q(x))

It can also be seen as the generalization from × to Σ of a distributive law of Type
Theory:

A× (B + C)

(A× B) + (A× C)

We derive the rule

A type
[x ∈ A]

B(x) type

[x ∈ A]

C (x) type
p ∈

∑
x∈A

B(x) + C (x)

?a ∈ (
∑

x∈A B(x)) + (
∑

x∈A C (x))

To derive a rule, its premises must be bound to an ml variable. The premises
are returned by goal and given the name prems.

> val prems = goal CTT_Rule.thy
"[| A type; !x. x:A ==> B(x) type; !x. x:A ==> C(x) type; \
\ p : SUM x:A. B(x) + C(x) |] ==> \
\ ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";
Level 0
?a : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))
val prems = [?, ?, ?, ?] : thm list

One of the premises involves summation (Σ). Since it is a premise rather than
the assumption of a goal, it cannot be found by eresolve_tac. We could insert it

3.2. Constructive Type Theory 65

by calling cut_facts_tac prems 1, but instead let us apply the Σ-elimination rule
by calling resolve_tac.

> by (resolve tac [Sum elim] 1);
Level 1
split(?p1,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. ?p1 : Sum(?A1,?B1)
2. !ka kb. [| ka : ?A1; kb : ?B1(ka) |] ==>

?c1(ka,kb) : (SUM x:A. B(x)) + (SUM x:A. C(x))

Another call to resolve_tac, this time with the premises, solves subgoal 1. The
other subgoal has two new parameters. In the main goal, ?a has been instantiated
with a split term.

> by (resolve tac prems 1);
Level 2
split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. [| ka : A; kb : B(ka) + C(ka) |] ==>

?c1(ka,kb) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The assumption kb ∈ B(ka) + C (ka) is now eliminated, causing a case split and
a new parameter. Observe how the main goal appears now.

> by (eresolve tac [Plus elim] 1);
Level 3
split(p,%ka kb. when(kb,?c2(ka,kb),?d2(ka,kb)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==>

(!kc. kc : B(ka) ==>
?c2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

2. !ka kb. ka : A ==>
(!kc. kc : C(ka) ==>

?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

To complete the proof object for the main goal, we need to instantiate the terms
?c2(ka,kb,kc) and ?d2(ka,kb,kc). We attack subgoal 1 by introduction of +.
Since there are assumptions ka ∈ A and kc ∈ B(ka), we take the left injection
(inl).

> by (resolve tac [Plus intr inl] 1);
Level 4
split(p,%ka kb. when(kb,%kc. inl(?a3(ka,kb,kc)),?d2(ka,kb)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==>

(!kc. kc : B(ka) ==> ?a3(ka,kb,kc) : SUM x:A. B(x))
2. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> SUM x:A. C(x) type)
3. !ka kb. ka : A ==>

(!kc. kc : C(ka) ==>
?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

66 Chapter 3. Isabelle’s Set and Type Theories

A new subgoal has appeared, to verify that
∑

x∈A C (x) is a type. Continuing
with subgoal 1, we introduce the Σ:

> by (resolve tac [Sum intr] 1);
Level 5
split(p,%ka kb. when(kb,%kc. inl(<?a4(ka,kb,kc),?b4(ka,kb,kc)>),

?d2(ka,kb))) : (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> ?a4(ka,kb,kc) : A)
2. !ka kb. ka : A ==>

(!kc. kc : B(ka) ==> ?b4(ka,kb,kc) : B(?a4(ka,kb,kc)))
3. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> SUM x:A. C(x) type)
4. !ka kb. ka : A ==>

(!kc. kc : C(ka) ==>
?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

The two new subgoals (from Σ-introduction) both hold by assumption:

> by (assume tac 1);
Level 6
split(p,%ka kb. when(kb,%kc. inl(<ka,?b4(ka,kb,kc)>),?d2(ka,kb)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> ?b4(ka,kb,kc) : B(ka))
2. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> SUM x:A. C(x) type)
3. !ka kb. ka : A ==>

(!kc. kc : C(ka) ==>
?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

> by (assume tac 1);
Level 7
split(p,%ka kb. when(kb,%kc. inl(<ka,kc>),?d2(ka,kb)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==> (!kc. kc : B(ka) ==> SUM x:A. C(x) type)
2. !ka kb. ka : A ==>

(!kc. kc : C(ka) ==>
?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

Subgoal 1 is just type checking, and yields to typechk_tac, provided the premises
(the ml variable prems) are supplied.

> by (typechk tac prems);
Level 8
split(p,%ka kb. when(kb,%kc. inl(<ka,kc>),?d2(ka,kb)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
1. !ka kb. ka : A ==>

(!kc. kc : C(ka) ==>
?d2(ka,kb,kc) : (SUM x:A. B(x)) + (SUM x:A. C(x)))

3.2. Constructive Type Theory 67

Yes, this has been tedious. Let us prove the other case by pc_tac.

> by (pc tac prems 1);
Level 9
split(p,%ka kb. when(kb,%kc. inl(<ka,kc>),%kc. inr(<ka,kc>)))
: (SUM x:A. B(x)) + (SUM x:A. C(x))
No subgoals!

The following proof derives a currying functional in ?a. Its type includes, as a
special case, the type

(A× B → C)→ (A→ (B → C))

The argument of the functional is a function that maps z : Σ(A,B) to C (z); the
resulting function maps x ∈ A and y ∈ B(x) to C (〈x , y〉). Here B is a family over
A while C is a family over Σ(A,B).

> val prems = goal CTT_Rule.thy
"[| A type; !x. x:A ==> B(x) type; \
\ !z. z: (SUM x:A. B(x)) ==> C(z) type|] \
\ ==> ?a : (PROD z : (SUM x:A . B(x)) . C(z)) \
\ --> (PROD x:A . PROD y:B(x) . C(<x,y>))";
Level 0
?a : (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))
val prems = [?, ?, ?] : thm list

It is proved in one step: pc_tac. Observe how ?a becomes instantiated.

> by (pc tac prems 1);
Level 1
lam ka. lam kb. lam kc. ka ‘ <kb,kc>
: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))
No subgoals!

Two examples by Martin-Löf [6] have been performed in Isabelle. The law of ∨
elimination [6, page 58] is derived in one step by pc_tac. The choice principle [6,
page 50] has a rather delicate proof of nine steps. The resulting constructions are
equivalent to those published by Martin-Löf.

3.2.5 Arithmetic

The largest example develops elementary arithmetic — the properties of addition,
multiplication, subtraction, division, and remainder — culminating in the theorem

a mod b + (a/b)× b = a

68 Chapter 3. Isabelle’s Set and Type Theories

local open Syntax_Def
in val mixfix =

[Infixr("#+", [Aterm,Aterm]--->Aterm, 25),
Infixr("-", [Aterm,Aterm]--->Aterm, 25),
Infixr("|-|", [Aterm,Aterm]--->Aterm, 25),
Infixr("#*", [Aterm,Aterm]--->Aterm, 35),
Infixr("’/’/", [Aterm,Aterm]--->Aterm, 35),
Infixr("’/", [Aterm,Aterm]--->Aterm, 35)];

val arith_ext = {logical_types=[],
mixfix=mixfix,
parse_translation=[],
print_translation=[]};

val arith_const_decs = constants mixfix;
val arith_syn = Syntax.extend CTT_Syntax.syn arith_ext

end;

val arith_thy = enrich_theory CTT_Rule.thy "arith"
([], arith_const_decs, arith_syn)

[("add_def", "a#+b == rec(a, b, %u v.succ(v))"),
("diff_def", "a-b == rec(b, a, %u v.rec(v, 0, %x y.x))"),
("absdiff_def", "a|-|b == (a-b) #+ (b-a)"),
("mult_def", "a#*b == rec(a, 0, %u v. b #+ v)"),
("mod_def", "a//b == rec(a, 0, %u v. \

\ rec(succ(v) |-| b, 0, %x y.succ(v)))"),
("quo_def", "a/b == rec(a, 0, %u v. \

\ rec(succ(u) // b, succ(v), %x y.v))")];

Figure 3.11: Defining the theory of arithmetic

3.3. Higher-order logic 69

The declaration of arith_thy3 appears in Figure 3.11. It demonstrates how to
extend a theory. See Chapter 5 for a complete description of infix and other kinds
of syntax definitions.

Axioms define each operator in terms of others. Although here no operator is
used before it is defined, Isabelle accepts arbitrary axioms without complaint. Since
Type Theory permits only primitive recursion, some of these definitions may be
unfamiliar. The difference a − b is computed by computing b predecessors of a; the
predecessor function is

%(v)rec(v, 0, %(x,y)x)

The remainder a//b counts up to a in a cyclic fashion: whenever the count would
reach b, the cyclic count returns to zero. Here the absolute difference gives an
equality test. The quotient a//b is computed by adding one for every number x
such that 0 ≤ x ≤ a and x//b = 0.

Lemmas leading up to the main result include commutative, distributive, and
associative laws.

[| a:N; b:N |] ==> a #+ b = b #+ a : N
[| a:N; b:N |] ==> a #* b = b #* a : N
[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N
[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N

3.3 Higher-order logic

Isabelle’s theory HOL combines aspects of all the other object-logics. This formula-
tion of higher-order logic includes a type system as rich as that of Constructive Type
Theory, logical rules generalizing those of first-order logic, and a theory of classes.
It has gone a long way from its origins in Church’s version of the Simple Theory of
Types, and this development is continuing. The paper discussing Isabelle’s version
is already becoming out of date. This logic is too large and too preliminary to justify
detailed discussion. We shall just consider its syntax and a few of the rules.

Figures 3.12 and 3.13 present the syntax and figure 3.15 the inference rules.
Figure 3.14 lists the constants while figure 3.16 gives their definitions. There are
two forms of judgement:

• a : A means that the value a has type A

• P means that the formula P is true

The formulae are those of a many-sorted first-order logic. For higher-order rea-
soning, the reflection functions term and form map between formulae and terms of
type bool . Terms include descriptions, pairs, λ-abstractions, and class abstractions.
The latter are boolean-valued λ-abstractions that are viewed as sets.

3The theory is on CTT/arith.ML; sample proofs are on CTT/ex/arith.ML

70 Chapter 3. Isabelle’s Set and Type Theories

The types include the general products and sums
∏

x :A .B(x) and
∑

x :A .B(x),
generalizing the types A → B and A × B . Dependent types are possible because
there are subtypes of the form {x : A . P(x)}, where the formula P(x) may depend
upon other variables. At present they are used with well-founded recursion. A type
of natural numbers embodies the Axiom of Infinity, permitting the construction of
list and tree types. The Isabelle implementation derives disjoint sums (the type
A + B) and lists.

3.3.1 Tactics

The theory HOL provides tactics similar to those for classical first-order logic (see
Section 2.1.2). Like those, they exploit a swap rule to get the effect of a sequent
calculus. However, they must also perform type checking. They are generated by
functor ProverFun, which accepts classical natural deduction systems. Module Pc

works with just the logical connectives, while module Class uses class theory also.
These use the natural deduction rules derived for the logical constants (which are
defined equationally) and for class theory (union, intersection, etc., on boolean-
valued functions).

The main tactics are described below. Remember that they belong to the above
structures: to refer to fast_tac you must write Pc.fast_tac or Class.fast_tac,
and so forth.

The tactic onestep_tac performs one safe step. Calling onestep_tac i tries to
solve subgoal i completely by assumption or absurdity, then tries mp_tac, then tries
other ‘safe’ rules.

Calling step_tac thms i tries to reduce subgoal i by safe rules, or else by unsafe
rules, including those given as thms. It may produce multiple outcomes.

Calling fast_tac thms i tries to solve subgoal i by backtracking, with
step_tac thms i as the step tactic. The argument thms supplies it with addi-
tional rules.

Calling best_tac thms tries to solve all subgoals by best-first search with
step_tac.

Calling comp_tac thms tries to solve all subgoals by best-first search. The step
tactic will expand quantifiers repeatedly if necessary.

Summary of the tactics (which belong to structures Pc and Class):

best tac : thm list -> tactic
comp tac : thm list -> tactic
fast tac : thm list -> int -> tactic
onestep tac : int -> tactic
step tac : thm list -> int -> tactic

Rewriting tactics are also available. Both have type thm list -> tactic.

Calling rew_tac thms applies left-to-right rewrite rules. It solves the subgoal
a = b ∈ A by rewriting a to b. If b is a scheme variable then it is assigned the
rewritten form of a. All subgoals are rewritten.

3.3. Higher-order logic 71

symbol meta-type precedence description
<: [term, term]→ form Left 55 class membership
& [form, form]→ form Right 35 conjunction (&)
| [form, form]→ form Right 30 disjunction (∨)
--> [form, form]→ form Right 25 implication (⊃)
<-> [form, form]→ form Right 25 if and only if (↔)

‘ [term, term]→ term Left 55 function application

* [type, type]→ type Right 35 product of two types
+ [type, type]→ type Right 30 sum of two types
-> [type, type]→ type Right 25 function type

Infixes

external internal standard notation
ALL x:A.P Forall(A,λx .P) ∀x : α.P
EX x:A.P Exists(A,λx .P) ∃x : α.P

PICK x:A.P Pick(A,λx .P) ηx : α.P
lam x:A.b Lambda(A, λx .b) abstraction λx : α.b
{| x:A.P |} Lambda(A,λx . term(P)) class {|x : α.P |}

{ x:A.P } subtype(A,λx .P) subtype {x : α.P}
PROD x:A.B Pi(A, λx .B) product

∏
x :A .B(x)

SUM x:A.B Sigma(A, λx .B) sum
∑

x :A .B(x)
A --> B Prod(A, λx .B) function space A→ B
A * B Sum(A, λx .B) binary product A× B

Translations

Figure 3.12: Syntax of HOL

72 Chapter 3. Isabelle’s Set and Type Theories

prop = form (5)
| term6 : type6 (5)

form = ALL identifier : type . form (10)
| EX identifier : type . form (10)
| ~ form40 (40)
| term20 = term20 : type20 (10)
| others . . .

term = PICK identifier : type . form (10)
| lam identifier : type . form (10)
| {| identifier : type . form|}
| others . . .

type = PROD identifier : type . type (10)
| SUM identifier : type . type (10)
| others . . .

Figure 3.13: Grammar of HOL

Calling hyp_rew_tac thms rewrites each subgoal with the given theorems and
also with any rewrite rules present in the assumptions. (At present these may begin
with one universal quantifier.)

3.3.2 Examples

The theory HOL comes with a body of derived rules. They range from simple proper-
ties of the logical constants and class theory, and simplification lemmas, to Tarski’s
Theorem and well-founded recursion. Dozens of these are worth studying.

Deriving natural deduction rules for the logical constants from their defining
equations requires higher-order reasoning. This also illustrates how to derive rules
involving definitions. Let us derive the rules for conjunction.

We enter the desired rule, namely P ,Q/P & Q . Since we are deriving a rule, the
list of premises [P ,Q] is bound to the ml variable prems.

> val prems = goal HOL Rule.thy "[| P; Q |] ==> P&Q";
Level 0
P & Q
1. P & Q

Next, the subgoals are rewritten by the definition of conjunction:

> by (rewrite goals tac [conj def]);
Level 1
P & Q
1. ALL r:bool. (P --> Q --> form(r)) --> form(r)

3.3. Higher-order logic 73

symbol meta-type description
Trueprop form → prop truth of a formula
Elem [term, type]→ prop membership in type

~ form → form negation (¬)
Eq Reduce [term, term, type]→ form typed equality

Pick [type, term → form]→ term description (η)
Forall Exists [type, term → form]→ form quantifiers

term form → term reflection to term
form term → form reflection to form

void type empty type
unit type singleton type

subtype [type, term → form]→ type subtypes
bool type type of truth values

True False form elements of bool
cond [type, term, term, term]→ term conditional

nat type natural numbers type
0 term constructor

Succ term → term constructor

rec
[term, term,

[term, term]→ term]→ term
eliminator

Pi [type, term → type]→ type general product type
Lambda (term → term)→ term constructor

Sigma [type, term → type]→ type general sum type
Pair [term, term]→ term constructor
split [term, [term, term]→ term]→ term eliminator
fst snd term → term projections

Inl Inr term → term constructors for +

when
[type, type, type, term,

term → term, term → term]→ term
eliminator for +

subset [type, term, term]→ form subset relation
un [type, term, term]→ term union of classes
int [type, term, term]→ term intersection of classes
union [type, term]→ term union of a family
inter [type, term]→ term intersection of family
pow [type, term]→ term powerclass

Figure 3.14: The constants of HOL

74 Chapter 3. Isabelle’s Set and Type Theories

pair type [| a: A; b: B(a) |] ==> <a,b> : SUM x:A.B(x)
sigma elim [| p: SUM x:A.B(x);

!x y.[| x: A; y: B(x) |] ==> Q(<x,y>) |] ==> Q(p)
pair inject [| <a,b> = <c,d> : (SUM x:A.B(x));

[| a = c : A; b = d : B(a) |] ==> R |] ==> R

fst type p: SUM x:A.B(x) ==> fst(p) : A
snd type p: SUM x:A.B(x) ==> snd(p) : B(fst(p))
fst conv [| a: A; b: B(a) |] ==> fst(<a,b>) = a: A
snd conv [| a: A; b: B(a) |] ==> snd(<a,b>) = b: B(a)

split def split(p,f) == f(fst(p), snd(p))

The type
∑

x :A .B(x)

subtype_intr [| a: A; P(a) |] ==> a : {x:A.P(x)}
subtype_elim1 a: {x:A.P(x)} ==> a:A
subtype_elim2 a: {x:A.P(x)} ==> P(a)

Subtypes

term type term(P) : bool
term conv p: bool ==> term(form(p)) = p : bool
form intr P ==> form(term(P))
form elim form(term(P)) ==> P
term congr [| P ==> Q; Q ==> P |] ==> term(P) = term(Q) : bool

Reflection

Pick type EX x:A.P(x) ==> (PICK x:A.P(x)) : A
Pick congr [| !x.x: A ==> P(x) <-> Q(x); EX x:A.P(x) |] ==>

(PICK x:A.P(x)) = (PICK x:A.Q(x)) : A
Pick intr EX x:A.P(x) ==> P(PICK x:A.P(x))

Descriptions

Figure 3.15: The rules of HOL

3.3. Higher-order logic 75

False def False == term(ALL p:bool.form(p))
True def True == term(ALL p:bool.form(p)-->form(p))
conj def P&Q == ALL r:bool. (P-->Q-->form(r)) --> form(r)
disj def P|Q == ALL r:bool. (P-->form(r)) --> (Q-->form(r)) --> form(r)
not def ~P == (P-->form(False))
iff def P<->Q == (P-->Q) & (Q-->P)
exists def (EX x:A. P(x)) ==

ALL r:bool. (ALL x:A. P(x)-->form(r)) --> form(r)

Definitions of the logical constants

void_def void == {p: bool. form(False)}
unit_def unit == {p: bool. (p=True:bool)}

plus_def A+B == {w: (A->bool) * (B->bool).
(EX x:A. w = Inl(A,B,x) : (A->bool) * (B->bool)) |
(EX y:B. w = Inr(A,B,y) : (A->bool) * (B->bool)) }

Inl_def Inl(A,B,a) == <{|x:A.a=x:A|}, lam y:B.False>
Inr_def Inr(A,B,b) == <lam x:A.False, {|y:B.b=y:B|}>
when_def when(A,B,C,p,c,d) == PICK z:C.

(ALL x:A. (p = Inl(A,B,x) : A+B) --> (z = c(x) : C)) &
(ALL y:B. (p = Inr(A,B,y) : A+B) --> (z = d(y) : C))

Definitions of types

Figure 3.16: Definitions in HOL

76 Chapter 3. Isabelle’s Set and Type Theories

The rules ∀I and ⊃I are now applied:

> by (resolve tac [all intr] 1);
Level 2
P & Q
1. !ka. ka : bool ==> (P --> Q --> form(ka)) --> form(ka)
> by (resolve tac [imp intr] 1);
Level 3
P & Q
1. !ka. [| ka : bool; P --> Q --> form(ka) |] ==> form(ka)

The rule ⊃E is applied twice, to subgoal 1 and then to the resulting subgoal 2,
completely decomposing the implication.

> by (eresolve tac [imp elim] 1);
Level 4
P & Q
1. !ka. ka : bool ==> P
2. !ka. [| ka : bool; Q --> form(ka) |] ==> form(ka)
> by (eresolve tac [imp elim] 2);
Level 5
P & Q
1. !ka. ka : bool ==> P
2. !ka. ka : bool ==> Q
3. !ka. [| ka : bool; form(ka) |] ==> form(ka)

The first two subgoals are proved using the premises, which are supplied to
resolve_tac.

> by (resolve tac prems 1);
Level 6
P & Q
1. !ka. ka : bool ==> Q
2. !ka. [| ka : bool; form(ka) |] ==> form(ka)
> by (resolve tac prems 1);
Level 7
P & Q
1. !ka. [| ka : bool; form(ka) |] ==> form(ka)

The remaining subgoal holds by assumption. The rule just derived has P and Q
as premises.

> by (assume tac 1);
Level 8
P & Q
No subgoals!
> prth (result());
[| ?P; ?Q |] ==> ?P & ?Q

3.3. Higher-order logic 77

The derivation of the elimination rule, P & Q/P , requires reflection. Again, we
bind the list of premises (in this case [P & Q]) to prems.

> val prems = goal HOL Rule.thy "P & Q ==> P";
Level 0
P
1. P

Working with premises that involve defined constants can be tricky. The simplest
method uses cut_facts_tac. The premises are made into assumptions of subgoal 1,
where they can be rewritten by rewrite_goals_tac.

> by (cut facts tac prems 1);
Level 1
P
1. P & Q ==> P

> by (rewrite goals tac [conj def]);
Level 2
P
1. ALL r:bool. (P --> Q --> form(r)) --> form(r) ==> P

The rewritten assumption can now be broken down by ∀E and ⊃E.

> by (eresolve tac [all elim] 1);
Level 3
P
1. (P --> Q --> form(?a1)) --> form(?a1) ==> P
2. ?a1 : bool

> by (eresolve tac [imp elim] 1);
Level 4
P
1. P --> Q --> form(?a1)
2. form(?a1) ==> P
3. ?a1 : bool

Applying the form-elimination rule to subgoal 2 solves it, instantiating ?a1 to
term(P). This is the key step.

> by (eresolve tac [form elim] 2);
Level 5
P
1. P --> Q --> form(term(P))
2. term(P) : bool

78 Chapter 3. Isabelle’s Set and Type Theories

The implications in subgoal 1 are decomposed by two applications of ⊃I.

> by (resolve tac [imp intr] 1);
Level 6
P
1. P ==> Q --> form(term(P))
2. term(P) : bool
> by (resolve tac [imp intr] 1);
Level 7
P
1. [| P; Q |] ==> form(term(P))
2. term(P) : bool

The first subgoal holds because form(term(P)) is equivalent to P, while the
second is a trivial typing condition.

> by (eresolve tac [form intr] 1);
Level 8
P
1. term(P) : bool
> by (resolve tac [term type] 1);
Level 9
P
No subgoals!
> prth (result());
?P & ?Q ==> ?P

Chapter 4

Developing Tactics, Rules, and
Theories

The single-step proofs we have studied until now give a gentle introduction to Isabelle
and its logics. As you gain experience with these, however, you are likely to realize
that this is not the way to prove anything significant. Single-step proofs are too
long. Isabelle’s basic tactics can be combined to form sophisticated ones using
operators called tacticals. The resulting tactics can perform hundreds or thousands
of inferences in one invocation. A simple Prolog interpreter is easily expressed.

This chapter also describes how to extend a logic with new constants and axioms,
and how to make definitions. Definitions, if viewed as abbreviations, are meta-level
rewrite rules. Expanding abbreviations can lead to gigantic formulae and tedious
proofs, however. Deriving rules for the new constants permits shorter proofs.

4.1 Tacticals

Tacticals provide a control structure for tactics, with operators resembling those for
regular expressions. The tacticals THEN, ORELSE, and REPEAT form new tactics as
follows:

• The tactic tac1 THEN tac2 performs tac1 followed by tac2: a form of sequenc-
ing.

• The tactic tac1 ORELSE tac2 performs tac1, or if that fails then tac2: a form
of choice.

• The tactic REPEAT tac performs tac repeatedly until it fails: a form of repeti-
tion.

Users of the systems lcf, hol, or Nuprl will recognize these tacticals, and other
people may find the above descriptions simple enough. But these descriptions are
mere sketches of complex operations involving sequences of proof states. To under-
stand this, we must take a closer look at tactics.

79

80 Chapter 4. Developing Tactics, Rules, and Theories

4.1.1 The type of tactics

An Isabelle tactic maps a theorem, representing a proof state, to a possibly infinite
sequence of proof states:

datatype tactic = Tactic of thm -> thm Sequence.seq;

Lazy lists are implemented in ml by the type Sequence.seq, which is described
in Appendix A. You need not know the details of this type to use Isabelle’s built-
in tacticals, but may find the discussion more comprehensible if you have some
programming experience with lazy lists.

Higher-order unification can return an infinite sequence of results, and so can
tactics that invoke it: especially resolve_tac, eresolve_tac, and assume_tac.
Multiple proof states also arise when these tactics are supplied with more than one
rule that is unifiable with the subgoal. When the conclusion of a subgoal is unifiable
with more than one of its assumptions, assume_tac returns multiple outcomes.

If the above considerations did not apply, the basic tactics might not require
sequences of proof states. In lcf, a tactic either returns one result or fails. By re-
turning a possibly infinite sequence of outcomes, Isabelle tactics can perform back-
tracking search. Furthermore, search strategies can be expressed by tacticals: as
operations on tactics.

Chapter 1 describes most of Isabelle’s tactics. Two more, all_tac and no_tac,
are of interest because they are identities of tacticals.

The tactic all_tac is the identity element of the tactical THEN. It maps any
proof state φ to the 1-element sequence [φ] containing that state. Thus it succeeds
for all states.

The tactic no_tac is the identity element of the tacticals ORELSE and APPEND. It
maps any proof state to the empty sequence. Thus it succeeds for no state.

4.1.2 Basic tacticals

Tacticals work by combining sequences of proof states. For each tactic constructed
by one of these tacticals, we consider the output sequence that results when it is
applied to the proof state φ.

The tactic tac1 THEN tac2 computes tac1(φ), obtaining a sequence of states
[ψ1, ψ2, ψ3, . . .]. It applies tac2 to each of these states. The output sequence is
the concatenation of the sequences tac2(ψ1), tac2(ψ2), tac2(ψ3), In a common
notation for lazy lists, the output is

[θ | ψ ∈ tac1(φ), θ ∈ tac2(ψ)]

The tactic tac1 ORELSE tac2 computes tac1(φ). If this sequence is non-empty
then it is returned as the overall result; otherwise tac2(φ) is returned. This is a
deterministic choice, a bit like Prolog’s cut directive. If tac1 succeeds then tac2
is excluded from consideration.

The tactic tac1 APPEND tac2 returns the concatenation of the sequences tac1(φ)
and tac2(φ). This is not a fair interleaving, for if tac1(φ) is infinite then that

4.1. Tacticals 81

sequence is the overall result. A tactical with interleaving could be written, but
even APPEND has few uses, for it causes excessive branching during search.

The tactic DETERM tac truncates the sequence tac(φ) to have at most one ele-
ment. Thus the resulting tactic is deterministic. The tactical DETERM is used to
limit the search space.

The tacticals EVERY and FIRST are n-ary versions of THEN and ORELSE. They are
given a list of tactics. The tactic EVERY [tac1, . . . , tacn] behaves like

tac 1 THEN . . . THEN tac n

The tactic FIRST [tac1, . . . , tacn] behaves like

tac 1 ORELSE . . . ORELSE tac n

4.1.3 Derived tacticals

The tacticals given above suffice to describe (and to implement) more sophisticated
ones. Recursively defined tacticals perform repetition and search. Again, we describe
the output sequence returned when the new tactic is applied to the state φ.

The tactic TRY tac returns tac(φ) if this sequence is non-empty, and returns the
singleton sequence [φ] otherwise. The definition of the tactical in ml is

fun TRY tac = tac ORELSE all tac;

The tactic REPEAT tac computes tac(φ). If this sequence is non-empty then the
tactic recursively applies itself to each element, concatenating the results. Otherwise
it returns the singleton sequence [φ]. Its ml definition makes use of the function
tapply, which applies a tactic to a state:

fun REPEAT tac = Tactic (fn state =>
tapply((tac THEN REPEAT tac) ORELSE all tac, state));

Recursive tacticals must be coded in this awkward fashion to avoid infinite
recursion.1

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT uses
ORELSE and not APPEND, it applies tac as many times as possible in each outcome.
A common idiom is

REPEAT (tac1 ORELSE tac2)

This repeatedly applies tac1 or tac2 as many times as possible, giving priority to
tac1.

The tactic DEPTH_FIRST satpred tac performs a depth-first search for satisfac-
tory proof states, which are those for which satpred returns true. If satpred(φ) is true

1This more attractive definition loops:
fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all tac;

82 Chapter 4. Developing Tactics, Rules, and Theories

then the tactic returns [φ]; otherwise the tactic is recursively applied to each element
of tac(φ), and the results concatenated. The ml definition of DEPTH_FIRST involves
STATE, a function permitting inspection of the initial state:

fun DEPTH FIRST satpred tac = STATE (fn state =>
if satpred state then all tac

else tac THEN DEPTH FIRST satpred tac);

The tactic BEST_FIRST (satpred , costf) tac returns a sequence of satisfactory
proof states by best-first search. Function satpred tests whether a state is satisfac-
tory, while costf returns its cost. Given a collection of states, the tactic chooses
some state ψ having least cost, and computes tac(ψ). If this sequence contains any
satisfactory states then they are returned as the overall result of the search. Other-
wise ψ is replaced by the elements of tac(ψ), and the search continues. The initial
collection of states contains just φ, the input state. The cost function is typically
the size of the state.

The tactic BREADTH_FIRST satpred tac performs a breadth-first search for sat-
isfactory proof states, which are those for which satpred returns true. For most
applications it is too slow.

4.1.4 Tacticals for numbered subgoals

Most tactics, like resolve_tac, designate a subgoal by number. Tacticals can ex-
ploit the numbering of subgoals. A typical example is

REPEAT (resolve tac rules 1)

This repeatedly applies the rules to subgoal 1, and can eventually solve all the
subgoals. Since resolve_tac fails if the numbered subgoal does not exist, the
repetition terminates when no subgoals remain.

The tactic DEPTH_SOLVE_1 tac performs a depth-first search for states having
fewer subgoals than the initial state.

The function has_fewer_prems is a common satisfaction predicate. Testing the
number of subgoals, has_fewer_prems n φ holds just when state φ has fewer than
n subgoals. In particular, the tactic

DEPTH FIRST (has fewer prems 1) tac

searches using tac for a proof state having no subgoals.
The tacticals ALLGOALS and SOMEGOAL are applied to a function tf of type

int->tactic, such as assume_tac and (by currying) resolve_tac rules . They
apply the tactic tf (i), for i = n, n − 1,. . . ,1, to a proof state.2

Tactic ALLGOALS tf , when applied to a state with n subgoals, behaves like

tf (n) THEN . . . THEN tf (1)

2They go from n down to 1 since tf (i) may add or delete subgoals, altering the numbering
above subgoal i .

4.2. Examples with tacticals 83

Tactic SOMEGOAL tf , when applied to a state with n subgoals, behaves like

tf (n) ORELSE . . . ORELSE tf (1)

For instance, SOMEGOAL assume_tac solves some subgoal by assume_tac, or else
fails. The tactical works well with REPEAT, repeatedly attacking some subgoal.

The infixes THEN’, ORELSE’, and APPEND’ are provided to ease the writing of
tactics involving subgoal numbers. They are defined as follows:

fun tac1 THEN’ tac2 = fn x => tac1 x THEN tac2 x;
fun tac1 ORELSE’ tac2 = fn x => tac1 x ORELSE tac2 x;
fun tac1 APPEND’ tac2 = fn x => tac1 x APPEND tac2 x;

For instance, the tactic

SOMEGOAL (resolve tac thms ORELSE’ assume tac)

solves some subgoal by either resolve_tac thms or assume_tac. This is more
readable than

SOMEGOAL (fn i => resolve tac thms i ORELSE assume tac i)

Summary of tactics and tacticals:

all tac: tactic
ALLGOALS: (int -> tactic) -> tactic
APPEND: tactic * tactic -> tactic
APPEND’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
BEST FIRST: (thm -> bool) * (thm -> int) -> tactic -> tactic
BREADTH FIRST: (thm -> bool) -> tactic -> tactic
DEPTH FIRST: (thm -> bool) -> tactic -> tactic
DEPTH SOLVE 1: tactic -> tactic
DETERM: tactic -> tactic
EVERY: tactic list -> tactic
FIRST: tactic list -> tactic
no tac: tactic
ORELSE: tactic * tactic -> tactic
ORELSE’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
REPEAT: tactic -> tactic
SOMEGOAL: (int -> tactic) -> tactic
THEN: tactic * tactic -> tactic
THEN’: (’a -> tactic) * (’a -> tactic) -> ’a -> tactic
TRY: tactic -> tactic

4.2 Examples with tacticals

By far the most valuable tacticals are THEN, ORELSE, and REPEAT. They express
natural control structures, letting us avoid typing repetitious command sequences.
For instance, consider proving the first-order theorem

∀x . P(x) ⊃ (∀y . Q(x , y) ⊃ Q(x , y) & P(x))

84 Chapter 4. Developing Tactics, Rules, and Theories

We could apply the rules ∀I, ⊃I, ∀I, ⊃I, &I in succession (by resolve_tac) and
then apply assume_tac twice: a total of seven commands. You might want to try
this proof now.

With tacticals the proof can be accomplished in two steps, or even one.

> goal Int Rule.thy "ALL x. P(x) --> (ALL y. Q(x,y) --> Q(x,y) & P(x))";
Level 0
ALL x. P(x) --> (ALL y. Q(x,y) --> Q(x,y) & P(x))
1. ALL x. P(x) --> (ALL y. Q(x,y) --> Q(x,y) & P(x))

First we repeatedly apply resolve_tac to subgoal 1. We supply all the rules
that are needed: ∀I, ⊃I, and &I:

> by (REPEAT (resolve tac [all intr,imp intr,conj intr] 1));
Level 1
ALL x. P(x) --> (ALL y. Q(x,y) --> Q(x,y) & P(x))
1. !ka. P(ka) ==> (!kb. Q(ka,kb) ==> Q(ka,kb))
2. !ka. P(ka) ==> (!kb. Q(ka,kb) ==> P(ka))

Those rules have been applied as much as possible. The two subgoals that result
are solved by assumption.

> by (REPEAT (assume tac 1));
Level 2
ALL x. P(x) --> (ALL y. Q(x,y) --> Q(x,y) & P(x))
No subgoals!

A single tactic, combining the repetition of assume_tac and resolve_tac, can
prove the theorem in a single command:

REPEAT (assume tac 1 ORELSE
resolve tac [all intr,imp intr,conj intr] 1)

Elimination rules can be applied repeatedly through eresolve_tac. This tactic
selects an assumption and finally deletes it, to allow termination. A proof of

(∃x . P(f (x))) ∨ (∃y . P(g(y))) ⊃ (∃z . P(z))

goes by ⊃I, ∨E, ∃E, ∃E, and ∃I. The order is critical: ∃E must be applied before
∃I in each subgoal. We could tackle the proof as follows:

> goal Int Rule.thy "(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))";
Level 0
(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
1. (EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
> by (resolve tac [imp intr] 1);
Level 1
(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
1. (EX x. P(f(x))) | (EX y. P(g(y))) ==> EX z. P(z)

4.3. A Prolog interpreter 85

Repeatedly applying the eliminations does not work because subgoal 1 gets stuck.
It needs an introduction rule:

> by (REPEAT (eresolve tac [exists elim,disj elim] 1));
Level 2
(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
1. !ka. P(f(ka)) ==> EX z. P(z)
2. EX y. P(g(y)) ==> EX z. P(z)

We could deal with subgoal 1, then resume applying eliminations. But the
theorem can be proved in one step by a tactic that combines the introduction and
elimination rules and proof by assumption.

We revert to the original state by calling choplev, and then apply the tactic:

> choplev 0;
Level 0
(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
1. (EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))

> by (REPEAT (assume tac 1
ORELSE eresolve tac [exists elim,disj elim] 1
ORELSE resolve tac [imp intr,exists intr] 1));
Level 1
(EX x. P(f(x))) | (EX y. P(g(y))) --> (EX z. P(z))
No subgoals!

Note that ∃E (exists_elim) is tried before ∃I (exists_intr). The z that ‘exists’
is f (x) in one case and g(y) in the other; unification finds these terms automatically.

4.3 A Prolog interpreter

To demonstrate the power of tacticals, let us construct a Prolog interpreter and
execute programs involving lists. This will also illustrate how to extend a theory
with new constants and axioms. The function for adding rules to a theory, called
extend_theory, is fully described in the next chapter. The present example may
serve as a model, allowing you to make small theory extensions without knowing
everything about theories.

The Prolog program will take the form of a theory. To avoid having to define
extra syntax, this theory will be an extension of first-order logic, although the in-
terpreter will not exploit any FOL rules. The theory defines the following constants,
with their meta-types:

Nil : term

Cons : [term, term]→ term

append : [term, term, term]→ form

reverse : [term, term]→ form

86 Chapter 4. Developing Tactics, Rules, and Theories

Viewed from the object-level, Nil is a constant, Cons is a 2-place function, append is
a 3-place predicate, and reverse is a 2-place predicate. We now declare const_decs

to hold these constant declarations:

val const decs =
[(["Nil"], Aterm),

(["Cons"], [Aterm,Aterm]--->Aterm),
(["append"], [Aterm,Aterm,Aterm]--->Aform),
(["reverse"], [Aterm,Aterm]--->Aform)];

The theory defines append by two rules that correspond to the usual Prolog
clauses:

append(Nil , ys , ys)
append(xs , ys , zs)

append(Cons(x , xs), ys ,Cons(x , zs))

It also defines reverse, the slow version using append :

reverse(Nil ,Nil)
reverse(xs , ys) append(ys ,Cons(x ,Nil), zs)

reverse(Cons(x , xs), zs)

These rules are included in the theory declaration:

val prolog_thy =
extend_theory Int_Rule.thy "prolog" ([], const_decs)

[("appnil",
"append(Nil,ys,ys)"),

("appcons",
"append(xs,ys,zs) ==> append(Cons(x,xs), ys, Cons(x,zs))"),

("revnil",
"reverse(Nil,Nil)"),

("revcons",
"[| reverse(xs,ys); append(ys, Cons(x,Nil), zs) |] ==> \

\ reverse(Cons(x,xs), zs)")];

Let us go through this point by point. The theory extends Int_Rule.thy,
the theory of intuitionistic first-order logic. The string "prolog" is essentially
a comment; it is part of the theory value and helps to identify it. The pair
([], const_decs) combines an empty list of type names with our constant decla-
rations. (New types are seldom required in theory extensions.) The final list consists
of the rules paired with their names, both represented by strings.

Evaluating the above declaration parses and type-checks the rules, constructs
the theory, and binds it to the ml identifier prolog_thy. The rules can be bound

4.3. A Prolog interpreter 87

to ml identifiers using the function get_axiom.

> val appnil = get axiom prolog thy "appnil";
val appnil = ? : thm
> val appcons = get axiom prolog thy "appcons";
val appcons = ? : thm
> val revnil = get axiom prolog thy "revnil";
val revnil = ? : thm
> val revcons = get axiom prolog thy "revcons";
val revcons = ? : thm

Repeated application of these rules solves Prolog goals. Let us append the
lists [a, b, c] and [d , e]:

> goal prolog thy
"append(Cons(a,Cons(b,Cons(c,Nil))), Cons(d,Cons(e,Nil)), ?x)";
Level 0
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),?x)
1. append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),?x)

As the rules are applied, observe how the answer builds up in the scheme variable
?x.

> by (resolve tac [appnil,appcons] 1);
Level 1
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),Cons(a,?zs1))
1. append(Cons(b,Cons(c,Nil)),Cons(d,Cons(e,Nil)),?zs1)

> by (resolve tac [appnil,appcons] 1);
Level 2
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),

Cons(a,Cons(b,?zs2)))
1. append(Cons(c,Nil),Cons(d,Cons(e,Nil)),?zs2)

As seen in the main goal, the first two elements of the result list are a and b.

> by (resolve tac [appnil,appcons] 1);
Level 3
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),

Cons(a,Cons(b,Cons(c,?zs3))))
1. append(Nil,Cons(d,Cons(e,Nil)),?zs3)

> by (resolve tac [appnil,appcons] 1);
Level 4
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Cons(e,Nil)),

Cons(a,Cons(b,Cons(c,Cons(d,Cons(e,Nil))))))
No subgoals!

Prolog can run functions backwards. What list x can be appended with [c, d]
to produce [a, b, c, d]?

> goal prolog thy
"append(?x, Cons(c,Cons(d,Nil)), Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))";
Level 0
append(?x,Cons(c,Cons(d,Nil)),Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
1. append(?x,Cons(c,Cons(d,Nil)),Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))

88 Chapter 4. Developing Tactics, Rules, and Theories

Using the tactical REPEAT, the answer is found at once: [a, b].

> by (REPEAT (resolve tac [appnil,appcons] 1));
Level 1
append(Cons(a,Cons(b,Nil)),Cons(c,Cons(d,Nil)),

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!

Now for an example of backtracking. What lists x and y can be appended to
form the list [a, b, c, d]?

> goal prolog thy "append(?x, ?y, Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))";
Level 0
append(?x,?y,Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
1. append(?x,?y,Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))

Using REPEAT to apply the rules, we find one solution quickly: x = [] and y =
[a, b, c, d].

> by (REPEAT (resolve tac [appnil,appcons] 1));
Level 1
append(Nil,Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!

The subgoal module’s back() command finds the next possible outcome from
the tactic: x = [a] and y = [b, c, d].

> back();
Level 1
append(Cons(a,Nil),Cons(b,Cons(c,Cons(d,Nil))),

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!

Other solutions are generated similarly.

> back();
Level 1
append(Cons(a,Cons(b,Nil)),Cons(c,Cons(d,Nil)),

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!

This solution is x = [a, b] and y = [c, d]. There are two more solutions:

> back();
Level 1
append(Cons(a,Cons(b,Cons(c,Nil))),Cons(d,Nil),

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!
> back();
Level 1
append(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),Nil,

Cons(a,Cons(b,Cons(c,Cons(d,Nil)))))
No subgoals!

4.3. A Prolog interpreter 89

The solution x = [a, b, c, d] and y = [] is the last:

> back();
backtrack: no alternatives
Exception- ERROR raised

Now let us try reverse. What is the reverse of the list [a, b, c, d]?

> goal prolog thy "reverse(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))), ?x)";
Level 0
reverse(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),?x)
1. reverse(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),?x)

We bundle the rules together as the ml identifier rules for giving to
resolve_tac. Naive reverse runs surprisingly fast!

> val rules = [appnil,appcons,revnil,revcons];
val rules = [?, ?, ?, ?] : thm list
> by (REPEAT (resolve tac rules 1));
Level 1
reverse(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),

Cons(d,Cons(c,Cons(b,Cons(a,Nil)))))
No subgoals!

Now let us run reverse backwards: this, too, should reverse a list. What list is
the reverse of [a, b, c]?

> goal prolog thy "reverse(?x, Cons(a,Cons(b,Cons(c,Nil))))";
Level 0
reverse(?x,Cons(a,Cons(b,Cons(c,Nil))))
1. reverse(?x,Cons(a,Cons(b,Cons(c,Nil))))

> by (REPEAT (resolve tac rules 1));
Level 1
reverse(Cons(?x1,Nil),Cons(a,Cons(b,Cons(c,Nil))))
1. append(Nil,Cons(?x1,Nil),Cons(a,Cons(b,Cons(c,Nil))))

The tactic has failed to find a solution! It reaches a dead end at subgoal 1: there
is no x1 such that [] appended with [x1] equals [a, b, c]. Other outcomes can be
considered by backtracking.

> back();
Level 1
reverse(Cons(?x1,Cons(a,Nil)),Cons(a,Cons(b,Cons(c,Nil))))
1. append(Nil,Cons(?x1,Nil),Cons(b,Cons(c,Nil)))

This is also a dead end, but the next outcome is a success.

> back();
Level 1
reverse(Cons(c,Cons(b,Cons(a,Nil))),Cons(a,Cons(b,Cons(c,Nil))))
No subgoals!

90 Chapter 4. Developing Tactics, Rules, and Theories

The problem with REPEAT is that it stops when it cannot continue, regardless of
what state is reached. The tactical DEPTH_FIRST searches for a satisfactory state:
here, one with no subgoals. We return to the start of the proof and solve it by
depth-first search.

> choplev 0;
Level 0
reverse(?x,Cons(a,Cons(b,Cons(c,Nil))))
1. reverse(?x,Cons(a,Cons(b,Cons(c,Nil))))
> by (DEPTH FIRST (has fewer prems 1) (resolve tac rules 1));
Level 1
reverse(Cons(c,Cons(b,Cons(a,Nil))),Cons(a,Cons(b,Cons(c,Nil))))
No subgoals!

Since Prolog uses depth-first search, the above tactic is a Prolog interpreter.
Although real Prolog systems run overwhelmingly faster, logic programming tech-
niques are of great importance when designing Isabelle tactics. Let us name this
one.

> val prolog tac = DEPTH FIRST (has fewer prems 1) (resolve tac rules 1);
val prolog tac = Tactic fn : tactic

We try it on one more example:

> goal prolog_thy "reverse(Cons(a,Cons(?x,Cons(c,Cons(?y,Nil)))), \
\ Cons(d,Cons(?z,Cons(b,?u))))";
Level 0
reverse(Cons(a,Cons(?x,Cons(c,Cons(?y,Nil)))),

Cons(d,Cons(?z,Cons(b,?u))))
1. reverse(Cons(a,Cons(?x,Cons(c,Cons(?y,Nil)))),

Cons(d,Cons(?z,Cons(b,?u))))

Tactic prolog_tac solves it immediately:

> by prolog tac;
Level 1
reverse(Cons(a,Cons(b,Cons(c,Cons(d,Nil)))),

Cons(d,Cons(c,Cons(b,Cons(a,Nil)))))
No subgoals!

4.4 Deriving rules

Tacticals are a rather complicated mechanism for writing short and abstract proofs.
The simplest way to write short proofs is through derived rules. This section de-
scribes how to derive rules in Isabelle, showing the pitfalls to avoid.

4.4. Deriving rules 91

Suppose your style of proof involves replacing P & Q by Q & P frequently. You
might want to derive the rule P & Q/Q & P . Its logical derivation is simple:

P & Q

Q

P & Q

P

Q & P

The wrong way to derive a rule in Isabelle is to make its conclusion your goal
and try to reduce it to the subgoals. Let us try this, stating the goal and applying
&I. At first things seem to be working:

> goal Int Rule.thy "?Q & ?P";
Level 0
?Q & ?P
1. ?Q & ?P

> by (resolve tac [conj intr] 1);
Level 1
?Q & ?P
1. ?Q
2. ?P

Now we intend to apply the conjunction elimination rules to these subgoals,
reducing both to ?P&?Q.

> by (resolve tac [conjunct2] 1);
Level 2
?Q & ?P
1. ?P2 & ?Q
2. ?P

Subgoal 1 refers not to ?P but to the new variable ?P2. And things get worse,
especially if we make a mistake.

> by (resolve tac [conj intr] 2);
Level 3
?Q & ?P3 & ?Q3
1. ?P2 & ?Q
2. ?P3
3. ?Q3

The rule conjunct1 should have been applied. But conj_intr is accepted,
modifying the main goal. In other words, the conclusion of our intended rule has

92 Chapter 4. Developing Tactics, Rules, and Theories

changed! This will not do.

> undo();
Level 2
?Q & ?P
1. ?P2 & ?Q
2. ?P
> by (resolve tac [conjunct1] 2);
Level 3
?Q & ?P
1. ?P2 & ?Q
2. ?P & ?Q3

This cannot be the way to derive P & Q/Q & P . To avoid such problems,
remember two things:

• Never use scheme variables in the main goal unless they are intended to be
instantiated in the proof. Use ordinary free variables.

• State the premises of the rule as meta-assumptions, as discussed below.

Isabelle’s meta-logic is a natural deduction system, and therefore its theorems
may depend upon assumptions. When theorems are used in proofs, the assump-
tions accumulate. At the end of the proof, they can be discharged, forming meta-
implications. At the same time, free variables in the theorem are converted into
schematic variables. You need not perform such meta-inferences directly; Isabelle’s
subgoal commands take care of them.

Here is the correct way to derive the rule. The premise of the proposed rule,
namely P & Q , is stated in the original goal. The command goal returns a one-
element list of theorems, containing this premise. The premise depends upon the
assumption P & Q , but may be used in the proof as though it were an axiom.

> val prems = goal Int Rule.thy "P&Q ==> Q&P";
Level 0
Q & P
1. Q & P
val prems = [?] : thm list

The variable prems is bound to the list of premises returned by goal. We have
seldom done this before: when there are no premises, the resulting empty list can
be ignored. We now apply the three rules of the derivation.

> by (resolve tac [conj intr] 1);
Level 1
Q & P
1. Q
2. P
> by (resolve tac [conjunct2] 1);
Level 2
Q & P
1. ?P1 & Q
2. P

4.4. Deriving rules 93

Last time we incorrectly applied conj_intr to subgoal 2 here. Now that error
is impossible because P cannot be instantiated.

> by (resolve tac [conjunct1] 2);
Level 3
Q & P
1. ?P1 & Q
2. P & ?Q2

Resolving these subgoals with the premise P & Q instantiates the variables ?P1
and ?Q2, completing the derivation.

> by (resolve tac prems 1);
Level 4
Q & P
1. P & ?Q2

> by (resolve tac prems 1);
Level 5
Q & P
No subgoals!

The function result discharges the premise and makes P and Q into scheme
variables.

> prth (result());
?P & ?Q ==> ?Q & ?P

An expert tactician might replace all the steps after the initial conj_intr by the
following tactic. It is designed to prevent the rules conjunct1 and conjunct2 from
causing infinite repetition. They could apply to any goal, so the body of the REPEAT
insists upon solving the resulting subgoal by resolution with the premise, P & Q .

by (REPEAT (resolve tac [conjunct1,conjunct2] 1
THEN resolve tac prems 1));

The call to

resolve tac [conjunct1,conjunct2] 1

always returns two outcomes, but the following call to

resolve tac prems 1

kills at least one of them.
A collection of derivations may be kept on a file and executed in ‘batch mode’

using the function prove_goal. This function creates an initial proof state, then
applies a series of tactics to it. The resulting state (the first if multiple outcomes
are generated) is returned by prove_goal, after checking that it is identical to the

94 Chapter 4. Developing Tactics, Rules, and Theories

theorem that was originally proposed. Unlike the subgoal commands, prove_goal
is purely functional. The above derivation can be packaged as follows:

val conj rule = prove goal Int Rule.thy "P&Q ==> Q&P"
(fn prems=>
[(resolve tac [conj intr] 1),
(REPEAT (resolve tac [conjunct1,conjunct2] 1

THEN resolve tac prems 1))]);

The theorem is proved and bound to the ml identifier conj_rule.

4.5 Definitions and derived rules

Serious proofs are seldom performed in pure logic, but concern the properties of
constructions or the consequences of additional assumptions. In Isabelle this involves
extending a theory with new constants and definitions or other axioms. Isabelle
makes little distinction between defining a trivial abbreviation like 1 ≡ Succ(0) and
defining an entire logic. We have already considered one example of extending a
theory, when we made a Prolog interpreter. Now we shall make a definition and
prove some abstract rules for it.

Classical first-order logic can be extended with the propositional connective
if (P ,Q ,R), where

if (P ,Q ,R) ≡ P & Q ∨ ¬P & R .

Theorems about if can be proved by treating this as an abbreviation. The tactic
rewrite_goals_tac can replace if (P ,Q ,R) by P & Q ∨ ¬P & R in subgoals. Un-
fortunately, this may produce an unreadable subgoal. The formula P is duplicated,
possibly causing an exponential blowup. This problem tends to get worse as more
and more abbreviations are introduced.

Natural deduction demands rules that introduce and eliminate if (P ,Q ,R) di-
rectly, without reference to its definition. The design of natural rules is seldom easy.
The identity

if (P ,Q ,R)↔ (P ⊃ Q) & (¬P ⊃ R) ,

which is straightforwardly demonstrated, suggests that the if -introduction rule
should be

[P]

Q

[¬P]

R

if (P ,Q ,R)

The if -elimination rule follows the definition of if (P ,Q ,R) by the elimination rules
for ∨ and &.

if (P ,Q ,R)
[P ,Q]

S

[¬P ,R]

S

S
Having made these plans, we get down to work with Isabelle. The theory of

natural deduction classical logic, cla_thy, is extended with the constant if of type

if : [form, form, form]→ form

4.5. Definitions and derived rules 95

The axiom if_def equates if (P ,Q ,R) with P & Q ∨ ¬P & R.

> val if thy =
extend theory cla thy "if"
([], [(["if"], [Aform,Aform,Aform]--->Aform)])
[("if def", "if(P,Q,R) == P&Q | ~P & R")];
val if thy = ? : theory
> val if def = get axiom if thy "if def";
val if def = ? : thm

The derivations of the introduction and elimination rules demonstrate the meth-
ods for rewriting with definitions. Complicated classical reasoning is involved, but
the tactic Pc.fast_tac is able to cope.

First, the introduction rule. We state it, with its premises P =⇒ Q and ¬P =⇒
R, and the goal if (P ,Q ,R). Calling rewrite_goals_tac rewrites occurrences of if
in the subgoals, while leaving the main goal unchanged.

> val prems = goal if thy "[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)";
Level 0
if(P,Q,R)
1. if(P,Q,R)

val prems = [?, ?] : thm list
> by (rewrite goals tac [if def]);
Level 1
if(P,Q,R)
1. P & Q | ~P & R

The premises (in the variable prems) are passed to Pc.fast_tac, which uses
them in proving the goal.

> by (Pc.fast tac prems 1);
Level 2
if(P,Q,R)
No subgoals!
> val if intr = result();
val if intr = ? : thm

Next, we state the elimination rule. It has three premises, two of which are
themselves rules. The conclusion is simply S .

> val prems = goal if thy
"[| if(P,Q,R); [| P; Q |] ==> S; [| ~P; R |] ==> S |] ==> S";

Level 0
S
1. S

val prems = [?, ?, ?] : thm list

How can we rewrite the occurrences of if in the premises? One way is to incor-
porate the premises into the subgoal so that rewrite_goals_tac will work. The

96 Chapter 4. Developing Tactics, Rules, and Theories

tactic cut_facts_tac inserts theorems into a subgoal as assumptions. Only simple
theorems are inserted: not rules having premises.

> by (cut facts tac prems 1);
Level 1
S
1. if(P,Q,R) ==> S

The assumption in the subgoal is rewritten. The resulting subgoal falls to
Pc.fast_tac.

> by (rewrite goals tac [if def]);
Level 2
S
1. P & Q | ~P & R ==> S
> by (Pc.fast tac prems 1);
Level 3
S
No subgoals!
> val if elim = result();
val if elim = ? : thm

Another way of rewriting in the premises is by rewrite_rule, which is a meta-
inference rule: a function from theorems to theorems. Calling

rewrite rule [if def] th

rewrites all occurrences of if in the theorem th. All occurrences in the premises may
be rewritten with the help of the standard list functional map:

> map (rewrite rule [if def]) prems;
val it = [?, ?, ?] : thm list
> prths it;
P & Q | ~P & R [if(P,Q,R)]

[| P; Q |] ==> S [[| P; Q |] ==> S]

[| ~P; R |] ==> S [[| ~P; R |] ==> S]

Only the first premise is affected. Observe how the assumptions appear in square
brackets to the right.

The rules just derived have been saved with the names if_intr and if_elim.
They permit natural proofs of theorems such as the following:

if (P , if (Q ,A,B), if (Q ,C ,D)) ↔ if (Q , if (P ,A,C), if (P ,B ,D))

if (if (P ,Q ,R),A,B) ↔ if (P , if (Q ,A,B), if (R,A,B))

Some additional rules are needed, such as those for classical reasoning and the
↔-introduction rule (called iff_intr: do not confuse with if_intr).

4.5. Definitions and derived rules 97

To display the if -rules in action, let us analyse a proof step by step.

> goal if thy
"if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))";
Level 0
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))

> by (resolve tac [iff intr] 1);
Level 1
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. if(P,if(Q,A,B),if(Q,C,D)) ==> if(Q,if(P,A,C),if(P,B,D))
2. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

The if -elimination rule can be applied twice in succession.

> by (eresolve tac [if elim] 1);
Level 2
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| P; if(Q,A,B) |] ==> if(Q,if(P,A,C),if(P,B,D))
2. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
3. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

> by (eresolve tac [if elim] 1);
Level 3
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| P; Q; A |] ==> if(Q,if(P,A,C),if(P,B,D))
2. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
3. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
4. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

In the first two subgoals, all formulae have been reduced to atoms. Now if -
introduction can be applied. Observe how the if -rules break down occurrences of if
when they come to the top — as the outermost connective.

> by (resolve tac [if intr] 1);
Level 4
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| P; Q; A; Q |] ==> if(P,A,C)
2. [| P; Q; A; ~Q |] ==> if(P,B,D)
3. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
4. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
5. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

> by (resolve tac [if intr] 1);
Level 5
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. [| P; Q; A; Q; P |] ==> A
2. [| P; Q; A; Q; ~P |] ==> C
3. [| P; Q; A; ~Q |] ==> if(P,B,D)
4. [| P; ~Q; B |] ==> if(Q,if(P,A,C),if(P,B,D))
5. [| ~P; if(Q,C,D) |] ==> if(Q,if(P,A,C),if(P,B,D))
6. if(Q,if(P,A,C),if(P,B,D)) ==> if(P,if(Q,A,B),if(Q,C,D))

98 Chapter 4. Developing Tactics, Rules, and Theories

Where do we stand? The first subgoal holds by assumption; the second and
third, by contradiction. This is starting to get tedious. Let us revert to the initial
proof state and solve the whole thing at once. The following tactic uses mp_tac to
detect the contradictions.

> choplev 0;
Level 0
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
1. if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
> by (REPEAT (assume tac 1
ORELSE mp tac 1
ORELSE eresolve tac [if elim] 1
ORELSE resolve tac [iff intr,if intr] 1));
Level 1
if(P,if(Q,A,B),if(Q,C,D)) <-> if(Q,if(P,A,C),if(P,B,D))
No subgoals!

Our other example is harder to prove, for it requires the swap rule.3 The classical
logic tactic Pc.step_tac takes care of this. You might try this proof in single steps.

> goal if thy
"if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))";
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
> by (REPEAT (Pc.step tac [if intr] 1 ORELSE eresolve tac [if elim] 1));
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
No subgoals!

Of course, we can dispense with the if -rules entirely, instead treating if as an
abbreviation. The resulting propositional formula is easily proved by Pc.fast_tac.

> choplev 0;
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
> by (rewrite goals tac [if def]);
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
1. (P & Q | ~P & R) & A | ~(P & Q | ~P & R) & B <->

P & (Q & A | ~Q & B) | ~P & (R & A | ~R & B)
> by (Pc.fast tac [] 1);
Level 2
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,A,B))
No subgoals!

3Formulating the theory in the sequent calculus LK would avoid this problem, but deriving rules
in a sequent calculus is complicated.

4.5. Definitions and derived rules 99

Formally speaking, problems in the extended logic are reduced to the basic logic.
This approach has its merits, especially if the prover for the basic logic is very
good4. It is poor at error detection, however. Suppose some goal is hard to prove.
If by reducing the problem we have made it unreadable, then we have little hope of
determining what is wrong. Let us try to prove something invalid:

> goal if thy
"if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))";
Level 0

if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

> by (REPEAT (Pc.step tac [if intr] 1 ORELSE eresolve tac [if elim] 1));
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. [| ~P; R; A; ~P; R |] ==> B
2. [| ~P; R; ~if(P,Q,R); B |] ==> B
3. [| if(if(P,Q,R),A,B); ~P; ~R |] ==> A
4. if(P,if(Q,A,B),if(R,B,A)) ==> if(if(P,Q,R),A,B)

Subgoal 1 is unprovable, and tells us that if P and B are false while R and A
are true then the original goal becomes false. In fact it evaluates to true ↔ false.
The other subgoals are in a recognizable form.

If we tackle the original goal by rewrite_goals_tac and Pc.fast_tac, then the
latter tactic fails to terminate!

> undo();
Level 0
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))

> by (rewrite goals tac [if def]);
Level 1
if(if(P,Q,R),A,B) <-> if(P,if(Q,A,B),if(R,B,A))
1. (P & Q | ~P & R) & A | ~(P & Q | ~P & R) & B <->

P & (Q & A | ~Q & B) | ~P & (R & B | ~R & A)
val it = () : unit
> by (Pc.fast tac [] 1);

This is a bad advertisement for Pc.fast_tac. Even if the tactic simply failed,
however, we would have no idea why the goal was invalid.

4which will not be the case for Isabelle!

100 Chapter 4. Developing Tactics, Rules, and Theories

Chapter 5

Defining Logics

This chapter is for Isabelle experts only. It explains how to define new logical
systems, Isabelle’s raison d’être. In doing so, Isabelle’s internals have to be discussed
in a certain amount of detail. Section 5.1 describes the internal representations of
types and terms, a prerequisite for understanding the rest of the chapter. This is
followed by sections on how to define hierarchical theories, on the precise definition
of the meta-logic’s syntax, and on how to specify a concrete syntax and a pretty
printer for some new object-logic. Section 5.6 shows how all this fits together by
giving some simple examples of complete logic definitions.

5.1 Types and terms

Isabelle is based on the idea that proofs in many logics can be naturally represented
in intuitionistic higher-order logic [9], henceforth called the meta-logic. In Isabelle,
like in higher-order logic, the terms are those of the typed λ-calculus. Types and
terms are represented by the ml types typ and term.

5.1.1 The ml type typ

Every term has a type. The type typ is defined as follows:

infixr 5 -->;
datatype typ = Ground of string

| Poly of string
| op --> of typ * typ;

A ground type has a name, represented by a string, as does a polymorphic type
(or type variable). A function type has the form S-->T. Two types are equal if they
have identical structure: ml’s equality test is correct for types.

A term of type S-->T denotes a function: if applied to a term of type S, the
resulting term has type T. A term should obey the type-checking rules of the typed
λ-calculus. It is possible to construct ill-typed terms, but the meta-rules ensure that
all terms in theorems are well-typed.

Functions of several arguments are expressed by currying. The operator -->

associates to the right, so

101

102 Chapter 5. Defining Logics

S1-->(S2-->(S3-->T))

can be written S1-->S2-->S3-->T. There is an ml operator ---> for writing this
as [S1,S2,S3]--->T.

Example: suppose that f has type S-->T-->S, where S and T are distinct types, a
has type S, and b has type T. Then f(a) has type T-->S and f(a,b) has type S, while
f(b), f(a,a), and f(a,b,a) are ill-typed. Note that f(a,b) means (f(a))(b).

Type variables (Poly) permit ml-style type inference (see Section 5.5). They
are used only internally and may not appear in theorems. A typed object-logic can
be represented by making the object-level typing rules explicit. See the section on
Constructive Type Theory, which is the ultimate example of a typed logic.

5.1.2 The ml type term

There are six kinds of term.

type indexname = string * int;

infix 9 $;
datatype term = Const of string * typ

| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string * typ * term
| op $ of term * term;

A constant has a name and a type. Constants include connectives like ∧ and
∀ (logical constants), as well as constants like 0 and succ. Other constants may be
required to define the concrete syntax of a logic.

A free variable (or Free) has a name and a type.
A scheme variable (or Var) has an indexname and a type, where an indexname

is a string paired with a non-negative index. A Var is logically the same as a
free variable. It stands for a variable that may be instantiated during unification.
The Vars in a term can be systematically renamed by incrementing the indices. In
Prolog jargon these are ‘logical variables’ and they may be ‘standardized apart’.

A bound variable has no name, only a number: de Bruijn’s representation [1]. The
number counts the number of lambdas, starting from zero, between an occurrence
of the variable and the lambda that binds it. The representation prevents capture
of bound variables, allowing a simple and quick substitution function. The type of
a bound variable is stored with its binding lambda (an Abs node). For more infor-
mation see de Bruijn [1] or look at the functions incr_boundvars, subst_bounds,
aconv.

An abstraction stores the name and type of its bound variable, and its body.
The name is used only for parsing and printing; it has no logical significance.

An application consists of a term applied to another term. The constructor is
the infix $, so the ml expression t$u constructs the application of t to u.

5.2. Theories 103

5.2 Theories

Isabelle logics are hierarchies of theories. Each theory consists of a signature and
inference rules. Signatures describe the syntax of a logic, both abstract and concrete.
The definition of the concrete syntax is described in great detail in Section 5.4. For
this section let us assume the following ml type abbreviations:

type sorts = string list;
type ops = (string list * typ) list;
type rules = (string * string) list;

The types sorts and ops describe the abstract syntax and corresponds to a signature
in universal algebra: sorts is the list of all type names, ops the list of all typed
constants that are declared in a theory.

Example 5.1 The abstract syntax defined by isorts and iops introduces the two
type names "int" and "form", two binary operations "+" and "-" on "int", and
a binary function "=" from "int" to "form".

val Tint = Ground "int";
val Tform = Ground "form";
val isorts = ["int", "form"];
val iops = [(["+", "-"], [Tint,Tint] ---> Tint),

(["="], [Tint,Tint] ---> Tform)];

The Isabelle equivalent of abstract syntax trees is the type term. An abstract syntax
determines which terms are valid and which are not: all constants and ground types
must have been declared and the whole term must be type correct. In the context
of the above example,

Const("+",[Tint,Tint] ---> Tint) $ Free("x",Tint)

is a valid term of typ Tint --> Tint.
The names and types of the constants "+", "-", and "=" suggest they represent

addition, subtraction, and equality respectively. However, we could have used ar-
bitrary strings since there is no a priori connection between abstract and concrete
syntax, with one exception: if the name of a constant is an identifier (as opposed to
an arbitrary string), any occurrence of that identifier in an input string is treated
as that constant; no special concrete syntax is necessary. The parser does not even
know about these identifiers and their types. For that reason, it ignores type in-
formation completely: the dummy typ Adummy is used by the parser in all terms it
generates. The real types are inferred at a later stage (see Section 5.5).

Many Isabelle users will never need to know about internal concepts like types
and constants because they think in terms of the external representation determined
by the concrete syntax associated with a theory.

The ml type rules is a list of pairs of rule names and rules, for example

val irls = [("+-comm", "x+y = y+x"), ("?" "x-x = x")];

104 Chapter 5. Defining Logics

The name of a rule can be an arbitrary string; the rule itself has to conform to the
syntax associated with the theory.

The following functions construct elements of the abstract type theory of theo-
ries in an incremental way:

pure thy: theory
enrich theory:

theory -> string -> sorts * ops * syntax -> rules -> theory
extend theory: theory -> string -> sorts * ops -> rules -> theory
merge theories: theory * theory -> theory

The abstract type syntax and the hierarchical definition of syntaxes is described in
Section 5.4.

pure_thy contains just the types, constants, and syntax of the meta-logic. Note
that there are no rules since meta-logical inferences are carried out by ml functions
as in lcf.

enrich theory thy s (sorts,ops,syn) axs

returns a new theory which enriches thy with the ground types in sorts, the
constants in ops, and the rules axs. The concrete syntax of the new the-
ory is given by syn. Note that concrete syntaxes are also built up incre-
mentally, but with a different set of functions described in Section 5.4. The
rules in axs are interpreted under the new signature. All Frees are replaced
by Vars, so that axioms can be written without question marks. The name
s of the new theory is there merely for reasons of documentation. Example:
enrich_theory pure_thy "int" (isorts,iops,syn) irls, where isorts, iops
and irls are as in Example 5.1 above and syn defines some appropriate syntax.

extend theory thy s (sorts,ops) axs

is equivalent to

enrich theory thy s (sorts,ops,syn) axs

where syn is the concrete syntax of theory thy. This is a simplified way of enriching
theories in case no new concrete syntax information has to be added. In essence,
this means that the signature extension involves only identifiers.

merge_theories(th1,th2) merges the two theories th1 and th2. The resulting
theory contains the union of all types, constants and axioms of the constituent
theories.

Isabelle does not support overloading, i.e. a theory cannot contain two constants
with the same name but different types. Trying to create such a theory by enriching
or merging raises an exception. Constants with the same name and the same type
are identified when theories are enriched or merged.

Axioms can be extracted from theories with the function

get axiom: theory -> string -> thm

5.3. The meta-logic 105

If you have created a theory with more than one axiom with the same name,
get_axiom returns an arbitrary one of them. In there is no axiom with a given
name, an exception is raised.

Examples of the use of all of these functions are given in Section 5.6.

5.3 The meta-logic

Before you can define new object-logics you have to know the meta-logic. Sec-
tion 1.2.1 gave a brief account of its features, Figure 5.1 presents the precise de-
scription of its syntax.

prop = atomic $$ prop

| (prop)

| Any3 == Any2 (2)
| prop2 ==> prop1 (1)
| [| prop { ; prop } |] ==> prop1 (1)
| ! id-list . prop (0)

Any = prop

atomic = identifier
| variable
| identifier (Any { , Any })
| variable (Any { , Any })

id-list = identifier { identifier }

Figure 5.1: Meta-Logic Syntax

The syntactic category prop corresponds to the ml identifier Aprop:typ. Any is
the type of all types. Initially, it contains just prop. As the syntax is extended
by new object-logics, more productions for Any are added (see Section 5.4.4). The
abstract syntax constants for equality, implication and universal quantification are
"==", "==>", and "all" respectively.

Atomic propositions have to be qualified with $$ prop in order to allow object-
logic formulae to be embedded into the meta-logic with minimal syntactic overhead.
This can be seen as a type constraint.

The syntax of the meta-logic is defined in exactly the same way as that of any
object-logic. The module Pure_Ext contains its definition and can be changed easily
to suit different tastes.

106 Chapter 5. Defining Logics

5.4 Defining the syntax

Isabelle supports syntax definitions in the form of unrestricted context-free gram-
mars. The module Syntax, which exports the type syntax, is the interface to this
definition facility. Syntaxes are built up in an incremental fashion using the functions

pure: syntax
extend: syntax -> extension -> syntax
merge: syntax * syntax -> syntax

The constant pure holds the syntax for pure Isabelle, namely higher-order logic
(Figure 5.1). New syntaxes are defined either by extending or merging exist-
ing ones. In the sequel let extension abbreviate the following record type:

type extension =
{logical_types: typ list,
mixfix: mixfix list,
parse_translation: (string * (term list -> term)) list,
print_translation: (string * (term -> term)) list}

The four fields of extension are explained in sections 5.4.4, 5.4.1, 5.4.3, and 5.4.5
respectively. Sections 5.4.1 to 5.4.4 explain how to define those aspects of the syntax
that have to do with parsing, Section 5.4.5 is concerned with unparsing.

5.4.1 Mixfix syntax

The mixfix field of an extension defines the actual syntax through a list of produc-
tions of type mixfix. In fact, mixfix describes the concrete syntax, its translation
into the abstract syntax, and a pretty-printing scheme, all in one. Isabelle syntax
definitions are inspired by obj’s [2] mixfix syntax. Each element of type mixfix

datatype mixfix = Mixfix of string * typ * string * int list * int
| Delimfix of string * typ * string
| Infixl of string * typ * int
| Infixr of string * typ * int

defines a production for a context-free concrete syntax with priorities and associates
a typed abstract syntax constant with it. 1 For the moment we concentrate on
Mixfix because the other ml constructors (Delimfix, . . .) are derived forms.

As a simple introductory example of the relationship between obj’s mixfix syntax
and the Isabelle variant, consider the obj declaration

+ : int,int -> int

In Isabelle this becomes

Mixfix(" + ", [Ground"int", Ground"int"] ---> Ground"int", ...)

1The ml function constants explained in Section 5.4.6 can be used to avoid having to declare
constants both in the abstract and concrete syntax

5.4. Defining the syntax 107

where the last three arguments encode information such as priority, which is not
part of the obj declaration above.

The general form Mixfix(sy,ty,con,pl,p) is interpreted as follows:

sy : the right-hand side of this production, specified in obj-like mixfix form. In
general, sy is of the form α0 α1 . . . αn−1 αn , where each occurrence of “_”
denotes an argument/nonterminal and the strings αi do not contain “_”.

ty : the types of the nonterminals on the left and right hand side. If sy is of the
form above, ty must be of the form [A1, . . . ,An] ---> T . Both the Ai and
T may be function types.

con : name of the abstract syntax constant associated with this production. Parsing
the phrase sy generates the term Const(con,Adummy2)$a1$...$an, where ai

is the term generated by parsing the ith argument.

pl : must be of the form [p1, . . . , pn], where pi is the minimal priority required of
any phrase that may appear as the i th argument. The null list is interpreted
as a list of 0’s of the appropriate length.

p : priority of this production.

Notice that there is a close connection between abstract and concrete syntax: each
production has an associated abstract syntax constant, and the ml type typ rep-
resents types in the abstract syntax as well as syntactic categories in the concrete
syntax. To emphasize this connection, we sometimes refer to the nonterminals on
the right-hand side of a production as its arguments and to the nonterminal on the
left-hand side as its result.

In terms of the priority grammar format introduced in Section 1.6, the declara-
tion Mixfix(sy,ty,con,pl,p) defines the production

Tp −→ α0A1p1α1 . . . αn−1Anpnαn

The maximal legal priority (m in Section 1.6) is called max_pri. If you want to
ignore priorities, the safest way to do so is to use Mixfix(_, _, _, [], max_pri):
this production puts no priority constraints on any of its arguments (remember that
[] is equivalent to [0, ..., 0]) and has maximum priority itself, i.e. it is always
applicable and does not exclude any productions of its arguments.

Example 5.2 In mixfix notation the grammar in Example 1.1 can be written as
follows:

Mixfix("0", Aterm, "0", [], 9),
Mixfix(" + ", [Aterm,Aterm] ---> Aterm, "+", [0,1], 0),
Mixfix(" * ", [Aterm,Aterm] ---> Aterm, "*", [3,2], 2),
Mixfix("- ", Aterm --> Aterm, "-", [3], 3)

2The dummy type Adummy is used instead of the obvious ty to be consistent with the treatment
of types of identifiers. See Section 5.5

108 Chapter 5. Defining Logics

Parsing the string "0 + - 0 + 0" produces the term

P $ (P $ (M $ Z) $ Z) $ Z

where P is Const("+",Adummy), M is Const("-",Adummy), and Z is
Const("0", Adummy).

The interpretation of “_” in a mixfix declaration is always as a meta-character
which does not represent itself but an argument position. The following characters
are also meta-characters:

’ () /

Preceding any character with a quote (’) turns it into an ordinary character. Thus
you can write “’’” if you really want a single quote. The purpose of the other
meta-characters is explained in Section 5.4.5. Remember that in ml strings “\” is
already a (different kind of) meta-character.

Derived forms

All other ml constructors of type mixfix are derived from Mixfix. Their semantics
is explained by the following translation into lists of Mixfix expressions:

Delimfix(sy,ty,con) =⇒ [Mixfix(sy,ty,con,[],max_pri)]

Infixr(sy,ty,p) =⇒ [Mixfix("op "^sy,ty,sy,[],max_pri),

Mixfix("_ "^sy^" _",ty,sy,[p+1,p],p)]

Infixl(sy,ty,p) =⇒ [Mixfix("op "^sy,ty,sy,[],max_pri),

Mixfix("_ "^sy^" _",ty,sy,[p,p+1],p)]

Delimfix abbreviates a common form of priority-independent production. Infixl

and Infixr declare infix operators which associate to the left and right respectively.
As in ml, prefixing infix operators with op turns them into curried functions.

Copy productions

Productions which do not create a new node in the abstract syntax tree are called
copy productions . They must have exactly one nonterminal on the right hand side.
The term generated when parsing that nonterminal is simply passed up as the result
of parsing the whole copy production. In Isabelle a copy production is indicated by
an empty constant name, i.e. by Mixfix(sy,_,"",_,_).

A special kind of copy production is one where, modulo white space, sy is "_".
It is called a chain production. Chain productions should be seen as an abbreviation
mechanism. Conceptually, they are removed from the grammar by adding appropri-
ate new rules. Priority information attached to chain productions is ignored. The
following example demonstrates the effect:

5.4. Defining the syntax 109

Example 5.3 The grammar defined by

Mixfix("A ", B --> A, "AB", [10],),
Mixfix(" ", C --> B, "", [0], 100),
Mixfix("x", C, "x", [], 5),
Mixfix("y", C, "y", [], 15)

admits the string "A y" but not "A x". Had the constant in the second production
been some non-empty string, both "A y" and "A x" would be legal.

5.4.2 Lexical conventions

The lexical analyzer distinguishes 3 kinds of tokens: delimiters , identifiers and
variables . Delimiters are user-defined, i.e. they are extracted from the syntax defi-
nition. If α0 α1 . . . αn−1 αn is some mixfix declaration, each αi is decomposed into
substrings β1 β2 . . . βk which are separated by and do not contain white space (=
blanks, tabs, newlines). Each βj becomes a delimiter. Thus a delimiter can be an
arbitrary string not containing white space.

Identifiers and (scheme) variables are predefined. An identifier is any sequence
of letters, digits, primes (’) or underbars (_) starting with a letter. A variable is a ?

followed by an identifier, optionally followed by a dot (.) and a sequence of digits.
Parsing an identifier i generates Free(i,Adummy). Parsing a variable ?v generates
Var((u,i),Adummy) where i is the integer value of the longest numeric suffix of
v (possibly 0), and u is the remaining prefix. Parsing a variable ?v .i generates
Var((v,i),Adummy). The following table covers the four different cases that can
arise:

"?v" "?v.7" "?v5" "?v7.5"

Var(("v",0),T) Var(("v",7),T) Var(("v",5),T) Var(("v7",5),T)

T is always Adummy.
The two identifiers

SId: typ
SVar: typ

can be used to refer to identifiers and variables in a syntax definition.

Example 5.4 The production Delimfix("_", SId --> A, "") adds identifiers as
another alternative for the syntactic category A.

Mixfix("ALL _. _", [SId,Aform] --> Aform, "ALL", [0,3], 2) defines
the syntax for universal quantification. Note how the chosen priorities prohibit
nested quantifiers.

If we think of SId and SVar as nonterminals with predefined syntax, we may assume
that all their productions have priority max_pri.

The lexical analyzer translates input strings to token lists by repeatedly taking
the maximal prefix of the input string that forms a valid token. A maximal prefix

110 Chapter 5. Defining Logics

that is both a delimiter and an identifier or variable (like "ALL") is treated as a
delimiter. White spaces are separators.

An important consequence of this translation scheme is that delimiters need not
be separated by white space to be recognized as separate. If "-" is a delimiter but
"--" is not, the string "--" is treated as two consecutive occurrences of "-". This
is in contrast to ml which would treat "--" as a single (undeclared) identifier. The
consequence of Isabelle’s more liberal scheme is that the same string may be parsed
in a different way after extending the syntax: after adding "--" as a delimiter, the
input "--" is treated as a single occurrence of "--".

5.4.3 Parse translations

So far we have pretended that there is a close enough relationship between concrete
and abstract syntax to allow an automatic translation from one to the other using
the constant names supplied with each production. In many cases this scheme is
not powerful enough, especially for constructs involving variable bindings. Therefore
each extension can associate a user-defined translation function with a constant
name via the parse_translation field of type

(string * (term list -> term)) list

After the input string has been translated into a term according to the syntax defini-
tion, there is a second phase in which the term is translated using the user-supplied
functions. Given a list tab of the above type, a term t is translated as follows. If t is
not of the form Const(s,T)$t1$...$tn, then t is returned unchanged. Otherwise
all ti are translated into ti’. Let t’ = Const(s,T)$t1’$...$tn’. If there is no
pair (s,f) in tab, return t’. Otherwise apply f to [t1’,...,tn’]. If that raises
an exception, return t’, otherwise return the result.

Example 5.5 Isabelle represents the phrase ∀x .P(x) internally by ∀(λx .P(x)),
where ∀ is a constant of type (term → form) → form. Assuming that term and
form are represented by the typs Aterm and Aform, the concrete syntax can be given
as

Mixfix("ALL . ", ALLt, "ALL", ,)

where ALLt is [SId,Aform] ---> Aform. Parsing "ALL x. ..." according to
this syntax yields the term Const("ALL",Adummy)$Free("x",Adummy)$t, where
t is the body of the quantified formula. What we need is the term
Const("All",Adummy)$Abs("x",Adummy,t’), where "All" is an abstract syntax
constant of type (Aterm --> Aform) --> Aform and t’ is some “abstracted” ver-
sion of t. Therefore we define a function

fun ALLtr[Free(s,T), t] = Const("All", Adummy) $
Abs(s, T, abstract over(Free(s,T), t));

and associate it with "ALL" in this fragment of syntax extension:

5.4. Defining the syntax 111

{mixfix = [..., Mixfix("ALL _. _", ALLt, "ALL", _, _), ...],
parse_translation = [..., ("ALL", ALLtr), ...], ...}

Remember that Adummy is replaced by the correct types at a later stage (see
Section 5.5).

5.4.4 Logical types and default syntax

Isabelle is concerned with mathematical languages which have a certain minimal
vocabulary: identifiers, variables, parentheses, and the lambda calculus. Syntactic
categories which allow all these phrases are called logical types to distinguish them
from auxiliary categories like id-list which one would not expect to be able to paren-
thesize or abstract over. The logical_types field of an extension lists all logical
types introduced in this extension. Logical types must be ground, i.e., of the form
Ground(_).

For any logical type A the following productions are added by default:

A = identifier
| variable
| (A)

| Anym (Any { , Any }) Application
| % id-list . Any (0) Abstraction
| A $$ type Type constraint

Any = A

where

type = identifier Base type
| (type)

| type1 => type (0) Function type

id-list = identifier { identifier }

Application binds very tightly, abstraction very loosely. Any is the type of all logical
types.

The syntactic categories Any and id-list can be referred to via the ml identifiers
Any and id_list of type typ, respectively.

The infix $$ introduces a type constraint. The interpretation of a type is a
typ: an identifier s denotes Ground"s", t1 => t2 denotes T1 --> T2, where T1

and T2 are the denotations of t1 and t2. The phrase s $$ t produces the term
Const("_constrain",T-->T)$S, where S is the term produced by s and T the typ

denoted by t. Thus S is forced to have typ T. Type constraints disappear with type
checking but are still visible for the translation functions.

112 Chapter 5. Defining Logics

5.4.5 Printing

Syntax definitions provide printing information in three distinct ways: through

• the syntax of the language (as used for parsing),

• pretty printing information, and

• print translation functions.

The bare mixfix declarations enable Isabelle to print terms, but the result will not
necessarily be pretty and may look different from what you expected. To produce a
pleasing layout, you need to read the following sections.

Printing with mixfix declarations

Let t = Const(s,_)$t1$...$tn be a term and M = Mixfix(sy,_,s,_,_) be a
mixfix declaration where sy is of the form α0 α1 . . . αn−1 αn . Printing t according
to M means printing the string α0β1α1 . . . αn−1βnαn , where βi is the result of printing
ti.

Note that the system does not insert blanks. They should be part of the mixfix
syntax if they are required to separate tokens or achieve a certain layout.

Pretty printing

In order to format the output, it is possible to include pretty printing directions as
part of the mixfix syntax definition. Of course these directions are ignored during
parsing and affect only printing. The characters “(”, “)”, and “/” are interpreted
as meta-characters when found in a mixfix definition. Their meaning is

(Open a block. A sequence of digits following it is interpreted as the indentation
of this block. It causes the output to be indented by n positions if a line break
occurs within the block. If “(” is not followed by a digit, the indentation
defaults to 0.

) Close a block.

/ Allow a line break. White spaces immediately following “/” are not printed if
the line is broken at this point.

Print translations

Since terms can be subject to a translation after parsing (see Section 5.4.3), there
is a similar mechanism to translate them back before printing. Therefore each
extension can associate a user-defined translation function with a constant name
via its print_translation field of type

(string * (term -> term)) list

Including a pair (s,f) results in f being applied to any term with head Const(s,_)

before printing it.

5.4. Defining the syntax 113

Example 5.6 In Example 5.5 we showed how to translate the concrete syntax for
universal quantification into the proper internal form. The string "ALL x. ..."

now parses as Const("All", _)$Abs("x", _, _). If, however, the latter term is
printed without translating it back, it would result in "All(%x. ...)". Therefore
the abstraction has to be turned back into a term that matches the concrete mixfix
syntax:

fun Alltr($ Abs(id,T,P)) =
let val (id’,P’) = variant abs(id,T,P)
in Const("ALL",ALLt) $ Free(id’,T) $ P’ end;

The function variant_abs, a basic term manipulation function, replaces the bound
variable id by a Free variable id’ having a unique name. A term produced by
Alltr can now be printed according to the concrete syntax

Mixfix("ALL . ", ALLt, "ALL", ,).

Notice that the application of Alltr fails if the second component of the argu-
ment is not an abstraction, but for example just a Free variable. This is intentional
because it signals to the caller that the intended translation is inapplicable.

The syntax extension, including concrete syntax and both translation functions,
would have the following form:

{mixfix = [..., Mixfix("ALL _. _", ALLt, "ALL", _, _), ...],
parse_translation = [..., ("ALL", ALLtr), ...],
print_translation = [..., ("All", Alltr), ...], ...}

As during the parse translation process, the types attached to variables or con-
stants during print translation are immaterial because printing is insensitive to types.
This means that in the definition of function Alltr above, we could have written
Const("ALL",Adummy) $ Free(id’,Adummy).

Printing a term

Let G be the set of all Mixfix declarations and T the set of all string-function pairs
of print translations in the current syntax.

Terms are printed recursively.

• Free(s,_) is printed as s.

• Var((s,i),_) is printed as s, if i = 0 and s does not end with a digit, as s

followed by i, if i 6= 0 and s does not end with a digit, and as s.i, if s ends
with a digit. Thus the following cases can arise:

Var(("v",0),_) Var(("v",7),_) Var(("v5",0),_)

"?v" "?v7" "?v5.0"

• Abs(x,_,Abs(y,_,...Abs(z,_,b)...), where b is not an abstraction, is
printed as %u v ... w. t, where t is the result of printing b, and x, y and z

are replaced by u, v and w. The latter are new unique names.

114 Chapter 5. Defining Logics

• Bound(i) is printed as B.i 3 .

• The application t = Const(s,_)$t1$...$tn (where n may be 0!) is printed
as follows:

If there is a pair (s,f) in T , print f(t). If this application raises an ex-
ception or there is no pair (s,f) in T , let S be the set of sy such that
Mixfix(sy,_,s,_,_) is in G . If S is empty, t is printed as an application.
Otherwise let sy’ ∈ S be a mixfix declaration with the maximal number of
nonterminals, n. If sy’ has n arguments, print t according to sy’, otherwise
print it as an application.

All other applications are printed as applications.

Printing a term c$t1$...$tn as an application means printing it as s(s1,...,sn),
where si is the result of printing ti. If c is a Const, s is its first argument. Other
terms c are printed as described above.

The printer also inserts parentheses where they are necessary for reasons of
priority.

5.4.6 Miscellaneous

In addition to the ml identifiers introduced so far, the syntax module provides the
following functions:

read: syntax -> typ -> string -> term

Calling read sy t s parses s as a term of type t according to syntax sy. Valid
types are Aprop, Any, all logical types (see Section 5.4.4), and all function types. If
the input does not conform to the syntax, an error message is printed and exception
ERROR is raised.

prin: syntax -> term -> unit
print top level: syntax -> term -> unit

Calling prin sy tm performs the inverse translation: it prints the term tm according
to syntax sy. print_top_level is like prin, except that the output is written on a
separate line.

print syntax: syntax -> unit

prints a syntax in some readable format.

constants: mixfix list -> (string list * typ) list

Calling constants(ml) builds a list of all pairs ([s],T) such that
Mixfix(_,T,s,_,_), Delimfix(_,T,s), Infixl(s,T), or Infixr(s,T) is in ml.

3The occurrence of such “loose” bound variables indicates that either you are trying to print a
subterm of an abstraction, or there is something wrong with your print translations.

5.4. Defining the syntax 115

This table of typed constants can be used as part of the ops argument to
extend_theory and enrich_theory, thus removing the need to declare many con-
stants twice.

Syntax extensions often introduce constants which are never part of a term that
the parser produces because they are removed by translation. A typical example is
"ALL" in Example 5.5: in contrast to "All" it is not part of the logical language
represented with this syntax. To avoid picking up those constants, constants only
selects those strings which do not start with a blank. Therefore we should have used
" ALL" in examples 5.5 and 5.6.

Syntactic building blocks

This section introduces predefined syntactic classes and utilities operating on them.
Since abstraction and quantification over lists of variables is very common, the

category id-list (see Figure 5.1) is available as the typ id_list. For example the
syntax of object-level universal quantification can be defined by

Mixfix("ALL . ", [id list,Aform]--->Aform, " ALL", ,),

permitting phrases like "ALL x y. P(x,y)". To facilitate translation to and from
the abstract syntax, two additional functions are defined.

abs list tr: term * term * term -> term

translates concrete to abstract syntax. If idl is a term of type id_list repre-
senting a list of variables vn−1 . . . v0, then abs_list_tr(const,idl,body) yields
const$Abs(vn−1, , ...const$Abs(v0, ,body’)...) where body’ is body with
every free occurrence of vi replaced by Bound(i).

Given the syntax for universal quantification introduced above, the parse trans-
lation function associated with " ALL" can be defined as

fun ALLtr[idl,body] = abs list tr(Const("All",Adummy), idl, body)

It replaces the function of the same name in Example 5.5.

abs list tr’: term * (string*typ)list * term -> term

performs the reverse translation. If vars is a list of variable names and their
types [(vn−1,Tn−1), . . . , (v0,T0)], then abs_list(const,vars,body) evaluates to
const$varl$body’ where

• varl is a term of type id_list representing a list of variables un−1 . . . u0,

• un−1 . . . u0 is a list of distinct names not occurring in body, and

• body’ is body with Bound(i) replaced by Free(ui,Ti).

116 Chapter 5. Defining Logics

In the case of universal quantification, the print translation is achieved by

fun Alltr(tm) = abs list tr’(Const(" ALL",Adummy),
strip qnt vars "All" tm,
strip qnt body "All" tm);

which replaces the function of the same name in Example 5.6. The functions

fun strip qnt body qnt (tm as Const(c,)$Abs(, ,t)) =
if c=qnt then strip qnt body qnt t else tm

| strip qnt body qnt tm = tm;

fun strip qnt vars qnt (Const(c,)$Abs(a,T,t)) =
if c=qnt then (a,T) :: strip qnt vars qnt t else []

| strip qnt vars qnt tm = [];

are predefined.

5.4.7 Restrictions

In addition to the restrictions mentioned throughout the text, the following ones
apply.

Constant names must not start with an underbar, e.g. "_ALL".
Type names must not start with an underbar, e.g. Ground "_int".
The parser is designed to work for any context-free grammar. If, however, an

ambiguous grammar is used, and the input string has more than one parse, the
parser selects an arbitrary one and does not issue a warning.

5.5 Identifiers, constants, and type inference

There is one final step in the translation from strings to terms that we have not
covered yet. It explains how constants are distinguished from Frees and how Frees
and Vars are typed. Both issues arise because Frees and Vars are not declared.

An identifier f that does not appear as a delimiter in the concrete syntax can
be either a free variable or a constant from the abstract syntax. Since the parser
knows only about some of the constants, namely those that appear in the concrete
syntax description, it parses "f" as Free("f",Adummy), where Adummy is a predefined
dummy typ. Although the parser function read produces these very raw terms, all
user interface level functions like goal type terms according to the given abstract
syntax, say A. In a first step, every occurrence of Free(s,_) or Const(s,_) is
replaced by Const(s,T), provided there is a constant s of typ T in A. This means
that identifiers are treated as Frees iff they are not declared in the abstract syntax.
The types of the remaining Frees (and Vars) are inferred as in ml. If the resulting
term still contains a polymorphic typ, an exception is raised: Isabelle does not (yet)
support polymorphism. Type constraints as introduced in Section 5.4.4 can be used
to remove unwanted ambiguities or polymorphism.

5.6. Putting it all together 117

One peculiarity of the current type inference algorithm is that variables with the
same name must have the same type, irrespective of whether they are free or bound.
For example, take the first-order formula f (x) = x ∧ (∀f . f = f) where the constants
= and ∀ have type term → term → form and (term → form) → form. The first
conjunct forces x : term and f : term → term, the second one f : term. Although
the two f ’s are distinct, they are required to have the same type, thus leading to a
type clash in the above formula.

5.6 Putting it all together

Having discussed the individual building blocks of a logic definition, it remains to be
shown how they fit together. In particular we need to say how an object-logic syntax
is hooked up to the meta-logic. Since all theorems must conform to the syntax for
prop (see Figure 5.1), that syntax has to be extended with the object-level syntax.
Assume that the syntax of your object-logic defines a category form of formulae.
These formulae can now appear in axioms and theorems wherever prop does if you
add the production

prop = form.

More precisely, you need a coercion from formulae to propositions:

Mixfix(" ", Aform --> Aprop, "Prop", [0], 5)

The constant "Prop" (the name is arbitrary) acts as an invisible coercion function.

One of the simplest nontrivial logics is minimal logic of implication. Its definition
in Isabelle needs no advanced features but illustrates the overall mechanism quite
nicely:

val Aform = Ground "form";
val mixfix = [Mixfix("_", Aform --> Aprop, "Prop", [], 5),

Infixr("-->", [Aform,Aform]--->Aform, 10)];
val impl_syn = extend pure {logical_types=[Aform], mixfix=mixfix,

parse_translation=[], print_translation=[]};
val impl_thy = enrich_theory pure_thy "Impl"

(["form"], constants mixfix, impl_syn)
[("K", "P --> Q --> P"),
("S", "(P --> Q --> R) --> (P --> Q) --> P --> R"),
("MP", "[| P --> Q; P |] ==> Q")];

118 Chapter 5. Defining Logics

You can now start to prove theorems in this logic:

> goal impl thy "P --> P";
Level 0
P --> P
1. P --> P
> by(resolve tac [get axiom impl thy "MP"] 1);
Level 1
P --> P
1. ?P --> P --> P
2. ?P
> by(resolve tac [get axiom impl thy "MP"] 1);
Level 2
P --> P
1. ?P1 --> ?P --> P --> P
2. ?P1
3. ?P
> by(resolve tac [get axiom impl thy "S"] 1);
Level 3
P --> P
1. P --> ?Q2 --> P
2. P --> ?Q2
> by(resolve tac [get axiom impl thy "K"] 1);
Level 4
P --> P
1. P --> ?Q2
> by(resolve tac [get axiom impl thy "K"] 1);
Level 5
P --> P
No subgoals!

As you can see, this Hilbert-style formulation of minimal logic is easy to define but
difficult to use. The following natural deduction formulation is far preferable:

val Nimpl thy = enrich theory pure thy "Impl"
(["form"], constants impl ext, impl syn)
[("I-I", "[| P ==> Q |] ==> P-->Q"),
("I-E", "[| P --> Q; P |] ==> Q")];

Note, however, that although the two systems are equivalent, this fact cannot be
proved within Isabelle: "S" and "K" can be derived in Nimpl_thy (exercise!), but
"I-I" cannot be derived in impl_thy. The reason is that "I-I" is only an admissible
rule in impl_thy, something that can only be shown by induction over all possible
proofs in impl_thy.

It is a very simple matter to extend minimal logic with falsity because no new
syntax is involved:

val NF thy = extend theory Nimpl thy "F Extension"
([], [(["False"], Aform)])
[("F-E", "False ==> P")];

5.6. Putting it all together 119

On the other hand, we may wish to introduce conjunction only:

val mixfix = [Mixfix("_", Aform --> Aprop, "Prop", [], 5),
Infixr("&", [Aform,Aform]--->Aform, 30)];

val conj_syn = extend pure {logical_types=[Aform], mixfix=mixfix,
parse_translation=[], print_translation=[]};

val Nconj_thy = enrich_theory pure_thy "Conj"
(["form"], constants mixfix, conj_syn)
[("C-I", "[| P; Q |] ==> P & Q"),
("C-El", "P & Q ==> P"), ("C-Er", "P & Q ==> Q")];

And if we want to have all three connectives together, we define:

val thy = merge theories (NF thy,Nconj thy);

Now we can prove mixed theorems like

goal thy "P & False --> Q";
by(resolve tac [get axiom thy "I-I"] 1);
by(resolve tac [get axiom thy "F-E"] 1);
by(eresolve tac [get axiom thy "C-Er"] 1);

Try this as an exercise!

120 Chapter 5. Defining Logics

Appendix A

Internals and Obscurities

This Appendix is a tour through the Isabelle sources themselves, listing functions
(and other identifiers) with their types and purpose.

A.1 Types and terms

Isabelle types and terms are those of the typed λ-calculus.

A.1.1 Basic declarations

Exceptions in Isabelle are mainly used to signal errors. An exception includes a
string (the error message) and other data to identify the error.

exception TYPE of string * typ list * term list

Signals errors involving types and terms.

exception TERM ERROR of string * term list

Signals errors involving terms.
The following ml identifiers denote the symbols of the meta-logic.
The type of propositions is Aprop.
The implication symbol is implies.
The term all T is the universal quantifier for type T.
The term equals T is the equality predicate for type T.

A.1.2 Operations

There are a number of basic functions on terms and types.

op ---> : typ list * typ -> typ

Given types [τ1, . . . , τn] and τ , it forms the type τ1 → · · · → (τn → τ).

loose bnos: term -> int list

121

122 Appendix A. Internals and Obscurities

Calling loose_bnos t returns the list of all ’loose’ bound variable references. In
particular, Bound 0 is loose unless it is enclosed in an abstraction. Similarly Bound 1

is loose unless it is enclosed in at least two abstractions; if enclosed in just one, the
list will contain the number 0. A well-formed term does not contain any loose
variables.

Calling type of t computes the type of the term t . Raises exception TYPE unless
applications are well-typed.

op aconv: term*term -> bool

Calling t aconv u tests whether terms t and u are α-convertible: identical up to
renaming of bound variables.

• Two constants, Frees, or Vars are α-convertible just when their names and
types are equal. (Variables having the same name but different types are thus
distinct. This confusing situation should be avoided!)

• Two bound variables are α-convertible just when they have the same number.

• Two abstractions are α-convertible just when their bodies are, and their bound
variables have the same type.

• Two applications are α-convertible just when the corresponding subterms are.

incr boundvars: int -> term -> term

This increments a term’s ‘loose’ bound variables by a given offset, required when
moving a subterm into a context where it is enclosed by a different number of
lambdas.

abstract over: term*term -> term

For abstracting a term over a subterm v : replaces every occurrence of v by a Bound

variable with the correct index.
Calling subst_bounds([un−1, . . . , u0], t) substitutes the ui for loose bound vari-

ables in t . This achieves β-reduction of un−1 · · · u0 into t , replacing Bound i with
ui . For (λxy .t)(u, v), the bound variable indices in t are x : 1 and y : 0. The appro-
priate call is subst_bounds([v,u],t). Loose bound variables ≥ n are reduced by
n to compensate for the disappearance of n lambdas.

subst term: (term*term)list -> term -> term

Simultaneous substitution for atomic terms in a term. An atomic term is a constant
or any kind of variable.

maxidx of term: term -> int

A.1. Types and terms 123

Computes the maximum index of all the Vars in a term. If there are no Vars, the
result is −1.

term match: (term*term)list * term*term -> (term*term)list

Calling term_match(vts,t,u) instantiates Vars in t to match it with u. The re-
sulting list of variable/term pairs extends vts, which is typically empty. First-order
pattern matching is used to implement meta-level rewriting.

A.1.3 The representation of object-rules

The module Logic contains operations concerned with inference — especially, for
constructing and destructing terms that represent object-rules.

op occs: term*term -> bool

Does one term occur in the other? (This is a reflexive relation.)

add term vars: term*term list -> term list

Accumulates the Vars in the term, suppressing duplicates. The second argument
should be the list of Vars found so far.

add term frees: term*term list -> term list

Accumulates the Frees in the term, suppressing duplicates. The second argument
should be the list of Frees found so far.

mk equals: term*term -> term

Given t and u makes the term t ≡ u.

dest equals: term -> term*term

Given t ≡ u returns the pair (t , u).

list implies: term list * term -> term

Given the pair ([φ1, . . . , φm], φ) makes the term [φ1; . . . ;φm] =⇒ φ.

strip imp prems: term -> term list

Given [φ1; . . . ;φm] =⇒ φ returns the list [φ1, . . . , φm].

strip imp concl: term -> term

Given [φ1; . . . ;φm] =⇒ φ returns the term φ.

list equals: (term*term)list * term -> term

124 Appendix A. Internals and Obscurities

For adding flex-flex constraints to an object-rule. Given ([(t1, u1), . . . , (tk , uk)], φ),
makes the term [t1 ≡ u1; . . . ; tk ≡ uk] =⇒ φ.

strip equals: term -> (term*term) list * term

Given [t1 ≡ u1; . . . ; tk ≡ uk] =⇒ φ, returns ([(t1, u1), . . . , (tk , uk)], φ).

rule of: (term*term)list * term list * term -> term

Makes an object-rule: given the triple

([(t1, u1), . . . , (tk , uk)], [φ1, . . . , φm], φ)

returns the term [t1 ≡ u1; . . . ; tk ≡ uk ;φ1; . . . ;φm] =⇒ φ

strip horn: term -> (term*term)list * term list * term

Breaks an object-rule into its parts: given

[t1 ≡ u1; . . . ; tk ≡ uk ;φ1; . . . ;φm] =⇒ φ

returns the triple ([(tk , uk), . . . , (t1, u1)], [φ1, . . . , φm], φ).

strip assums: term -> (term*int) list * (string*typ) list * term

Strips premises of a rule allowing a more general form, where
∧

and =⇒ may be
intermixed. This is typical of assumptions of a subgoal in natural deduction. Returns
additional information about the number, names, and types of quantified variables.
For more discussion of assumptions, see Section A.4.2.

strip prems: int * term list * term -> term list * term

For finding premise (or subgoal) i : given the triple (i , [], φ1; . . . φi =⇒ φ) it re-
turns another triple, (φi , [φi−1, . . . , φ1], φ), where φ need not be atomic. Raises an
exception if i is out of range.

A.2 Higher-order unification

Unification is used in the resolution of object-rules. Since logics are formalized in
the typed λ-calculus, Isabelle uses Huet’s higher-order unification algorithm [4].

A.2.1 Sequences

The module Sequence declares a type of unbounded sequences by the usual closure
idea [8, page 118]. Sequences are defined in terms of the type option, declared in
Isabelle’s basic library, which handles the possible presence of a value.

datatype ’a option = None | Some of ’a;

A.2. Higher-order unification 125

Operations on the type ’a seq include conversion between lists and sequences
(with truncation), concatenation, and mapping a function over a sequence. Se-
quences are used in unification and tactics. The module Sequence, which is normally
closed, declares the following.

type ’a seq

The type of (possibly unbounded) sequences of type ’a.

seqof: (unit -> (’a * ’a seq) option) -> ’a seq

Calling seqof (fn()=> Some(x,s)) constructs the sequence with head x and tail
s, neither of which is evaluated.

null: ’a seq

This is seqof (fn()=> None), the empty sequence.

single: ’a -> ’a seq

This is seqof (fn()=> Some(x,null)); makes a 1-element sequence.

pull: ’a seq -> (’a * ’a seq) option

Calling pull s returns None if the sequence is empty and Some(x,s’) if the sequence
has head x and tail s’. Only now is x evaluated. (Calling pull s again will
recompute this value! It is not stored!)

append: ’a seq * ’a seq -> ’a seq

Concatenates two sequences.

flats: ’a seq seq -> ’a seq

Concatenates a sequence of sequences.

maps: (’a -> ’b) -> ’a seq -> ’b seq

Applies a function to every element of a sequence, producing a new sequence.

A.2.2 Environments

The module Envir (which is normally closed) declares a type of environments. An
environment holds variable assignments and the next index to use when generating
a variable.

datatype env = Envir of {asol: term xolist, maxidx: int}

The operations of lookup, update, and generation of variables are used during uni-
fication.

empty: int->env

126 Appendix A. Internals and Obscurities

Creates the environment with no assignments and the given index.

lookup: env * indexname -> term option

Looks up a variable, specified by its indexname, and returns None or Some as appro-
priate.

update: (indexname * term) * env -> env

Given a variable, term, and environment, produces a new environment where the
variable has been updated. This has no side effect on the given environment.

genvar: env * typ -> env * term

Generates a variable of the given type and returns it, paired with a new environment
(with incremented maxidx field).

alist of: env -> (indexname * term) list

Converts an environment into an association list containing the assignments.

norm term: env -> term -> term

Copies a term, following assignments in the environment, and performing all
possible β-reductions.

rewrite: (env * (term*term)list) -> term -> term

Rewrites a term using the given term pairs as rewrite rules. Assignments are ignored;
the environment is used only with genvar, to generate unique Vars as placeholders
for bound variables.

A.2.3 The unification functions

The module Unify implements unification itself. It uses depth-first search with a
depth limit that can be set. You can also switch tracing on and off, and specify a
print function for tracing.

search bound: int ref

Default 20, holds the depth limit for the unification search. The message

***Unification bound exceeded

appears whenever the search is cut off. This usually means the search would
otherwise run forever, but a few proofs require increasing the default value of
search_bound.

printer: (term->unit) ref

A.2. Higher-order unification 127

This function is used to print terms during tracing. It should be set to an object-
logic’s function prin. The default is a dummy that prints nothing.

trace bound: int ref

Default 10, tracing information is printed whenever the search depth exceeds this
bound.

trace simp: bool ref

Default false, controls whether tracing information should include the simpl phase
of unification. Otherwise only match is traced.

unifiers: env * ((term*term)list) -> (env * (term*term)list) seq

This is the main unification function. Given an environment and a list of disagree-
ment pairs, it returns a sequence of outcomes. Each outcome consists of an updated
environment and a list of flex-flex pairs (these are discussed below).

smash unifiers: env * (term*term)list -> env seq

This unification function maps an environment and a list of disagreement pairs to
a sequence of updated environments. The function obliterates flex-flex pairs by
choosing the obvious unifier. It may be used to tidy up any flex-flex pairs remaining
at the end of a proof.

Flexible-flexible disagreement pairs

A flexible-flexible disagreement pair is one where the heads of both terms are vari-
ables. Every set of flex-flex pairs has an obvious unifier and usually many others.
The function unifiers returns the flex-flex pairs to constrain later unifications;
smash_unifiers uses the obvious unifier to eliminate flex-flex pairs.

For example, the many unifiers of ?f (0) ≡ ?g(0) include ?f 7→ λx .?g(0) and
{?f 7→ λx .x , ?g 7→ λx .0}. The trivial unifier, which introduces a new variable ?a, is
{?f 7→ λx .?a, ?g 7→ λx .?a}. Of these three unifiers, none is an instance of another.

Flex-flex pairs are simplified to eliminate redundant bound variables, as shown
in the following example:

λxy .?f (k(y), l(x)) ≡ λxy .?g(y)

The bound variable x is not used in the right-hand term. Any unifier of these
terms must delete all occurrences of x on the left. Choosing a new variable ?h, the
assignment ?f 7→ λuv .?h(u) reduces the disagreement pair to

λxy .?h(k(y)) ≡ λxy .?g(y)

without losing any unifiers. Now x can be dropped on both sides (adjusting bound
variable indices) to leave

λy .?h(k(y)) ≡ λy .?g(y)

Assigning ?g 7→ λy .?h(k(y)) eliminates ?g and unifies both terms to λy .?h(k(y)).

128 Appendix A. Internals and Obscurities

Multiple unifiers

Higher-order unification can generate an unbounded sequence of unifiers. Multiple
unifiers indicate ambiguity; usually the source of the ambiguity is obvious. Some
unifiers are more natural than others. In solving ?f (a) ≡ a + b − a, the solution
?f 7→ λx .x +b−x is better than ?f 7→ λx .a +b−a because it reveals the dependence
of a + b − a on a. There are four unifiers in this case. Isabelle generates the better
ones first by preferring projection over imitation.

The unification procedure performs Huet’s match operation [4] in big steps. It
solves ?f (t1, . . . , tp) ≡ u for ?f by finding all ways of copying u, first trying projection
on the arguments ti . It never copies below any variable in u; instead it returns a
new variable, resulting in a flex-flex disagreement pair. If it encounters ?f in u,
it allows projection only. This prevents looping in some obvious cases, but can be
fooled by cycles involving several disagreement pairs. It is also incomplete.

Associative unification

Associative unification comes for free: encoded through function composition, an
associative operation [5, page 37]. To represent lists, let C be a new constant. The
empty list is λx .x , while the list [t1, t2, . . . , tn] is represented by the term

λx .C (t1,C (t2, . . . ,C (tn , x)))

The unifiers of this with λx .?f (?g(x)) give all the ways of expressing [t1, t2, . . . , tn]
as the concatenation of two lists.

Unlike standard associative unification, this technique can represent certain in-
finite sets of unifiers as finite sets containing flex-flex disagreement pairs. But
λx .C (t , ?a) does not represent any list. Such garbage terms may appear in flex-
flex pairs and accumulate dramatically.

Associative unification handles sequent calculus rules, where the comma is the
associative operator:

Γ,A,B ,∆ |− Θ

Γ,A & B ,∆ |− Θ

Multiple unifiers occur whenever this is resolved against a goal containing more than
one conjunction on the left. Note that we do not really need associative unification,
only associative matching.

A.3 Terms valid under a signature

The module Sign declares the abstract types of signatures and checked terms. A
signature contains the syntactic information needed for building a theory. A checked
term is simply a term that has been checked to conform with a given signature, and
is packaged together with its type, etc.

A.3. Terms valid under a signature 129

A.3.1 The ml type sg

A signature lists all ground types that may appear in terms in the theory. The
lexical symbol table declares each constant, infix, variable, and keyword. The syntax
contains the theory’s notation in some internal format; this concerns users but has
no logical meaning.

type sg =
{gnd_types: string list, (*ground types*)
const_tab: typ Symtab.table, (*types of constants*)
ident_tab: typ Symtab.table, (*default types of identifiers*)
syn: Syntax.syntax, (*Parsing and printing operations*)
stamps: string ref list (*unique theory identifier*) };

The stamps identify the theory. Each primitive theory has a single stamp. When
the union of theories is taken, the lists of stamps are merged. References are used
as the unique identifiers. The references are compared, not their contents.

Two signatures can be combined into a new one provided their constants are
compatible. If an identifier is used as a constant in both signatures, it must be the
same kind of symbol and have the same type in both signatures. This union opera-
tion should be idempotent, commutative, and associative. You can build signatures
that ought to be the same but have different syntax functions, since functions cannot
be compared.

A.3.2 The ml type cterm

A term t is valid under a signature provided every type in t is declared in the
signature and every constant in t is declared as a constant or infix of the same type
in the signature. It must be well-typed and monomorphic and must not have loose
bound variables. Note that a subterm of a valid term need not be valid: it may
contain loose bound variables. Even if λx .x is valid, its subterm x is a loose bound
variable.

A checked term is stored with its signature, type, and maximum index of its
Vars. This information is computed during the checks.

datatype cterm = Cterm of {sign: sg,
t: term,
T: typ,
maxidx: int};

The inference rules maintain that the terms that make up a theorem are valid
under the theorem’s signature. Rules (like specialization) that operate on terms
take them as cterms rather than taking raw terms and checking them. It is possible
to obtain cterms from theorems, saving the effort of checking the terms again.

130 Appendix A. Internals and Obscurities

A.3.3 Declarations

Here are the most important declarations of the module Sign. (This module is
normally closed.)

type sg

The type of signatures, this is an abstract type: the constructor is not exported. A
signature can only be created by calling new, typically via a call to prim_theory.

type cterm

The abstract type of checked terms. A cterm can be created by calling cterm_of or
read_cterm.

rep sg: sg -> {gnd types: string list, lextab: lexsy table...}

The representation function for type sg, this returns the underlying record.

new: string -> ... -> sg

Calling new signame (gnd_types,lextab,parser,printer) creates a new signa-
ture named signame from the given type names, lexical table, parser, and printing
functions.

rep cterm: cterm -> {T: typ, maxidx: int, sign: sg, t: term}

The representation function for type cterm.

term of: cterm -> term

Maps a cterm to the underlying term.

cterm of: sg -> term -> cterm

Given a signature and term, checks that the term is valid in the signature and
produces the corresponding cterm. Raises exception TERM_ERROR with the message
‘type error in term’ or ‘term not in signature’ if appropriate.

read cterm: sg -> string*typ -> cterm

Reads a string as a term using the parsing information in the signature. It checks
that this term is valid to produce a cterm. Note that a type must be supplied: this
aids type inference considerably. Intended for interactive use, read_cterm catches
the various exceptions that could arise and prints error messages. Commands like
goal call read_cterm.

print cterm: cterm -> unit

A.4. Meta-inference 131

Prints the cterm using the printing function in its signature.

print term: sg -> term -> unit

Prints the term using the printing function in the given signature.

type assign: cterm -> cterm

Produces a cterm by updating the signature of its argument to include all vari-
able/type assignments. Type inference under the resulting signature will assume
the same type assignments as in the argument. This is used in the goal package to
give persistence to type assignments within each proof. (Contrast with lcf’s sticky
types [8, page 148].)

A.4 Meta-inference

Theorems and theories are mutually recursive. Each theorem is associated with a
theory; each theory contains axioms, which are theorems. To avoid circularity, a
theorem contains a signature rather than a theory.

The module Thm declares theorems, theories, and all meta-rules. Together with
Sign this module is critical to Isabelle’s correctness: all other modules call on them
to construct valid terms and theorems.

A.4.1 Theorems

The natural deduction system for the meta-logic [9] is represented by the obvious
sequent calculus. Theorems have the form Φ |− ψ, where Φ is the set of hypotheses
and ψ is a proposition. Each meta-theorem has a signature and stores the maximum
index of all the Vars in ψ.

datatype thm = Thm of
{sign: Sign.sg,
maxidx: int,
hyps: term list,
prop: term};

The proof state with subgoals φ1, . . . , φm and main goal φ is represented by the
object-rule φ1 . . . φm/φ, which in turn is represented by the meta-theorem

Φ |− [t1 ≡ u1; . . . ; tk ≡ uk ;φ1; . . . ;φm] =⇒ φ (A.1)

The field hyps holds Φ, the set of meta-level assumptions. The field prop holds
the entire proposition, [t1 ≡ u1; . . . ;φm] =⇒ φ, which can be further broken down.
The function tpairs_of returns the (t , u) pairs, while prems_of returns the φi and
concl_of returns φ.

exception THM of string * int * thm list

132 Appendix A. Internals and Obscurities

Signals incorrect arguments to meta-rules. The tuple consists of a message, a premise
number, and the premises.

rep thm: thm -> {prop: term, hyps: term list, . . . }

This function returns the representation of a theorem, the underlying record.

tpairs of: thm -> (term*term)list

Maps the theorem (A.1) to the list of flex-flex constraints, [(t1, u1), . . . , (tk , uk)].

prems of: thm -> term list

Maps the theorem (A.1) to the premises, [φ1, . . . , φm].

concl of: thm -> term

Maps the theorem (A.1) to the conclusion, φ.

Meta-rules

All of the meta-rules are implemented (though not all are used). They raise excep-
tion THM to signal malformed premises, incompatible signatures and similar errors.

assume: Sign.cterm -> thm

Makes the sequent ψ |− ψ, checking that ψ contains no Vars. Recall that Vars are
only allowed in the conclusion.

implies intr: Sign.cterm -> thm -> thm

This is =⇒-introduction.

implies elim: thm -> thm -> thm

This is =⇒-elimination.

forall intr: Sign.cterm -> thm -> thm

The
∧

-introduction rule generalizes over a variable, either Free or Var. The variable
must not be free in the hypotheses; if it is a Var then there is nothing to check.

forall elim: Sign.cterm -> thm -> thm

This is
∧

-elimination.

reflexive: Sign.cterm -> thm

Reflexivity of equality.

symmetric: thm -> thm

Symmetry of equality.

transitive: thm -> thm -> thm

Transitivity of equality.

instantiate: (Sign.cterm*Sign.cterm) list -> thm -> thm

Simultaneous substitution of terms for distinct Vars. The result is not normalized.

A.4. Meta-inference 133

Definitions

An axiom of the form C ≡ t defines the constant C as the term t . Rewriting with
the axiom C ≡ t unfolds the constant C : replaces C by t . Rewriting with the
theorem t ≡ C (obtained by the rule symmetric) folds the constant C : replaces t
by C . Several rules are concerned with definitions.

rewrite rule: thm list -> thm -> thm

This uses a list of equality theorems to rewrite another theorem. Rewriting is left-
to-right and continues until no rewrites are applicable to any subterm.

rewrite goals rule: thm list -> thm -> thm

This uses a list of equality theorems to rewrite just the antecedents of another
theorem — typically a proof state. This unfolds definitions in the subgoals but not
in the main goal.

Unfolding should only be needed for proving basic theorems about a defined
symbol. Later proofs should treat the symbol as a primitive. For example, in first-
order logic, bi-implication is defined in terms of implication and conjunction:

P<->Q == (P-->Q) & (Q-->P)

After deriving basic rules for this connective, we can forget its definition.
This treatment of definitions should be contrasted with many other theorem

provers, where defined symbols are automatically unfolded.

A.4.2 Derived meta-rules for backwards proof

The following rules, coded directly in ml for efficiency, handle backwards proof.
They typically involve a proof state

[ψ1; . . . ;ψi ; . . . ;ψn] =⇒ ψ

Subgoal i , namely ψi , might have the form∧
x1.θ1 =⇒ · · · (

∧
xk .θk =⇒ θ)

Each θj may be preceded by zero or more quantifiers, whose scope extends to θ.
The θj represent the assumptions of the subgoal; the xj represent the parameters.

The object-rule [φ1; . . . ;φm] =⇒ φ is lifted over the assumptions and parameters
of the subgoal and renumbered [9]; write the lifted object-rule as

[φ̃1; . . . ; φ̃m] =⇒ φ̃

Recall that, for example, φ̃ has the form∧
x1.θ1; . . . ; (

∧
xk .θk =⇒ φ′)

134 Appendix A. Internals and Obscurities

where φ′ is obtained from φ by replacing its free variables by certain terms.
Each rule raises exception THM if subgoal i does not exist.

resolution: thm * int * thm list -> thm Sequence.seq

Calling resolution(state,i,rules) performs higher-order resolution of a theorem
in rules, typically an object-rule, with subgoal i of the proof state held in the
theorem state. The sequence of theorems contains the result of each successful
unification of φ̃ ≡ ψi , replacing ψi by φ̃1, . . . , φ̃m and instantiating variables in
state. The rules are used in order.

assumption: thm * int -> thm Sequence.seq

Calling assumption(state,i) attempts to solve subgoal i by assumption in natural
deduction. The call tries each unification of the form θj ≡ θ for j = 1, . . . , k . The
sequence of theorems contains the outcome of each successful unification, where ψi

has been deleted and variables may have been instantiated elsewhere in the state.

biresolution: thm * int * (bool*thm)list -> thm Sequence.seq

Calling biresolution(state,i,brules) is like calling resolution, except that
pairs of the form (true,rule) involve an implicit call of assumption. This permits
using natural deduction object-rules in a sequent style, where the ‘principal formula’
is deleted after use. Write the lifted object-rule as

[φ̃1; φ̃2; . . . ; φ̃m] =⇒ φ̃

The rule is interpreted as an elimination rule with φ1 as the major premise, and
biresolution will insist on finding φ1 among the assumptions of subgoal i . The
call tries each unification of the form {φ′1 ≡ θj , φ̃ ≡ ψi} for j = 1, . . . , k . The
sequence of theorems contains the result of each successful unification, replacing ψi

by the m−1 subgoals φ̃2, . . . , φ̃m and instantiating variables in state. The relevant
assumption is deleted in the subgoals: if unification involved θj , then the occurrence

of θj is deleted in each of φ̃2, . . . , φ̃m .
Pairs of the form (false,rule) are treated exactly as in resolution. The

pairs are used in order.

trivial: Sign.cterm -> thm

Makes the theorem ψ =⇒ ψ, used as the initial state in a backwards proof. The
proposition ψ may contain Vars.

A.5 Tactics and tacticals

Here are some of the more obscure tactics, tacticals, derived meta-rules, and other
items that are available.

A.5. Tactics and tacticals 135

A.5.1 Derived rules

The following derived rules are implemented using primitive rules.

forall intr frees: thm -> thm

Generalizes a meta-theorem over all Free variables not free in hypotheses.

forall elim vars: int -> thm -> thm

Replaces all outermost quantified variables by Vars of a given index.

zero var indexes: thm -> thm

Replaces all Vars by Vars having index 0, preserving distinctness by renaming when
necessary.

standard: thm -> thm

Puts a meta-theorem into standard form: no hypotheses, Free variables, or outer
quantifiers. All generality is expressed by Vars having index 0.

resolve: thm * int * thm list -> thm

Calling resolve (rlb,i,rules) tries each of the rules, in turn, resolving them
with premise i of rlb. Raises exception THM unless resolution produces exactly one
result. This function can be used to paste object-rules together, making simple
derived rules.

op RES: thm * thm -> thm

Calling (rule2 RES rule1) is equivalent to resolve(rule2,1,[rule1]); it re-
solves the conclusion of rule1 with premise 1 in rule2. Raises exception THM unless
there is exactly one unifier.

A.5.2 Tactics

The following tactics are mainly intended for use in proof procedures that process
lots of rules. However, res_inst_tac can be used even in single-step proofs to keep
control over unification.

biresolve tac: (bool*thm) list -> int -> tactic

This is analogous to resolve_tac but calls biresolution. It is thus suitable for a
mixture of introduction rules (which should be paired with false) and elimination
rules (which should be paired with true).

res inst tac: (string*string*typ)list -> thm -> int -> tactic

136 Appendix A. Internals and Obscurities

For selective instantiation of variables, res_inst_tac [(v,t,T)] rule i reads the
strings v and t, obtaining a variable ?v and term t of the given type T. The term
may refer to parameters of subgoal i , for the tactic modifies ?v and t to compensate
for the parameters, and lifts the rule over the assumptions of the subgoal. The
tactic replaces ?v by t in the rule and finally resolves it against the subgoal.

smash all ff tac: tactic

Eliminates all flex-flex constraints from the proof state by applying the trivial higher-
order unifier.

A.5.3 Filtering of object-rules

Higher-order resolution involving a long list of rules is slow. Filtering techniques
can shorten the list of rules given to resolution. A second use of filtering is to detect
whether resolving against a given subgoal would cause excessive branching. If too
many rules are applicable then another subgoal might be selected.

The module Stringtree implements a data structure for fast selection of rules.
A term is classified by its head string : the string of symbols obtained by following
the first argument in function calls until a Var is encountered. For instance, the
Constructive Type Theory judgement

rec(succ(?d),0,?b): N

has the head string ["Elem","rec","succ"] where the constant Elem represents
the elementhood judgement form a ∈ A.

Two head strings are compatible if they are equal or if one is a prefix of the other.
If two terms have incompatible head strings, then they are clearly not unifiable. A
theorem is classified by the head string of its conclusion, indicating which goals it
could resolve with. This method is fast, easy to implement, and powerful.

Head strings can only discriminate terms according to their first arguments.
Type Theory introduction rules have conclusions like 0:N and inl(?a):?A+?B. Be-
cause the type is the second argument, the head string does not discriminate by
types.

could unify: term*term->bool

This function quickly detects nonunifiable terms. It assumes all variables are dis-
tinct, reporting that ?a=?a may unify with 0=1.

filt resolve tac: thm list -> int -> int -> tactic

Calling filt_resolve_tac rules maxr i uses could_resolve to discover which
of the rules are applicable to subgoal i. If this number exceeds maxr then the tactic
fails (returning the null sequence). Otherwise it behaves like resolve_tac.

compat resolve tac: thm list -> int -> int -> tactic

A.5. Tactics and tacticals 137

Calling compat_resolve_tac rules maxr i builds a stringtree from the rules

to discover which of them are applicable to subgoal i. If this number exceeds
maxr then the tactic fails (returning the null sequence). Otherwise it behaves
like resolve_tac. (To avoid repeated construction of the same stringtree, apply
compat_resolve_tac to a list of rules and bind the result to an identifier.)

138 Appendix A. Internals and Obscurities

Bibliography

[1] N. G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser Theorem,
Indagationes Mathematicae 34 (1972), pages 381–392.

[2] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer, Principles of OBJ2, 12th
ACM Symposium on Principles of Programming Languages (1985), pages 52–66.

[3] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving (Harper & Row, 1986).

[4] G. P. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer
Science 1 (1975), pages 27–57.

[5] G. P. Huet, B. Lang, Proving and applying program transformations expressed with
second-order patterns, Acta Informatica 11 (1978), pages 31–55.

[6] P. Martin-Löf, Intuitionistic Type Theory (Bibliopolis, 1984).

[7] L. C. Paulson, Natural deduction as higher-order resolution, Journal of Logic
Programming 3 (1986), pages 237–258.

[8] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF
(Cambridge University Press, 1987).

[9] L. C. Paulson, The foundation of a generic theorem prover, Journal of Automated
Reasoning 5 (1989), 363–397.

[10] L. C. Paulson, Isabelle: The next 700 theorem provers, In: P. Odifreddi (editor),
Logic and Computer Science (Academic Press, 1990, in press), 361–385.

[11] F. J. Pelletier, Seventy-five problems for testing automatic theorem provers, Journal
of Automated Reasoning 2 (1986), pages 191–216.

[12] P. Suppes, Axiomatic Set Theory (Dover Publications, 1972).

[13] G. Takeuti, Proof Theory (2nd Edition) (North Holland, 1987).

[14] A. N. Whitehead and B. Russell, Principia Mathematica (Paperback edition to *56,
Cambridge University Press, 1962).

[15] Å. Wikström, Functional Programming Using Standard ML (Prentice-Hall, 1987).

139

Index

! 9, 105
$ 102
$$ 111
$$ prop 11, 105
% 9, 111
’ 108
(112
) 112
--> 101
---> 102, 121
/ 112
== 9, 105
==> 9, 105
=> 111
? 9, 109
[| 9, 105
|] 9, 105
_ 107
_constrain 111

Abs 102, 113
abs_list_tr 115
abs_list_tr’ 115
abstract_over 110, 122
aconv 122
add_term_frees 123
add_term_vars 123
Adummy 103, 107, 109, 113, 116
all 105
ALLGOALS 82, 83
all_tac 80, 83
Any 111
Any 105, 111
APPEND 81, 83
append 125
APPEND’ 83
Aprop 105
assume 132
assume_tac 17, 18

assumption 134

B. 114
back 15, 16, 88
BEST_FIRST 82, 83
biresolution 134
biresolve_tac 135
Bound 102, 114
BREADTH_FIRST 82, 83
by 13, 16

chop 15, 16
choplev 15, 16
compat_resolve_tac 136
concl_of 132
Const 102
constants 114
could_unify 136
cut_facts_tac 17, 18, 77

Delimfix 106, 108
DEPTH_FIRST 81, 83
DEPTH_SOLVE_1 82, 83
dest_equals 123
DETERM 81, 83

enrich_theory 104
eresolve_tac 17, 18, 20
EVERY 81, 83
extend 106
extend_theory 104
extension 106

filt_resolve_tac 136
FIRST 81, 83
flats 125
fold_tac 17, 18
forall_elim 132
forall_elim_vars 135
forall_intr 132
forall_intr_frees 135

140

Index 141

Free 102, 109, 113

get_axiom 104
getgoal 15, 16
getstate 15, 16
goal 13, 16, 64, 92
goals_limit 15
Ground 101
gstack 15

has_fewer_prems 82

identifier 109
id_list 111, 115
implies_elim 132
implies_intr 132
incr_boundvars 122
Infixl 106, 108
Infixr 106, 108
instantiate 132

list_equals 123
list_implies: 123
logical_types 106, 111
loose_bnos 121

maps 125
max_pri 107
maxidx_of_term 122
merge 106
merge_theories 104
Mixfix 106
mixfix 106
mk_equals 123

no_tac 80, 83
None 124
null 125

occs 123
op 108
option 124
ORELSE 79, 80, 83
ORELSE’ 83

parse_translation 106, 110
Poly 101
pr 15, 16

prems_of 132
prin 114
print_syntax 114
print_top_level 114
print_translation 106, 112
printer 126
prlev 15, 16
prop 105
prove_goal 93
prth 12
prths 12
pull 125
pure 106
pure_thy 104

read 114
reflexive 132
rep_thm 132
REPEAT 79, 81, 83
RES 135
res_inst_tac 135
resolution 134
resolve 135
resolve_tac 16, 18
result 13, 15, 16, 63
rewrite_goals_rule 133
rewrite_goals_tac 17, 18, 77
rewrite_rule 96, 133
rewrite_tac 17, 18
rule_of 124

search_bound 126
seq 125
seqof 125
setstate 15, 16
SId 109
single 125
smash_all_ff_tac 136
Some 124
SOMEGOAL 82, 83
standard 135
strip_assums 124
strip_equals 124
strip_horn 124
strip_imp_concl 123
strip_imp_prems 123

142 Index

strip_prems 124
subst_bounds 123
subst_term 123
SVar 109
symmetric 132

Tactic 80
tactic 8, 80
tapply 81
term 8, 102
term_match 123
THEN 79, 80, 83
THEN’ 83
theory 8, 12, 104
thm 8, 11, 131
topthm 15, 16
tpairs_of 132
trace_bound 127
trace_simp 127
transitive 133
trivial 134
TRY 81, 83
typ 8, 101
type_of 122

undo 13, 16
uresult 15, 16, 63

Var 102, 109, 113
variable 109
variant_abs 113

zero_var_indexes 135

