Technical Report A

Number 164

Computer Laboratory

A matrix key distribution system

Li Gong, David J. Wheeler

October 1988

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1988 Li Gong, David J. Wheeler

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

A Matrix Key Distribution Scheme

Li Gong! and David J. Wheeler F.R.S.

University of Cambridge Computer Laboratory

Cambridge CB2 3QG, England

October 1988

Abstract. A new key distribution scheme is presented. It is based on the
distinctive idea that lets each node have a set of keys of which it shares a distinct
subset with every other node. This has the advantage that the numbers of keys
that must be distributed and maintained are reduced by a square root factor;
moreover, two nodes can start conversation with virtually no delay. Two versions
of the scheme are given. Their performance and security analysis shows it is a

practical solution to some key distribution problems.

Key words. Communication Security, Private-key Cipher, Conversation Key,

Key Distribution.

LSupported by the Sino-Beitish Frieudship Scholarship Scheme.

A Matrix Key Distribution Scheme 1

1 Introduction

The effectiveness of any cryptographic system is highly dependent on the tech-
niques used for selecting, handling, and protecting the keys. Key distribution is
always a major problem in an environment where large numbers of nodes commu-
nicate with each other. In this paper, node-to-node encryption is assumed rather
than link-to-link encryption which is considered unsuitable in an open system
environment [8]. Although the concepts of host master key, secondary key, and
key-encryption key can be introduced to protect the generation and distribution
of the keys 6], we do not address this issue. So far, three major schemes have
been proposed.

The first is based on private-key ciphers where each pair of nodes must share
a secret key. As a result, when there are N nodes, N(N — 1)/2 keys need to be
generated and distributed by a secure key manager; moreover, each node has to
maintain V keys for all the possible communications. This problem is called the NV?
problem and should always be avoided if possible. The second is based on public-
key ciphers [4], where each node selects its own key pair (£, D) and publishes E.
When node A wants to communicate with node B, A encrypts the message using
key Fg and sends the cipher text to B. The text can only be decrypted using the
secret key- Dg. However, public-key encryption and decryption are expensive and
slow. The usual variation is to establish a private session key between each pair of
nodes using a public key when they start communication. The drawback of this
scheme is that there is a considerable delay before nodes can start real conversation;
furthermore, each node still has to cache one session key for each other node it
wants to .talk to. The third is to use an authentication server to set up session
keys [7!, where the nodes must first authenticate them to the server and request
that certain session keys to be set up. The server then generates and distributes
the session keys required. This can be based either on a private-key cipher where
each node shares a private key with the server, or on a public-key cipher where
nodes use the server’s public key. This has virtually the same properties as the
second scheme with even greater delay.

All these come from the concept of secret key which people assume is unique

and kept completely secret. The fundamental idea of the scheme we propose here,

[SV]

A Matrix Key Distribution Scheme

in contrast to the concept above, is to let each node have a set of keys of which it
shares a distinct subset with every other node. A kev server does the generating
work. perhaps using a dedicated processor or doing it in background or overnight,
and distributes them as often as required. Upon receiving the keys, nodes can
immediately start communicating to any other node without delay. Using this
method, the total keys to be generated could be .V instead of N(V — 1)/2; and
each node needs to hold only about \/iV keys. Moreover, as we shall see later, the
keys can be as short as 8 bits or even less.

We give a simple example first and then describe the general principle and two
versions of the matrix scheme. We discuss the performance in terms of time needed
to distribute keys, to start conversation between nodes, and storage requirement
at every node. We also discuss the security in terms of the minimum number of
colluding nodes needed to compromise a pair of nodes’ conversation key, and the
average risk level of the nodes. Finally, we discuss some possible extensions to
enhance performance and/or security, and some potential applications.

After we finished our main work, we came across two other key distribution
schemes, the predistribution scheme {5 and the symmetric key generation scheme

[2].

3

They both use algebraic code and thus are costly. They are also common
in that the threshold of the number of colluding nodes required to compromise a
single key equals the threshold to compromise all the keys. In our scheme, different
thresholds can be tuned independently to different needs. The matrix scheme is
also more cost-effective. For example, analysis of [5] shows that the number of
possible nodes or entities is smaller or equal to the number of key bits or the
length of the Secret-Algorithm sent to each node. In our schemes however, the
latter can be significantly smaller than the former. This means that to maintain a
network of the same size and of at least the same security level, our scheme needs

much less transmission and storage.

2 A Basic Scheme

[n this section, we describe a very simple scheme to give an intuitive idea of our
matrix distribution scheme. Assume there are N nodes, where N = m*. Each

node is assigned a position ¢, j, and is denoted as n,;. Similarly, there are NV keys

A Matrix Key Distribution Scheme 3

denoted as &.;.

A key server generates the keys randomly and gives node n;; a set of keys which
consists of all the keys that are either on the same row or column as the node,
K, = {kxy| X =1, or, Y =j}. When node A (n,;) wants to communicate
to B (n.,), it simply finds out B's position u,v and uses the keys k,, and k;
which are common between A and B to compose a conversation key, e.g., just
concatenates the two keys. Then it could encrypt messages using this key and

start the conversation. See the diagram below for an illustration.

A key line B’ key line
l
j A A’ key line
P
/
Common
keys
/
»
v <; B’ key line
1 u

Fig. 1. The Key Map.

There are two major advantages of this scheme. First, there is virtually no
delay when A wants to communicate to B. Those schemes where a session key has
to be set up by a key server upon request may need several messages. Second,
the storage requirement is reduced by a square root factor. The key server will
generate N keys in total instead of V(N —1)/2 and each node receives and stores
2V'N keys instead of N. However, there is a weak point in this scheme. If A and B
are on the same line or column, any node on the same line or column could listen
to their conversation because it shares the same common keys used between A
and B. When A and B are not on the same line or column, the situation is better
as two correctly positioned colluding nodes are needed to compromise the session

key.

v

A Matrix Key Distribution Scheme 4

3 Principle

Assume there are :V nodes, n,.7 = 1.2....,.V. Associated with each node n, is a

set of keys K, and a published address P,. Suppose there are two algorithms:

generate(N, R,C) : Given the number of nodes N, a random number R as salt, a
set of constraints C, generates all K, such that V¢, 5.k, i #j #k: K,\NK; #

7

@ and K;NK; # KN K, . The keys are chosen at random.

compute(P;, P;,K;) : Given two addresses and the key set of node n,. derives a

conversation key k;;.

Note that by using a fixed order of the common keys independent of i or j, or a

symmetric one-way function, we can make compute have the following property
compute(P;, P,, K;) = compute(P;, P;,K;) i.e. ki =k

A key server generates and distributes all the keys. When A wants to communicate

to B, the protocol is

A: Find out B’s address and k1g = compute(Py, Py, K4).
A: Encrypt message with k,p and send it to B with a header specifying source A.
B: Calculate kg = kg4 = compute(Pg, P4, Kpg).

B: Decrypt the message using k45, and continue conversation.

There might be an integrity check of the message sent to B; however, it does
no harm to B if somebody else claims it is A as long as it has not cracked k,g.
Such an attack ought to be logged.

Based on this principle. we extend the basic scheme in two ways which results
in the multi-line version and the multi-map version whose performances and se-
curity strengths are different. In the following sections, we describe, analyze, and

compare them with existing major schemes.

4 Multi-Line Version

This version is achieved by allocating more key lines to each node instead of only

two as in the basic scheme.

(1]

A Matrix Key Distribution Scheme

4.1 Definitions

Assume there are N nodes where N = m*. A communication map is defined as a
m < m matrix on which each point has an address P;; and corresponds to a node
n;j, where 1,7 = 1,2,...,m. A key map is also defined as a m x m matrix where

point ¢,7 corresponds to a key k;;. The key set sent to node n,; is

Kj={kcy| Y —j+c(X —7) =0 mod (m)}

;
[=1.2,---,t and c, #¢c, when p#gq

The key set is a set of ¢ lines on the key map all passing through point 7, 5. These
keys can be stored in t tables where each entry is indexed by the value X' —1. This
makes the calculation of common keys easier as we will see in compute.

An algorithm Generate generates m? random keys and puts one on each point
on the key map. It calculates K;; from the simple definition, sends it to the node
at the address P;;. -

An algorithm Compute takes a pair of addresses on the communication map
as input, say P;; and P,,, solves (¢t — 1) linear equation groups each of which has
the form

Y =7 +¢,(X—17) =0 mod(m)
Y -v+¢,(X—u)=0 mod (m)
p.gq=12---,t and p#q

The solution is in fact very simple:
X~i=(c(i —u)+v—7)/(c, —¢c;) mod(m)

Using a table look up for the needed reciprocals will speed up the calculation. The
solutions (X,Y) are positions on the communication map of keys that nodes n;;
and n,, have in common. In fact to find out a common key, there is no need to
calculate Y because p.q determines the key line table and the X — ¢ is the index
of the key. Compute then composes a conversation key from these keys, possibly
using a one-way function. Note when m is chosen to be a prime, each equation
group must have exactly one solution. Other choices of m also work. For example.

to let the machine implementation be easier and faster, it may be desirable to

A Matrix Key Distribution Scheme 6

make m a power of 2. In this case. when (¢, — ¢,;) is odd. there is exactly one
solution; so if we choose half ¢;’s to be even and half odd, there are at least £2/2
common keys between each pair of nodes. When it is even and the numerator in
the solution equation is odd, there is no solution and when both are even there
might be none, one, or more than one solution. These extra keys can be used to

enhance security, although it is unlikely to be worth the complications.

4.2 Performance

Property 1 The key server has to generate N keys.
Property 2 The key server needs to send to each node t\/ N keys.

Property 3 Assuming m is prime and ¢, # ¢, when p # q, two different nodes

have in common either t{t — 1) or VN + (t — 1)(t — 2) distinct keys.

Proof. Every two non-parallel lines always meet at exactly one point. This is
ensured by the fact that m is a prime. Observe that two nodes cannot have more
than one common line, and it is only at the two points where the nodes sit that
more than two key lines can intersect, thus if they do not have a common line they

have exactly t(t — 1) intersecting points; otherwise, they have
m+{t—-1)(t—2)=vVN+({t-1)(t~2)
such points. m

Property 4 The time needed to set up a conversation key is the time complezity

of compute and is O(t?).

Property 5 FEach node stores b N bits where b is the key length. The key server
needs temporary storage of bN bits.

If conventional schemes are used, we have the following results. First, if the
common keys retain the same length as in this version, the key server has to
generate N(.V — 1)/2 keys. a total of bt(t - 1).V(:V — 1)/2 bits; each node has to
hold b¢(t — 1)(V — 1) bits. Second, the delay in a session key scheme when using
a typical protocol is a few messages, which might involve expensive public key

encryption and decryption.

A Matrix Key Distribution Scheme 7

4.3 Security

Property 6 Assuming m is prime and ¢;’s are distinct, then for a particular pair
of nodes, there ezists a group of t — 1 other nodes who, when colluding together,
will be able to compromise the conversation key between the pair of nodes. There
are many groups of t colluding nodes that can compromise A’s conversations with
any node. More colluding nodes may be needed when empty points are allowed on

the communication map.

Proof. There exists a group of ¢ — 1 nodes each of which has a distinct key line
in common with node A and covers another distinct key on the tth line used in
the conversation. This group is able to compromise A’s particular key for that
conversation. A group of colluding nodes, one on each of the t lines through A,

can compromise all A’s communications. O

We have not derived a satisfactory lower bound of the minimum number of
colluding nodes needed to compromise a conversation key. We only have the
following result that if {¢;} is a super-increasing sequence and m is sufficiently
large, then to compromise the key between two nodes, at least [¢/3] colluding
nodes are needed. However, we strongly doubt that this lower bound could be
reached in most cases or the constraints on ¢;’s are necessary. Therefore we skip

the tedious proof here.

Property 7 Assuming node location and key distribution are uniform, the average

number of colluding nodes needed to compromise a particular conversation is
s =log(l/d) log(l —t/VN) = 2log(d)V'N/t

where d is the minimum number of intersecting keys between the pair of nodes

which 1is t(t — 1) when m is prime.

Proof. A third node’s keys could cover a proportion of t/v/V of the whole key map
and the same proportion of the common keys between another pair of nodes. To
cover all the keys in order to compromise a conversation by a group of s colluding

nodes, it is required that d(1 — t/v'N)* < L. o

A Matrix Key Distribution Scheme 8

Property 8 Assuming node location and key distribution are uniform and the
probability that not more than s colluding nodes can compromise any single con-

versation is p, then s = (efpd!)b 4 .

Proof. A group of s colluding nodes have to cover d keys. Assuming a Poisson

distribution and s < d. we have p = 0 e "s"/n! =~ e ist/d! . =

Property 9 Assuming node location and key distribution are uniform, the average
mazrimum number of common keys of a particular conversation that any group of

n nodes can cover is approrimately nt(l + t"‘,"»/z\—’).

Proof. Suppose it is up to the colluders to choose the ¢;’s and their own positions
so that they can make the best choice. The best they can do is to choose the
positions such that each of the group could cover at least ¢t common keys, e.g.,
a whole distinct line which contains t — 1 common keys and a point on another
line, and hope they can hit other common keys as many as possible. Suppose they
choose n points such that each is on one line through A and covers one distinct
common key on the remaining ¢t — n lines through A. Each node on such a point
has (¢t —n)(t — 1) — 1 extra intersections on v'N(t — n) — n remaining points of the

remaining lines. Thus the number of total common keys the n nodes could hit is

roughly
nt +n((t —n)(t - 1) — D)((t = n)(t = 1) = n)/(VN(t = n) — n)
and is approximately nt + nt*(t — n)/\V'N = nt(1 +t*/VN) . =

The above result is dominated by nt if t* < /N or t < Vv N. Since the security
requirement nt(1+t*/v/N) <t or n <t/(1+t*/VN) is normally to be assumed,
the above result to some extent gives a relation between the choice of ¢ and the
security level n that could be expected. For example, if t < v/N then we can

expect that n <t < V'N.

5 Multi-Map Version

This version is achieved by generating more key maps but still allocating two key

lines on each map to every node.

A Matrix Key Distribution Scheme 9

5.1 Definitions

Assume there are N nodes where N = m*. A communication map is defined as
a m x m matrix in which each point :.) has an address P,; and corresponds to
a node n,; where i,j = 1.2,...,m. The lth key map is also defined as a m x m
matrix in which each point (i,) corresponds to a key kfj. The key set given to

n;; by the key server is

Kj={kxy ! X=1+aj, or, Y =i+bj, mod(m)}

where a’s and b’s are all distinct. K; consists of key rows or columns on the key
maps, called key lines.

An algorithm Generate generates tm* random keys and puts one on each point
on every key map. Then it trivially selects K;; by the definition and sends it to
the node at the address P,;.

An algorithm Compute takes a pair of addresses on the communication map

as input, say F,; and P,,, and finds out the common keys lc;q where
p=t+aqjandg=u+bv, or, p=utaquandg=t+by , 1 =1,2,...,¢

It then uses the common keys to compose a conversation key, possibly using a
one-way function. The above is easier to understand if m is a prime; but in fact
other values of m work. For example, to make implemientation easier and faster,
it may be desirable to make m a power of 2; however, Property 12 in the next

section will not hold in this case.

5.2 Performance

Property 10 The key server has to generate tN keys.
Property 11 The key server needs to send to each node t/N keys.

Property 12 Assume m is prime. Then if two nodes say A and B have a common
key line on a key map, they do not have any common key lines on any other key

maps.

A Matrix Key Distribution Scheme 10

Proof. All the calculations are done mod(m). A’s and B’s key lines on the pth

kev map are indicated respectively by the row and column indices
Xa=i—a,), Yy=i-bjand Xp=u—-ayr, Yp=u~+ byv
Indices of key lines on the gth key map are
Xy =ti+ay Yiy=i+bjand Xg=u+au, Yg=u+buv

Assume A and B have two common key lines, one on the pth key map and one on
the gqth. There are four cases to consider, i.e.. whether the common key lines are
rows or columns on the pth and the gth. The first case is that they are columns on
the pth and the qth. This means X4 = Xp and X, = X}. Solving these equations
we get (a, — a,}{j — v) = 0. Because a’s are distinct, thus j = v which further
results in 7 = u . This says that A and B are the same node, a contradiction. The

other three cases are similar to this one. |

Property 13 Two different nodes have in common either 2t or 2t + VN — 2
distinct keys.

Proof. If A and B have a common key lire on a key map, they have /A" common
keys on this map. According to Property 12, they do not have common key lines
on any other key maps, so they have 2 common keys on each other map. Thus
the total is V'V + 2(t - 1) =2t = VN — 2. If they never have a common key line,

they have in total 2t common keys. O

Property 14 The time needed to set up a conversation key is the time complezity

of compute and is O(t). It is independent of the size of the network.

Property 15 Each node has to store bt VN bits where b is the key length. The

key server needs temporary storage of bt.N bits.

If conventional schemes are used, there are the following results. First, if the
common keys retain the same length as in this version, the key server has to
generate N(N — 1)/2 keys, a total of 8.V(:V — 1) bits; each node has to hold
26t(N — 1) bits. Second. when a server is required to set up a session key using a
typical protocol, the delay could be a few messages, which might involve expensive
public key encryption and decryption. It will also depend on some environmental

factors as the size of the network. the location of the key server.

A Matrix Key Distribution Scheme 11

5.3 Security

To simplify the results and the proof, we assume that when A and B have a

. 1 s
commmon key line, they only use two of the v.V common keys.

Property 16 When a particular pair of nodes communicate, any other node can

have at most two of the common keys of the pair of nodes.

Proof. Assume node C wants to listen to the conversation between A and B.
According to Property 12, C could at most have one common key line with A or
B once on all the keyv maps. so C could at most have two keys which are used

between A and B. .

e

Property 17 To compromise the key between two nodes, at least t other colluding

nodes are needed.

Proof. Considering that two nodes have at least 2t common keys, this property

is a straightforward corollary of the last one. 0

Note that in general case, this lower bound proven is also an upper bound
because there is always a group of ¢ nodes who when colluding together can com-
promise the conversation key. However, as stated before, empty points could be

specially allocated on the communication map to enhance security.

Property 18 Assuming that node location and key distribution are uniform, the
average number of colluding nodes needed to compromise a particular conversation

1S

s = log(2t)/ log(1 — 2/VN) =~ log(2t)V/'N.

Proof. A third node C’s probability to have a common key used between A and
B is 2/v/N . To cover all the keys in order to compromise the conversation by s

nodes, it is required that (1 — 2,/ V)2t < 1 0

Property 19 Assuming that node location and key distribution are uniform and
the probability that no more than s colluding nodes can compromise any single

conversation is p, then s = (e*tp(2¢)!) /(3

Proof. s colluding nodes have to know all the 2t keys. Assuming a Poisson

distribution, we have p = e *'s% 7 (24)! O

A Matrix Key Distribution Scheme 12

6 Discussion

A hybrid version is to choose pairs of lines from the multi-line version but with a
separate key map for each pair. and also choose ¢;’s to make the difference between
the ¢, pair to be 1 to eliminate division. Proofs of security bounds similar to that
in the multi-map version exist. The only difference is that now two nodes can
have in total at most two common key lines. An important feature of this hybrid
version is that the security bounds for the multi-map version still hold even when
m is a power of 2. This yields a very fast and secure scheme. Note that if the
difference is a constant other than I, an initial multiplication is sufficient and the
rest of the key calculation can be done by adding a constant difference. See the
appendix for a sample program of this hybrid version.

Performance can be enhanced in many ways. For example, since communi-
cating nodes construct a conversation key from the common keys, it is in theory
sufficient if every key on the key map is very short, because there are enough bits
in common from which to construct the conversation key. Suppose the conversa-
tion key is required to be 64 bits long. then in the multi-line version, let ¢ = 9 and
b = 1, every pair of nodes has at least 72 key bits in common while in the multi-
map version, let t = 16 and b = 2, the number of common key bits is at least 64.
Thus the number of bits that the key server has to generate and distribute could
be very small. However, having longer keys results in a higher level of security.
We can also simplify the computation in the multi-line version by choosing ¢;’s as
consecutive numbers so that the computation cycle can simply step through the
tables. Moreover, no more than t{t — 1)/2 reciprocals are needed in the multi-
line version and if the a’s are consecutive integers, no more than ¢ reciprocals are
needed in the hybrid version. These reciprocals can be held in a table to speed up
the calculation. Note much of the above still holds when m = 2",

Security can also be enhanced in many ways. First for instance, from the lower
bounds stated in previous sections, we could infer that the larger ¢ we have, the
more colluding nodes are required to compromise a conversation. Therefore, if the
amount of key storage or transmission is limited, we can always let b be as small
as possible to achieve the maximum security. However, increasing b reduces the

computation time. These are clearly reflected in the sample figures given in the

A Matrix Key Distribution Scheme 13

appendix. Second. keys generated and used are not necessarily equal in length.
[a fact. longer keys could be allocated to certain points to enhance the security of
certain important nodes. As a more specific example, in the multi-map version, if
all nodes who have a common key line on the communication map require higher
mutual security. they can include up to b(v/N —2) extra bits in their conversation
key. These extra bits are already available in their common key set but not used
in previous schemes. In this case, according to the security proof, an extra number
of v’V — 2 colluding nodes might be needed, and at least VvV = 2t extra nodes are
needed to attack their mutual communications. This is a big gain with little extra
effort.

Third, two communicating nodes could use part of the common keys they have
to compose the conversation key. The selection could be made according to some
preset rule or a notice published by the key server. This virtually changes all the
conversation kevs without physically sending new ones. This makes attack more
difficult. For example, in the multi-line version, if ¢ = 9, then there are 72 common
keys. If 64 of them are selected each time to compose the conversation key, there
are at least (1) > 2*° possible selections. One more parameter could be added to
compute to choose an appropriate subset of common keys. The parameter could
be agreed by the concerned nodes before communication or transmitted at the
same time. Moreover, when a conversation key is to be composed, the common
keys can be run through a one-way function. This separation by a secure one-
way function is important because now knowing some common keys is only useful
in exhaustively searching the common keys space. It does not help break the
encryption algorithm or exhaustively search the conversation key space. When
the one-way function is symmetric with respect to the dictionary order, it is not
necessary to run the common keys through it in a fixed order, which speeds up
the algorithm considerably. For instance, in the example 3 in the appendix for
multi-line version, there are 2048 comrmon key bits. Suppose we simply fold it 5
times to get a 64 bit key, each such bit is the exclusive-or of 32 common key bits
and knowing less than 32 bits reveals nothing about the final key bit.

A concept of logical positions of nodes could be introduced. Now the position

of node n;;, P,;. is not simply its physical address address(n;;), but is assigned by

A Matrix Key Distribution Scheme 14

the keyv server using an algorithm as follows
P.; = convert{address(n,;), R)

where R is salt. When node A wants to talk to B, it calculates B’s logical position
Ps

Pg = convert(address(n.), R)

and computes the conversation key from P,, Pg. using algorithm compute. By
doing this, the key server can change the address relations between nodes. It
has the advantage that a group of colluding nodes cannot always compromise a
conversation key between a particular pair of nodes. Every time the key server
changes the logical relations, part or all the keys might be required to be changed
at the same time; but not vice versa. Convert could be any one-one mapping
from the set of physical addresses in the environment to the set of points on the
communication map. R is taken to randomize the mapping. Note that changing
some or all of the a’s, 4's, and ¢;’s at each key change will also change the logical
relations between nodes and thus increase security.

The frequency of key change is based on the security level wanted. Normally,
the selection of key bits is changed most frequently; the whole or part of the key
map is changed less frequently; the values of a’s, b’s, and the communication map
are changed the least frequently. As fewer bits are to be generated and changed
than in conventional schemes they can be changed more frequently. And also
note that an attack by outsiders meets no fewer difficulties than in other existing
schemes. An insiders attack needs the collusion of at least a certain number of
nodes which have to be located on the right points on the communication map
to compromise a particular conversation key. When the communication map is
changed as described above, another set of colluding nodes are needed, which is
awkward for the colluders.

Finally, all the security results as lower bounds are derived on the assumption
that there is one node at each point on the communication map. It may not remain
true if empty points are allowed. [n fact, empty points could be specially allocated
to enhance security, for example, to protect some vital nodes, or to segregate notes
which have unclean record=. There is little loss in choosing N = mm.», a product

of two different prime numbers. but the extra complications seem not worthwhile.

A Matrix Key Distribution Scherne 15

We summarize a comparison of the multi-line and the multi-map version. N,

b. and t have the same meaning as before.

: " Multi-line version | Multi-map version |

| Server generated key bits | bV P bEN |
Node stored key bits bty N 2bt\' N | -
Common key bits Pbe(t - 1) i 2b¢
Time to find common keys | O(¢7) O(¢) i
Minimum colluding nodes [t/3° ¢ |

. : ‘v T ry
Average colluding nodes for | 2log{d)v/ N/t | log(2t)/.V
a particular conversation

Average colluding nodes for | (e?pd'}t* (e**p(2e))t 2

any conversation

Our scheme can be adopted in many applications. The general characteristic of
suitable environments is that most nodes involved are trusted, although it may or
may not be always clear as which nodes are trusted or not; particularly where an
acceptable upper limit of the number of colluding nodes has been decided accord-
ing to the particular application. A sample environment is a switch center where
communications from all incoming ports to all outgoing ports are to be protected.
Here the majority of the employees are trusted and activities are supervised. Fur-
thermore, our protocol reduces hand shakes so that useful messages pass much
faster than where exchanges are needed before the real message can be securely
passed. This is good where starting conversations without delay is appreciated or
essential.

As an example, authentication protocols which in future will be required exten-
sively {1 can be built using the matrix principle. Another example is to support
the unconditional sender and recipient untraceability [3i. In there, when there is
a subset of participants who each participant believes are sufficiently unlikely to
collude, such as of conflicting interests, each other participant can then share a key
with every member of this subset, which guarantees that the participants outside
the subset are untraceable. To implement this key sharing, our basic scheme is
sufficient. We could simply put the participants of the subset on to a single line
on the communication map. Of course the cheating problem has to be dealt with
separately. Our scheme might also be applicable to other key sharing topology in

(31 which remains to be investigated.

A Matrix Key Distribution Scheme 16

7 Summary

A new key distribution scheme is presented. It is based on the idea that lets
each node have a set of kevs of which it shares a distinct subset with every other
node. Two versions of the scheme are given. The scheme suits an environment
where there is a certain level of trust among the insiders i.e. the nodes. The
security property to an outsider remains identical to that of other existing schemes.
Moreover, there is virtually no delay when nodes want to start communication so
it supports immediate conversation. Finally, co.mpared with existing schemes, the
number of keys to be generated and stored are reduced by a square root factor so it
needs much less transmission and storage. The matrix scheme has many potential

applications.

Appendix

A Sample Programs

To show the simplicity of our schetnes, we give three C programs which are parts

of the compute to find the common keys.

A.1 DMulti-Line Version

Assume that node n,; wants to find out the common keys between itself and node
ny,. Assume that its keys given by the key server are stored in array k{l,x-i], where
|l = 1,2, ---, t indicates the lth key line, and x-i = 1,2, ---, m is the index of the
keys on the line. Let m = 27 t is even; c{l}, --+, c[t/2! are odd, c{t/2 +1], ---,

c{2t] are even; and a table contains all the reciprocals

~1

i = 5} = 1/(cli] - cfs}) mod 2"

The common keys found are to be stored in byte array ¢s|, s = 1,2, -+, t(t-1).
The changes when b # 8 are obvious but tedious. The program does not include
the part to order the common keys. One simple way to do this is to sort the keys
according to the indices as. [f (v = u ' (¢ = u)&(yj > v)) then swap the two bytes.

The algorithm follows

A Matrix Key Distribution Scheme 17

cemzon(i,j.u,v,.t,m,k,ck,r)
int i.j.x.,y.u,v.t.@;

char &(], cz{l.r{]; /= Byte arrays =/

{
int p.q.¥., s = O;
for(p = 1; p <= t/2; ++p)
for(q = t/2 + 1; q <= t; ++q)
{
w = r(p-ql; \
= (1 - w*w) % m;
y = ((v - PD=w) % m;
ck[s] = klp, (clql*x + y) % m];
cils + 1] = klq. (-clpl#x - y) % ml;
s += 2;
}
}

A.2 DMulti-Map Version

Assume keys given to node n;; are stored in array k[l,p,q|, where [indicates the
lth key map, p = 0 or 1 indicates the key row or column on the key map. q = 1,2,
---, V/N is the index of the keys on the line, and m = v/N is assumed a prime.

Other assumptions are the same as in the multi-line version.

common(i,j,u,v.n,t.a,b,k,ck)
int i,j,u.v,m,t,2a).b(].k(],ck(]:
{

int 1,8 = O;

for(l = 1; 1 <= t; ++1)
{
ckls] = k{1,0.Cu + b{1]=«v) % m];

ckls + 11 = &[1.,1,Cu + a(ll=»v) % m];

A Matrix Key Distribution Scheme 18

A.3 Hybrid Version

This simple hybrid version shows that the multiplications in the previous programs
can be eliminated in a simple way to speed up the algorithm while retaining the

same security strength. Let node z,, y; have keys at points
(z,y0 + s(z — z,)) where £=0.---,m -1 ,5=0,---,¢

On the [th key map the node has the key lines indicated by s = ,{ + 1,1 =
0,---,t — 1. A position of a common key on a map is the intersection of the two

lines
y=yn+s(z—z0)
y=y + (s +1)(z—zy)

The solution is

z=y, -y +s{ry —) + 2,

Because s steps from 0 to ¢t — 1, the multiplication in the above formula can be
done by an addition. We also use addition as a symmetric function to compose
the conversation key. This avoids ordering the keys so that there is no need to
swap the key bytes. Assume keys are stored in array k and the common keys are

stored in array ck. The inner cycle of the calculation is

{
x = (y[0] - y[1] + x[1]) & (m-1);
/* this masking is mod (m) since m is a power of 2 x/
for (s = 0; s < t; s++)
{
ckls] = kls,x] + ks, (=[1] + =[0] -x) & (m-1)]
x = (x + x[1] - x[0]) & (m-1)
}

A Matrix Key Distribution Scheme 19

The cvcle as given has no multiplications and can be done rapidly even on a simple

micro.

B Examples

Here we choose m a power of 2 thus there are b6¢°;2 common key bits in the

multi-line version.

Multi-line version example | 1. 12 ! | 4
Number of nodes 270 1210ttt
Number of key lines 8 (8 j64 |4
Key length RN | 8
Server generated key bits | 2% [219 |23 | 2@
Node stored key bits 218 ol als ol
Common key bits | 128 | 128 | 2048 | 64
Time to find common keys | 32 {32 | 2048
Minimum colluding nodes |3 '3 22 1
Multi-map version example |1 2 3 14
Number of nodes 270210 2l i gbe
Number of key maps 16 64 32 .48
Key length 4 1 1 1
Server generated key bits | 2% | 2%% | 217 | 3.214
Nodes stored key bits 217 L2l 20 3. 97
Common key bits 128 | 128 64 | 96
Time to find common keys | 16 | 64 | 32 | 48
Minimum colluding nodes | 16 |64 32 | 48

References

(1] A.D. Birrell, B.W. Lampson, R.M. Needham, and M.D. Schroeder, A Global
Authentication Service Without Global Trust, Proceedings of the [EEE Sym-
posium on Security and Privacy, IEEE. New York, 1986, pp. 223-230.

121 R. Blom, An Optimal Class of Symmetric Key Generation Systems, Advances
in Cryptology: Proceedings of Eurocrypt 84. Lecture Notes in Computer Sci-

ence, vol. 209, Springer-Verlag. Berlin, 1984, pp. 335-333.

'3 D. Chaum, The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability. Journal of Cryptology. vol.1, no.1 (1988), pp. 63-75.

- ul

-1

Matrix Key Distribution Scheme 20

\W. Diffie and M.E. Hellman, New Directions in Crvptography, [EEE Transac-
tions on [nformation Theory. vol. IT-22, no.6 (1976). pp. 644-634.

T. Matsumoto and H. [mai. On the Key Predistribution System : A Practical
Solution to the Key Distribution Problem, Advances in Cryptology: Proceedings
of Crypto 87, Lecture Notes in Computer Science, vol. 293, Springer-Verlag,

Berlin, 1987, pp. 185-193.

S.M. Matyvas and C.H. Meyer, Generation, Distribution, and [nstallation of

Cryptographic Keys, [BM Systems Journal, vol.17, no.2 (1978}, pp. 126-137.

7. R.M. Needham and M.D. Schroeder, Using Encryption for Authentication in

Large Networks of Computers, Communications of the ACAM, vol.21, no.12,

(1978), pp. 993-999.

V.L. Voydock and S.T. Kent, Security Mechanisms in High-Level Network

Protocols, ACM Computing Surveys, vol.13, no.2, (1983), pp. 135-171.

