
Technical Report
Number 171

Computer Laboratory

UCAM-CL-TR-171
ISSN 1476-2986

Some types with inclusion properties in
∀, →, µ

Jon Fairbairn

June 1989

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 1989 Jon Fairbairn

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Some Types with Inclusion Properties in ∀,→, µ

June 1989

Jon Fairbairn
University of Cambridge Computer Laboratory,

Corn Exchange Street,
Cambridge CB2 3QG,

United Kingdom.

Telephone +44 223 334688, Telex 81240 (CAMSPL-G)
Mail address: jf@UK.AC.Cam.CL

Abstract
This paper concerns the ∀,→, µ type system used in the non-strict functional pro-

gramming language Ponder. While the type system is akin to the types of Second Order
Lambda-calculus, the absence of type application makes it possible to construct types
with useful inclusion relationships between them.

To illustrate this, the paper contains definitions of a natural numbers type with
many definable subtypes, and of a record type with inheritance.

1



2 Some Types with Inclusion Properties in ∀,→, µ

1. Introduction

This paper is an exploration of the type system used in the functional programming
language Ponder [Fairbairn 1982]. Ponder is a very small language in the sense that it has
few built in constructions. As befits such a language the type system is also small, having
only three operators.

The type system resembles that of MacQueen, Sethi and Plotkin [MacQueen 1982,
1984], but has no ground types, and no type conjunction operator. Moreover there are no
union types, no record types and, properly speaking, no number types (although imple-
mentations use numbers and characters from the concrete machine for efficiency).

Ponder thus bears a close resemblance to the Second Order Lambda-calculus [Rey-
nolds 1974]. The chief difference from the SOL type system is that types are statements
about expressions and have no effect on their meaning. Polymorphism is thus a property of
an expression, so type abstraction is replaced by quantification, and there is no explicit type
application in the language: polymorphic objects are tacitly instantiated. Thus a Ponder
programme is considered to be an untyped lambda-term, the type information being added
as a method of avoiding certain classes of mistake. For example the identity function on
integers is considered to be the same object as the identity function on characters. This
corresponds to the way that the language is given a dynamic semantics — the evaluation
of a Ponder programme corresponds to the reduction of the untyped lambda term obtained
by erasing all type information from the programme.

The remainder of this section describes the notation used in the paper. For present
purposes it is not necessary to introduce the declaration structure of the language, and
rather than use Ponder syntax for expressions, I shall use a more familiar λ-notation.

1.1. Expressions

Expressions have the following abstract syntax:

Expression =











var Variables
λvar .Expression Function abstractions
Expression Expression Applications
Expression↾Type Cast expressions

This is essentially the normal syntax for untyped λ-terms except for the introduction of cast
expressions (and the use of arbitrary words in italics as variable names). An expression e
is not considered to have a meaning unless e : t (“e has type t”) for some type t is derivable
from the rules given in the appendix. Note that e↾t is meaningless unless e : t is derivable.

1.2. Types

The abstract syntax of types is as follows:

Type =



















v Type variables
Type → Type Functions
∀v.Type Quantified types
µv.Type Recursive types
G[Type, . . . ,Type] Generators



3

Generators are just user defined parameterised type constructors, and as such add nothing
to the type structure.

1.2.1. Type Variables

Type names and variables will be words written in sans-serif, eg T, t, Long-name, . . ..

1.2.2. Function Types

The simplest type constructor is that of the function from one type to another, which is
written using ‘→’. Thus if Parameter and Result are both types, then Parameter → Result

is the type of functions that, when applied to objects of type Parameter yield objects of
type Result. Note that → associates to the right, so that a → b → c means a → (b → c).

1.2.3. Quantifiers

The universal quantifier, ∀, introduces polymorphic types. If we can derive x : ∀v.T[v],
then we can derive x : T[t] for any type t (this fact is expressed by rules R3 and V 5 of the
appendix).

For example, λx.x : ∀v.v → v, and hence if 3 : Int we haveλx.x : Int → Int gives
(λx.x) 3 : Int.

A note about binding: the scope of a variable introduced by a quantifier extends as far to
the right as possible, but is limited by parentheses, so ∀t.(t → t) → Bool means the same
as ∀t.((t → t) → Bool), and takes as argument any function with the same parameter and
result types, whereas (∀t.t → t) → Bool demands that its argument has type ∀t.t → t. For
the sake of convenience, ∀t.∀u . . . may be written ∀t, u . . .

1.2.4. Recursive Types

Recursive types are introduced by means of the µ operator. Such a type satisfies the
equation µv.t = t[µv.t/v], so that µl.t × l = t × (µl.t × l) = t × t × (µl.t × l) = . . .

2. Simple relationships between types

As part of the rules for deriving typings of terms, the appendix includes a definition

of the relationship ≥ between types†. a ≥ b means that every object of type a is also an
object of type b.

As a first illustration of the inclusion properties, we can consider the type

Bool
△

= ∀t.t → t → t,

in which true
△

= λt.λf.t and false
△

= λt.λf.f . Observe that true also has type TrueType
△

=
∀t, f.t → f → t and false has type FalseType

△

= ∀t, f.t → f → f. Furthermore, one cannot
derive true : FalseType or false : TrueType, but we do have that TrueType ≥ Bool and
FalseType ≥ Bool.

† The (perhaps counter intuitive) use of ≥ rather than ≤ here is Milner’s [Milner 1978]



4 Some Types with Inclusion Properties in ∀,→, µ

Now an expression of the form ((λb.e)↾TrueType → t) can only be applied to objects
of type TrueType, for example true. This corresponds to a restriction of the applicability
of the expression to a subtype of Bool.

2.1. Pairs

The natural number type that I wish to define relies on pairs, so it is useful to include
a definition of pair types here.

Pair [l, r] △

= ∀res.(l → r → res) → res

In which pairs are represented as functions that may be applied to true or false to return
their first or second component respectively. The pair constructing function pair is thus

λl.λr.λu.u l r : ∀l, r. l → r → ∀res.(l → r → res) → res

and the functions to take the left and right elements of a pair are left
△

= λp.p true and
right

△

= λp.p false.
It is nicer to write Pair [a, b] as a × b, with a × b × c meaning a × (b × c)

2.2. Infinite Lists

Another type necessary for the natural number type is infinite lists, given by

InfList[t] △

= µv.t × v

Observe that µv.t×v = t×(µv.t×v) = t×(t×(. . .)) and that ∀v.t×(t×v) ≥ t×(t×InfList[t]).

3. Natural numbers

While one could use Church numerals having the type ∀t.(t → t) → t → t, this
type does not divide conveniently into subtypes. In this section I will present a natural
numbers type that divides into a wide collection of subtypes. The natural number n will
be represented by the nth projection from infinite lists:

Nat
△

= ∀t.InfList[t] → t

We shall write n for this representation of the natural number n. Informally, n :
(e0, (e1, . . . (en, (en+1, . . .)))) 7→ en. So we have that 0 △

= λl.left l and 1 △

= λl.left (right l).
But now observe that 0 : ∀a, b.(a×b) → a, which ≥ Nat. Similarly 1 : ∀a, b, c.(a×b×c) → b,
and this ≥ Nat. In general n : ∀t0, . . . tn, u.(t0 × . . . × tn × u) → tn. We shall refer to this
type for each n as Singlen, and for every n, Singlen ≥ Nat. Furthermore, both 0 and 1 have
the type ZeroOne

△

= ∀b, c.(b × b × c) → b. So ZeroOne is a subtype of Nat containing 0
and 1, but not 2, because Single2 6≥ ZeroOne.



5

The successor function is given by succ
△

= λn.λl.n(right l) : ∀a, b, c.(a → b) → (c ×
a) → b. Notice that succ : Singlen → Singlen+1. It is also worth looking at the predecessor

function defined by pred
△

= λn.λl.n (⊥, l) : ∀a, b, c.(a × b → c) → b → c, where ⊥ is
generated by, for example, the fixpoint of the identity.

Clearly any finite subset S of the natural numbers can be represented as a type
TS

△

= ∀t0, . . . , tn, u, r.(V0 × . . . × (Vn × u)) → r, where n is the largest number in S, and
Vi is ti if i 6∈ S and r if i ∈ S. Again TS ≥ Nat, so if n ∈ S, then n : TS. Certain other
subsets can be represented, for example the set of even natural numbers corresponds to
the type ∀a, b.(µt.a × (b × t)) → a.

4. Records

Some languages (such as Cardelli’s Amber) have record types with ‘multiple inheri-
tance’ [Cardelli 1985]. A record type is written Rec{f1 : t1, . . . , fn : tn}, which stands for
a record type with fields named f1 . . . fn of types t1 . . . tn respectively. A value of such a
type is written {f1 = e1, . . . , fn = en} with selection operations fi Of {f1 = e1, . . . , fi =
ei, . . . , fn = en} = ei : ti. The order in which the fields are presented is immaterial, so for
example {snoo = 1, izzy = 2} = {izzy = 2, snoo = 1}.

Inheritance just means that we have

Rec{f1 : t1, . . . , fn : tn, g1 : u1, . . . , gm : um} ≥ Rec{f1 : t1, . . . , fn : tn}.

We can simulate this behaviour in ∀,→, µ by means of records with fields numbered
by the natural numbers of the previous section.

4.1. Existentially quantified types

In order to model the inheritance properties correctly it is necessary to model a type
that corresponds to forgetting all the type information about an object. If the type system
included an existential quantifier, one might expect that for any object x, x : ∃t.t, so that
for any type t, t ≥ ∃t.t. While it would be possible to include an existential quantifier
with this property, it would not be desirable, since it would have the effect of hiding
type errors. Nor is it necessary, since it can be modelled in the usual way, with ∃t.T
replaced by ∀r.(∀t.T → r) → r, which I will write as Σt.T. Now for ∃t.t we can use
Σt.t = ∀r.(∀t.t → r) → r, and although this is not related to every type, each type T can
be transformed into Σt.T (even if t is not free in T) and Σt.T ≥ Σt.t. An object of type u can
be turned into an object of type Σt.u by application of sigma

△

= (λx.λf.f x↾∀u.u → Σt.u).

4.2. Numbered records

Since there is only a countable collection of names for fields, we can assume that there
is a translation between fieldnames and numerals, and consider only types of the form
Rec{n1 : tn

1
, . . . , n

m
: tn

m

}, and regard this as a shorthand for the type generated by
F1 × . . . × Fmax × InfList[Σt.t], where max is the largest element of {n1 . . . n

m
}, Fi = Σs.ti



6 Some Types with Inclusion Properties in ∀,→, µ

if i ∈ {n1 . . . n
m
} and Fi = Σs.s otherwise. Correspondingly, {n1 = e1, . . . nm

= em}
is represented by (F1, . . . Fmax,⊥), where Fi = sigma ei if i ∈ {n1 . . . n

m
} and ⊥↾Σt.t

otherwise.
This gives us the required properties, since an absent field gives an element of type

Σt.t, and the comparison of record types comes from the pointwise comparison of the fields.

5. Conclusions

The advantage of natural numbers defined as above is that one need only provide one
collection of constant symbols to represent constants of all subsets of the natural numbers.
A similar arrangement can be made so that natural number constants are also integers.
Although the use of a unary representation is impractical, it is possible to arrange similar
relationships between numbers represented as lists of booleans. Here the subsets that can
be taken correspond to limiting the length of the list — which fits nicely with limited word
lengths on computers.

The formulation of record types gives some insight into what can be done with records.
For example, field names are first class objects (they are just natural numbers).



Appendix 1: Typing Rules

This appendix describes the rules for typing expressions and relating types. Both the systems
require the following ground rules:

1. Basic inference rules

Rules B1 and B2 apply to both the relationship between types and typing of terms, with Γ
being a set of assumptions of the form φ where φ is either T1 ≥ T2 or e : T.

Assumption

Γ, φ ⊢ φ B1

Weakening

Γ ⊢ φ1

Γ, φ2 ⊢ φ1

B2

2. The Relation of generality between types

The relation T1 ≥ T2 is intended to mean that any object of type T1 may validly be used
in any situation where an object of type T2 may validly be used. So T1 ≥ T2&x : T1 ⇒ x : T2,
which fact is expressed in rule V5.

Rules R1 to R8 below define the relation ≥. Vn are type variables, Tn are arbitrary types
(possibly with free variables), Γ stands for a set of assumptions each of which is of the form
T1 ≥ T2 and ≥ is as above.

Reflexivity

Γ ⊢ T ≥ T R1

Transitivity

Γ ⊢ T1 ≥ T2, Γ ⊢ T2 ≥ T3

Γ ⊢ T1 ≥ T3

R2

Instantiation

Γ ⊢ ∀V.T1 ≥ T1[T2/V] R3

(Expressions of the form T1[T2/V] mean “ T1 with every free occurrence of V replaced by T2, with
bound variables in T1 renamed in such a way as to avoid variable capture.”)

Generalisation

Γ ⊢ T1 ≥ T2

Γ ⊢ T1 ≥ ∀V.T2

V not free in T1 or Γ R4

7



8 Typing Rules

Function

Γ ⊢ T3 ≥ T1, Γ ⊢ T2 ≥ T4

Γ ⊢ T1 → T2 ≥ T3 → T4

R5

Note contrapositivity on the left of →

Result

Γ ⊢ (∀V.T1 → T2) ≥ T1 → ∀V.T2 V not free in T1 R6

Recursion

Γ, (µv.T) ≥ T1 ⊢ T[µv.T/v] ≥ T1

Γ ⊢ (µv.T) ≥ T1

T 6= v R7a

Γ, T1 ≥ (µv.T) ⊢ T1 ≥ T[µv.T/v]

Γ ⊢ T1 ≥ (µv.T)
T 6= v R7b

3. Rules for Type-Validity of Expressions

This section presents the rules to which valid Ponder programmes must conform. In general a
programme will consist of a ‘casted’ expression, the type of which is determined by the environment
in which the programme is intended to run.

An expression p is type-valid if a statement of the form p : T for some T may be proved
within the following rules. Note that although all untyped lambda terms may be given the type
µt.t → t the presence of cast expressions e↾t means that not all typings are valid.

Γ is a set of assumptions as before but may also include assumptions of the form v : T.

Application

Γ ⊢ e1 : (T1 → T2) Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2

V 1

Function

Γ, v : T1 ⊢ e : T2

Γ1 ⊢ (λv.e : T1 → T2)
where Γ = Γ1 − {v : T |T is a type} V 2

Cast

Γ ⊢ e : T1

Γ ⊢ (e↾T1) : T1

V 3

Generalisation

Γ ⊢ e : T

Γ ⊢ e : ∀V.T
V not free in Γ V 4



9

Restriction

Γ ⊢ e : T1 Γ ⊢ T1 ≥ T2

Γ ⊢ e : T2

V 5



Bibliography

[Cardelli 1985]:
Luca Cardelli
A Semantics of Multiple Inheritance

Semantics of Datatypes, Lecture Notes in Computer Science 173 1985

[Fairbairn 1982]:
Jon Fairbairn
Ponder and its type system

Technical Report 31, Cambridge University Computer Laboratory 1982

[MacQueen 1982]:
D.B. MacQueen, Ravi Sethi,
A Semantic Model of Types for Applicative Languages,

Symposium on Lisp and Functional Programming 1982

[MacQueen 1984]:
D. B. MacQueen, R. Sethi, G. Plotkin,
An Ideal Model for Recursive Polymorphic Types,

Eleventh Annual ACM Symposium on Principles of Programming Languages 1984

[Milner 1978]:
R. Milner
A Theory of Type Polymorphism in Programming

Journal of Computer and System Sciences Volume 17 No.3, December 1978

[Reynolds 1974]:
JC Reynolds
Towards a Theory of Type Structure

Proceedings Coloque sur la Programmation, Springer Lecture Notes in Computer
Science 19 1974

10


