Technical Report TR

Number 153

Computer Laboratory

Etficient data sharing

Michael Burrows

December 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 1988 Michael Burrows

This technical report is based on a dissertation submitted
September 1988 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Preface

Except where otherwise stated in the text, this dissertation is the result of my own
work, and includes nothing which is the outcome of work done in collaboration.

This dissertation is not substantially the same as any that I have submitted or
am currently submitting for a degree, diploma or any other qualification at any
other university.

MICHAEL BURROWS
DECEMBER 9, 1988

Trademarks

UNIX is a registered trademark of AT&T.

DEC, MicroVAX, MicroVAX-II, ULTRIX, VAX, VAXcluster, VAX-11/750 and
VMS are trademarks of the Digital Equipment Corporation.

NFS, Sun-3/50 and Sun-3/160 are trademarks of Sun Microsystems, Inc.
DOMAIN is a trademark of Apollo Computer, Inc.

il

iv 0.0

Acknowledgments

I am indebted to many who gave me advice, criticism and their time during the
course of this research. I would like to thank:

¢ David Wheeler, my supervisor. His suggestions and comments were always
provocative and stimulating. He broadened my interests to encompass many
areas of computer science outside the topic of my research, for which I am
grateful.

e Roger Needham, the head of the Computer Laboratory. His knowledge in
the field of distributed systems was invaluable. His discussions were always
interesting, and his suggestions always helpful.

e Martyn Johnson, the system manager of most Computer Laboratory ma-
chines. He put many valuable resources at my disposal, which often required
large amounts of his own time. The Demand-Initialized Disc system de-
scribed in Chapter 3 was based on his original idea.

I would like to thank the people who provided encouragement or suggested
improvements to this dissertation. They include Steve Crawley, Paul Curzon, Joe
Dixon, Andy Gordon, Stephen Harrison, Martyn Johnson, Ian Leslie, Sape Mul-
lender, Roger Needham, Cosmos Nicolaou, Gianpaolo Tommasi, David Wheeler
and John Wilkes .

I used the Andrew benchmark in measuring the performance of my caching
systems. Ishould like to thank the author of the benchmark, M. Satyanarayanan of
the Information Technology Center of Carnegie-Mellon University, for permission
to use it, and to reproduce some of his results for comparison with my own.

The work was supported by a studentship from the Science and Engineering
Research Council.

Summary

As distributed computing systems become widespread, the sharing of data between
people using a large number of computers becomes more important. One of the
most popular ways to facilitate this sharing is to provide a common file system,
accessible by all the machines on a network. This approach is simple and reason-
ably effective, but the performance of the system can degrade significantly if the
number of machines is increased. By using a hierarchical network, and arranging
that machines typically access files stored in the same section of the network, it is
possible to build very large systems. However, there is still a limit on the number
of machines that can share a single file server and a single network effectively.

A good way to decrease network and server load is to cache file data on client
machines, so that the data need not be fetched from the centralized server each
time it is accessed. This technique can improve the performance of a distributed
file system, and is used in a number of working systems. However, caching brings
with it the overhead of maintaining consistency, or cache coherence. That is, each
machine in the network must see the same data in its cache, even though one
machine may be modifying the data as others are reading it. The problem is to
maintain consistency without dramatically increasing the number of messages that
must be passed between the machines in the network.

Some existing file systems take a probabilistic approach to consistency, some
explicitly prevent the activities that can cause inconsistency, while others provide
consistency only at some cost in functionality or performance. In this disserta-
tion, I examine how distributed file systems are typically used, and the degree
to which caching might be expected to improve performance. I then describe a
new file system that attempts to cache significantly more data than other systems,
provides strong consistency guarantees, yet requires few additional messages for
cache management.

This new file system provides fine-grain sharing of a file concurrently open on
multiple machines in the network, at the granularity of a single byte. It uses a
simple system of multiple-reader, single-writer locks held in a centralized server to
ensure cache consistency. The problems of maintaining client state in a centralized
server are solved by using efficient data structures and crash recovery techniques.

Contents

Glossary xiii
1 Introduction 1
1.1 Distributed FileSystems 1
12 Caching e 3
13 AvoidingInconsistency, 3
131 Immutability 3

1.3.2 Disallowing Sharing 4

1.3.3 Maintaining Cache Consistency 4

134 Conclusion, 5

14 Hypothesis iie... 5
1.5 Synopsis e 6
2 Measuring a File System 7
2.1 TheMeasurements o i v v v s it 7
2.1.1 StaticMeasurements 7
2.1.2 Dynamic Measurements 00 9

22 OtherWork i 13
23 Conclusions e 14
3 Demand-Initialized Discs 17
31 Imtroduction., 17
3.2 TheDID Device Driver u.u.... 19
3.2.1 CachingPolicies 19
3.22 DataStructures., 20
3.2.3 HandlingI/ORequests 21

33 Performance. 22
331 Benchmark 22
332 Results 23

34 Experience e e 31
34.1 CacheLocation 32
3.4.2 General Performance. 32
343 CrashRecovery 33
344 LackofSharing......................... 34
345 Backup 34

35 Summary e e e e e e 35

viii

4 A Caching File System
4.1 Assumptions
4.2 Caching Algorithm
4.3 Overview
4.4 The Token Server
4.4.1 Separate Token Server
4.4.2 Token Server Interface
4.4.3 Data Structures and Algorithms
4.4.4 Crash Recovery
4.5 The Client
4.5.1 General Description
4.5.2 Client Conventions

4.5.4 The Cache Manager
4.5.5 Crash Recovery
4.6 Free Space
4.7 Summary

Behaviour and Performance
5.1 Semantics

5.3 Summary

Comparison with Related Work
6.1 Introduction
6.2 Demand-Initialized Discs
6.3 The Cedar File System
6.4 Sun’s Network File System

6.5 LOCUS

6.6 Apollo Domain
6.7 The Roe File System
6.8 The Andrew File System
6.9 The Sprite File System
6.10 Remote File Sharing
6.11 VAXclusters
6.12 Other Work
6.13 Summary

Conclusion

7.1 Summary
7.2 Further Work

References

CONTENTS

List of Tables

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

5.1
5.2
5.3
5.4

6.1

Distribution of Files and File Data by File Size 8
Distribution of Files and Data by Access/Modified Time 8
Results of Name Lookup Tracing 9
Frequency of File System Operations 11
Results of System Call Tracing 12
Running Time of Benchmarkfor DID 23
RVD and DID Server CPU Load during Benchmark 26
Number of Data Transfers During Benchmark 27
Number of Data Transfers During Normal Use 27
Occupancy of the DID Cache 28
File Access Latency of DID 29
File Access Latency by File Sizefor DID 29
Directory Modification State Table 59
Running Time of Benchmark for MFS 71
File Access Latency of MFS 74
File Access Latency by File Sizefor MFS 75
MFS Server Load during Benchmark 75
File system comparison 80

ix

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

3.1
5.2
5.3

DID device driver data structures 20
Running Time of Benchmarkfor DID 24
Relative Running Time of Benchmark 25
RVD and DID Server CPU Load During Benchmark 26
Server throughput, disc and CPU utilization during benchmark . . 30
The structureof MFS 40
Token server data structures. 45
Cache manager data structures 56
Running Time of Benchmark for MFS 72
Relative Running Time of Benchmark with MFS 73
Server throughput and CPU utilization during benchmark for MFS 76

Xi

Glossary

This list defines abbreviations and some technical terms used in the text. A most
important set of distinctions is retained throughout this dissertation: clients are
machines, users are people and applications are programmes that run on clients.

Andrew

application

cache

callback

client

CFS

coherence

consistency

DID

file server

host

LRU
MFS

metadata

A file system built at the Information Technology Center of Carnegie
Mellon University [Howard 88].

A programme running on a machine on behalf of a user.

A local copy of remote data, which can be accessed more readily
than the original. To store data in a cache.

In Andrew, a guarantee that the file server will contact a client if a
file is modified. Equivalent to holding a read-token in MFS.

A machine that calls upon a server to perform some operation, such
as storing a file. Compare with user.

The Cedar File System [Schroeder 85], developed at Xerox PARC.
Cache coherence is synonymous with cache consistency.

A caching system is said to be consistent if an ordered set of data
accesses always produces the same results under the caching system
as it would have done without caching.

Demand-Initialized Disc system. A caching system built on top of
RVD. Described in Chapter 3.

A machine that allows clients to store and retrieve data files by
name.

A computer with access to a network.
Least Recently Used.
Mike’s File System. A caching file system described in Chapter 3.

Information associated with files, but not contained within them.
E.g. names, permissions information, etc.

xiii

xiv

NFS
RFS
RPC

RVD

server

Sprite

token

GLOSSARY

Sun Microsystems’ Network File System [Sandberg 85).
AT&T’s Remote File Sharing [Bach 87).

Remote Procedure Call. Invocation of a procedure at a server by a
client.

The Remote Virtual Disc system, developed at MIT [Treese 88].

A machine that offers some service to clients, such as storing files,
giving the time of day etc. Normally, one server is able to handle
requests from many clients.

A distributed operating system built at the University of California
at Berkeley [Nelson 88].

In MFS, a logical permit to cache data, used to maintain cache
consistency. Possession of a read-token allows the data to be cached
for reading; a write-token allows both reading and writing. Tokens
are managed by the token server.

token server A server that keeps track of tokens, reclaiming them from clients

user

when they are needed by others.

A person who initiates activities on a computer. The programmes
that he runs are applications. Compare with client.

Chapter 1

Introduction

This dissertation considers the use of caching in distributed file systems. It argues
that effective caching techniques can improve file system performance without
sacrificing consistency guarantees or reliability.

This chapter introduces the notion of a distributed file system. It discusses
how caching can improve the performance of such a system, the problems of cache
consistency, and the techniques available for maintaining consistency. The chapter
concludes by stating the goals of the dissertation and summarizing the contents of
each chapter.

1.1 Distributed File Systems

Distributed file systems have been an active area of research for many years. Their
importance is obvious—they are a focal point for information storage, retrieval,
naming and sharing in many distributed computing systems. Their importance
grows as the size and popularity of distributed systems increases.

In many cases, distributed file system interfaces are based on the interfaces
of time-shared file systems. Some file systems (e.g. the Cedar File System
[Schroeder 85]) are different in style, but such systems are rare, and none has
gained wide acceptance.

The basic properties of file systems are well established—they allow application
programmes to store data files and retrieve them by name. The storage is usually
non-volatile, and usually larger in size than the main memory of a machine. File
names are often textual and human readable. There are several reasons for placing
data in a file system:

e The data will survive machine crashes.
o The data can exceed the size of main memory.
¢ Files can be given mnemonic names for easy reference by users.

o Files can be retrieved by programmes and users other than the ones that
generated them.

2 CHAPTER 1. INTRODUCTION

It is possible to build a distributed system in which each machine has its own
local file system for the storage of its own data. However, experience with such
systems suggests that this situation is far from ideal. One result is that each
machine is limited by the size of its own store, rather than the total amount of
storage in the system. Worse, the data can only be named and accessed from a
single machine—it cannot be shared between machines.

In the normal course of using a computer system, there is potential for a great
deal of file sharing. Users share copies of standard system files, and share their own
files amongst their colleagues. Normally, the sharing is between a group of people
working in related areas, though sometimes there is a need to share information
in a much larger group. In most cases, file sharing does not involve concurrent
access to the data.

File transfer protocols allow a user to retrieve data stored on remote machines,
but this is inconvenient for any system larger than a handful of machines. This
approach leads to multiple copies of files being scattered through the system,
with no guarantees that the copies are consistent with one another. Checking the
consistency of a copy against a master copy can be expensive, particularly for files
shared between a large number of machines. Keeping track of the copies, and
locating the most recent version soon becomes tedious.

A solution to these problems is for machines to allow direct access to their
file systems by other machines on the network. A client machine can then access
the files of a file server. Transparent file access can be provided by placing both
local and remote files in the same name space. The most important aspects of
distributed file system design include:

¢ naming—how users and machines identify files;

¢ file location—who or what controls it, and how;

internal file structure;

the programmer’s interface;

e access control.

These issues have been explored in many different file system designs, but are not
central to the arguments presented here. This dissertation concentrates on three
areas associated with the basic notion of accessing data in a distributed system:

e performance;

e consistency in the presence of file sharing—what guarantees are provided at
what granularity;

e failure properties—what happens when a machine, network or disc fails.

In particular, later chapters consider the use of caching to increase performance,
and how this affects file system consistency and failure properties.

1.2, CACHING 3

1.2 Caching

Caching is an extremely powerful technique in distributed systems. The principle
is simple: copies of commonly used information are held close to the clients that
need it, so that operations on it can take place without interactions with remote
machines. The effect on performance can be dramatic. In a later chapter, we
shall see that a file system cache on a UNIX [Ritchie 78] machine can reduce the
number of disc accesses by a factor of ten or more. This is undoubtedly a useful
gain, but it comes at the cost of additional complexity in the clients, the servers
and the network protocols that are used between the two.

The main problem with caching is the need to maintain cache consistency
(sometimes called cache coherence) in the face of write-sharing. For example, if
two clients on two different machines each cache a copy of a file, and then one
updates its local copy, the other must update its cache before it can read its copy
once more. Nelson [Nelson 88] distinguishes two forms of write-sharing:

Sequential write-sharing takes places when a file is read and written on multiple
machines, but is never open! simultaneously on more than one.

Concurrent write-sharing takes places when a file is simultaneously open for read-
ing and writing on more than one machine.

The problems of write-sharing have been tackled in a number of differing ways,
which are summarized below.

1.3 Avoiding Inconsistency

1.3.1 Immutability

Immutable data items have the property that once they have been created, they
cannot be modified. Immutable objects have many advantages in a distributed
environment. In particular, a cache of immutable objects does not require any
maintenance to remain consistent. Since the value of an object cannot change,
two copies of the same object can never differ.

In the Cedar File System, files are viewed as a set of versions of immutable ob-
jects [Schroeder 85]. Each time a modification is required, a new object is created.
This approach is reasonably efficient in most situations since files are almost al-
ways written in their entirety [Nelson 88), and old versions of files can be removed
when not required. Of course, there are always some files that are incrementally
modified, such as logs and databases, but these are often accommodated by other
services [Brown 83].

Unfortunately, it is not possible for a caching system to take full advantage of
the properties of immutable files unless files can be identified uniquely. If a file's

1This assumes that an application declares its intention to read or write a file by opening the
file. Related accesses to the file are grouped between bracketing open and close operations.

4 CHAPTER 1. INTRODUCTION

identifier can be changed, the same identifier may be used in two different places
to refer to different files. The property required is that the file is immutable with
respect to its identifier; if an identifier refers to any file at all, it always refers to
the same file. This permits files to be deleted, provided their identifiers are never
reused.

The Cedar File System includes version numbers in file names to allow the
allocation of a new name to each new version of a file. Remote files are typically
accessed through a version management system that retrieves and saves consistent
sets of files [Schmidt 82]. Since the version management system keeps track of
file version numbers on behalf of the user, the full name of each file is used when
it is accessed, and the binding between name and contents is preserved. How-
ever, users are accustomed to referring to files by an unqualified name, without
quoting explicit version numbers or timestamps. Cedar will automatically choose
the highest numbered version when no explicit version number is specified. This
invalidates the assumption that files are immutable with respect to their names,
since the same (unqualified) name can now refer to many different files. Cache
consistency again becomes an issue—the mutable directory must be up to date
in order to correctly find the latest version of a particular file. The system must
do the same amount of work to detect inconsistency of the directory as would be
required for the file itself, if the file were mutable.

From this we can conclude that cache consistency is a problem even when
using immutable files. Moreover, adding support for cache consistency of muta-
ble directories allows the possibility of other mutable files, such as log files and
databases.

1.3.2 Disallowing Sharing

There are two necessary conditions for inconsistency in a distributed caching sys-
tem: sharing and modification. Inconsistency is impossible if data is immutable,
or if it is not shared. Chapter 3 describes a file system in which shared files
are immutable, and writable files cannot be shared. This policy ensures cache
consistency, but imposes undesirable constraints on the users.

1.3.3 Maintaining Cache Consistency

Cache consistency in a distributed system can be maintained by a set of algorithms
and protocols that communicate the actions of one client to other interested clients.
Several possibilities exist, depending on the constraints placed on the design. The
most important considerations are:

e the delays observed by a client when reading and writing files;

¢ the granularity of sharing and caching required;

the load imposed on the clients and servers when a file is accessed;

state required in the clients and servers about current clients;

1.4. HYPOTHESIS 5

¢ behaviour in the presence of machine failure and/or network partition.
Two popular strategies for controlling cache consistency are:

o validate before use—the client interrogates a master copy of the object before
using the value in its cache (e.g NFS [Sandberg 85]);

¢ invalidate on write—a centralized server undertakes to inform clients when
their caches are about to become inconsistent (e.g. Andrew [Howard 88]).

The first strategy requires very little server state, which simplifies crash re-
covery slightly. However, its performance is generally poor, especially when the
number of clients is large.

Invalidation schemes require the server to remember what each client has
cached, and this complicates crash recovery. However, the performance tends
to be better, both because no network accesses are needed when the cache is ac-
cessed, and because the server is not burdened with a large number of validation
requests.

Hybrid schemes are also possible. In some file systems, such as RFS [Bach 87]
and Sprite [Nelson 88], clients validate files as they are opened, and are informed
when concurrent write-sharing takes place.

1.3.4 Conclusion

The sections above have considered restricting file modification and file sharing in
order to deal with the problems of cache inconsistency. Neither solution is ideal.
Immutable files cannot support certain types of file access, and do not fully solve
the problems of maintaining consistency when files are accessed by unqualified
names. Restricting the ways in which files can be shared will inconvenience groups
of users working with related files, and will force distributed applications to use
other techniques for data sharing.

Cache consistency algorithms allow for the possibility of mutable files, and
sharing, at some cost in complexity.

1.4 Hypothesis

This dissertation aims to show that:

¢ The performance of distributed file systems can be greatly improved by
caching copies of remote files on client machines.

¢ The consistency of these copies can be maintained in an efficient and practical
manner, even in the face of sharing at the granularity of individual reads and
writes of a few hundred bytes each.

¢ Efficient crash recovery is possible without excessive loss of file data, even
though the caching techniques presented make heavy use of server state.

6 CHAPTER 1. INTRODUCTION

¢ The performance of the resulting file system degrades slowly as the number
of active clients per server increases.

The arguments are presented without particular reference to the other aspects
of file system design. I claim that the caching systems described could be made to
work with a range of naming schemes, replication mechanisms and file structures.

1.5 Synopsis

Chapter 2 presents measurements taken on a UNIX system and combines them
with information gathered by other researchers. This information guides the im-
plementation decisions made in other chapters.

Chapter 3 presents a simple caching system, and describes its implementation.
The performance of the system under an artificial load, and experience with actual
use of the system in a medium-sized environment is discussed. The shortcomings
of the system are presented.

Chapter 4 presents a prototype implementation of a distributed file system
that overcomes the difficulties described above. By storing information about the
state of each client in a centralized place, the system provides:

¢ fine-grain sharing;

e good consistency guarantees;
¢ good performance;

e good scaling.

Algorithms for replication and crash recovery are described.

In Chapter §, the behaviour of the file system is compared with a standalone
UNIX system. Also, the performance of the system under an artificial load is
analysed and compared with existing file systems.

Related work is presented in Chapter 6, which examines the caching systems
of several existing file systems. The advantages and drawbacks of each system are
discussed and compared with the prototype. The chapter shows that the proposed
file system differs substantially from the others described.

Chapter 7 summarizes the main conclusions of the dissertation.

Chapter 2

Measuring a File System

When designing a new file system, it is important to know how it will be used;
one of the best ways of predicting this is to examine existing file systems. This
chapter describes how the file system of a time-shared UNIX system was monitored
to obtain information about file usage and sharing. Since others have also traced
file systems in considerable detail, results are presented only in brief. The results
of this chapter are intended to give the reader a reasonable idea. of the file system
activity on a UNIX system in a university research environment. Important data
reported by other researchers are summarized.

2.1 The Measurements

The file system examined was that of a time sharing UNIX machine running Berke-
ley 4.2BSD. The machine was a VAX-11/750, which typically had 10 users logged
in during the day. Two types of measurement were performed:

¢ static measurements on existing files;
¢ dynamic measurements of how processes manipulate files.

The static analysis involved examining a snapshot of file system state. It
provided information about typical file sizes, numbers of files, and the number
of long-lived files that are read and written frequently. The dynamic analysis
involved collecting information from the operating system as it was running, It
provided detailed file usage information, including sufficient information to drive
simulations of file caching schemes.

2.1.1 Static Measurements

The file system of a timesharing UNIX machine was scanned, and file size, last-
accessed time and last-modified time were recorded. Samples were taken in the
evening of 14 consecutive days. Table 2.1 shows the distribution of files and data
by file size. Table 2.2 shows the distribution of files and data by last-accessed and
last-modified time.

CHAPTER 2. MEASURING A FILE SYSTEM

File Size
0-4K | 4-16K | 16-64K | 64-256K | 256-512K | 512K-1M | 1M+ Total
Files 47544 | 12387 4129 635 65 49 54 | 64863
Data (Kb) | 52243 | 100409 | 118647 74827 20824 35526 | 95988 | 498466

The table shows the distribution of files and file data according to files size. Figures are the
means of measurements taken at 6pm on 14 consecutive days.

Table 2.1: Distribution of Files and File Data by File Size

Accessed/Modified Files Data Files Data
within Accessed | Accessed (KB) | Modified | Modified (KB)
0-10 min 108 2833 35 878 |
10-30 min 181 2380 3 904
0.5-1 hr 252 3337 34 708
1-2 hrs 369 5656 62 1621
24 hrs 489 6309 66 2377
4-6 hrs 169 2002 71 536
6-8 hrs 225 2730 52 910
8-10 hrs 59 1085 18 227
10-12 hrs 3 256 10 108
0.5-1 day 798 7074 161 2954
1-2 days 1434 16563 353 6219
2-4 days 2841 27915 755 10406
4-8 days 5466 43806 2684 22644
8+ days 52351 376514 60531 447968
Total 64863 498460 64863 498460

The table shows the distribution of file last-accessed times and last-modified times for files
and file data. Higher rows show data in more recently accessed or modified files. Figures
are the means of measurements taken at 6pm on 14 consecutive days.

Most of the information revealed by the tables is well known:

o Most files are small—73% are less than 4 kilobytes.

Table 2.2: Distribution of Files and Data by Access/Modified Time

o A large fraction of file data is contained in fairly large files—69% of all file
data is held in files longer than 16 kilobytes. 19% of all file data is held in
files longer than 1 megabyte.

o Most files and most file data are not accessed or updated frequently. In 8

days:
— 81% of files (76% of file data) are not accessed;
— 93% of files (90% of file data) are not modified.

o Over a short period, more files are read than written, and more file data is
read than written.

e File system activity varies greatly with time of day—it peaks in the middle
of the afternoon, and dips at night.

In addition, 80% of directories were 512 bytes long; 98% were 4 kilobytes or less.

2.1. THE MEASUREMENTS 9

2.1.2 Dynamic Measurements

Dynamic measurements are harder to perform than static measurements:

¢ The volume of data is high.

¢ The measurements should not degra.de‘the performance of the system signif-
icantly.

¢ Dynamic measurements often require modifications to the existing operating
system.

The method of gathering information was simple. The UNIX kernel was mod-
ified to record various events, such as name lookups and system calls, in a circular
memory buffer. This buffer was periodically scanned by a user process that read
the information and recorded it in a file. The buffer was scanned often enough
to ensure that all data was captured. The fraction of CPU time occupied by the
tracing mechanism was measured to be less than 2% in normal use.

Two distinct sets of measurements were made. The first recorded file name
lookups, together with a flag indicating whether the file was being created. The
second recorded more detailed information about a number of system calls, includ-
ing most file system operations, but not including individual reads and writes. In
each case, several traces were taken over a number of days.

Instances of file sharing were detected by recording the user identifier of the
process generating each entry in the traces. By modelling the system activity as
a collection of independent login sessions, it was possible to estimate how much

sharing would take place between single-user workstations carrying the same work-
load.

Name Lookups

Name lookup traces were taken on three consecutive days during normal working
hours. Overnight traces were biased by the large number of lookups by processes
scanning the entire file system to remove unwanted temporary files. Table 2.3
summarizes the results, which do not include any results from overnight traces,
except where noted.

Mean lookups/second 4

Max lookups/second (mean over 60s) | 22 (245 overnight)
Unsuccessful lookups 18% of all lookups

Regular files 92% of accessed files

Files accessed by > 1 user 10% of regular files accessed
Newly created files 5% of regular files accessed
Shared, newly created files 0.5% of regular files accessed

The table shows the results of tracing name lookups on a time sharing UNIX machine over
a period of three days during working hours. A regular file is a normal file, rather than a
device file or a directory.

Table 2.3: Results of Name Lookup Tracing

10 CHAPTER 2. MEASURING A FILE SYSTEM

Instances of file sharing between users were detected by recording the user
identifier of each process that did some name lookup. The results show that:

o Lookups are quite frequent.

¢ A significant number of file name lookups fail.

¢ A significant number of files are accessed by multiple users.

e Few files are read by other users soon after being created.

Further analysis of the data revealed that almost all instances of shared ac-
cess to newly created files were due to interactions between user processes and
background system processes, rather than between two users’ processes. All such
accesses could be explained by one of the following:

o network statistics files, written by the rwhod process;

e news, written by news processes;

e mail, written by the mail delivery system;

o the line printer system reading files to be printed;

¢ jobs submitted to be executed at a later date;

¢ modifications to the password database;

e reading the new message of the day, updated by the system manager.

In addition, a number of files appeared to be shared between two user iden-
tifiers because a system administrator switched to a privileged account in order
to install a file that had just been created. In a distributed environment, each
of these services could be localized to a single machine, or managed by a sepa-
rate subsystem, such as a mail system. The design of each individual service will
dictate whether these activities actually require shared access to files.

Some examples of shared access remained:

¢ installation of a new programme common to a group of users;

e users working in common source directories;

¢ exclusive locking of a user resource by creating a lock file.

The combination of these amounted to only 5% of all newly created files that
were shared, or 0.025% of all regular files accessed.

2.1. THE MEASUREMENTS 11

System Call Traces

Traces were taken over a period of three days, during working hours. For each
system call executed, the following information was recorded:

e the type of call;

o the user identifier of the process;
o the i-number of the file(s) affected;
o the size of the file.

Additional data was included for the open system call to indicate whether the file
was opened for writing. Rough timing information was available from the process
reading the data from the kernel buffer, but timing information was not recorded
in each trace entry. The following operations were not recorded by the trace in
order to reduce its size: read, write, Iseek (change position within a file).

Operation | Frequency | Comments

stat 198333 | Find file information

open 120310 | Open/create a file

close 120300 | Close an open file

fstat 84753 | Find file information for open file
exec 21082 | Execute a programme

chdir 17177 | Change working directory
unlink 11414 | Remove a file

access 8708 | Check access permissions
chmod 3269 | Change access permissions

link 2905 | Create a second name for a file
flock 1042 | Advisory file locking

chown 973 | Change file owner

symlink 662 | Create a symbolic link

readlink 588 | Read a symbolic link

fsyne 221 | Flush file modifications to disc
utimes 58 | Artificially set last-modified time
rename 29 | Rename a file

mkdir 28 | Make a directory

rmdir 28 | Delete a directory

ftruncate 11 | Truncate an open file

fchmod 3 | Change permissions on open file
fchown 0 | Change owner of open file
mknod 0 | Make a new device file

truncate 0 | Truncate a file

The table shows the number of file system operations performed by the kernel over three
days during working hours.

Table 2.4: Frequency of File System Operations

Table 2.4 gives the frequency of file system operations recorded during the
traces. The table shows that file information is frequently requested (the stat

12 CHAPTER 2. MEASURING A FILE SYSTEM

call), probably by the directory listing programme. Most file system activity is
based on open, close, stat and fstat.

The traces do not include paging activity, I/O due to directory operations, or
accesses to file system metadata. Qusterhout estimates that these non-file accesses
may account for as much as 50% of all disc accesses [Ousterhout 85]. It is more
difficult to obtain information about these accesses because of the complexity of
the UNIX file system code. Disc I/O statistics can be gathered, but these include
the effects of in-memory caches, such as the buffer cache and the name cache.

A summary of results obtained from the system call trace is shown in Table
2.5. Comparison with the figures for the name lookup traces shows that many
files are modified after being created. Additionally, write-sharing of existing files
is more common than write-sharing of newly-created files. Experience with UNIX
indicates that this is not a surprising result; most UNIX editors and compilers
overwrite existing output files rather than creating new ones.

Mean file operations/second 7

Max file ops/second (mean over 60s) | 93

Regular files 85% of accessed files

Files accessed by > 1 user 13% of regular files accessed
Files written 39% of regular files accessed
Write-shared files 8.5% of regular files accessed

The table shows the results of tracing file system calls on a time sharing UNIX machine
over a period of three days during working hours. Files were considered to be write-shared
if they were accessed by at least two users, and opened for writing by at least one user.

Table 2.5: Results of System Call Tracing

Despite the significant amount of write-sharing detected by the system call
trace, the types of write-sharing found were identical to those causes of write-
sharing described above. Some additional examples of source code sharing were
discovered, as well as two random access databases which described a programming
environment. In all, no more than 10% of the write-sharing detected by the traces
fell into this category. This represents only 0.9% of all regular files accessed. The
conclusion is that write-shared access to files is rare compared with single-user
access.

Despite the evidence that write-sharing is rare on a time-shared system, this
does not imply that the same will be true of a distributed system. The assumption
that users are confined to a single machine is approximately correct in many exist-
ing distributed systems, but may be quite wrong in situations where the number of
machines far exceeds the number of users. In such an environment, distributed ap-
plications (such as distributed compilations) may be commonplace, and these are
likely to cause additional write-sharing, even though they are performing a task for
only one user. Moreover, operating systems that allow processes to migrate from
one machine to another can artificially introduce write-sharing, even though only
one process is accessing each file. These observations suggest that write-sharing is
likely to increase as distributed applications become more widespread.

2.2. OTHER WORK 13

Cache Simulation

The system call traces were used to drive a simple cache simulation. Information on
individual reads and writes was not available, so whole file caching was simulated.
Separate caches were provided for each user in order to simulate an environment
where each user has one machine. The caching policy was as follows:

¢ File reads and writes caused the file to be cached.

o File writes caused data to be invalidated in other caches.

¢ Modifications were written-through to the file server without delay.
o The cache replacement policy was least-recently-used.

The simulation assumed that caches contain no useful data at the start of
a login session. As a result, the miss ratio is likely to be worse than might be
expected if previous cache contents were retained. Several interesting results were
obtained:

e The maximum amount of cache space used in any login session examined
was 15 megabytes.

o The average cache space used in a single login session was 4 megabytes,
though a significant number of sessions could use as much as 10 megabytes.

¢ The mean read miss rate in a single login session with an unlimited cache
was 36%. It ranged from 81% in short sessions, to 8% in long sessions.

o 21% of data accesses in login sessions were writes (not including system
processes).

The results of other published cache simulations concentrated on the behaviour
of the system as a whole, rather than considering the interactions between the
individual users. The results of some of these studies are summarized below.

2.2 Other Work

Satyanarayanan [Satyanarayanan 81] and Smith [Smith 81] describe static analysis
of file systems, with similar results to those given above. They also discuss the
variation of file access patterns and file lifetimes with other parameters, such as
file size and file type.

Smith [Smith 85] describes cache simulations based on traces from a collection
of large mainframes. He analyses cache performance for a variety of cache designs,
varying cache management policies and block sizes. Two important conclusions
are:

o Cache block size should be increased as cache size increases. However, he
warns that increasing cache block size increases the penalty for cache misses.

14 CHAPTER 2. MEASURING A FILE SYSTEM

o Prefetching data one block ahead can significantly improve cache hit ratios
in environments where sequential reading is common.

Smith’s data was taken at the granularity of a disc track (about 7 kilobytes),
and did not allow him to distinguish reads from writes. This prevented analysis
of the effect of delayed write policies.

Ousterhout [Ousterhout 85] describes a more detailed dynamic analysis of the
4.2BSD file system, also based on system call traces. Individual reads and writes
were not recorded, but lseek system calls were recorded, allowing the experimenters
to determine which parts of each file had been accessed. Moreover timing informa-
tion was included with each trace entry, permitting analysis of the performance of
delayed writes, The traces do not include non-file I/O traffic, such as paging and
accesses to metadata. Ousterhout’s most interesting conclusions for the purposes
of caching are:

o Average file system data rates are small (< 1 kilobyte/second/user).
o Peak file system data rates can be large (> 100 kilobytes/second/user).

e Most new data is destroyed soon after being written (25% after 30 seconds,
50% after 5 minutes).

o 70% of file accesses are whole-file transfers, accounting for 50% of the data
accessed.

¢ A 4 megabyte cache can eliminate between 65% and 90% of all disc accesses,
depending on delayed write policy.

e With a 4 megabyte cache, a block size of 16 kilobytes is optimal.

2.3 Conclusions

The results presented in this chapter are encouraging from the point of view of
caching, if the data obtained from time-sharing systems is applicable to distributed
systems. The most positive points are:

e Most file accesses are reads.

¢ Most newly written data is discarded soon after writing.

Individual users access only a few megabytes of data in a single login session.

Useful cache sizes are easily within the bounds of small discs, and medium
sized semiconductor memories.

Write-sharing is not common.

Files are often small, and accessed as a single unit.

2.3. CONCLUSIONS 15

o The average disc bandwidth required by a user is small.
Unfortunately, the situation is not perfect:

e The use of databases is rare in the traced environment, but is common in
the commercial computing world. The level of write-sharing observed may
be artificially low.

o Write-sharing is likely to increase as distributed applications become more
common.

e A high proportion of file data is held in a few large files, which are slow to
transfer over a network.

e The peak disc bandwidth expected by a user is very much higher than the
average.

¢ Paging and access to file system metadata may account for a large fraction
of all disc accesses.

These results suggest that caches can significantly reduce the amount of net-
work file system traffic in a programme development environment by adding caches
of between 4 and 20 megabytes. Whole file caching seems attractive, but this can
increase the access latency when a file is first touched. The presence of a few
shared access databases indicates that a finer granularity would be more appropri-
ate. Smith’s results indicate that cache block sizes of 8 kilobytes to 64 kilobytes
are likely to be best, depending on the size of the cache. Prefetching and delayed
writes are important in decreasing the cache miss ratio.

Chapter 3

Demand-Initialized Discs

A simple caching scheme was developed to improve the performance of an existing
file system and to gain experience with large caches. This chapter describes the
previously existing system and how caching was added. Performance figures are
presented and combined with experience from actual use.

3.1 Introduction

The Demand-Initialized Disc system (DID) was originally proposed by M.A. John-
son [Johnson 85] to overcome the problem of maintaining the local file systems of
the machines in a processor bank [Needham 82).

In a processor bank, machines are typically allocated to users for short periods,
and users usually have exclusive use of machines while they are allocated. Users
rarely request access to a named machine; instead they request some service, such
as a machine running UNIX. A management system allocates processors to users;
it chooses a processor to run the requested operating system, loading the operating
system if necessary. An interesting feature of the processor bank philosophy is that
users often have great control over the software of the machines that they use, and
are permitted to make arbitrary changes to it while the machine is allocated to
them. As a result, only the hardware of a machine can be trusted after a machine
has been returned to the pool; all of the software must be reloaded or checked.

A processor bank was being constructed, consisting of a number of MicroVAX
computers, each equipped with a 70 megabyte disc. The most popular operating
system on the machines was UNIX, though VMS was supported in a limited way.
A pool of machines running UNIX was kept up to date by periodically running
utilities to scan the local file system of each machine, and replace any system
files that had been modified or removed. Users could then be allocated any ma-
chine, without encountering any differences in the installed software. User files
were accessed via the Remote Virtual Disc (RVD) system developed at MIT by
the Laboratory for Computer Science, and later enhanced as part of the Athena
Project [Greenwald 85) [Treese 88].

The RVD system consists of a disc block server and a client device driver
that reads and writes disc blocks via a simple request-response protocol. The

17

18 CHAPTER 3. DEMAND-INITIALIZED DISCS

device driver behaves just like any disc driver, and is indistinguishable from other
disc drivers at the file system level, except in its performance. An active client
maintains a number of connections to the disc block server; each one corresponds
to a separate virtual disc, consisting of a range of disc blocks on the server’s disc.
These virtual discs can be formatted as UNIX logical volumes, and mounted as
part of the file system name space.

Each user is allocated a single virtual disc to store his own files. Since the
UNIX file system was not designed to allow the sharing of writable file systems
between machines, a virtual disc containing a UNIX file system cannot be mounted
for writing on more than one machine at a time. This prevents users from sharing
files effectively, and is a serious disadvantage of this approach. Read-only sharing
is possible, but complicates even the most trivial updates of any files on virtual
discs.

Apart from the inherent problems of the RVD system, the processor bank suf-
fered from several serious problems, affecting both performance and management
of the system:

o The time taken to scan discs for unauthorized changes was growing alarm-
ingly as the number of machines and the amount of installed software in-
creased.

o As more users began to use their virtual discs, the RVD servers became heav-
ily overloaded. Even though system utilities and temporary files were stored
on the local disc, the load during peak periods was becoming unacceptable.

e Users would often leave files on the local discs of the machines, preventing
the space from being used by others. Worse, these files were never backed
up, since the discs were not intended for permanent storage.

o Asthe set of installed files changed, the algorithm for detecting whether a file
system was out of date became quite baroque, since the file systems varied
slightly between machines, due to minor differences in system configuration.

* As more utilities and system libraries were installed, the local discs began
to run out of space.

The problems of detecting file system inconsistencies can be avoided by storing
system files on a single file server, shared by all the other machines. Unfortunately,
this aggravates the problems of file server load, and leaves the problem of the minor
differences needed between the various machines. The software can be altered to
eliminate these differences, but this involves many changes, which imply additional
software maintenance overheads.

The original suggestion which led to DID used a section of the local disc to
store system files, but initialized it on demand from a read-only RVD. At the
first access of a disc block, it was read from the remote server, and then written
to the corresponding block on the local disc. Thereafter, all reads and writes to
that block accessed only the local disc. Modifications could be made, but would

3.2. THE DID DEVICE DRIVER 19

never be written back to the file server. This allowed a user to make arbitrary
modifications to a machine while using it, but ensured that a clean file system
could be obtained by rebooting.

I extended this idea to provide a general purpose cache for all RVD access,
including user partitions. Under this scheme, cache blocks held data from any
part of any file system. Blocks were thrown out of the cache and replaced by other
blocks when necessary. As before, blocks written to system areas were written
only to the cache, but a different update policy was needed for user partitions.
Modifications to user RVDs were written back to the file server, as well as being
stored in the cache, ensuring that both the local and the remote copies of the file
were up to date.

DID is a very simple system, and does not provide facilities for sharing mutable
files between groups of machines simultaneously. Its major benefit is its simplicity;
since there is no possibility of sharing mutable files, no mechanism is required to
guarantee consistency. Moreover, the bulk of the new code is confined to a single
UNIX device driver that caches disc blocks fetched from one disc on another disc.
This simplicity has allowed DID to act as an experiment in caching remote files,
providing an opportunity to measure the effectiveness of client caching in a real,
working environment.

3.2 The DID Device Driver

Most of the work in the caching system is done by a virtual disc driver that sits
between the UNIX block I/O layer [Thompson 78] and the other disc drivers.
Although the block I/O system treats this virtual disc driver as it would any other
device driver, the driver has no physical device of its own. Instead, it calls on other
device drivers to read and write blocks as required. The device driver can manage
a number of logical drives simultaneously, each one appearing as a separate logical
volume,

During use, each logical drive has two other devices associated with it. These
are the cache device and the initialization device of the logical drive. Almost any
random access device can be specified as cache and initialization devices, but in
practice the cache device is usually a local disc, and the initialization device an

RVD.

3.2.1 Caching Policies
The DID device currently supports two caching strategies:

write-to-cache: Modified blocks are written only to the cache device. Such blocks

are dirty, and can never be flushed from the cache unless the logical drive is
dismounted.

write-through: Modified blocks are written both to the cache device and to the
initialization device. Blocks are never left dirty in this mode.

20 CHAPTER 3. DEMAND-INITIALIZED DISCS

In both cases, blocks are read from the cache device if they exist there, and
read from the initialization device otherwise. Whenever a block is read from the
initialization device, it is written to the cache device. When necessary, unmodified
blocks are thrown out of the cache to make way for new data, using an LRU
replacement policy.

The write-through strategy was provided rather than a delayed write-back
scheme because the UNIX I/O system already has a buffer cache in main memory
that introduces a delay of up to 30 seconds on all writes. Increasing this delay
would noticeably decrease the robustness of the file system in the face of potential
client crashes.

3.2.2 Data Structures

Figure 3.1 shows the data structures of the DID device driver. For each logical
drive, the driver stores the internal device numbers of the initialization and cache
devices. For each distinct cache device, a hash table maps logical block numbers
onto cache block numbers. Logical block numbers correspond exactly to the block
numbers on the initialization device, but cache blocks may be allocated in any
order. Each cache device can hold blocks from a number of different logical devices
simultaneously.

logical device
structure

initialization disc initialization device driver

logical drive . . !
8 cache disc + cache device driver

number cache mode
cache block
structure
logical block number - T 7 logical drive

logical block
sector bitmap
dirty bit

hash table ¥
LRU frie chain

Figure 3.1: DID device driver data structures

The cache device is divided into 8 kilobyte blocks. This size corresponds to
the normal unit of file system access on the machines. If smaller transfers are
requested, a whole 8 kilobyte block is taken in the cache, but only the requested
sectors are read from the initialization device. Each cache block is described by
an entry in a table of cache block structures, which identify the logical device and
block number of the data cached in the block. It also contains a bitmap of sectors,
indicating which of the sectors within the block are valid, and a dirty bit, which is
set if the cached data has been modified, and should not be discarded.

3.2. THE DID DEVICE DRIVER 21

Cache block structures for clean blocks are held on a chain which is maintained
in least-recently-used order. If the cache is full, the last block on the chain is
discarded whenever a new block is cached. If the DID driver ever finds that all
cache blocks are dirty, it will cause a panic, printing a diagnostic and rebooting the
machine. This event has never occurred in actual use, though it could be caused
by major modifications to system files in the cache.

3.2.3 Handling I/O Requests

The DID device driver can split a logical transfer into a number of physical trans-
fers in order to satisfy a request. This is necessary when only part of a logical
request has been cached, or when consecutive logical blocks have been cached in
different parts of the cache device. Transfers are chained together using a callback
mechanism in the UNIX I/O system, which allows an arbitrary kernel routine to
be called when an I/O request has completed.

Each logical transfer request received by the device driver is split into four
classes of physical transfer, which are performed in the following order:

1. reads from the cache device.

2. reads from the initialization device.
3. writes to the initialization device.
4. writes to the cache device.

Some optimizations are made to reduce the number of physical transfers based
on the assumption that device latency is high compared to transfer times. For
example, if a read can be only partially satisfied from the cache, and the copy on
the initialization disc is up to date, the entire transfer is read from the initialization
disc and subsequently written to the cache disc. However, the UNIX buffer cache
system ensures that almost all transfers are 8 kilobytes in length, and are aligned
on 8 kilobyte boundaries, so the utility of these optimizations is questionable.

The device driver does not attempt to overlap I/O requests on the two devices;
doing so would have made the driver more complex. As a result, the observed
response time is often greater than that of RVD, since two I/O operations are
sometimes required, rather than one. This effect is reduced to some extent by
performing some of the additional transfers asynchronously. In particular, when
a block is fetched from the file server, the block is placed in the in-memory buffer
cache, but it is not written to the cache device. Instead, the block is flagged
so that it will be written back to the cache device when it is thrown out of the
buffer cache. This has the effect of delaying the write to the cache device until no
application programmes are waiting for the transfer to complete. Unfortunately,
this technique cannot easily be applied to disc blocks fetched by the demand paging
system, so these events always result in two I/O transfers.

The present driver still supports the option of directly mapping cache blocks
to logical blocks on a one-to-one basis. That is, disc block number N is always

22 CHAPTER 3. DEMAND-INITIALIZED DISCS

cached in the Nth block of the cache. This scheme has the advantage of being
extremely simple:

o The presence of a valid block on the cache disc is indicated by a single bit.
e Cache block address calculations are trivial.

o Contiguous ranges of cached blocks can be transferred from the cache disc
in a single operation.

e Cache block replacement can never occur.

e Dirty bits are not required to mark blocks that have been modified. There
is always enough space for all blocks to be present on the cache disc simul-
taneously.

Unfortunately, this option presupposes that the cache disc is big enough to hold
every block on every file system currently mounted, even though only a fraction
of those blocks will ever be cached. For this reason, its use is extremely limited.

3.3 Performance

3.3.1 Benchmark

The performance of the DID system was measured with the Andrew benchmark
[Howard 88]. This benchmark exercises a file system with a sequence of directory
and file operations. The running time of the benchmark and the load on the file
server give an indication of the performance of the file system. The benchmark is
split into five phases:

1. MakeDir: Make a number of directories.
2. Copy: Copy an existing set of files to another directory.

3. ScanDir: Traverse the new directory, examining the status information of
each file,

4. ReadDir: Read every byte of each file.
5. Make: Compile the files.

Both the existing set of files and the copy reside on the file system under test.
When Howard et al ran the benchmark for the Andrew file system, all of the
utilities and temporary files used by the benchmark resided on local file systems.
Unfortunately, few DID systems have local file systems; in the results presented

here, all utilities and temporary files were on file systems accessed via DID, even
when the file system under test was local, or a non-cached RVD. In order to
minimize the additional overhead of running the benchmarks in this way, all the

3.3. PERFORMANCE 23

utilities were placed in the caches of the machines under test before the benchmark
was run.

The benchmark was run simultaneously on a number of machines, all of which
used the same file server. This server contained the original copy of the files
copied in phase 2 of the benchmark, as well as the destination directories for each
of the clients. Each instance of the benchmark generates one unit of load, which
Howard claims is roughly equivalent to the load generated by five users. In fact,
the simulated load generates a greater proportion of writes than one would expect
from normal users.

All the machines used in the tests, including the file server, were MicroVAX-
IIs, each with 5 megabytes of memory. All tests were run three times in a row;
means and standard deviations are given for the measurements.

3.3.2 Results

The presentation of these results is based on the style of Howard in his description
of the Andrew file system, for ease of comparison. Relative timing figures for
Andrew and NFS are included from that paper for the purposes of comparison.
Absolute comparisons are misleading because of differences in machine types.

File Overall Time for Each Phase
System Load Time MakeDir Copy ScanDir | ReadAll Make
Standalone 615 (2) 7(1) 33 (1) 30 (1) 56 (0) 489 (3)

649 (6) | 12 (1) 50 (2) 32(1) | 59(1) | 496 (3)
660 (2) | 13(1) 59 (3) 32(1) | 59(0) | 499 (3)
771(10) | 26(1) | 122(7) | 34(1) | 60(1) | 542 (11)

DID 925(7) | 45(5) | 203(3) | 38(2) | 62(1) | 594 (3)
1099 (68) [59 (11) | 281(7) | 37(2) | 61(1) | 698 (73)
1696 (33) | 87(3) | 543(55) | 37(2) | 63(2) | 997 (49)
3050 (86) | 126 (11) | 1349 (124) | 42(4) | 66(6) | 1507 (95)
680 (4) | 7(2) 34 (2) 33(1) | 56(2) | 550 (7)
706 (7) | 10(0) 54 (1) 33(4) | 62(4) | 551(3)
888 (7) | 26(2) | 122(1) | 36(2) | 90(8) | 624 (6)
RVD 1165 (2) | 44(2) | 217(9) | 38(2) | 131(3) | 747 (12)

1404 (20) | 54(0) | 205(19) | 42(2) | 164 (1) | 877 (35)
2124 (61) [85(2) | 563 (45) | 52(4) | 251(2) | 1414 (341)
4075 (29) | 117(1) | 1773 (81) | 69(2) | 346 (7) | 1838 (108)

DD bt DY b=
Sooowunn~R5S oo

This table shows the elapsed time of the benchmark as a function of load. All timings are in
seconds; the figures in parentheses are standard deviations. Part of this data is reproduced
in Figure 3.2.

Table 3.1: Running Time of Benchmark for DID

Table 3.1 shows timings for the Andrew benchmark, for various file systems
and loads. The standalone file system is the local file system of the machine.
DID and RVD are systems accessing an RVD file server, with and without caching
respectively. The table shows that DID scales well in phases of the benchmark
that involve reading files, but badly when files are created or written. RVD scales
badly when files are read or written. At low loads, RVD outperforms DID when

24 CHAPTER 3. DEMAND-INITIALIZED DISCS

writing files; DID writes data to the file server and the local disc sequentially,
which delays the application longer than the RVD case. The total running times
for the benchmark are shown again in Figure 3.2.

4000 A /*
/
’I
’I
4
/
I’
3000 - K ..‘__n
’
II
,I
Benchmark /
Time 2000 - /'*
(seconds)) |
” a
RVD " DID
,_-*' o
> ST
r-.-:.sr.:.: e
\standalone
1 2 5 8 10 - -

Load Units (active clients)
The running time of the benchmark is shown for DID, RVD and the standalone file system.

Figure 3.2: Running Time of Benchmark for DID

Figure 3.3 shows the time taken for the benchmark relative to the time taken
at a load of 1. This graph is the best measure for how well the system scales when
running the benchmark. Figures for the Andrew file system and NFS are included
for reference. The Andrew and NFS clients were Sun-3/50s with 4 megabytes of
main memory, of which they used 10% for the buffer cache. The MicroVAXes also
use 10% of their memory for the buffer cache, and so had the advantage of larger
memory caches. However, the file server used by the Andrew and NFS systems
was a Sun-3/160, which is approximately twice as fast as a MicroVAX-IL.

This graph shows how badly DID fares overall when compared with other
systems. This result was surprising, given the simplicity of the RVD protocol,
and the size of the DID cache. Later tests show that the reason for the poor
performance is a combination of the write-through policy of the DID cache, the
number of blocks touched when a UNIX file is created, and badly tuned network
protocols.

3.3. PERFORMANCE

Relative
Benchmark Time

The relative running time of the benchmark is shown for DID, RVD NFS and Andrew. All
times are relative to the running time at a load of 1. Figures for NFS and Andrew are taken
from the measurements of Howard et al. [Howard 88]. Note that some NFS machines failed
to complete the benchmark at loads of ten and higher. Timings for NFS and Andrew used
Sun-3/50 clients and a Sun-3/160 server. The Andrew clients each had 4 megabytes of main

*
;
/
,;
,;
K
I‘ .'p
RVD,” ¢
/s
;
/ DID
/'
. &
- - - ,--3:‘. NFS
P e ' ." e---""" *
e _...-_'""':'; -
o ::—”’ d
o ‘T.Z.,-:-:;' Hmmem et X
- *m,.n.s;’;;fffj:‘;'j',_x e Andrew
some NFS clients failed
for load > 10
1 2) 7 8 10 15 18 20

Load Units (active clients)

memory. Each load unit represents one client running the Andrew benchmark.

Figure 3.3: Relative Running Time of Benchmark

25

26 CHAPTER 3. DEMAND-INITIALIZED DISCS

Table 3.2 shows the server CPU utilization as a function of load for DID and
RVD. This information is shown again in Figure 3.4, which shows the reduction in
load due to the caching. The figures seem to indicate that the server CPU is not
heavily loaded during the test, but they are actually misleading, as a later graph
will show.

File Server CPU Utilization (%) by Load (active clients)
System 1 2 5 8 10 15 20

DID_ | 4.0 (0.2) | 7.0 (0-2) | 17.0 (0.3) | 24.9 (0.2) | 28.4 (0.7) | 41.7 (2.3) | B4.1 (2.5)
RVD | 6.7 (0.1) | 12.3 (0.1) | 244 (0.1) [31.9(0.1) | 35,5 (0.5) | 42.1 (2.0) | 52.3 (L.1)

This table shows the server CPU utilization during the benchmark for various loads. The
figures in parentheses are standard deviations. This data is reproduced in Figure 3.4.

Table 3.2: RVD and DID Server CPU Load during Benchmark

60 ;
R
et
40 7 - - ::‘.;“1"‘
Percent RV]?.«(pee T e
server CPU JPtae P
Utilization o e
20 - e
t’ ’ ..‘,B'" DID
’*’ g
o
o'
12 5 8 10 15 20

Load Units (active clients)

The file server CPU utilization is shown for various load values. Each load unit represents
one client running the Andrew benchmark.

Figure 3.4: RVD and DID Server CPU Load During Benchmark

Table 3.3 shows the number of I/O transfers that took place on each client
during the benchmarks, showing how the number varies with load. The first two
rows show the number of read and write requests made on the DID device driver by
the UNIX block I/0 system. The subsequent rows show how many I/O transfers
were performed to and from the local disc and the file server disc.

One might expect that each machine would require the same number of trans-
fers regardless of the load, but in reality this number varies because of the delayed
write action of the UNIX buffer cache. For example, the number of writes increases
with load because temporary files exist for longer periods, and are more likely to
be written to disc. The number of reads increases slightly with increased load

3.3. PERFORMANCE

Transfer Data Transfers by Load Standard
Type 1 2 b 8 10 15 20 | deviation
request | read | 3013 | 2815 | 2900 | 2982 | 3044 | 3355 | 3428 268
write | 2450 | 2434 | 2580 | 2748 | 2916 | 3608 | 4710 75
local read | 2865 | 2666 | 2755 | 2836 | 2899 [3206 | 3283 268
disc write | 2599 | 2583 | 2725 | 2893 | 3060 | 3757 | 4855 75
file read | 149 | 149 | 146 | 145 | 145 [149 | 145 6
server | write | 888 | 885 | 898 | 918 | 930 | 1013 { 1080 31

This table shows the number of data transfers that took place on each machine during the
benchmark as a function of load. The maximum standard deviation for the figures in each
row is also given. The table shows the number of read and write requests from the UNIX
block I/O system, the number of transfers to and from the local disc, and the number of

transfers to and from the file server.

Table 3.3: Number of Data Transfers During Benchmark

27

because more cache blocks are thrown out of memory by the activities of system
housekeeping processes during longer runs.
An interesting feature of the benchmark is the fraction of transfers that are

writes. At a load of one, the benchmark generates 45% writes, but this number

grows to 66% at a load of 20. Of all requests that go to the file server, 86% are
writes at a load of 1, and 88% are writes at a load of 20. The number of writes to

the file server is higher than one would expect. This is due to the large number of

distinct blocks that must be modified when a file is created. The file’s i-node, its
directory entry and its data are stored in different blocks. Moreover, when a file is
read, i-node blocks are asynchronously written in order to update the last-accessed

time.

This table shows the number of data transfers that took place on group of 7 machines over
several days of normal use. It shows the number of read and write requests made on the
DID device driver, the number of transfers to and from the local disc, and the number of
transfers to and from the file server. Asynchronous transfers are read-aheads and delayed

writes.

Transfer Data Transfers
Type Synchronous | Asynchronous | Total
request | read 585700 66673 652373
write 79606 227788 307394
local read 560934 64623 625557
disc write 104374 229838 334212
file read 24768 2050 26818
server | write 28477 49982 78459

Table 3.4: Number of Data Transfers During Normal Use

The transfer profile exhibited by the Andrew benchmark is not typical of that
for normal users. Table 3.4 shows data collected from a group of 7 machines over
a period of a few days of normal use. Only 32% of all requests were writes, and
only 74% of all file server accesses were writes. The DID cache achieves a 4% read

28 CHAPTER 3. DEMAND-INITIALIZED DISCS

miss ratio in normal use over a long period. The vast majority of writes are to
temporary files, and are not written back to the file server.

Table 3.5 shows the occupancy of the DID cache during normal use. Of the 23
machines sampled, none had actually thrown anything out of their 40 megabyte
caches. The maximum cache space used was 38 megabytes, but the mean only 21
megabytes. The mean amount of space occupied by dirty blocks was 9 megabytes.
These figures indicate that a cache size of 40 megabytes is larger than necessary.
A twenty megabyte cache would probably have been adequate in almost all cases.

Cache occupancy (megabytes)
value minimum | maximum | mean | std dev
space in use 6.9 33.8 18.1 7.1
space dirty 2.2 18.8 9.3 4.8
wasted space 1.5 7.5 2.6 1.3
maximum used 7.1 38.3 21.3 94

The table shows the minimum, maximum and mean cache occupancy for a sample of 23
machines. The figures for cache space in use, and dirty cache space are instantaneous values.
The table also shows the instantaneous value of space wasted due to internal fragmentation
of the 8 kilobyte cache buffers, and the maximum cache occupancy since the machine was
booted. The machines had been running for an average of 11 days since the last reboot.

Table 3.5: Occupancy of the DID Cache

Table 3.6 and Table 3.7 show file access latency—the time taken to open a
file, read a single byte and close the file again. Table 3.6 shows that the time
for RVD to access a file on an unloaded server is close to the time to access a
local disc. DID takes twice as long to read and cache a file for the first time.
The table shows the poor performance of NFS, which is almost as slow as DID
when accessing a file for the first time, even though both file server and client
are running on faster machines. The large time to retrieve data from the NFS
memory cache may be due to additional context switches introduced by the NFS
block I/0O daemon [Sandberg 85]. The Andrew times include the time necessary
to switch to the address space of the user-space cache manager. DID and RVD
gain significantly from the benefits of the UNIX buffer cache; Andrew and NFS
suffer from the problems of context switching to a management process each time
a file is accessed.

Table 3.7 shows how the file access latency varies with file size for DID, RVD
and Andrew. Howard also gives figures for NFS, but the access times are indepen-
dent of file size. The times for DID and RVD increase up to the file system block
size, and then become constant. The times for Andrew continue to increase, since
Andrew always transfers the entire file before proceeding.

The figures obtained from timing the benchmark are quite surprising. DID
performed quite badly, despite reasonably good access latency, and low read miss
rates in normal use. The write-through cache is liable to generate a large number
of writes during the benchmark, but this does not fully explain the observations,
which seem quite contrary to normal experience with the system.

3.3. PERFORMANCE

System File cached | Data location | File Access Latency (ms)
Standalone - local disc 27 (0.2)
(MicroVAX) - local memory 3.2 (0.1)
no file server 59 (1)
DID yes local disc 27 (0.2)
yes local memory 3.2 (0.1)
RVD no file server 36 (1)
yes local memory 3.2 (0.1)
Standalone - local disc 23 (0.5)
(Sun-3/160) - local memory 1.7 (0.1)
NFS no file server 54 (1)
yes local memory 10.3 (0.1)
Andrew no file server 160 (35)
yes local memory 16 (0.5)

This table shows the file access latency in milliseconds of a standalone system and for DID,
RVD, NFS and Andrew with a single client accessing a server. The figures in parentheses
are standard deviations.

The files were all 3 bytes long. The latency is the time to open the file, read one byte and
close the file. The Andrew times are taken from the paper by Howard et al [Howard 88).
The DID and RVD times were measured with MicroVAX-1IIs as both client and server. The
Andrew figures are for a Sun-3/50 client using a Sun-3/160 server. The NFS times were
measured with a Sun-3/160 client and server. The Sun-3/50 is approximately 1.5 times
faster than a MicroVAX-II; the Sun-3/160 is approximately twice as fast as a MicroVAX-IL.
Standalone times from both machine types are given for comparison.

Disc access times are variable depending on head positioning. Tests were performed by
opening 1000 files in the same directory. The UNIX file system will ensure that the files are
stored close to one another, so the times are optimistic.

Table 3.6: File Access Latency of DID

File Size | File Access Latency (ms)
(bytes) [DID RVD | Andrew
31 59(1) |36(1) [160 (35)

1113 | 75(1) | 47 (1) | 148 (18)
4334 | 121 (5) | 64 (1) | 203 (29)
10278 | 153 (4) | 81 (1) | 310 (54)
24576 | 154 (2) | 82 (1) | 515 (142)

This table shows the latency of file access in milliseconds as a function of file size for DID,
RVD and Andrew for files that have not yet been cached. Figures in parentheses are standard
deviations. The test conditions are the same as in Table 3.6. The DID and RVD transfer
block size was 8 kilobytes; no more than 8 kilobytes will be transferred regardless of file size.
Andrew always transfers the whole file.

Table 3.7: File Access Latency by File Size for DID

29

30 CHAPTER 3. DEMAND-INITIALIZED DISCS

In order to discover the cause of the problem, the server was monitored while
20 clients ran the benchmark to determine the following:

e disc throughput in kilobytes per second (upper graph);

o disc utilization (fraction of the time spent seeking or transferring data);
¢ kernel-space CPU utilization;

o user-space CPU utilization.

The results are given in Figure 3.5.

60 -
e ' [2a)
. | PR FA T *
Server Disc 40 - R A . [.
?
Throughput : \ " \, |" .“,1‘ ‘7\.\ N disc throughput
(KByt&/s) 20 - g A ’ff\“ \J \ . o
oy ~ !
'\
0 J
100 - MakeDir ScanDir+ReadAll
«+——— Copy > Make —
80) f"*'o, *." *,
Tt A
B : kernel- CPU
Server 60 - J* o __.* { ___w:rne space
Utilization 'y 1 :
t) ! -':‘ . ‘ ' o *
(percen 40 - v\ Ik i\ : .
L ! / ‘ ":“ f \. ot o) 1 3. s .
90 | : ;\ .’u'\... uY : l' (T 'J '\.'., disc utilization
{‘. v .’: *
»f 200%9205°%, L ,00%%0008%0 %560.00 °n°°°o°o°°°
0 mfif.};" h,a"v.éﬁ vee user-space CPU
-500 0 1000 2000 3000

Time from start of benchmark (seconds)

The upper graph shows the variation of server disc throughput during one run of the bench-
mark with 20 clients running DID. The lower graph shows the variation of server disc uti-
lization and CPU utilization for the same run. Two curves are plotted for CPU utilization;
one shows the time spent in user-space, the other shows time spent in kernel-space. All
values are averaged over 60 second intervals.

Figure 3.5: Server throughput, disc and CPU utilization during benchmark

The user-space CPU utilization is low throughout the period of the benchmark,
even though the RVD server runs entirely in user-space. The disc throughput never
exceeds 50 kilobytes a second, even though the disc utilization reaches nearly
70% at that time. This indicates that the disc is seeking a great deal. The disc
throughput and utilization curves follow one another closely, showing that the
fraction of transfers requiring disc seeks is uniform across the benchmark. The
drop in disc utilization in the middle of the Copy phase is quite unexpected.

3.4. EXPERIENCE 31

The most interesting feature of the graph is the relationship between the kernel-
space CPU utilization and the disc utilization. The two curves are almost perfectly
symmetrical about the 50% utilization line whenever the CPU utilization exceeds
this level. This result was so surprising that the disc utilization figures were con-
sidered faulty, until their correspondence with throughput figures was observed.
The unexpected drop in disc throughput during the Copy phase can now be ex-
plained. The clients are trying to write data at an enormous rate, and the file
server is swamped with large data packets. The server is unable to keep up with
the clients, and does not acknowledge requests before replying, so clients send
their requests repeatedly. Investigation showed that the server receives about 150
requests a second, 90% of which are retransmissions of previously received packets.
Few packets are lost, but clients take no account of server load when deciding when
to retransmit. The networking code in the UNIX kernel on the server machine is
quite ineflicient, and consumes between 70% and 80% of the processor when re-
ceiving 1 kilobyte packets at this rate. In order to verify these results, a simple
adaptive client retry strategy has been implemented. The number of retransmis-
sions was reduced to 10% of all packets arriving at the server, and disc throughput
was increased to 60 kilobytes per second.

All the curves show noticeable drops in activity just after the Copy phase,
and at the beginning of the Make phase. The first dip is due to the ScanDir and
ReadAll phases, which perform no local accesses. The second dip is due to the
compilation of one extremely large module, which keeps all the clients CPU bound
for over a minute. The three peaks in kernel-space CPU utilization correspond to
the benchmark writing two large library files and a linked object file.

3.4 Experience

DID has been in service for two years, supporting a growing user population from
many groups in the department. The number of machines using it has grown to
25, and is slowly increasing. The average number of active users varies between
20 and 60 during working hours. There are over 400 separate RVDs, of which less
than 100 are normally mounted. There are three main file servers holding user
and system files, though only one of them actually serves system files at any given
time.

All the machines have local discs, but very few of them use the discs for per-
manent file storage. On most machines, the local disc is used only for caching and
swapping. Each machine has only one cache area, usually about 40 megabytes
in size, which is used to cache every RVD currently mounted on the machine. It
was found that using multiple cache areas served no useful purpose, and merely
complicated the allocation of local disc space.

Machines are booted over the network, and access all of their files across the
network. Even the boot servers and file servers, though able to boot themselves
independently, switch to the network version of the file system during their boot
sequences to ensure that all machines have identical views of the system directories.

32 CHAPTER 3. DEMAND-INITIALIZED DISCS

3.4.1 Cache Location

The access time of a disc-based cache is typically tens of milliseconds, which may
be longer than the time needed to fetch the data from a fast file server. Given
the high latency of disc storage, it may be better to use a smaller memory-based
cache rather than a disc-based cache. Other file system designs, such as AT&T’s
RFS [Bach 87], cache remote files in main memory, taking no more than a few
megabytes of cache area. The results of Nelson [Nelson 88], indicate that only a
relatively small memory-based cache is sufficient to achieve good performance in
a small distributed system.

In fact, DID already benefits from some main memory caching due to the
UNIX buffer cache. The idea behind using a large disc cache is to minimize
load on the file server, rather than to satisfy client requests quickly. From this
point of view the location of the cache is immaterial. If large amounts of main
memory were available, it would certainly have been used in preference to disc
storage. Fortunately, the design of DID allows for any cache device, including
a RAM disc, to be used in place of the local disc. This functionality could be
provided more efficiently, though less flexibly, by modifying the UNIX buffer cache
to support additional write-back policies. Braunstein has investigated file cache
management schemes for machines with large memories [Braunstein 88]. He found
that current buffer cache algorithms do not perform well when the size of the
cache is increased to several tens of megabytes, and developed new algorithms
that improve performance considerably.

One particular advantage of a disc-based cache that is not exploited in DID is
that of caching data across client crashes. A fuller discussion of this topic can be
found in Section 4.5.5.

3.4.2 General Performance

The observed performance of DID has been very encouraging. One file server is
able to provide all of the files needed by 25 machines, while using about 5% of
the CPU of the file server. During peak periods of load, the CPU utilization may
rise to as much as 10%, but this is rare. This can be compared with previous
experience with the unmodified RVD system, which normally required over 30%
of the CPU on each file server to satisfy only 8 client machines. This was despite
the fact that all system utilities and libraries were held on clients’ local discs,
rather than on the file server.

Later optimizations have improved the performance of the RVD system used
in the Athena Project [Treese 88], but these improvements have not yet been
incorporated into the DID system.

Most of the time, the performance of DID is not significantly different from
that of a local file system. However, the difference is clear under certain conditions:

e repeated synchronous writes;

e recovery after power failure;

3.4. EXPERIENCE 33

o logging in.

DID always flushes synchronous writes to the file server, which performs no delayed
writing or optimizations. UNIX generates synchronous writes whenever directories
or other structural information is updated, and when the buffer cache becomes full.
Therefore, DID can be slow when called upon to write files that are much larger
than the buffer cache, or when creating and deleting a large number of files at once.
The most obvious solution to these problems is a greater use of delayed writes, but
in the case of DID, this would require considerable changes to the UNIX kernel.
The next chapter describes a file system that makes heavy use of delayed writes.

After a power failure every machine in the system reboots, and reads a large
number of system files from the same file server. The current RVD server has
no in-memory disc block cache, so each request generates a disc access!. This
approach is acceptable in normal use, because the combined caching potential of
the clients is huge compared to the total memory of the file server. However,
after a power failure the effect on the server is quite dramatic; for approximately
15 minutes after the power has been restored, the system is unusably slow. As
machines complete their boot sequences, the system becomes faster, and within a
couple of minutes, the previous level of performance has been restored. This effect
could be reduced by having the server cache the blocks of system files, or by using
multiple servers for the system file space.

In the processor bank, users’ home directories are volatile objects that reside
only in the caches of the machines being used. Users mount and use their own
cached partitions for the long term storage of files. As a result, the login procedure
must create home directories and initialize individual setup files for users whenever
they log in to a newly booted machine. This procedure often involves creating
several files per user, and is noticeably slower than a normal login, but the delay
is bearable. The real problem arises when large numbers of users log in at once,
as happens when the machines are used for teaching classes. This problem is best
solved by eliminating the restriction that files cannot be writably shared across
machines. This too is addressed by the file system described in the next chapter.

3.4.3 Crash Recovery

Server crashes require almost no action for recovery. When the server restarts, it
is contacted by its previous clients, which reconnect and start using their virtual
discs as though the server had never crashed. There is no possibility of losing data
due to a server crash, since it does not use delayed writes to disc.

Client crashes can cause virtual discs to be left in an inconsistent state, just
as in the case of standalone UNIX file systems. This is partly due to the choice
of the disc block as the unit of naming and transfer in the client-server protocol.
If the unit of transfer were some part of a file, rather than a disc block, servers

1The RVD server deliberately bypasses the UNIX buffer cache on the server in order to avoid
the problems of losing modified data during a crash

34 CHAPTER 3. DEMAND-INITIALIZED DISCS

could be responsible for the internal consistency of their own discs. Fortunately,
the problems caused by this are not insurmountable.

It is normal to run the programme fsck [Kowalski 78] when booting a machine
after a crash to check for and correct file system inconsistencies. Since the system
file space is served read-only, it cannot change, and therefore never needs checking,.
This greatly improves the startup time of clients, which can be booted in about
a minute if the appropriate servers are not overloaded. A standalone MicroVAX
system requires almost three minutes to boot after a crash. A flag was added to
the start of each file system to indicate when fsck need not be run. The flag is
set when the file system is cleanly dismounted, and reset whenever it is mounted.?
Since only a small number of the RVDs are mounted at a given time, most of the
file systems do not require checking after a crash. Moreover, since most RVDs are
only a few megabytes in size, each can be checked in a few seconds when it is next
mounted.

3.4.4 Lack of Sharing

The inability to share writable files with RVD is a great disadvantage and was
expected to cause many problems. In fact, although users have encountered prob-
lems, few of them caused serious inconvenience. Undoubtedly, users would behave
in a different way if sharing were more convenient, but very little sharing seems
essential for effective use of the system. In only two or three cases are users forced
to share machines so that they can share a single writable file space.

A more serious problem is in updating file spaces that are always mounted on
many machines, such as the system file space. In these cases, update is normally
accomplished by writing a new version of the file space to a separate RVD, and
then swapping the names of the RVDs. Clients remain connected to the original
copy, but pick up the new copy when they reboot or remount the file system.
Most virtual discs can be dismounted and remounted without rebooting, but when
system utilities are updated, every machine must be rebooted. It is not necessary
to reboot all machines together; usually it is done over a period of one or two
days. Important changes can be made to the caches of machines, either by hand,
or automatically at reboot.

System files are clearly difficult to update under this scheme, but even this
has its advantages. The university environment inevitably invites some amount
of tampering and abuse of the machines. It is comforting to know that users can
only change cached copies of system utilities and that unauthorized modifications
are undone when the machine next reboots.

3.4.5 Backup

The issue of backup, which is important in all file systems, is simplified by DID’s
use of many small file spaces which can be backed up individually. Since each
virtual disc is small, it can be copied in a relatively short time, so backups can

2This technique is used in several variants of UNIX, and has since been added to ULTRIX.

3.5. SUMMARY 35

occur even during the middle of the day without availability dropping significantly.
Only one or two RVD partitions are unavailable at any time, and they are almost
always released within a few seconds.

Manual management of tapes and disc partitions would be a dreadful task for a
human operator. The most important features of the RVD backup system are that
tape allocation is automatic, and that it needs human intervention to change tapes
only once per day. The backup system currently writes about 180 megabytes of
data to tape each day, writing mostly incremental changes from previous dumps,
and guaranteeing to backup all new data each day. It has over twenty 90 megabyte
tapes under its control.

One problem of the RVD backup system is that it cannot access an RVD while
it is mounted for writing by a client machine. This becomes dangerous if a user
habitually leaves RVDs mounted for very long periods. If the backup system is
unable to access an RVD after repeated attempts over a number of hours, it sends
an electronic majl message to warn the owner of the disc that the backup has been
missed. To alleviate this problem, RVDs are automatically dismounted whenever
the RVD is no longer being accessed by any processes, and all of the processes
belonging to the owner of the RVD have finished.

Ideally, we would like to backup a partition while it is in use, but it is difficult
to ensure that the file system structures are in a consistent state in a system
based on disc block access. A heavy-handed approach would be to take a copy of
the disc during a period of low activity. If this copy proves to have only minor
inconsistencies that can be corrected without losing data, a backup would be taken
from the copy. If the number of inconsistencies was too great, the copying process
could be repeated. Experience with the state of UNIX file systems after crashes
indicates that this approach is likely to work in almost all cases, but it cannot be
recommended for subtlety.

The Andrew file system also makes use of fairly small volumes to reduce the
complexity of operations such as backup and storage allocation [Sidebotham 86].
Backup of volumes is accomplished by making a read-only replica, from which the
backup is taken. The internal consistency of the replica can be guaranteed by the
file server, since it alone controls the disc data structures.

3.5 Summary

The DID caching system is a simple, effective scheme for improving the perfor-
mance of accesses to remote discs. By using large caches held on the local discs of
client machines, it achieves performance close to that of standalone systems under
normal conditions, while allowing many more machines to use a single file server
than was previously possible. Other notable features are:

¢ large caches (approximately 40 megabytes), which give a read miss rate below
5% in normal use;

¢ cache held on the client local disc;

36 CHAPTER 3. DEMAND-INITIALIZED DISCS

e all system utilities and libraries served to 25 machines by a single file server;

small user file spaces which reduce the problems of space allocation and
backup;

¢ improved scalability;

remote files are accessed via the standard UNIX buffer cache.

Some disadvantages stem from DID’s use of disc blocks, rather than files as the
unit of transfer:

o Write-sharing of files is impossible.

e Client crashes can cause file system inconsistencies.

o Copies of active file systems cannot be taken for backups easily.
Performance problems under heavy load are caused by a combination of effects:

¢ The cache write-through policy cannot spread bursts of updates over a longer
period. .

¢ Clients are delayed during synchronous writing of file system metadata.

¢ A large number of separate disc writes are generated for each newly created
file.

¢ Reading a file generates disc write traffic to update the last-accessed time.

o Clients use inappropriate retry policies when writing to congested servers.

Chapter 4
A Caching File System

This chapter describes the design and implementation of a prototype file system
that makes heavy use of caching to achieve its performance. The emphases are
on caching as much data as possible, minimizing communication with centralized
servers, and on preserving fine-grain sharing semantics. Delayed writes are used
to reduce the amount of data to be written to the file server.

The following sections describe the assumptions, the basic algorithms em-
ployed, how they have been implemented in MFS (Mike’s File System), and some
features that could be added to MFS to improve it. The behaviour and perfor-
mance of the prototype are presented in Chapter 5.

4.1 Assumptions

The design of MF'S assumes various properties of client machines and their work-
load. In the light of the observations of Chapter 2, the workload is assumed to
consist mainly of access to small files, which are not typically write-shared. How-
ever, some write-sharing is assumed to arise from distributed compilations, global
log files, and ad hoc databases used by applications such as mail systems and line
printer systems.

The key assumptions about clients are:

o Each client has a reasonable amount of memory or disc storage that may be
used as a cache. This will be at least a few megabytes, but may be a few
tens of megabytes.

o Clients are not considered trustworthy—users may have total control over
their workstations.

o The number of clients is large compared with the number of servers.

Another important assumption is that users want high performance wherever
possible, and prefer remote file access to resemble local file access in all respects,
except perhaps failure semantics.

37

38 CHAPTER 4. A CACHING FILE SYSTEM

4.2 Caching Algorithm

The cache consistency algorithm used in MFS is very similar to various directory
schemes suggested for maintaining memory consistency on shared memory multi-
processor systems [Tang 76] [Censier 78]. These protocols use a single directory
to record which caches contain which data and whether the cached data can be
modified. When a cache misses, a check is made against the directory to see
whether the data is in another cache, and whether it has been or can be modified
in that cache. If sharing is about to take place in a way that would cause cache
inconsistency, the other cache(s) are contacted and forced to flush the dirty data,
or invalidate the cache entries, as appropriate.

These protocols have not become popular with designers of shared memory
multiprocessor caches, for a number of reasons:

¢ Centralized directory controllers are potential bottlenecks.

o A significant amount of memory must be added to distribute the directory
to avoid bottlenecks.

o These protocols do not make use of the bus’ ability to broadcast.

Broadcast can be used merely to invalidate other caches [Archibald 84], so re-
ducing the total state required for the directory schemes, but the most popular
approach is the snoopy cache [Archibald 86]. Snooping allows each cache to ob-
serve the behaviour of the other caches on the bus, permitting them to maintain
consistency without additional messages or centralized directories. This technique
requires storage proportional to the size of the caches, and has no central bottle-
neck other than the bus itself.

It seems that snoopy caches have an advantage in systems where every mes-
sage passes every cache controller, since they make good use of the bandwidth
taken up on the bus. Unfortunately, snoopy cache protocols require cheap, reli-
able broadcast for their operation. The broadcast primitives provided by most
local area networks are not sufficiently reliable, and excessive use of broadcast can
place an unwelcome load on all machines in a large network [Treese 88]. The over-
head of examining file caches on client machines is high enough that snoopy cache
techniques would probably degrade performance in most situations as most of the
messages received by a client would have nothing to do with that client’s cache
contents. Unless file servers are highly replicated, there is little additional over-
head in adding a centralized cache directory since all requests must come through
a file server in any case. In addition, while the size of a directory is significant in
a shared memory system, it is very small when compared to the size of a typical
file system.

Given these observations, a directory technique for cache consistency seemed
reasonable for a distributed file system, and so a very simple directory scheme was
chosen for MFS. The algorithm can be viewed as multiple-reader, single-writer lock
algorithm, with callbacks to request the release of conflicting locks. In order to
avoid confusion with higher level file locking primitives, I will refer to these locks

4.2, CACHING ALGORITHM 39

as tokens. Assuming that an abstract data item is protected by a single token, the
basic rules are as follows:

o For each data item, a centralized server is responsible for issuing and re-
claiming read and write tokens.

o For each data item at a given instant, there may be

— no clients holding tokens, or
— exactly one client holding a write token, or

— one or more clients holding a read token.
e The server maintains a list of exactly which clients hold which tokens.
o Clients may request tokens or release tokens by contacting the server.

e When a token is requested by a client, the server does not issue the token
until it has contacted all clients with conflicting tokens and these tokens have
been reclaimed.

¢ While a client is holding a read token for a data item, it is permitted to read
a data item in its cache.

e While a client is holding a write token for a data item, it is permitted to
read or write a data item in its cache.

e Data items may not be accessed unless the client holds an appropriate token.

o Before a client releases a write token, it must write the data item back to
the server if it has been modified in its cache.

At most one client may have any data item cached for writing at any given
time, and no client may have the data item cached for reading if it is concurrently
cached for writing elsewhere. This is a sufficient condition for cache consistency,
provided clients do not access data without holding the correct tokens. In fact,
provided that no client is allowed to write a data item without holding a write
token, some (faulty or malicious) clients can ignore the need to hold tokens for
reading without harm to other clients.

The algorithm performs best when there is little conflict. When there is no
conflict, each client will obtain tokens for the data that it uses, and no tokens need
ever be reclaimed by the server. Since the evidence indicates that write-sharing is
quite rare in file systems, the algorithm could be expected to work well.

40 CHAPTER 4. A CACHING FILE SYSTEM

4.3 Overview

Each client machine has a file cache, which is actually part of the local file system
of the client machine. Cached files are placed in the normal directory structure
as though they were local files. The cache manager for each machine is a priv-
ileged user-space process that manipulates the cache via privileged kernel calls.
Applications proceed as though they were using a purely local file system. When
an application system call requires some cache activity, the kernel suspends the
application and sends a message to the cache manager via a private interface. The
cache manager performs whatever cache operations are necessary, and then tells
the kernel to continue the application programme.

token server

RPC interfaces

file server
- | applications cache manager | - - | applications cache manager
H i : : 1 7
client kernel client kernel
1 o]
file cache file cache
client 1 client N

Figure 4.1: The structure of MFS

The cache manager contacts a file server whenever it needs to read and write
files on behalf of an application. The token server is responsible for maintaining
the set of tokens issued to clients, and to detect conflicts between the requests
from the clients. In MFS, it is implemented as a separate server, and is called
directly by the client cache manager. The token server calls the cache manager to
reclaim tokens when token conflicts arise. Figure 4.1 shows the overall structure
of MFS; the design of each of these components is discussed in later sections.

MFS was built using MicroVAX-II clients running ULTRIX, DEC’s version of
the UNIX operating system. Each client has a large cache held on a section of disc,
usually around 20 megabytes in size. The token server runs on another UNIX ma-
chine, typically another MicroVAX. Any machine supporting Sun Microsystems’
Network File System (NFS) [SUN 86a] can be used as a file server; experiments
were done using an unmodified Sun-3/160 file server.

Sun Microsystems’ Remote Procedure Call system [SUN 86b] was used for all
inter-machine communication in MFS. The RPC protocol sits upon a datagram

4.4. THE TOKEN SERVER 41

protocol running on a 10 megabit/s Ethernet. Unfortunately, the current version
of the RPC system, version 3.9, lacks several features necessary for practical dis-

tributed applications. The features that have been added in the implementation
of MFS are:

¢ multiple client and server threads;
¢ detection of server failure during a long lived procedure call.

In addition, the RPC protocol does not provide at-most-once semantics, so all
remote procedures had to be made idempotent.

4.4 The Token Server

The token server is responsible for maintaining the list of tokens held by each
client. It issues new tokens on request, and reclaims tokens from clients when
conflicts arise.

4.4.1 Separate Token Server

Ideally, the token server would be integrated with the file server. An integrated
design has several advantages:

o The file server can efficiently enforce the rule that a client may not write
files without possessing appropriate write tokens. This allows the server to
prevent cache inconsistencies even in the face of malicious clients. If the file
server and the token server are separated, extra messages must be sent to
enforce the rule.

¢ The token server can check efficiently that clients have permission to read or
write a file when they request tokens for it. This check is desirable in order
to prevent a malicious client obtaining write tokens for various important
files, simply to inconvenience other clients. Once again, this can be achieved
by sending extra messages.

¢ Token requests can be piggybacked on file server read and write requests.
This significantly reduces the number of messages sent by the clients.

o File system availability is increased, since only one machine needs to be
running instead of two. (This argument is less powerful in systems where
servers are replicated.)

o The system failure model is simplified—it becomes quite unlikely that one
of the two services is available without the other.

In spite of this, the MFS token server is separate from the file server. Im-
plementation constraints made it difficult to modify existing file servers, and a
prototype system was more easily built from existing components. In fact, most

42 CHAPTER 4. A CACHING FILE SYSTEM

of the problems of separating the token server from the file server can be overcome
efficiently:

¢ An application cannot distinguish between an update made without a valid
write token, and a set of consistent writes interleaved with the application’s
read system calls. In MFS, clients do not guarantee to hold tokens for longer
than a single system call, and applications cannot gain any information about
tokens, so the problem of inconsistent writes is unimportant.?

e It is not necessary for the token server to check file permissions for every
token granted. Needham and Burrows point out [Needham 88] that it is
sufficient for the token server to check permissions only when conflict arises.
At all other times, the token server can grant tokens to malicious clients,
since they can neither access the files, nor hold onto them to prevent a
legitimate client from obtaining a token. This is considerably more efficient
in situations where token conflict is rare.

o Although coded as a separate server, it is often possible to run the token
server and the file server processes on the same physical machine. This
reduces the probability that one server will crash independently of the other.

® A separate token server can be used with many existing file servers, merely
by changing the file access checking stub used when resolving lock conflicts.

Of these arguments, the last was the most important for this implementation of
MFS. A considerable amount of time was saved by using existing NFS file servers.
However, the resulting system has a performance disadvantage over an implemen-
tation with a combined file and token service, because clients must communicate
with each server separately.

The permissions-checking code to prevent malicious clients from acquiring to-
kens for arbitrary files has not been implemented in the current version of MFS.
Instead, there is a limit on the length of time a client can hold a token after it
has been requested by the token server. A client can extend this time beyond the
normal RPC timeout period while it writes modified data back to the file server,
but the period cannot be extended indefinitely. This technique increases the like-
lihood of forward progress, even in the presence of malice, albeit somewhat slower.
Logging the identities of clients that repeatedly experience conflict is likely to be
an effective means of detecting faulty clients in most situations. More demanding
environments will require that tokens be access checked.

4.4.2 'Token Server Interface

The MFS token server provides client machines with the abstraction of a token
group, which contains a set of tokens that can be independently issued and re-
claimed by the server. A token group is named by a 288 bit identifier, and can

n fact, applications could distinguish these two cases by repeatedly examining both the data
and the file modification times on two separate clients, but such behaviour is extremely unlikely.

4.4. THE TOKEN SERVER 43

protect up to 2% data items independently. The intention is that one token group
should be used for each file, and each byte of the file should be protected by a
separate token within the group. The token group identifier is large enough to
contain an NFS file handle (256 bits) and a file server network address (32 bits) to
make it unique across all systems. This identifier could be shortened considerably
by making use of redundancy in the internal structure of the NFS file handle.

The interface allows a range of tokens within a single token group to be obtained
or released in a single, atomic operation. This allows clients to obtain blocks of
tokens in the same way as they obtain blocks of bytes from the file server. The
token server does not impose any particular block size since the optimal block size
may vary from file server to file server, or from client to client. Since the token
server treats each of the 232 tokens within a token group as independent, clients
using different block sizes can interwork without fear of inconsistency, provided
they agree on what each token protects. There is no provision for atomically
obtaining tokens from more than one token group, or atomically obtaining more
than one range within the token group.

The token server exports only one remote procedure call:

(status, session_id) := TOKEN (token_group_id, token_type,
token_range, client_id)

The token_group_id identifies the token group from which tokens are ob-
tained. The token_type specifies whether the tokens should be READ_TOKENS or
WRITE_.TOKENs. The special type VOID.TOKEN is used to discard tokens. Two
32 bit unsigned integers make up token_range, which specifies the range of tokens
to be affected within the group. The client_id identifies the client making the
call—this is just a callback address for the server to use when requesting the client
to give up the token.

The call returns a status code, which is zero if there has been no error. The only
errors possible are RPC system errors and communication errors, such as timeouts.
That is, the token server always grants a token eventually unless some system
failure prevents it from doing so. Even if the token server implemented the access
control checks described above, the server would always respond positively in order
to prevent malicious clients from obtaining information about other clients’ file
access patterns [Needham 88]. The server ignores conflicts with tokens held by
the same client on the grounds that the client can manage its own tokens without
assistance. This behaviour causes the call to be idempotent, which simplifies the
requirements of the RPC protocol. The session_id is also returned. This is a 32
bit identifier which changes only when the server fails to contact the client. This
identifier allows a client to detect when it has been out of contact with a server.
When this happens, it should refresh any tokens that the server may have released.

The server expects each client to export one procedure call that is used to
reclaim tokens when a conflict is detected:

(status, remaining_tokens) := RELEASE_TOKEN (token_group_id,
token_type, token_range)

44 CHAPTER 4. A CACHING FILE SYSTEM

The server passes a token_group.id, token_type and token_range, and ex-
pects the client to release any tokens it holds that conflict with the request. The
client replies with a status code and a list of ranges of tokens that it still holds in
token_range, after it has removed conflicting tokens. This allows the client to de-
grade tokens from write to read to avoid conflicts, rather than removing all tokens
in the range. The server checks that all conflicts have been removed, and that no
new tokens have been claimed by the client. If the client cannot be contacted, all
its tokens are revoked. If the client claims tokens that it did not previously hold
or fails to resolve the conflicts, all the tokens held by the client in token_range
are revoked.

No attempt has been made to make this interface secure against a determined
attack. In a secure implementation, it would be essential to encrypt all messages so
that one client could not impersonate another. Of course, the file server would be
protected by its own access checks, but malicious or faulty clients could convince
the token server to give other clients an inconsistent view of the file system, even
though the file server still held correct data.

4.4.3 Data Structures and Algorithms

The data structures used to hold the information for a token group are extremely
important, since the storage requirements of the token server and clients must not
be excessive, even when the server has issued a large number of tokens.

The basic requirements of the data structure are as follows:

¢ Each token group can protect 2% data items independently.
e Tokens are usually obtained in large, contiguous ranges.

¢ Many tens of clients should be able to hold tokens from the same token group
simultaneously.

o Token group identifiers are very sparse, and only a few tens of thousands are
likely to be in use at any given time.

o Token groups will be created and deleted as files are created and deleted, so
both these operations must be reasonably efficient.

The data structures used in the MFS token server are shown in Figure 4.2,
A hash table maps token group identifiers to token group structures. Each token
group structure contains a single mutual exclusion lock, and a pointer to a variable
length array of holder structures, one for each client holding any tokens in this
token group. Each holder structure contains a pointer to a client structure and
pointer to a oken array which holds the state of each of the 232 possible tokens in
a compressed form.

There is only one client structure for each client known to the token server.
This structure contains the client’s name, its network address, its current session
identifier, and a flag indicating whether the client is up or down. When the

4.4. THE TOKEN SERVER 45

hash tChell;:.ltre
table sirue

token group host name

structure net address
token group id array of holder session id
identifier mutex structures up/down flag

token
array

start : state

Figure 4.2: Token server data structures

server fails to contact a crashed client when reclaiming a token, it marks the client
as down in the client structure. This has the effect of immediately revoking all
tokens owned by that client—the data structures themselves are garbage collected
asynchronously. When the client contacts the server once again, a new client
structure is created, with a new session identifier.? This scheme ensures that the
server is never delayed more than once for a crashed client, and that a client will
lose no tokens by being temporarily inaccessible if there are no conflicting token
requests.

An alternative scheme would be for the client structure to hold a timestamp
giving the last time that the client contacted the server. Clients would poll the
server periodically to ensure that the timestamp was never very old. The server
would behave as before, except that it would revoke the client’s tokens immediately
if the client had not contacted the server for more than one RPC timeout. This
improves the service seen by a client, since it is less likely to encounter a delay
when a token must be reclaimed from a crashed client. Clients must periodically
refresh their sessions to achieve this effect, but the cost of this is small.

The token array provides an efficient representation for the tokens in a token
group. Tokens will usually be allocated in ranges rather than independently, so
the state of the tokens is held as an ordered list of the start points of ranges. The
possible states for a token are VOID, READ and WRITE. The VOID state indicates
that no token has been issued. For example, if a client holds WRITE tokens for
the first 8 kilobytes of a file and READ tokens for the third 8 kilobytes, the array
would have four entries:

0 WRITE
8192 VvOID
16384 READ
24576 VOID

201d client structures may still exist for the client if they have not yet been garbage collected,
but they are ignored by the routines that traverse the server data structures.

46 CHAPTER 4. A CACHING FILE SYSTEM

The last range is assumed to extend to 252 — 1. As well as being fairly compact,
this data structure is easy to manipulate, and can be searched rapidly. Three basic
operations are used:

1. SETRANGE (token_array, start, end, state)

Set all tokens in token_array from start to (end-1) to state. This can
be accomplished by inserting array entries for the start and end points,
removing all entries between the two, and possibly removing one redundant
entry from each end of the range.

2. ranges_and_states := CONFLICTS (token_array, start, end, stata)

Return a list of ranges in token_array between start and (end-1) that have
states conflicting with state. WRITE is defined to conflict with READ and
WRITE. READ conflicts only with WRITE.

3. got_tokens := GOTTOKEN (token_array, start, end, state)

Return true if all points in token.array in the range start to (end-1) have
a state higher than or equal to state. VOID is defined to be the lowest state
and WRITE the highest.

All operations on token arrays are built from these primitive operations, each of
which can be implemented with reasonable efficiency in just a few tens of lines of
code. An alternative data structure would have been a linked list of start positions
of regions. This would have made insertion and deletion more efficient at the cost
of increased search time. Fortunately, long lists have been sufficiently rare to make
this consideration unimportant.

A TOKEN call
When the token server receives a new TOKEN call, it behaves as follows:

o Find the correct token group structure by hash table lookup. If the token
group structure does not exist, create it.

e For each holder structure in the token group:
— If the associated client structure is flagged as down, remove the holder

structure from the array and ignore it.

— If the holder is for the current client, stamp the new token range into
the token array.

— If the holder is another client that holds conflicting tokens, fork a new
thread to reclaim those tokens with a RELEASE_TOKEN call.

— If a client does not respond to a RELEASE.TOKEN call, flag it as down
in the client structure.

— If a client responds but does not release all conflicting tokens correctly,
or in a reasonable time, treat the tokens as released anyway.

4.4. THE TOKEN SERVER 47

Wait for all forked threads reclaiming tokens to terminate.

If no holder structure is found for the current client, create one, and insert
the new token range in the token array.

If no (non-deleted) client structure exists for the client, create one and ini-
tialize it with a new session identifier.

Return the session identifier to the calling client.

In fact, a small optimization could be made to this algorithm, though this has
not been done in the current implementation. If another client is found to hold
write tokens for the requested range, then no other clients need be considered,
since there can be no other outstanding tokens for that range. Similarly, if read
tokens have been requested, and another client is found to hold read tokens for
the same data, no further clients need be considered. This would be beneficial in
situations where a large number of read tokens had been issued for a single file, as
might be the case for standard system files.

As multiple threads are accessing the server data structures, locks are needed
to serialize modifications. Most of these locks need only be held for short periods of
time, while a structure is being modified or examined. However, since clients can
delay releasing their tokens by several seconds, the token arrays will be held locked
for significant periods. In the current implementation, a single mutual exclusion
lock is used for all the data structures associated with a token group, causing
non-conflicting token requests in the same group to be needlessly serialized. More
concurrency could be obtained by placing a mutual exclusion lock on each token
in the group. This could be done efficiently by using a data structure identical to
the token array itself to protect sections of the token array. This lock array would
itself be protected by a single mutual exclusion lock, but this would be held only
for short periods of time.

Since client machines cannot be relied upon to relinquish tokens that they no
longer require, algorithms are needed to prevent the excessive growth of the token
server’s database. The main mechanism for releasing unwanted tokens has already
been mentioned; all tokens held by a client are revoked if it fails to respond to
a RELEASE.TOKEN call. If clients remain contactable for long periods, a server
thread generates fictitious token conflicts with tokens that have been held for a
long time. This crude approach causes some additional client load if the chosen
token is actively being used, but the number of tokens that need to be revoked
in this way is not large. If clients were to perform the task of garbage collection
themselves, this mechanism should not be necessary.

4.4.4 Crash Recovery

Servers that maintain state about their clients require more complicated crash
recovery mechanisms than stateless servers. This has caused server writers to
avoid keeping track of state whenever possible. Nevertheless, the token server
keeps a great deal of state about clients, going so far as keep track of everything

48 ' CHAPTER 4. A CACHING FILE SYSTEM

that each client is currently caching. It is therefore important to show that the
token server can recover from crashes in a reasonable, efficient way. The strategies
for crash recovery may vary, depending on whether the token server is replicated.

At the time of writing, MFS uses a very simple logging scheme to allow a
single server to recover from a crash. Every so often, the server writes all its data
structures to a checkpoint file. Each subsequent token request is then logged in a
file which can be quickly read after a crash. The load on the token server is such
that this scheme works tolerably during simple tests, but better crash recovery
schemes are certainly possible.

Crash Recovery without Replication

If there is only one token server, there are two extreme solutions, and a range of
compromises in between. One extreme is to record the state of the token database
in non-volatile storage at all times. This may incur little overhead on machines
with non-volatile memory, but it is likely to take several milliseconds if a disc must
be accessed. Of course, only incremental changes need be written to disc in the
form of a log, but each write necessarily includes the rotational latency of the disc.

The other extreme is to record only the names of active clients on non-volatile
storage. When the server restarts, it attempts to contact each client to discover
which tokens it held before the crash. The server waits until all clients have re-
sponded, or sufficient time has elapsed for the clients to notice the communications
problem. After this time, the server can once again issue tokens in the normal way.
This approach is simple, but relies on the clients replying honestly. A malicious
client could steal a token from another machine holding a modified copy of the
file, and hence temporarily prevent file updates. Additionally, it may take a long
time to interrogate all the clients and re-establish all the tokens, particularly if
some of the clients have crashed or are otherwise uncontactable. The danger is
that an uncontactable client may still hold some tokens, unknown to the token
server. Until the token server is sure that the client has noticed the problem, the
server cannot issue new tokens for fear of conflict with existing ones.

A combination of these solutions is to write a checkpoint file and a log, but to
write the log only every minute or so. In the event of a crash, the checkpoint and
log can be read efficiently, and the additional tokens issued during the last few
minutes can be obtained from the clients. The number of tokens to be collected
from clients is likely to be small, and can be gathered using very few messages.
Hybrid solutions are still vulnerable to the problems of fraud and uncontactable
clients.

Unforgeable Tokens

Token fraud is unnecessary in MFS, because a malicious client can always write
directly to the file server, thereby bypassing the token mechanism altogether. In
most systems, the normal file access control mechanism will be sufficient, but se-
cure environments may require protection to prevent malicious clients from causing
cache inconsistency.

4.4. THE TOKEN SERVER 49

One possible technique is the use of unforgeable tokens. These are fairly simple
to generate, given a hash function, hash(z), which is:

e Efficient. hash(z) must be easy to generate, given z.

¢ One-way. Calculating z must be computationally infeasible given hash(z),
even if some parts of = are already known.

e Collision-free. Given , it must be computationally infeasible to find a Y
such that = # y and hash(z) = hash(y).

Functions of this type are used in cryptographic signatures [CCITT 87}, and
can be manufactured from encryption algorithms [NBS 77] [Wheeler 87). Given
such a function, a scheme for generating unforgeable tokens is simple. The token
server keeps a secret number, X, known only to itself, and a sequence number,
T. The sequence number is incremented each time a token is issued, so each
new sequence number is greater than all other sequence numbers issued from this
server. This property can be efficiently preserved across reboots by basing T on
the time, provided the clock is never set back. If a reliable clock is not available,
T can be written to non-volatile storage periodically, say every N increments, and
during a reboot, T can be reset to be the last stored value plus N. When the server
issues a token, it constructs S, the concatenation of X, T, the client identifier, the
token type, the token group identifier, and the token range within the group:

S =X.T-client.id - token_type - token_group_id - token_range

The server calculates hash(S) which is passed to the client, along with 7.
After a server crash, a client can present these values to the server, which can
verify that the hash value is correct. The value 7T indicates when the token was
issued in relation to all other tokens, allowing the server to determine which tokens
were in use at the time of the crash, provided all trustworthy clients reclaim their
tokens. A malicious client cannot claim to hold a token that was never issued,
because it does not have X and so cannot calculate hash(S). It cannot claim
to hold a token that was once issued to another client (assuming clients can be
reliably identified), because the client_id will be incorrect. If it claims that it still
holds a token that was released due to conflict, the situation can be resolved by
examining the sequence numbers. If there are no conflicts, a malicious client gains
nothing by claiming a token. The file server should not allow any write tokens
to be used until all clients have had a chance to claim their tokens, since another
client may have a conflicting write token.

Generating hash(S) can take a significant time; many cryptographic functions
require tens of milliseconds of computation on current processors. At times of
heavy server load, this may cause excessive delay. It may be possible to reduce the
delay by adding appropriate hardware to the token server, since only the server
needs to be able to calculate the hash functions. In fact, in a secure environment,
every machine would probably require encryption hardware in any case. Faster
scrambling algorithms can be used, such as Wheeler encryption [Wheeler 87] but

50 CHAPTER 4. A CACHING FILE SYSTEM

even these will occupy the server processor fully for a a substantial fraction of a
millisecond.

A simple way to reduce the number of hash calculations is to make only write
tokens unforgeable, leaving read tokens unprotected. Since read tokens are likely to
be far more common, this simple approach will significantly reduce the workload
on the server, without causing any loss in security. During the crash recovery
procedure, the file server disallows writes. The token server collects old write
tokens, but issues no new write tokens. It permits clients to obtain read tokens,
but honest clients claim only tokens that they held before the crash. This allows
limited read-only access during the recovery procedure. When the server has
contacted each of its clients, or has tried for a sufficiently long period, it resumes
normal operation. A malicious client can hold a read token until an old write token
is found, but cannot alter the file system in any way, and so can only compromise
the consistency of its own cache.

Optimizations

The extra security afforded by unforgeable tokens is small, and possibly better
provided by other mechanisms. Logging provides better security guarantees, and
may well be a better choice for a highly secure system. Here too, it is possible
to distinguish read tokens and write tokens in order to avoid excessive overhead.
If only write tokens are logged, the token server can immediately issue new read
tokens after a crash. The only modification is that the server must not issue new
write tokens until it is sure that all clients have detected the crash and have thrown
away their old read tokens.

A good way for the token server to reduce the probability of delay while waiting
for crashed clients is to keep a record of which clients are uncontactable. When
the server reboots, it can disregard any clients that fail to respond if they were
known to have crashed at the time the server went down.

Crash Recovery with Replication
Network services are replicated for a variety of reasons:
o Server load can be distributed across many machines.

o Each server can be close to its own clients in a large network, to avoid
communication delays and network gateway congestion.

¢ Replicas in different partitions can sometimes continue to operate indepen-
dently.

o Other servers can sometimes take over the work of a crashed server.

Distributing the load across many machines is a fairly trivial task in the case
of the token server, since token groups can be divided among the available token
servers. It is quite difficult to ensure that several equivalent instances of the token

4.4. THE TOKEN SERVER 51

service are available at different parts of the network, since the purpose of the
token service is to allow conflicts to be resolved at one centralized point. However,
there are techniques that would allow other servers to take over the work of a
crashed server, and these will now be examined.

One solution to this problem is to allow the available token servers to vote
over which token groups each will be responsible for whenever servers crash or
reboot. Distributed voting strategies have been used for some time [Gifford 79),
and by use of suitable algorithms can give high availability, even in the face of
multiple failures [Barbara 86]. Given a voting mechanism, a group of active token
servers can decide on a master, which can then allocate responsibility for token
groups amongst the servers. A simple way to perform this allocation is to form a
list of the servers that voted, and issue this list to all servers and clients. Clients
can then hash the token group identifiers onto the array of active token servers.
This approach has the disadvantage that management of every token is likely
to be transferred when any server enters or leaves the server group. A better
scheme is to hash the token group identifiers onto the list of all token servers,
even those that are uncontactable. If the chosen server is down, the identifier is
rehashed until an active server is found. This algorithm changes the list of tokens
managed by each server as little as possible when servers enter and leave the voting
group, but maintains an even distribution of tokens on servers at all times. A full
redistribution must take place when new servers are introduced to the system, but
this is usually less common than a server crash.

Assuming the token servers are able to distribute responsibility for the various
tokens during a reconfiguration phase, two problems now remain.

¢ How can two active servers transfer the state of a token group?

o How can an active server obtain the state of a token group previously man-
aged by an uncontactable server?

Of these, the former is straightforward. The two servers can engage in an
atomic transaction (e.g as described by Paxton [Paxton 79]) that transfers the
state of the token group from one to the other. The latter problem is more difficult.

Log-based crash recovery schemes are not useful if a replica server is to take over
the work of crashed system, unless the new server can read the log. This is possible
only if the crashed server logs its actions by sending messages to other token
servers, or if discs are multi-ported and accessible from multiple token servers.
Logging to other servers is often faster than logging to disc, since there is no
rotational latency. Even so, the fastest request-response protocols are unlikely
to take less than a millisecond or so, and this time must be added to the overall
response time of the server. If servers log their actions to all other available servers,
the total number of messages may be greatly increased; if they send their messages
to a subset of the servers, the possibility remains that all servers with knowledge
of a particular token’s state could be down.

The amount of network traffic can be decreased by putting multiple messages
in a single packet or using broadcast and multicast techniques. Even s0, there is a

52 CHAPTER 4. A CACHING FILE SYSTEM

constant minimum delay between sending a log message and receiving a reply. As
was described in the section on crash recovery without replication, the overheads of
logging can be reduced at the expense of additional work during the crash recovery
procedure.

It is unclear which of these recovery techniques is the best. Multiple server
schemes have the advantages of high availability and good load sharing, and are
likely to be the most effective. Further work is needed to determine the tradeoffs
between solution complexity, availability and performance.

4.5 The Client

4.5.1 General Description

MFS clients have been implemented on a set of MicroVAX-II machines running
ULTRIX. In order to minimize changes to the operating system kernel, most of
the client code resides in a privileged user-space process called the cache manager.
This process is responsible for keeping track of the contents of the cache, obtaining
new tokens from the token server and reading and writing file data at the file server.
It receives requests from the client kernel via a private interface, configured as a
device driver.

The cached data is held in the local file system of the machine using the stan-
dard directory structure. It is manipulated by the cache manager using ordinary
system calls augmented with a set of calls designed to optimize certain time con-
suming operations. As application processes access remote files, the kernel informs
the cache manager of accesses to data that is not yet cached, and file modifications
that must be written to the file server.

The kernel interface available to application programmes is unchanged, and the
semantics have been preserved in almost all cases. The main exceptions to this rule
are the failure semantics, and certain file properties, such as the file last-accessed
time, which are difficult to preserve efficiently in a distributed environment.

4.5.2 Client Conventions

Since the token server and the file server are separate in MFS, no fixed interpre-
tation is placed on a token by the token server. Clients must agree on a set of
conventions to allow them to interwork reliably.

As was suggested in the description of the token server, the MFS client uses
a separate token group for each file in the file system. Each byte of a file has a,
token associated with it; token 0 within a group protects byte 0 of the file, token
1 protects byte 1 etc. The file type, permissions, owner and group of the file are
protected by a single token, number 2% — 1. The file type (normal, directory, etc)
is known to be immutable for a particular file, but the permissions information can
change at any time. Client machines cache the permission information in order
to mimic the file access checks performed by the file server itself. These checks
can be performed much faster locally than by contacting the server, but are not

4.5. THE CLIENT 53

needed from the point of view of security. A malicious client can always lie to its
own users, regardless of where the access checks are normally performed. It is the
final server check that limits the damage that can be caused by a malicious client;
the local checks merely allow trustworthy clients to provide equivalent service at
higher performance.

The last-modified time and last-accessed time are also read under the protec-
tion of this token, but are updated in an informal manner in order to avoid loss
of performance on each read and write. The resulting consistency guarantees for
this and other file information are discussed in Section 5.1.

The size of a file must be treated specially, since it can be modified either by
truncating the file, or by writing bytes beyond the end of file:

o If the size of the file is to be read, the client must hold tokens for all bytes
from the end of the file to token number 232 — 2,

o If the file is to be truncated, the client must hold write tokens for all bytes
from the truncation point to token number 232 — 2

o If bytes are to be written to any part of the file, including past the end-of-file
point, write tokens must be held for the range to be written.

These three rules are sufficient to ensure consistency of the size of the file.
The first rule may require the client to iterate towards the correct file size, since
it cannot know which bytes require locking until it knows the size of the file. If
the file server and token server were combined, a single call could be introduced
to avoid this potential iteration. In practice, clients can often make a reasonable
guess about the file size and lock the correct region in one step.

Directories are locked in the same way as files, except that the directory con-
tents are always locked as a single unit, by claiming tokens from zero to 232 — 2.
Partial directory caching is certainly possible, but it is unlikely to yield a significant
increase in performance. There are several reasons for this:

¢ Directories are typically small; the mean directory size on most UNIX sys-
tems is less than one kilobyte.

¢ Directory listing programmes always read the entire directory.

¢ Since UNIX directories are not sorted, the entire directory must be scanned
for duplicates when a new entry is made.

If large directories existed which were never listed in full, it would be worth sorting
the entries in some way (alphabetically, or by length) and assigning tokens to
ranges within the sorted list. A client could then cache all file names beginning
with ca, for example.

¢ CHAPTER 4. A CACHING FILE SYSTEM

4.5.3 Kernel Modifications

Operating system kernels are often difficult to debug, so in MFS, the kernel changes
were kept to a minimum. This approach reduced development time, but has un-
doubtedly led to a less efficient implementation of an MFS client; additional con-
text switches are required whenever the cache manager is to be run. Nevertheless,
since the cache manager is normally invoked only on cache misses, the performance
of the system during normal use is close to that of a machine with an unmodified
local file system.

Several changes were necessary to the file system code in order to allow the
cache manager to take control of file system operations. Most importantly, a new
device driver was added for communication with the cache manager. When a
kernel process needs to invoke the cache manager, it calls a routine in the device
driver with the parameters of the request. The device driver assembles the request
into a packet, queues the packet for delivery to the cache manager and optionally
puts the calling process to sleep, waiting for a reply. As the cache manager reads
from the device, successive packets are read, and interpreted. If a kernel process is
waiting for a reply, the cache manager writes to the device, giving the return value
and a unique identifier for the kernel process. The device driver finds and wakes
up the waiting process, passing it the return value. With this basic mechanism in
place, it is possible to call the cache manager from any kernel process.

If the cache manager process aborts, or has not been started, waiting processes
are allowed to continue, and the cache is treated as an ordinary part of the local
file system.

The cache manager recognizes the following kernel requests:

LOOKUP A directory lookup requires a remote file or directory to be accessed.
"The kernel process waits until the specified file or directory has been cached.

READTOKEN, WRITETOKEN The kernel requires some read or write tokens for
a file. READTOKEN has the side effect of caching at least the data protected
by the token.

DIRWRITTEN, DIRREWRITTEN, DIRREMOVED Indicates that a name has been
written, overwritten or removed from the given directory. The calling process
does not wait.

CHMOD, CHOWN, UTIME, TRUNC Informs the cache manager that a file had its
permissions or owner changed, its last-modified time set or has been trun-
cated. The calling process does not wait.

FSYNC Waits until the cache manager has flushed to the file server all dirty data
associated with the file.

MODIFIED Informs the cache manager that some file data has changed. The
calling process does not wait.

4.5, THE CLIENT 55

A few additional calls are not yet supported by MFS. The most important is
a request that free space be generated in the cache. This would be used whenever
the kernel found the cache file system full. At present, MFS relies on keeping at
least one free block in the cache at all times. The remaining unsupported calls are
needed for application level advisory file locking. These operations could easily be
supported using the token server to store locks, in the form of additional tokens.

A kernel process reading a file makes a READTOKEN call to ensure that the
data is cached before it is read. Similarly, a process writing a file calls WRITETO-
KEN just before the write and MODIFIED just afterwards. All file system mod-
ifications are notionally bracketed between two calls; the first call obtains write
tokens, and the second informs the cache manager of the modification. In order
to avoid the majority of these calls, optimizations have been included for common
cases.

Optimizations

Each file in the UNIX file system has a small data area associated with it, known
as the i-node. The i-node stores information about the file that is not actually
contained in the file, such as file permissions, ownership and size information. In
MFS, a spare field in the i-node is used to store information about the status of
the cached file. This field allows the kernel to distinguish the following cases:

¢ a normal, local file; not a cached file at all;

¢ a remote file about which nothing is known, except its name;

¢ a partially cached remote file, whose file type is known;

® a partially cached remote file, whose file type and attributes are known;
e a remote file that has been fully cached, and may be read.

If a client holds write tokens for an entire file, or has modified the file in the
cache, these facts are also recorded in the i-node. Using this information, the
kernel can avoid contacting the cache manager in many situations. Most notably,
when a file is fully cached, reads can proceed at local file system speed. Also,
when write tokens are held for the entire file, writes will proceed at full file system
speed, and will be written to the file server asynchronously. By arranging to cache
small files in their entirety, the cache manager is able to avoid an excessive number
of calls from the kernel.

In addition to the essential kernel changes, a few extra system calls were added
to allow the cache manager to perform its functions more efficiently. These permit
the cache manager to manipulate the files and directories identified in the calls
arriving from the kernel, without requiring the full pathname of each file.

56 CHAPTER 4. A CACHING FILE SYSTEM

4.5.4 The Cache Manager

The cache manager responds to three sources of external stimuli:
¢ requests from the client kernel;
o requests from the token server, reclaiming tokens;
¢ timeouts expiring, causing data to be written to the file server.

The cache manager is responsible for reading from and writing files to the file
server, obtaining and releasing tokens on behalf of the client, and maintaining the
client cache.

Data Structures and Algorithms

hash
table
list of directory
. file structure modifications
d.ev1ce and name
i-number token id action
file id
auth info
data list)
token list list of file links
hash name >
table . parent
token group

identifier

Figure 4.3: Cache manager data structures

The cache manager data structures are shown in Figure 4.3. For each file currently
held in the client’s cache, the cache manager maintains a file structure, which holds
information about the file that cannot be held in the cache itself. This information
includes:

e the file server and token server responsible for the file;
o identifiers that identify the file at:

— the file server (i.e. the NFS file handle);
— the token server (i.e. the token group identifier);

— the client kernel (i.e. the i-number and file name);

® a list of all parent directories containing a reference to the file (this list is
needed for maintaining the consistency of directories. See below.);

4.5. THE CLIENT 57

e for directories, a list of all names inserted or removed from the cached copy;
e authentication information for delayed writes to the file;

e the list of outstanding tokens;

o the list of bytes cached or modified.

The list of outstanding tokens, and the list of cached bytes are each held in a
token arrey structure, described in Section 4.4.3.

File structures must be found both when the kernel requires assistance from
the cache manager, and when the token server wishes to reclaim tokens. For this
reason, two hash tables are required, one allowing lookups by local i-node number,
and the other by token group identifier.

Kernel requests start new threads, which find the appropriate file structures
and perform the requested operation. Many requests are to cache a new file, or
a new part of some file. In this case, the cache manager obtains any tokens it
needs, reads data from the file server, writes it to the cache, and returns control
to the kernel once again. When handling partially cached files, some read requests
are for data that has already been cached, and no action is required. When cache
data is modified, the cache manager notes the fact and adds the file to a queue of
files to be written to the file server. Writing is delayed in the hope that further
operations by the client will overwrite or delete the modified data.

Token conflicts are received from the token server and are handled in a similar
way. A new thread locates the file structure, and examines the conflicts between
its tokens and the requested token. By following the links to parent directories,
the cache manager builds a full pathname for the file in the local cache, and can
then open and modify the file.® First, the i-node of the file is read, and modified
to temporarily disable kernel access to the file. If the cached copy of the data has
been modified, the cache manager writes the new data back to the file server, and
marks the region clean in the file structure. The cache manager retains a read
token if it is able to do so, but otherwise will remove the data from the cache. It
updates the token array and data array for the file, then sends a reply to the token
server.,

Dirty data is usually written back in the order that it was modified, approxi-
mately 30 seconds after the data was written to the cache. A background cache
manager thread steps through a list of modified data, slowly writing it back to
the file server. The order of write-back is modified by requests from applications
(the £sync system call), from other clients requesting conflicting tokens, or by file
server consistency requirements.

3An additional system call to open a file by i-number would simplify this operation, but has
not yet been implemented in MFS.

98 CHAPTER 4. A CACHING FILE SYSTEM

The file server affects the write-back policies of the cache in unexpected ways,
some of which require extensive support in the cache manager. The most obvious
of these is the case where file permissions are changed before dirty data has been
written. When performing synchronous operations on behalf of a user, the cache
manager can simply pass the user’s authentication information to the file server.
However, when delayed writes occur, it is not always obvious whose authentication
information should be used. MFS keeps the authentication information of the last
user to write to the file, and uses this to write data back. While holding dirty data,
the cache manager must ensure that it is still able to write the dirty data back to
the file, and it does this by holding a read token for the permissions information of
the file. If this information is about to be changed, all dirty data is written back
to the server before this token is released. This is one of a number of situations
in which the side-effects of file system metadata must be taken into account when
using delayed writes.

Directory Modifications Another case where token release causes seemingly
unrelated write traffic is a result of the way files are deleted at an NFS file server.
In UNIX, a file remains in existence as long as some process has the file open, or
the file still has an entry in a directory somewhere. An NFS file server cannot
tell if a file is still open, and so operates exclusively on the second criterion. If
the last name is removed, the file disappears, even though an application may be
accessing the file. This problem is solved by holding a read token on the directory
containing the file when it is opened. As long as the file is open, the client must
be prepared to invent a temporary, fictitious name for the file if the read token on
the directory is reclaimed to prevent the file being deleted at the file server. Most
NFS clients already perform this operation if the name is removed by the client
that opened the file. The token mechanism allows any client to remove the file
without harm, at some cost in complexity.

Another example of this effect can be observed in the following sequence of
operations:

¢ Some application on client 4 executes 1ink("/foo/a","/bar/ b"), to create
another name (/bar/b) for the existing file /foo/a.

o A obtains read tokens for /foo and write tokens for /bar.

A then performs the link operation in its own cache, but does not write the
changes back to the file server.

A little while later, an application on client B executes unlink("/foo/a")
to remove the original link.

B requests write tokens for /foo in order to remove the name. A has only
read tokens for this directory, and gives them up immediately.

B then writes its changes back to the file server, which observes that the last
link to the file has been removed, and it deletes the file.

4.5. THE CLIENT 59

* A finally decides to write its changes to the file server, but finds that it
cannot create the name /bar/b because there is no file for it to name.

Other examples can be constructed using only one client, which renames a file and
flushes the directory modifications in the wrong order. The solution used in MFS
is to record additional information in the directory modifications list whenever a
file is linked or renamed, and to flush changes to the modified directory if the
read tokens on the source directory are reclaimed. Modifications to a, directory
are stored as a list of modification records. Each record contains a file name, and
a state, indicating how the cached copy of the directory has changed since it was
last written to the file server. It also contains & pointer to the file structure of the
file, which allows each cached link to the file to be found. A modification record
can have one of five states:

NULL: no modification.

ADD: the name has been added to the directory.

DELETE: the name has been deleted from the directory.

REPLACE: the original file has been deleted, and a new file put in its place.

CHECK: this entry has not been modified, but it has been used to generate other
links. These links must be flushed to the file server before tokens are re-
claimed for this directory.

In any directory, there are always either zero or one directory modification
records for a given name. If there are no modification records, the name is in the
NULL state.

There are three operations that can be performed on a name in a directory:
e link—create a directory entry elsewhere that refers to the same file;

e remove the name;

¢ add a name;

There is no rename operation; rename is built up from edd and remove opera-
tions. Table 4.1 shows how these operations move entries between states.

Initial State Action
link add delete
NULL CHECK ADD DELETE
CHECK CHECK error DELETE
ADD ADD error NULL
DELETE DELETE | REPLACE or CHECK error
REPLACE REPLACE error DELETE

Table 4.1: Directory Modification State Table

60 CHAPTER 4. A CACHING FILE SYSTEM

The error states are present because it is impossible to delete an entry that
has already been deleted, and impossible to add an entry if one already exists.

The add operation generates CHECK state from DELETE state only if the file
name being added is the one that was previously deleted. The entry enters CHECK
state rather than NULL state because there is no record of whether this entry was
used as the source for a link before the delete. This information could be stored,
but the extra check involved is quite efficient.

The delete operation converts ADD to NULL, rather than CHECK, because the
deleted entry is not on the file server anyway. If it had been there, the previous
state would certainly not have been ADD. This state transition represents the case
of a temporary file being created, then deleted entirely within the cache. No data
need be written to the file server, unless some external event or timeout causes
the modifications to be flushed.

When a read or write token for a directory is reclaimed by the token server,
the cache manager scans the list of directory modifications. Even if the directory
was only read, there may be entries in CHECK state. For each directory entry
in CHECK, DELETE or REPLACE state, all other links to the file are found by
examining the list of links attached to the file structure. If another link to the
file is being created in another directory, that change is flushed to the file server
immediately to ensure the continued existence of the file. Entries in ADD state
can be flushed without additional checks, since they will never delete data, but
the cache manager checks each link in order to optimize rename operations. Many
ADD/DELETE pairs can be reduced to a single file server rename operation. New
files that have not previously been written to the file server are assigned token
identifiers only when they are created at the file server. The client must be sure
to obtain write tokens for the file before allowing other clients to examine the
directory and access the file.

In rare cases, it is possible to find a circular chain of entries to be flushed.
Consider the case where files a and b have been swapped, using a sequence of
rename operations with a temporary file name. The modification records for both
a and b will be in REPLACE state, but neither operation can proceed since each
requires that the other be flushed first. This situation is resolved by inventing
a new temporary file name for one of the files. A DELETE record is added to
the list of modifications to ensure that this name will be deleted eventually. No
other client will ever see the name, since it is always deleted before the directory’s
tokens are released. It seems clumsy to invent a file name to circumvent this
problem, particularly since a temporary file name must have been supplied by
the application when creating the circularity. Unfortunately, the optimizations
designed to avoid writing temporary files to the file server also lose the route by
which circularities are reached.

The checks described here serve to complicate the cache manager further than
was originally expected. Unfortunately, it is difficult to avoid them, particularly
if similar optimizations are to be performed. It may be possible to ignore these
checks when the number of links to a file is sufficiently large that there is no danger
of it being deleted. However, the number of files with more than one link is very

4.5. THE CLIENT 61

small, so the potential gain here is negligible. The danger of accidentally deleting
a file could be removed by using file lifetime guarantees, rather than insisting that
files were always held in directories. This leaves the possibility that files could be
left inaccessible if a client were to crash at an inopportune moment.

Cache Replacement Policies

MFS clients rarely need to throw data out of their caches because each cache is
40 megabytes in size. For this reason, little work has been done on improving the
cache replacement algorithm. The current algorithm is first in, first out (FIFO).
A better choice would be to throw out data on a least-recently-used (LRU) basis,
but accurate usage information is difficult to obtain. The client code is specifically
designed to eliminate the involvement of the cache manager in most file operations,
so the cache manager is largely unaware of file access patterns. Each cached file
has its own last-accessed time information, but this can only be found by a costly
scan of the cache file system.

The problems of building paging virtual memory systems without referenced-
bits are well known. A simple technique that achieves a cache miss rate close
to that of an LRU policy, but requires considerably less usage information is the
clock method, which can be modified to work well even when referenced-bits are
not available [Babaoglu 81]. The basis of the method is to place each page in a
logical circular list, and to sweep a pointer, the hand, around the list, examining
each page in turn. On each revolution of the hand, pages that have not been
referenced since the last revolution are removed from memory. The speed with
which the hand is moved around the list can be varied according to the demands
on the available space. If sufficient free space remains, the hand need not move
at all; during periods of heavy demand on the memory system, the hand may be
moved quickly to find additional replacement candidates. If reference information
is available, the referenced-bit of each page is examined as the hand passes over
it. If the bit is clear, the page can be removed; if it is set, it is cleared before the
hand moves on. On systems without referenced-bits, reference information can be
obtained by putting pages into a reclaimable state. Reclaimable pages are marked
as invalid in the page table, even though they are still in memory. When such
a page is touched, a page fault occurs, but instead of initiating a transfer from
disc, the fault handler merely marks the page as valid, and thus records that the
page has been referenced. The action of the sweeping hand is to mark pages as
reclaimable, if they are not already in that state, and to remove pages that have
not been reclaimed since the last sweep of the hand.

This algorithm can easily be applied to the MFS cache manager. Files that are
only partially cached already cause calls into the cache manager, which can easily
record references in the file structure. Files that are fully cached can be marked as
partially cached in their i-nodes. On a subsequent reference, the kernel will check
that the necessary part of the file is indeed in the cache. At this point, the cache
manager can record that the file has been referenced, and mark the file as fully
cached once more.

62 CHAPTER 4. A CACHING FILE SYSTEM

Most files are treated as a single unit for replacement purposes. It may be
advantageous to divide large, partially cached files into a series of blocks, and to
consider each block separately for replacement, but the UNIX file system primitives
make this hard to do. There is currently no way to remove an arbitrary section

from a file; truncation and deletion are the only operations that free space within
a file,

Performance Improvements

The token server allows files to be cached in any size unit, from the file to the
byte, but certain conventions are necessary if reasonable performance is to be
achieved. The cache manager can round data requests to any block size, without
fear of cache inconsistency, since each byte is individually protected. Block size
should normally be chosen on the basis of the client cache size and the preferred
file server transfer size. In the case of MFS, 8 kilobytes is preferred, though initial
experiments were done on a byte-by-byte basis.

Two important techniques for increasing the performance of the system are
whole file caching of small files, and read-ahead. In fact, whole file caching is often
a side-effect of simple read-ahead, since small files are almost always read in their
entirety. Read-ahead is implemented by initiating a read on the next block of data
as well as the requested block, if the next block is not already in the cache. It has
the effect of pipelining the processing and fetching of a file, and can improve the
start up performance of many applications.

MFS currently has no explicit code to promote whole file caching. Any file that
is read from beginning to end will be fully cached, but large, randomly accessed
files will be partially cached. This would include large executable files if MFS
supported demand paging from the file server. Additional heuristics are needed to
decide when large files should be prefetched, and which parts should be removed
first when they are to be thrown out of the cache.

Concurrency Issues

The MFS client is a complicated concurrent system. Its code runs partially in
kernel-space, partially in user-space, and both kernel and cache manager have
multiple threads of control. The locking strategies for the data structures in this
system are complex, and in some cases deadlock is difficult to avoid. The most
difficult problem is caused by the need for both kernel and user threads to hold
locks on important data structures, with the constraint that neither can access the
locks held in the other’s address space.

When performing a file operation, a kernel thread must lock the i-node of the
file to ensure that no other kernel thread modifies it, and that tokens held for
the file will not be given up before the operation has completed. In the case of a
partially cached file, the kernel must ask the cache manager for confirmation that

particular tokens are held without releasing the lock, since the information could
become out of date at any time if the lock is not held. Unfortunately, the cache
manager might block on this same lock while trying to release tokens, which would

4.5. THE CLIENT 63

cause deadlock. This occurs only because UNIX does not allow independent user
level threads to occupy the same address space. Fortunately, deadlock is rare, and
a fairly crude technique is sufficient to resolve the problem. If a kernel thread
has waited too long for a reply from the cache manager, it releases all its locks
and waits for the cache manager to respond. It then restarts the pending kernel
operation and reclaims the locks it previously held.

Mutual exclusion locks are used on file structures within the cache manager
to guarantee that updates are serialized. As with the token server, only one lock
is allocated per file, but little additional concurrency could be gained by locking
parts of files independently. Internal cache manager operations are short, and the
locks are always released during RPCs to the token server to avoid deadlocks with
other clients.

Kazar describes a problem with callback synchronization in the Andrew file
system [Kazar 88]. The problem arises when the client is in the middle of request-
ing a token but the token is reclaimed by the server before the client has received
the reply to the original request. The problem is that the client cannot tell whether
the reclaim request corresponds to an earlier token, or the token currently being
requested. Kazar recommends solving this problem by attaching version numbers
to tokens, so that the reclaim request can be matched with the correct token.
An alternative solution, which is the one actually implemented in Andrew and in
MFS, is to discard the token request and claim another token immediately. The
version number approach is almost certainly the cleaner of the two schemes, but
the problem is rare enough that the inefficiency of the latter solution is tolerable.

4.5.5 Crash Recovery
Server Crashes

The crash recovery procedures required by the token server itself were discussed
in Section 4.4.4. However, the client is also affected by server crashes, and clients
may behave in slightly different ways, depending on the needs of their users. When
the token server crashes, or is uncontactable, clients may be able to continue for
quite long periods without requiring any additional tokens. If a client were to
continue during a network partition, it is possible that the token server may issue
tokens to another client, assuming that the first client had crashed. But since
write-sharing seems to be rare, we can infer that the probability of inconsistency
is correspondingly low.

If the file system is required to have good consistency properties at all times,
the possibility of conflicting tokens existing concurrently is unacceptable. A so-
lution is for each client to attempt to contact the token server every T seconds,
where T is less than the interval that the server waits while trying to contact a
crashed client. Clients must discard all their tokens as soon as they detect loss
of contact with the token server. In such situations, client applications must wait
until contact is restored. At that time, the client will begin to reclaim tokens
and applications will be permitted to continue. Even under this scheme, the file
system consistency properties are not perfect if delayed writes are permitted. A

64 CHAPTER 4. A CACHING FILE SYSTEM

write-through caching policy gives better guarantees in the face of crashes, with
some performance penalty.

An alternative approach is to permit clients to continue during server crashes,
on the assumption that conflicts are unlikely. This has the advantage that existing
tokens can be used, and new files created during extended periods of unreliabil-
ity. The LOCUS system [Walker 83] allows partitioned updates to files, and even
attempts to resolve conflicting updates for certain file types, such as mail files
and directories. When automatic conflict resolution is impossible, the situation is
brought to the attention of the interested user(s), who must then resolve the diffi-
culty by hand. A simpler solution is to choose one of a conflicting set of updates,
ignoring the others. This solution feels uncomfortable, but may be sufficient if
users are informed of server crashes when they occur and required to take explicit
action to allow applications to continue. Some applications may be tolerant of
temporary inconsistency, and may be able to advise the client operating system if
they will accept data under these conditions.

Each application will have slightly different consistency requirements, and will
be subject to varying degrees of unreliability, particularly if sharing takes place be-
tween many people. It is therefore difficult to decide between the two approaches in
a general way. One possibility is to allow the behaviour of the system to be selected
independently for each individual file, by associating an extra bit with the file. A
possible outcome is that most users’ files would be used in the permissive style,
but important shared files and databases could be marked as requiring consistency
at all times, and so could not be used during server crashes. Experimentation is
needed to compare the effects of these possibilities.

Client Crashes

-Clients may try to minimize the impact of crashes by preserving cached files across
reboots. If the local cache is in volatile storage, such as a RAM disc, neither tokens
nor data contents will survive crashes and power failures. A client would simply
start with an empty cache each time it rebooted. If client crashes are rare, the
overhead of starting afresh may be small. Client file operations will be slower when
files are first accessed, but not excessively so.

Unfortunately, client crashes are not independent events. Often, they are
caused by power failures, network faults or replicated software faults, and it is
not uncommon to find that large numbers of machines crash together on a single
network. At such times, servers can become overloaded as a number of clients
try to reboot simultaneously. These events are rare, perhaps happening no more
than two or three times a year, but as the size and complexity of systems increase,
the potential impact of a single power dip can be enormous. Experience with the
Demand-Initialized Disc system (Chapter 3) has shown that a power dip can ren-
der a network unusable for nearly twenty minutes because of the excessive server
load in the period after the failure.

If the local cache is on a disc, the cache contents can be preserved across
reboots, but other important information may be lost. Although the MFS cache

4.5. THE CLIENT 65

is usually on the disc, much of the associated information is not. After a reboot,
the cache manager has no knowledge of which files are cached, which parts of
them are cached, and what tokens are held. In fact, some of the information is
available in the i-nodes of the cache file system; any file which is fully cached has
all the necessary information associated with it to rebuild the cache manager’s file
structure. Since most files and all directories are cached in their entirety, even
this partial knowledge would enable a client to avoid re-reading a great many
files. By paying particular attention to important system files required for the
bootstrap procedure, clients could avoid overloading file servers after a power
failure or similar catastrophe.

Due to time constraints, the current version of MFS does not attempt to reuse
data in the cache after a crash. Instead it uses a simple incremental algorithm to
overwrite existing data, without allowing applications to see old data in the cache.
First, the root of the cached directory tree is marked as invalid. As applications
reference parts of the tree, each directory level is rebuilt, and the next level in the
tree is marked as invalid. An incremental strategy was chosen in preference to a
lengthy initial search phase in order to minimize the time required to bootstrap
the system. A background process removes old parts of the tree if they are not
accessed shortly after booting,.

An algorithm that could be used to restore a major part of the file system from
the disc image is given below.

o The root of the cached directory tree is marked as invalid.

¢ A new token is obtained for the root directory. If the token server’s sequence
number has changed, the client’s tokens were revoked during the crash.

o Applications start to examine parts of the tree, and a background cache
manager thread runs over the entire tree to ensure that it is all processed
eventually.

¢ For each partially cached file, the cached data is discarded.
¢ For each fully cached file touched by an application:

— If the client lost no tokens during the crash, the cached copy is up to
date.

— If the client lost all of its tokens, the client obtains new tokens, and
checks the last-modified time of the file at the server. If the cached
copy appears to be more recent, it is kept and is written back to the

server if it has been locally modified. Otherwise, the cached data is
discarded.

This algorithm is certainly imperfect; delayed writes are lost on partially cached
files, and when update conflicts have occurred during the crash. However, less
data is lost than with a volatile cache, and most cached files need not be fetched

66 CHAPTER 4. A CACHING FILE SYSTEM

again. Better results could be obtained by keeping more information on non-
volatile storage, but this seems unnecessary. If the incidence of client crashes is
so high that this yields a noticeable improvement in performance, perhaps effort
should be directed towards eliminating the causes of failure.

4.6 Free Space

In the current version of MFS, there is no easy way for a client to reserve free
space on a file server disc. Without free space reservation, a client cannot safely
cache its writes, since it cannot be sure of being able to write them later. Instead,
it must write all new data on the file server immediately.

A primitive free space allocation mechanism could be built without modifying
the file server, provided all clients can be trusted to behave fairly. Each client
would initially create a file of a certain size to reserve that amount of free space.
The client must keep write tokens for the file, so that no other client can truncate
the file. To use the reserved space, a client would first truncate its reservation file,
then write its data to the file server. All clients would have to be trusted not to
steal free space in the interval between the truncation of the file and the writing
of the data. If a client ran out of its reserved free space, it could request N bytes
of free space from another client (the victim) by the following procedure:

o Find the current length of the victim’s reservation file. Call this length L;.;;.

o Request write tokens for all bytes beyond L;y,i; — NV of the victim’s reservation
file.

o When the tokens are granted, find the length of the file again. Call this value

Lcurrent .

® If Linit — N > Lcyrrent, truncate the file at byte position Lini; — N. The victim
has allowed us to use Leyprent — Linit + N bytes.

When the victim is told that another client has requested write tokens, it can
decide how much free space it wants to release. If it wishes to release only n
bytes to the other client, it truncates the file by N — n bytes, and writes N — n
bytes of dirty data onto the disc before releasing the write tokens for the file. The
victim requests more write tokens for its reservation file as soon as it has released
them, to return itself to its previous state. A client may unwittingly obtain more
free space than it initially intended if the victim was in the process of reserving
more space at the same time, but the victim always has the option of denying the
request. Provided all clients are well behaved, keeping only the reservations that
they need, and choosing suitable victims, this scheme could be made to work.

If the file server can be modified, a similar scheme of reservations can be im-
plemented, but without the disadvantages of the scheme described above. The file
server would choose which clients should give up reservations, perhaps logging an-
tisocial behaviour on the part of the clients, and preventing clients from exceeding

4.7. SUMMARY 67

their reservations. The mechanisms required at the file server are similar to those
needed to enforce file system disc quotas in a time-sharing system. Both file server
and clients require additional interfaces:

¢ to allow a client to bid for free space;
o torequest that clients give up free space, when it is required by other clients.

Unlike the token service, the reservation service must be combined with the file
server for performance reasons. Free space reservations can potentially change
on each write to the file server. Only the file server has easy access to the data
involved and only the file server can prevent a client exceeding a reservation.

Whatever technique is employed for free space reservation, the performance of
the system will degrade if there is insufficient free space. Each client will be con-
stantly requesting space from the others, resulting in many messages. Eventually,
the system will be using a write-through policy, but will be doing a great deal more
token passing than is necessary. The file server could use heuristics to detect this
situation and disable caching, if this were a common case. In most environments,
peer pressure or user quota systems can be used to control this problem before it
becomes too acute.

An alternative to space reservation is to build file servers with storage capacities
so great that they will never be exhausted. A possible implementation would
be a file server that automatically moves files between disc and tape with the
help of a human operator, or tape library robot. The file server could delay
requests until the necessary space or data was available. The system performance
would degrade gracefully until the set of commonly accessed files exceeded the disc
storage capacity. This situation calls for the purchase of more discs, rather than
an improved algorithm.

4.7 Summary

A design for a caching file system has been presented, and a prototype implemen-
tation described. MFS has large client caches stored on local disc to minimize
contact with the file server. A token server co-ordinates access to files to preserve
cache consistency and informs clients when they should flush modified data from
their cache, or discard old data. Fine grain sharing is supported at the granularity
of individual read and write system calls of a single byte.

Algorithms for crash recovery and cache management have been presented,
which are both efficient and practical. The implementation has shown that:

¢ It is practical to maintain cache consistency by keeping records of the con-
tents of client caches in a centralized server.

o Efficient data structures can be designed for storing fine-grain caching infor-
mation.

68 CHAPTER 4. A CACHING FILE SYSTEM
o It is possible to build a caching system using an existing local file system
and existing file servers.

o It is possible to separate the functions of the token server and the file server,
at the cost of some performance.

The next chapter examines the behaviour and performance of the prototype.

Chapter 5

Behaviour and Performance

‘This chapter describes the behaviour and performance of the MFS design presented
in Chapter 4. Section 5.1 describes the semantics of MFS and compares it with
those of a normal UNIX file system. Section 5.2 presents performance figures for
MFS, and compares them with existing file systems.

5.1 Semantics

MFS conforms well to most of the more esoteric file system semantics normally
associated with UNIX. It allows fine-grain concurrent write-sharing of files, and
allows them to be removed from the name space while still open, as timesharing
UNIX systems do. Nevertheless, a few incompatibilities exist:

o If the permissions on a partially cached file are changed, an application with
the file open may not be able to continue to read or write the file. This
problem is intrinsic to the NFS file server interface, and is difficult to solve
without modifying the server to allow the use of capabilities, or some other
handle that grants file access.

o The link count of a file should be equal to the number of file system entries for
the file. In MFS, it is not correct unless all the directories containing the file
have been cached. This is a side-effect of caching data in the local file system
structure. This problem can be corrected by maintaining an additional link
count in the i-node, and returning this to application programmes in place
of the local link count.

e All file time information is slightly suspect if the clocks of the servers and the
clients are not synchronized. Each machine uses its own clock to timestamp
files, and these timestamps are not converted when they are passed between
machines. This effect could be minimized by synchronizing client and server
clocks using a clock synchronization protocol [Lamport 87], or by including
clock values in messages sent from file servers to clients.

69

70 CHAPTER 5. BEHAVIOUR AND PERFORMANCE

o A file’s last-modified time should indicate when any application last wrote to
the file. Delaying write-backs can cause an error of up to 30 seconds in the
last-modified time of a file, since the time is recorded at the server only during
write-back. This error could be avoided by setting the file modification time
on each write-back at the cost of an extra RPC, or by altering the file server
interface slightly.

Moreover, a client machine does not necessarily communicate with any other
machine when it writes part of a file. So, when a file is partially cached on
more than one machine, the local copy of the last-modified time may not be
up to date. Because the file size and file time information are requested to-
gether, the modification time is locally correct whenever one of the following
is true:

— no writes have taken place on other machines since the file was cached;
— the file size has changed since the modification time was last read;
— the file is fully cached.

Since most files are not write-shared, are fully cached, and they change size
when they are updated, the last-modified time is rarely affected by this
problem.

¢ The file last-accessed time is very difficult to maintain efficiently. MFS usu-
ally supplies the last time the file was read on the local machine, but if there
have been no reads locally, it gives the last time the file was cached by any
machine.

o The changed time of a file is not maintained at all. This value normally gives
the last time the file was modified or any property of the file was altered.
It is modified as a side effect of the cache manager’s activities and a kernel
change would be needed to prevent this.

Many of the problems described above can be overcome without gross ineffi-
ciency, but this is not always the case. Some of the problems would have an easy
solution if the system call interface presented to applications were redesigned. For
example, the file access time is rarely needed by a UNIX process, but it is re-
turned with many other values which are frequently requested by the stat/fstat
system calls. As a result, the file system must obtain the access time far more
often than one would normally expect, and the performance of the solution must
be correspondingly better. It is too late to change standard interfaces but better
standards can be created from this experience.

5.2 Performance

The performance of MFS was measured under an artificial load provided by ma-
chines running the Andrew benchmark, which was described in Section 3.3.1. The

5.2. PERFORMANCE 71

measurements were made with MicroVAX-II clients, each with a 40 megabyte disc
cache and about 5 megabytes of main memory. The file server was a Sun-3/160
with a 70 megabyte low-performance disc. The MFS token server ran on an un-
loaded MicroVAX-II. The benchmark was run with numbers of clients ranging
from 1 to 15; there were not enough suitable machines available to attempt a test
with 20 machines. Each test was run at least three times unless otherwise noted.

Each MFS client was configured with a single cache manager thread responsible
for writing modified data to the file server after 30 seconds if it had not already
been deleted. The 30 second period was chosen to correspond to the normal
delayed write interval in UNIX.

Table 5.1 shows the time taken to complete the phases of the Andrew bench-
mark for various numbers of MFS clients. Figure 5.1 shows the variation in the
overall benchmark times for MFS. The table also shows the timings for the Andrew
file system for comparison, though the Andrew clients had a significant advantage
in CPU power. The relative performance of MFS and the Andrew file system are
compared in Figure 5.2.

File Overall Time for Each Phase
System Load | Time MakeDir | Copy | ScanDir | ReadAll | Make
Standalone 1 553 (2) 6 (0) 28(1) | 26(1) 47 (1) | 445 (2)
1 588 (6) 7(2) 57(1) | 28(2) | 44 (1) [4B1 ()
2 588 (7) 7(Q) 57(2) | 29 (0) 45 (1) | 450 (5)
MFS 5 628 (6) 8 (1) 92(4) | 26 (1) 50 (1) | 457 (6)
8 697 (4) 9(1) 160 (5) | 27 (0) 49 (1) | 461 (3)
10 | 748 (12) 8 (0) 207 | 27(1) 51 (0) | 462 (5)
15 833 (6) 9 (1) 204 (5) | 28 (1) 52 (2) | 460 (1)
T [588(2) | 6(1) | 71(4) | 100(2) | 50 (3) | 363 (3)
2 582 (4) 5 (1) 72(3) | 98(0) 50 (2) | 356 (2)
Andrew 5 605 (2) 7() 85(1) | 97 (0) 47 (0) | 368 (2)
7 636 (4) 9 (1) 104 (2) | 97 (1) 48 (0) | 377 (2)
10 688 (4) 12(1) |137(5) | 94 (0) 48 (0) | 395 (2)
15 801 (2) 18 (1) | 200(3) | 91 (0) 48 (1) | 442 (2)

This table shows the elapsed time of the benchmark as a function of load for MFS. Figures
are also given for the Andrew file system, taken from the paper by Howard et al [Howard 88].
All timings are in seconds; the figures in parentheses are standard deviations. All tests were

run at least three times. Part of this data is reproduced in Figure 5.1.
All MFS clients were MicroVAX-IIs, as was the token server. The file server was a Sun-

3/160 with a low-performance 70 megabyte disc. These measurements were taken without
any active network servers, hence the standalone timings are less than the corresponding
timings in Table 3.1 by about 10%.

The Andrew clients were Sun-3/50’s. The Andrew file server was a Sun-3/160 with a fast,
450 megabyte disc. Only seven Andrew clients were used in one of the tests, whereas eight
were used in the corresponding MFS test.

Table 5.1: Running Time of Benchmark for MFS

Although the overall time for the benchmark increases with the number of MFS
clients, this is almost entirely due to the increased time for the Copy phase; all
other phases complete almost as quickly at all loads. With the exception of the
Copy phase, none of the phases reads a significant number of files that have not

72 CHAPTER 5. BEHAVIOUR AND PERFORMANCE

MFS
833 - v_///
Benchmark 588 1
Time \ﬁ
(seconds) tandalone (553)
[\ — , . . .
1 2 5 8 10 15

Load Units (active clients)

The running time of the benchmark is shown for MFS. The data is taken from Table 5.1,
which also describes the test conditions.

Figure 5.1: Running Time of Benchmark for MFS

yet been cached. The Make phase writes at least three large files, but its speed is
almost independent of the number of clients. This seems to indicate that clients
running under MFS are not significantly affected by the writing of modified data,
but that reading from the file server is slow.

Andrew scales better for the Copy phase, but worse for the other phases which
write data (MakeDir and Make). This indicates that Andrew is more efficient at
reading files before they have been cached, but less efficient at writing. Andrew
writes files back to the file server as soon as they are closed. The writing is initiated
synchronously, causing one round trip delay on each file close. In addition, the
Make phase of the benchmark generates a few temporary files in the file system
under test when creating library files. Under Andrew, these will always be written
to the file server; under MFS they will only be written back if they survive more
than 30 seconds, which is unlikely.

The remote file access was further investigated by measuring the file access
latency of MFS—the time taken to open a file, read the first byte and close it.
These figures are given in Table 5.2 and Table 5.3, which compare the performance
of MFS with NFS and the Andrew system for varying file sizes.

The reason for Andrew’s superior performance when reading small files from
the file server is believed to be due to the design of the Andrew file server interface.
In Andrew, one RPC (Fetch) accesses a file given its directory entry. This one call
returns the file status, the contents of the file and claims a token for the file
(registers a callback). The MFS file server is an unmodified NFS file server, so at
least three separate RPCs are needed to accomplish the same task:

o lookup the file name to obtain a file handle;
e obtain a token from the token server;
¢ read the file status and contents.

In fact, an oversight in the MFS implementation has caused the file status and
contents to be fetched by separate RPCs, giving a total of 4 RPCs per file read by

5.2. PERFORMANCE

Relative
Benchmark Time

The relative running time of the benchmark is shown as the number of clients running the
benchmark is increased. All times are relative to the running time at a load of 1. Figures
for NFS and Andrew are taken from the measurements of Howard et al. [Howard 88]. Note
that some NFS machines failed to complete the benchmark at loads of ten and higher. The
MFS test conditions are described under Table 5.1. Andrew and NFS used Sun-3/50 clients.
The Andrew and NFS servers were Sun-3/160s, and were equipped with 450 megabyte, fast

discs.

."p
DID
NFS
o am .
ra‘”b‘.sﬁ
. -.,-..:,:..-.-.—-!“\ *MF_g ______ X
g....*:;c:..';.’.-’g:-.h-x‘- IR Andrew
some NFS clients failed
for load > 10
12 5 78 10 15 18 20

Load Units (active clients)

Figure 5.2: Relative Running Time of Benchmark with MFS

73

74 CHAPTER 5. BEHAVIOUR AND PERFORMANCE
System File cached | Data location | File Access Latency (ms)
Standalone - local disc 27 (0.2)
(MicroVAX) - local memory 3.2 (0.1)
no file server 328 (7)
partially file server 146 (9)
MFS partially local disc 35 (1)
partially | local memory 11.6 (0.1)
yes local disc 27 (0.3)
yes local memory 3.3 (0.1)
Standalone - local dise 23 (0.5)
(Sun-3/160) - local memory 1.7 (0.1)
NFS no file server 54 (1)
yes local memory 10.3 (0.1)
Andrew no file server 160 (35)
yes local memory 16 (0.5)

This table shows the file access latency in milliseconds of a standalone system, MFS, NFS and
Andrew. The files were all 3 bytes long. The latency is the time to open the file, read one byte
and close the file. The Andrew times are taken from the paper by Howard et al [Howard 88].
The MFS times were measured with a single MicroVAX-II client. The Andrew and NFS
times were measured with a Sun-3/50 client, which is approximately 1.5 times faster than
a MicroVAX-II. Standalone times from both clients are given for comparison. All network
tests used a Sun-3/160 as file server, which is about twice the speed of a MicroVAX-II. The
figures in parentheses are standard deviations. All tests were run at least three times.

Table 5.2: File Access Latency of MFS

MFS. This could be reduced to a single call by redesigning the file server interface
and combining the file server and token server. When a file has been partially
cached by MFS, only one call is needed to fetch each new block of data (assuming
that it has not already been prefetched). The time in this case is faster than the
time to read a byte from an Andrew file (Table 5.2). The timings suggest that
this modification to the MFS file server would improve the performance of MFS
beyond that of Andrew, even when using slower client processors.

Andrew’s cache seems to be quite slow; the ScanDir and ReadAll phases ac-
cess only cached data. MFS performs better than Andrew on these phases, even
though the Andrew clients were between 2 and 3 times faster. Both systems have
user-space processes which trap application system calls and fetch data from the
file server when required. The main design difference in this area is that MFS
stores cached files in the local file system of the client, using the normal directory
structure, while Andrew stores cached files in a separately managed area of the file
system. The MFS approach involves additional system calls to place data in the
cache, but requires no context switches when a fully cached file is read or written.
This is reinforced by the data of Table 5.2, which shows that once a file has been
cached, it can be accessed as quickly as if it were on a standalone file system. Both
systems suffer from the delays of context switching when fetching data from the
file server; this delay could be eliminated in kernel-space implementations.

Although the Andrew file system reads small files quite quickly, large files carry
a performance penalty, as is shown in Table 5.3. The access latency increases in

5.2. PERFORMANCE 75

File Size | File Access Latency (ms)
(bytes) | MFS Andrew
3 328(7) 160 (35)
1113 | 331 (12) | 148 (18)
4334 | 347 (3) 203 (29)
10278 | 419 (4) 310 (54)
24576 | 418 (6) 515 (142)

These tables show the latency of file access in milliseconds as a function of file size for MFS
and Andrew. The test conditions are the same as in Table 5.2. The MFS transfer block size
was 8 kilobytes; no more than 8 kilobytes will be transferred regardless of file size. Andrew
always transfers the whole file. Figures in parentheses are standard deviations.

Table 5.3: File Access Latency by File Size for MFS

both systems up to the MFS transfer block size (8 kilobytes in this test). For larger
files, the access latency is independent of file size for MFS, but continues to grow
under Andrew. Andrew transfers the entire file when it is opened, with a large
delay before the application is allowed to continue. In MFS, only the requested
blocks are transferred, with a one block read-ahead. The effect is to transfer the
entire file on the first access for all files less than 16 kilobytes, but to permit the
application to continue as soon as the first block is available.

Server CPU Utilization (%) by Load (active clients)

1 2 5 8 10 15
file server | 4.0 (0.6) | 6.6 (1.6) | 7.1 (0.2) | 10.4 (0.5) | 11.2 (0.9) | 16.1 (0.4)

token server | 0.6 (0.0) | 1.2 (0.0) } 3.1 (0.1) | 4.9(0.1) | 6.0 (0.0) | 9.3(0.2)

This table shows the server CPU utilization during the benchmark for various MFS loads.
Two figures are given; one is the CPU load on the file server, the other is the CPU load on
the token server. The figures in parentheses are standard deviations. The test conditions
are given in Table 5.1.

Table 5.4: MFS Server Load during Benchmark

Table 5.4 shows the mean percentage of the CPU taken by the MFS file server
and token server during the benchmark for various loads. The table shows that
the average CPU load on the servers is low, even with 15 active clients. However,
the experience with DID in Chapter 3 shows that mean load values are some-
times misleading, so more detailed loads were measured during a single run of the
benchmark with 15 clients. The results are shown in Figure 5.3.

The graphs show the disc throughput in kilobytes per second, the number of
RPCs to the file server and token server per second and the server CPU utilization
averaged over each minute of the benchmark. The times for the various phases to
run are also shown.

Unfortunately, disc utilization figures could not be obtained with standard
utilities, and since source code for the file server operating system was not available,
it was not possible to add the required instrumentation. Rough tests showed that
the disc is able to transfer about 150 kilobytes a second when copying files between

76 CHAPTER 5. BEHAVIOUR AND PERFORMANCE

133 s
120 - G
wi{ EECE S v
Server Disc 80 - __’) 3
Throughput 60 | ; ; .
(KBytes/s) H . ;
40 :
2g -": T disc throughput
21 ; :.
15 ; I .
Calls per - Y L
second 10 | ; : a
to servers R T 0. 000,
5 1 N O e 3 o file server
.°.... e * o .o-..,_ . . ~o...
0 J ..-.'..-*' L "'*--o--t--.'.'o'.:-‘-on'"*"--»....:o
MakeDir ScanDir+ReadAll token server
«—— Copy Make ——
26 ; K}
Server CPU 20 1 ® * . T et ® file sel'-x:af CPU
Utilization R g° N . o ‘. .
(percent) 10 1 R e
Lol v R "ty .- < token server CPU
0 D i e T i
0 250 500 750 1000

Time from start of benchmark (seconds)

The uppermost graph shows the variation of server disc throughput during one run of the
benchmark with 15 clients running MFS. The middle graph shows the number of calls per
second made to the token server and file server. The lowest graph shows the variation of file
server and token server CPU utilization for the same run. All values are averaged over 60
second intervals.

The clients were all MicroVAX-IIs, as was the token server. The file server was a Sun-3/160
with a low-performance 70 megabyte winchester disc.

Figure 5.3: Server throughput and CPU utilization during benchmark for MFS

5.2. PERFORMANCE 77

two local directories. There are likely to be more seeks when 15 machines are
running the benchmark, so it is probable that the disc is saturated during the
Copy phase. The higher peak during the Make phase corresponds to the writing
of a few large files, which will involve fewer seeks per block transferred.

The disc throughput rises to a plateau during the Copy phase of the benchmark,
and remains high for about three minutes after the Copy phase, even though the
next two phases do not access the file server at all. This indicates that the delayed
write system has spread the write traffic over a period of a few minutes, even
though each client has a nominal write-back delay of only 30 seconds. Applications
are able to force data to be written synchronously, but this facility is rarely invoked.
Excessive delay in normal use could affect file system robustness in the face of client
crashes if the cache is volatile. It is likely that the delay is due to the saturation
of the file server disc. The clients seem able to overload the server even though
only one cache manager thread is responsible for delayed writes. The application
times are never seriously affected by the actions of the write-back thread. The
CPU utilization of the client cache manager was measured to be 30 seconds for
each run of the benchmark, which corresponds to about 4% averaged over the run.
Lock conflicts between the application and the write-back thread seem to be rare.

If the backlog of write requests is due to disc saturation, this could be alleviated
by faster discs and controllers, such as those used by the Andrew server. As with
DID, the throughput of the file server could be improved by writing new data to
a log, rather than over existing blocks. The reimplementation of the Cedar File
System [Hagmann 87] has shown that even logging only file status and naming
information can significantly improve local file system performance. Distributed
file systems with effective client caches will naturally generate more write traffic
than read traffic, so logging may become an increasingly important technique in
file server design.

The middle graph shows the number of calls made to the file server and the
token server during the benchmark. The number of calls to the file server is fairly
high during the Copy phase, probably due to the large number of RPCs needed to
read each file. Additionally, at least three calls are needed to write each new file,
and this number could certainly be reduced by redesigning the file server interface.
Even so, the number of calls is quite low, amounting to less than 30 per second to
both servers during the busiest minute.

The CPU utilization figures for the file server and the token server are shown
in the lowest graph. The CPU utilization of the token server is high during the
early part of the benchmark, but drops as the benchmark progresses, even though
the number of calls peaks after about 150 seconds. The high CPU utilization
at the start of the run is surprising, but is probably due to memory allocation,
and forking new threads. The token server is careful to reuse old data structures
and threads for later RPCs to avoid the overhead of thread creation and memory
allocation. The file server CPU utilization reaches a peak of 26% and is never
close to saturation. The combined utilization on both servers is still well below
50% at all times, and even lower if the CPU power of the MicroVAX token server
is scaled down to that of the Sun-3 file server.

78 CHAPTER 5. BEHAVIOUR AND PERFORMANCE

5.3 Summary

MFS conforms well to the semantics of the UNIX file system. The prototype
has difficulties with file timestamps, but there are easy solutions to most of the
problems. The UNIX system call interface imposes various unexpected constraints
on the file system. In particular, the need to return all file status information in one
call, even though only one or two of the values are required causes some difficulty,
since not all the information can be readily cached.

The granularity of sharing in MFS is the same as the local UNIX file sys-
tem, even though the system has been tuned to work with large block sizes and
sequential, non-shared file accesses.

The performance of MFS is comparable to that of Andrew when reading files
from the file server, in spite of inefficiencies imposed by the NF'S file server inter-
face. The delay in accessing a file for the first time can be reduced by a factor
between 2 and 3 by redesigning the file server interface, and combining it with
the token server. Partial file transfer is important in limiting the latency imposed
on each file transfer from the server, particularly when the file size grows beyond
several tens of kilobytes.

When accessing cached files, MFS performs as well as a local file system, and
benefits from the UNIX buffer cache. NFS and Andrew, which context switch to
a user process whenever they access a new file, are significantly slower in this case.

The delayed write policy in MFS is effective in spreading bursts of file system
updates over a longer period, and in reducing the amount of data written. During
extended periods of heavy file server load it may be necessary to delay application
programmes in order to avoid a backlog of write requests. File servers based on
logging techniques may be needed to increase the throughput required by large
numbers of clients with large file caches, since the majority of file server requests
are writes.

The prototype has shown that the MFS design is practical, efficient, scales well
as the number of clients increases, and preserves the semantics of the underlying
operating system. Its performance in normal use is comparable with and often
exceeds that of existing file systems which do not achieve all of these goals. The
implementation can be improved in a number of ways which will increase the
performance still further.

Chapter 6

Comparison with Related Work

This chapter compares MFS with existing distributed file systems.

6.1 Introduction

Distributed file systems are an important aspect of distributed systems as a whole.
Consequently, there are many existing file system designs and implementations. I
present a cross section of these, concentrating on those that allow a large amount
of client caching.

The file systems compared in this chapter are:

® The Demand-Initialized Disc system (DID).
o The Cedar file system (CFS).
e Sun’s Network File System (NFS).

Apollo’s Domain system.

The Andrew file system.

The Rochester file system (Roe).

e The Sprite network file system.

The LOCUS file system.
DEC’s VAXcluster.

o AT&T’s Remote File Sharing (RFS).

Table 6.1 shows some of the properties of the caching mechanisms of these file
systems. The remaining sections of this chapter describe each of these systems in
turn, comparing them with MFS, which was described in Chapters 4 and 5.

79

80 CHAPTER 6. COMPARISON WITH RELATED WORK

System Consistency Write- Cache Write- | Non-volatile | Access in
Algorithm sharing Unit back Cache Partition
DID no none disc block | delayed no yes
write-sharing writes
Andrew | server callback | sequential | whole file | on close yes yes
on modification
RFS validate on open, | sequential, | file block | write- no no
disable caching | concurrent through
when necessary
Sprite | validate on open, | sequential, | file block delayed, no no
disable caching | concurrent callback
MFS token passing, sequential | file block | delayed, | potentially yes
callbacks concurrent callback
NFS check every few none file block | delayed, no no
seconds on close
CFS immutable files none whole file user yes yes
control
Domain | validate on read, | sequential | file block delayed, no no
file locks unlock
VAX distributed lock | sequential, | file block | write- no no
cluster manager concurrent through
LOCUS | validate on open, | sequential, | file block delayed, no yes
token passing concurrent callback
Roe full replicas, sequential | whole file | write- yes yes
weighted voting through

Table 6.1: Comparison of File Systems

The table characterizes caching file systems in several ways:

o the means by which the file system achieves consistency across multiple ma-
chines;

 how well the system deals with mutable shared files; (The terms sequential
and concurrent write-sharing are defined in Section 1.2,)

o the unit of caching; some systems cache whole files, some partial files, while
in others the caching is organized by disc block, rather than by file;

¢ when dirty data is written back to the file server;
e whether the cache data is lost during a client crash;

o whether the cache data is useful during network partition or server failure.

6.2 Demand-Initialized Discs

The Demand-Initialized Disc (DID) system [Burrows 85) is unlike any of the other
file systems mentioned in that it deals with disc blocks and pays no attention to
files. DID concurrency control operates at the level of the volume—write-sharing
on individual files is simply prohibited. This is the case because the client operating

6.3. THE CEDAR FILE SYSTEM 81

systems treat each volume as if it were alocal disc. Each machine requires exclusive
access to the disc when performing operations such as disc block allocation. The
file servers ensure that each volume is available to only one client at any time, or
is read-only to all clients.

Typically, each user has his own volume that is mounted on the machine he
is currently using. Though simple and quite efficient, DID can be annoying to
use because of the lack of write-sharing. Experience with a system of this type
quickly shows that, although it can be used effectively, it is no substitute for a
caching system that works at the file level rather than the disc block level. MFS
allows sharing of mutable files down to the granularity of a single byte, and a
single read or write system call, and so avoids the problems caused by the lack of
write-sharing,

DID attempts to do a great deal of caching—a 40 megabyte cache is typical.
The use of delayed writes and a large cache means that a DID client can often
tolerate server reboots without users noticing any delays. Caches can safely be
used during network partitions because write-sharing of files is impossible. With
a cache of this size, data is usually read only once from a file server, so most
file server traffic consists of writes of dirty data. Once a machine has cached
most of the data needed for a particular session, it operates at speeds close to
those observed on machines accessing only their local disc. Many users are only
aware of the remote nature of the file system because of its restrictive sharing
properties. The main effect on performance is the reduced speed observed just
after a machine has rebooted, and to a lesser extent, after a user has just logged
on. It seems reasonable that such effects will be observed by users of systems with
large caches. MFS also makes use of large caches and delayed writes to protect the
users from the delays associated with file server reboots. Cache sizes are similar,
and so once again, files are rarely read more than once. Caching of partial files
permits prefetching in the same way.

6.3 The Cedar File System

In the Cedar File System (CFS) [Schroeder 85), the cache consistency problem is
eliminated for data by forcing all files to be immutable. Files are cached in their
entirety and are typically read from the file server and written back under the
explicit control of the user with a powerful version control system [Schmidt 82
intended to co-ordinate shared access to packages and groups of files. The use of
immutable files means that the cache is useful even during network partitions. CFS
is unusual amongst the distributed file systems described here in that its stylized
use does not require mutable files. It would not be suitable for many existing
applications and operating systems, which expect the more traditional type of file
system found on most timesharing systems. It is difficult to compare CFS with
MFS, because they address quite different problems. CFS is not able to support the
write-sharing semantics offered by MFS, or support any kind of mutable file. MFS
can offer the services provided by CFS, but at greater cost, since it would continue

82 CHAPTER 6. COMPARISON WITH RELATED WORK

to record consistency information about all files. CFS uses immutability to provide
well understood semantics at low cost in terms of complexity, computation and
communication. The implementors of CFS felt that it was better to optimize
their file system for one particular purpose, and build other systems (e.g Alpine
[Brown 85]), to handle the different problems of databases, MFS is an attempt to
provide a more general purpose file system at reasonable cost.

6.4 Sun’s Network File System

Sun’s Network File System (NFS) [Sandberg 85] is a simple commercial file system.
Though relatively unsophisticated, it has become popular with vendors of UNIX
machines. Unfortunately, the protocol specification document [SUN 86a] discusses
only the server RPC interfaces, and does not mention the conditions under which
these routines are called. It is therefore unclear what guarantees the system makes
about the consistency of the client caches.

In most NFS implementations, data is used directly from the cache if it has
been validated within some time period, usually a few seconds. Cached data that
is older than this can be refreshed by checking the file modification time at the
server. This could be done periodically for all data in the cache, but typically it is
done on demand, when the data is required by a client application. There are two
reasons why NFS implementations do not attempt to revalidate the entire cache
periodically:

¢ Client caches are typically small (less than a megabyte), which makes hits
on old data less likely.

e The protocol allows only one cached file to be validated per RPC, so vali-
dating an entire cache would require many network accesses.

Dirty data may be flushed back to the file server at any time, and clients
often write data back at different times depending on context. Typically, direc-
tory modifications are written back immediately, while modifications to files are
written back when the file is closed, or after a few tens of seconds, whichever is
the sooner. The resulting consistency guarantees are not particularly good, but
inconsistencies are rarely observed in normal use. Concurrent write-sharing has
no well defined effect, but sequential write-sharing usually works, failing only in
cases where data is read on another machine less than a few seconds after it was
written. This is usually not a problem, but it can cause difficulties with applica-
tions such as distributed compilers. These effects can be lessened by shortening
timeouts, but this has the side effect of increasing network utilization and delaying
file accesses that would otherwise have been satisfied from the cache immediately.
As an increasing number of users have more than one machine at their disposal,
this problem will become more and more significant. At the present time only a
handful of users of NFS machines in this department have complained about the
inconsistencies, though I expect this number to increase as distributed compilation
and other applications become more commonplace.

6.5. LOCUS 83

NFS was designed with stateless servers on the grounds that this simplifies
crash recovery. While this is true, it has crippled NFS’s ability to maintain a con-
sistent view of the file system with reasonable efficiency. There is no possibility of
using callbacks to inform clients when file data changes, nor even to place locks
on files to warn clients that a file is being updated. Additionally, it has made
it impossible to permit concurrent write-sharing, which is needed for the efficient
implementation of log files and databases. Also, separate (‘stateful’) services must
be built to implement the file locking required by many clients. In contrast, MFS
servers maintain a considerable amount of state to keep track of client cache sta-
tus and thus minimize network utilization. The problems of crash recovery are
real, but can be solved. MFS has shown that keeping track of server state is not
a tremendous burden on the file server, particularly given that the overall effect
is to dramatically lessen server load. The complexity of efficient recovery proce-
dures must be weighed against lower performance, lack of scalability and weak
consistency guarantees,

6.5 LOCUS

The file system of LOCUS [Walker 83] makes only moderate use of client file
caching. LOCUS concentrates far more on the use of replication to increase file
availability and performance. Remote files are accessed via a current synchro-
nization site (CSS) that co-ordinates updates amongst the replicated storage sites
and the clients. When a file is opened, its CSS is always contacted, and it is the
CSS that controls a token passing mechanism that enforces single writer, multiple
reader synchronization for file updates. Client machines hold tokens only while
the file is open, and do not cache remote data when the file is closed. Dirty data
is written back to storage sites immediately, and the token passing scheme allows
other clients to determine when they can read new data. The consistency prop-
erties of this approach are good, but the CSS is an obvious bottleneck in a large
scale implementation, since it is contacted each time the file is opened, rather than
on the first open. The issues involved in replicating files are largely independent
of caching mechanisms, so it seems likely that LOCUS could achieve higher per-
formance and better scalability using a distributed file cache of the kind used in
MFS.

LOCUS already allows and detects conflicting updates in a partitioned network,
and a client may read a file if at least one storage site of that file can be contacted.
MF'S has not tackled the problem of replicated file servers, but it potentially allows
each machine to read and write its cache while disconnected from the server. The
present implementation of MFS has no well defined conflict resolution algorithm,
and makes no guarantee that particular files will be available, as LOCUS does.
This loose approach is useful for some applications during temporary server failure,
but would be unacceptable if a server was unavailable for an extended period. In
such cases, clients could either refuse to operate with possibly invalid data, or they
could use application specific conflict resolution algorithms.

84 CHAPTER 6. COMPARISON WITH RELATED WORK

6.6 Apollo Domain

The Apollo Domain system [Leach 83] [Leach 84] uses a file system that is strongly
coupled to the virtual memory system. Each object (file) in the Domain system
consists of a series of pages on the object’s home machine, which may be mapped
into a process’ address space on any machine in the network. Pages may then be
read and written by accessing those areas of memory.

In contrast to Li’s network virtual memory system [Li 86], Domain does not
guarantee consistency across multiple machines. Instead, sufficient infrastructure
is provided for clients to detect inconsistency when it occurs. Each object has
a timestamp containing the time of its last modification at the home machine.
Whenever a page is read from the home machine, the current ob ject timestamp is
also given to the client, which can then check that the timestamp has not changed
since the previous read from the same object. In this way, a machine that wishes to
read a single consistent copy of a file can detect writes that have been interleaved
with its read requests. A similar scheme is used when pages are written back
to an object; each dirty page is accompanied by the timestamp of the object to
be updated. If the timestamp matches the object’s current timestamp, the write
proceeds and the new timestamp is returned. Otherwise, the write fails, indicating
that the object was updated since the client last read a page from it. This scheme
requires that each client read at least one page of an object before commencing to
write the object. Also, it is tuned for a style of access that is typical of programme
development using small files. Database access is fairly inefficient; there is only
one timestamp per object, rather than one per page, which effectively prohibits
the partial caching of shared, mutable files.

In addition to the concurrency control primitives described above, the Domain
system provides locking primitives on objects, which may be used to ensure con-
sistency. The designers have taken the view that most applications do not require
locking, so these primitives are directly invoked by individual applications such
as editors. Once again, the emphasis is on programme development and similar
applications, since the locking primitives lock entire objects at a time, rather than
individual pages.

The Domain system assumes that write-sharing of files is rare and does not
provide consistency by default on the grounds of efficiency. It provides primi-
tives that can be used to guarantee consistency for those few applications that
require it, and to detect inconsistency for those applications that wish to generate
an error message when it occurs. MFS takes the view that consistency can be
guaranteed without great expense, and provides it by default. This allows appli-
cation writers great freedom in choosing programme synchronization primitives.
Any communications channel can be used for synchronization—it does not need
to have side-effects on the file system. Unlike Domain, MFS allows partial file
caching of files even in the presence of concurrent write-sharing. MFS is likely
to be more efficient for implementing log files and low-performance databases,
provided conflicts for blocks within the databases are rare.

6.7. THE ROE FILE SYSTEM 85

6.7 The Roe File System

Roe [Ellis 83] uses the weighted voting algorithms described by Gifford (Gifford 79]
to maintain many replicas of a file. Operations on files are enclosed in implicit
transactions that update the number of copies of a file necessary for a quorum,
The emphasis of Roe is on consistency of the file system, and this is traded against
performance and availability in several ways.

Client caching is implemented by storing a full replica of a file on the client’s
local disc. From this point onwards, the client participates in the voting taking
place between the replicas in the normal way. Since the local copy is guaranteed
to be accessible to the client, the client will always read from the local copy
immediately if the read quorum is one. Unfortunately, a read quorum of one
implies that all copies must be available for update, which often will not be the
case. In any case, we can be sure that at least one of the read and write quorums
for a file will be greater than one. Therefore, we can be sure that clients will
require synchronous contact with remote servers either when opening for read or
when opening for write. Since all updates to multiple machines pass through the
current transaction manager site, this machine is likely to become heavily loaded
as the system size is increased. Even for system files, large scale client caching is
not attractive because the number of replicas of the cached files would increase
dramatically, and (assuming the read quorum was kept at one) this could lower
the availability of the file for writing to nearly zero.

The Roe design is interesting, but it has features which prevent efficient, large
scale caching of files. It can support high availability by replication, but it appears
that the caching system of MFS can be used alongside such a system to provide
the benefits of both. Roe provides good consistency guarantees at the expense of
heavyweight transactions across replicas. MFS provides clients with the option of
good consistency guarantees in the presence of crashes, or high availability in the
presence of partition at the cost of consistency.

6.8 The Andrew File System

Of the systems described in this chapter, the Andrew file system [Howard 88] is
the one most like MFS in its techniques for caching. The following list identifies
the similarities between the two systems:

o File servers keep track of the files cached by clients and inform clients of file
modifications.

o Clients can open and use cached information without contacting the server.
o The cache is held on disc and survives crashes.

e The cache is controlled by a user-space process that intercepts UNIX system
calls.

86 CHAPTER 6. COMPARISON WITH RELATED WORK
Nevertheless, there are also several differences between the two:

o Andrew caches only whole files; MFS allows partial file caching.

¢ Andrew writes changes back to file servers on file close; MFS uses delayed
writes and callbacks to control write-back.

¢ Andrew does not support concurrent write-sharing.

¢ Andrew client caches cannot hold dirty data during network partitions, since
file close is synchronous at the file server.

¢ Andrew intercepts only open and close calls; MFS intercepts all reads and
writes.

e Andrew intercepts system calls even when accessing cached files, causing
extra context switches.

Andrew is tailored to a teaching environment, and works well within that envi-
ronment. It demonstrates good scaling properties and fair performance. Compar-
ison with the prototype Andrew system [Howard 88] [Satyanarayanan 85] demon-
strates that server callbacks can provide scalability and performance that is supe-
rior to systems that contact file servers on each open.

The disadvantages of caching whole files are not noticeable while files remain
small, but become apparent when file sizes increase beyond a few tens of kilo-
bytes. The first observed effect is the latency in reading remote files, since the
whole file is fetched before the application can see any of the data. Partial file
caching with prefetching has some small overhead in software complexity, but can
increase effective performance dramatically for large files. MFS is currently unable
to demand page executables into its cache as they are executed, but this would
be possible with changes to the virtual memory system of the UNIX kernel. The
importance of such measures should not be underestimated, since they can have
great effects on the startup times for large interactive programmes. Many pro-
grammes now have executable images measured in megabytes, and even popular
editors can be as large as 0.7 megabytes. Systems such as NFS read files at about
0.2 megabytes per second (measured between two unloaded Sun-3 machines on a
single 10 megabit/s Ethernet). Even the most efficient file transport mechanisms
will not achieve speeds exceeding this by more than a small factor, assuming the
current generation of popular 10 megabit/s networks. These figures indicate that
large programmes will necessarily experience a noticeable startup delay in a system
that cannot partially cache executable files. Many large programmes use compar-
atively few pages during their startup sequences, and this property can be used
to reduce startup delay to a more reasonable amount. Although we can expect
faster networks, faster network interfaces and faster CPUs, it seems likely that
these problems will continue to be noticeable for some years to come.

6.8. THE ANDREW FILE SYSTEM 87

In addition to the delay of fetching large files, whole file caching has the dis-
advantage of limiting the total size of every file in the system to the size of the
smallest cache of any machine in the system. (An alternative, but equally dis-
tasteful view of this problem is that some machines are unable to read large files).
Of course, users can split their files into smaller units to avoid the problem, but
this is a rather unattractive solution.

Andrew writes all dirty data back to file servers on close. This permits sequen-
tial write-sharing to take place and improves the robustness of the file system in
the case of client failure. It has the side effect of generating unnecessary file server
traffic by writing back temporary files that are about to be deleted. This effect has
been reduced substantially in Andrew by using temporary file directories that are
local to each client. This has the disadvantage that different parts of the file system
behave in different ways as far as the user is concerned. Moreover, routine sharing
of temporary files is made more complicated. Delaying writes by 30 seconds can
reduce writes to the file server by a quarter [Ousterhout 85]. The corresponding
loss in robustness is no worse than that already tolerated by UNIX users, whose
writes are already delayed by 30 seconds in the UNIX buffer cache. Of course,
applications that require additional guarantees can make explicit system calls to
ensure that data is written to non-volatile storage.

By not supporting concurrent write-sharing, Andrew prevents the use of log
files and databases. These services must be provided by other, independent services
which will be separate from the file system and, unless work is done to integrate
them, accessed in a different way. Moreover, this may reduce the ease with which
certain applications can be ported from a non-distributed environment. Even in an
environment where concurrent write-sharing is used infrequently by applications,
its omission can complicate process migration in operating systems that support
it, since the migration procedure must ensure the consistency of the file system
between the source and target machines at an arbitrary point in the running of
the process.

Since Andrew contacts the file server each time a modified file is closed, it is
harder to shield the user from brief periods of file server down time, even though
data can be read from the cache during such periods. MFS permits the user to
continue writing to its local cache without contacting the file server, if the user is
prepared to tolerate the uncertainty associated with this option. In cases where
client crashes are relatively rare and conflict over updates is unlikely, this will
provide a noticeably better service when contact has been lost with the file server.
A better way to solve this problem is by means of file replication, but this cannot
help the situation where the client is connected to the rest of the network by an
unreliable gateway prone to short periods of down-time or congestion.

Andrew, then, is specifically aimed at the teaching environment, and, while it
is well suited to that environment, its design prevents its use in a more general
setting, where databases, log files, fine-grain file sharing or process migration are
commonplace. MFS overcomes these problems at the expense of additional file
server state, but the amount of additional state is minimal when these facilities
are not being used.

88 CHAPTER 6. COMPARISON WITH RELATED WORK

6.9 The Sprite File System

The Sprite file system [Nelson 88] is similar to MFS in that it provides strong con-
sistency guarantees, even in the presence of concurrent write-sharing. Its strategy
for achieving this is quite different however. The most important difference is that
Sprite clients always contact the file server on open, even if the file already resides
in the client cache.

Sprite’s strategy is as follows. On each open, the client contacts the server and
informs the server of its intent to read, write or both. The server keeps track of
which clients have the file open at any time, so it is able to detect the case when
concurrent write-sharing is possible. If the server finds that the file will be open
by multiple clients and written by at least one of them, it disables all caching
for that file, forcing the clients to perform all reads and writes synchronously at
the file server. If necessary, the server instructs each client to flush dirty data
and discard data cached from the file. Once the file has entered this mode, it
remains uncached until the file is no longer open anywhere. This last condition is
used simply because it is easier for the server to detect than the condition that
concurrent write-sharing is no longer taking place.

In addition to disabling caching on detecting concurrent write-sharing, the
server allows sequential write-sharing by keeping a version number for each file, in
a similar way to the Domain system. On each open, the client obtains the current
version number of the file and compares it with its cached version number. If
there is a mismatch, the client discards all cached information associated with the
file. In order to enable delayed writing of data to files, the server remembers the
last client to open the file for writing, and instructs that client to flush dirty data
before further opens are permitted.

The performance measurements for Sprite are impressive, but this is partly
due to the way it has been implemented, rather than the caching algorithms used:

e Sprite’s file system is implemented entirely in kernel-space, which reduces
the number of context switches necessary.

® The operating system and file system were developed together, and can be
expected to be well integrated with one another.

o Sprite uses a fast communications mechanism as one of its basic primitives,
which reduces the overhead of multiple calls to a single server.

A similar implementation of MFS, or the other systems being considered, would
result in performance improvements that would make comparison easier.

The protocols used in Sprite rely on the file server being contacted at each
open of a file. This indicates that Sprite is unlikely to scale as well as MFS
or Andrew, and the figures given by Nelson support this. The cache validation
strategies allow a reasonable amount of caching, but there are a number of features
which limit the extent to which caching can be used. In particular, caching is
entirely disabled during concurrent write-sharing. Although this is a relatively rare
occurrence in many environments, this feature of the file system may discourage

6.10. REMOTE FILE SHARING 89

the use of concurrent write-sharing because of the performance penalty. Even
during sequential file sharing, Sprite fails to retain cached information about parts
of files that were not updated, because its version mechanism treats the whole file
as a single entity. This would tend to penalize operations such as examining large
log files, since one update would cause any cached information to be lost. MFS
allows partial file caching in both of these situations, and so can provide a useful
performance improvement for applications involving large databases or append-
only files, at the cost of some extra complexity in the file server. If individual blocks
of a file were heavily write-shared by a database application, the performance of
Sprite would exceed that of MFS, since Sprite avoids token passing.

6.10 Remote File Sharing

AT&T’s Remote File Sharing (RFS) [Bach 87] is remarkably similar to the Sprite
file system. Both systems contact the file server on open, maintain file version
numbers to determine when cached data is invalid, and disable caching whenever
concurrent write-sharing is taking place. The most significant difference is that
RFS never caches dirty data; instead, all modifications are written through to the
file server. This strategy improves the robustness of the system, at the expense
of writing some fraction of data that would otherwise have been deleted without
ever going to disc. The write-through strategy is hard to justify on the grounds of
robustness, since RFS is used with systems that typically delay local disc writes
by 30 seconds.

A less important difference is the algorithm used for disabling and re-enabling
caching. Sprite disables caching as soon as conflicting opens are detected, but RFS
disables caching only when the first write operation is performed. RFS re-enables
caching when the writing process closes the file, or when there have been no writes
for some period. Sprite takes the simple approach of disabling writes until the file
is no longer open by any process.

6.11 VAXclusters

Digital’s VAXcluster' uses a distributed lock manager to maintain consistency
across its file caches. [Kronenberg 87] [Snaman 87] [Goldstein 87] VAXclusters
consist of a small number (typically two or three) of similar machines, connected by
a fast, purpose built network.? The machines in the cluster co-operate to provide a
single distributed operating system, each allowing all the members of the cluster to
access its discs. Every machine in a cluster trusts every other machine to perform
access checks in the same way, which makes some aspects of the design slightly
simpler than they would have been in a more general distributed system.

1The description given here applies to major release 4 of the VMS operating system.
%In fact, some clusters are connected via Ethernet.

90 CHAPTER 6. COMPARISON WITH RELATED WORK

The distributed lock manager is a very powerful, general-purpose locking sys-
tem. Locks may have a number of states, ranging from unlocked to an exclusive
lock. They have textual names, which may be structured hierarchically to provide
trees of locks, also known as resource trees. As well as non-blocking error returns,
the lock manager can provide callbacks to clients, either when a lock is released,
or when a conflicting lock is requested. Each lock also has an associated value
block, which can be used to store version numbers. The system is distributed
and fault tolerant—when a machine enters or leaves the cluster, a reconfiguration
takes place in which each machine reclaims the locks it had before the event. Each
machine is trusted by the others, so there is no question of fraud when locks are
reclaimed.

The first machine to lock any part of a resource tree after a reconfiguration
becomes the manager of the resource. This machine maintains a fixed size data
structure for the each sublock in the tree until no more locks are held, or another
reconfiguration takes place. There is a special lock state, no lock, which does not
conflict with any other state, but maintains an interest in the lock and ensures that
its data structure is not deleted. When a machine first wants to lock a resource, it
first hashes the name of the resource to find the directory node for that resource.
This machine holds the name of the current manager of the resource. Once a
machine has locked some part of a resource tree, it can cache the name of the
resource manager and so is able to lock other parts of the tree without contacting
the directory node.

The file system locking structure is very complicated; most operations require
several different file system structures to be cached and locked. Directories, quota
files, free space bitmaps and file headers are all treated specially, but data blocks
are handled by a simple mechanism. Disc blocks are organized into groups, each of
which is protected by a single lock, with a version number in its value block. When-
ever an exclusive lock is obtained, indicating that the blocks are to be updated, the
version number is incremented. When a lock is obtained for reading, the version
number is compared with the cached version number to see if the blocks have been
updated since they were last read. If so, cached blocks are deleted. When data
is not being accessed, but is still in a machine’s cache, the lock is set back to no
lock state to ensure that the version number in the value block is maintained. The
lock can be deleted entirely when all the file’s blocks have been removed from all
caches. No callbacks are used for the file data cache in the current version of the
VAXcluster software, even though the lock manager supports them. This forces
the caches to be used in a write-through mode, which lowers performance slightly.

Normally, a machine that accesses a file will become the resource manager for
the file. However, if the file is shared, there is some chance that some of its blocks
may still be cached on another machine. If cache sizes are large, and one access
occurs soon after another, the management of a resource is not transferred to
the machine accessing the resource. This forces machines to use the remote lock
manager, even if there are no further shared accesses to the file.

A more severe problem is that of concurrent sharing. In this case, each access
requires contact with the resource manager, even when no writing is taking place.

6.12. OTHER WORK 91

It may be possible to avoid this problem by accessing files under arbitration locks
that preclude write-sharing; unfortunately it is not clear that these arbitration
locks interact with the cache consistency mechanism in a way that achieves this.
In any case, it is undesirable to apply over-restrictive locking policies in order to
achieve consistency.

VAXclusters are more tightly coupled than a distributed system using MFS.
VAXcluster algorithms work well for a small number of machines and styles of use
encouraged by the VMS operating system, but are likely to perform less well if the
cache sizes, cluster sizes or number of distributed applications increase dramati-
cally. MFS reduces communication in such situations by greater use of callbacks
than the current version of the VAXcluster file system.

6.12 Other Work

Techniques similar to those used in MFS are the subject of distributed file sys-
tem research at the Digital Equipment Corporation Systems Research Center
[Mann 88]. The aims of this project are to provide a high degree of caching,
high file availability and reasonable consistency semantics.

Other distributed file systems exist, but pay little attention to client caching, or
are similar to those already discussed. Among them are the Newcastle Connection
[Brownbridge 82], WFS [Swinehart 79] and the Cambridge File Server [Birrell 80],
which can be used via a separate cache server, known as the Tripos Filing Machine
[Needham 82], but has no client caching. The caching mechanism in Hewlett-
Packard’s DUX system [Hwang 87 is similar to that of Sprite and RFS.

6.13 Summary

The literature contains a wide range of file system designs, with many policies for
allowing client caching. There are many schemes for maintaining cache consistency
across machines:

e preventing write-sharing (DID);

¢ immutable files (CFS);

e version number checking (Sprite, RFS, Domain, VAXclusters);
¢ locking (Domain, LOCUS, VAXclusters);

o disabling caching during sharing (Sprite, RFS);

e callbacks on modifications (Andrew, MFS);

o callbacks to flush dirty data (Sprite, RFS, MFS);

¢ approximate solutions (NFS);

92

CHAPTER 6. COMPARISON WITH RELATED WORK

weighted voting and transactions (Roe).

The technique employed in MF$S requires more server state than the other
systems described, but is the only system to exhibit all of the following properties:

low server utilization and good scaling (CFS, Andrew, MFS);

sequential and concurrent write-sharing (Sprite, RFS, VAXclusters, LOCUS,
MFS);

partial file caching (DID, NFS, Sprite, RFS, VAXclusters, LOCUS, Domain,
MFS);

partial file cache invalidation (VAXclusters, MFS);
cache potentially useful during server failure (DID, CFS, Andrew, MFS).

In situations where these properties are useful, the additional complexity of
storing and manipulating additional server state seems to be worthwhile. MFS
therefore seems to have good properties for use as a general purpose file system,
and to differ from other existing file system designs in several fundamental ways.

Chapter 7

Conclusion

This dissertation has presented a design for a distributed file system with client
caching. This chapter summarizes the main conclusions, and suggests possible
further work.

7.1 Summary

Most existing distributed file systems fail to provide efficient solutions to the prob-
lems of shared, writable data, under the assumption that it is too costly. Although
rare in the programme development and teaching environments, there are exam-
ples of shared, writable data, and they are likely to become more common, unless
write-sharing is discouraged by file system implementations.

Large client caches can improve the performance of a distributed file system
until it approaches that of a local file system. They can eliminate file server
accesses for most read requests and a significant number of write requests. The
result of effective client caching is that most requests received by file servers are
write requests. Clients can reduce the amount of write traffic by delaying writes
of new data in the hope that it will be deleted soon before it is written to the file
server. File server interfaces should be designed to minimize the number of calls
needed for each file access, and should be optimized for writing, possibly by using
logging or fast non-volatile storage to reduce the number of disc seeks and increase
overall throughput.

The file system presented in preceding chapters exhibits reasonable perfor-
mance and good scaling characteristics, while preserving cache consistency for
individual reads and writes of a single byte. The MFS prototype has shown that
neither performance nor functionality need be sacrificed in building a distributed
file system. '

7.2 Further Work

The system described in Chapter 4 and Chapter 5 is a prototype. Although
the measurements taken under artificial loads are encouraging, experience with

93

94 CHAPTER 7. CONCLUSION
actual use is needed to identify where the system could be improved. A second
implementation could benefit from:

e integration of the token server and file server;

e an improved file server interface;

o improved file server performance for writing files;

closer integration of the client cache manager and the local file system;

modifications to the programming interface to avoid the problems of fetching
file status information unnecessarily;

e heuristics for prefetching data before it is referenced, such as prefetching all
the files in a directory that has been listed.

Current work in the Computer Laboratory includes an investigation of better
file server interfaces, and of techniques for improving the performance of file servers
such as non-volatile memory and logging.

Although MFS supports the notion of accessing cached files when the file server
cannot be contacted, further experimentation is needed to develop algorithms for
prefetching essential files. In addition, techniques developed in other systems
for resolving update conflicts must be integrated with the caching system if this
mechanism is to be made reliable.

References

The pages on which each reference is cited are listed in parentheses after the

reference.

[Archibald 84]

[Archibald 86]

[Babaoglu 81]

(Bach 87)

[Barbara 86)

[Birrell 80]

[Braunstein 88]

[Brown 85]

J. Archibald and J.-L. Baer. An Economical Solution to the
Cache Coherence Problem. In Proceedings of the 11th Inter-

national Symposium on Computer Architecture, pages 355-
362, IEEE, 1984. (38)

J. Archibald and J.-L. Baer. Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model. ACM
Transactions on Computer Systems, 4(4):273-298, November
1986. (38)

O. Babaoglu and W. Joy. Converting a Swap-Based System
to do Paging in an Architecture Lacking Page-Referenced
Bits. In Proceedings of the §th ACM Symposium on Operat-
ing Systems Principles, pages 78-86, December 1981. (61)

M.J. Bach, M.-W. Luppi, A.S. Melamed, and K. Yueh.
A Remote File Cache for RFS. In Proceedings of the
USENIX Summer 1987 Conference, pages 275-280, June
1987. (xiv, 5, 32, 89)

D. Barbara, H. Garcia-Molina, and A. Spauster. Increas-
ing Availability under Mutual Exclusion Constraints with Dy-
namic Vole Reassignment. Technical Report CS-TR-056-86,
Princeton University, November 1986. (51)

A.D. Birrell and R.M. Needham. A Universal File Server.
IEEE Transactions on Software Engineering, SE-6(5):450—
453, September 1980. (91)

A. Braunstein. File System Design in Computers with Very
Large Physical Memories. Master’s thesis, MIT, Dept of
Electrical Engineering and Computer Science, 1988. (32)

M. Brown, K. Kolling, and E. Taft. The Alpine File Sys-
tem. ACM Transactions on Computer Systems, 3(4):261-
293, November 1985. (3, 82)

95

96

[Brownbridge 82]

[Burrows 85)

[CCITT 87

[Censier 78]

[Ellis 83]

[Gifford 79]

[Goldstein 87]

[Greenwald 85]

[Hagmann 87]

[Howard 88]

[Hwang 87]

[Johnson 85)
[Kazar 88]

REFERENCES

D.R. Brownbridge, L.F. Marshall, and B.Randell. The New-
castle Connection, or, UNIXes of the World Unite! Software
Practice and Ezperience, 12:1147-1162, 1982, (91)

M. Burrows. Using a Local Disc as a Block Cache. November
1985. Cambridge Computer Laboratory Internal Note. (80)

CCITT. Directory—Authentication Framework. CCITT
Draft Recommendation X.509 (version 7), November 1987.
(49)

L.M. Censier and P. Feautrier. A New Solution to the Coher-
ence Problems in Multicache Systems. IEEE Trans. Com-
puters, C-27(12):1112-1118, December 1978. (38)

C.A. Ellis and R.A. Floyd. The ROE File System. In Pro-
ceedings of the Third Symposium on Reliability in Distributed
Software and Database Systems, October 1983. (85)

D. Gifford. Weighted Voting for Replicated Data. In Pro-
ceedings of the 7th ACM Symposium on Operating Systems
Principles, pages 150-162, December 1979. (51,85)

A.C. Goldstein. The Design and Implementation of a Dis-
tributed File System. Digital Technical Journal, (5):45-55,
September 1987. (89)

M. Greenwald et al. Remote Virtual Disc Source Code. Sup-
plied by the MIT Athena Project, 1985. (17)

R. Hagmann. Reimplementing the Cedar File System using
Logging and Group Commit. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles, pages 155-162,
November 1987. (77)

J. Howard et al. Scale and Performance in a Distributed
File System. ACM Transactions on Computer Systems, 6(1),
1988. (xiii, 5, 22, 25,29, 71, 73, 74, 85, 86)

C. Hwang, J. Tesler, and C. Lin. Achieving the One-System
view for Distributed UNIX Operating Systems. In Uniforum
1987 Conference Proceedings, 1987. (91)

M.A. Johnson. Private Communication, 1985. (17)

M.L. Kazar. Synchronization and Caching Issues in the An-
drew File System. In Proceedings of the USENIX Winter
1988 Conference, pages 27-36, February 1988. (63)

REFERENCES

[Kowalski 78]

[Kronenberg 87]

[Lamport 87]

[Leach 83]

[Leach 84]

[Li 86]

[Mann 88]

[NBS 77]

[Needham 82]

[Needham 88]

[Nelson 88]

[Ousterhout 85]

97

T.J. Kowalski. FSCK - The UNIX System Check Program.
Technical Report, Bell Laboratories, Murray Hill, NJ 07974,
March 1978. (34)

N.P. Kronenberg, HM. Levy, W.D. Strecker, and R.J.
Merewood. The VAXcluster Concept: An Overview of a
Distributed System. Digital Technical Journal, (5):7-21,
September 1987. (89)

L. Lamport. Synchronizing Time Servers. Technical Re-
port 18, DEC SRC, June 1987. (69)

P.J. Leach et al. The Architecture of an Integrated Local
Network. IEEE Journal on Selected Areas in Communica-
tions, SAC-1(5):842-857, November 1983. (84)

P.J. Leach et al. The Architecture and Applications of the
Apollo Domain. IEEE Computer Graphics and Applications,
April 1984. (84)

Kai Li. Shared Virtual Memory on Loosely Coupled Multi-
processors. PhD thesis, Yale University, 1986. (84)

T. Mann. Private Communication, July 1988. (91)

National Bureau of Standards. Data Encryption Standard.
Technical Report 46, U.S. Dept of Commerce, Washington
DC, January 1977. Federal Information Processing Standard
publication. (49)

R.M. Needham and A.J. Herbert. The Cambridge Dis-
tributed Computing System. International Computer Science
Series, Addison-Wesley Publishing Company, 1982. (17,91)

R.M. Needham and M. Burrows. Locks in Distributed Sys-
tems — Observations. Operating Systems Review, 22(3):44,
July 1988. (42,43)

M.N. Nelson, B.B. Welch, and J.K. Qusterhout. Caching
in the Sprite Network File System. ACM Transactions on
Computer Systems, 6(1), 1988. (xiv, 3, 5, 32, 88)

J.K. Qusterhout et al. A Trace Driven Analysis of the 4.2
BSD File System. In Proceedings of the 10th ACM Sympo-

sium on Operating Systems Principles, pages 15-24, Decem-
ber 1985. (12, 14,87)

98

[Paxton 79)

[Ritchie 78]

[Sandberg 85)

[Satyanarayanan 81]

[Satyanarayanan 85]

[Schmidt 82]

[Schroeder 85]

[Sidebotham 86]

[Smith 81]

[Smith 85]

REFERENCES

W.H. Paxton. A Client Based Transaction System to Main-
tain Data Integrity. In Proceedings of the 7th ACM Sympo-
sium on Operating Systems Principles, pages 18-23, Decem-
ber 1979. (51)

D.M. Ritchie and K. Thompson. The UNIX Time-sharing
System. Bell System Technical Journal, 57(6), July 1978.

(3)

R. Sandberg et al. Design and Implementation of the
Sun Network File System. In Proceedings of the USENIX
Summer 1985 Conference, pages 119-130, June 1985.
(xiv, 5,28, 82)

M. Satyanarayanan. A Study of File Sizes and Functional
Lifetimes. In Proceedings of the 8th ACM Symposium on
Operating Systems Principles, pages 96-108, December 1981.

(13)

M. Satyanarayanan et al. The ITC Distributed File System:
Principles and Design. In Proceedings of the 10th ACM Sym-

posium on Operating Systems Principles, December 1985.
(86)

E.E. Schmidt. Controlling Large Software Development in a
Distributed Environment. Technical Report CSL-82-7, Xerox
PARC, December 1982. (4,81)

M.D. Schroeder, D.K. Gifford, and R.M. Needham. A
Caching File System for a Programmers Workstation. In
Proceedings of the 10th ACM Symposium on Operating Sys-
tems Principles, pages 25-34, December 1985. (xiii, 1, 3,81)

R.N. Sidebotham. Volumes: The Andrew File System Data
Structuring Primitive. In The Buropean UNIX User Group

Conference Proceedings, August 1986. Also available as
Technical Report CMU-ITC-053, ITC, CMU. (35)

A.J. Smith. Analysis of Long Term File Reference Patterns
for Application to File Migration Algorithms. IEEE Trans-
actions on Software Engineering, SE-7(4):403-417, July
1981. (13)

A.J. Smith. Disk Cache—Miss Ratio Analysis and Design
Considerations. ACM Transactions on Computer Systems,
161-203, August 1985. (13)

REFERENCES

[Snaman 87)

[SUN 86a)
[SUN 86b]

[Swinehart 79]

[Tang 76]

[Thompson 78]

[Treese 88]

[Walker 83]

[Wheeler 87)

99

W.E. Snaman Jr. and D.W. Thiel. The Vax VMS Dis-
tributed Lock Manager. Digitel Technical Journal, (5):29-
44, September 1987. (89)

Network File System Protocol Specification. b edition, Febru-
ary 1986. (40,82)

Remote Procedure Call Protocol Specification. b edition,
February 1986. (40)

D. Swinehart, G. McDaniel, and D. Boggs. WFS: A Simple
Shared File System for a Distributed Environment. In Pro-
ceedings of the 7th ACM Symposium on Operating Systems
Principles, pages 9-17, December 1979, (91)

C.K. Tang. Cache System Design in a Tightly Coupled Mul-
tiprocessor System. In Proceedings of the 1976 AFIPS Na-
tional Computer Conference, pages 749-753, AFIPS, 1976.
(38)

K. Thompson. UNIX Implementation. Bell System Techni-
cal Journal, 57(6), July 1978. (19)

G.W. Treese. Berkeley UNIX on 1000 Workstations:
Athena Changes to 4.3bsd. In Proceedings of the USENIX
Winter 1988 Conference, pages 175-182, February 1988.
(xiv, 17,32, 38)

B. Walker et al. The LOCUS Distributed Computing Sys-
tem. In Proceedings of the 9th ACM Symposium on Operat-
ing Systems Principles, pages 49-70, October 1983. (64, 83)

D.J. Wheeler. Block Encryption. Technical Report 120, Uni-
versity of Cambridge Computer Laboratory, November 1987.
(49)

