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Abstract

I first define computer architecture and architecture specification, explain how
the conflict between clarity and ambiguity makes writing specifications difficult,
and introduce and consider the advantages and problems of formal specifications.
I then survey all the literature on architecture specification, and introduce the
literature on technical writing and on formal specification in general. I close with
an annotated bibliography.
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Introduction

Computer Architectures — The term “computer architecture” is used with
two distinct meanings. In the broader sense, computer architecture is an aspect
of computer systems design: creating an architecture consists of dividing a
system into major components and defining the interfaces between those
components. An architecture is thus the overall structure of a system. In the
narrower sense, computer architecture is the design of the interface that is
unique to computers: the program interface. (The program interface is unique in
that anything with a program interface is a computer, and anything without a
program interface is not a computer.) In this paper, I will use the term in the
narrower sense: as the name of the interface between programs and an
interpreter of programs.

Interfaces — An architecture, then, is the definition of an interface.! It defines
a set of objects (each of which may have some state); defines a set of operations
for manipulating and observing the objects and their state; says what initial
states are allowed and what inputs and operations are allowed from each state;
and says what results and resulting states are allowed from each operation. The
definition must not contradict itself, and it must be complete. It needn’t be a
function—it may allow an operation to return any of several results, or even any
possible result—but for every possible operation it must say what results are
allowed. These conditions are met by any full definition of an interface. The
importance of completeness is twofold. First, a fully defined architecture can
stand on its own; the architect has made all the necessary decisions so other
people can implement or use the interface. Second, a fully defined interface is a
formal mathematical system.? Because a fully defined architecture is a formal
system, many of the tools of mathematics can be used to analyse, manipulate,
and express it.

1 Actually, an architecture is often the definition of two interfaces; one for software and one for
processors. Typically, the two are identical except for operations reserved for future use, which
software is prohibited from depending on, but to which processors are required to react in a specific
way (for example, by reporting an exception).

2For example, an architecture’s units of state can be considered an alphabet, the rules defining
the allowed initial states and inputs can be considered axioms, and the rules defining the allowed
results and outputs can be considered primitive rules of inference. Similar correspondences can be
made to other kinds of formal systems.




Interpretation of Implementations — Although it is common to say that
an implementation conforms to an architecture specification (or, more simply,
that it meets the architecture), this should actually be qualified by adding, with
respect to a particular interpretation. An interpretation says which aspects of the
implementation are to be taken as corresponding to the objects and operations of
the architecture. For example, the VAX-11/750 has a HALT button on the front
panel that is clearly intended to be interpreted as invoking the HALT operation
described by the VAX architecture. Because the intended interpretation is often
so clear, it is almost always ignored as being obvious. But the interpretation
must be made explicit for two reasons. First, a system’s correctness depends on
the correct interpretation of each lower layer in the terms of the layer above. It’s
quite possible for an interpretation to be wrong, even if the implementation of
each layer is correct, and then the system is broken. Second, it is only the need
for an explicit definition of an interpretation that generates a need for an explicit
definition of the architecture’s observables, yet unless they are defined, the
architecture is incomplete. In practice, architectures’ observables are often not
defined, and this causes problems.

Difficulties of Architecture Specification — Once an architecture has been
designed, it needs to be specified. Typically, the specification is carefully written
in a natural language, sometimes augmented with a complete or partial example
of an interpreter written in a programming language. This specification needs to
be both easy to understand and completely unambiguous. For the intended
audience (computer engineers and programmers) such descriptions are normally
easy to understand. Unfortunately, natural-language descriptions are notoriously
ambiguous, and the harder one tries to make them unambiguous, the harder to
understand they become. Conversely, formal language descriptions (including
programming-language descriptions), can be made very unambiguous, but are
difficult to understand and can have other problems, perhaps the best-known of
which is overspecification. The difficulty, then, is writing a specification that is
simultaneously easy to understand and sufficiently unambiguous.

Formal Systems — Because an architecture is a formal system, many
mathematical systems can be used to express it. The constraints defined by the
architecture can be directly expressed in the form of axioms, or alternatively, the
same constraints can be expressed in terms of a second formal system (a meta-
theory). Many different mathematical systems are being used as meta-theories
for describing architectures, including first-order and higher-order logic, set
theory, temporal logic, and many others. The systems differ in expressive power,
in expressive style, and in the power of the mathematical reasoning they support.
The arguments for low-powered formal systems are that the mathematics are
easy to understand; the proof tools are powerful (in general, the weaker the logic,
the more a proof tool can accomplish automatically); the logic forces the
specification to have desirable properties, like consistency or executability; or
that the specification can be automatically implemented. The arguments for
high-powered formal systems are that the mathematics are able to express
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whatever is needed now or in the future, and that it is possible to express
concepts more directly. The proper choice depends on each specification’s
intended use. Since the primary requirement of an architecture specification
must be that it correctly captures the architect’s intents, expressive power is very
important. The closer the mathematical expressions can come to the informal
requirements the architect has in mind, the better. This favors more powerful
mathematical systems. If a weaker system is necessary in order to support
automatic implementation, for example, a second specification, written in the
weaker system, can be written and formally proved to be equivalent to the
primary specification (or a restriction of it).

Specification Structure — Each formal system brings with it a style of
thinking and a style of structuring specifications. While it is possible to structure
architecture specifications in a variety of ways, most often a fruitful way of
thinking has already been incorporated into the informal concepts,
representations, and methods in use by people working in the field. The safest
structure for a formal specification is one that directly corresponds to these
informal concepts and representations already in use. (It’s for this reason that a
clean architecture is easier to specify than a messy one—a clean design has fewer
concepts to formalize.) What’s more, such a formal specification will be the
easiest to understand for people already trained in the field. Informal concepts
and representations may, however, be poorly thought out, and considerable effort
may be necessary to make them simpler and clearer before they can be
formalized. On the other hand, the resulting clarifications may be more useful
than the formal specification itself.

Notation — A formal specification must be expressed in some notation. It is
possible to express formal concepts in natural language, but there are several
difficulties with doing so, including verbosity and the inevitable confusions
between the formal and the usual meanings of the same terms. A good notation
can draw attention to important statements, relationships, and symmetries, can
make it easy to ignore irrelevant detail, and can make it easy to summarize
important distinctions compactly. When choosing a formal system it is
important to remember to distinguish between the system itself and the notation
used to express it. It’s much easier to change notations than systems.

Specification Maintenance — Complex specifications are difficult to write,
understand, and maintain. The discipline of software engineering includes
theories and methods for developing, understanding, and maintaining software
systems. Since programs are specifications, many of the theories and methods of
software engineering apply just as well to specifications in general, even
nonexecutable ones. So, for example, modularity, abstraction, and conceptual
integrity are as important to formal specifications as to programs, and many of
the techniques and tools that software engineers use will help formal specifiers as
well.




Specification Testing — Because an architect’s intentions are not directly
accessible as a formal system, there is no way of guaranteeing that a formal
specification is what its designer intends. That is, a specification can have bugs.
In the end, the comparison of a formal system to its designer’s intentions is
inherently informal, and the most obvious method is to have the architect review
specifications for correctness. Formal methods can’t replace such reviews, but
they can assist. For example, it may be possible to prove that a specification is
self-consistent, or that it has other expected properties, or that an example
implementation meets the architecture, or that the architecture can be used to
build a larger system. In general, formal proofs can increase confidence in a
formal specification in the same way that test executions increase confidence in a
program. A formal specification must be tested (by test proofs) before it is used,
and the results of the tests must be informally reviewed for correctness.?

Specifications as Documentation — In order to be easy to understand and
easy to use, a formal specification needs to be integrated with supporting
informal structures. For example, a good specification should include an
introduction; a description of the scope and purpose of the specification; a list of
related documents; tables, figures, and illustrations; example implementations
and example uses; and reference aids like a table of contents, glossary, and index.
Note that though a specification should be supported by this additional material,
the formal specification itself should either be expressed in a notation that is
distinct from natural language, or clearly distinguished in some way to separate
it from the commentary and reference aids. Readers must be able to
unambiguously determine whether a statement is specification or commentary,
because implementations that contradict the commentary may be allowed, but
implementations that contradict the specification are not allowed. If the
specification is expressed twice, once in an unambiguous formal notation and
once in an easy-to-understand natural language, one of the two must be
explicitly declared the actual specification, the other should be derived from it,
and great care should be taken to ensure that the two are equivalent and that
they stay equivalent as the specification evolves.

Summary In summary then, a computer architecture is the definition of a
programmable interface. In developing an architecture, the architect chooses a
set of objects and operations, decides what operations are allowed in what states,
and decides what is observable and what results are allowed. In recording the
architecture, the specifier chooses a formal mathematical system, a specification
style, and an expressive notation. The formal system must be sufficiently
powerful to directly express the architect’s intents. The specification style should
correspond to the informal style already in use, and should be structured so as to
be easy to understand and easy to maintain. The notation should emphasize the
important parts of the specification and minimize the irrelevant parts. The

3There is an exactly corresponding problem at the concrete level: ensuring that an imple-
mentation’s design (which is a formal object) is a valid interpretation of a physical machine (the
realization). This validity can be checked only informally.
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specification can be managed with the techniques of software engineering, and
must be tested and debugged. Finally, the formal expression of the specification
should be integrated with informal aids to make it easy to understand and use.




Survey

Architecture Specification — [Wright] lays out the problems of architecture
specification as documentation and describes IBM’s architecture documentation
process. He distinguishes between designing an architecture and documenting it,
lists and defines several requirements of an architecture specification (it must be
understandable, well written, exact, complete, and unified), and explains how

IBM’s documentation process is designed to achieve each of these requirements.

Iverson argues for using APL as an architecture-specification language, and
demonstrates it on IBM’s 7090 [Iverson], and IBM’s System/360 [Falkoff]
architectures. [Case] reviews the history and significance of the System/370
family, and includes a section describing IBM’s architecture control procedure.
In [Gifford], Case and Padegs describe the architecture’s scope, evolution, future,
description, maintenance, and control. In particular, they mention that IBM
does not use APL for architecture specification because they feel that formal
languages are not flexible enough to express all they need to say, because the
language can’t be understood and used by the intended audience without
training, and because of the difficulty of keeping formal and informal
specifications consistent with each other.

[Bhandarkar] briefly describes architecture management at Digital, including
problems of architecture specification.

Bell and Newell [Bell,Siewiorek] complain about the often poor quality of
architecture description, and justify and introduce ISP. ISP builds on prior work
at Carnegie-Mellon University on architecture specification [Haney,Darringer]. It
has achieved widespread use for a variety of purposes [Barbacci81], and is the
only architecture description language to have done so. [Barbacci79] discusses
architecture description and describes experience at it using ISP. [Parker]
describes problems that users have discovered with ISP, and lists requirements
for an ideal architecture-description language, including the need for a formal
semantics.

[Bowen87] argues for the use of a formal language for architecture specification,
and demonstrates the use of Z. The group at Oxford also specifies the Motorola
6800 architecture [Bowen86], parts of the Motorola 68000 architecture [Rose], the
inmos transputer architecture [Bowen89,Farr], and IEEE floating point [Barrett].




[Geser] specifies the intel 8085 architecture as an abstract data type using an
algebraic specification language.

There are many examples of architecture specifications written in programming
languages or computer-hardwaredescription languages, as in [Chen],
[Eichenseher], and those referred to in [Dasgupta82]. In almost all cases, the
architecture’s observables are not defined, and in most cases the specification
language is not given a formal semantics. [Dasgupta84,Dasgupta85] and [Damm]
are notable counterexamples in that their languages are proposed as architecture-
specification languages and are given Floyd-Hoare style axiomatic semantics.

There are literally thousands of architectures informally described in the
literature. Of them, [IBM] is probably the most carefully written. For a broader
range, [Siewiorek] provides descriptions of about 40 machines, and provides
references to a great many more. Although the descriptions are not particularly
recent, the sample is still representative since almost all more recent descriptions
use the same old styles. Two interesting recent specifications are [inmos], which
describes a machine that is formally specified by [Bowen89,Farr], and [Kershaw],
which describes a machine that is formally specified in [Cullyer| and is formally
specified and partially verified in [Cohn87,Cohn88].

Writing Well — In order for an architecture description to be clear, it must be
written well. There is an immense literature about writing well. [Mosenthal]
introduces recent research. [Strunk] is a classic short handbook of style.
[Chicago] and [Skillin] are classic comprehensive style guides. [Browning],
[Kuehne], and [Stephen] cover the issues and techniques of computer
documentation. [Carlson] provides an annotated bibliography on technical
writing, and [TechComm)] is a journal devoted to technical writing.

Formal Specification — [Melliar79] provides an excellent introduction to
formal specification and surveys the literature from before 1979, and [Cohen86b]
provides more recent coverage. See also [Harman] and [Parnas|. For arguments
in support of formal specifications, see [Dijkstra], [Guttag80], [Horning], [Liskov],
and [Meyer]. [Guttag80] describes the use of trial proofs in testing a formal
specification, and argues that the clarifications produced by formal specification
are more useful than the specification itself. [Berztiss] covers the history and
literature of abstract type specification. Much of the work on formal specification
has been directed toward formal verification or synthesis. For descriptions of
formal verifications of entire systems, see [Melliar82] and [Bevier87]. For a
discussion of the meaning and limits of verification, see [Cohn89]. For
explanation of the use of abstraction in specification, see [Melham)].

Mathematical Systems — Most formal specifications of computer
architectures have been developed as part of the verification or synthesis of
systems that include an architecture as an interface: processors, microcode, I/0
devices, assembler code, compilers, and operating systems. These specifications
are not generally of interest as architecture documentation, but are of interest in

8




demonstrating many of the mathematical systems that can be used to represent
architectures.

A state delta expresses what changes an operation makes to a system’s state.
Assuming that some (explicitly stated) preconditions are met, the new state is
defined in terms of the old state. [Marcus] introduces and justifies state deltas.
[Crocker] demonstrates the use of state deltas for verifying microcode. State
deltas model computation, and are used to describe the effects of the microcode;
the target architecture itself is specified in ISP.

[Gordon83] introduces LCF-LSM (logic of computable functions/logic of
sequential machines), and [Cullyer| demonstrates its use in specifying a processor.
In more recent work, LCF-LSM has been superseded by higher-order logic.

[Dittmann] describes the use of finite-state machines and formal grammars for
specifying architectures, and [Stoffel] for specifying I/O devices.

A specification with an operational logic is an example implementation. This has
the advantages that it proves that the specification can be satisfied, and it
provides a simulator for the architecture. With most operational specification
languages, however, it is not possible to distinguish between state variables or
events that are architecturally relevant from those that are artifacts of the
example, and as a result, operational specifications tend to overspecify. It is also
difficult to express constraints on parallelism, synchronization, and timing with
an example implementation. [Zave] describes operational specification languages,
[Bell] explains the need for a formal language, introduces an operational logic for
specifying architectures (ISP), and [Parker]| describes its limitations.
[Clutterbuck] and [Falkoff] give operational specifications of architectures.

[Floyd] and [Hoare69] introduce a method for specifying an axiomatic semantics
for programming languages. For each kind of program statement, a Floyd-Hoare
aziom of the form {P}C{Q} defines its effects. P is called the axiom’s
precondition, and Q is called its postcondition. The axiom states that if the
precondition is true, then after the statement C terminates, the postcondition is
true. If there is a defining axiom for each type of statement, then it is possible to
perform proofs to determine the effects of running a program. (Note that the
axiom says nothing if C does not terminate. A proof with such axioms produces
a statement of “partial correctness”—that is, correctness assuming that the
program terminates. The method must be extended to prove “total
correctness.”) Floyd-Hoare axioms are known to have inherent limitations for
specifying programming languages, as shown in [Clark]. [Damm)] and
[Dasgupta84] use Floyd-Hoare axioms in specifying architectures.

[Milner89] describes a formal system, which he calls a process calculus, for
specifying and reasoning about systems of communicating parts (the calculus
was previously called CCS [Milner80]). It has enough generality to describe
architectures, yet no unnecessary power. [Milne| describes another early system.
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An algebraic specifications defines a new sort of object (together with a set of
operations) by means of axioms about the results of the operations. The
operations defined for a sort are the only ones that can operate on objects of
that sort. If the axioms are all equations (as opposed to implications, or
inequalities, for example) then the specification is written in an equational logic,
and can be considered a set of rewrite rules. If the rewrite rules meet some other
conditions, any term can be automatically rewritten to a unique simplest form,
which means that the specification can be executed. [Guttag75], [Ehrig], and
[van Diepen] introduce algebraic specification of abstract data types, and
[Sannella84] defines observational and behavioral equivalence for algebraically
specified systems. Algebraic logics are mathematically elegant, but they can be
very hard to read and write, even for experts. [Geser| argues that they need not
be, and demonstrates with an architecture specification. [Frankel] demonstrates
specification of a much simpler processor.

Functional (or applicative) programming languages express programs in which
the output of each procedure is a simple function of its inputs—that is, side
effects and internal state are forbidden. They are equivalent to equational
specifications that can be executed. [Backus] argues for the use of functional
languages for software, and [Streitz] argues for their use for architecture
specification. [Sekar] demonstrates their use for architecture specification. [Hunt]
finds a functional style makes combining (or dividing) specifications difficult.

[Reisig] introduces Petri nets, and [Prevost], [Li], and [Chiu] apply them to
architecture specification. [Cohen86a] argues that they have several serious
problems.

[Bjgrner] introduces VDM, (the Vienna Definition Method), [Jones] and
[Rumbaugh] use it to specify data-flow machines, and [Wichmann] uses it to
specify floating point. VDM is a rigorous development method, not a formal
system for representing specifications.

[Boyer79] defines a computational logic that has become known as Boyer-Moore
logic. It was originally first-order predicate logic without quantifiers, and
[Boyer88] adds quantifiers. [Hunt] uses the original logic to specify a processor,
[Moore] specifies an assembler language, and [Bevier89] shows how to specify a
parameterized architecture. Though the proof tool is powerful, the logic itself is
limited, and this causes difficulties in specifying architectures, as described by

[Hunt].

Temporal logics are predicate logics extended with the operators “hereafter” and
“eventually” (and sometimes others), and are used to describe constraints on
future states in terms of current states. The same constraints can be expressed in
predicate logics without the temporal operators, by making states functions of
time, but the temporal logics are more compact and direct. Interval-temporal
logics are temporal logics in which predicates are bounded in time at both ends.
[Schwartz82] introduces temporal logics, and [Schwartz83] introduces interval
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logics. [Chiu] and [Li] use Petri nets and interval logic to specify time constraints
on a processor. [Moszkowski] demonstrates a variety of temporal logic
specifications. [Cohen86a] compares a variety of logics (for the purpose of
specifying communication protocols), and finds temporal and interval logics best.

[Sufrin] introduces Z, which is a notation for set theory. [Bowen86,Bowen87] uses
it to specify the Motorola 6800, [Bowen89,Farr| specify the inmos transputer,
[Rose] specifies part of the Motorola 68000, and [Barrett] specifies floating point.

While first-order logic includes constants, and variables that represent constants,
higher-order logic (also called type theory) includes variables that represent
functions of constants, and functions of functions. The quantifier A (lambda) is
used to produce new functions, as in Lisp. [Hanna] argues for and demonstrates
the use of higher-order logic in specification, and [Gordon88] introduces a
mechanized version called HOL. [Cohn87,Cohn88] and [Joyce| apply it to
processor verification.

Category theory is concerned with the relationships between different formal
systems. An institution is much like what has been referred to here as a formal
system; it is a signature (that is, some types that can be talked about), some
sentences in that signature (some axioms), and a relation saying when another
sentence in the signature satisfies the axioms (something like rules of inference).
By mapping from one institution to another, category theory allows a
specification in one formal system to be turned into a specification in another
formal system. [ADJ] use category theory in specifying types, and [Goguen] and
[Sannella85] argue that specifications should be considered independently of an
underlying formal system, and show how this can be done with category theory,
so that the formal systems used for specification become interchangable and the
choice of formal system less important.

Many of these formal mathematical systems are objects of study themselves.
Such study is particularly helpful in finding theoretical limits of expressiveness,
in clarifying the restrictions necessary for soundness, and in identifying
potentially useful extensions and generalizations. [Hatcher] and [Church] explain
the logical foundations of mathematics, including completeness, consistency
soundness, first-order logic, type theory (higher-order logics), set theories,
intuitionism, and category theory. [Loomes] explains the mathematics of formal
methods in computer science.
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Annotated Bibliography

An Aside About Bibliography — After nearly completing this bibliography,
I found three works explaining how annotated bibliography should be done.
[Lambert] explains how to do a literature search in a scientific or technical field,
and [Harner] and [Colaianne] explain how to write an annotated bibliography.
They describe many of the difficulties, and suggest methods for avoiding them.
In compiling this work, I had difficulties in two additional areas that they do not
address.

First, what sorts of works should be cited? By the time I developed an
acceptable criterion, I had collected three times as much literature as I
eventually cited, but the criterion is so general that it could have been suggested
by one of the books—the bibliography should include two kinds of works:
everything that explicitly addresses the stated topic (in this case, architecture
specification), and the best introductions to related fields. In practice, this
bibliography does not include some works that explicitly address architecture
description, because they merely repeat what is written in works that are cited.
Further, it cites almost none of the many papers describing implementation
specifications written in hardware-description languages, because there are a
great many, and those I have examined are generally demonstrating a notation or
tool rather than addressing issues of specification.

Second, what should the annotations say about the cited works? I now believe
that each annotation should do three things. First, it should state the cited
work’s major points. If there are too many, as is common in textbooks and
tutorials, then it should define the work’s scope. Second, it should define the
cited work’s intended audience. That is, it should say what a reader must
already know in order to understand the cited work. Third, it may note that the
cited work is particularly well- or poorly written. The bibliographer should also
say how the cited work is important in the context of the bibliography’s topic,
but I prefer to put that information in an associated survey, as is done here,
rather than in the annotations. (I didn’t write an explicit statement of what an
annotation should say until after I had finished this bibliography, so the
annotations herein are not all complete.)
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implementation of abstract data types. ,

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. IBM research report RC 6487, IBM,
1976. Also in Raymond T. Yeh, editor, Current Trends in Programming Methodology,
Volume 4: Data Structuring, pages 80-149, Prentice-Hall, 1978.

ISD: An instruction set descriptor for HDLs.
E. Ardizzone and F. Sorbello, In AICA 86 Annual Conference Proceedings,

pages 303-306. Associazione Italiana per I'Informatica ed il Colcolo Automatico,
North-Holland, 1986.

Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs.
J. Backus. Communications of the ACM, 21(8):613-641, ACM, August 1978,

Specification, evaluation, and validation of computer architectures using
instruction set processor descriptions.

M. R. Barbacci, W. B. Dietz, and L. J. Szewerenko. In Proceedings of the 4th
International Symposium on Computer Hardware Description Languages, pages 14-20,
IEEE, 1979.

Describes the ISPS system for simulating computer architectures; explains some
problems with specification of architectures (including incompleteness, inconsistency, and
several kinds of overspecification); notes the desirability of being able to test the
correctness of the specification; describes the comparision of formally described
architectures using several metrics; and explains how formal specifications can be useful
in verifying processor implementations.

Instruction set processor specification (ISPS): the notation and its
applications.
M. Barbacci. IEEE Transactions on Computers, 30(1):24-40, IEEE, January 1981.

Describes ISPS and its uses. The language is demonstrated by using it to specify the
PDP-8 architecture and some pieces of implementation structure. ISPS descriptions have
been used to document computer architectures; for quantitatively comparing computer
architectures; as model implementations; for program verification by means of symbolic
execution; for fault-insertion testing of diagnostics and fault-tolerant software; and as
input to programs that generate architecture tests, implementation designs, assemblers,
and compilers.

ISPS is an example of a very successful computer-hardware description language (CHDL,
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Barrett
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or HDL). The author attributes some of its wide applicability to a provision for
annotating an ISPS description with information (in the form of attribute-value pairs)
that is actually to be used by other tools.

Formal Methods Applied to a Floating Point Number System.
Geoff Barrett. Technical monograph PRG-58, Oxford, January 1987.

Formally specifies IEEE Standard 754, for binary floating-point, in Z. Specifies the
representation of floating-point numbers, their relationship to real numbers, conversions
between various representations, and describes how arithmetic operations can be
implemented correctly. This is part of a larger effort-to verify the microcode of the
floating-point unit of the inmos T800 transputer.

The specifications and theorems described are a start toward a useful theory of floating-
point numbers. A more complete theory would contain most of the theorems needed for
specification and verification of a wide range of computer implementations of floating-
point arithmetic.

The PMS and ISP descriptive systems for computer structures.
C. Gordon Bell and Allen Newell. In Proceedings of the Spring Joint Computer
Conference, 1970. AFIPS Press, 1970.

In gathering material for the 1971 edition of [Siewiorek], Bell and Newell found that the
original literature used very diverse, and often very poor, descriptive techniques, so they
developed their own notations for rewriting the descriptions. The resulting languages are
ISP and PMS. ISP is intended to be sufficient to describe the complete interface between
computer and program, but is inadequate for describing the kinds of constraints on
memory reference interference and ordering that can appear in the architecture of
multiprocessors.

Specification and implementation of abstract data types.
Alfs T. Berztiss and Satish Thatte. In Advances in Computers, 22:296-353. Academic
Press, 1983.

Includes sections on the motivation for, nature of, and history of data abstraction;
operational and algebraic specification; consistency and completeness; implementation
and verification; and bibliography. Asserts that the benefit of data abstraction is that it
collects all operations that read or modify a data structure into a textually and
conceptually simple object, so the structure and what happens to it can be understood
and proven. If other operations can read or write the structure, its effect can’t be
understood.

Toward verified execution environments.

William R. Bevier, Warren A. Hunt, Jr., and William D. Young. In Proceedings of the
1987 IEEE Symposium on Security and Privacy, pages 106-115. IEEE, 1987. Also
technical report 5, CLinc, February 1987.

Explains how hierarchical verification can make a system more worthy of trust, and
describes the verification of several layers of a system, including processor, compiler, and
small multitasking operating system.
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A method for the formal specification of a class of instruction set
architectures.
William R. Bevier. Unpublished technical report, CLinc, 1989.

Uses a new feature of the Boyer-Moore logic, called functional instantiation, to express
axioms about an architecture. The example axioms first assert the existence of the
architectural state variables; then constrain their values (which may depend on the
previous state); and finally constrain the effects of executing an instruction on an
allowed state. In order to guarantee that the logic stays consistent, the axiom-definition
procedure requires (as one of its arguments) a witness function to act as an existence
proof, showing that the axiom can be satisfied.

The axioms defining an architecture need not totally define it, so such things as the word
length and the memory size can be left unconstrained. The specification can thus allow a
range of particular architectures, differing in those ways.

Architecture management for ensuring software compatability in the VAX
family of computers.
Dileep Bhandarkar. IEEE Computer, 15(2):87-93, IEEE, February 1982.

Describes the need for managing an architecture and how the VAX architecture [Leonard]
is managed. Points out that the specification must be precise; that a specification of a
complex system will have defects; that an architecture and its specification change over
time; that a specification should specify results, not implementations; that an
architecture need not be complete (that is, it may leave some visible aspects of behavior
undefined); and that implementations must be verified. Briefly describes the VAX
architecture-management process and identifies some attributes essential to its success.

The Vienna Development Method.
Dines Bjgrner and Cliff Jones. Lecture Notes in Computer Science, 61, Springer-Verlag,
1978,

The Formal Specification of a Microprocessor Instruction Set.
Jonathan Bowen. Technical monograph PRG-60, Oxford, January 1986.

Specifies the instruction set of the Motorola 6800 microprocessor, including interrupts
and memory, using the formal language Z. The specification structure and the language
are intended to make the specifications easy to read, and they do much better than most
formal languages. For example, the specification ‘schemas,’ the descriptions of
addressing modes, the instruction formats, and the instruction sub-types are not strictly
necessary, but correspond to the way engineers think about architectures, and greatly
simplify the specification.

As presented, the specification style has three minor deficiencies. First, memory is
modelled as a function from addresses to values, which doesn’t extend well to
multiprocessors or systems with direct-memory-access (DMA) I/O devices. Second, the
specification does not seem to distinguish architecturally visible state and events from
state and events that are merely expositorally useful. The need for the distinction is easy
to overlook because the specification uses only architecturally visible state, and does not
formally define the sense in which an implementation can satisfy the specification.
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Third, Z is based on set theory, a formalism unfamiliar to many readers of architecture
specifications. It’s not clear that there’s a better alternative, however.

Even with its deficiencies, this is the by far the most readable formal architecture
specification, and the most formal readable architecture specification I've seen.

Formal specification and documentation of microprocessor instruction sets.
Jonathan P. Bowen. In H. Schumny and J. Mglggard, editors, Microcomputers: Usage,
Methods, and Structures, Microprocessors and Microprogramming, Proceedings of the
13th Euromicro Symposium, 21:223-230, North-Holland, 1987.

Argues that computer-architecture specifications can and should be written using a
readable formal notation. Notes that while informal architecture specifications are easy
to read, they are often incomplete or ambiguous, and while formal specifications allow
formal reasoning with the specification, they are hard to read. Presents the notation
used in [Bowen86] as a formalism that is readable enough to be used as primary
documentation.

7 Specification of the ProCoS Level 0 Instruction Set.
Jonathan Bowen and Paritosh Pandya. To appear in the ProCoS Workshop, Oxford,
November, 1989.

Specifies a subset of the instruction set of the inmos transputer. Defines computer
arithmetic, processor state, instructions, power-up and bootstrapping, and ends with a
glossary of Z notation. The specification has been type-checked but not verified. It is
derived from the more complete [Farr].

The specification assumes familiarity with Z, and is presumably intended to support
formal reasoning about a compiler or code written in assembler for the utransputer, and
is not intended as primary documentation of the processor.

A Computational Logic.
Robert S. Boyer and J Strother Moore. ACM Monograph Series, Academic Press, 1979,
Also technical report 55, UT Austin, 1978.

Defines the Boyer-Moore logic and is the user’s manual for the theorem prover. Boyer-
Moore logic is first-order predicate calculus without quantifiers.

The addition of bounded quantification and partial functions to a
computational logic and its theorem prover.

Robert S. Boyer and J Strother Moore, Journal of Automated Reasoning, 4(2):117-172,
Kluwer, June 1988.

Guide to Effective Software Technical Writing.
Christine Browning. Prentice-Hall, 1984,

Annotated Bibliography on Technical Writing, Editing, Graphics, and

Publishing.
Helen V. Carlson et al. STC, 1983.
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Architecture of the IBM System/370.
R. P. Case and A. Padegs. Communications of the ACM, 21(1):73-96, ACM, January
1978.

Reviews the history and significance of the System/370 family. Includes a section
describing IBM’s architecture control procedure, which notes the need for a single, clear,
and unambiguous description of the architecture.

Modeling of the 6809 through the hardware description languages.
W. J. Chen and G. N. Reddy. In IEEFE Pacific Rim Conference on Communications,
Computers and Signal Processing, pages 60-68, IEEE, 1987.

The Chicago Manual of Style.
Chicago, 1982.

If you're intending to write a book to be published, you need this book or [Skillin]. Can
be read as an introduction to bookmaking, but is primarily a reference work for author
and editor. Describes the parts of a book, manuscript preparation, editing, production,
and printing. Covers issues of style in extensive detail; from spelling and displaying
foreign languages to how to caption illustrations and how to format bibliographies.

Interval Logic and Modified Labelled Net for System Specification and
Verification.
P. P. K. Chiu. Master’s thesis, Hong Kong, 1985.

Specifies and verifies a microcomputer implementation using interval logic and Petri
nets. See also [Li] A Higher Order Language for Describing Microprogrammed
Computers.

Introduction to Mathematical Logic.
Alonzo Church. Princeton, 1970.

Introduces formal logic, propositional calculus, higher-order logics, set theory,
intuitionism, and more.

The characterization problem for Hoare logics.
E. M. Clark, Jr. In C. A. R. Hoare and J. C. Shepherdson, editors, Mathematical Logic
and Programming Languages, Prentice-Hall, 1985,

The verification of low level code.
D. L. Clutterbuck and B. A. Carré. Software Engineering Journal, 3(3):97-111, IEE,
May 1988.

Demonstrates the automatic translation of (a restricted subset of) 8080 assembler code
into a program-modelling language, and the proof of verification conditions for programs
written in assembler. The model of the 8080 is expressed in FDL, which has an
operational style, and is evidently given a Floyd-Hoare style semantics, but the
semantics are not described in the paper.
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The Importance of Time in the Specification of OSI Protocols: An Overview
and Brief Survey of the Formalisms.

B. Cohen, D. H. Pitt, and J. C. P. Woodcock. Technical report DITC 78 /86, National
Physical Laboratory, 1986.

Discusses the problems of specifying time-related behavior. Gives examples of
time-related behavior in network protocols, summarizes and critiques the literature
describing several techniques for specifying time-related behavior, and discusses
difficulties of systems without global time, and systems in which specified global times
can be implemented in terms of local times. When considering particular logics, notes
that timing can be specified by relative orderings of events and that the technique can be
used with any state-based formalism, but notes that there are open questions about how
implementations can be verified; argues that real-time attribute grammars are more
appropriate to fast prototyping and testing than to performance analysis or formal
verification; argues that concurrent state deltas are inappropriate for distributed
systems; argues that timed Petri nets (and a restricted class called coupled time graphs)
have serious problems; and recommends that temporal or interval logics be used for
specifying OSI protocols.

Specification of Complex Systems.
B. Cohen, W. T. Harwood, and M. I. Jackson. Addison-Wesley, 1986.

A Proof of Correctness of the Viper Microprocessor: The First Level.
Technical report 104, Cambridge, January 1987.

Describes the proof of equivalence of the top two levels of formal description of the Viper
microprocessor, using higher-order logic. The top-level specification is the functional
specification of the instructions, and the second-level specification is the major-state
model.

A proof of correctness of the Viper block model: the second level.

Avra Cohn. In G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem Proving, pages 1-91, Springer-Verlag,
1989. Also technical report 134, Cambridge, May 1988.

Describes the partially completed specification and proof of the microcode-level model of
the Viper microprocessor.

The top-level specification of Viper ignores the effects of resetting the chip, memory
time-out, single-step, externally forced errors, and more. Cohn suggests exploring better
(by which I assume she means more complete) top-level specification, and clarifies the
limited assurances that formal verification gives.

The notion of proof in hardware verification.
A. J. Cohn. Journal of Automated Reasoning, 5:127-139, Kluwer, May 1989.

Discusses what it means to say that a system is verified. Makes five major points:
neither an intended behavior nor a physical chip (a realization) can be proven, only
models of them can be proven, and the models may not adequately represent either
intentions or realization; in practice, the verified design and the manufactured design
may be different; the verification is limited to the levels of detail that the specifications
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cover, so a system is only verified between particular levels of detail; a verification makes
assumptions about initial states and the normalcy of environmental conditions, and is
valid only under those circumstances; and the verified design is typically only part of a
system, and correct functioning of the system depends on much more, from the system
operators to the mechanical parts. Does not discuss the possibility that the formal proof
itself may be invalid. Avoiding this problem is a reason for using well-understood
mathematical systems rather than ad hoc logics, and for mechanical proof-checking.

The aims and methods of annotated bibliography.
A. M. Colaianne. Scholarly Publishing, 11(4):321-331, Toronto, July 1980.

Intended for prospective authors of scholarly bibliographies in the humanities. Opens by
defending the art of bibliography from criticisms that it is essentially non-creative and
mechanical, then provides advice about writing one. Assumes that the author has
determined exactly what field is to be covered. Says to choose a style (checklist, digest,
or analysis); decide which media to include (theses, books, articles, etc.); emphasizes the
need for care in citation; warns against grouping citations arbitrarily or too finely;
suggests that annotation avoid value judgements, capture the arguments of the cited
work, and use a consistent and easy-to-read style; and suggests that the bibliography
include a section describing the criteria for choosing works to cite, and a section of
insights the author gained while reviewing the cited works as a group.

Reverification of a microprocessor.
Stephen D, Crocker, Eve Cohen, Sue Landauer, and Hilarie Orman. In Proceedings of
the 1988 IEEE Symposium on Security and Privacy, pages 166-176, IEEE, April 1988.

Describes the verification of the FM8501 using SDVS, and compares the use of state
deltas (in SDVS) to the use of first-order predicate logic (in Hunt’s verification using the
Boyer-Moore theorem prover). The authors mention that they’ve also specified and
verified the microcode of the BBN C/30, but that the results haven’t been published.

Application of formal methods to the VIPER microprocessor.
W. J. Cullyer and G. H. Pygott. In IEE Proceedings, Part E, Computers and Digital
Techniques, 134(3):133-141, IEE, May 1987,

Describes the Viper microprocessor and the specification methods used to verify the
correctness of its top-level design. The top-level specification (in LCF-LSM) appears as
an appendix.

A microprogramming logic.
Werner Damm. IEEE Transactions on Software Engineering, 14(5):559-574, IEEE, May
1988,

Describes a method for verifying microcode written in a high-level, architecture-
dependent programming language (Sj). The target and host architectures are each
specified in AADL [Dasgupta84], and a Floyd-Hoare semantics for S} is generated from
the host AADL specification, and can be used to prove properties of the program.
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The Description, Simulation, and Automatic Implementation of Digital
Computer Processors,

J. A. Darringer. PhD thesis, School of Electrical Engineering and Systems and
Communications Sciences, CMU, May 1969.

Computer design and description languages.
Subrata Dasgupta. In M. C. Yovits, editor, Advances in Computers, Academic Press,
1982.

Describes the need for computer hardware description languages, describes some of their

differentiating features (in particular abstraction level and operational versus functional
style), and then describes several languages (ISPS, SLIDE, ADL, SA, and CONLAN),

The Design and Description of Computer Architectures.
Subrata Dasgupta. Wiley, 1984.

Defines computer architecture; distinguishes between informal and formal design
processes (formal processes use formal descriptions of the object being designed);
considers attributes of a good architecture description language; and develops a language
(AADL) and tools for describing architectures and compiling descriptions into microcode.

AADL is an outgrowth of computer-hardware description languages, and, like most of
them, looks and acts like a programming language, but is unusual in that it is given a
formal (Floyd-Hoare) semantics. The tools allow an architecture description written in
his language to be compiled into microcode for a lower-level architecture for which there
is also an axiomatic specification. Dasgupta considers several attributes of description
languages: level of abstraction; operational vs. functional; procedural vs. nonprocedural;
the ability to specify behaviors vs. structures; and the influences of programming
languages. By the level of abstraction, he means whether the language includes
operators that directly model hardware components. He considers operational and
functional models, but ignores all other kinds of semantics. The distinction between
behaviors or structures is confused, failing to distinguish between an interface, which is
necessarily a behavioral specification, and an implementation (a mapping between two
interfaces) which is necessarily a structural specification. The confusion results from the
common (and perfectly valid) practice of specifying behavior by abstracting from an
implementation.

On the axiomatic specification of computer architectures.
Subrata Dasgupta and J. Heinanen. In Proceedings of the 7th International Conference
on Hardware Description Languages, IEEE, 1985,

Architecture language (computer system description).
G. David. Tanulmanyok Magyar Tudomanyos Akademia Szamitastechnik es
Automatizalosi Kutato Intezete, 100:341-349, 1979. Hungary.

Implementation of Modular Algebraic Specifications.
N. W. P. van Diepen. Report CS-R8801, CMCS, 1989.

Briefly but clearly introduces algebraic specification, modular algebraic specification, and
Floyd-Hoare axioms; introduces observation functions to abstract from an algebraic
specification; and argues that it’s important to use observation functions to abstract
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from a specification so that implementations can be optimized, and that this advantage
offsets the loss of initiality (a formal property that is considered important in algebraic
specification).

A Discipline of Programming.
E. W. Dijkstra. Prentice-Hall, 1976.

Finite-state machines and formal grammars as means of hardware
description for computer architectures.
J. Dittmann. Siemens Forsch Entwicklungsber, 9(5):294-297, Springer-Verlag, 1980.

Uses finite-state machines and formal grammars to specify transitions between five
architectural states (powered off, stopped, user mode, executive mode, and error).

Fundamentals of Algebraic Specification I: Equations and Initial Semantics.
H. Ehrig and B, Mahr. EATCS (European Association for Theoretical Computer
Science) Monograph, 6, Springer-Verlag, 1985.

CADL — A formal description language for parallel computer architectures.
Ingo Eichenseher, Theo Ungerer, and Eberhard Zehendner. In Microprocessing and
Microprogramming, The Euromicro Journal, 24(1-5):363-370, North-Holland, August
1988.

Introduces CADL, a language for specifying computer architectures. By architecture, the
authors mean the overall structure of a design, so this is a computer-hardware
description language intended for the top levels of a processor design. It is not given a
formal semantics.

A Formal Description of System/360.
A. Falkoff, K. Iverson, and E. Sussenguth. IBM Systems Journal, 3(3):198-262, IBM,
1964.

Describes the architecture of the System/360 in APL, including all processor state,

console, memory, interrupts, and I/0. Console and I/O operations can be taken to be the
architecture’s observation functions. Thus, although it is an operational specification (an
implementation), the observation functions can be used to abstract from it to produce an
interface specification, Unfortunately, the specification is extradrdinarily difficult to read.

IBM does not use APL for architecture specifications because they feel that the language
is not flexible enough to express all they needed to say, and because the language can’t
be understood and used by the intended audience without training. See [Gifford].

A Formal Specification of the Transputer Instruction Set.
J. R. Farr, Master’s thesis, Oxford, 1987.

Assigning meanings to programs.

R. W. Floyd. In J. T. Schwartz, editor, Mathematical Aspects of Computer Science,
Proceedings of Symposia in Applied Mathematics 19, pages 19-32, American
Mathematical Society, 1967.
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Beyond register transfer: an algebraic approach for architectural description.
R. E. Frankel and S. W. Smoliar. In Proceedings of the 4th International Symposium on
Computer Hardware Description Languages, pages 1-5, IEEE, 1979,

Argues that architecture descriptions should not be based on register-transfer
descriptions, and that abstract data types provide a better style. Asserts that
register-transfer operations have shortcomings because they are equivalent to assignment
statements (but doesn’t make the shortcomings of assignment statements clear), and
then demonstrates the specification of a simple processor as an abstract data type.

A Specification of the intel 8085 Microprocessor: A Case Study.

Alfons Geser. In M. Wirsing and J. A. Bergstra, editors, Algebraic Methods: Theory,
Tools and Applications, Lecture Notes in Computer Science, 394:347-402,
Springer-Verlag, 1989. This is a revised version of technical report MIP-8608, Passau,
May 1986.

Argues that it is possible to write large algebraic specifications in such a way that they
are understandable and maintainable, and demonstrates by specifying the interface to
the intel 8085 processor. Assumes familiarity with algebraic specification and rewriting,
but introduces the specification languages used (RAP and COLD-K). Defines bits, bytes,
and words; processor state (several registers); three abstract buses through which the
processor communicates with its environment; operations on those buses; the effects of
several example instructions; and the effects of the instruction-execution cycle; and tests
the specification by executing it on test cases and simple proofs. The full specification is
included as an appendix.

Case study: IBM’s System/360-370 architecture.
David Gifford and Alfred Spector. Communications of the ACM, 30(4):292-307, ACM,
April 1987,

The authors interview Andris Padegs and Richard Case of IBM about the architecture’s
scope, evolution, future, description, maintenance, and control. Mentions that IBM does
not use the APL description as the architecture specification because they feel that the
language is not flexible enough to express all they need to say, and because the language
can’t be understood and used by the intended audience without training,.

Introducing institutions.
J. A. Goguen and R. M. Burstall. In E. Clarke and D. Kozen, editors, Logics of
Programs, Lecture Notes in Computer Science, 164:221-256, Springer-Verlag, 1984,

LCF-LSM, A System for Specifying and Verifying Hardware.
M. J. C. Gordon. Technical report 41, Cambridge, September 1983.

HOL: A Proof Generating System for Higher-Order Logic.
Mike Gordon. Kluwer, 1988. Also technical report 103, Cambridge, January 1987.

Describes the HOL system and logic. The HOL system is described much more
thoroughly in its documentation, which is available through Mike Gordon at Cambridge.
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Programming Methodology — A Collection of Articles by Members of IFIP
WG2.3.
D. Gries, editor. Springer-Verlag, 1978.

The Specification and Application to Programming of Abstract Data Types.
J. V. Guttag. PhD thesis, report CSRG-59, Toronto, 1975.

Formal specification as a design tool.

J. V. Guttag and J. J. Horning. In Proceedings of the Principles of Programming
Languages Conference, pages 251-261, ACM, 1980. Also technical report CSL-80-1,
Xerox PARC, January 1980.

Argues that the major benefit of formal specification is clearer understanding of the
specified design; proposes that the abstract objects and operations be specified
separately from the routines that use them or implement them; and argues for and
demonstrates the testing of formal specification by using proof to check the answers to
informal questions about the intended design.

Using a Computer to Design Computer Instruction Sets.
Frederick M. Haney. PhD thesis, Department of Computer Science, CMU, May, 1968.

Specification and verification of systems using higher-order predicate logic.
F. K. Hanna and N. Daeche. In IEFE Proceedings, Part E, Computers and Digital
Techniques, 133(5):242-254, IEE, September 1986.

An exceptionally lucid paper, introducing much of the framework of the field, including
the meaning and justification of formalisms; how higher-order logic can be used to
specify system behavior and system structure; and how specifications can be used for
verification.

Argues that higher-order logic is a good formalism because it allows partial specifications
of behavior; allows specification of behavior, structure, low-level timing, and hierarchies
of behavior, structure, and timing; uses the well-researched deductive calculus of
predicate logic, so the pitfalls of logical paradoxes are well mapped and avoidable; is
sufficiently powerful to concisely describe very complex notions; and allows specifications
and deductions to be structured into theories. Distinguishes between a formal theory
and an interpretation; gives examples of higher-order logic axioms, including a partial
axiomitization of time and of analog waveforms; illustrates the specification of digital
behaviors and structures; describes mechanical theorem proving and verification, and
explains how and why mechanical theorem proving is used with formal specifications.

The Formal Specification of a Digital Correlator I: User Specification Process.
N. A. Harman and J. V. Tucker. Report 9.89, Leeds, 1989.

Develops a model of the process of developing specifications; develops a mathematical
model for specifying functions that tranform infinite signal streams; then takes a digital
correlator through the modelled process of design, producing ten specifications by
stepwise refinement. Introduces the literature of digital systems design, design theory,
verification and synthesis, and complexity theory.
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Horning

Among other things, the authors argue that the result of design should not be just an
implementation, but must also include a formal specification, a description of how the
formal specification models the informal specification, and tests and proofs to show that
the implementation meets the formal specification (in function and performance) and the
formal specification meets the informal one.

On Compiling an Annotated Bibliography.
James L. Harner. MLA, 1985.

A very helpful guide, especially to the first-time compiler of a bibliography. Covers the
purpose, organization, and process of compiling any bibliography, but especially an
annotated one.

The Logical Foundations of Mathematics.
William S. Hatcher., Pergamon, 1982,

Defines mathematics and formal systems, explains how they depend on logical argument,
how that dependence has led to study of the logic used in mathematical argument, and
how mathematical systems have been redefined in terms of logic. Explains several of the
redefinitions, the history of their development, and the current state of understanding.

This book clearly explains why there is a choice of formal systems, and why the choice
matters. It defines such terms as formal language, formal system, deductive calculus,
model, and so on.

An axiomatic basis for computer programming.
C. A. R. Hoare. Communications of the ACM, 12(10):576-583, ACM, October 1969.

Proposes making axioms and rules of inference explicit for programming-language
constructs, to support program proof and language definition, and demonstrates it on
tiny examples.

Communicating Sequential Processes.
C. A. R. Hoare. Prentice-Hall, 1985.

Some notes on putting formal specifications to productive use.

J. J. Horning. In M. J. Elphick, editor, Formal Specification, Proceedings of the Joint
IBM/University of Newcastle upon Tyne Seminar, pages 117-132, Newcastle, 1983. Also
John Guttag, Jim Horning, and Jeannette Wing, technical report CSL-82-3, Xerox
PARC, June 1982,

Gleanings from the authors’ experiences in writing formal specifications: the clarity
produced in writing a formal specification is often more valuable than the specification
itself; specifications should be written as the decisions they record are made, but even
after-the-fact specification can be useful; specifications should be written by the
designers; and specifiers may want to use different languages to specify different kinds of
constraints in a single specification. Lists some software tools the authors want (syntax
and type checker, theorem prover, library of specifications, editor, and viewer).
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IBM

inmos

Iverson

Jones

Joyce

Kershaw

Kuehne

FM8501: A Verified Microprocessor.
Warren Hunt, Jr. Technical report 47, UT Austin, December 1985.

Specifies a microprocessor (called the FM8501) at both the gate level and the
instruction-behavior level, then proves that the gates implement the instruction
behavior. Uses Boyer-Moore logic and the Boyer-Moore theorem prover. The behavioral
specification is operational in style.

Hunt found the lack of quantification in the logic to be a problem when representing
nondeterminism (which showed up in his specification in the clocking of an external
memory). He also found that the functional style made composition of separate
specifications difficult. It will, for example, make it difficult to specify systems in which
several processors or I/O devices access a shared memory.

IBM System/370 Principles of Operation.
International Business Machines. Order number GA22-7000, IBM.

The Transputer Instruction Set: A compiler writer’s guide.
inmos Limited. Prentice-Hall, 1988.

A Programming Language.
K. E. Iverson. Wiley, 1962.

Describes the APL notation and illustrates its use in a variety of applications. Chapter 2
illustrates its use as an architecture specification language by describing the IBM 7090 at
the register-transfer level.

Iverson’s emphasis is on APL as a notation, and he achieves a very compact notation.
APL’s strengths add no power as a logic, however, and its conciseness is more than made
up for by its obscurity. As a result, APL has not been a success as a specification
language.

A formal semantics for a dataflow machine-using VDM.

K. Jones. In D. Bjgrner and C. Jones, editors, VDM ’87: VDM-A Formal Method at
Work, Proceedings of the VDM-Europe Symposium, Lecture Notes in Computer Science,
252, Springer-Verlag, 1987.

Multi-Level Verification of Microprocessor-Based Systems.
Jeffrey John Joyce. PhD dissertation, Cambridge, December 1989.

Demonstrates the use of higher-order logic to verify several connected layers in a
computer system, from programming language to register- transfer level. Argues for the
use of generic specifications to hide detail irrelevant to each layer; argues for embedding
familiar notations in higher-order logic and using them in the familiar ways; and argues
that higher-order logic is a particularly good formalism.

Viper: A Microprocessor for Safety-Critical Applications.
J. Kershaw. RSRE Memo 3754, RSRE, 1985.

Handbook of Computer Documentation Standards.
Robert S. Kuehne, Herbert W. Lindberg, and William F. Baron. Prentice-Hall, 1973,
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Lambert

Leonard

Levy

Li

Liskov

Loomes

How to Find Information in Science and Technology.
Jill Lambert and Peter A. Lambert. Clive Bingley, 1986.

Explains how to do a literature search. Describes channels through which information is
distributed (journals, conferences, reports, etc.) and how the information varies across
channels; how to use libraries, various types of catalogues, lists of published books,
reviews, theses, abstracts and indexes; what information to record from each citation,
and why; on-line databases and how to search them; how to obtain literature, given a
citation; how to organize and maintain a collection of citations; how to stay current after
a search; and closes with some speculations about how literature might be published in
the new channel of computer networks.

If you have not done a thorough literature search before, this should be quite a useful
introduction. The presentation isn’t as high-quality as one might wish, but the contents
are relevant, useful, and sufficiently thorough to be well worth the trouble.

VAX Architecture Reference Manual.
Timothy E. Leonard. Digital Press, Bedford, Massachusetts, 1987.

Informally specifies the VAX architecture, using English, occasional pieces of
pseudo-Algol code, and diagrams. Specifies instruction formats, addressing modes,
instruction execution, memory management, exceptions and interrupts, process-context
switching instructions, shared memory, bootstrapping, and the console.

Microcode verification using SDVS: the method and a case study.
Beth Levy. In Proceedings of the 17th Annual Microprogramming Workshop, printed as a
special issue of the ACM SIGMICRO Newsletter, 15(4):234-245, ACM, December 1984.

Describes SDVS (state-delta verification system), explains how it can be used to verify
microcode, and provides an example. The target architecture is described in ISPS.

Microcomputer system specification using interval logic and a modified
labelled-net model.

H. F.1i, Y. S. Cheung, and P. P. K. Chiu. In IEE Proceedings, Part E, Computers and
Digital Techniques, 133(4):223-234, IEE, July 1986.

Largely concerned with the specification of timing constraints and the verification of an
interval-logic specification by means of Petri nets. Though the microcomputer
specification is referred to, only a small part is illustrated. [Chiu] provides the complete
example,

Abstraction and Specification in Programming Development.
B. Liskov and J. Guttag. MIT Press, 1986.

A textbook for undergraduates with some programming experience. Uses the language
CLU to teach the importance and techniques of abstraction and specification.

Software Engineering Mathematics: Formal Methods Demystified.
M. Loomes and J. C. P. Woodcock. Pitman, 1988.
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Marcus

Melham

Melliar79

Melliar82

SDVS: a system for verifying microprogram correctness.

Leo Marcus, Stephen D. Crocker, and Jaisook R. Landauer. In Proceedings of the 17th
Annual Microprogramming Workshop, printed as a special issue of the ACM SIGMICRO
Newsletter, 15(4):246-255, ACM, December 1984.

Justifies microcode verification, introduces state deltas, describes SDVS (state-delta
verification system), and summarizes the state of the SDVS project. SDVS uses ISPS as
its architecture-specification language.

Formalizing Abstraction Mechanisms for Hardware Verification in Higher
Order Logic.
Thomas Frederick Melham. PhD thesis, Cambridge, 1989.

Describes formal abstraction mechanisms for hardware specification and verification;
describes behavioral, data, and temporal abstraction; and describes abstraction of the
model of a class of devices.

System specification.
P. M. Melliar-Smith., In T. Anderson and B. Randell, editors, Computing Systems
Reliability, pages 19-65, Cambridge University Press, 1979.

Discusses system specification, particularly formal specification of computer programs,
and gives a good view of the state of the art at the time of writing. Starts by justifying
specification and formal specification; describes the process of going from a specification
to an implementation using an example design process; introduces the mathematics of
specification, including axiomatic and operational semantics, abstract and
representational types, abstract algebras and heterogenous algebras, rewrite rules, and
an algebraic method of specifying types; introduces and demonstrates the specification
language Special; discusses incomplete specifications, especially asynchronous systems,
including deterministic, serializable, and unserializable systems, and temporal logic.
Notes that operational specifications can have the advantages of familiarity,
understandability, and inherent consistency and implementability, but can have the
disadvantages of overspecification and greater difficulty proving that a different
implementation meets the specification. Algebraic specifications have their own
difficulties, especially with operations that return more than a single value or that may
return an error, and they are difficult to read, and difficult to write even for an expert.

Formal specification and mechanical verification of SIFT: a fault-tolerant
flight control system.

P. M. Melliar-Smith and R. L. Schwartz. IEEE Transactions on Computers,
C-31(7):616-630, IEEE, July 1982, Also technical report CSL-133, SRI, 1982.

Describes the specification and proof methods used on SIFT, a highly reliable computer
for aircraft control. Describes the software-voting scheme used for reliability; explains
how a hierarchy of proofs link the Pascal code and the hardware fault model to the
high-level reliability rates; and gives examples from the hierarchy of specifications. The
compiler and hardware are not specified or verified. Notes that the correspondence
between formal specification and intentions must be determined by inspection, so the
top-level specification must be believable.
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Meyer
Milne

Milner80

Milner89

Moore

Mosenthal
Moszkowski

| Padegs

Parker

On formalism in specifications.
B. Meyer. In IEEE Software, 2(1):6-26, IEEE, January 1985,

A Mathematical Model of Concurrent Computation.
G. J. Milne. Technical report CST-478, PhD thesis, Edinburgh, 1978.

A Calculus of Communicating Systems.
Robin Milner. Lecture Notes in Computer Science, 92, Springer-Verlag, 1980.

Introduces CCS. Superseded by [Milner89].

Communication and Concurrency.
Robin Milner. International Series in Computer Science, Prentice-Hall, 1989.

Introduces a process calculus for describing systems with communicating parts; provides
an underlying theory and examples of use.

The theory described by this book is elegantly small, and powerful enough to describe
many aspects of computer systems that are of interest. The book clarifies many issues of
specification and proof of concurrent systems.

A Mechanically Verified Language Implementation.
J Strother Moore. Technical report 30, CLinc, September 1988.

Describes the language Piton, an implementation of a Piton compiler and link-loader,
and a proof of the implementation’s correctness. The Piton formal specification is an
operational specification in the form of an interpreter written in the Boyer-Moore logic.

Piton is a high-level assembly language, and provides execute-only programs, recursive
subroutine call and return, stack-based parameter passing, local variable, global variables
and arrays, a user-visible stack for intermediate results, and seven abstract data types.

Moore notes several subtle issues with mapping the implementation results into top-level
results. A verifiable implementation of any specification must include not only a
lower-level specification, but also the mapping between objects and events visible at the
top level to objects and events at the lower level, something many specifiers overlook.

Research on Writing: Principles and Methods.
Peter Mosenthal, Lynne Tamor, and Sean A. Walmsley, editors. Longman, 1983.

Executing Temporal Logic Programs.
B. Moszkowski, Cambridge University Press, 1986.

See [Gifford] and [Case].

ISPS: a retrospective view.
Alice C. Parker, Donald E. Thomas, Stephen Crocker, and Roderic G. G. Cattell, In

Proceedings of the {th International Symposium on Computer Hardware Description
Languages and Their Applications, pages 21-27, IEEE, 1979.

Describes the originally intended purpose of ISPS and the problems that users of the
language have discovered. The problems described include inadequate support for
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Parnas

Prevost

Reisig

Rose

Rumbaugh

Sannella84

concurrency, timing, or synchronization; lack of some commonly used operations as
primitives; and difficulty in separating some parts of a specification—for example, the
description of address computation from instruction execution. Requirements for an
ideal behavior-description language include an abstraction facility, specification of
behavior without overconstraining implementation, the ability to specify synchronization
primitives directly, and formal semantic definition of the language.

On the criteria to be used in decomposing systems into modules.
David. L. Parnas. Communications of the ACM, 15(12):1053-1058, ACM, December
1972.

The author’s conclusion: “We have tried to demonstrate by these examples that it is
almost always incorrect to begin the decomposition of a system into modules on the
basis of a flowchart. We propose instead that one begins with a list of difficult design
decisions or design decisions which are likely to change. Each module is then designed to
hide such a decision from the others. Since, in most cases, design decisions transcend
time of execution, modules will not correspond to steps in the processing.”

A methodology for verification of complex architectures by Petri-nets.
G. Prevost and M. Currat. In ESPRIT ’86: Results and Achievements, pages 491-502,
North-Holland, 1987.

Petri Nets: an Introduction.
W. Reisig. EATCS (European Association for Theoretical Computer Science)
Monograph, Springer-Verlag, 1985.

A Partial Specification of the MC68000 Microprocessor.
Phillip B. Rose. Master’s thesis, Oxford.

A Parallel Asynchronous Computer Architecture for Data Flow Programs.
J. E. Rumbaugh. PhD thesis, MIT, May 1975.

Presents the design of a data-flow language and processor, and informally proves that
the processor design implements the language. The designs are specified with the Vienna
Definition Method, using a formal language which is not given a formal semantics.

On observational equivalence and algebraic specification.

Donald Sannella and Andrzej Tarlecki. Internal report CSR-172-84, Edinburgh, 1984.
Extended abstract in Mathematical Foundations of Software Development, volume I:
Proceedings of the Colloguium on Trees in Algebra and Programming, Lecture Notes in
Computer Science, 185:308-322, Springer-Verlag, 1985.

Formally defines observational equivalence and behavioral equivalence in terms of
algebraic specifications. Two specifications are behaviorally equivalent with respect to
particular sorts if the specifications give the same results for all operations that produce
those sorts. (Informally, that means that comparison is only allowed for particular data
types.) Two specifications are observationally equivalent if they give the same results for
all comparisons from a prespecified set of comparions. (Informally, that means that only
particular observations are allowed.) Assumes the reader has a basic understanding of
algebraic specification, bit it is quite clear for such a formal paper.
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Sannella85

Schwartz82

Schwartz83

Sekar

Shiva

Siewiorek

Skillin

Stephen

Building Specifications in an Arbitrary Institution.

Donald Sannella and Andrzej Tarlecki. Internal report CSR-184-85, Edinburgh, 1985.
Also in Proceedings, International Symposium on the Semantics of Data Types, Lecture
Notes in Computer Science, 173:337-356, Springer-Verlag, 1985.

From state machines to temporal logic: Specification methods for protocol
standards.

R. L. Schwartz and P. M. Melliar-Smith. In C. Sunshine, editor, Protocol Specification,
Testing, and Verification, North-Holland, 1982,

Interval logic: A higher-level temporal logic for protocol specification.
R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. In H. Rudin and C. H. West,
editors, Protocol Specification, Testing, and Verification III, North-Holland, 1983.

Formal verification of a microprocessor using equational techniques.

R. C. Sekar and M. K. Srivas. In G. Birtwistle and P. A. Subrahmanyam, editors,
Current Trends in Hardware Verification and Automated Theorem Proving, pages
171-217, Springer- Verlag, 1989.

Specifies and verifies a very simple microprocessor (it has two instructions: STORE PC
and JUMP) using a functional language called SBL. The authors promote their use of an
explicit random function to describe behavior that is left unconstrained by the
architecture.

On the description of multiprocessor architectures.
S. G. Shiva. In Proceedings of the Real-Time Systems Symposium, pages 101-110, IEEE,
1981.

Presents a syntax for specifying multiprocessor structures in terms of processors,
memories, switches, and links, which are taken as primitives.

Computer Structures: Principles and Examples.
D. P. Siewiorek, C. G. Bell, and A. Newell. McGraw-Hill, 1982.

A classic reference, listing some 250 computers and describing 40 in some detail, covering
an extremely wide variety of structures. Includes reprints of many original descriptions,
and many descriptions rewritten in ISP and PMS, notations that were developed for the

“book.

Words into Type.
Marjorie E. Skillin and Robert Malcolm Gay. Prentice-Hall, 1974.

Like The Chicago Manual of Style, an exceptionally good reference book for authors and
editors,

Writing User-Usable Manuals: A Practical Guide to Preparing User-Friendly

Computer Hardware and Software Documentation.
Peter M. Stephen. Wredco, 1984.
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Stoffel

Streitz

Strunk

Sufrin

TechComm

van Diepen

Wichmann

Wright

Peripheral devices: a formal description of their behaviour.
C. Stoffel. Elektron Rechenanlagen, 21(3):113-119, June 1979.

(In German.) The author proposes the use of automata rather than algorithmic
languages to describe the operation of peripherals (demonstrating the technique by
specifying a magnetic-tape controller), and then discusses desirable qualities of
peripheral-device architectures in general.

Rechnerspezifikation mit Hilfe einer Functionalen Sprache.
(Computer Specification using a Functional Language).
S. Streitz. Technical report B-48, Bonn, 1985. (In German.)

The Elements of Style.
William Strunk, Jr. and E. B. White. MacMillan, 1979.

11 elementary rules of English usage, 11 elementary rules of composition, 21 suggestions
relating to style, and a short section on common misusages, all in 92 tiny pages—peerless.

Z Handbook.
B. A. Sufrin, editor. Oxford, 1986.

Technical Communication.
Newsletter of the Society for Technical Communication (previously the STWP Review,
published by the Society of Technical Writers and Publishers.) STC, quarterly.

Listed under Diepen.

Towards a formal specification of floating point.
B. A. Wichmann. The Computer Journal, 32(5):432-436, Cambridge University Press,
October 1989.

Specifies floating point using VDM, then compares it to several previous specifications,
including [Barrett].

Documenting a computer architecture.
Robert E. Wright. IBM Journal of Research and Development, 27(3):257-264, IBM, May
1983.

Explains the requirements of an architecture specification and explains how IBM’s
architecture-control group produces and updates such specifications. Distinguishes
between designing an architecture and documenting it; lists and defines several
requirements of an architecture specification (that it be understandable, well written,
exact, complete, and unified) and explains how IBM’s documentation process is designed
to achieve each of these requirements.

This is an extraddinarily good introduction to the problems and techniques of
architecture documentation. This paper covers a great deal, and is specific enough to be
immediately applied. For example, to unsure understandability, they write with a
complexity and vocabulary appropriate to college graduates, provide many cross
references, provide a comprehensive index, and use great care in coining descriptive
terms. To produce a well-written specification, they use two style guides, re-use
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Zave

previously produced specification components, and use a single editor and a single
architect to produce the final draft. The paper describes further techniques for writing
natural-language specifications that are simultaneously exact, complete, and readable.

Operational specification languages.

P. Zave. In J. Tartar, program chairman, ACM ’83—Computers: Faxtending the Human
Resource, proceedings of the 1983 ACM annual conference, pages 214-222, ACM, 1983.
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