Technical Report R

Number 166

Computer Laboratory

Evolution of operating
system structures

Jean Bacon

March 1989

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 Jean Bacon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Evolution of Operating System Structures
Jean Bacon March 89

Abstract
The development of structuring within operating systems is reviewed and related to the
simultaneous evolution of concurrent programming languages. First, traditional, multi-user
systems are considered and their evolution from monolithic closed systems to general domain
structured systems is traced. Hardware support for protected sharing is emphasised for this
type of system. .
The technology directed trend towards single user workstations requires a different emphasis
in system design. The reqirement for protection in such systems is less strong than in multi-
user systems and, in a single language system, may to some extent be provided by software at
compile time rather than hardware at run time. Distributed systems comprising single user
workstations and dedicated server machines are considered and the special requirements for
efficient implementation of servers are discussed.
The concepts of closed but structured and open system designs are helpful. It is argued that
the open approach is most suited to the requirements of single user and distributed systems.
Experiences of attempting to implement systems over a closed operating system base are
presented.
Progress towards support for heterogeneity in distributed systems, so that interacting
components written in a range of languages may interwork and may run on a variety of
hardware, is presented. ’
The benefits of taking an object orientated view for system-level as well as language-level
objects and for specification, generation and design of systems are discussed and work in this
area is described. .
An outline of formal approaches aimed at specification, verification and automatic generation
of software is given. '
Finally, design issues are summarised and conclusions drawn.

Contents
1. Introduction
2. DMonolithic Systems

Processes and Inter-process communication

Modular Decomposition

Hardware Support for System Structure
Single User Systems

Unix™ structure

Distributed Systems

Heterogeneity Issues

10. Supportfor Objects

. Formal Methods

12. Summary and Conclusions

. . .

- K T~ R R NG R

ot
jum—y

1. Introduction

In the late 60's and early 70's a great deal of research interest was directed towards
design methods for structured operating systems. At this time, the main targets of the

work were the large, timeshared mainframes since their operating systems were seen
as prime examples illustrating the "software crisis”. They were large, complex,
incompletely specified, never fully debugged and difficult to maintain. Such systems
are closed since all internal functions are hidden and their interfaces, the set of
system calls, proscribe the functionality available to their users, see section 2.

The explicit statement of the concept of process and the formalisation of mechanisms
for inter process communication provided tools for managing the concurrency
aspects of operating systems design. Structuring tools, other than ”program” and
"procedure” were still to be developed. Early systems, often from research
environments, based on processes with various primitives to support their inter-
communication are described in section 3. Also at this stage, operating systems began
to be written in high level languages sometimes with explicit support for concurrency.
Two styles of system design were seen to have evolved, message-based (where service
is requested from some other process by sending a message to it) and procedural (do-
it-yourself by making procedure calls). Although functionally equivalent, the
implementation efficiency may differ greatly. The requirement for a design method to
aid the decomposition of systems into modules led to the object model of system
design and associated structuring tools in languages (section 4).

Multi-user systems require hardware support for protection and sharing. Since the
system must provide continuous service to all users it must be protected from
maliciousness and error. Users must also be protected from each other. Protection
may be provided by running each process in a separate virtual address space. The
operating system may run in a separate address space or may be in every processes'
address space. In this case protection may be achieved by a change to privileged state
when a system call is made. Sharing is also desirable in order to avoid multiple copies
of utilities such as editors, compilers and language support systems. This may be
supported by providing each process with a segmented address space. In systems
which support large numbers of segments per process, much of the operating system
may also be provided as segments of each process and there is potential for a finer grain
of protection than all-or-nothing. This line of development leads, via rings which are
nested protection domains, to architectures and operating system structures based on
fine grained protection domains. The incorporation of hardware support into system
structure is reviewed in section 5. Although internally well structured, such systems
are typically closed.

During the 1970's first minicomputers then microcomputers became a cost-effective
way of providing computing power. For single user sytems the requirements for
protection and sharing must be completely re-examined, although the requirement for
a well structured operating system is still important for software management.
Unfortunately, the research lessons had not become sufficiently widely known and
accepted when the personal computer explosion took place and many operating
systems for personal computers reverted to unstructured monoliths, tolerable because
the total system size was small. Some single user workstations were carefully designed
however, often with an open structure, in which the system modules are visible to the
user and may be bypassed, or replaced. These are reviewed in section 6. Many minis
and micros are still used as multi-user systems and a compromise must be reached on
the degree of structuring and hardware support required. Unix™ flourished in this
environment. It was seen as advanced, compared with simpler, cruder operating
systems marketed with personal computers and refreshingly simple compared with

operating systems developed for mainframes and supporting hundreds of users. It's
manufacturer independence was attractive for non-technical reasons. Above the Unix
interface a good program development environment is provided. Below it is a structure
appropriate to its design date in the early 1970's and aspects of this design are
described in section 7.

The development of high bandwidth Local Area Network (LAN) media during the
1970's led to much research and development in distributed systems. Single user
workstations, or single user machines acquired dynamically from a pool of processors,
were augmented by services available across the network. Expensive printers and
large, shared file stores [Svobodova84] could be provided in this way. The operating
system in the user's machine is simpler since file management and much device
management resides elsewhere. On the other hand, communications handling
software must be provided. There is a requirement to support the development of such
systems in distributed concurrent programming languages. Software structures that
have been used as a basis for distributed systems are reviewed in section 8. A report of
the problems arising from attempting to implement distributed systems above a closed
system with an inappropriate interface, such as Unix, is also given.

It has now become commonplace to interconnect disparate LAN media and
heterogeneous systems and therefore to have to incorporate the various associated
protocol families into software systems. There is also a requirement for distributed
systems to support the interaction between components written in a range of languages
running on a variety of hardware. Such designs are the subject of research and
standardisation and progress is reported in section 9.

The object orientated approach to programming and system design appears attractive
as a possible way to manage the complexity of large systems. Some current systems
take a unified, object orientated view in which large system objects, such as services,
are specified and generated by similar techniques to those used for objects within a
program. Progress in this area is reviewed in section 10.

Section 11 gives a brief overview of current research into formal approaches to
designing and building systems. The long term goal is that a formal specification will
be automatically translated into an implementation. The implementation language
may, because of its mathematical basis, be unacceptably inefficient, for example, a
pure applicative language based on stateless functions. Efficiency transformations
may then automatically produce an implementation more akin to conventional
imperative languages. Research isstill at an early stage, particularly in the area of
support for concurrency.

Section 12 summarises the lessons learned and the consensus established and
highlights current research issues in systems design.

2. Monolithic Systems

A closed operating system provides an external interface, the set of system calls, to
running programs [fig.1,12]. The characteristics of the real resources that it manages
are hidden and it may be considered to be creating a virtual machine which is easier to
use than the real machine. For example, the virtual machine works in terms of files
with textnames, the real machine in terms of disc pages; the virtual machine in lines of
text, the real machine in units of a single character. When IBM came to use the term

Sy Sﬁ’m interrupt
ca routine

gm—|m<m

IR -

~r >N
[+ ————

Monolithic
Operating System's
Code and Data

R SN MR EEE
T AN SR NSy

mAa >N M o-
HO P ™SI E -] P

fig.1 a monolithic closed operating system

Virtual Machine in VM/370 they defined it to be a true superset of the real machine, ie. .
all the operation codes of the real machine are available in the virtual machine. The
earlier and more general usage of the term is just of a higher level interface than the
raw hardware.

Initial research into structured operating systems retained the system call interface
and closed system approach. This was appropriate for multi-user systems in order to
prevent users accessing resources in an uncontrolled way. The issue addressed was,
therefore, how the monolithic system's code and data should be partitioned in
accordance with its resource management functions. Also, ad-hoc methods had evolved
to handle the inherent concurrency deriving from the simultaneous management of
many devices and many users and a systematic approach was needed.

3. Processes and Inter-process Communication

The first major step towards a coherent approach to operating system design came from
the explicit statement of the concept of process, for example in the Multics supervisor
[Vyssotsky 65], and the formalisation of the means by which processes cooperate to
perform a service or compete for resources.

In the THE system Dijkstra et al [Dijkstra68] designed a strict hierarchy of virtual
resources managed by a layered system of processes. A briefoutline of its structure is
as follows, also see [fig.2]. The lowest level, level 0, creates virtual processors, Above
this, processes exist and may communicate using a semaphore mechanism. The rest of
the system may be written using these concurrency tools. All interrupts enter at this
level, all but the clock interrupt are handled at higher levels. Atlevel 1, one process
provides a one-level virtual store. It synchronises with drum interrupts and with

level 4

(five five user processes
processes) '
level 3 creates virtual devices
g‘one pr}cl)cess synchronises with device interrupts
‘ﬁ' eac 1 synchronises with the memory manager and console process
ge ‘51’1501:)21 synchronises with requests from higher levels
level 2 creates virtual consoles

synchronises with console interrupts
synchronises with the memory manager
synchronises with requests from higher levels

(one process)

level 1

creates virtual memory
(one process)

synchronises with drum interrupts
synchronises with requests from higher levels

creates virtual processors

provides semaphores for ipc .

handles clock interrupt :

acknowledges other interrupts which are serviced at higher levels

level 0

et dil 2l il R I e s L apya—n

fig.2 Structure of THE

requests for store from higher level processes. At level 2, one process provides virtual
consoles for higher level processes and synchronises with their requests. It also
synchronises with console interrupts and the memory manager process. Atlevel 3, a
separate process manages each physical device. Each process synchronises with it's
device's interrupts, with the memory and console manager processes, and with higher
level processes over /O requests. At level 4, the highest, reside five user processes. In
all cases where data are passed, producer - consumer style message buffering must be
used, controlled by semaphores.

The concept that the lowest level of the operating system should create virtual
processors, the process model, is widely used, with variations on the inter-process
communication mechanism provided. A strict hierarchy as used in THE causes
problems over choice of order: either the memory manager cannot output messages to
the console or the console manager cannot use virtual memory, and has sometimes
been used in modified form as suggested in [Haberman76]. A layered structure may be
useful on a smaller scale, for example the protocol layers within a communications
subsystem.

Semaphores are at too low a level for general use No assistance is offered to ensure
that mutual exclusion and synchronisation are programmed correctly using them. One
development is to make the primitives provided at the lowest level more powerful, as in
message passing systems [Morris68, Brinch Hansen70], see below. An alternative is
to hide them below higher level concurrency and structuring constructs provided by a

programming language. Another important property of procedural systems is that
processes must run in a shared address space in order to call shared procedures. A
process gets work done by threading its way through the system, calling procedures,
acquiring locks to share data and synchronising with other processes when necessary
[fig.3].

In a retrospective paper on THE [Dijkstra71] Dijkstra proposed that the critical regions
embedded in processes and delimited by semaphore operations, as used in THE, should
be replaced by calls to a secretary process which encapsulates the operations on the
shared object. Structuring ideas along these lines together with language level support
were actively researched in the early 70's and led to language level critical regions
[Hoare72, Brinch Hansen72] and monitors [Brinch Hansen73, Hoare74]. Monitors
may be implemented by the language run-time system and the kernel invoked only
when a change of process state is needed. The language provides a higher level syntax
-and the compiler ensures that a variable declared as shared is only accessed from
within a critical region or a monitor procedure. A comprehensive review of concurrent
programming languages is given in [Andrews83].

CALLING DOMAIN '® MONITOR
71 (passive
1 /e procedure 1 | structure)
; : a process / J
I . / , /7 data
i / | rocedure 2 structures
call monitor-name.procedure-name ¢ , 7 P
r [R R [4 : l
' R | internal
| : | procedure(s)
| : procedure n
' |

® potential delay
fig.3 Procedural System Structure

The justification for message passing systems is that processes usually synchronise to
pass data and it is therefore reasonable for the system to support this activity at the
lowest level. Message passing, or some similar mechanism, is essential when processes
do not share memory, for example, when they run in separate address spaces [fig.4]. A
problem is that the system kernel has to manage message buffers and deal with the
possibility that they may become full and are at a level below virtual memory. Fixed
length messages are easier to manage than variable length but provide a very low level
facility. If message passing is to be made visible to the user it should be in terms of
typed messages associated with typed ports as in the Conic system [Sloman84].
Synchronous message passing avoids the problem of buffer management and makes

A PROCESS APROCESS

sex}d requestmessage s afe s nussn s uunansan [await request message
|
inter I
process
communication call requested procedure

await reply message <]« +* =« sseeseasd.. = sendreply message

. l

procedure 1
data
procedure 2 structures
® potential delay -
internal
procedure(s)

procedure n

fig.4 Process, Message-passing Structure

system behaviour easier to comprehend and model mathematically. In practice,
synchronous mechanisms make it essential to build extra buffering processes at a
higher level in cases where it is not feasible for processes, such as system service
processes, to wait for synchronisation.

The system model associated with procedural, concurrent languages is of processes
running within a single address space. They may therefore call shared procedures to
access shared data. Monitors are typically used to provide exclusive access to shared
resources with condition variables for synchronisation over the state of the resource.
The functional equivalence of the message passing and procedural models has been
pointed out in [Lauer78]. Itis often the case, however, that the procedural model may
be implemented very efficiently. In a carefully designed system, monitor locks are
rarely found to be claimed when tested, since the function of the monitor is to allocate a
process to a queue associated with a specific condition. A process may test and set an
unclaimed lock without kernel intervention and proceed into the monitor at the
overhead of a simple procedure call. Only when the lock is already claimed need a trap
into the kernel occur to block the process. In a message system, kernel action is
required on all message primitive invocations.

4. Modular Decomposition

The above discussion has focussed on the use of concurrency tools in operating
system design. Processes may be assigned according to the sources of asynchronous
behaviour in a system, its users and its devices. This, in itself, is insufficient to produce
the granularity of decomposition necessary for designing and implementing a large
software system. A system design method and associated structuring tools are
required. The object model, proposed in [Jones78], was clearly in line with
developments in language systems towards support for data abstraction. In outline,
each module in the system should represent either a single, distinct abstraction or an
external resource and should provide a procedural interface to the operations defined
for that abstraction. In a typical operating system, objects might be files, directories,
streams, etc. An attractive feature of object orientated systems and languages is their
ability to handle references to objects of arbitrary structure and complexity.

If the object paradigm is applied throughout all levels of system design, an operating
system may be regarded as an object with the system calls as its interface, as may all
the resource management modules within it. Each of these, in turn, operate on
resource objects. Support is required for the object structure and operation invocation.
It is useful to restate the basic terminology and definitions that are used in this paper
since there are many variations on the basic object model:

An object is one of possibly many instances of its class or template. It can only
assume values from a single, predefined (and possibly infinite) set of values and it can
be manipulated only via a predefined set of operations [fig.5].

object : some-abstract-type

object id
object
A representation
representation operation 1
class
/ .
. A class CLASS
operations OPERATIONS
\ .

operationn

fig.5 An Object

The set of operations, their semantics and the set of possible values form the abstract
type of the object [fig.6], while the implementation code for the operations (applicable
to objects of that abstract type) is known as a class of the object. There may be several
alternative implementations of the abstract type of the object, in which case there are
correspondingly several alternative classes. Objects of a given abstract type may have
different representations. Anexample is the abstract type complex. An object of this
type may be represented as a modulus and argument pair or as a real part, imaginary
part pair. The implementation code for complex operations differs for these alternative

an implementation

tion 1
abstract type opera ;
(interface specification) code arepresentation
operation 1 operation 2 gﬁjtgct
specification code
f - n n

operation 2
specification operation n data

code object

. an implementation
operationn

specification operation 1
code a representation
: data
operation 2 object
code 4
m u
operationn data
code . object

fig.6 An Abstract Type

representations. A more system orientated example of the requirement for different
representations and implementations is that a small object may be brought into main
memory in its entirety whereas a large object of the same abstract type may need to be
operated upon piecemeal. Another example is that a service may be implemented to
run on different hardware.

An active object is one to which one or more processes are bound. An active object can
therefore change its own state (value) independently of external operation invocation.
A passive object has no internal processes. It has state but this may only be changed
by external invocation of its operations.

If an object is passive its operations are invoked by procedure call by some external
process. If an object is active, its operations may be invoked by message passing or by
mechanisms such as remote procedure call, procedural rendezvous ete.

An interface is a defined subset (possibly the entire set) of the operations available on
an object. An object may support more than one interface. An interface may be
considered as a stateless object since it has a set of operations but an empty set of
possible values.

This raises the issue of how close the object model for system design should be to the
concepts of object orientated languages [Cardelli 85] . The use of data abstraction and
information hiding is common to object orientated systems and languages. Other
language concepts and mechanisms may be applicable to software engineering such as
the inheritance of operations by one class from one or more other classes.

Languages with support for the separate compilation of modules such as Mesa, CLU
and Modula 2 may be regarded as supporting an object orientated style and facilitate
an object orientated approach within the system modules which they are used to
implement. Higher level tools are required if large system components are to be
configured and managed in a similar way.

The work on abstraction as an aid to modular decomposition also established the
principle that the system designer should avoid building in policy decisions wherever
possible. Instead, mechanisms should be provided which allow a variety of policies
to be implemented. This principle was used in Hydra [Wulf75, Levin75].

5. Hardware Support for System Structure
5.1 Segmentation for Protection and Sharing

In multi-user systems it is necessary to protect the operating system from users and
users from each other. It is desirable to support sharing, at least of system utilities.
Segmentation hardware supports protection and sharing. A process runs in a separate,
but segmented, virtual address space; a given segment may be in the address space of
. any number of processes. L ' '

private private
code and shared code and
data pure code data
modules modules modules
linked into linked into linked into
a single asingle a single
segment segment segment

a process

a process

fig.7 two segments per process

Early systems, for example, DEC's KA-10, would typically provide two segments per
process, one shared, for compilers, editors etc., one private [fig.7] and the resident
operating system would run in a separate address space. Operating system services
were invoked by supervisor call. Subsequently, systems providing large numbers of

10

segments per process were developed [fig.8]. The logical structure of a program may be
retained at run time by using code, data and stack segments where appropriate.
Logically distinct entities, the segments, are given separate protection. The idea of
providing much of the operating system as segments shared by the user processes,
invoked by an in-process procedure call seemed attractive. Examples of this style of
system are Multics[Daley68], MU5[Morris68] and ICL 2900[Izatt80]. Various
solutions to how the shared segments should be named by the sharing processes were

employed [Fabry74]. The problem of introducing new shared segments dynamically
was not completely solved.

a process u
0] O

private
segments

n code segment

n
| segments can be shared by
)

]

[}

/ specific processes '
b o - 4

(] data segment

0

private 0
segments

common

opsys
segments

=

private - n|
segments :

o Bp n
|

a process
a process

fig.8 General Segmentation

If much of the operating system runs in-process, the need for strict access protection is
paramount. Sensitive system data and the code that accesses it are now in the address
space of all processes. It is necessary for calls to and returns from system procedures to
be validated and for entry points to be strictly enforced. Protection schemes based on
rings (nested protection domains) were superimposed on the structure [fig.9] to
support this. Operating system segments are allocated to inner, privileged rings and
have free access to segments of that process in outer rings [Multics, ICL2900]. Control
can be exercised over inward calls. The degenerate case of this is the two state machine
where the operating system runs in privileged state and all other code in unprivileged
state. A system call to an operating system procedure causes a state change.

It was realised that the concept of "the process” having access rights to segments is
inadequate. Rather, it is the processes' invocation of a procedure segment that should
have access rights to a given data segment. Domain architectures therefore support
the notion of protected subsystems both within and external to the operating system.
The model, towards which the structure based on rings of segments is moving, is of

11

a process
n code segment

[0 data segment

a process

a process

~ -~
\\ NSe— - Il
\ \ . inner rings //
\] have higher /
N . privilege 7
~ ® rd
~ -~
S o _-
~ -~ -

-
S ey —

fig.9 general segmentation with nested protection domains

free-standing protection domains comprising packages of data segments and the code
segments through which they are accessed. This is comparable with the object
orientated approach to system design described in section 8. Such domains might be
provided within the context of the overall address space of each process [fig 10], as in
CAP1, or the protection domains might be seen as inhabiting a system wide address
space [fig.11], shared by all processes, as in CAP3 [Wilkes79]. System structures of
this type, enforced by segmentation hardware at run time are, in theory, akin to those
supported by software at compile time in modular languages. In practice, the
granularity of domains supported by hardware tends to be much coarser since
protection architectures incur high performance penalties due to domain switching
overhead. The Intel iAPX432 aimed to provide object orientated protection and
addressing at the granularity of language level objects and Ada was chosen as the
system implementation language. The performance penalty was too great for the
majority of its potential users and the system failed.

Systems in which a very high level of protection is required are unlikely to be so
concerned with sharing. Also, the move towards single user systems, which are often
based on inexpensive hardware with simple or non-existant memory management,

12

a process a process

COmmon opsys
domains

n code segment

O data segment

fig.10 multiple protection domains per process

| = |
Cl
0
(= N
ao
n code segment

a process may enter any domain

for which it has a capability
N

[data segment

fig.11 general domain structured system

made protection concerns less pressing and changed the emphasis of system design at
least temporarily.

13

5.2 Mapped or Separated File Input and Output

In most systems the file store is considered separate from the backing store used to
implement virtual memory and the programmer has explicit file input and output
operations. In a segmented system the concepts of segment and file may be integrated
and a file may become a segment when opened. The blocks of the file may become
pages of the associated segment, paged into main memory directly from the file store on
demand. This approach was used in the Multics system [Daley 68] where an
intermediate level of storage, a high speed drum, was also employed.

Integrated file I/O gives the potential for simplification within the operating system.
Also, the same copy of a segment is easily shared. In a separated system a file is
typically copied to the backing store on open and a cataloguing system is required if
that copy is to be shared. In a mapped system there is uncertainty as to when
information is actually written out, and therefore secure, and a specific instruction is
usually provided to achieve this.

It is possible for file I/O to be mapped in a system with paging rather than
segmentation hardware, as in the early versions of Pilot [Redell 80]. A file must be
mapped explicitly into the available linear address space.

The programming language model of file I/O tends to assume a separated system and
the elegance and economy of an integrated system has not in general been appreciated.
There is potentially even more integration if typed program objects may be made
persistent and mapped into the program's address space on activation, see section 10.

6. Single User Systems

Personal computers and workstations serve a single user. Workstations typically have
powerful processors, a graphical interface based on a bit map display, possibly a local
hard disc and a network connection. Many workstation operating systems were
designed as part of distributed systems, which are discussed separately below. For
multi-user systems, protection requirements are paramount. If the operating system of
a single user system is corrupted the machine may be reloaded and restarted.

In multi-user systems, the high level interface of the closed system was enforced to
avoid interference resulting from uncontrolled use of system resources. In a single user
system, there is no reason why a local device should not be programmed at a low level
by the user. A high level interface may be offered as a convenient service but need not
be enforced. This philosophy leads to the design of open operating systems,
[fig.12,13] [Lampson79]. A commonly used structure is based on the process model.
A minimal kernel provides processes, inter-process communication and memory
management. Other operating system services are provided as modules above the
kernel and can be used, bypassed or replaced as the user wishes. Itis unfortunate that
ISO also chose to use the term "open system” for a system of unspecified structure
which is open to communication.

It may be useful to impose a partial ordering on operating system services if only to
avoid circular dependencies. Even within open systems designs, for example, a file
directory (text naming) service is at a higher level than a file storage service. A large
number of layers and mandatory calling through every layer causes high overheads

14

applications and utilities

~€ system calls - operating system interface m———
file system interface network interface
MIMNENEN NN § NIENENIN
NENENEN NN NENENEN
directory service

protocol
layers
file storage
service
disc driver network driver

interface with hardware

fig. 12 A Closed System Structure: selected modules

and should be avoided. Even in THE in which a strict hierarchical ordering was
imposed, see section 3, a process at level N could call inwards for service, bypassing
levels as appropriate.

Open operating systems are often designed as single language systems with a common
address space for all system and user processes. They depend on language restrictions
being enforced by the compiler, or by programming conventions, for protection against
error. For such a system, memory management hardware is not essential and ifa large
virtual address space is required, a simple demand paging system is sufficient as
protection and sharing are not important.

An example of an operating system developed specifically for personal computers is
Tripos [Richards79]. The system is open and structured as a set of processes, each with
a unique static priority, The multifunction nature of some system processes is
captured in an internal coroutine structure. Asynchronous message passing is used for
inter-process and device-process communication. All processes share a single address
space, however, and messages, which may vary in length, need not be copied but can be
read in place by the recipient. This elegance of implementation isa consequence of a
complete disregard of protection issues, only justified in a single user system.

Tripos was written in BCPL, a typeless language, and was designed to be portable. Ifa
strongly typed language is used, preferably with separate compilation facilities for
modules or objects as described in section 3, a degree of protection is provided. Writing

15

service interface m
an application
NENENEN PP
| ANYJRNN NNN B NN, I NN\
directory service SEINESES
a protocol
NN NN
NENENEN
file storage
service kernel interface
NN-N N
MINIMAL KERNEL
disc driver process manager network driver
interface with hardware

fig.13 An Open System Structure: selected modules

in a high level language enforces structuring in that modules are accessed only
through their interfaces. Compile time type checking ensures that interface
specifications are adhered to, although protection enforced by software at compile time
is not proof against all run-time errors [Swinehart86].

Examples of workstation operating systems with an open structure, developed as part
of distributed operating systems, are Pilot [Redell80], developed for the Xerox range of
workstations with Mesa as preferred language, Accent [Rashid81] and Mach[Jones86],
developed at Carnegie-Mellon University, Apollo [Leach83], V [Cheriton84],
Mayflower[Hamilton84] with Concurrent CLU as preferred language, and Amoeba
[Tanenbaum85].

Many workstation operating systems are Unix based and it is of interest to examine
the structure of Unix (section 7), but, more important, the structures that Unix is
constrained to support when systems are implemented above it (section 8). A detailed
criticism is given in [Blair85].

7. Unix Structure Qutline

Unix has become very widely used and its design features are well known
[Quarterman85] and will not be described in great detail here. It provides a good
program development environment, compared with many general purpose operating
systems, and has a wide range of software tools and flexible facilities for their
composition. In this section its features are outlined, and their consequences pointed

16

out, and in section 8 the constraints imposed on those attempting to implément system
software above Unix are emphasised.

a process

i t

n code segment private data and ¥ a; oded zegmenff_c anbe i
i shared by specific H

stack segments ' bro i

[0 datasegment 1 processes |

-

o a

private code data common private data and
and stack segments opsys stack segments
segments

a o

(=

a process
a process

fig. 14 Unix structure

Unix was implemented in C, with a small amount of assembler, initially for the PDP 11
range. Sources were freely available and at this time the system was small enough to
be comprehended in its entirety. The design philosophy was that algorithms should be
simple and intelligible rather than being directed towards high performance. Its
design was a reaction against the size and complexity of the large timesharing systems
being developed at the time. Unfortunately, recent releases, which address some of the
problems described below, are approaching the size of the systems its original
designers deplored.

Compatibility of file, device and inter-process /O, achieved through a unified naming
scheme, is attractive to users because of the flexibility it provides. Its consequence is a
very limited inter-process communication facility which consists of a synchronisation
facility added to a one way, one-to-one byte stream [fig.15].

Unix is a closed system. Its "kernel” includes process, memory, device and file
management. The interface to the file management service is at the directory service
level. System calls are blocking (synchronous) since when user process n makes a
system call, it becomes system process n and executes the kernel {fig.14]. Should an
interrupt occur when such a system process is running, the interrupt service routine is
executed (in the context of the interrupted process) and control always returns to the
interrupted process. Only when this process executes a wait primitive may some other
process, made runnable by the interrupt, be considered for scheduling, ie. non-
preemptive scheduling is used for processes executing the kernel.

Unix processes are extremely heavyweight, having a great deal of associated state.
Each process runs in a separate address space, part of which is occupied by the Unix

17

u code se gm ent pipe for ipc between separate address spaces

L]
...........

[datasegment SRR O /

OO0 Q3 0 o g Ooo

shared memory
private code data ipc and event private code, data
and stack segments signalling and stack segments
between kernel
processes
a process
a process

fig.15 Unix IPC

kernel, and, although code may be shared, data may not. Dynamic process creation is
provided by the fork primitive but the overhead is high. A new address space is first
created containing areplica of the parent. If a new software system is required by the
child it must then execute the exec primitive which causes the newly created replica to
be overlayed. Any subsequent interaction between such related processes is expensive,
because of context switching, and is limited to an exit, with status, by the child for
which the parent waits or use of one or more pipes. Pipes (like open files) are passed
from parent to child on creation and pipes may therefore only be used between
processes with a common ancestor,

Device buffers are implemented as a cache and there is no guarantee of when or in
what order they are written to disc. In spite of this resemblance to a mapped system,
VO isin fact provided in a conventional manner with a separated file store.

Scheduling and swapping algorithms, designed to be simple and intelligible in
accordance with the general Unix philosophy, can neglect a process for seconds under
some circumstances. This makes the system unusable for real time work.

The "set user id” facility supports protected subsystems and programmable access
controls. Each named object has nine conventional access control bits, for owner,ete.,
associated with it but also an additional set uid bit. If this bit is set by the owner, any
other user who executes the file as a program inherits the access rights of the owner, by
effectively assuming the identity of the owner, for the duration of the program run.
Both the inherited "effective id” and the real user id are available through system calls
thus allowing access control to be programmed on an individual basis. The earlier
Titan file system [Fraser 69] had also allowed access rights to files to be associated with
which program was being run rather than which user was running it.

Unix is not ideal as a single-user system because of its closed design and heavyweight
process structure. However, for the majority of users, the quality of the program
development environment it provides usually outweighs such structuring
considerations. Nor is it ideal for a large, multi-user system because of its neglect of

18

performance. Because of a status approaching that of a de facto standard, several
projects have provided the Unix system call interface but have reimplemented the
kernel, for example Locus [Popek81], Mach [Jones 86] and Topaz for the DEC Firefly.
This may improve performance but the designer of systems which must be
implemented above Unix still has to live with heavyweight processes and byte
orientated inter-process communication.,

In summary, although Unix is adequate as a program development environment, it has
severe disadvantages as an implementation base for high performance software.

8. Distributed Systems

The basic model of a system comprising a set of services which may be invoked by
clients is often used and may be viewed as an implementation of a more general
system architecture based on objects. A general discussion of how the software
structures and associated inter-process communication facilities introduced in section
2 above may be extended for a distributed environment is given in {Bacon81]. An
overview of a number of distributed operating systems is given in [Tanenbaum 85].

In the absence of a modular structure, the functions of an operating system cannot be
distributed, and the only option is to interwork complete systems. This approach has
been used for traditional computer networks of mainframes and for distributed systems
based on Unix since it has a closed, unstructured kernel. A degree of integration, for
example, providing a single global file store, has sometimes been provided [Popek81].
This model of operating systems also appears to be implicitly assumed in the ISO "open
systems” standardisation. g

Workstation based distributed systems typically provide shared public services, such
as printing, file, mail and registration services. Design criteria for the workstation
operating systems are as described in section 6 above and requirements for
implementing servers are discussed below. Most projects have adopted an open
operating system structure. A kernel provides functions required at every node such
as process, memory, local device and network driving, and other operating system
functions are included as required. Several projects, for example V, Amoeba, Accent,
Pilot and Mayflower have emphasised their minimal kernel.

Some researchers into distributed processing in a workstation model environment
have attempted to use spare capacity or unused workstations through “worm”
mechanisms [Schoch82,Dannenberg85]. The disadvantage is that each workstation
has an owner who is very likely to resent this intrusion. The overhead in the
application is also considerable.

Distributed systems based on the pool of processors model [Needham82] provide the
user with a terminal, or as costs decrease more likely a graphics terminal or
workstation. If only a terminal is provided the user typically acquires a computer from
the pool. The approach allows a share of a machine or several machines to be acquired
by the same mechanism and therefore potentially supports distributed concurrent
application programming. A workstation per user allows functions such as editing,
running mail programs or control of debugging to be located in the workstation and the
pool to be used to provide processing engines.

An advantage of the processor bank approach is that any software system may
potentially run as a subsystem on processor bank machines. The subsystems may be

19

independently managed and have their own authentication, access controls, naming
schemes etc. Itis necessary for the underlying system to ensure protection between the
autonomous subsystems and to facilitate sharing of common services such as file
storage and printing. In the Cambridge Distributed Computing System (CDCS), for
example, each subsystem must register its current users with an authorisation server,
the active name table manager (ANT). ANT issues a session key which acts asa
capability for use of any common service.

8.1 Multi-threaded Servers

Servers tend to be heavily used and care must be taken to prevent them becoming
system bottlenecks. Distributed systems projects quickly discover the need to provide
concurrency in servers [Bacon81,Clark85]. A classic example is the dedicated file
server that takes a request from the network, processes it, finds the disc must be
accessed, and requests service from the disc handler. At this point it must be possible
to start work on a new request.

If a message-based model is used, an interface process takes requests and assigns them
to worker processes [Gentleman81]. The problem of the workers' access to shared data
must be solved. In a procedural system, server code is conceptually executed by all
clients. Since the procedure calls are in fact from remote nodes, local processes are
assigned to make the call on behalf of the remote clients. As described in section 3,
efficient implementation requires lightweight processes or threads executing the
service code within a shared address space, accessing shared data under interlock.
.Language level support for communication between distributed components has been
provided by several projects. Conic supports message passing, of typed messages via
typed ports [Sloman84], but a remote procedure call facility is becoming increasingly
widely accepted [Birrell84,Hamilton84].

Projects that have attempted to implement over Unix have reported problems in
implementing servers [Black85, Satyanarayanan85]. If a Unix process is forked for
each client request, data cannot be shared in memory and schemes involving pipes or
files have to be devised. A great deal of context switching overhead isinvolved. Ifa
single Unix process is used for a server the implementor must provide coroutines
within that Unix process and must solve the problem of, or live with, blocking system
calls.

9. Heterogeneity

Even if a system is initially based on homogeneous hardware and software, it is
inevitable that, as technology evolves, integration of new computers and connection
media will be required. A local system will typically be based on interconnected LANSs
on which a number of systems reside and there will be a (human) management
hierarchy with a single jurisdictive authority. In the more general case, independent
subsystems and autonomous management domains must be accommodated.

In the local case in particular, it is important that performance should not be sacrificed
in the more frequent case of intra system working to provide infrequently required
inter system working. A simple example of a requirement for inter system working is
when a host system with good software tools is used to develope software for a target
environment designed for high performance. In this case, cross compilers and linkers

20

ensure that data representation is managed between host and target systems.
Transfer from the host to target domain may be effected by down line loading from the
host domain, by file transfer between file services in the host and target domains or by
use of a common service by both host and target domains.

A file transfer program that knows about differences in file naming and file storage
conventions provides minimal support for interworking between systems. If a common
file storage service is used, at least for those files that are used in more than one
system, transfer between systems is avoided but problems of incompatible data
representations and naming conventions have still, in general, to be solved.

The pravision of common services such as file storage, printing, mail, remote
computation etc. is an elegant and extensible way to support heterogeneity. The CDCS
contains the elements of this approach, as described in section 8. If the processor bank
approach is used, it is not only possible to incorporate new and special purpose
hardware but also, separate software systems may coexist above the basic
infrastructure. Heterogeneity is accommodated provided the separate systems adopt

- certain conventions when they come to use common system services. The "universal”
file storage service [Birrell 80] is such that any number of client operating systems
with different file naming schemes and access control policies may make use of it. A
universal file directory service is a possible extension [Seaborne 87].

If common services are to be invoked, infrastructure is required to support service
naming (each service may name the objects it manages independently) and
authorisation for service use, as well as communication with the service. The
underlying system may be written in a single implementation language with an
integrated communication mechanism, such as remote procedure call, as a basis for
building application protocols. A system kernel will provide primitives suitable for
constructing efficient services, see section 8.1 above. As noted above, many distributed
system kernels, although described as minimal, contain a substantial amount of
protocol handling, device driving etc. Although written in high level languages, some
machine dependent parts may require assembler and if a variety of hardware is used
for the nodes and connection media, the kernel must be implemented for each type.
Each time a new device or protocol is required, the kernel must be rebuilt to include the
new facility. A major design aim is to minimise the kerne! to achieve portability and
extensibility without sacrificing efficiency.

~

More generally, it is desirable for programs written in a number of different languages
to interwork. Mayflower (Concurrent CLU) RPC, for example, was extended to
interwork both with programs written in Mesa and employing Xerox Courier as
external data representation and with programs using Sun's XDR. A number of
transport protocols may also be selected [Bacon 87]. A similar approach, allowing
selection from multiple standards, has been used at the University of Washington in
the Heterogeneous Computer Systems project [Black 86].

The general aim is to retain a language level, type safe communication facility within
a heterogeneous system. This avoids the overhead and limitations associated with the
definition of a transfer syntax for a limited number of system types which are explicitly
tagged for run time type checking as in the ISO presentation layer standard, ASN.1
(Abstract Syntax Notation 1) [ISO 85]. The Mercury project at MIT is addressing this
area [Liskov 87]. A general discussion of approaches to heterogeneity in distributed
systems is given in [Notkin 86].

21

Asdistributed systems evolve and are interconnected, possibly over wide areas, the
requirement for heterogeneous hardware and software components to interwork
becomes increasingly important. The ISO "Open Systems Interconnection” reference
model and associated set of standards address the requirement for open
communication. Development of a framework and standards for open distributed
processing has more recently been initiated [ECMAS86, ANSAS87].

In outline, the lower ISO layers are concerned with provision of data transportation
services and protocols and the upper layers, residing in the end systems, with
augmenting the transport service to support distributed applications. The original
connection orientated emphasis has been extended to include more lightweight
connectionless services and protocols which have become feasible with modern
connection media and desirable for many applications. Several proposals have been
made for protocols based on the remote operation concept, which are simpler than the
IS0 session and presentation standards. Remote procedure call is one such protocol.

If heterogeneous components are to interwork, infrastructure must be provided. A
client server model again provides a useful framework. An open distributed processing
system may be described in terms of a kernel which supports services and their
invocation. The purpose of the system is to facilitate the remote use of application
services and a basic set of infrastructure services are necessary for distributed
processing to take place. Management services are also envisaged to allow managers,
within their autonomous local systems, to monitor and tune performance and exercise
control, as are general services to aid the user.

In outline, infrastructure services are required: .

® toallow specification and registration of service interfaces by service providers
for authorisation and accounting for service use

for authentication of principals invoking services

to allow potential clients to locate and invoke services

to assist configuration of services

10. Object-Orientated Systems

The object model was introduced in section 4 as a design method for decomposing
systems into modules. Languages with an object orientated style have been found
appropriate for managing the complexity of the large programs required to implement
each system module. The notion of automatically programming an entire system,
whether centralised or distributed, by regarding its components as objects is attractive
[Black85, Black86, ECMAS86, JonesS86].

The system components described as services in section 9 may be regarded as active
objects. The communications service, for example, may be regarded as one such object.
In a large distributed system a conceptually centralised service may be implemented as
a set of distributed servers. A serverisan active object which is an instance of some
class of the abstract type of the associated service. Alternative implementations of a
service for heterogeneous hardware are modelled by multiple classes of the abstract

22

service. A service may be configured by inheriting standard interfaces for monitoring,
control, accounting etc. in addition to the client interface [ANSA 87]. Any object may
adopt the role of client by invoking an operation on some other object. Current projects
are Clouds{LeBlanc85], Distributed Smalltalk [Decouchant86], Somiw [Shapiro86] and
Comandos [Horn 87].

Although languages which provide varying degrees of support for objects are now
widely available, the system services may notbe designed explicitly to support objects.
The storage service, for example, is likely to support only the file abstraction and the
directory service allows textnames and access controls to be associated only with files.
When a program writes its typed data to a file, all typing information is lost. Many
software tools work in terms of typed objects, for example, the program state gathered
by a debugger at a breakpoint or the nodes of a parse tree constructed by a compiler. If
such tools require the protection afforded by persistence of type information they must
themselves use a method to flatten their typed objects before preserving them in a file.
At ahigher, system level, directories, bank accounts, text files etc may be regarded as
typed objects, as may any service. A current design issue is therefore to what extent
the system infrastructure should support objects. Object stores have been built but
performance has been unacceptable, for example Swallow [Svobodova84]. Research is
still in progress in this area at both the language [Atkinson84,87] and system
[Crawley86] levels.

11. Formal Methods .

Along-term goal of the application of formal methods to systems engineering is the
translation of an unambiguous specification into a correct implementation. Such a
facility would allow rapid prototyping and consequent refinement of the specification
and would support system maintenance and evolution, in that all the implications of a
given modification could automatically be transmitted throughout the system. If the
automatically derived implementation is too inefficient for practical use, efficiency
transformations may be automatically applied.

At present, specification languages provide a precise notation to express the
functionality of system components but few automatic techniques exist, even for
consistency checking within a single module. The importance, as an aid to human
communication, of an unambiguous and concise notation for system design, should not
however be underestimated.

Current design methods range from systematic methods, often developed as a company
style and subsequently publicised [Jackson84], through semi-formal notations,
developed for some specific design exercise [Birrell86], to mathematically based
specification languages [Jones84,Hayes87]. State based specification is appropriate for
capturing the functionality of modules, services, object classes etc. It is insufficient in
itself to capture dynamic system behaviour. Protocol specification is also required
[Billington87]and, more generally, the behaviour of concurrent systems which is the
focus of [Hoare85,Milner80].

When the long term goals are realised, human insight will still be necessary for
designing systems, but formal tools should make many time consuming and tedious
activities unnecessary.

23

12. Summary and Conclusions

Some simple basic principles that have become estabhshed for structuring both
centralised and distributed systems are:

® the object model to aid modular decomposition

® anopen modular structure with partial hierarchical ordering but without
mandatory layering

® the provision of mechanisms via which a range of policies may be implemented
® a minimal kernel to aid portability and extensibility

® use of whatever concurrency tools are appropriate or available for internal
implementation of each object.

More spec1ﬁc guidelines are beyond the scope of this paper. A more detalled discussion
is given in [Lampson83].

Research in progress is addressing:

® anobject orientated approach to programming in the (very) large, including
specification, configuration and generation of system components

® to what extent the system infrastructure should support objects and how this might
be achieved with acceptable performance

e support for heterogeneity within and between systems
® tools for specification and implementation based on formal methods

Continued developments in technology make it necessary to review research directions
critically and frequently. The human effort involved in systems development is so
great that every attempt should be made to avoid misdirecting it.

Acknowledgements

Although the material presented here represents my personal view I should like to
acknowledge helpful discussions with Roger Needham and colleagues in the Systems
Group at the Computer Laboratory Cambridge.

References

[Andrews83]Andrews G and Schneider F B “Concepts and Notations for Concurrent
Programming” ACM Computing Surveys, 15(1), 3-43, Mar 83

[ANSA 87] ANSA Reference Manual version 00.03, Advanced Networked Systems
Architecture, 24 Hills Road, Cambmdge UK, CB2 1JP

[Atkinson84] Atkinson M P, “PS Algol Reference Manual”
Edinburgh Umver51ty Report PPR-4-83

[Atkinson87] Atkinson M P and Buneman O P, “Types and Persistence in Database

Programming Languages”,
ACM Computing Surveys 19(2) 105-190, June 87

24

[Bacon81] Bacon J M, “An Approach to Distributed Software Systems”
ACM SIGOPS OSR 15(4), 62-74, Oct 81, and: Distributed Computing:
Concepts and Implementations,Editors McEntire et al, IEEE press 1984

[Bacon87] BaconJ M, “Distributed Computing with RPC: the Cambridge
, Approach.” proc IFIP TC10/ WG10.3 conference on”Distributed
Processing”, Amsterdam Oct 87, North Holland 1988

[Billington87] Billington J, “PROTEAN: A Specification and Verification Aid for
Communication Protocols” to be published in IEEE Trans SE, special
issue on Computer Communications

[Black85]" Black A, “Supporting Distributed Applications: Experience with Eden”
ACMSOSP10, OSR 19(5), 181-193, Dec 85

[Black86] Black A et al, “Object Structure in the Emerald System”
ACM SIGPLAN Notices, 21(11), 78-86, Nov 86

[Black 87] Black A etal, “Interconnecting Heterogeneous Computer Systems”
: University of Washington, Dept. of Computer Science, FR-35

[Blair85] Blair G S et al “A Critique of Unix”
Software Practice and Experience 15(12), 1125-1139, Dec 85

[Birrell 80] Birrell AD and Needham R M “A Universal File Server”
IEEE Trans SE, SE-6 (5), 450-453, Sept 80 A

[Birrell84] Birrell AD and Nelson B J, “Implementing Remote Procedure Call”,
ACM Transactions on Computer Systems 2(1), 39-59, Feb 84

[Birrell86] Birrell ADetal, “A Global Authentication Service Without Global
Trust” Proc IEEE Conference on Security, 223-230, California, 1986

[Brinch Hansen70] Brinch Hansen P, “The Nucleus of a Multiprogramming Operating
System”Comm ACM, 14(4), 238-250, April 70

[Brinch Hansen72] Brinch Hansen P, “Structured Multiprogramming”
Comm ACM, 15(7), 574-578, July 72

[Brinch Hansen73] Brinch Hansen P “Operating Systems Principles”
Prentice Hall 1973 ‘

[Cardelli85] Cardelli L and Wegner P, “On Understanding Types, Data Abstraction
and Polymorphism” ACM Computing Surveys, 17(4), 471-522, Dec 85

[Cheriton84] Cheriton DR, “The V Kernel: A Software Base for Distributed
Systems” IEEE Software, 1(2), April 84

[Clark85] Clark D, “The Structuring of Systems Using Upcalls”
ACM SOSP10, OSR 19(5), 171-180, Dec 85

[Crawley86] Crawley SC, “An Object Based File System for Large Scale
Applications” Software Engineering Environments, Somerville (ed),
Peter Peregrinus Ltd 1986

[Daley68] Daley R C and DennisJ B “Virtual Memory, Processes and Sharing in
Multics” Comm ACM, 11(5), 306-312, May 68

25

[Dannenberg85] Dannenberg R B and Hibbard P G, “A Butler Process for Resource
Sharing on Spice Machines”, ACM Trans Office Information Systems,
3(3), 234-252, July 85

[Decouchant86] Decouchant D, “Design of a Distributed Object Manager for the
Smalltalk 80 System” ACM SIGPLAN Notices 21(11), 444-452, Nov 86

[Dijkstra68] Dijkstra E W et al “The Structure of THE Operating System”
Comm ACM, 11(5), 341-346, May 68 '

[Dijkstra71] Dijkstra E W “Hierarchical Ordering of Sequential Processes”
Acta Informatica, 1(2), 115-138, Feb 71

[ECMA86] ECMA TC32-TG2 Distributed Application Service Environment (DASE)

[Fabry74] FabryR, “Capability Based Addressing”
Comm ACM, 17(7), 403-412, July 74

[Fraser69] Fraser A “Integrity of a Mass Storage Filing System”
Computer Journal 12(1), 1969

[Gentleman81]Gentleman W M, “Message Passing Between Sequential Processes, The
Reply Primitive and the Administrator Concept”, Software, Practice and
Experience, 11(5), 435-466, May 81

[Goldberg80] Goldberg A and Robson D “Smalltalk-80: The Language and its
Implementation” Addison-Wesley 1983

[Haberman76] Haberman A N et al “Modularisation and Hierarchy in a Family of
Operating Systems” Comm ACM, 19(5), 266-272, May 76

[Hamilton70] Hamilton K G; “A Remote Procedure Call System”
PhD thesis, Cambridge 1984,TR 70

[Hayes87] HayesI(editor), “Specification Case Studies”, Prentice Hall 1987

[Hoare72] Hoare C AR, “Towards a Theory of Parallel Programming”
in Hoare and Perrot (eds), Academic Press, 61-71, 1972

[Hoare74] Hoare C AR “Monitors: An Operating System Structuring Concept”
Comm ACM, 17(10), 549-557, Oct 74

[Hoare85] Hoare C AR “Communicating Sequential Processes”, Prentice Hall 1985

[Horn87] Horn C, “Conformance, Genericity, Inheritance and Enhancement”
proc ECOOP, Paris, June 87

[ISO85] Specification of Basic Encoding Rules for Abstract Syntax Notation One,
ASN.1 ISO/DIS 8825 June 85

[TIzatt80] Izatt W T “Domain Architecture and the ICL 2900 Series”
Software Practice and Experience, 10(4), 329-332, Apr 80

[Jackson83] Jackson M A, “System Development”, Prentice Hall 1983

26

[Jones78] Jones A K, “The Object Model - A Conceptual Tool for Structuring
Software” in Operating Systems - An Advanced Course, ed. Bayer R et al
Springer Verlag, LNCS 60, 1978

[Jones84] Jones CB, “Software Development, A Rigorous Approach”
Prentice Hall 1984

[J oné586] Jones M b and Rashid R F, “Mach and Matchmaker, Kernel and
Language Support for Object-Orientated Distributed Systems”, ACM
SIGPLAN Notices, 21(11), 67-77, Nov 86

[Lampson83] Lampson B, “Hints for Computer System Design”
ACM SOSP9, OSR 17(5), 33-48, Oct 834

[Lampson79] Lampson BW and Sproull RF “An Open Operating System for a Single
User Machine” ACM SOSP7, 98-105, 1979

[Lauer78] Lauer HC and Needham R M, “On the Duality of Operating System
Structures” ACM OSR 13(2), 3-19, April 79, also in: Proc 2nd Int Symp on
Op Sys IRIA Oct 78

[Leach83] LeachPJetal “The Architecture of an Integrated Local Network”
INEEE Journal on Selected Areas in Communication, SAC-1(5), 842-857,
ov 83 ,

[LeBlanc85] LeBlanc R et al, “The Clouds Project”
Georgia Institute of Technology TR85-0, Jan 85

. [Levin75] LevinR etal “Policy Mechanism Separation in Hydra”
: Proc ACM SOSP5, 132-140, Nov 75 :

[Liskov87] Liskov B et al, “Communication in the Mercury System”
to be published

[Milner80] Milner R, “A Calculus for Communicating Systems”
Springer Verlag, LNCS 92, 1980

[Morris68] Morris D and Detlefsen G D, “A Virtual Processor for Real Time
Operation” Comm ACM, 11(5), 17-28, May 68

[Needham82] Needham R M and Herbert A J “The Cambridge Distributed
Computing System”Addison Wesley 1982

[Notkin 86] Notkin D et al, “Report on ACM SIGOPS Workshop on Accommodating
Heterogeneity” ACM Operating Systems Review, 20(2), 9-24, April 86

(Popek81] Popek Getal “LOCUS: A Network Transparent, High Reliability,
Distributed System” Proc ACM SOSPS8, 169-177, Dec 81

[Quarterman85] Quarterman J Setal “4.2BSD and 4.3BSD as Examples of the UNIX
System” ACM Computing Surveys, 17(4) 379-418, Dec 85

[Rashid81] Rashid R and Robertson G “Accent: A Communication Orientated
Network Operating System Kernel” Proc ACM SOSP8, 64-75, Dec 81

[Redell80] Redell DD etal “Pilot: An Operating System for a Personal Computer”
Comm ACM, 23(2), 81-92, Feb. 80

27

[Richards79]Richards M et al, “Tripos - A Portable, Real -time Operating System”
Software, Practice and Experience, 9, 513-526, 1979

[Satyanarayanan85] Satyanarayanan M et al, “The ITC Distributed File System:
Principles and Design” ACM SOSP10, OSR 19(5), 35-50, Dec 85

[Seaborne 87] Seaborne A F, “Filing in a Heterogeneous Network”
University of Cambridge PhD thesis, 1988

[Shapiro86] Shapiro M, “Structure and Encapsulation in Distributed Systems: The
Proxy Principle” Proc 6th IEEE International DCS Conference, Boston
MA, May 86

[Schoch82] Schoch J F and Hupp J A “The "Worm” Programs - Early Experience with
a Distributed Computation” Comm ACM. 25(3),172-180, Mar 82

[Sloman84] Sloman M et al “Building Flexible Distributed Systems in Conic”
in Duce D A (ed) Distributed Computing Systems Programme, Peter
Peregrinus, Sept 84

[Svobodova84] Svobodova L “File Servers for Network Based Distributed Systems”
ACM Computing Surveys, 16(4), 353-398, Dec 84

[Tanenbaum85] Tanenbaum A S and van-Renesse R, “Distributed Operating Systems”
ACM Computing Surveys 17(4), 419-470, Dec 85

[Vyssotsky65] Vyssotsky V A, Corbato FJ and Graham R M “Structure of the Multics
Supervisor”AFIPS FJCC Vol 27, Part 1, 203-212, 1965

[Wilkes79] Wilkes M V and Needham R M, “The Cambridge CAP Computer and its
Operating System” Elsevier/North Holland, Operating and
Programming System Series, 1979

[(Wulf75] Wulf W A et al “An Overview of the HYDRA Operating System
Development” Proc ACM SOSP5, 122-131, Nov 75

28

