Technical Report R

Number 180

Computer Laboratory

Formal verification of
data type refinement:
Theory and practice

Tobias Nipkow

September 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1989 Tobias Nipkow

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Formal Verification of Data Type Refinement

Theory and Practice*
Tobias Nipkow

University of Cambridge
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
England

tnn@cl.cam.ac.uk

Abstract. This paper develops two theories of data abstraction and re-
finement: one for applicative types, as they are found in functional pro-
gramming languages, and one for state-based types found in imperative
languages. The former are modelled by algebraic structures, the latter by
automata. The automaton-theoretic model covers not just data types but
distributed systems in general. Within each theory two examples of data
refinement are presented and formally verified with the theorem prover Is-
abelle. The examples are an abstract specification and two implementations
of a memory system, and a mutual exclusion algorithm.

Key words: Abstract Data Types, Data Types, Distributed Processes,
Refinement, Implementation, Verification, Theorem Proving.

*Research supported by ESPRIT BRA grant 3245, Logical Frameworks.

Contents

1 Introduction

2 The Case Studies

2.1 Extended Guarded Commandst v vttt vt n v .
2.2 SimpleMemory.................. L e e e e e e e e e s
2.3 CacheMemory e e e e e e e e e e e e e e e
2.4 Coherent Cache Memory v v v i i v vt it e et e e e e
3 Isabelle

3.1 Isabelle as a Specification Languageo v v v v ...

4 General Remarks on Implementations

5 Applicative Data Types

5.1 Nondeterministic Data Types and Their Implementation.
511 Models . .o . v it it s e e e e e e e e e e e e e e ..
5.1.2 Three Implementation Concepts e e e e e e
5.1.3 Homomorphisms e e et e e e e e e e v
5.1.4 Syntax versus Semantics. e e e e e e e e e e
5.2 Translation into First Order Logic v v i v v v v v v v e
5.3 Simple Memory . . . v v v o i i e e e e e e e e e e e e e
54 CacheMemory et e e e e e e e e e e e e e e e
5.5 Coherent Cache Memory v v v v v it v vt et et e s e C e e
6 State-Based Data Types

6.1 Input/Output Automata.uu.u...
6.2 Simple Memory . . . v v v v ittt e e e e e e e e e e e
6.3 Cache Memory et e e e e e e e e e e e e
6.4 Mutual Exclusion. o i it i it i e e e e e e e e e

7 Applicative versus State-Based

(o B, B B S W

~ O

18

18
20
21
25

28

1 Introduction

The aims of this paper are twofold: to present a theory of data types and their im-
plementation, and to show how the correctness notions supplied by the theory can be
verified using a theorem prover. In fact, we discuss two different approaches to abstract
data types: an applicative and a state-based one. The emphasis is on correctness no-
tions for data type implementations, i.e. the process of going from some high-level
specification of a data type to a lower level implementation. This is also called data
refinement. The test case for both theories are a specification and two implementations
of the data type memory. The theorem prover Isabelle is used to verify the correctness
of both implementations.

The paper is structured around the two theories of data types that are discussed.
Both theories are firmly in the “behavioural” camp. This means that the world of types
is divided into two: the “visible” basic types (booleans, integers, characters, ...), and
user defined “hidden” abstract types (stacks, queues, buffers, ...). The distinction is
that the latter cannot be input to or output of a program. The notion of implementation
between data types can now be defined in terms of the visible input/output behaviour
of programs that use these types.

The two theories differ in the mathematical model that is used to give meaning to
the term data type. There are various ways to characterize the distinction: on the one
hand we have applicative, functional, value-oriented, immutable, transformational, or
algebraic, on the other hand state-based, imperative, object-oriented, mutable, reactive,
or automaton-based. To a large part, the choice of models is dictated by the linguistic
framework.

In a pure functional programming language, all data types must be of the first kind:
anything is just a value, can be passed around, and can be duplicated at random. There
is no distinction between basic and user defined abstract types, apart from input [output
restrictions on the latter. Whereas most approaches to algebraic data types assume a
deterministic world, i.e. all operations on a data type are functions, this paper develops
a theory of nondeterministic data types and their implementations. The underlying
mathematical model is a relational generalization of algebras. In order to develop a
theory of implementations, we need to say how a data type’s behaviour is observed,
i.e. what the programs that use it look like. This task is complicated by the presence
of nondeterminism and by our desire to design a theory of implementations that is not
too dependent on a particular observation language.

The second kind of data type theory, termed state-based above, is associated with
imperative programming languages. They permit the definition of, in CLU [21] ter-
minology, “mutable” data types. Objects of these types have internal states that are
never passed around outside the object but are changed by side-effect when invoking
access functions. This approach is almost the norm in distributed systems, where data
types are often identified with processes. Once the step to a distributed system has
been made, it is natural if not compulsory to deal with nondeterminism. The obvious
model] is that of an automaton. The advantage of this model is that it comes with a
canonical notion of behaviour: the accepted language or trace set.

We will see that in the end the distinction between the two approaches burns down

to the fact that in an applicative system, values can be duplicated (copied), whereas in
a state-based system there is only one copy of the state at any time. As a consequence,
state-based systems have less observational power, i.e. they make less distinctions.
With respect to data refinement it means that implementations in a state-based context
may not be implementations in an applicative context.

To fill the theories with life, we go through some case studies of formal verifications
using a theorem prover. The basis for these examples are a collection of specifications
and implementations of various storage systems found in [20]. Some of the simpler ex-
amples are selected and their correctness with respect to our notions of data refinement
are shown using the theorem proving system Isabelle.

The outline of the paper is as follows. After a presentation of the three versions of the
data type memory in Section 2 and a brief introduction to the theorem prover Isabelle
in Section 3, the main body is devoted to the exposition of the two theories of data
abstraction sketched above. Section 5 develops a theory of refinement for applicative
data types and verifies Lampson’s two memory implementations within that theory.
Section 6 looks at the verification of distributed systems in general and state-based
types in particular. After a brief review of input/output automata and their notion
of refinement, the formal correctness proof of a data type (Lampson’s cache memory)
and a distributed process (mutual exclusion) within this theory is shown. Section 7
concludes the paper with a discussion of the differences between the two theories of
data types and their correctness notions.

2 The Case Studies

The examples for our case studies are drawn from a paper by Butler Lampson [20]
on the specification of distributed systems. The paper uses an extension of Dijkstra’s
guarded command language to specify a range of different storage systems. The par-
ticular examples we have selected are the specification of the data type memory and
two implementations using caches. To keep this paper self-contained, we give a brief
introduction to Lampson’s specification language, followed by the specification of the
three memory systems. In sections 5 and 6 we introduce our own formalisms for data
type specification and translate his “code” into our notation. The two main points
that distinguish his specifications from ours are that in section 5 we view memory as
an applicative rather than a state-based type, and in section 6 we are more precise with
respect to concurrency and interleaving. We are intentionally vague in this section be-
cause it is only meant as an introduction to the problems. Formality is postponed to
sections 5 and 6.

2.1 Extended Guarded Commands

Dijkstra’s language of guarded commands [7] was extended by Greg Nelson [26] in such a
way that it becomes more suitable as a specification language than the original calculus.
The major innovation is the introduction of partial commands, that is, commands that
may fail. The following informal explanation of part of Nelson’s calculus is taken from
[26].

Command Operational Meaning

skip do nothing

P A activate command A if P holds, else fail
ARB activate A, else B if A fails

A; B activate A then B

ifAfi activate A until it succeeds

do A od activate A until it fails
z|P— A activate A with a new variable z, initialized such that P holds;
if P holds for no value of z, fail X

The last command is in fact a combination of the two basic constructs of variable
introduction and guards.

The specifications in [20] use three additional language features: grouping into
atomic actions, procedures, and data abstraction, neither of which is formally defined.
We bypass any questions of atomicity in the initial exposition of the examples. Atom-
icity becomes important only in the presence of concurrency and the possibility of
interference. These issues are resolved when they arise, i.e. in section 6. For similar
reasons we rely on the reader’s intuition regarding procedures and data abstraction.

2.2 Simple Memory

This is the specification of a simple addressable memory. The data type imports the
two types of addresses A and data D. It exports the two operations read and write 1.
The state of the memory m is a mapping from addresses to data, written 4 = D. It
corresponds more to an array than to a function space.

var m: A5 D

read(a,var d) = d:=m|d]
write(a, d) = mia] :=d

The meaning of this specification is obvious enough. Now we look at two imple-
mentations using write-back caches.

2.3 Cache Memory

A first level implementation of the simple memory adds a single cache to the state.
Read and write requests are satisfied by the cache if possible, and changes are written
back to main memory immediately. The raison d’étre of a cache is its increased access
speed which is achieved at the expense of capacity. As the cache can hold only a
small subset of the main memory’s address space, it cannot be modelled by a mapping
A5 D. A new element L, L ¢ D, is used to denote undefinedness. D 1 is equivalent
to DU {l}.

var ¢:AS D,
m:AS D

1The third operation swap introduced in [20] has been dropped because it is not sufficiently different
from the other two.

read(a,var d) = load(a);d := m/[a]

write(a, d) = if cla] = L — flushl | skip fi;c[a] :=d
load(a) = if cla] = L — flushl;cla) := m|a] ¥ skip fi
flushl = a|ca] # L — ma] := c[a];cla] := L

The implementation ensures that the number of addresses at which ¢ is defined remains
invariant. For flushl to be total, we have to assume that initially ¢ is defined for least
one address. The operations load and flushl are auxiliary.

2.4 Coherent Cache Memory

This is a more complex version of the cache memory, suitable for a multiprocessor
where each processor has its own write-back cache. The processors are identified by
elements from some set P of processor numbers.

var a¢PB AB D,
m:AS D

read(p, a,var d)
write(p,a,d)

load(p, a); d := ¢[p, a]
if ¢[p,a] = L — flushl(p) ¥ skip fi;c[p, a] := d;distr(p, a)

load(p, a) = if ¢[p,a] = L —
flushl(p);
if ¢ | ¢[g,a] # L — c[p,a] := ¢[q,a] ¥ c[p,a] := m][a] £
M skip fi
distr(p,a) = do ¢]|clg,a] # L Aclg,a] # c[p,a] — ¢[g,a] := ¢[p,a] od
flush1(p) = a|clp,a] # L — mla] := ¢|p,a]; c[p,a] := L

Writing ¢[p, a] instead of ¢[p][a] follows the usual convention of indexing multi-dimensio-
nal arrays. The formal justification is the isomorphism between A = B 5 C and
Ax B35 .

Although it may seem we have changed the interface by adding the parameter p to
read and write, this is not the case. The parameter p has only been introduced on the
conceptual level. For each processor p the interface remains as specified in section 2.2.
We have simply replaced indexed sets of operations read, and write, by a single one.

Note that this specification is still a long way from an implementation. In particular
it needs an efficient realization of the auxiliary operation distr, which broadcasts a
change in one cache to all other caches.

3 Isabelle

Isabelle is a generic theorem prover developed by Larry Paulson at the University of
Cambridge. By supplying syntax and inference rules it can be instantiated to support
particular logics. Isabelle’s style of theorem proving stands in the LCF [34] tradition,
i.e. it is interactive and driven by user defined tactics. For an overview of Isabelle see
[35]. Isabelle’s logical foundation is explored in [36].

All theorems presented in this paper were proved by rewriting related tactics and
induction. An anatomy of these tactics can be found in [31]. Their application in the
correctness proofs of some sorting algorithms is detailed in [32]. The proofs of the
theorems in this paper are in the same style and have been omitted. Only the sequence
of lemmas leading up to them is reproduced.

3.1 Isabelle as a Specification Language

In order to use Isabelle for program verification, we identify specifications with logics
or extension of logics. Each extension introduces

e a set of new type (constructor) names,
o a set of new (logical or non-logical) constants, and
o a set of axioms and inference rules.
In analogy to OBJ [9] we use the following syntax:
Extension = Basel + ... + Basen + SORTS ... OPS ... RULES ..

This means that Extension is the extension of the union of the theories Basel through
Basen with the types listed after SORTS, the constants after OPS, and the inference rules
after RULES. The syntax of constants is given in mixfix notation. The notation for types
follows ML [13] conventions. ,

This OBJ-like syntax is different from but closely related to the actual syntax used
in the definition of Isabelle logics. Apart from some minor matters of surface syntax,
the only liberty we have taken is the inclusion of type constructors with arguments,
and polymorphic constants. Both are currently not supported by Isabelle, but there
are plans for such extensions, along the lines of LCF’s [34] and HOL’s [11] type system.
The actual proofs were conducted in a single-sorted logic. It is only for the sake of
presentation that we have introduced many-sortedness and polymorphism.

The starting point for all our specifications is an axiomatization of first-order logic
with equality. In addition to the usual logical symbols a conditional, pairs, and triples
are defined:

FOLE = SORTS form, (e, f)pair, (a,(,7)triple
O0PS -A.,-V_,-=>_,.&.:form % form — form
-=.axa— form

if_— M{.fi: formsarxa — a

(-y-)ia% B — (o, B)pasr

(=ymy=)iak Bry — (@, B,7)triple
RULES

Cif P->zNy fi) & (P = C(z))A(-P = C(y))

Notice that the polymorphic type of if-—.X.fl allows it to be used for both formulae
and expressions. Its defining rule uses the higher order variable C of type o — form
representing “contexts”. Conditionals are only a notational extension of the calculus
because they can be removed from any formula containing them.

The decision to use a standard first-order logic is one of convenience. An Isabelle
instantiation exists, and logics for total functions are easier to reason in than those for
partial functions. However, it means that any extension with partial functions leads to
inconsistencies. In the Boyer-Moore system [2] this problem is dealt with by verifying
formally that all new functions are total. The consistency of the extensions of FOLE
presented below has been checked informally only.

4 General Remarks on Implementations

Since the main theme of this volume is refinement, it is appropriate to make some
general remarks on this topic before delving into technicalities. We feel that the proper
starting point for any treatment of implementations is the following intuition:

Definition 1 A component C implements a component A if and only if the behaviour
of any system with component C is also a behaviour of the same system with C replaced
by A 2.

This defines what we call the implementation preorder C < A.

Although it remains to be fixed what “components”, “systems”, and “behaviour”
are, we think that most computer scientists would agree to this definition 3.

Despite its generality, this definition makes some tacit assumptions by identifying
specifications, implementations, and components. If specifications may denote sets of
components, we could define that a set of components M implements a set of com-
ponents N if for all C € M there is an A € N such that C < A in the sense of
Definition 1. However, that forces us to reason about sets rather than single compo-
nents. In the sequel we stick to our original definition and assume that it suffices to
compare individual components. If the specification formalism ensures that the set of
components denoted by a specification always has a largest element with respect to the
implementation preorder, these elements can be used as representatives in a correct-
ness proof. More precisely, given a set M with greatest component C and a set N with
greatest component A, M implements N if and only if C < A.

The degree to which the observational view has determined the treatment of refine-
ment in the fields of data types and concurrency is markedly different.

In the data type field it is mostly the case that some abstract mathematical notion
such as homomorphism is taken as the definition of refinement without any justification
in terms of behaviour. A notable exception is the work of Schoett [37,38], who starts
from exactly the premises above, For a survey of other approaches to implementations
of data types the reader should consult [38] or [29]. Definition 1 can be applied to data

2Read Abstract and Concrete for A and C.

3A possible moot point is that the implementation may display only some of the specification’s
behaviour. Kuiper [19] for example suggests distinguishing allowed from required nondeterminism. The
second kind must be preserved by implementations.

types by identifying data types with components and programs with systems. The point
is that in contrast to data types, programs come with more or less canonical notions
of behaviour in the form of input/output traces. Implementations between data types
are now defined in terms of the induced behaviours of programs using the data types.

In the algebra of concurrent processes, the relation < is known as a testing preorder
[6]. Components and systems are both identified with concurrent processes. Since
processes come with well-defined notions of behaviour (e.g. in the form of traces),
this leads to a notion of observational equivalence and observational congruence [17].
In automaton-based approaches like [23] or [1], the definition of refinement is based
directly on the trace sets generated by the automata.

The two theories studied in this paper are firmly in the behavioural camp.

5 Applicative Data Types

5.1 Nondeterministic Data Types and Their Implementation

This section reviews the theory of nondeterministic data types (for short: data types)
established in [27,29,30]. After a brief introduction of the mathematical model we
have chosen for data types, we focus on the question of implementation for the rest
of the section. In particular we show how the global definition of implementation
given in Section 4 can be localized for particular choices of observing systems and
behaviours. This means a characterization of refinement as a set-theoretic relationships
between models. The important notion is that of a simulation, which is both a relational
generalization of homomorphism and half a bisimulation [33].

All reasoning is on the semantic level of models and thus independent of any par-
ticular specification formalism. As discussed in Section 4, specifications and implemen-
tations are identified with models. Section 5.1.4 deals with the application to specific
formalisms and the step from semantics back to syntax.

5.1.1 Models

The interface to a data type is called its signature. It lists the sorts and operations
exported by the type; sorts are classified as visible or hidden.

Definition 2 A signature is a triple £ = (S,V,0) where S is a set of sort names,
V C S the set of visible sorts, and O a set of operations. Each operation r € O is typed
asriw — s, where w € S* and s € S.

In the sequel assume ¥ = (5,V,0).
Data types are modelled by structures, which almost coincide with multi-algebras
[12] and are closely related to structures in logic [40].

Definition 8 A Z-structure A consists of
o an S-indezed family of sets A,, s€ S, and
o a relation 14 C Ay, X A, for each operation r:w — s in O.

For r:w — s in O and a € A,, define r4(a) = {b € 4, | (a,d) € r4}.

The interpretation of a pair (a,b) € r4 is that operation r called with argument tuple
a may return b. If r4(a) is empty, r is undefined for a, i.e. it diverges.

This model cannot express possible termination or divergence. If r4(a) is empty,
r4 never terminates if applied to a, otherwise it always terminates. To get a finer
distinction, we have to extend the model. One can either introduce a special element
L such that L € r4(a) means that r4(a) may diverge, or an explicit termination set
for each operation, containing the inputs for which termination is guaranteed. Both
choices can be found in the literature. In the sequel we work with L and require that
r4(a) is always non-empty, i.e. contains at least L. A structure is now called total if L
does not occur in the range of any of its operations.

5.1.2 Three Implementation Concepts

Having fixed what the components in the sense of Section 4 are, we need a set of
observers or systems to exercise the components. It should be a programming lan-
guage that is general enough to be representative for a wider class of languages and
simple enough to be tractable. Ideally, a kind of A-calculus for applicative nondeter-
ministic computation structures is required. Given such an observation language, one
can ask for a characterization of the implementation relation it induces between data
types. Alternatively, one can fix some preorder C between data types and determine
requirements on a language semantics which ensure that C C A implies that C is an
implementation of A with respect to any language meeting those requirements. If C
is well chosen those requirements should be the semantic counterpart of the informa-
tion hiding principle: they should ban all language features which permit access to the
representation of an abstract data type. One can then show that particular languages
meet these requirements. This is the approach taken in [27,29,30], the technical details
of which are only sketched here. It requires a syntactic domain of programs Prog, a
semantic domain Sem with an implementation preorder on it, and a mapping DJ.,.]
which takes a program and a X-structure and returns a denotation in Sem.

For the time being we do not fix Sem completely but assume that it is based on
powerdomains [39]. Powerdomains are extensions of domains to powersets. A partial
order on a domain D can be extended to a preorder on P(D) in different ways, two of
which give rise to important correctness concepts:

M= N & VYmeM3IneN.m=<n
M= N & YmeM3ineN.n<m

The predicates <; and <z are the orderings of the so called Hoare [16] and Smyth*
[41] powerdomains respectively. We also define <, to be C. Broy [4] associates the
adjectives loose, partial, and robust with the orderings <o, <; and =,, a terminology
we adopt. We assume that Sem comes with either of the orderings =<; as the intended
notion of refinement between program denotations.

Considering the carriers of a structure as trivially ordered flat domains and the
operations as functions returning power sets, the latter can be compared via <;. This
in turn extends to structures by defining 4 <; B iff 4 <, r® for all operations r.

“Note that M < N is usually written N <, M.

10

Of the three notions, loose correctness is the strongest. It only allows reduced
nondeterminism. Without going into details, let us just mention that partial correct-
ness corresponds to “safety” and robust correctness to “liveness” in the language of
distributed systems.

The above correctness notions carry over to data types as follows. We write C <; A
if D[[p,C] =i D[p, A] holds for al programs p. In that case we call C a loose (partial,
robust) implementation of A. What we are interested in is to characterize <; without
any reference to observing programs, purely as a set-theoretic relation between data
types. Our main tools for that purpose are the so called simulations.

Definition 4 Let C, A be two X-structures and let T be an S-sorted relation C,C
C, X A, such that T, is the identity for all visible sorts v € V and L C L is the only
pair in C containing L. For w € S* let C,, be the componentwise extension of C,.

C s called a partial simulation iff for all operations r : w — s and all a, ¢ and

¢' # 1 we have
cCuan(ec)ert = 3d. (a,d)ertAd T, d

C s called a (loose) simulation tff for all operations r : w — s and all a, ¢ and ¢'
we have
cCuwaA(ed)ert = 3d. (a,d) €erdncC,d
C s called a robust simulation iff for all operations r : w — s and all a, ¢ and ¢'
we have

cCuahr(a,L)grt = (c,L) €17 A((c,c') €7° = Td. (a,d) €4 A (' T, o))

We write C C; A to indicate that there is a loose ({ = 0), partial (i = 1) or robust
(= 2) simulation between C and A. Note that for total structures C and A, all three
simulations coincide.

Simulations are generalizations of the correctness notions <;: C <; A = C LC; A.
The weaker relation =; can only relate structures with identical carriers, whereas C;
can relate arbitrary structures. This shows that simulations have a twofold task: to
relate different carriers and to guarantee the desired correctness notion.

It remains to be seen what simulations have to do with implementations induced
by programs. In particular we are interested in the notions of

Soundness : does C C; A imply C <; A?
Completeness : does C <; A imply C C; A?

In [29,30] we obtained some rather abstract criteria for soundness based on the decom-
position of simulations into simpler relations like homomorphisms and <. We showed
that C; is sound provided that

e D is insensitive to “junk”: if B is a substructure of A, i.e. B contains less
unreachable elements (junk) than A, then D[p, B] = D[p, A] should hold;

¢ D reflects homomorphisms on hidden values accurately: if B is a homomorphic
image of A then D[p, B] should be a homomorphic image of D[p, 4].

11

e D is monotone w.r.t. =;: B =; A should imply D[p, B] =i D[p, A].

The first two requirements of D should be interpreted as the semantic counterpart
of the information hiding principle mentioned at the beginning of this section. The
third point is a trivial monotonicity requirement which languages with a denotational
semantics should satisfy anyway.

In order to show that real toy languages meet these requirements, we look at a
particular instantiation for Prog, Sem, and D. Without going into details (they can
be found in [3,27,29,30]), let us just say that the observation language is a first-order
applicative stream processing language similar to Broy’s AMPL. In particular it fea-
tures an angelic choice construct. We call this language L and the subset obtained
by removing angelic choice I'. The semantic domains are so called streams with the
approzimation ordering <. It is this ordering < which the <; extend to powersets of
streams. In this particular instance we obtain the following theorem:

Theorem 1 Loose (partial) simulations are sound criteria for loose (partial) imple-
mentations with respect to programs over L.

Robust simulations are sound criteria for robust tmplementations with respect to
programs over L' but not over L.

The problem with robust implementations is that in case the specified operation di-
verges for a certain input, the implementation is free to do what it likes: if f4 is a
function that always diverges, the function f€ which always returns 1 is a robust im-
plementation. But a program that chooses angelically between 0 and f(z) will always
return O (and terminate!l) if it uses 4, whereas it may also return 1 if it uses C.

Completeness results depend very much on the expressive power of the observing
programming language. For the particular example of L we have

Theorem 2 A structure A is called finitely nondeterministic {ff r4(a) is always finite.
For the subclass of finitely nondeterministic structures, loose (partial) simulations are
complete criteria for loose (partial) implementations with respect to programs over L.

The extension to infinite nondeterminism is still open.

This shows that, modulo finite nondeterminism, loose and partial simulations ex-
actly characterize loose and partial implementations with respect to L.

A completeness result for robust simulations holds only for a rather restricted sub-
class of structures. Details can be found in [29,30].

5.1.3 Homomorphisms

The basic semantic tool for connecting specifications and implementations is a relation,
the simulation. An important special case is that of functional simulations, which
are easily seen to be homomorphisms. Hoare [14] was one of the first to define data
refinement formally using homomorphisms and many authors have since followed him
[18,5]. There are two practical reasons for this:

e Functions are in general easier to handle than relations; in particular the exis-
tential quantifier in the definition of a simulation disappears. Thus the approach

becomes amenable to support from term-rewriting based verification systems like
LP [10].

12

e It is a fact of life that homomorphisms suffice for most of the verification tasks
arising in practice.

It is the second point that we want to look at in more detail. To start with, it is not
difficult to establish that homomorphisms are not complete, i.e. there are structures
C E A, such that there is no homomorphism from C to A. Most examples of this kind
are such that there is a third structure B which is behaviourally equivalent® to 4 and a
homomorphic image of C. Jones [18] classifies this as an “implementation bias” in the
specification. Had B been chosen as the specification instead of A, C could have been
shown to be a correct implementation via a homomorphism. Therefore the question
is: does every specification have a behaviourally equivalent counterpart which is the
homomorphic image of all its implementations. Technically speaking, we are interested
in the existence of final objects in a class of behaviourally equivalent structures.

Summarizing the results obtained in [28] we can say that for deterministic specifi-
cations such final objects always exist, whereas in general they don’t. This means that
in a deterministic world homomorphisms suffice because one can always start with a
fully abstract, i.e. final, specification. In the presence of nondeterminism one may be
forced to work with proper simulations because fully abstract specifications no longer
exist.

More precisely, the results are as follows. If we restrict ourselves to partial algebras,
i.e. structures where r4(a) is always a singleton set, fully abstract specifications exist
with respect to loose and robust, but not partial implementations. If we consider all
structures, fully abstract specifications cease to exist for all notions of implementations
discussed in this paper. Only bisimulation equivalence, which is strictly finer than all
the above notions, admits fully abstract specifications.

Despite the conclusion that simulations are more general, homomorphisms turn out
to be sufficient for the correctness proofs in this paper. Using a function ¢:C — A,
correctness of C is depicted in Figure 1: the three solid lines imply the existence of the
dashed line completing the square. The corresponding proposition is

(c,e') €1° = (p(e),p(c') € r4, (1)

which is exactly the definition of a homomorphism in [12].

5.1.4 Syntax versus Semantics

Having arrived at the actual formula that is the correctness notion in the examples
to come, we want to give a brief indication how the results obtained can be applied
to particular specification languages. On the one hand there are formalisms like VDM
[18], Z [42], or initia] or final algebra specifications [8] which associate a canonical model
with each specification. Our theory is tailor-made for such formalisms. In fact, defining
a notion of implementation for Z has lead to a very similar theory of data refinement
[15], although with a state-based view of types.

On the other hand there are formalisms which associate a whole class of models
with a specification, e.g. the loose approach to algebraic specifications [8]. Even worse,

54 and B are termed behaviourally equivalent if they have the same set of implementations.

13

Figure 1: A Homomorphism

approaches like [24] come with no model theoretic semantics at all. Nevertheless our
theory is still applicable by translating from semantics to syntax. If formal verification
is to be supported mechanically, one has to abandon the realm of models in favour of
purely syntactic formalisms anyway. In general one is faced with four sets of sentences
B, S, I and H, describing the the basic types, the specification, the implementation,
and the homomorphism between them. Proving correctness means showing that H
does in fact specify a homomorphism:

BUSUIUHF® | (2)

where @ is (1) above. If S and I are conservative extensions of B with disjoint vocab-
ulary, and H is a conservative extension of B U S U I, there is a simple translation of
(2) back into the realm of semantics: from any model of I there is a homomorphism
to any other model of S. Thus any model of I implements any model of S, which is
certainly sufficient, although in fact stronger than the condition given in Section 4.

This concludes the treatment of the theoretical underpinnings for the actual proofs
to come,

5.2 Translation into First Order Logic

The translation of Lampson’s specifications in Section 2 into predicate calculus involves
both the basic data types, in this case only maps, and the operations of the defined
types. For our purposes the following specification of polymorphic maps, called = in
Section 2, suffices.

Map = FOLE +
SORTS (o, B)map
0PS .[-]: (e, B)map*x o — B
[-/-]: (e, B)ymap % B * & — (, B)map
\- t (o, B)map + & — (a, B)map
D: (e, f)map * o — form
RULES
mb/a)a'] = ifa' =a — bYm[d] A
a#d = (m\a)[d] = m[d]

14

D(m[b/a),d') < a=a'V D(m,d)
D(m\ea,da') & a#da' AD(m,d)
m=m' & Va.mla] = m'[q]

Instead of returning L in case the map is undefined for some argument as in Section 2,
we have introduced an explicit definedness predicate D. Notice also that Map has an
empty initial model [8] because it lacks constants of type map, e.g. the empty map.
This is a reflection of the fact that Lampson’s memory specifications do not talk about
initial states. Of course the correctness theorems we are about to prove remain valid
in any extension of the current theory which fixes those details.

Translation of the guarded command text into predicate calculus involves two
changes. The specification in Section 2 views the memory as a global variable, In
the applicative context of this section, it becomes an additional parameter to each
operation which is passed into and out of the operation. Operations are modelled by
predicates, which means they are formulae, i.e. constants with result type form. The
translation of the actual code was guided by Nelson’s [26] translation from guarded
commands to first-order formulae expressing the relation between pre and post states.
In some places the resulting formulae were simplified slightly.

It has to be emphasized that we do not introduce a constant L, as in Section 5.1, to
model nontermination. Instead we stick with the simple model of Definition 3, where
divergence of operation r for input ¢ is modelled by r°(c) = {}. As a consequence,
proposition (1) expresses only partial correctness: if r© is empty, the proposition always
holds. To prove loose correctness, the additional proposition

(fle),d) et = 3¢ (e,¢) €

has to be verified. For simplicity we establish only partial correctness.

5.3 Simple Memory

Lampson’s specification of the simple memory translates into

SM = Map +
OPS read:(a, §)map * a % (e, 6)map x § — form
write: (o, §)map * a x § * (a,6)map — form
RULES
read(m,a,m',d) & m'=mAd=m|d
write(m,a,d,m') & m' =ml[d/a]

The operations read and write have become predicates relating the memory state be-
fore (m) and after (m') the execution and the input and output parameters (a, d).
Addresses, data and memory are represented by the type variables e, § and (o, 8§)map
respectively. The polymorphic nature of the specification expresses very clearly that
(on an abstract level) memory is independent of the structure of addresses or data.

5.4 Cache Memory

The translation of Lampson’s cache memory is fairly straightforward:

15

CM = Map +
SORTS (a,6)em = ((e,6)map, (e, 6)map)pair
OPS read': (a,6)em * a % (a,8)em % § — form
write': (o, 8)em x o % § % (@, 6)em — form
load: (o, 6)em % o * (e, 6)em — form
flushl: (a,8)em % (e, 6)em — form
RULES
read'((c,m),a,{c',m"),d) & load({c,m),a,{c',m')) A d = c'[d]
write'({e,m),a,d,(c',m")) & if D(e,a) = ' =¢[d/a]Am' =m
¥ 3c". flush1({e,m),{c",m")) Ac' = c"[d/a] i
load({c,m),a,{c',m')) & if D(c,a) »c'=cAm'=m
M 3e". flushi{{c,m),{c",m")) A ' = c"|m'[a]/a] i
flush1({ec,m),{c',m'")) & 3Fa. D(c,a) Ac' = c\a A m' = m|c[a]/d]

The interface operations are now called read’ and write' to distinguish them from
those in the specification SM. This is necessary because the correctness requirement (1)
talks about both of them at the same time. Correctness is shown by proving that the
following function ¢ is a homomorphism:

I1 = SM + CM +
OPS : (e, 6)map * (e, §)map — (@, 6)map
RULES ‘
v(e,m)[a] = if D(c,a) — c[a] Y m|a] fi

Although ¢ is supposed to produce a mapping, its definition does not actually say
what the result mapping is. Instead, it is characterized implicitly by its behaviour
w.r.t. application. Because maps are extensional (last axiom in Map), this implicit
specification is sufficient.

Correctness, proved in the joint theory I1, is immediate for both read and write:

read ({c,m),a,(c',m'),d) = read(p(c,m),a,p(c',m'),d)
write'((e,m),a,d,(c',m')} = write'(p(c,m),qa,d,p(c',m"))

5.5 Coherent Cache Memory

The coherent cache memory specification in Section 2.4 translates into

CCM = Map +
SORTS (r, e, 6)cache = ((, &)pair,6)map
(m,a,6)cem = ((, e, 6)cache, (o, §)map) pair
OPS read’: (7, a,6)cem * m % o (7, ¢, 6)cem % § — form
write': (7, a,8)cem x m % e % 6 % (7,2, 6)cem — form
load,ld: (m,c, 8)cem x 7 % e % (7, ¢, 6)cem — form
distr: (7, «,6)cache ¥ 7 % o — (7, &, 6)cache
co: (7, a,6)cache — form
RULES
read'({c,m),p,a,{c',m'),d) & load({c,m),p,a,(c',m')) Ad = c'|(p,a)]

16

write'({c,m),p,a,d,(c',m'})) & 3Ic".
if D(c,(p,a)) — ¢" = cAm' = m} flush1({c,m),p,(c",m')) fi A
¢ = distr(c"[d/{p,a)], p, a)
load({c,m),p,a,{c',m')) &
if D(c, (p,a)) = ¢ = ¢ Am' = m}id({c,m),p,a,{c',m')) fi
ld({c,m),p,a,(c',m")) & 3c". flush1({c,m),p,(c",m'}) A
i Vg.~D(¢!, g,0)) — ¢ = lmla) (7, @)
B3q. D(e", (g,) A ¢ = o'[e"[(g,0)]/(p,)]
flushl((c,m),p, (c"ml)) < da. D(c, (pa a’))/\c’ = c\(ﬂ: a)/\m’ = m[CKP, a)]/a]
distr(c,p,a)[(g,b)] = if b= a — c[(p,a)] K e[(g,b)] fi
D(distr(c,p,a),{q,b)) < D(c,(g,b))
co(c) ¢ Va.¥p¥q. D(e,(p,a)) A D(c, (g, a)) = ¢[(p,a})] = ¢[(g,a)]

The type variable 7 is used in places where Lampson’s specification talks about the
set P of processors. Apart from distr, CCM is a fairly direct translation of Lampson’s
imperative specification. Because the result (not the computation!) of distr is deter-
ministic, distr has become a function rather than a relation on caches. It is defined
implicitly by its behaviour w.r.t. application and definedness.

The predicate co specifies coherence. In order to prove that coherence is an invariant
property of this system, we need the following lemmas:

D(e,{p,a)) A D(c,{g,a)) Acolc) = c[{p,a)] = ¢[(q,a)]
co(e) = co(c\(p,a})
(Vg. ~D(e, (g, a)}) Aco(c) = co(c[d/(p,a)])
D(c,(p,a)) Aco(c) = co(c[c[(p,a)]/(q,a}])
co(e) = co(distr(c[d/(p,a})],p,a))

Preservation of coherence by read' and write' can now be proved in a single step. -

co(c) A read'({c,m),p,a,(c',m'),d) = co(c') (3)
co(c) A write'((e,m),p,a,d,{c',m")) = eco(c') (4)

Proving partial correctness of CCM w.r.t. SM involves the homomorphism ¢:

I2 = 8SM + CCM +
OPS ¢: (, o, 6)cache % (o, 6)map — (o, 6)map
RULES
co(e) A D(e, (p,0)) = p(esm)la] = el(p,)]
cole) A (Vp. ~Dies (p,a))) = (e,m)(a] = mla]

Notice that removing the assumption co{c) leads to an inconsistency: if both D(e, {p, a})
and D(e,(g,a)) hold, it would follow that ¢[(p,a)] = ©(c,m)|a] = ¢[(g,a)], which is
consistent only if co(c) holds.

The following additional lemmas were required before ¢ could be shown to be a

homomorphism.

co(c) A co(eld/(p,a))) = (cld/(p,a))ym)b} = if b= a — dB (e,)] &

17

colc) Ab#a = p(c,m|[d/a])[b] = p(c,m)[b]
colc) ANb#a = p(c\(p,a),m)[b] = p(c, m)[b]
colc) Ab#a = p(distr(c[d/{p,a)],p,a), m)[b] = p(c,m)[b]

The correctness staterents for read’ and write’ differ slightly from those for the cache
memory because we have to take coherence into account:

co(c) A read'({c,m),p,a,{(c',m'),d) = read(p(c,m),a,o(c',m'),d)
co(c) A write'({c,m),p,a,d,(c',m")) = write(p(c,m),a,d,p(c',m'))

Lemmas (3) and (4) justify assuming co(c). Remember that the free occurrence of p
means correctness of read and write' is proved for every processor p.

6 State-Based Data Types

The paradigm explored in this section is that of state-based systems. Their canonical
model is that of an automaton. The term data type is in fact too narrow to describe
the class of systems considered. Automata can model arbitrary algorithms. One of
the examples we consider, mutual exclusion, contains very little data but a lot of
concurrency and distribution. Thus the term processes is actually more appropriate.

The following subsection introduces a specific model for distributed systems, in-
put/output automata. They were chosen because they cover both the encapsulation
and the concurrency aspect and come with a well developed theory of refinement which
is very close to the one for applicative data types.

6.1 Input/Output Automata

Input/Output automata were introduced by Lynch and Tuttle [22] for modelling dis-
tributed systems. We review only the very basics of the approach. In particular we
omit any features dealing with fair computations and restrict ourselves to partial cor-
rectness, i.e. safety properties. A complete description of I/O automata can be found
in [23]. :

The interface to an I/O automaton is called an action signature which is a set &
partitioned into input actions in(X), output actions out(X), and internal actions int(XZ).
Output and internal actions are locally controlled, whereas input actions may occur at
any point. The union of input and output actions is called ezternal actions. A collection
of action signatures is called privacy respecting if the internal actions of each of them
are disjoint from the actions of all others.

An I/O automaton A consists of

e an action signature sig(4),
o a set of states states(A)
e a set of start states start(A) C states(A4), and

* a transition relation s 4 §', where s,s' € states(A) and 7 € sig(A).

18

In particular we assume that I/O automata are input-enabled: for every state s and
input action 7 there is a state ' with s —4 s'. To simplify some of the definitions, we
further assume that if 7 & sig(A4), s =4 ¢' holds iff s = &'. This convention extends
to the specifications in later sections were such trivial transitions are left implicit.

fry=m...7m, € sig(A)* and s; 4 s;41 We write s; —+4 8p41. Given a sequence
« and some set S, 4|S denotes the restriction of 4 to § obtained by deleting all elements
from ~ which are not in S.

Concurrency is modelled by the composition of automata. A countable collection
%, 1 € I, of action signatures is called compatible if it is privacy respecting and output
signatures are pairwise disjoint. Their composition 3 = [[;c; &; is defined by

o in(Z) = Uier in(Z:) — Uiy out (),
o out(X) = Usey out(%;), and
o int(T) = Usier int(Z;).

The composition P = [J;e; A; of a countable set of I/O automata A;, + € I, with
compatible action signatures is defined by ©

. sig(P) = ITier 5,
states(P) = Tl states(4:),

start(P) = [];er start(4;), and

s —p & iff (i) 4, ¢'(¢) holds for all § € I.

The distinction between hidden and visible sorts made in Section 5 is unnecessary
for I/O automata because all hidden data is concealed in the state. On the other hand,
the distinction between internal and external actions serves exactly the same purpose:
internal actions are invisible to the environment, i.e. to automata running in parallel.

Implementations of one I/O automaton by another are defined in terms of traces
of external, i.e. visible, actions. A sound proof method for implementations are again
simulations, called posstbilities mappings in {22,23]. Given two I/O automata C and A
with the same external actions I., a relation C C states(C) x states(A) is called an
(I/O automaton) simulation if

* Ve € start(C) 3a € start(A). ¢ C a, and
o Vresig(C).aJec—"occ = 3y€sig(d),a. y|S. =78 Aa -1, d Do

Soundness of simulations w.r.t. a trace-based definition of implementation is proved
in [22]. However, simulations are not complete, as shown in [25] and Section 7. For a
detailed treatment of completeness see Merritt [25].

In the case studies below the situation is somewhat simplified: any state of A is a
start state, C is a total function on reachable states of C, called ¢, and A does not
have any internal actions. Then ¢ is a simulation if

Vr € sig(C). ¢ g ¢ = p(c) —o4 p(c).

This is the usual definition of an automaton homomorphism.

Sstates(P) and start(P) are defined in terms of the ordinary cartesian product.

19

6.2 Simple Memory

The interface of the simple memory changes considerably when going to a state-based
model. The reason is that in an applicative context, passing a parameter to an operation
and receiving the return value is an atomic action insofar that no interference is possible.
In a state-based model, input and output have to be separated because they constitute
independent communications. Hence read is split into read4(a), the environment’s
request for the datum stored at address a, and readp(d), the memory’s response to
that request. Thus readp(d) fulfills two purposes: it returns the requested datum d
and tells the environment that the memory is again “enabled”, i.e. further requests
can be dealt with. Since writing to memory does not produce any output, an explicit
acknowledgement is introduced. Hence there are two further actions: write(a, d), which
does the obvious thing, and written, which tells the environment that the previous write
action has been completed successfully. Obviously reads and write are input and readp
and written output actions of the memory module.

The introduction of explicit acknowledgement actions is symptomatic of the fact
that the memory module is not intended to work properly in any arbitrary environment
but only if a certain protocol is followed. Acknowledgement actions are means of
establishing the required protocol. In our case the protocol requires that the action
trace conforms to the following regular expression:

((reada readp) | (write written))* (5)

This means the memory can only deal with one read or write request at a time. If the
environment issues two consecutive read’s without waiting for an answer to the first
one, the resulting behaviour is not defined. The following specification makes these
informal considerations precise.

Acts = SORTS (a,6)action
OPS reads : a — (e, 6)action
readp : 6 — (a, 6)action
write: a % § — (a,6)action
written : (o, 6)action

SMIO = Map + Acts +
SORTS (a)entrl,
(o, 6)state = ((a)cnirl + (o, §)map)pair
OPS td,ack : (a)cntrl ‘
rd: a— (a)enirl
<oy -y => 1 (@, 6)state * (a, 6)action * (e, §)state — form
RULES
<(id,m),ready(a),(s',m")> & ' =rdla) Am'=m
<(rd(a),m),readp(d),(s',m")> & d=mle]As =tdAm' =m
<(id,m), write(a,d), (s',m')> & &' =ack Am/ = m|d/a]
<(ack,m),written,(s',m)> & & =idAm'=m
The state of the I/O automaton is a pair of a control state (a)cntr! and a memory
(@, 6)map. The control state enforces the right sequence of events, the memory contains

the data. The predicate <(s,m),, (s',m')> is a linear form of (s, m) —= (s',m').

20

Notice that SMIO specifies the transition relation only partially. For example
<(rd(a),m),read4(b),(s',m')> can be neither proved nor disproved. The reason is
that issuing a second request reads(b), while the automaton has not yet answered
read4(a), violates protocol (5). Thus the specification needs to say nothing about it.

Looking at the specification of write, one may wonder why written is necessary. The
effect of write is instantaneous and the automaton could have gone back into the idle
state immediately, ready for the next request. The inclusion of written was a conscious
design decision, anticipating that refinements might take rather longer to carry out
a write. In that case further requests could interrupt a sequence of internal actions
completing the write. That is in fact what happens in the next refinement step.

6.3 Cache Memory

The I/O automaton implementation of the cache memory is more complex than Lamp-
son’s specification. It consists of two separate automata in charge of the cache and
the memory respectively. Figure 2 shows their interconnection. The direction of the
arrows indicates whether an action should be considered input or output with respect
to a particular automaton. The environment communicates only with the cache. If

ready
load
c oady M
readp A E
G loadp M
write 0]
H
E clean R
written Y

Figure 2: Cache Memory I/O Automaton

possible, all read and write requests are satisfied immediately. Only if an address is not
in the cache, does the latter communicate with the memory. Data is loaded into the
cache via load4 /loadp and written back via c¢lean, all of which are internal actions.

CMActs = Acts +
OPS load, : o — (e, 6)action
loadp : 6 — (a,6)action
clean: o % § — (o, 6)action

In addition we need the following partial specification of sets:

Set = FOLE +
SORTS (a)set
OPS - € .:ax(a)set = form

21

et o= — - (a)set ¥ a — () set
RULES

z€(s+y) ¢ z€EsVr=y

zE€E(s—y) & TESATH#y

s=t & Ve.z€s& et

The last law, known as set extensionality, is only used in the section on mutual exclu-
sion.
An now, the cache automaton:

CI0 = Map + Set + CMActs +
SORTS (e, 6)centrl,
(e, 6)cstate = ((, 8)centrl, (o, 8)map, (a)set)triple
OPS td,,ack, : (a,8)centrl
rde,ld, : o — (e, 6)centrl
wre: a% 6 — (o, 6)centrl
<oy-y=>: (o 6)cstate * (a, 6)action % (a, 6)cstate — form
RULES
<(s,c,ds),reads(a),C'> & s=1d, A C' = (rd,(a),c,ds)
<(s,¢,ds),readp(d),C'> &
Ja. s = rd.(a) A D(c,a) A d = cla] A C' = (id,, ¢, ds)
<(s,c,ds),loads(a),C'> &

s = rd,(a) A ~D(c,a) A3b. D(c,b) Ab & ds A C' = (ld(a),c\b,ds)
<(ld(a),¢,ds),loadp(d),C'> & C'= (rd.(a),c|d/a],ds)
<(s,c,ds),write(a,d),C'> & s=1d,A

if D(e,a) — C' = (ack,, c[d/a],ds + a)

Mif vb. D(c,b) = b € ds = C' = (wr.(a,d),c,ds)

K 3b. D(c,b) Ab & ds A C' = {ack., (c\b)][d/a],ds + a) fi i
<(s,c,ds), written,C'> & s =ack, A C' = (id,, ¢c,ds)
<(s,¢,ds),clean(a,d),C'> & D(c,a) Ad=cla]Aa €& dsA

((s =id. AC' = (id.yc,ds — a))V

((3b. s = rd.(b) A ~D(e,b)) A (Vb. D(e,b) = b € ds)A

C' = (s,¢,ds — a))V
(Tb,e. s = wre(b,e) A C' = (ack., (c\a)[b/e],ds — a + b))

The state of the cache is a triple: a control state, a cache, and a set of “dirty” addresses.
An address is termed dirty if it maps to different data in cache and memory. In that
case the cache contains the correct datum which must be written back to memory before
the address is overwritten. Keeping track of which cache addresses are dirty reduces
communication between memory and cache: clean addresses can be overwritten because
they are associated with the right datum in memory.

The transitions under reada, readp and writien are straightforward. The load4(a)
action is triggered by reads(a) in case a is not in the cache. The action write(a,d)
can lead to three different responses: if a is in the cache, its contents is overwritten
immediately; if it is not in the cache, but there is a clean address b, b is deleted from
the cache and (a,d) is added instead. In the worst case, a is not in the cache and all
cache addresses are dirty. This prompts the automaton to go into the state wr.(a,d),

22

which forces a clean action. The action clean(a,d) is triggered by the presence of a
dirty address a in the cache. It can occur in three circumstances: spontaneously, if the
automaton is currently idle, or when trying to read or write a new address while all
cache addresses are dirty.

The alert reader will have spotted that CIO does not specify an I/O au-
tomaton because the transition relation is not input-enabled: the specification of
<(s,c,ds),reads(a), C'> says that the input action reads can only occur if the au-
tomaton is in the idle state. Why did we not write <(id,, ¢, ds),read4(a),C'> instead,
just as in SMIO, specifying a partial transition relation? Because we would not have
arrived at an implementation of SMIO. The reason for this is rather subtle. If ready
occurs when the cache is not in state id,, it may be thrown into an arbitrary state,
including one which does not satisfy the invariant relating dirty set, cache, and memory
(see Inv below). But in those states the cache memory stops to behave like a simple
memory: it may for example lose data.

This problem is a symptom of the fact that we try to implement a system that
is only supposed to work in certain environments, namely those conforming to the
protocol (5). A simple solution is to internalize the environment assumptions by adding
the environment as a separate I/O automaton to the original specification. Refinement
steps would change the memory but not the environment module. One could then show
as a lemma that the cache, which is directly driven by the environment, is always in
state 1d, when a read request arrives.

The memory automaton is much simpler than the cache and bears a strong resem-
blance to SMI0.

MIO = CMActs +
SORTS (a)mentrl,
(o, 8)mstate = ((o)mentrl, (o, §)map)pair
OPS td,, : (a)mentrl
ldy, : a — (a)mentrl
<ey=y=> 1 (@, 6)mstate * (o, 6)action * (o, §)mstate — form
RULES
<(tdm,m),loads(a),m'> & m' = (ld,.(a), m)
<(s,m},loadp(d),m'> & 3a.s =ld,(a) Ad=m|a Am' = (idy, m)
<(idpm,m),clean(a,d),m'> & m' = (id,,m[a/d))

In contrast to MIO there is no acknowledgement action corresponding to written. At
this stage of the development it is not necessary because clean happens instantaneously.
Further refinement steps may force the addition of such an acknowledgement action,
but for the time being we stay with the simpler model.

The complete cache-memory automaton is the composition of CI0 and MIO:

CMIO = CIO + MIO +
SORTS (a,6)cmstate = ((a, 6)cstate, (o,)mstate)pair
OPS <.,.,.> :(a,b)cmstate * (a, 6)action * (o, 8)cmstate — form
RULES
<(e,m),m,{c',m'Y> & <ec,mc>A<m,T,m'>

In order to prove correctness some further definitions had to be introduced.

23

Inv = CMIO +
OPS inv: (a,6)cstate % (o, 6)mstate — form
con : (a,6)map * (a)set * (o, 6)map — form
[(e, 6)centrl — (a)mentrl
RULES
inv((s,c,ds), (t,m)) &
con(c,ds,m) A (Va. s = ld.(a) = —~D(c,a)) At = f(s)
con(e,ds,m) & Va.D(c,a) Aa & ds => c[a] = m][a]
f(id.) = f(rd.(a)) = f(wrc(a,d)) = f(ack.) = idp, f(ld:.(a)) = ldn(a)

The invariant relates the states of the cache and the memory automata and consists
of three parts. The most important one, con, characterizes clean addresses: if a cache
address is not in the dirty set, it is mapped to the same datum by both cache and
memory. The second conjunct asserts that the cache automaton is in the load state
only if an address isn’t in the cache. The last one, t = f(s), asserts that the memory
automaton’s control state is a particular function of the cache automaton’s control
state. Start states of CMIO are identified with those meeting the invariant.

The following lemmas show how one of the invariants is preserved under manipula-
tions of the cache and the dirty set.

con(c|d/a],ds + a,m)

con(c\a,ds — a,m)

con(c,ds,m
con(e,ds,m
con(c\a,ds, m)
~D(c,a) A con(e,ds,m
D(e,a) A con(c,ds,m
D(c, a) A con(c,ds,m)

)
)

con(c,ds, m)
) con(clmlal/a}, ds, m)
)

con(c,ds — a,m[c[a]/a))

L R

con(c\a,ds — a,m|c[a]/a])
They enable us to prove that inv is in fact invariant:
inv(e,m) A L{c,m),m, {c',m')> = inv(c',m’)

Finally we come to the homomorphisms mapping concrete to abstract states. Be-
cause the state of the simple memory automaton is a pair, two separate functions are
specified, one for each component.

Hom = SMIO + Inv +
© OPS ¢, : (e, 6)centrl — (o)cntrl
©Om : (@, 8)centrl * (o, 6)map * (o, 6)map — (a, 6)map
o : (a,6)map * (o, 6)map — (e, 6)map
RULES
0, (id.)=td, p,(rd.(a))=p,(ld:(a))=rd(a), v,(wr:(a,d))=p,(ack;)=ack
©m(ide, ¢, m)=pm (rd:(a), ¢, m)=pm(ld.(a), c, m)=pn(ack,, ¢,m)=p(c, m)
om(wr.(a,d),c,m) = p(c[d/a],m)
©(c,m)[a] = if D(c,a) — c[a]¥m[a] fi
With the help of two further lemmas

p(c[d/a],m) = p(c,m)[d/a]
con(e,ds,m) A D(c,a) Aa g ds = p(c\a,m) = p(c,m)

24

the main theorem, mapping CMIO to SMIO, can be proved:

inv{(s,e,ds), (t,m)) A <((s,c,ds),(t,m)),m, ((s',¢,ds"), (t',m'})>
= <(pa(5), om (s, 6,m)), 7, (0 (8'), om (s, ¢, m')) >

There are two points in the axiomatizations that have been swept under the carpet:
equality and exhaustion axioms. More precisely, the specifications also need to state
that the actions and states defined are the only ones, and which states and actions are
equal or unequal. The former is simply a disjunction, for example s = id,, V Ja.s =
ld,,(a) for s of type (a)mentrl. However, stating all possible equalities and inequalities
between n constructors requires n? axioms, which the reader is spared.

6.4 Mutual Exclusion

A development of coherent caches in the I/O automaton model is considerably more
complicated than the applicative version in Section 5.5 because one cannot ignore in-
terference any longer. In fact, it is not even clear in what sense a distributed version
of Lampson’s original specification implements the simple memory. For those reasons
our last example focusses on an archetypical problem in distributed computing: mutual
exclusion. Any implementation of the coherent cache memory scheme must contain a
solution to this problem because the memory is a centralized resource shared by all
Processors.

In our formulation of the mutual exclusion problem there are four kinds of actions,
indexed by some set ¢, the customers to be served: reg(s), do() and rel(s) indicate
the request, the usage and the release of the service by customer 7; grant(s) grants the
service to customer 1.

MutexActs = SORTS (t)action
OPS req,grant,do,rel : v — (t)action

The top level specification defines all legal sequences of these actions. All four actions
are output actions of Mutex.

Mutex = Set + MutexActs +
SORTS (i)mentrl,
(¢)mstate = ((t)mentrl, (i) set)pair
0PS idle: (1)mentrl
active : ¢ — (t)mentrl
<-y-,->: (t)mstate * (t)action * (t)mstate — form
RULES
<(a,w),req(i), (¢’ w')> & idwAa#active(i)Aa =anw =w+1
<(a,w),grant(t), (a',w')> & a=1idleAi € wAd = active(i)Aw' = w—1
<(a,w),do(s),(d',w'")> & a=active(i)Ad =arw =w
<{a,w),rel(?), (d',w')> & a=active(i) Ad =idleA w' =w

The state of the automaton consists of a control state which is either idle or records
the currently active customer, and a set of waiting customers. The specification is
extremely liberal in that either individual processes may get stuck on the waiting list

25

because of an unfair selection strategy, or one customer may grab the service, never to
release it again.

The distributed implementation of Mutex involves busy waiting. Each customer ¢
is modelled by the finite state I/O automaton in Figure 3. The up and down arrows
indicate output and input actions respectively. In addition to the reg(z) action, which

Figure 3: I/O Automaton for Customer &

just announces the intention of grabbing the service, there is a new action ¢ry(z) which
is repeatedly performed until the service is granted.

MutexActsl = MutexActs + OPS try:¢ — (t)action

The algebraic specification Customers embodies the composition of all customer au-
tomata into one. The state is a map from customers to control states.

Customers = MutexActsl +
SORTS centrl
OPS id.,watt, act, : centrl
<oy =y ->: (1, centrl)map * action * (i, centrl)map — form
RULES ‘
<c,req(t),e'> & c[f] = id. A ¢ = c[wait/i]
<ec,try(i),¢'> & cffj=waitAc' =¢
c[i] = wait = <e,grant(i),¢'> & ' = clact. /1]
<e,do(f),c'> & cfi]=act, A =¢
<e,rel(i),c'> & cli] = act, A ' = c[id, /1]

The automaton granting access to the service is depicted in Figure 4. The diagram is
slightly misleading as there is a state gr(7) for each customer 1.
The corresponding algebraic specification is

Service = MutexActsl +
SORTS (v)sentrl
OPS id,,act, : (t)scntrl
gr: v — (t)sentrl
<eymy=> 1 (t)sentrl & action x ()sentrl — form

26

Figure 4: I/O Automaton Granting Access

RULES
<td,, try(i),s'> & & = gr(i)
<gr(i),try(y),s'> & & =gr(?)
<act,, try(s),s'> & § = act,
<s,grant(i),s'> & s=gr(7) As' = act,
<act,,rel(i),s'> & & =1d,
<s,req(i),s'> & s'=s
<s,do(t),s'> & =3¢

The complete cache-memory automaton is the composition of Customers and Service:

Mutexl = Customers + Service +
SORTS (v)state = ((¢, centrl)map, (t)sentrl)pair
0PS <.,-,->: (t)state x (t)action (L)state — form
RULES
<{e,8),m, (', &) > & <e,mc'>A<s,m, 8>

The correctness of Mutex1 depends on a number of invariants:

Inv = Mutexi +
OPS inv : (i, centrl)map * (¢)sentrl — form
con : (i, centrl)map — form
RULES
inv(e,s) & con(c) A (Vi. s=gr(i) = c[i]=wait) A (s # act, = Vi.c[i] # act,)
con(c) & Vi,j. cli] =actAclf]=act, >i=7j
Consistency (con) says that no two customers can be active at any one time. The
other two conjuncts of the invariant assert that if the service is about to be granted to
customer ¢, he must be waiting for it, and that no customer can be active if the service
isn’t.
With the help of the following simple lemmas,
con(c) A s # act, = con(c[s/?])
(Vi. c[¢] # act.) = con(clact,/i])
con(c)Acli] = act. = c|j]#act, & j#1¢

27

invariance of tnv is readily established:
inv(e, s) A (e, s),, (c', §')> = inv(d,s')

The need for these invariants becomes apparent during the correctness proof of Mutex1
based on the two homomorphisms ¢, and ¢, which produce the two components of
the abstract state, the control state and the waiting set respectively.

Hom = Mutex + Mutexl +
OPS ¢, : (¢, centrl)map — (t)mentrl
Puw : (¢, centrl)map — (1)set
RULES
1 € py(c) & cfi] = wait
con(c) A (Vi.c[t] # act,) = ©.(c) = idle
con(c) A ci] = act, = p.(c) = active(?)

The two lemmas
con(c) = .(c) = active(i) & ¢[t] = act,
c[i] # act, A s # act, Acon(e) = pce[s/i]) = pc(c)
finally enable us to prove

inv(c, s) A (e, s),m, (¢',8"y> = <(p,(c),ou(c)), T, (ws(c'), pulc))>

7 Applicative versus State-Based

Whether a data type should be specified as applicative or state-based is a design de-
cision. It is influenced by the anticipated pattern of usage, the environment of the
eventual implementation, resource and reliability considerations. Certain implemen-
tation languages may not offer any choice, one way or the other. If there is a choice
as in CLU or Standard ML, applicative types can cause excessive copying whereas
state-based types bring the dangers of changes by side effect with them. Whatever the
eventual choice, it must be part of the specification because it affects whether some
implementation is correct or not.

A comparison of applicative and state-based formalisms needs a common frame-
work. We use an imperative language where procedures can have side effects. Data
type operations are procedures p(s,...), where s is the data type state that may change
as a side effect. The other arguments are of visible type. This set up corresponds to
the automaton-based formalism of Section 6 provided data type states cannot be copied
(duplicated). Otherwise we are in the applicative realm of Section 5: the effect of an op-

-eration p(s,...) that returns a new hidden value s' can be modelled by &' := s;p(¢',...).

As an example we look at the data type of sets with an operation pick. The
specification A represents sets by lists; pick(s) returns an arbitrary element of s and
removes all its occurrences from s, changing s by side effect. The implementation C
is identical to A except that it always picks the first element from the list. The only
assumption about the other operations is that any permutation of a list that A can
generate can be generated by C.

28

If sets cannot be copied, A and C are behaviourally indistinguishable. If sets can be
copied, and s; and s; are two different copies of the same set, pick(s:) and pick(s;) will
result in the same elements being picked under interpretation C, but not necessarily
so under A. C is still an implementation of 4, but not vice versa. A formal demon-
stration of implementation or non-implementation requires a translation to applicative
and automaton-based formalisms which is left to the readers intuition.

In the applicative world, C implements A because the identity relation on lists is
a simulation between C' and A. A does not implement C' because one can easily show
that there doesn’t exists a simulation in the other direction. In the state-based view,
simulations are still a sound implementation criterion (which is why C still implements
A) but not a complete one (because there is no simulation between A and C). The
issue of completeness is resolved in [15] and [25] by the introduction of the dual of
simulation called an “upwards simulation” and a “prophecy mapping” respectively. It
can be shown that the relation that pairs two lists iff they contain the same set of
elements is an upwards simulation. Thus A also implements C. ,

A different method of obtaining completeness in the state-based case was studied
by Abadi and Lamport [1]. They restrict their simulations to be functions, i.e. homo-
morphisms, but allow the introduction of auxiliary “history” and “prophecy” variables
in the implementation during the correctness proof.

References

(1] M. Abadi, L. Lamport: The Existence of Refinement Mappings, Proc. 3rd Sym-
posium Logic in Computer Science (1988), 165-175.

[2] R.S. Boyer, J S. Moore: A Computational Logic Handbook, Academic Press (1988).

[3] M. Broy: A Theory for Nondeterminism, Parallelism, Communication, and Con-
currency, Theoretical Computer Science 45 (1986), 1-61.

[4] M. Broy: Eztensional Behaviour of Concurrent, Nondeterministic, Communicating
Systems, in Control Flow and Data Flow: Concepts of Distributed Programming
(M. Broy, ed.), Springer Verlag (1985).

[8] M. Broy, B. Méller, P. Pepper, M. Wirsing: Algebraic Implementations Preserve
Program Correctness, Science of Computer Programming 7 (1986), 35-53.

[6] R. de Nicola, M.C.B. Hennessy: Testing Equivalences for Processes, Proc. 10th
ICALP, LNCS 154 (1983), 548-560. Full version in Theoretical Computer Science
34 (1984), 83-133.

[7] E.W. Dijkstra: A Disciplin of Programming, Prentice-Hall (1976).

[8] H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 1, EATCS Monograph
on Theoretical Computer Science, Springer Verlag (1985).

[9] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer: Principles of OBJ2,
Proc. 12th ACM Symposium on Principles of Programming Languages (1985),
52-66,

29

[10] S.J. Garland, J.V. Guttag: An Overview of LP, The Larch Prover, Proc. 3rd Intl.
Conf. Rewriting Techniques and Applications, LNCS 355 (1989), 137-151.

[11] Michael J.C. Gordon: HOL: A Proof Generating System for Higher-Order Logic,
in: Graham Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Ver-
ification and Synthesis, Kluwer Academic Publishers (1988), 73-128.

[12] G. Hansoul: Systemes Relationelles Et Algebres Multiformes, Ph.D. Thesis, Uni-
versité de Liege, 1979/80.

[13] R. Harper: Introduction to Standard ML, Report ECS-LFCS-86-14, Dept. of Comp.
Sci., Univ. of Edinburgh, 1986.

[14] C.A.R. Hoare: Proof of Correctness of Data Representation, Acta Informatica 1
(1972), 271-281.

[15] J. He, C.A.R. Hoare, J.W. Sanders: Data Refinement Refined, Proc. 1st European
Symposium on Programming, LNCS 213 (1986).

[16] M.C.B. Hennessy: Powerdomains and Nondeterministic Recursive Definitions,
Proc. Intl. Symposium on Programming, LNCS 137 (1982), 178-193.

[17] M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concurrency, J.
ACM Vol. 32, No. 1, January 1985, 137-161.

[18] C.B. Jones: Systematic Software Development Using VDM, Prentice-Hall Interna-
tional (1986).

[19] R. Kuiper: Enforcing Nondeterminism via Linear Temporal Logic Specifications
using Hiding, Proc. Coll. on Temporal Logic and Specification, Altrincham, 1987,
to appear in LNCS.

[20] B. Lampson: Specifying Distributed Systems, Proc. 1988 Marktoberdorf Summer
School, Springer Verlag.

[21] B. Liskov, R. Atkinson, T. Blum, E. Moss, C. Schaffert, R. Scheifler, A. Snyder:
CLU Reference Manual, LNCS 114 (1981).

[22] N.A. Lynch, M.R. Tuttle: Hierarchical Correctness Proofs for Distributed Algo-
rithms, Proc. 6th ACM Symposium on Principles of Distributed Computing, Van-
couver, August 1987, 137-151.

[23] N.A. Lynch, M.R. Tuttle: An Introduction to Input/Output Automata, Report
MIT/LCS/TM-373, Lab. for Computer Science, MIT (1989), to appear in the
CWI Quaterly, September 1989.

[24] T.S.E. Maibaum, Pauolo A.S. Veloso, M.R. Sadler: A Theory of Abstract Data
Types for Program Development: Bridging the Gap?, Proc. TAPSORT 1985, LNCS
186, 214-230.

[25] M. Merritt: Completeness Theorems for Automata, this volume.

30

[26] G. Nelson: A Generalization of Dijkstra’s Calculus, Research Report 16, Digital
Equipment Corporation, Systems Research Center, April 1987.

[27] T. Nipkow: Nondeterministic Data Types: Models and Implementations, Acta
Informatica 22 (1986), 629-661.

[28] T. Nipkow: Are Homomorphisms Sufficient for Behavioural Implementations of
Deterministic and Nondeterministic Data Types?, Proc. 4th Symposium on Theo-
retical Aspects of Computer Science, LNCS 247 (1987), 260-271.

[29] T. Nipkow: Behavioural Implementations Concepts for Nondeterministic Data
Types, Ph.D. Thesis, Tech. Rep. UMCS-87-5-3, Dept. of Comp. Sci., The Univ. of
Manchester, 1987.

[30] T. Nipkow: Observing Nondeterministic Data Types, Proc. 5th Workshop on Spec-
ification of Abstract Data Types (1987), LNCS 332, 170-183.

[31] T. Nipkow: Eguational Reasoning in Isabelle, Science of Computer Programming
12 (1989), 123-140.

[32] T. Nipkow: Term Rewrsting and Beyond - Theorem Proving tn Isabelle, to appear
in Formal Aspects of Computer Science.

[33] D.M.R. Park: Concurrency and Automata on Infinite Sequences, LNCS 104 (1981).
[34] L.C. Paulson: Logic and Computation, Cambridge University Press (1987).

[35] L.C. Paulson: Isabelle: The nest 700 Theorem Provers, in: P. Odifreddi (editor),
Logic and Computer Science, Academic Press (1989), in press.

[36] L.C. Paulson: The Foundation of a Generic Theorem Prover, Journal of Auto-
mated Reasoning (1989), in press.

[37] O. Schoett: Ein Modulkonzept in der Theorie Abstrakter Datentypen, Report IfI-
HH-B-81/81, Universitdt Hamburg, Fachbereich Informatik, 1981.

[38] O. Schoett: Data Abstraction and the Correctness of Modular Programming, Ph.D.
Thesis, Tech. Rep. CST-42-87, Dept. of Comp. Sci., Univ. of Edinburgh, 1987.

[89] D.S. Scott, C.A. Gunter: Semantic Domains, to appear in Handbook of Theoretical
Computer Science, North-Holland.

[40] R.J. Shoenfield: Mathematical Logic, Addison-Wesley (1967).

[41] M.B. Smyth: Powerdomains, Journal of Computer and System Science 2 (1978),
23-36.

[42] J.M. Spivey: The Z Notation: A Reference Manual, Prentice-Hall International
(1989).

31

