Technical Report R

Number 154

Computer Laboratory

A natural language interface
to an intelligent planning system

I[.B. Crabtree, R.S. Crouch, D.C. Moffat,
N.J. Pirie, S.G. Pulman, G.D. Ritchie, B.A. Tate

January 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 L.B. Crabtree, R.S. Crouch, D.C. Moffat, N.]. Pirie,
S.G. Pulman, G.D. Ritchie, B.A. Tate

This project is supported by the Alvey Directorate and the
Science and Engineering Research Council (Alvey IKBS 179,
SERC GR/D/83507). This paper is to appear in the
Proceedings of the 1988 UK IT Conference, Swansea.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

AIMS OF PROJECT

An intelligent planning system is an example of a software aid which, al-
though developed by specialists in artificial intelligence, is intended to be
used by non-programmers for a wide variety of tasks. That is, the domain-
specific definition of requirements, resources, etc. for a particular appli-
cation will be specified by people who are trained in their own trade or
profession but who are unlikely to be acquainted with the technicalities of
automatic planning systems. There is therefore a need for 2 communication
medium which allows the application specialist, and the non-expert user of
the eventual domain-tailored system, to specify their needs without know-
ing any of the details of the planning notation or the actual operations of
the planning system.

This kind of system is one where the ‘mice and menus’ approach is unlikely
to be able to provide a very flexible interface, since it is characteristic of the
type of interaction that one would like to be able to have with a planner
that the range and type of potential queries is not predictable in advance,
and thus not reducible to choices within some predetermined set of options.
Furthermore, it is often desirable to have the planner try out a range of
hypothetical or counterfactual situations that could not be represented in
any obvious graphical form: some kind of language, either artificial or
natural, is a necessity here.

The aim of this project is to experiment with the use of English language
as the medium of communication. The kind of system we would like to
evantually be able to build would be one where a user could use the plan-
ner to organise some type of external activity, perhaps trying out several
alternative scenarios based on differing assumptions, and then interact with
the system during the course of execution of the resulting plans, making
adjustments when parts of the plan turn out for some unforeseen reason to
be unachievable.

The following are examples of the kind of query we would like to be able to
handle, in our current sample domain concerning field engineers repairing
equipment faults.

1. Has the fault at Ipswich been fixed?
2. Will Brown go to Ipswich from Base before anybody does Job2?

2

3. What jobs will be worked on while Smith is at Ipswich?

Queries like this require that notions of time, in relation to particular points
in the current plan, or to the current state of execution of the plan, should
be handled correctly.

4, Could Brown do Smith’s job at Ipswich?
5. If Smith goes to Ipswich, could Brown go to Martlesham?

Here the interpretion of the queries depends on the ability to consider
alternatives to the current plan which still allow the goals to be achieved.
It would also be useful to be able to frame queries asking for explanation
or justification for some aspects of plans:

6. Why does Smith have to fix the fault at Ipswich before he goes to
London?

During the first year of this project (1987) we have developed a simple
prototype system which is capable of handling queries like those in 1 - 3.
In the next section of the paper we describe this system, and in the final
section we will discuss some of the problems that arise in trying to extend
this to a successor system capable of handling the remaining type of query,
those in 4 - 6.]) : ‘

THE PROTOTYPE SYSTEM

A very simple prototype (‘Version 1°) was developed during the first year),
which processes queries about a single plan produced by the NONLIN plan-
ner. This prototype system consists of several modules: the Planner, the
Sentence Analyser, the Translator, and the Query Evaluator. The medium
of communication between several of these modules is what we call a ‘Gen-
eral Planning Language’ (GPL): a language in which plans and goals can
be represented, queried and reasoned about. GPL allows the expression
of planning-oriented notions such as occurrences of actions, effects and or-
derings of actions, and initial world state, all of which can be the subject
of two different types of query, corresponding linguistically to ‘yes-no’ and
‘wh-’ questions.

The actual planner used in Version 1 is Tate’s NONLIN developed at Ed-
inburgh some ten years ago (Tate, (5)). (A clear description of this type

of planner is given in Charniak and McDermott (1), section 9.3). NON-
LIN uses a library of ‘hierarchical’, or composite, actions; these are used
to ‘expand’ a plan from a high level specification of the requirements to
a more detailed set of actions that must be performed to achieve the ob-
jectives. The library of actions, the statement of requirement for a plan
and the initial conditions of the world can be specified via a ‘Task Formal-
ism’ language. It produces ‘non-linear’ plans, in that they only minimally
specify the order in which actions must be executed to achieve the goals.
The ‘intent’ of any specific action with respect to the goals and sub-goals
that are desired at points in the plan is embedded in the so-called ‘Goal
Structure’ of the plan. This information is used to ensure that interacting
effects and conditions are spotted and can be corrected by the introduction
of necessary action orderings.

For the first simple prototype, the application domain concerned the schedul-
ing of telephone engineers to fix faults in the network. Men are allocated
work depending on their location and special skills. The plan which forms
the subject matter of the dialogue is first created by the NONLIN planner
from a specification (in NONLIN’s own task formalism), displayed graphi-
cally, and converted via a planner specific routine to an equivalent represen-
tation in GPL. Until a new session is begun, there is no further invocation
of NONLIN. Thereafter, queries about this plan can be typed in. A ‘Sen-
tence Analyser’ parses the input and produces a ‘logical form’ (a symbolic
representation of its meaning). This logical form, together with some (at
present rudimentary) contextual information is then passed to a ‘logical
form to GPL’ Translator which converts this into a GPL query form. This
query is then evaluated by the Query Evaluator against the current plan.
The results of this evaluation (usually a list of variable bindings) is printed
out directly: no effort has been expended so far on producing linguistically
natural output - in itself a considerable research problem.

The Sentence Analyser accepts English sentences and produces logical forms
representing the literal meaning of the sentences. First, the sentence is
parsed using a unification enriched context free grammar, a lexicon and
a bottom up chart parser. This produces the syntactic structure of the
sentence, which is used to determine what the logical form of the sentence
should be. Each syntactic rule in the grammar has one or more correspond-
ing semantic rules saying how the meanings of the constituents should be

combined to give the meaning of the whole. {When there are several se-
mantic rules, the instantiations of syntactic features determine which one
is applicable). To give a simple example, consider the grammar rule

syntax: S[atype statement] -->
NP[number @num, person Qper]
VP [number Qnum, person Qper, vform finite]

semantics: S' = NP'(VP?')

This says that a sentence can consist of a noun phrase followed by a verb
phrase, provided the NP and VP agree in the values given to their number
and person features and that the VP is finite. Agreement between features
is enforced by unification: feature values beginning with ‘@’ are variables.
The semantic part of the rule says that given a sentence built up from an
NP and a VP combined in this way, form the meaning of the sentence (S°)
by .applying the meaning of the NP (NP’) to that of the VP (VP’). For a
very simple sentence we might have:

S
[stype statement]

/ \
/ \
NP VP
[num sing, per 3rdl (num sing, per 3rd,

viform finite]
! |

John snores

NP’ = [AP. P(john)]

VP’ = snore

S’ = [AP. P(john)] (snore)
= snore(john)

I

The meanings of the constituents are expressions in a typed higher order
logic based on a simplified form of Montague’s intensional logic (see Dowty,
Wall, and Peters (2)). These meanings are ultimately built up from log-
ical expressions assigned as the meanings of individual words by function
application or composition. In most cases, when all the lambda (beta)
. reductions have been carried out, the result is a first order expression.

The ‘logical-form-to-GPL’ translator is implemented within a forward and
backward chaining inference system which recursively goes through a logical
form. The translation rules for atomic clauses are expressed as conditionals
of the form:

IF (conditions) THEN translates({(GPL-expr), (logical-form))

This allows the translation to take into account contextual factors (which
will be among the ‘conditions’ previously asserted) and allows virtually
arbitrary rewritings of a logical form into a GPL representation, via rules
which are in a purely declarative and readable form.

Since GPL includes (approximately) the inferential capabilities of first-
order logic, the evaluation of a query against the representation of a single
plan by the Query Evaluator is in fact a form of theorem-proving. Version
1 actually has two different types of Query evaluator: one which inter-
prets quantifiers in a way reminiscent of Woods (6) ‘procedural semantics’
for the Lunar system and one which turns the query into a normal form

and uses unification and backward chaining of a familiar sort. However,
the intention is that ‘procedural evaluation’ of a more far-reaching kind
(procedurally evaluated operators and predicates) will also be used in fu-
ture versions of GPL to allow more complex types of interaction with the
back-end planning system in the course of evaluating a query.

The overall structure of Version 1 can be represented as:

o — ot v ——— - —— — — — i —

Sentence-> |Sentence|-> Logical-> |Translator|->

|Analyser| Form | |
GPL -> |Query | <-GPL rep <-|NONLIN|
Query |Evaluator| of plan I |
\
-> Answers

The initial prototype was tested using (extremely simple) plans in our sam-
ple domain of engineers fixing faults at telephone exchanges. If we consider
the simple plan drawn below and pose the following queries before any of
the plan is executed, we would get these responses:

YWhat does Bill do?

Jobl,Job4

YWho will do Job2?

Nigel

YWill anyone go from Base to Ipswich?

Yes

YWill Nigel go to Ipswich from Base before Nigel does Job2?
Yes

book(Job4, Base, Bill) book(Job2, Base, Nigel)
I |
| |
go(Bill, Base, Martlesham) |
I I
I go(Nigel, Base, Ipswich)
do(Job4, Bill) : |
I |
I |
book(Jobi ,Martlesham,Bill) do(Job2, Nigel)

|
do(Jobi, Bill)

As can be seen, the questions that naturally arise in this, as in most plan-
ning domains, concern the ordering of various actions in the plan and when
they happen. The linguistic analysis has therefore concentrated on provid-
ing an account of tense and temporal reference. The range of constructions
covered includes: simple past, present and future tenses, complex tenses,
aspects like the progressive and the perfect, temporal adverbials like ‘at
2pm’, and some temporal connectives like ‘before’, ‘after’ and ‘when’.

The basic assumption behind the semantic treatment of time is that the
logical forms of sentences refer to states and events: e.g. the event of some-
one going from Base to Ipswich, or the state of someone being in Ipswich.
The various temporal constructions place restrictions on the time intervals
during which these states or events can occur. The simplest sort of re-
striction is imposed by the tenses. The past tense says that the state or
event must occur at some point prior to the time at which the sentence
was uttered. (The time of utterance is in turn related to some point during

the presumed execution of the plan). Adverbials like ‘at 2pm’ and ‘yester-
day’ can further narrow down the range of times at which the event could
have occurred. Temporal connectives like ‘before’ serve to mutually restrict
two event times: for instance, in ‘Bill went to Ipswich before he went to
Martlesham’, both events are past and one is constrained to occur before
the other.

As a concrete illustration, the logical form assigned by the sentence analyser
to the second query, ‘Who will do Job2?’, is (variables begin with upper
case, constants with lower case):

(whq (some (WH Ev EvTime FutTime)
(and (and (do WH job2 Ev)
(time-of Ev EvTime))
(and (precedes start-of-day FutTime)
(during EvTime FutTime)))))

i.e. ‘is there some WHperson, Event, EventTime, and FutureTime such
that the Event is the carrying out by the WHperson of job2 at the time
specified by EventTime, where FutureTime must be later than the start-
of-the-day (i.e. the time of the utterance), and the EventTime must occur
within the FutureTime interval’

The corresponding GPL query is:

find([WH],
exists (type(X, node),
exists(type(WH, person),
and(nameof (X, done(job2, WH)),
follows(X, start-of-plan)))).

l.e. ‘return an instantiation for WH in: is there in the plan a node X, and
a person WH such that X is labelled as ‘job2 completed by WH’ and X is
after the initial node of the plan?’

As can be seen, the GPL translation usually omits information present
in the logical form. In general, the meanings of sentences carry much
more information about time than the rather simple treatment presupposed
by this planner and this domain. There can be considerable amounts of

inference involved in going from a linguistically expressed meaning to the
most appropriate formulation of the query in GPL for a particular plan.

THE NEXT VERSION

We are currently working on the design of the second prototype, which will
remedy some of the weaknesses of the first version and extend the linguistic
coverage in various ways., However, there are many difficult research issues
to be tackled here.

One issue concerns the exact status of our intermediate representation lan-
guage, GPL. It would be nice to think of (the final version of) GPL as
bearing the same kind of relation to planners as a database query language
like SQL does to databases. We would like the language to provide in a
precise sense a definition of the range of possible interactions it is possi-
ble to have with a planning system. GPL would have a clear denotational
or operational semantics, which any ‘implementation’ of it in terms of a
particular planner would have to respect. Then the process of moving our
system from one planner to another operating of the same factual domain
would be simply that of implementing GPL using the basic mechanisms of
the planner in question. (There are of course a different set of problems
arising when the domain is different too).

However, the analogy is not one which holds as firmly as we might like.
For one thing, database theory and practice is much more advanced in
standardisation than is the case with planning. Only if some reasonable
convergence on the range of operations and type of structures that planners
deal with emerges will it be possible to provide a definition which has a
chance of being fairly generally applicable. As it is, there is a wide variety
of types of system being used for planning: deductive, procedural, agentless,
multi-agent, those that include plan execution and monitoring, or on-the-fly
replanning, etc. etc. There seems to be no great measure of agreement (at
any useful level of detall) about the primitive concepts of planning systems
in general, other than those we have already tried to incorporate. Thus any
version of GPL that we are likely to come up with in the next few years
is quite likely to be overtaken by events in the world of planning research.
Nevertheless, we hope to be able to do something useful with at least the
range of concepts that are hkely to remain stable: anything recognisable as

10

a planner is presumably going to involve initial and goal conditions, actions,
sequencing of actions, and so on.

A second point where the analogy begins to break down, concerns the
relationship of the planner itself to the evaluation of queries. Whereas
with database systems the range of possible (sensible) queries is more or
less limited to the contents, and to some degree, the organisation of the
database, with a planner there are far more things that could sensibly and
usefully be required. For some of these type of interactions, there may be
little or nothing inside the actual planner for the front end system to use.
In fact, NONLIN in our present system provides an example of this: there
is actually no explicit temporal information at all in a NONLIN plan. The
partial ordering of nodes in a plan places some constraints on how the plan
could be temporally executed, but all of this is neutral as to particular
approaches to the representation of time. Nevertheless, we want to be able
to ask and answer questions about temporal ordering of jobs to be domne,
and so on. In our current system, this has either to be inferred from domain
information, or (as is actually done) treated in an oversimplified manner
by associating nodes in a plan with temporally located events. Whereas
in this application this is fairly satisfactory, it is not difficult to imagine
other applications in which consumption of time resources were important,
where this kind of temporal information would have to be superimposed
on the actual planner in a way fairly unconnected with how the plans were
actually arrived at.

In some more extreme cases, it might be in any case be information straight-
forwardly about the nature of the domain which is needed to answer the
question, information that is totally irrelevant for the operation of the plan-
ner itself and thus not represented in it. In our current system we would
have to represent this knowledge inside GPL, for the not very good reason
that there is nowhere else for it to go. But enriching GPL so as to en-
compass the ability to answer such questions would not, we feel, be a good
idea: a general purpose knowledge representation formalism should not be
confused with a planning-specific language. The next version of the sys-
tem will have to develop some principled approach to the problem of how
domain-relevant information which is not planner-relevant is represented
and used.

The current linguistic coverage of the system is adequate for the ‘one shot’

11

exchanges permitted by Version 1, although the absence of pronouns or any
reference to prior context often makes for some rather linguistically unnat-
ural exchanges. Extending the linguistic coverage to include pronouns and
ellipsis, and thus to cover more extended dialogues presents some problems,
but nothing that is specific to this application, and we are confident that
the next version of the system will be able to handle a wide range of types
of pronominal usage, and some useful types of ellipsis. However, we will
probably impose some more or less arbitrary limit on the amount of prior
context that is considered relevant at any point in the dialogue to avoid
complexities of ‘local’ vs. ‘global’ focus.

" A more challenging set of issues is presented by the proposed extension to
modal and conditional sentences. Our initial approach to this is based on
the well-known Kripke (3) possible worlds semantics for modal logic, and
Stalnaker’s (4) development of this for conditionals. Informally, worlds or
states of affairs are taken to be related by ‘accessibility’. A sentence of the
form ‘possible p’ is true if there is some accessible alternative to the actual
world in which p is true. For conditionals, we must assume also that it
makes sense to talk of a ‘similarity’ relationship between worlds. Then a
sentence of the form ‘if p then q’ is true if in the world most similar to the
actual world in which p is true, q is also true,.

We can substitute plans for worlds and get a first approximation to a rea-
sonable interpretation for questions like our earlier 4:

4. Could Brown do Smith’s job at Ipswich?

. in terms of a query as to whether there is a plan satisfying all the goal
conditions of the current plan, but in which Brown does the job at Ipswich
that Smith is currently scheduled to do. Similarly, 5:

5. If Smith goes to Ipswich, could Brown go to Martlesham?

will be interpreted as a query as to whether there is a plan satisfying all
the goals of the current plan, but in which Smith goes to Ipswich and
Brown goes to Martlesham. (Notice that if there is not, a fully cooperative
system should tell us whether this is because there is no plan satisfying the
antecedent, or whether there is, but all such plans necessitate Brown not
going to Martlesham).

Clearly, this is a simple and intuitively satisfying treatment. Different
modalities (logical possibility, practical possibility in the domain, physi-

12

cal possibility) can be handled by having different accessibility relations
between plans. Unfortunately, of course, the accessibility and similarity
relations, which are taken as primitive undefined notions in the formal se-
mantic treatments cited, have to be actually computed for our suggested
use of them to be possible. This raises many issues of principle and of
practice. To say the least, it is not obvious what is going to count as the
relevant notion of ‘similarity’ between plans.

‘Why’ questions present a further host of difficulties. A question like 6:

6. Why does Smith have to fix the fault at Ipswich before he goes to
London?

is most unlikely to be able to be answered on the basis of anything that
an existing planner can do. The reasons why particular plans are the way
they are can vary enormously: the control strategy of the planner, the re-
quirements of some other distant part of the plan, or real world constraints
on the domain. Most planners discard information about how they arrived
at the eventual plan, and so information of the first two types may not
be available. Domain specific information raises all the familiar problems
of what constitutes a reason or causal explanation of something at the
appropropriately relevant level. For example, logically valid answers to 6
include;

He doesn’t.

Because otherwise the fault will not be fixed.

Because otherwise he will not go to Ipswich.

Because Ipswich and London are different places.

Because he can’t fix a fault in Ipswich if he is in London.
Because all the valid plans below a given threshold of complexity
order the nodes that way.

ete. etc.

At present it appears unlikely that we are going to be able to do anything
very sophisticated in answering ‘why’ questions in the near future.

13

REFERENCES

1. Charniak, E and McDermott, D. (1985) ‘Introduction to Artificial Intel-
ligence’, New York: Addison-Wesley.

2. Dowty, D., Wall, R., and Peters, S. (1981) ‘An Introduction to Montague
Semantics’, Dordrecht: D. Reidel Publishing.

3. Kripke, 8. (1963) ‘Semantical Analysis of Modal Logics’, I, Zestschrift
Jur Mathematische Logik und Grundlagen der Mathematsk, 9, 67-96.

4. Stalnaker, R. 1968 ‘A Theory of Conditionals’, in N. Rescher, ed. Studses
tn Logical Theory, Oxford: Basil Blackwell.

5. Tate, A (1977) ‘Generating Project Networks’, IJCAI-77, Cambridge,
Ma. USA.

6. William A. Woods, W. A. (1986) ‘Semantics and quantification in natu-
ra] language question answering’ in Barbara J. Grosz, et al (eds) Readings
in Natural Language Processing, Los Altos: Morgan Kaufmann, 205-248.

14

