Technical Report R

Number 151

Computer Laboratory

Formalising an integrated circuit
design style in higher order logic

Inderpreet-Singh Dhingra

November 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Inderpreet-Singh Dhingra

This technical report is based on a dissertation submitted
March 1988 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, King’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

If the activities of an integrated circuit designer are examined, we find that rather
than keeping track of all the details, he uses simple rules of thumb which have
been refined with experience. These rules of thumb are guidelines for deciding
which building blocks to use and how they are to be connected. This thesis gives
a formal foundation, in higher order logic, to the design rules of a dynamic cMOS
integrated circuit design style.

Correctness statements for the library of basic elements are formulated. These
statements are based on a small number of definitions which define the behaviour
of transistors and capacitors and the necessary axiomatisation of the four-valued
algebra for signals. The correctness statements of large and complex circuits are
then derived from the library of previously proved correctness statements, using
logical inference rules instead of the rules of thumb. For example, one gate from
the library can drive another only if its output constraints are satisfied by the
input constraints of the gate that it drives. In formalising the design rules, these
constraints are captured as predicates and are part of the correctness statements
of these gates. So when two gates are to be connected, it is only necessary to check
that the predicates match. These ideas are fairly general and widely applicable
for formalising the rules of many systems.

A number of worked examples are presented based on these formal techniques.
Proofs are presented at various stages of development to show how the correctness
statement for a device evolves and how the proof is constructed. In particular it is
demonstrated how such formal techniques can help improve and sharpen the final
specifications.

As a major case study to test all these techniques, a new design for a digital
phase-locked loop is presented. This has been designed down to the gate level using
the above dynamic design style, and has been described and simulated using ELLA.
Some of the subcomponents have been formally verified down to the detailed circuit
level while others have merely been specified without formal proofs of correctness.
An informal proof of correctness of this device is also presented based on the formal
specifications of the various submodules.

vii

Acknowledgments

During the time of this project, it is both pleasing and reassuring to note the
number of people who have freely given their help and support. My greatest debt
is to my supervisor Mike Gordon. This work could never have taken shape without
his continued guidance and support. His patience during my earlier days and his
ever optimistic manner has brought me through some of the most difficult times.
He made valuable suggestions on earlier drafts of this thesis, and was the source
of many excellent discussions.

In addition, I would like to express my sincerest thanks to Graham Birtwistle
and Tom Melham. They diligently read through various drafts of this thesis and
made valuable written comments. Tom’s insistence on clear writing has set a
standard which I will always try to aim for.

This work could not have started without the financial support of Racal Re-
search and the British Science and Engineering Council. Racal Research has pro-
vided an excellent start to my career. The technical advice and individual guidance
received while working there before the start of this project, and during the many
visits thereafter, greatly helped in this project. Of the innumerable people who
helped, I must explicitly acknowledge Bob Chapman and Dave Orton, who were
the source of many stimulating discussions. I would also like to thank Racal Re-
search for the funds to attend conferences. '

Thanks also to Professor Roger Needham of the Computer Laboratory for
providing such a stimulating and cheerful work environment. The hardware verifi-
cation research group has proved an excellent platform to test ideas before making
them public. Special thanks go to the following members of this group: Albert
Camilleri, Avra Cohn, Thomas Forster, Don Gaubatz, Mike Gordon, Roger Hale,
John Herbert, Jeff Joyce, Miriam Leeser, Tom Melham, Ben Moszkowski, and
Glynn Winskel. Indeed, many thanks are due to the all the members of the Com-
puter Laboratory for making this a friendly place to work.

During my year at the University of Calgary, I was looked after extremely well.
For this I must acknowledge the kind generousity of Graham Birtwistle, and the

1X

help of the VLSI research group: Brian, Han, Konrad, Mark, Mike, Todd, and
others, I would also like to express my gratitude to the Alberta Microelectron-
ics Center for allowing me access to their machines. In particular, Brian, Earl,
Wallace, and Dale made my life there very enjoyable. Thanks also for all the free
coffee and doughnuts guys.

Thanks are also due to the many people at the various sites for putting up with
my persistent questioning about the systems etc.. These include Graham, Martin,
Mike, Piete, and Steve at Cambridge, Dave, Keith, and Terry at the University of
Calgary, and Earl and Wallace at the Alberta Microelectronics Center.

Finally, I would like to thank Humphry, with whom I shared a house for nearly
three years. Thanks for all the cooked breakfasts, and for allowing me to test
some of my crazy ideas. I can now confidently state that tomato skin is not a
superconductor!

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Background
1.2 Hardware Specification and Verification using Formal Methods
1.2.1 What is a Proof of Correctness?
1.2.2 Related Work,
1.3 Motivation
14 Research Summary,
141 Outline
1.4.2 Simple Models for VLSI Primitives
1.4.3 Formalising the CLIC Design Style S
1.4.4 A New Digital Phase-Locked Loop Design
1.5 Hardware Verification using Higher-Order Logic
1.5.1 Logical Notation
1.5.2 Types in Higher-Order Logic
1.5.3 Specifying the Behaviour of Hardware Devices
1.5.4 Specifying the Structure of Hardware Devices
1.5.5 Deriving the Correctness Statement
1.6 Thesis Outline,

2. Hardware Design Styles

2.1 Imtroduction.
2.2 Synchronous Circuits
2.3 Clocked CMOS Circuits (C?2MOS)
2.4 Dynamic Circuits
2.5 The DOMINO Logic Design Style.

x1

vii

i &
© O 00 ~J =3 =3 Ot O I = = M

[e e s T S SO
T W NN OO

2.6 The NORA Logic Design Style 24

2.6.1 Problemswith NORA 27
2.7 Summary e e 28
CLIC: CLock Insensitive Cmos 29
3.1 Introduction. 29
3.2 Informal Overview of the CLIC Design Style 30
3.2.1 Clock Description and Generation for CLIC 30
3.2.2 CLIC Primitive Gates v .. 31
3.2.3 Composition Rules for CLIC 36
3.3 Formalising the CLIC Design Style 38
3.4 Formal Definitions of Device Primitives 39
3.4.1 TheSignal Values 40
3.42 CMOS Primitives. 41
3.5 Formal Definitionof Clock 43
3.6 Formalising the Validity Conditions of CLIC Gates 46
3.7 Deriving the Correctness Statements of CLIC Primitive Gates . . . 47
3.7.1 N-type and P-type Logic Gates 47
372 TheLatch...................... . 54
3.7.3 The StaticInverter 55
3.8 Deriving the Correctness Statements of CLIC Circuits 57
3.8.1 Deriving ¢ Correctness Statements from ¢, Correctness
Statements L 57
3.8.2 Example: CLIC Gates Driven by the Same Clock Phase . . 61
3.8.3 Example: CLIC Gates Driven by Different Clock Phases . . 64
3.8.4 Example: CLIC Circuits with Feedback 67
3.8.5 Example: Using Higher Level CLIC Building Blocks 69
3.9 Summary e e 70
Formulating the Correctness of a Random Walk Filter 73
4.1 Introduction. 73
4.2 Formal Specification 74
4.3 Implementation 77
4.4 Proofof Correctness, ... 80
4.5 Summary 85

5 Proof Plan for the Correctness of a Window Comparator

5.1 Introduction.

5.2 Formulating the Specification

5.3 Implementation

5.4 Proof of Correctness v v v v v v v e

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5

Interpretations of Signals
Specification of the CWIT primitives
Top Level Behaviour of CWIT
Specification Transformation

Result Transformation

5.5 Summary

6 A New Design of a Verifiable Digital Phase-Locked Loop
6.1 Introduction.

6.1.1

What is a Phase-Locked Loop?

6.1.2 Digital Phase-Locked Loops
6.1.3 The Lead/Lag Digital Phase-Locked Loop
6.2 Overview of a New Design for a Lead/Lag DPLL

6.2.1

A Self-Modifying Digital Phase Detector

6.2.2 The New Lead/Lag Digital Phase-Locked Loop
6.3 Formulating the Correctness Statement
6.4 Formulating the Proof Plan
6.5 Summary e e e

7 Concluding Remarks

7.1 Summary of Work Done i

7.2 Discussion and Future Work

Bibliography

A The Hierarchy of Theories

B ML Code for the Correctness of the Toggle Device

C ML Code for the Correctness of the Random Walk Filter

xiii

87
87
38
89
90
90
92
96
101
101
106

109
109
110
112
113
116
117
120
124
129
131

133
133
135

137
145
147

157

Chapter 1

Introduction

1.1 Background

On 23rd December 1947 at the Bell Laboratories in Murry Hill, the first semicon-
ductor transistor was invented by Bardeen, Brattain and Shockley. It was kept a
closely guarded secret until just before the first publication in 1948 [Bardeen 48].
It took a further five years before transistors were manufactured on a large scale.
In 1953 the best transistors cost around $8us [Braun78]. Today it is possible to
buy memory chips containing over a million transistors on a single chip for around
$10us, or about 0.00002 cents per transistor if converted to 1953 values!

But the development of the transistor was not without its problems. Manu-
facturing was difficult, and even more difficult was getting two transistor charac-
teristics to match. The early transistors, i.e. point contact transistors, were very
noisy and highly unreliable; and they tended to deteriorate rapidly with not too
extreme temperature and humidity conditions. A story has it that a factory in
England, upon retiring one of its senior manufacturing workers, found the yield
of its point contact transistors dropped dramatically. This was due to the fact
that the retired worker knew just how hard to tap the electrode to make the point
contact. Too hard and the electrode went too deep into the semiconductor, and
too light meant no contact; either way the transistor would not function.

It was fortunate that industry did not have to endure this for too long. By
April 1952 the junction transistor was in manufacture, even though it was only
at a rate of less than a hundred per month. Over the next few years, with the
advent of zone refining and improved manufacturing techniques, the industry grew
rapidly. The first integrated circuit was made in October 1958 by Jack Kilby of

1

Texas Instruments, and the first full scale microprocessor on a single chip, the
Intel 4004, appeared in 1972.

By comparison, the developments of digital hardware design techniques have
been slow. The complexity of the hardware has increased over the years, but
the design tools have far from kept pace with this “silicon chip” revolution. The
basic design techniques used today differ little from those used to design some
of the early digital systems, which used valves and relays as switches instead
of transistors. Today, Boolean logic [Boole 54] is used to design combinational
circuits, and the methods of Mealy [Mealy 55] and Moore [Moore 64] are used to
design sequential circuits.

With the advent of computers, designers have been able to design more complex
systems, since they can be simulated on computers and so debugged to some extent
before manufacture. The basic models used for the primitive devices have improved
and hence the accuracy of simulators [Bryant81]. However, for large systems,
exhaustive simulation is prohibitively expensive, and requires exponentially large
simulation time even with today’s fastest computers. At IBM Reéearch, scientists
use the YSE machine, which is designed to simulate circuitry at the primitive
component level rather than at the architectural level. This is a highly parallel
processor, able to simulate several hundred times faster than any uni-processor
machine. But even with this sort of specialised computing power it may still be
not viable to simulate very large systems.

Due to these seemingly unsurmountable problems, designers have been forced
to look in other directions to verify designs before building them. Even though
the cost of manufacturing is coming down, it is still important to have confidence
in the design before it is committed to silicon. This is essential since it is not
always possible to test every aspect of the design in the time available. Whilst
many applications can tolerate some errors, there are others where even minor
flaws could be dangerous or too expensive to tolerate. These include:

e Safety critical applications:
Increasingly, integrated circuits of enormous complexity are being used in
areas where errors in these circuits could lead to loss of life. Examples
include flight control systems, railway signaling systems, medical life-support
systems such as pacemakers, military applications, nuclear plant controllers,
and anti-lock braking system in cars (see [Cullyer 88]).

e Remotely sited applications:
Applications where access to the systems is difficult would benefit from hav-
ing the design 100% correct. This is simply because the cost of repairing or

2

replacing faulty components would be too high. Examples include systems
installed in arctic regions, satellites, and systems installed on oil and gas
pipelines.

o Volume production applications:
Many industries manufacture systems for the mass market. If the design of
a device in such systems is faulty then the cost of recalling and repairing it
would be very high, Examples include circuits in automobiles, in telecommu-
nication systems, and in fact any domestic appliance which uses integrated
circuits.

With such important applications as these, it is necessary to ensure that a design
is correct. To achieve this, attention has turned to formal methods for specifying
and verifying the correctness of circuit designs.

1.2 Hardware Specification and Verification
using Formal Methods

Work in this area has progressed considerably over the last two decades, and several
sites are now actively involved in research in this field. Some of this work is briefly
described in this section. An overview is first given of what is meant by “hardware
specification and verification using formal methods,” and what constitutes a proof
of correctness.

1.2.1 What is a Proof of Correctness?

The idea of specifying the behaviour of hardware devices using boolean algebra is in
fact quite old. Indeed, designers use boolean algebra all the time to communicate
the behaviour of small circuits to other designers. A trivial example of this is the
behaviour of a multiplexor circuit, which can be stated as follows:

op = (ctl Aa)V (~ctl A D) : (1.1)
where the operators ~, A, and V, represent logical negation, conjunction and

disjunction respectively.

Equation 1.1 above can be referred to as the specification for the multiplexor
circuit, because it contains all the information necessary to understand its top level

3

behaviour. Boolean algebra is also used for deriving the top level specification from
the specifications of the lower level components that constitute the circuit. The
steps of this derivation together constitute a proof of the correctness of the circuit
(see [Gordon 85¢]). Each line in this proof is either a hypothesis, or is derived from
the previous lines. The final result is the derived theorem stating the top level
behaviour of the circuit. As an example consider the proof for the multiplexor
device. A circuit that implements the multiplexor device is shown in figure 1.1.

a Yy
ctl I: . op
b—_ — z

Figure 1.1: A simple multiplexor circuit

The proof of this multiplexor device is given below. The final result in this
proof exactly matches the specification of this device.

1. = ~(ctl A ctl) [by definition of Nand)]
2. y = ~(ctl A a) [by definition of Nand]
3. z =~(z A a) [by definition of Nand]
4. op=~(y A z) [by definition of Nand]
5. & = ~ctl [by 1 and the law p A p = p]
6. z = ~(~ctl A D) [substituting 5 into 3]
7. op = ~(~(ctl A a) A ~(~ctl A b)) [substituting 2 & 6 into 4]
8. op=~n~(ctl A a) V ~~(~ctl A b) [by law ~(p A ¢) = ~p V ~q]
9. op=(ctl A a)V (~ctl A b) [by law ~~p = p]

The important difference between this style of verifying the correctness of a
circuit and techniques involving hardware description languages and simulation,
is that the first supports formal reasoning. A validation technique which involves
formal methods can be summarised as follows:

1. Write the top level specification in some formal language.

2. Design the circuit and describe it in the same language as that used for the
specification.

3. By using the inference rules of this language, mathematically prove that the

circuit description meets its specification.

4

In the above example the specification is given in equation 1.1, the implementa-
tion is given in figure 1.1, and the proof is given by the 9 steps shown above. This
proof is an extremely simple one and could be done on the back of an envelope.
But the proofs of real devices can be thousands of lines long and very complex, so
different techniques are required to manage them. Several different approaches in
this direction are briefly outlined below.

1.2.2 Related Work

Techniques used for the complete verification of hardware without use of simulation
are briefly summarised in this section. Summaries of only the most relevant works
are given, together with pointers to others.

The early work of Milner and others on the LCF project [Gordon 79] inspired
much effort in the area of mechanised theorem proving. A specialised language
was developed for specifying and verifying hardware [Gordon 82] which led to the
development of the LCF-LSM theorem proving system [Gordon83a). Many ex-
amples were done using this system including the verification of a simple com-
puter [Gordon83b]. Many improvements to the LCF system have been made over
the years, including an improved rewriting package [Paulson 83a], and a new tac-
tics package [Paulson83b]. Hanna and Daeche then independently developed the
VERITAS theorem prover based on higher-order logic [Hanna 86b,Hanna 86a]. With
the improved expressive power of higher-order logic becoming increasingly attrac-
tive, and with the experience gained from the LCF family of theorem provers,
Gordon then developed the HOL theorem proving system [Gordon 85b,Gordon 88],
which forms the basis of the work done in this thesis. A number of examples have
been successfully completed which demonstrate the use of higher-order logic as
a vehicle for specification and verification. These include the verification at the
detailed timing level of a D-flip-flop implemented in logic gates (see [Hanna 86b]
and [Herbert 86] for proofs done in the VERITAS and the HOL systems respectively),
the verification of a ring interface chip [Gordon 85a), re-proof of the computer in
HOL [Joyce 88], and the first level proof of correctness of VIPER, the first industrial
microprocessor [Cohn 88].

The systems mentioned above are all based on general theorem provers, where
the proof is done manually and the system merely does the housekeeping. In the di-
rection of automated theorem provers is the work of Boyer and Moore [Boyer 79].
This has been used by Hunt to verify the correctness of a 16-bit microproces-
sor [Hunt87]. The underlying logic of this theorem prover is first order predi-
cate logic without quantifiers. In principle proofs are done automatically by this

5

system, but in practice the theorem prover needs to be guided considerably by
carefully requesting simpler theorems to be proved first. Barrow’s VERIFY sys-
tem [Barrow 84] is another example of an automatic theorem prover. The under-
lying model used by this system is that of finite state machines, based on Gordon’s
LSM language [Gordon83al]. In both of these systems, logic gates form the set of
primitive devices on the basis of which hardware verification is done.

Another general formalism used for hardware verification is temporal logic. An
interesting variant is that developed by Moszkowski known as Interval Temporal
Logic (ITL) [Moszkowski83a]. ITL has been used to formulate the specifications
of a bit-sliced microprocessor [Moszkowski83b]. Proofs using ITL were initially
done by hand. Recent work by Hale [Hale 88b] shows that the HOL system can be
used to mechanise proofs in ITL. A subset of ITL has also been developed as an
executable language known as Tempura [Moszkowski86]. More recently, Leeser
has used a variant of this formalism together with Prolog to reason about circuits
down to the detailed transistor level [Leeser 87).

On the side of more specialised formalisms are CIRCAL and pFPp,

— The early work of Milne and Milner on Concurrent Processes [Milne 79] inspired
a number of calculi. Milne went on to develop CIRCAL [Milne 83a,Milne 83b], while
Milner went in a slightly different direction and developed the Calculus of Com-
municating Processes (CCS) [Milner 80,Milner82]. In the CIRCAL framework, the
structure of hardware devices is represented hierarchically, with communication
between components being done through commonly named ports. Behaviour in
this framework is described as a sequence of events on the external ports of de-
vices. Operators are provided for the composition and the hiding of ports. Several
examples have been completed using this framework, including a simple CRT con-
troller by Traub in [Traub87]. Here Traub also presents the various temporal
concepts needed to model different granularities of time and means of moving be-
tween them. A Lisp based environment for doing proofs in this formalism has also
been developed [Traub83].

— Sheeran uses uFP [Sheeran83], which is an extension of the programming lan-
guage FP developed by Backus. Sheeran introduces the y operator into the basic
language FP to model memory in circuits. Both the behaviour (functional part)
and the implementation (geometric part) of a circuit can be represented in this
language. With the aid of the yu operator, the inputs and outputs are modeled
as streams. Behavioural descriptions of circuits can be transformed into their
geometric forms thus leading to correctness by construction. Only synchronous
systems can be modeled by this formalism. Examples done using this framework
include the design for a systolic correlator [Sheeran 83].

6

The above works have concentrated at the gate level and higher. Winskel
in [Winskel 88] describes a compositional model for the more primitive components
of a VLST technology, namely transistors, capacitors, etc.. This work is based on
the simulation models developed by Bryant [Bryant 81]. Though this work is at a
more detailed level than what has been described so far, it is not clear how it can
be related to the system level.

1.3 Motivation

From the above summary of work in the formal methods area, it is clear that effort
has concentrated on getting concise models of devices (transistors, gates, circuits,
etc.); but little effort is placed in formalising the rules of thumb used by designers
of integrated circuits. These rules are generally obtained with experience, but in
most cases their justifications are rooted in the detailed models of the lower level
circuit devices. These rules of thumb are much simpler and more abstract than
the formal reasoning behind what is and what is not a correct thing to do to get a
correctly functioning circuit. The research work presented in this thesis addresses
this problem.

1.4 Research Summary

There are a number of topics covered in this thesis in addressing the question of
formalising an integrated circuit design style. These can be separated into the
following areas:

¢ Develop simple models for the primitive components of a VILSI technology
such as cMos.

e Based on these simple models show the correctness of the rules of an inte-
grated circuit design style.

e Demonstrate the viability of these ideas on a major case study.

1.4.1 Outline

If the activities of an integrated circuit designer are examined, we find that rather
than keeping track of all the details, he uses simple rules of thumb which have

7

been refined with experience. These rules of thumb are guidelines for deciding
which building blocks to use and how they are to be connected. Usually the more
systematic the design style, the more structured these design rules are.

To show that these rules have a logical foundation, a design style known as
NORA [Goncalves83] has been analysed. In this design style there are two clock
lines, inverses of each other, and two sorts of gates; n-type and p-type. The design
rules govern how gates may be connected and which clock lines may drive them if
the result on the output is to be guaranteed. To make the design style synchronous,
a C?MOS latch is used as a dynamic register. This further complicates the rules,
but gives rise to a design style that generates smaller and faster circuits than
standard cMos.

The NORA design style has been demonstrated to fail for large circuits [Orton 84],
but a refinement of this design style using a two phase non-overlapping clocking
scheme solves this problem, This design style is known as cLIC, and was developed
at Racal Research by Orton and his team [Orton84]. This has a more complex
set of rules than its predecessor due to the extra pair of clock lines. The research
work presented here gives a formal foundation for the design rules of the CLIC
design style. This gives a higher degree of confidence in the correct functionality
of devices designed using this design style.

1.4.2 Simple Models for VLSI Primitives

The work presented here in developing simple models of primitive devices has
mainly concentrated on the cMOS technology. In particular, it has been guided
by the needs for a simple and tractable model for the verification of the CLIC
design style. The model originally used was based on Bryant’s simulation work
[Bryant 81], where three signal strengths were used to allow modelling of charge
decay on capacitors, This results in a lattice of seven signals. This was further
simplified by modelling the decay of charge on the capacitors in a different way
resulting in the four valued model of Hi, Lo, Er and Zz as used at present.

The model used for the transistor is also simple. A simple uni-directional
model was found to be adequate for modelling the cLIC design style. This simple
model greatly reduces the complexity of the correctness proofs of CLIC gates. The
model of hardware used at present and as presented in this thesis is a simple non-
delay, uni-directional model of transistors, together with a model of capacitors with
charge decay. More complex models could have been used, but they complicate the
proof considerably. Also, since the CLIC design style uses transistors in a strictly

8

defined way, the simple model of hardware as used here could be derivable from
other more complex models.

1.4.3 Formalising the CLIC Design Style

The formalisation of a design style [Dhingra88] entails giving a formal foundation
to any rules of thumb that are used. This means that all correctness statements
of CLIC gates are derived from a small number of primitive device definitions,
rather than merely being stated as axioms. These definitions cover devices such
as transistors and capacitors, and the necessary axiomatisation of the four valued
algebra for signals. Instead of rules of thumb, we now rely on being able to show
the correctness of complex structures by logical inference, based on the correctness
statement for the various cLIC gates.

For example, in order that a CLIC gate may drive another, it is important that
the input constraints of one be satisfied by the output constraints of the other.
In formalising the design rules, these constraints are captured as predicates and
incorporated in the correctness statement of the CLIC gate. So when two gates
are to be connected, it is only necessary to check that the predicates match. This
checking is done using the HOL system [Gordon 85b].

1.4.4 A New Digital Phase-Locked Loop Design

As a major case study to test some of the specification and verification techniques,
the design of a Digital Phase-Locked Loop (DPLL) system was undertaken. The
function of this DPLL is to re-generate the clock signal from the serial data being
received. The basic principle is to measure the phase difference between incoming
data transitions and the sampling edge of the clock signal. When on average
this phase difference becomes too small, or too large, then the clock period is
appropriately adjusted.

Fully digital phase-locked loop designs exist using binary quantised phase de-
tectors and discrete phase adjustments, e.g. [Yamamoto 78] and [Yukawa 73]. The
characteristics of such systems vary, depending on the techniques used for averag-
ing the phase difference; but they all use binary quantised digital phase detectors.
The design presented in this thesis uses a new kind of a Digital Phase Detec-
tor (DPD). The heart of this DPD is a digital window comparator. The proof of
correctness of this and other parts of the system are outlined in this thesis.

9

This new DPLL system has been designed down to the CLIC gate level and has
been described and simulated using ELLA [Morison84]. Some of the subcompo-
nents have been formally verified down to the detailed circuit level while others
have merely been specified without formal proofs of correctness. In this thesis a
discussion is presented on constructing the correctness statement and the proof of
correctness for such real time systems.

1.5 Hardware Verification using
Higher-Order Logic

The formalism used in this thesis is that of typed higher-order logic [Church40].
To make this thesis self-contained, a brief overview is given in this section of
the logical notation that will be used, followed by a review of the techniques for
specifying and verifying hardware using higher-order logic. The material presented
in this section is not new, and has already been covered in considerably more
detail in the literature. For a more complete description of this logic and its
machine formulation see [Gordon85b], and for a more thorough introduction to
the general techniques for specifying and verifying hardware using higher order
logic see [Gordon 86,Camilleri 87,Gordon 88,Melham 88a]. In particular, Melham’s
paper [Melham 88a] is an excellent source; most of what follows in the remainder
of this section is taken, with permission, from this paper.

1.5.1 Logical Notation

This logic uses standard predicate calculus notation. So for example the term
“P(z)” is interpreted as saying that @ has property P, and the term “R(z,y)”
means that the relation R holds between z and y. It has the usual logical operators
~, A, V, D and = denoting negation, conjunction, disjunction, implication and
equivalence respectively. Also provided are the two quantifiers V and 3 which
express the concepts of all and some, e.g. “Va. P(z)” means that the property
P holds for every value of ¢, and “Jz. P(z)” means that the property P holds
for some value of . As some syntactic sugar to the logic, nested quantifiers of
the form “dey. Jz5. ... Jw,. tm” can be written “Jzy @3 ... z,. tm.” Finally
conditionals of the form “If b Then #; Else ¢,” are expressed as “(b = 1, | t2).”

What makes this logic higher-order is that quantification is allowed over func-
tions and predicates. Furthermore functions can take functions as arguments and

10

return functions as results. So for example the induction axiom for natural num-
bers can be expressed as the following theorem where the variable P ranges over
predicates.

F VP, P(0) A (Vn. P(n) D P(n+1)) D Vn. P(n)

Note that a theorem is denoted here by the turnstile symbol (I) at start of the
equation. This is to indicate that this is a derived fact in the system. Additional
facts can be added to the basic system by either stating them as axioms or as
definitions. Definitions are a conservative means of extending the basic system,
i.e. they only add an additional constant to the system as a means for abbreviation.
No additional facts can be derived with the addition of this definition that could
not be derived before. An axiom however could lead to inconsistencies being
introduced into the system if care is not taken. These are not used in the work
that follows. As an example of a definition, consider the function Rise. This is
defined in the logic as follows:

Rise sig t =405 ~sig(t) A stg(t+1)

This predicate captures the notion that the signal sig rises at time . The
variable sig is a function from natural numbers to booleans, and is an example of
a higher order variable being passed as an argument to a higher order function.
The predicate Rise upon taking its first argument (sig) returns a function from
numbers to booleans. This function when given an additional argument time (t)
returns a boolean answer indicating whether the signal sig rises at time ¢ or not.

In expressing complex terms in the logic, use is often made of an additional
piece of syntax to simplify the readability of terms. This involves making abbrevi-

? statement. This is

ations local to the term by making use of the “let ... in ...
really syntactic sugar for a term stated in A-calculus. The transformation of such

terms into equivalent terms not involving this syntax is as follows:

let 2 =a
in = (M. f(z))a = fla)
f(z)

One more primitive constant that needs to be described is the e-operator.
Terms of the form “ez. tm[z]” denote the value v chosen such that “tm[v]” is

11

true. For example, the term “cz. £ = 7” exactly denotes the number 7, and the
term “cz. 2% + 3z + 2 = 0” denotes one of two possible values, namely —1 or —2.
However if this e-operator is used over a term which is false for all values then an
arbitrary but a fixed value is returned. For example, the term “c2. @ < ¢” denotes
an arbitrary natural number. For a more in depth discussion of the e-operator
see [Leisenring 69).

1.5.2 Types in Higher-Order Logic

Every correctly formed term in higher-order logic has a type. The type of each
term must be consistent with the type of its subterms. Informally, types can be
thought of as sets and terms of that type can be thought of as elements of that
set. The basic HOL system has the type of natural numbers(: num) and the type
of boolean truth values(: bool) built in. Types can be built from other types by
using type operators. So for example the type of signals on a wire represented
as functions from natural numbers to booleans can be denoted “ num —s bool,”
where “—” is an example of an infixed type operator.

Writing “bm : ¢y” explicitly states that the term tm has type ty. By using this
notation the type of the predicate Rise defined above can be stated as follows:

Rise : (num — bool) — (num — bool)

Such explicit type information is usually not given. In practice it is only necessary
to give such detailed type information when it is not clear from the context what
the type of the term should be.

New types can also be declared in the HOL system. This is a fairly tedious
task. A package which allows new types to be declared automatically in the
HOL system has recently been developed by Melham [Melham 88b]. The actual
procedure for declaring new types in the HOL system is not described here, but for
more information on this see [Gordon 85b,Melham 88b).

1.5.3 Specifying the Behaviour of Hardware Devices

The behaviour of hardware can be captured in higher-order logic by predicates.
The labels corresponding to the external ports of a device are passed as arguments
to the predicate. The predicate is defined as a relation indicating which combina-
tions of values can appear on these ports. As an example, consider the definition
for the behaviour of a two input nand gate as shown below:

12

i
il e

The behaviour of this device can be captured in logic by a predicate Nand,
with three arguments corresponding to the three external ports. This predicate
is then defined to be true for all combinations of values that can occur on these
variables which correspond exactly to the ports of a hardware nand device. The
definition for this device can be formally stated as follows:

Nanda(i1,92,0p) =4ger (0p = ~(i1 A i3))

As another example, the behaviour of the multiplexor device as used earlier can
be expressed formally in the same way. The top level view of this device is shown
below in figure 1.2. The external ports are labeled here in exactly the same way

a—1e Mux
o——op
b ——e]
ctl

Figure 1.2: Top level view of a multiplexor device

they were labeled in figure 1.1 on page 4. The behaviour of this device is captured
as a predicate Mux with four arguments corresponding to the four external ports.
This is defined in logic as follows:

Mux(ctl,a,b,0p) =qe; (op=(ctl = a | b))

1.5.4 Specifying the Structure of Hardware Devices

The structure of hardware devices is captured in higher-order logic by conjoining
together the predicates for each of the subcomponents. In this way the constraints
imposed by each of the subcomponents are pooled. These constraints together
constitute the behaviour of the top level device. The interconnect between the
parts is captured in logic by commonly named lines. So, for example, the structure
of the multiplexor device shown earlier in figure 1.1 can be formalised as follows:

Nands(ctl, ctl,) A Nandy(a, ctl,y) A Nandy(b, z,z) A Nand,(z,y, op)
13

The internal lines of this circuit are hidden from the environment, but in the
above equation this “hiding” is not captured. Hiding of lines is done in logic by
existentially quantifying them [Camilleri 87]. Now a new predicate MuxImp can be
defined which captures the structure of the multiplexor circuit complete with the
information that the lines «, y and # are hidden (or internal) as follows:

MuxImp(ctl, a,b,0p) =4 Iz y 2.
Nandy(ctl, ctl,z) A
Nandy(a,ctl,y) A
Nandy(b,z,2) A
Nand,(z, y, op)

This definition states that the values that can appear on the external ports
are precisely those which satisfy the constraints imposed by the four predicates,
where these four predicates model the four nand gates used in the implementation
of this multiplexor device.

1.5.5 Deriving the Correctness Statement

The two predicates Mux and MuxImp as defined above, capture the specification
and the implementation of a simple multiplexor device in higher-order logic. Now
by simple logical manipulation in the logic, the following theorem can be derived:

F Muximp(ctl, a,b,0p) = Mux(ct,a,b,op)

This is the correctness statement for the multiplexor device. It states that the
values that can appear on the external ports of the implementation are exactly
those that are allowed by the specification, i.e. the implementation meets the
specification.

In this example, the implementation predicate MuxImp is proved to be equiv-
alent to the specification predicate Mux. For more complex devices, formulating
the correctness statement as an equivalence relation may not be appropriate. The
behavioural specification of large and complex systems could be different in many
respects as compared to the implementation which implements them. For exam-
ple, specification may be partial, or be stated at different granularities of time, or
be stated using abstract data types. In such cases the correctness statement will
generally be in the form:

14

F Dev.Imp(iy,...%,01,...0,) D
let ip = Abs;(i1,...%,)
in
let op = Abs,(o1,...0,)
in
Dev_Spec(ip, op)

where the abstraction functions Abs; and Abs, map the input and the output
signals respectively of the implementation Dev_Imp, to those of the specification
Dev_Spec.

1.6 Thesis Outline

Chapter 2: In this chapter a brief introduction is given to the various design
techniques. In particular, the term “hardware design style” is clearly defined.
Then an extended summary is given of two such design styles known as DOMINO
and NORA, together with a discussion on their advantages and problems.

Chapter 3: In this chapter the CLIC design style is presented. This design style
overcomes some of the problems associated with NORA. First a detailed but in-
formal description of this design style is given. Then a full account is given of
the formalisation of this design style in HOL, beginning with simple models of
the primitives such as transistors and capacitors. The last part of this chapter is
devoted to simple examples illustrating how this work can be used to derive the
correctness statements for circuits designed using this formal framework.

The next two chapters give proof outlines of two components, with varying
amounts of detail. Both of these components are used in the design of the digital
phase locked loop.

Chapter 4: In this chapter a formal proof of correctness of the Random Walk
Filter (RWF) is presented. The RWF is designed in the cLIC design style, and the
correctness statement for it is derived using the formal techniques of chapter 3.
Integers are used in the specification of this device since they help represent the
functionality in a more natural way. This does however complicate the proof
considerably at the higher level. This chapter focuses on deriving the correctness
statement from a cluster of CLIC gates rather than dealing with the proof details
at the higher levels.

15

Chapter 5: In this chapter a plan for the proof of correctness of the Window
Comparator is presented. The proof uses integers and modular arithmetic, but it
does not go all the way down to the transistor level as in the previous chapter.
However the primitive devices used in constructing this device can be trivially
proved down to the transistor level. An informal specification is first given which
is then improved as the proof develops.

Chapter 6: This chapter first gives a brief overview of control systems with
particular emphasis on Digital Phase-Locked Loops (DPLLs). Then a novel design
for a new class of phase-locked loops is presented which uses the devices of the
previous two chapters. A formal specification for this device is presented together
with a sketch for an informal proof of correctness. Some of the difficulties involved
in arriving at the correctness statement and constructing the proof are discussed.

Chapter 7: Conclusions, discussion and future work.

16

Chapter 2

Hardware Design Styles

In this chapter a brief introduction is given to various design
techniques. In particular the term “hardware design style” is
clearly defined, An extended summary is given of two such
design styles known as DOMINO and NORA, together with a
discussion of their advantages and problems.

2.1 Introduction

Circuits built using fully complementary CMOS techniques have an inherent redun-
dancy of information. Consider, for example, the circuit for the carry out stage
of a full adder, as illustrated in figure 2.1a. The six n-channel transistors contain
all the information needed to implement the logic function of this gate as do the
six p-channel transistors. The advantage of duplicating the functionality is that
there is virtually no power consumed by the gate, except for the short periods of
time when the inputs or the outputs are making transitions.

The problem with this approach is that for complex gates, such as the one
in figure 2.1a, a considerable amount of silicon area is wasted by duplicating the
functionality of the gate. Also, the capacitive loads of such devices are fairly
high, since the output of these gates have to drive both the n-channel and the
p-channel devices. To obtain the same functionality in NMOS would require only
the n-channel devices together with a load transistor as shown in figure 2.1b,.

The other major problem with fully complementary cmos technique has to
do with clock races. As an example consider the design of a simple master-slave
D-flip-flop. Ilustrated in figure 2.2 is the D-flip-flop, which is amongst the most
commonly-used elements in VLSI. Note that transmission gates are used to clock

17

B~
B[o
A< o
op j op
e

(a) cMOSs (b) NMOS

Figure 2.1: The carry out circuit of a full adder

data in. These are generally implemented using a p-channel and an n-channel
transistor in parallel. Single transistors are avoided due to low noise margins. For
data to flow through the pn-transmission gate, two clocks, ¢ and @, are required.
For any reasonably sized circuit, the clock will be degraded due to distribution and
loadings, and this will lead to clock skew and the potential for some overlapping of
the two phases. During the phase overlaps, several successive transmission gates
may be switched on, which would lead to illegal data flow depending on the ratio
between gate delay and clock skew. This has become a serious problem with the
reduction in gate delays due to improvements in technology, and has resulted in
designers paying considerable attention to clock distribution and load.

A %
J'EX) |

)
ﬁw55&

¢ {>C Q

Figure 2.2: Master slave D-flip-flop designed in fully complementary cMos

Because of these two drawbacks of fully complementary ¢MoOS, designers have
developed techniques which allow one to use stripped down versions of logic gates
provided that certain rules are followed. It is these rules, either self imposed or
motivated by the way the hardware is being used, which constitute “Hardware

18

Design Styles”. In the remainder of this chapter a brief overview is given of two
design styles which are the predecessors to the design style used as the subject
of this thesis. But first a brief summary of Synchronous Circuits, Clocked CMOS
Clircuits (C?MOS), and Dynamic Circuits is presented, which are the generic tech-
niques used in many design styles. All of these techniques use some form of a
clocking scheme which is an important part of systems design. Weste summarises
the use of clocking in systems design as follows:

Clocks are used in digital systems to hold up a signal until it is time
for it to begin to move through the next stages of logic. Registers are
used in conjunction with the clocks so that a signal can be stored at a

location until it is needed.
[Weste 85, page 332]

2.2 Synchronous Circuits

The basic principle behind any synchronous design philosophy is that the system
is separated into blocks of purely combinational logic with no data storage facility,
interleaved by register latches which hold the data between clock pulses. There is a
global system clock which is used to clock the register latches, the period of which
is such as to allow all combinational logic blocks to finish evaluation of results. So,
on the tick of the clock, new data appears on the inputs of the combinational logic
blocks, and the old results are passed as inputs to the next stage by use of the
register latches. By definition there is no feedback within the purely combinational
logic blocks. This principle is illustrated in figure 2.3.

Logic @——‘ Logic @——»

<t
%

Figure 2.3: Synchronous Logic Concept

The advantage of such a design technique is that all the timing problems are
localised to the areas between the register latches. Thus the problem of identifying
difficult timing paths and race hazards is considerably simplified. However, it does
require care to ensure that the latency through the various paths are matched.
Furthermore, in fully complementary cMos, the register latches used are essentially
variations of the basic D-flip-flop as discussed above. So problems due to clock
skew and phase overlap are still present.

19

2.3 Clocked CMOS Circuits (C2MOS)

A C?MOs gate is essentially the net result of combining a fully complementary CMOS
gate with its output passed through a clocked transmission gate. An example of
this is illustrated in figure 2.4 using the adder circuit as described earlier with the
output passed through a clocked transmission gate.

A B

1 B[o[
A4l B A-d[¢

Bl o[r

op
A 4g oL 4, 6
—i—on
A — B[AL 4 A— B — A—
B —]| c—] c— B —] c— c—
-.- t
(a) cMOS gate and a transmission gate (b) c?MoOS gate

Figure 2.4: An example of a c?MOS gate

This technique was originally developed to build low power dissipation cMOS
circuits for calculators [Suzuki73]. The reason for the low dynamic power were
to do with the layout considerations when using the metal gate cMOS technology.
Though the technology has changed, the technique is still used where it is necessary
to have fully complementary cM0s gate followed by a clocked transmission gate.

C*MOs gates have the same input capacitance as regular fully complementary
CMOSs gates, and larger rise and fall times on the outputs due to the extra clock-
ing transistors in series to the path to the power rails. However these clocked
gates are slightly faster than their equivalent circuit composed of a regular fully
complementary CMOS gate followed by a clocked transmission gate.

20

2.4 Dynamic Circuits

Dynamic logic gates have two phases of operation: the precharge phase and the
evaluation phase. During the precharge phase the output nodes of the gates are
precharged to a particular level, usually high for n-type gates. During this period
the path to the other level, ground for n-type gates, is turned off. The chang-
ing of the inputs of the gate must also occur during this period. This is necessary
because otherwise charge redistribution effects could corrupt the output node volt-
age. Then by using a system clock the gate is switched from the precharge phase
to the evaluation phase. For n-type gates this involves turning off the path to
the high level and turning on the path to ground. Depending on the state of the
inputs, the output will either remain floating high or go low. Figure 2.5 illustrates
this principle on the carry out circuit of the full adder described earlier.

4{
op
A B—| A
B c— c—
]

i

Figure 2.5: N-type dynamic gate for the carry out stage of a full adder

¢

The advantages of dynamic circuits are that far fewer transistors are used
(approximately half), which means that the silicon area used per gate is reduced.
Another implication is that the the load capacitance on the output of such gates
is lower than in fully complementary cMos, since they only have to drive either
n-channel or p-channel transistors in the next gate. Further, the power consumed
by such circuits is lower than with NMOS since there is no pull-up transistor. The
output is precharged before evaluation, and during the evaluation only one path
to the power rails is open, so there is no static current path consuming power.

Since there is no static current path and the load capacitance on the output is
comparable to that of NMOS circuits, it would appear that dynamic circuits have
the advantages of fully complementary cM0s, namely low power consumption, and
those of NMOS, namely high speed operation. But in real circuits there is still some
power penalty as compared to fully complementary CMOS, because each gate must

21

be precharged on every cycle even if its output is to continue at the other level.
It is also difficult to realise these apparent speed advantages in real circuits since
most useful circuits generally have several logic gates in series. In dynamic circuits
this is a serious problem since dynamic cMOS gates cannot be cascaded by using
a simple single phase clocking scheme. In order to cascade dynamic cMOs gates,
designers have to resort to complex clocking strategies which can involve anything
up to eight clock lines. One such technique forms the basis of the next two sections.
For a more detailed survey of some of the other techniques see Weste’s book on
“CMOs VLSI Design” [Weste 85, pages 203-224].

One last point is that the clock in dynamic circuits cannot be stopped. There
is a minimum speed at which the clock for such circuits could be operated, but
they cannot be single stepped (which could be useful for debugging purposes, be
it for problems due to technology or logic design).

2.5 The DOMINO Logic Design Style

The previous section mentioned that dynamic gates cannot be cascaded by use of
a single phase clock. Let us examine this in a little more detail. Consider some
simple examples, namely an n-type Nand and an n-type Nor gate as illustrated
in figure 2.6. The previous section also dictates that the inputs must only change
during the precharge period, i.e. during the period when ¢ is low.

— —d

op

op

i~
s] " &
b —— b —L

(a) n-type dynamic Nand Gate (b) n-type dynamic Nor Gate

Figure 2.6: N-type dynamic Nand and an n-type dynamic Nor gate

Omne solution would be to have only one dynamic gate at the start of a chain of
gates with the remaining gates in the chain being static gates. This really doesn’t

22

buy us much, and a great deal better can be done. The real insight is to develop a
set of building blocks where a single transition on the input lines can result in no
more than a single transition on the output. Then these blocks could be combined
to make larger blocks provided no cyclic structures are used.

Going back to the Nand and the Nor gates of figure 2.6, note that if the inputs
are precharged low and the outputs are precharged high, then, when these gates
go from the precharge phase to the evaluation phase, then they in fact obey the
above rules, Provided the inputs make no more than one transition (from low to
high, f) then the output will also make no more than one transition (from high to
low,). This argument is true of both the Nand and the Nor gates of figure 2.6.
In fact, this is true of any n-type complex gate provided the net of transistors
used to compute the logical function of the gate are composed of parallel /serial
combinations of n-type enhancement mode transistors only.

Now if the output of these gates are followed by a static inverter then the
output of the inverter could make no more than one transition, from low to high
(). This in fact is exactly what is required on the inputs of the next dynamic gate.
So collectively this now forms a design style where the output of each dynamic gate
is buffered by a static inverter resulting in a set of building blocks consisting of
And, Or, and complex noninverting gates. This design style is commonly known
as the DOMINO logic design style [Krambeck82], so called because the chain of
evaluation goes sequentially from the start of the chain to the end, much as the
fall of one domino causes the next to fall which in turn causes the next to fall and
so on. A simple example illustrating this DOMINO style of circuit design is shown
in figure 2.7 below.

e e

—L —dL

=L

-
L >

¢ ————Ii ¢ ——

Figure 2.7: An example DOMINO circuit

23

2.6 The NORA Logic Design Style

By duality to the DOMINO logic design style, a family of p-type dynamic gates can
be developed which have almost an identical set of rules for cascading the logic
blocks. The difference is simply that the inputs of the p-type gates are precharged
high and the outputs are precharged low. As before, provided the inputs make no
more than a single transition (in this case from high to low, L), then the output
will also make no more than a single transition (from low to high, f). Again,
by buffering each dynamic gate by a static inverter, a design style consisting of
p-type, And, Or and complex noninverting gates results.

However a more universal design style can be developed if both n-type and p-
type gates are mixed. Note that the behaviour of the output of an n-type dynamic
gate is identical to the requirements for the inputs of a p-type dynamic gate; in
both cases the nodes are required to be precharged high, and during the evaluation
period there is no more than a single high to low (L) transition on these nodes.
Similarly the behaviour of the output of a p-type dynamic gate is identical to the
requirements for the inputs of an n-type dynamic gate; this time the nodes are
required to be precharged low, and during the evaluation period there is no more
than a single low to high (f) transition on these nodes.

So by ensuring that the inputs of all n-type dynamic gates are driven by p-type
dynamic gates and vice versa, a more general design style evolves known as the
n-p-CMOS design style [Goncalves82]. This time the building blocks consist of the
dynamic n-type and the dynamic p-type gates without the buffering static invert-
ers. This means that the primitive building blocks are in fact a set of inverting
dynamic gates which forms a more universal logic family. Not only this, but the
style of DOMINO logic design can also be used within the framework of this new
design style. Naturally this new design style has a more complex set of logic de-
sign rules than the DOMINO style, but the extra generality of inverting rather than
noninverting dynamic logic gates is worth this price.

There is however still another refinement that can be made to this n-p-CMOS
design style. Consider what happens if there is a very long chain of gates. As
soon as the circuit goes into the evaluation phase, evaluation begins at the start
of the chain and ripples down to the end. Depending on the length of the chain,
the amount of time needed before the last gate in the chain finishes evaluation
can be fairly large. During this period, most of the gates are idle; they are either
waiting for the previous gate to finish evaluation, or have finished evaluation and
so are waiting to be precharged in preparation for the next evaluation phase. The
only gates which are active during this time are those which are at the waveform

24

of evaluation propagating down the chain. The only way to get more throughput
from such circuits is to have more than one wavefront of evaluation running down
the chain.

Since a gate cannot be made to go into another evaluation phase without
having gone through a precharge phase first, the only solution is to divide the
chain into smaller subchains, and have alternate subchains go into precharge and
evaluate periods at different times. This would mean that once a subchain has
finished evaluation, the results are passed onto the next subchain which is just
coming out of the precharge period. Now the first subchain can go into precharge
in preparation for the next set of data to be evaluated. So, this alternation of
precharge and evaluation can be used to have multiple wavefront of evaluation
running down the resulting large chain. The control mechanism is the obvious
problem which is explained next.

In order to pass the results of one subchain to the next while the first goes
through the precharge phase, the results have to be stored at a node between the
two subchains. This is achieved by using a simple ¢2Mos latch driven by the same
pair of clock lines, ¢ and @, as used for the dynamic gates in the subchains. This
latch is clocked in such a manner as to latch onto the evaluated results of the
subchain just as it goes into the precharge phase, and hold this result static on
the output until the next evaluation period. This resulting subcircuit, containing
a subchain and a latch to hold the result while the subchain is in precharge, will
be referred to as a section. If all consecutive sections are clocked by opposite
phases of the clock then the behaviour of the resulting network is such as to allow
multiple wavefronts of evaluation to propagate through the circuit at the same
time as outlined above.

So from the point of view of the designer the circuit can be viewed as one which
is divided into small sections, each terminated by a latch. All the clock lines are
swapped between neighbouring sections so that if a p-type gate in one section is
clocked by ¢ then the p-type gates in the following section will be clocked by .
'This has the effect of pipelining the computation along the row of sections. It
means that when one section is in the evaluation phase then all the inputs to that
section will be stable, since they all come from sections which are in the latched
phase. And all sections which are in the latched phase will have all their internal
dynamic gates being precharged during this period with their previously calculated
results being held static on the output by the latch.

There are three distinct phases in the process of generating an answer on the
output of a section. Consider a very simple section having only two dynamic gates

25

(an n-type and a p-type dynamic inverter) and a latch as shown in Figure 2.8.
The answer on the output of this simple circuit is generated by tracing through
the following three steps.

-1 -1 -1

— L —L ——dL
L 7 L

[6L

0 ——11

Figure 2.8: A simple NORA Clircuit

Precharge Phase: ¢ = low, and ¢ = high

e The outputs of all p-type and n-type gates in the section are precharged
high and low respectively.

e The latch terminating the section is turned off such that the previous
value on the output of the latch is maintained and any further changes
on the input to the latch have no effect on the output node until the
clock lines toggle.

Evaluation Phase: ¢ = high, and ¢ = low
e Thelatchis turned on such that it becomes transparent, i.e. any changes

on the input are reflected straight on the output.

o The evaluation begins from the input end of the section, bubbling the
answer to the latch. Since the latch is now transparent the answer goes
straight to the output of the section and is held there.

Latch and Precharge Phase: ¢ = low, and ¢ = high

e The latch terminating the section is turned off such that the previous
value on the output of the latch (which is the evaluated result of the
section the latch terminates) is maintained, and any further changes on

26

the input to the latch have no effect on the output node until the clock
lines toggle again.

e The outputs of all p-type and n-type gates in the section are again
precharged in preparation for the next evaluation phase.

This resulting technique of mixing n-type and p-type dynamic gates together
with dividing the circuit into smaller sections to allow multiple wavefronts of eval-
uation through the circuit is known as the NORA logic design style [Goncalves 83].
The advantages of this technique are that it provides more logic flexibility as com-
pared to the DOMINO style, and the circuits generated are faster and more compact
as compared to fully complementary cMos.

2.6.1 Problems with NORA

Unfortunately this design technique does not scale too well. For large circuits the
signals on the clock lines will deteriorate due to clock distribution and loadings and
will result in slow clock rise and fall times. During the interval when the signals on
the clock lines are neither high nor low but somewhere in between, the behaviour
of the circuit can no longer be guaranteed to be correct. Consider what happens
at the interface between the last dynamic gate in a section and the latch which
terminates that section. When the signals on the clock lines are in the process of
changing state, then, due to slow clock rise and fall times, the latch may still be
in its transparent mode when the gate feeding it starts to go into its precharge
mode. This will then result in the evaluated answer of that section being lost and
the new precharged value on the output of the dynamic gate being stored on the
output of the latch.

This is a recognised problem with the NORA design technique which requires
that the rise and fall times on the clock lines be less than a single gate delay.
To overcome such problems the solution suggested by Goncalves and de Man
in [Goncalves83] is to use clock buffers at regular intervals to help maintain rela-
tively sharp edges on the clock lines. This is a possible solution which will require
considerable planning for the distribution of the clock signals on a chip, but a
more general approach to solving this would be to use a two phase non-overlapping
clocking scheme which removes the root cause of this problem.

The use of a two phase non-overlapping clocking scheme gives rise to a new
design style with its own set of rules for cascading logic blocks. This is the subject
matter of the next chapter where it is presented in considerable detail.

27

2.7 Summary

In this chapter various integrated circuit design techniques have been reviewed with
particular emphasis on the DOMINO logic design styles. It has been demonstrated
how the basic DOMINO logic design style can be generalised by using both p-
type and n-type logic gates. This, together with using a ¢2Mos latch, gives rise
to a design style known as NORA. Finally the failure mechanism for the NORA
design style was briefly outlined. One solution, which forms the basis of the cLIC
design style, uses a two phase non-overlapping clocking scheme. This is covered in
considerably more detail in the next chapter.

28

Chapter 3

CLIC: CLock Insensitive Cmos!

In this chapter the CLIC design style is presented. This design
style overcomes some of the problems associated with NORA.
First a detailed but informal description of this design style
is given. Then a full account is given of the formalisation of
this design style in HOL, beginning with simple models of the
primitives such as transistors and capacitors. The last part
of this chapter is devoted to simple examples illustrating how
this work can be used to derive the correctness statements
for circuits designed using this formal framework.

3.1 Introduction

Increasing improvements in integrated circuit technology requires that the design
techniques be continually appraised. Indeed the particular failure mode of the
NORA integrated circuit design style as presented in the previous chapter, and
also previously noted by others [Goncalves83,0rton 84], is a direct consequence
of the apparent speed-up of the cMOS integrated circuit technology. A solution
proposed by Orton and his team at Racal Research requires that a two phase non-
overlapping clocking scheme be used. This imposes a new set of rules for design,
and results in a new design style known as CLIC [Orton 84].

IThe cLic design style was originally developed at Racal Research in 1984 [Orton 84]. The
presentation given here is significantly different, especially the clock naming convention which is
completely different. These differences are merely to help the formalisation of the design style;
the fundamental concepts which constitute this design style are unchanged. For a more detailed
electrical analysis of this see [Orton 84].

29

3.2 Informal Overview of the CLIC Design Style

There is much that is common between the NORA design style as presented in
the previous chapter and the CLIC design style. Instead of using a simple square
wave clock (¢) and its inverse (¢), the CLIC design style uses a two phase non-
overlapping clocking scheme. The failure mode of the NORA design style is due
to the fact that the same clock edges are used for both latching the results of a
section and precharging it. By using the two phases of the clock to do these tasks
separately, this problem is totally eliminated. In the CLIC design style, one phase
of the clock and its inverse is used for precharge and evaluation, and the other
phase and its inverse is used for latching the results. In this way there is a period
of time when all the gates in a section will have finished evaluation and the latches
will not have started latching. This will ensure that even if there are very poor
edges on the clock lines, the results of the section will be latched correctly. Before
looking into this in more detail, the signals on the clock lines are briefly described
together with how they are generated.

3.2.1 Clock Description and Generation for CLIC

The two phase clock for the CLIC design style is generated from a single square
wave clock input. On every rising edge of the external clock input an internal
narrow pulse is generated on the ¢; clock line. Similarly on the falling edge of the
external clock another pulse is generated on the ¢, clock line. These two internal
clock lines are then inverted to form the remaining two internal clock lines, namely
¢, and ¢, respectively. These are shown in figure 3.1 together with the external
clock.

External
Clock I”*I ,_——I I’ — I
Input

$1 [] [] [

é L] L L

2 [l ['1 [

% L L L

Figure 3.1: The external and the internal clock relationships

30

For the purposes of analysing the clocking scheme, the clock cycle can be
divided into eight distinct intervals. This is shown in figure 3.2, where the shaded
regions represent uncertainty in the value on the clock lines, i.e. the value could be
Hi, Lo or something in between. The essential requirements of the clocking scheme
are that the duration of the clock pulses, i.e. the intervals t3 and t7, should be long
enough for the internal gates of the chip to have enough time to precharge their
outputs. For a 3um cMOS technology this duration is in the region of about 10ns.

One Cycle

- ~

1ty ts ta oty tg ty tg
e W e N N T e N T N N

Figure 3.2: Schematic view of the internal clock lines

3.2.2 CLIC Primitive Gates

Except for the static inverter, all gates in the CLIC environment are dynamic logic
gates and are driven by one or more of the four clock lines. The primitives used
in realising a logic function are a combination of these gates. There are four basic
building blocks used in CLIC circuits: the nShell, the pShell, the Latch, and the
Stat_Inv. These are illustrated in figure 3.3. Both the nShell and the pShell devices
need extra components, namely transistors, to be “wired” into them to make n-
type and p-type gates respectively. It is these n-type and p-type gates which form
the primitive gates as used in the cLIC design scheme.

In the remainder of this section a brief account is given of how each of these
devices works. The workings of the static inverter however are trivial and will not

be discussed here.

31

op

Net of
Net of 1P :fl> p-type

tp :::> n-type transistors

transistors
‘ op
o~ -

(a) nShell (b) nShell

op ip ——[>O— op

(c) Latch

tp — op z'p_—(>o—op

(d) Stat_Inv
Figure 3.3: The primitive building blocks of CLIC
32

3.2.2.1 The Latch

The latch as used in the CLIC environment is a dynamic device. It needs to be up-
dated at regular intervals; otherwise the value held on its output may deteriorate.
There are two types of latches in the CLIC system, one driven by ¢; and §,, and
the other driven by ¢, and ¢,. The differences between the two are only in the
clocks by which they are driven.

A typical latch is illustrated in figure 3.4 together with the clocks which drive
it. The input is required to be stable during the times when there is a positive
pulse on the ¢ line and a negative pulse on the ¢ line. By stable it is meant
that the input should either remain Hi or Lo, and should not be in the process of
changing. This constraint on the input is necessary to stop the latch from locking
onto an incorrect value,

//

—dl
F-L
¢ [[]
5 L]

L
Latched
/I ‘\ mode
L

Transparent
= mode

tp — op

Figure 3.4: The Latch

If a latch is correctly clocked then it can be in one of two modes—Transparent
mode or Latched mode.

Transparent mode ¢ = Hi, and ¢ = Lo
The two transistors driven by the clock lines get switched on, so the value
on the output of the latch is charged to the inverse of the input. It is also
important to note that during this time the latch behaves as a static inverter,
i.e. if there were any changes on the input then they would be reflected by a
change on the output.

Latched mode ¢ = Lo, and ¢ = Hi
The two transistors driven by the clock lines get switched off, so the output

33

node of the latch gets isolated from the power rails and so retains the pre-
viously charged value, During this time any changes on the input have no
effect on the output. The output node is designed to hold the value long
enough until the latch is refreshed again by going into the transparent mode
for a short time.

The latch only needs to be in the transparent mode for a short time, long
enough for the output node to be charged to the correct value. Even if there is
considerable clock overlap and clock edges are poor, the latch will still lock onto
the correct value provided the input is stable during the interval when there is a
positive pulse on the ¢ line and a negative pulse on the @ line. This restriction
ensures that the latch behaves correctly as regards locking onto the input value,

3.2.2.2 N-type and P-type Logic Gates

The name of n-type and P-type logic gates arises from the fact that these gates
use only n-type or p-type transistors respectively (except for the precharging and
enabling transistors). All p-type gates are driven by either $1 or ¢,, and all n-
type gates are driven by either @, or §,. Perhaps the best way to understand the
working of these gates is by example,

Consider a simple two input n-type nand gate as shown in figure 3.5. The work-
ing of this gate has two distinct phases—the Precharge period and the Evaluation
period.

)
"—"I_J\
7
n

4 L L

L
/[@ume old

Precharge

7
L
-
-

1

TI
|

Figure 3.5: Two input n-type nand gate

34

Precharge ¢, = Lo
During this period the output of the gate is pulled Hi by the enabled p-
transistor. Any changes on the inputs during this time have no effect on
the output, since the bottom n-transistor is off and so the path to Gnd is
effectively cut, i.e. the output cannot be pulled Lo.

Evaluation ¢, = Hi
When ¢, goes Hi the top p-transistor goes off and the bottom n-transistor
comes on. If both the inputs now go Hi then the output will be pulled down
to logic level Lo, otherwise it will remain floating at Hi.

The correct answer is generated on the output of the gate at the end of the
evaluation period and is held static until the next precharge period.

Note that the output may hold the wrong answer if the inputs are allowed to
go Hi and then go Lo during the evaluation period. Since there is no pull-up during
the evaluation period, if the output goes Lo then it will remain so until the next
precharge period. So for example if the inputs are initially Hi and then go Lo, then
at the end of the evaluation period the output and the inputs will all be Lo, which
is the wrong answer for a nand gate. To overcome this problem a restriction is
imposed which states that “there should be no Hi to Lo transitions on the inputs
of n-type gates during the evaluation period.”

Similarly the working of p-type gates can be understood by considering a two
input p-type nor gate. The structure of this is shown in figure 3.6. As in the case
of n-type gates, this too has the precharge period and the evaluation period.

(%]

L1
L
C

tp2

op
/] @ume Hold
b1

Precharge

|

Figure 3.6: Two input p-type nor gate

35

Precharge ¢; = Hi
During this period the output of the gate is pulled Lo by the enabled n-
transistor. Any changes on the inputs during this time have no effect on the
output since the top p-transistor is off and so the path to Vdd is effectively
cut, i.e. the output cannot be pulled Hi.

Evaluation ¢; = Lo
When ¢; goes Lo the bottom n-transistor goes off and the top p-transistor
comes on. If both the inputs now go Lo then the output will be pulled up to
logic level Hi, otherwise it will remain floating at Lo.

Just as before the correct answer is generated on the output of the gate at the
end of the evaluation period and is held static until the next precharge period.

For similar reasons to those of the n-type gates, the restriction that “there
should be no Lo to Hi transitions on the inputs of p-type gates during the evaluation
period” needs to be imposed.

3.2.3 Composition Rules for CLIC

The previous section’s work shows that the outputs of the n-type gates cannot
have Lo to Hi transitions during the evaluation period—which is exactly the re-
quirements on the inputs of the p-type gates. Similarly the outputs of the p-type
gates cannot have Hi to Lo transitions during the evaluation period—which meets
the exact requirements for the inputs of the n-type gates. This is not by accident,
but is built into the design style so that these gates can be composed together
safely, To ensure that circuits designed using CLIC dynamic gates contain no tim-
ing hazards, rules have to be followed like the one above. All the rules necessary
for the correct operation of the CLIC design style are presented in this section.

Perhaps the best method of presenting the CLIC composition design rules, is
simply by listing them together with their motivations. Before giving these rules
however, a few shorthands for the various types of gates and the clocks that drive
them are presented:

pGate(¢) P-type gate driven by either ¢y or é,.

nGate(¢) N-type gate driven by either @, or &,.

Latch(4,4) A latch driven by ¢ and ¢ where these clock pairs are either,
¢1 and ¢, or ¢, and &,

36

Note, if a clock phase ¢, for example, is used in the statement of a rule then
it is intended that the rule be interpreted as being in two parts: part one with all
instances of ¢ and @ replaced by ¢; and &1, and part two with all instances of 1)
and ¢ replaced by ¢; and @,.

With these definitions in place the CLIC composition rules can now be given:

Rule 1. An nGate($) may be driven by:

(a) pGate(¢)

(b) nGate(4) buffered by a static inverter
(c) Latch(g,4)

(d) Latch(¢,¢) buffered by a static inverter

Rule 2. A pGate(¢) may be driven by:
(a) nGate(g)
(b) pGate(¢) buffered by a static inverter
(c) Latch(¢,4)
(d) Latch(g,4) buffered by a static inverter

Rule 3. A Latch(¢y,4,) may be driven by:

(a) nGate(3,)
(b) nGate(g,) buffered by a static inverter

(c) pGate(gs)
(d) pGate(4z) buffered by a static inverter

(e) LatCh(¢27$2)
(f) Latch(¢s,4,) buffered by a static inverter

Rule 4. A Latch(¢,8,) may be driven by:

(a) nGate(g,)
(b) nGate(d,) buffered by a static inverter

(c) pGate(g;)
(d) pGate(¢1) buffered by a static inverter

(e) Latch(41,4,)
(f) Latch(¢1,4,) buffered by a static inverter

37

Rules 1 and 2 above ensure that the requirements on the inputs of dynamic
CLIC gates are always satisfied. For example the inputs of n-type dynamic cLIiC
gates must not have any Hi to Lo transitions during the evaluation phase. So the
four possible ways in which such a gate can be driven as listed above ensure that
the inputs behave correctly, i.e. in all of the four cases the output of such cluster
of gates can not have Hi to Lo transitions during the evaluation period. Rule 2
follows a similar argument except that it is stated for p-type gates which must not
have Lo to Hi transitions on the inputs during the evaluation phase.

Rules 3 and 4 ensure that the inputs to the Latch devices are always stable,
This is done by ensuring that the inputs are from devices which are driven by
the other phase of the clock. So the input to a latch driven by clocks ¢; and ¢,
can come from any circuit terminated by a device driven by ¢, and /or @y, and/or
buffered by a static inverter. Note that if the input is from another Latch device
driven by the opposite phase of the clock then the stable requirement is trivially
satisfied. However if the input is from a dynamic gate then it is possible that the
input may not be stable because the gate may be in the evaluation phase. To
ensure that the input will be stable, the period of the master clock is assumed
to be long enough to allow the input circuit to finish evaluation. Indeed this is
necessary for the CLIC design style to function correctly.

3.3 Formalising the CLIC Design Style

The objective here is to use the various formal techniques to capture the major
concepts which go to making a useful design style. There are a number of levels
at which the development of the circuit design could be viewed: from the physics
of the semiconductor devices, to the top level specifications of a system given in
vague terms using English like specification languages. A designer cannot hope to
view all his circuit at all of these levels at once. He will neither have the capacity
nor the necessary expertise in all of these areas, so the best he can do is to work
with simple models of the lower level implementations of the various devices. The
formalisation of the GLIC design style presented here will thus reflect the sort of
devices a logic designer might reasonably be expected to work from.

To see how to formalise the CLIC design style, the first thing that needs to
be looked at is the form of the correctness statement at the top level. For any
given device, the correctness statement states that “the implementation together
with some conditions on the inputs implies the specification together with some
conditions on the outputs.” More formally this can be stated as follows:

38

(Dev_Imp(ip1, ... ipn,op1, ... opm) /\) 5

lp_Cond ip; A ... A Ip_Cond iPp (3.1)
(Dev_Spec(z'pl, cer DR, 0P1, ... OPy) /\) .

Op-Cond opy A -+ A Op_Cond op,,

The derivation of the correctness statement of a device which is composed of two
lower level devices, requires that the input-conditions and the output-conditions
match for all those lines which are to be connected between them. Then by simple
logical manipulation, the top level correctness statement can bée derived purely
from the lower level correctness statements.

This then is the overview of our methodology for the formalisation of & design
style. Naturally the Ip_.Cond and Op_Cond predicates will have to be defined to
reflect the design rules for the particular design style. Also other parameters may
need to be added to these predicates to formalise any peculiarities of the design
style. Infact these will become apparent in the remainder of this chapter as the
CLIC design style is pushed through this process.

Before the correctness statement for the various cLIC gates can be derived, a
few preliminary axioms and definitions are needed. For example, the model of
transistors, capacitors, and the sort of signal values that are to be propagated
around the circuit need to be defined. Then the two phased non-overlapping clock
needs to be formalised. And then finally the correctness statements for the various
CLIC gates can be derived.

3.4 Formal Definitions of Device Primitives

Before choosing a particular model, a few observations need to be made which
influence this decision. For example, note that the set of rules for constructing
CLIC circuits are given at the gate level, and not at the transistor level. So the
model actually used will have to be appropriately biased to allow easy abstraction
to the gate level, and at the same time be accurate enough to allow the various
failure modes to be observable. Instead of showing the various different models
which could be used for this work and listing their strengths and weaknesses, only
the one actually used is presented here.

39

3.4.1 The Signal Values

Any node in the circuit can only have one of four values Hi, Lo, Er and Zz. The
values Hi and Lo represent the voltage levels high and low respectively. The value
Zz captures the concept of a node which is not being driven, namely high impe-
dence. And finally the value Er represents the state of a node which is being driven
both high and low at the same time, namely error.

On similar lines to Bryant’s work [Bryant 81], these four values can be thought
of as having the strength ordering as shown in figure 3.7. Here the value Er has
the highest strength, the value Zz has the lowest strength, and the values Hi and
Lo have equal strengths somewhere in between. These values with these strengths
form a complete lattice [Birkhoff 48]. The resultant value at a node which has
more than one value being driven onto it, can be defined by using the least upper
bound (LI) over this lattice.

Er
Hi \ > Lo
Lz
Figure 3.7: The four valued signals for CLIC

These four signal values are defined in HOL as anew type. This is a tedious, but
a logically straight forward task. Having declared it as a new type the operations
of LI are then easily defined. The following theorem which is derived from these
definitions states all the useful properties of the operation L over these newly
defined values.

Hilllo=Er A
Vz. Eridaz =Er A
- Ve, ZzUaz =g A (3.2)

Vey, aly =ylUg

With this simple signal algebra in place, the various definitions of the primitives
for the cMOs technology can now be defined.

40

3.4.2 CMOS Primitives

There are only six primitive devices that need to be defined in order to model all
the various components as used in the CLIC design style. These are the two power
rails, namely Vdd and Gnd, the n-type and the p-type transistors, namely N_Tran
and P_Tran, the unit capacitor Ca p; and the Join device for bringing together two
signals at a node. These are defined in HOL as follows:

T

Vdd(:L‘) =def Vt. :E(t) = Hi (3.3)
1
Gnd(m) =def Vt. w(t) = Lo (3.4)
g
L
gt Lo
N-Tran(g,?,0) =q4er Vit o(t) =((g(t) = Lo) = Zz | i(t)) (3.5)
g
b
gt Lo
P-Tran(g,i,0) =4s Vi oft) = ((g(t) = Hi) = Zz | i(¢)) (3.6)
I
Capy(i,0) =y Vi oft) = (~i(t) = Z2) = i(t) | i(t=1)) (3.7)
Join(dy,12,0) =aey V. o(t) = i1(t) U ia(t) (3.8)

41

The definitions for Vdd and Gnd (equations 3.3 and 3.4) assert the values Hi
and Lo respectively on their nodes for all time. So to say “Vdd(z)” means that
the value on the node 2 is always Hi.

The definitions of the two types of transistors (equations 3.5 and 3.6) are based
on unidirectional models. In order to model the worst case in the context of the
CLIC design style, these definitions assert that the transistors are ON unless the
values on the gates are such as to turn them OFF. A more accurate model could
have been used such as a partial definition which states exactly when the transistor
is ON and when it is OFF. An example of this for an n-type transistor which says
nothing when the value on the gate is other than Hi or Lo can be stated as follows:

: (9() = Hi) D (o(t) =i(t)) A
wTno) = Ve (007102 (0))

The definition for the Cap, device given in equation 3.7. This defines the be-
haviour of a capacitor which decays its stored value in one unit of time. Capacitors
which have a decay time of n units of time are then constructed by connecting n
Cap, devices together in a chain as follows:

i

[[L =z I °°
T T T T

“~ 7

S 4

Cap 0 i0 =45 o=i
Cap (n+1)io =gy Fz.Capniz A
Cap1($70)

From this definition the general behaviour of the Cap device is derived. This can
be stated at its most abstract level as follows:

F Capnio = (o = Lastn i)

Where the predicate Last is defined:

Last 0 ? =def ¢
Last (n+1) it =gp (~(it = Z2) = 4t | Lastni (¢—1))

Note that all further devices described in the remainder of this chapter will
only be built out of the basic building blocks defined here,

42

3.5 Formal Definition of Clock

The Clock as described earlier is derived from a single square wave input. The
formal definition presented here is not derived from such a single input but is
simply defined to be that which such a circuit might generate. This is because
the model of the various gates does not include delay due to the rather simple
model of the primitives out of which these gates are constructed. It would not
be too difficult to derive the given definition as an abstraction of what might be
generated by the circuit if a different model for the gates were to be used.

The predicate Clock is now defined as a relation over four arguments, These
four arguments would represent the four lines which would be generated by the
clock generator circuit. The behaviour of the four clock lines is defined by first
giving the behaviour of a single clock line, and then relating the behaviour of the
other three lines to this. Figure 3.8 shows the behaviour of the clock as waveforms

with some arbitrary starting point.
$1 Lo Hi Lo Lo Lo Hi Lo Lo Lo Hi Lo Lo Lo
1 [1 [] [1

e LI L L
P2 [[] [

s L L L]

Figure 3.8: Graphical representation of the four clock lines

The clock line which is to be formally defined is the ¢, line. This is also shown
in figure 3.8 as a sequence of His and Los. Note that the uncertainty states are
not taken into account here. If they were taken into account then it would result
in the cycle being split into eight intervals of time, rather than the present four
intervals of time. These intervals are not equal in length in real time, but they are
abstracted such that the clock cycle consists of four units of time in the abstract

time space.

The reason for splitting the clock interval into four rather than eight subin-
tervals, is to initially simplify the formalisation of the design style. Once these
techniques are understood, the work presented here could be expanded to go into
more detail at the timing, and the primitive device modeling level, For the mo-
ment however, the formalisation of the clock as presented here is at the coarser

granularity.

43

Informally, the predicate Clock is defined by first stating the behaviour of the
¢1 waveform, then shifting this waveform to generate the ¢, waveform, and finally
inverting both of these to generate the ¢, and ¢, waveforms. This is stated formally

as follows:

Clock(¢1, ¢y, B2, 63) =aer Cycle 1 A
Shift ¢1 o A
Invert ¢; ¢, A
Invert ¢, @,

(3.9)

Now the definitions for the various predicates used to define Clock can be given.
The simplest two, namely Shift and Invert, are defined first.

Shift 1 452 =def V. ¢2(t) = ¢1(t+2) (310)
Invert ¢ ¢ =gy Vt. ¢t=NOT(¢1) (3.11)

Where NOT is defined as the negation function over the values Hi, Lo and Er.
Note that this is a partial definition, which says nothing about what happens if
the value Zz is passed as an argument to this predicate. Formally this is defined
as follows:

NOT Hi =g Lo A
NOT Lo =g Hi A
NOT Er =def Er

So far, only the way in which all the clock lines are related to ¢; have been
defined, but a formal definition for the predicate Cycle has not been given. Before
doing this, the key aspects of the behaviour of ¢; are informally stated:

e ¢; is cyclic over four units of time

e During any four consecutive units of time the value on ¢, is Hi exactly once
and Lo for the other three units.

e ¢ can start in any of its four possible states.

Each of these three informal statements can now be formalised in logic resulting
in the following definition for the predicate Cycle.

44

Cycle ¢ =4or (VE. ¢(t) = 4(t+4)) A
(Cycle.1 60V
Cyclel1 41V (3.12)
Cycle.l $ 2V
Cycle_.1 ¢ 3)

Where the predicate Cycle_1 is defined:

Cycle-1 ¢ to =aer (¢(to) = Hi) A
(¢(to+1) = Lo) A
(¢(to+2) = Lo) A
(¢(to+3) = Lo)

(3.13)

This seems like a lengthy definition for Clock and it could have been shorter
but for two reasons. Firstly, it closely mimics the way in which the signals on the
clock lines were informally described, and secondly it is of the form which allows
some of the latter lemmas to be more easily derived.

However, some of the more elegant definitions which were considered at the
time of defining the cyclic property of clock are shown below as equations 3.14
and 3.15. These are all provably equivalent to the definition given above, so any
of them could be used.

Cycle ¢ =gy (Tt () =Hi A
¢(t+1) = Lo A
#(t+2) = Lo A (3.14)
$(t+3) = Lo) A
Ve, $l+4) = 6(0))

Cycle ¢ =gy In. (0<n<3) A

Vt. §(t) = (MOD4 ¢ = n) = Hi| Lo) (3.15)

Where MOD4 is the remainder of dividing its argument by 4.

Note how the various properties of Clock are separated into different predicates.
This is done deliberately so that the formalisation can be followed more easily. It
also reduces the risk of any errors being introduced in the translation process going
from the informal description to the formal one. Finally it is simply easier to read
and comprehend if the various ideas are individually defined.

45

3.6 Formalising the Validity Conditions of
CLIC Gates

The rules governing the interconnection of CLIC gates have been described earlier
in an informal way. Before formalising them, it is necessary to fully understand
their operation. Consider, for example, an n-type logic gate driving a p-type logic
gate. During the precharge period, the output of the n-type gate is precharged Hi,
and so the input of the p-type gate is also Hi. At this point it is worth pointing out
that the inputs of a p-type logic gate are always connected to the gates of p-type
transistors. Since these inputs have the value Hi on them during the precharge
phase, all these transistors will be off; i.e. if the logic gate went into the evaluation
phase now, the output node of this p-type logic gate would become isolated. So
when the clock changes and puts both of these logic gates into the evaluation phase,
the output of the p-type gate does not change until its inputs change. However, if
the other situation were present where the input of the p-type gate was held Lo,
then as soon as the gate went into its evaluation phase the output would change to
Hi. Now no matter what happens to the inputs, the output cannot be changed to
Lo until the next precharge period. So effectively the gate has erroneously changed
its output value.

In summary it can be stated that during the evaluation phase, a p-type gate
must not have Lo to Hi transitions (f) on its inputs, and an n-type gate does not
have Lo to Hi transitions (f) on its output. So to capture this sort of behaviour,
a single predicate needs to be defined which captures both the constraints on the
inputs of a p-type gate, and the behaviour of the output of an n-type gate. Here
then is the formal definition of a predicate Wb which is designed to capture exactly
this property.

Wb ¢ —a Vi (fg)* 1):_;’;%3 ’\) S w(t+1) = a(t) (3.16)

This predicate relies on the fact that the gates are clocked and that the wave-
forms on the clock lines are correctly behaved. What it states is that “the node z
is said to be ‘Well Behaved’ with respect to ¢,” where ¢ is one of the four clock
line as defined by the predicate Clock. The term “Well Behaved” refers to the fact
that only the correct sort of transitions occur on the the node x.

So for example the output node (op) of an n-type gate driven by @, satisfies
“Wb op ¢1,” which is exactly the required input conditions for a p-type gate driven
by ¢1. In this context what “Wb op ¢1” means is that while ¢, is Lo and §, is

46

Hi, i.e. the n-type gate is in its evaluation phase, then the output node (op) of
the n-type gate cannot have a rising edge on it during this period. This is indeed
correct, since once the output of an n-type gate has been discharged Lo, then it
cannot go to Hi again until the clock rises and precharges the gate as discussed

above,

The checking of the various constraints imposed by the rules as listed above
can now all be done by this one predicate. However this predicate relies on the
formal definition of Clock and must always be used in conjunction with it. This
is not a restriction since CLIC is a dynamic design style, and so all CLIC gates will
require the existence of Clock for their correct behaviour.

3.7 Deriving the Correctness Statements of
CLIC Primitive Gates

‘There are four types of gates in the CLIC design methodology: the n-type gate, the
p-type gate, the latch and the static inverter. Statements of correctness can be
individually derived for the latch and the static inverter, but it would be foolish to
simply derive a statement of correctness for each of the various n-type and p-type
gates separately. Rather than doing this it is far better to derive some general
theorems which will then be useful for generating the statement of correctness for
the individual n-type and p-type gates.

3.7.1 N-type and P-type Logic Gates

For any general theorems to be proved of n-type or p-type gates, the common
elements of these various gates need to be identified and separated first. A simple
split would be to separate the set of components which perform the logic specific
function into one bag, and the remainder into another. This remainder of an n-
type gate is called the nShell, since it has a hole in it into which other components
need to be inserted before it can function as an n-type cLIC gate. The circuit
which implements the nShell is illustrated in figure 3.9, and its structure can be
formally defined in logic as shown below in equation 3.17.

47

-~ Op

L

01
——
Figure 3.9: nShell as used in cLIC

nShell(¢,01,ip,0p) =4ef Ipo p1 P2 ps.

Gnd(po) A
Vdd(p:) A
N_Tran(¢, po,01) A (3.17)

P_Tran(¢, p1,p2) A
Join(ps,ip,ps) A
Cap;(ps, op)

The Cap; device in the above definition is simply a capacitor with a “memory”
of three units of time, just as Cap, has a “memory” of one unit of time. Note that
Cap; is derived by composing three Cap, devices together.

Before proceeding further, the property which is held true of all those cluster
of devices which may be inserted into this nShell needs to be defined. By studying
the mechanism of an n-type gate it is apparent that the cluster of devices which
is inserted in the nShell performs one of two functions: it either maintains a link
between the ip and the o; nodes of the nShell, or it doesn’t. This property shall be
referred to as Opt_Link, standing for optional link, and it can be formally stated
as follows:

Opt_Link(ip,0p) =qe; Vi.(opt=1ipt)V (opt=Zz) : (3.18)

Here it is worth noting that the true property of two nodes being linked or not
linked is not actually captured by this predicate. This is because a directional flow

48

of information model is being used for the various primitive devices. The best that
can be done under the circumstances as stated, is say that the values on the two
node are equal or that the input node to the nShell has a floating value on it. This
is still not quite enough, but the extra conditions will be stated later when they
are needed. However, this predicate provides enough information for the following
two properties of the nShell to be derived.

Clock(¢1, 1, é2, $2) A
F | nShell(¢,,a,b,0p) A| D Wb op ¢, (3.19)
Opt_Link(a, b)

Clock(1, ¢y, 2, Bg) A Def op ¢ A
nShell(4,,a,b,0p) A Def op (t+1) A
3.20
- Opt_Link(a, b) Al 2 | et op (t4+2) A (3:20)
isHi ¢, ¢ Def op (t43)
Where

SHI 6t =ar (4(2) = Hi)
Def 2 ¢ =g4oy (2(t) = Hi) V (2(¢) = Lo)

The first theorem (equation 3.19) can be interpreted as saying that, if the
nShell is implemented correctly, and it is correctly driven by clock, and the cluster
of devices placed in it are correctly behaved in that they have the property of
Opt_Link, then the output will be “Well Behaved,” i.e. the output will not have Lo
to Hi transitions during the evaluation phase. The second theorem (equation 3.20)
says that given the same assumptions, and additionally assuming that at some time
t the clock phase ¢, goes Hi, then the output will be “Well Defined” for the times
t to t+4, i.e. the output will be either Hi or Lo.

Having derived these general theorems with the property Opt_Link as an as-
sumption over the two node where external devices are placed, it is necessary to
show that this Opt_Link property is derivable for all clusters of elements that may
be inserted in the nShell. For this to be truly general it will be necessary to talk
of the structure of an arbitrary cluster of devices.

Any logic function which is implementable can be simplified into a particular

network of transistors. This network only contains transistors in series and/or

49

transistors in parallel, All the control inputs to a network of this kind are connected
only to the gates of the transistors, and the outputs of the transistor are joined
together using the Join device. On the basis of this, and the three derived theorems
(equations 8.21, 3.22, and 3.23), any cluster containing only parallel and /or series
transistor networks, can be shown to maintain the Opt_Link property across the
two terminals by which the cluster is connected to the nShell.

1
?:_—IIO)} ——t-c-ce—" ¢

F N_Tran(g,i,0) D Opt_Link(, o) (3.21)
a,—o-——-O—b———o--——o-—c D) Q——t---co——

Opt_Link(a, b) A
Opt_Link(b, c)

[r———) = b
a— @-d D a——--es d
R ——

Opt.Link(a, b) A
F [Opt_Link(a,c) A| > Opt_Link(a,d) (3.23)
Join(b, ¢, d)

) > Opt_Link(a,) (3.22)

This can be illustrated by a simple example: the two input n-type nand gate
of figure 3.5 on page 34. The structure of this can be formally defined as follows:

nNandy(4,ip1,1ps,0p) =go; Ip; py ps.
nShell(¢, py, p3, op) A
N-Tran(z’pl,pl,pz) A
N_Tran(z'pz,pg,p3)

(3.24)

Now by using the above three derived theorems about the network of n-type
transistors (equations 3.21, 3.22 and 3.23), and the two derived theorems about the
behaviour of the nShell (equations 3.19 and 3.20), the following two properties can
be derived. The derivation procedure is relatively straightforward based on simple
logical manipulations of these equations. The two theorems thus derived state that
the output of the two input n-type nand gate is “Well Behaved” (equation 3.25),
and “Well Defined” over a certain interval of time with reference to the point when
¢1 is Hi (equation 3.26).

50

CIOCk(¢1>$1’¢2a$2) A
" ("Na"dz@uipl,ipz,ozo)) > Wb op ¢ (3.25)

_ _ Def op ¢ A
Clock(¢1, ¢y, d2, $,) A Def op (t+1) A

F | nNandy(éy,ip1,ips,0p) A| D (3.26)
Def t+2) A
isHi ¢y ¢ ef op (+2)

Def op (¢4+3)

So far a technique has been presented which shows how to prove that the
output of any n-type gate is “Well Behaved” and “Well Defined.” Nothing has
been said about the derivation of the logical behaviour of these gates. In order to
derive the logical behaviour of such gates, considerably more complex theorems
are involved using other properties similar to Opt_Link. These properties include
Link, No_Link and Wb_Link which state under what circumstances a “link” exists
across the two nodes of the cluster of devices inserted in the nShell. These can be
formally defined as follows:

Link(z,y) t =gy (yt = zt) (3.27)
No_Link(z,y) t =4 (yt =Zz) (3.28)

¢(t) = d(t+1) A

Wb_Link(z,y) ¢t =ger m(tj-(;; : ;; ;\\ D Link(w,?)(t—}—l) (3.29)
Link(z,y) ¢

The first two of these theorems (equations 3.27 and 3.28) are intended to cap-
ture the concepts that the two nodes are linked, or not linked respectively. The
No_Link predicate as defined here doesn’t really capture the concept that the two
nodes are not linked, but this is the best that can be done with respect to the
unidirectional flow of information model being used. The third theorem (equa-
tion 3.29) is needed to ensure that the inputs to the cluster are well behaved, It
can be thought of saying that “if during the evaluation phase a link is formed
across the cluster of devices, then it will continue to be a link for the remainder
of the evaluation period.” This predicate required that the line ¢ be one of the
clock lines obeying the relation stated by Clock.

With the Opt_Link predicate, five theorems were derived which were then used
collectively to show that the output of any n-type cLIC gate is “Well Behaved”

51

and “Well Defined.” Similar theorems are derived for each of these predicates and
they are then collectively used to derive the logical behaviour of n-type CLIC gates.

An overview of the algorithm is to show that there exists a function F over the
inputs such that, if during the evaluation phase the inputs to the gate satisfy this
function F, then the cluster of devices will produce a ‘link’ across the two ports
by which it is connected to the nShell. Hence the resultant value on the output of
an n-type gate will be Lo. In formal notation this is represented as a theorem of

the form:
CIOCk(¢1,$l, ¢2a$2) A
nDeV(¢1>¢1;i1> T imop) N 5 f(il, v Zn)(t'i"].) D
isHi ¢y t A ~Val_Abs op (t+1)

Note that the value on the output is being abstracted to the boolean domain by
use of the Val_Abs predicate. The formal definition for this is given in equation 3.30
below. This is used in the correctness statements of every CLIC gate to state the
behaviour at the boolean level.

Val Abs 2t =45y ((zt=Hi) = T | (3.30)
((t=1Lo) = F | Arb))

Where Arb is some arbitrary value of the correct type, in this case of type boolean,

The formal definition of this is given by using the select operator (e) as follows:

Arb =4y ezx F

Returning to the algorithm. If the inputs did not satisfy this function F , then
a link would not exist across the cluster, and as a result the output would remain
Hi for an n-type gate. Again this is captured in formal notation as follows:

CIOCk(¢1 aEl} ¢2a -52) A
nDev(¢1, ¢y, i1, «++ tn,0p) A S ~F(1, o0 dn)(t+1) D
isHi ¢4 ¢ A Val_Abs op (t+1)

Now by combining these two results the final form of the derived result is
obtained. This is stated in the formal notation as the following theorem.

52

CIOCk(‘ﬁlaEl’ ¢2,$2) A
"DeV(¢1,$1>i1, te imop) A 5 f(ib Z'n)(t+1)' =
isHi ¢; ¢ A Val_Abs op (¢t+1)

Note that the right hand side of this implication is generally what is understood
to be the behaviour of the gate. But this derived theorem shows that the cor-
rectness of the logical behaviour is dependent on certain conditions; namely, the
implementation, the correct operation of the clock, and the correct operation of
the inputs.

This technique can now be applied to the the analysis of a two input n-type
nand gate. The final derived result for this is presented below.

Clock(¢1, ¢y, ¢2, B3) A

nNandy(¢y,ip1,ip2, 0p) A Val_Abs op (t+1) =
F |isHi ¢1 ¢ Al D Val_Abs ip; (2+1) A (3.31)
Def ip; (¢+1) A Val_Abs ip; (t41)

Def Zpg (t+1)

This theorem only states the behaviour of the nand gate at time ¢+1, where
t is the time when ¢; is Hi. In order to pass the evaluated result to the gates in
the next section driven by the other phases of the clock, the results have to be
latched. To eliminate any hazards, the CLIC design style dictates that such results
should only be latched using the opposite phase of the clock. So in this case the
results will be latched when ¢; next goes Hi. This will happen at time ¢42 using
the same time reference. So a correctness statement needs to be derived stating
the behaviour of the nand gate at time ¢+2. This is done by following a similar
argument as for the t+1 case, but this time, use is made of the Wb_Link property.
The final result for the two input nand gate is shown below in equation 3.32.

D Val Abs ip; (t+2) A (3.32)
Def ipy (t+1) ~ (VaLAbs ipy (£42))

Def ip, (t+1)
Def ip; (t42)

CIOCk(‘bl)ED ¢27$2) A
nNanda(@,,ip1,ips, 0p) A
Wb 2p; .51 A
Wb ip; ¢, A Val_Abs op (t+2) =
F lisHi &, ¢ A
A
A
A

53

Having described the derivation procedure for the n-type logic gates, an almost
identical argument is followed for the derivation of p-type logic gates. The work
is very similar, even to the point where a considerable number of the intermediate
results are common to both. This is not covered here to avoid repetition.

3.7.2 The Latch

The Latch device, as described earlier, is also known as the ¢2MOS latch, and its
structure is shown in figure 3.10. This is formally captured as follows:

Latch(é, ¢,ip,0p) =qe; Ipo p1 P2 Ps Pa Ps P

Gnd(po) ' A

Vdd(p;) A

N_Tran(zp, po, p2) A

N_Tran(g, pz2,ps4) A (3.33)
P-Tfa"(a, p37p5) A

P_Tran(ip, p1,p3) A

Join(ps, ps,ps) A

Cap3(p6,0p)

—d
L
2

1p —

L
I
¢ '

1

Figure 3.10: The Latch as used in cLIC

Since this is simply a one-off result, the derivation is not important. But the
final derived result is, so only that is presented here. The full behaviour of the
Latch device is summarised by the following three derived theorems.

54

CIOCk(¢1’$1)¢2a$2) A Wb op ¢1 A
(Latch(¢1,$1,ip,0p)) > (Wb op 4,) (334

C|0Ck(¢1,$1’¢2,$2) A Def op t A
I" .Lat-ch(¢1,$1>ip,0p) A ») Def op (t—l_l) A (335)
isHi ¢y ¢ A Def op (t42) A
Def ip t Def op (t+3)
Clock(¢1, ¢y, B2, 85) A
L | Lateh(gn,Buipon) A|
isHi ¢ ¢ A
Def ip ¢
et 1p (3.36)
Val_Abs op ¢ = ~Val Absipt A

Val Abs op (t+1) = ~Val Absipt A
Val Abs op (t+2) = ~Val Absipt A
Val_Abs op (t+3) = ~Val Abs ip ¢

Il

The first of these theorems (equation 3.34) captures the fact that the output of
the Latch may drive any of p-type or n-type gates, or both at the same time. The
second theorem (equation 3.35) states that the output is “Well Defined,” so the
results can be abstracted into the boolean domain by use of the Val_Abs abstraction
function. This is an important result because the Val_Abs abstraction function is
only defined for values Hi and Lo. Finally the third theorem (equation 3.36) gives
the logical behaviour between the input and the output at the abstract level, i.e.
on the clock tick the input is inverted and passed to the output where it is held
static until the next clock tick.

3.7.3 The Static Inverter

This is the only device in the entire CLIC design style which does not need one of
the clock lines for it to function correctly. It has only two external ports namely
the input (ip) and output (op) ports, and its behaviour could perfectly be de-
fined without the use of the Clock predicate. However, to enable it to be used in
conjunction with other dynamic CLIC devices, its correctness statement has to be
given in the same form. So to begin, here is the formal definition which captures
the structure of the static inverter as shown in figure 3.3d.

55

Stat_Inv(ip,op) =4ef 3po p1 P2 P3.
Gnd(po) A
Vdd(p:) A
N_Tran(ip, po, p2) A
P_Tran(ip, p1,ps) A
Join(p,, ps, op)

(3.37)

Now the usual three properties can be derived for this gate. The first one being
that it’s output is “Well Behaved.”

(Wb ipF, D Wb op g1) A

(Clock(¢1,$1,¢2,$2) /\) 5 (Wbip ¢y D Wbop) A

Stat_lnv(ip, op) (Wb ip g, D Wbop ¢;) A
(Wb ip ¢ D Wb op 4,)

(3.38)

Inspecting this theorem (equation 3.38) reveals that it is in a different form as
compared to the others presented so far. Infact it is not so different as to prevent
logical inferences being made using the same techniques. However, if it were to
be put in exactly the same form as the ones presented earlier, then four different
clauses would result, giving rise to four theorems. Remember that the inverter is
used to invert the polarity of a gate so that a gate may drive its own sort. E.g. ap-
type gate may drive another p-type gate only if it is buffered by an inverter. Since
there are two different sorts of gates, n-type and p-type, and two clock phases ¢;
and ¢2, the need arises for four very similar theorems, or one containing all four
clauses.

The remaining two theorems for this device are fairly standard. Infact they
are even simplified a little to take advantage of the fact that this device is not
clocked. The next theorem (equation 3.39) for instance simply states that “if the
input is defined then so is the output.” Finally the last theorem for this device
(equation 3.40) gives the logical behaviour appropriately abstracted to the boolean
level using the Val_Abs predicate.

(Stat_lnv(z'p, op) A

Def ip ¢) D Defopt (3.39)

(Stat_lnv(z’p, op) A

Def ip ¢) D (Val Abs opt = ~Val_Abs ip t) (3.40)

56

3.8 Deriving the Correctness Statements of
CLIC Circuits

So far a technique has been outlined for deriving the correctness statement of
arbitrary CLIC gates. This work would be entirely wasted if the old rules of thumb
were then used for designing real circuits. If these correctness statements are
to be actually used for the design of real circuits, rather than be used just for
display due to their elegance, then formal means must be provided for doing so.
Le. formal method are needed for combining the correctness statements of an
arbitrary number of gates, resulting in a new correctness statement for the new
circuit.

All that a designer is interested in is obtaining the correct logical and tem-
poral behaviour from the circuit. All the necessary rules which must be followed
to achieve this end are infact just a distraction. So a technique is needed which
allows the designer to compose together the behaviour component of the speci-
fications and leave the rest of the “checking” to the system. What is proposed
here is a system of simple logical inferences which are used to check the validity
of connecting the output of one gate to the input of another. The inference rule
involved is infact a variant of the classic Modus Ponens rule which can be stated
as follows:

F Va. P(z) DQe) F P(y)
F Q(y)

Modus Ponens:

Before showing how this inference rule is used to derive the correctness state-
ments of CLIC circuits, a brief summary is first given of how the correctness state-
ment of a gate driven by one phase of the clock results in an analogous correctness
statement for the gate driven by the other phase of the clock. With this in place,
the derivations of the correctness statements of CLIC circuits are then illustrated
by a series of examples. Each of these examples is given to illustrate a single aspect
of combining CLIC circuits.

3.8.1 Deriving ¢s Correctness Statements from
¢1 Correctness Statements

The technique outlined above (section 3.7) for deriving the correctness statement
of OLIC gates results in a correctness statement with the gate driven by #; and/or
¢,. In any real circuit about half of the gates in it will be driven by ¢1 and &,

57

and the other half will be driven by ¢, and §,. So instead of maintaining two
families of correctness statements, first for one phase of the clock and the second
for the other phase of the clock, a technique is outlined here which allows the
second correctness statement to be derived from the first.

This technique is illustrated through an example. Consider the correctness
statements for the two input n-type nand gate, derived earlier as equations 3.25,
3.26, 3.31 and 3.32. All these correctness statements (apart from the first which
does not need a time reference), have a general form which can be stated as follows:

CIOCk(¢1a$13¢27$2) A
nNandz(gl,z'pl,ipg,op) A
isHi ¢ ¢ a2 Gt)

What needs to be changed is the clock phase by which the nand gate is driven,
i.e. nNandy(&,, ...) needs to be replaced by nNandy(4,, ...). The general ap-
proach to achieving this is to generalise the free variables representing the clock
lines, and then specialise them in a different order such that the clock phases are
swapped. Doing this to the above correctness statement for the nand gate results
in the following:

Clock(¢2, ¢y, b1, 1) A
nNandz(Zz,ipl,ipz,OP) A
N D(e)
isHi ¢y t A

Unfortunately all that has been achieved here is a simple renaming of the
variables; the basic relation between them remains unchanged. However, due to
the way in which the clock was defined, the following lemma can be used:

a CIOCk(¢1>$1,¢27$2) 2 CIOCk(¢27$2’¢17$1) (341)

This lemma says that it is not possible to tell the two phases apart from only
the information available from the Clock predicate. Now by using this lemma, the
above result for the nand gate can be modified further to the following;:

58

Clock(#1, @y, $2, ¢2) A
nNands(¢,, tp1,ip2,0p) A
sHi g ¢ A D(t)

This is better, but it is still not in the correct form. Note that the original
equation used the time reference “isHi ¢, ¢,” i.e. when the ¢; phase of the clock is
Hi. However the derived equation here uses the time reference when ¢, is Hi, i.e.
“isHi ¢ t.” To clarify this consider a clock cycle showing both the time references
on it as follows:

1 [[
L LI

L,

-
2 ||
EH?¢1 T

isHi ¢

Due to the definition of Clock, the time difference between these two reference
points is two units of time. This infact is a derived lemma about the clock and is
used to resolve this time reference problem. The lemma can be stated as follows:

b Clock($1, ¢1, #2,8;) D (isHi 65 (t+2) = isHi ¢, t) (3.42)

Now, by generalising the time variable () in the last derived equation for the
nand gate, and specialising it to {42 results in the term “isHi ¢, (t+2)” being
introduced into the equation. This is then changed to what is actually required,
namely “isHi ¢; ¢,” by using the above stated clock lemma (equation 3.42). The
modified equation for the nand gate now looks like the following:

CIOCk(qSla-ala ¢2a$2) A

nNandz(Ez,z’pl,ipg,op) A
isHi gy ¢ A 2 G @42)

59

So the new set of correctness statements for the nand can now be stated in
their full expanded form. These four theorems are:

(Clock(¢1, $1y b2, 63)

A
. Wb
nNandz(¢2,ip1,ip2,op)) > > ¢2

Def op (t+2) A
Def op (t+3) A
Def op (t+4) A
Def op (t+5)

C|°Ck(¢1,$p ¢2a$2) A
F | nNanda(@,,ip1,ip2,0p) A| D
isHi ¢ ¢

CIOCk(¢17 gl? ¢2’$2) A
nNandy(é,, ip1,ips, 0p) A Val_Abs op (t+3) =

F |isHi ¢ ¢ Al o Val_Abs ipy (t+3) A
Def ipy (t+3) A ~ (VaI_Abs ip2 (t+3))
Def ip; (t+3)

D Val_Abs ip; (t4+4) A
Def ipy (¢+3) ~ (VaI_Abs ipa (t+4))
Def ip, (t+3)
Def ipy (t+4)

Def ip; (t+4)

C|°Ck(¢1,$1, ¢2a$2) A
nNand?(EZaiphip%op) A
Wb ip; ¢, A
Wb ip, ¢, A Val_Abs op (t+4) =
F o lisHi ¢4 ¢ A
A
A
A

With this technique in place, the correctness statements for CLIC circuits can
now be stated. All further correctness statements stated using either the ¢y or
the ¢9 clock phase are derived using this technique, and their derivations will not
be presented. Furthermore, since the clock is cyclic over four units of time, any
correctness statement which requires that the behaviour component be shifted by
four units of time can be easily derived. This is justified by the following derived
lemma about the Clock:

t ClOCk(¢1,$1,¢2,$2) D (ISHI (251 (t+4) = isHi ¢1 t) (34:3)

So any correctness statement that requires the behaviour to be shifted can be
derived by generalising the time variable ¢, and then specialising it to t+4. Then,
by using this clock lemma (equation 3.43), the original form of the correctness
statement can be recovered.

60

3.8.2 Example: CLIC Gates Driven by
the Same Clock Phase

In this example the inference rules used to check that a p-type gate can drive an
n-type gate are illustrated. In particular, the mechanism for deriving the logical
behaviour of the resultant circuit is illustrated. This technique will be used in the
derivation of the correctness statement of future devices. The example used is the
derivation of the correctness statement of an n-type exclusive-or gate. The circuit
which implements this device is shown in figure 3.11.

p P
2:1] Z'1
Do—es i

Figure 3.11: Implementation of an n-type exclusive-or gate in CLIC

This implementation is captured in formal notation by the following definition:

nXor(qﬁ, g) 7:17 2.2, Op) =def 3])1-
pNory (4, 41,2, p1) A (3.44)
nAndNor(@, pi, 41, 2, 0p)

"The correctness statements for the two internal devices used in this definition,
namely the nAndNor and the pNor, gates, can be stated as the following two theo-
rems, namely 3.45 and 3.46 respectively. These are stated here without derivation,
but the procedure for deriving them has been described earlier in this chapter (in
sections 3.7.1 and 3.8.1).

Clock(¢1, ¢y, b2, B2)
nAndNor(é,, p1,1, %2, op)
Wb p; $1

Wb i ¢,

Wb iz 4,

isHi ¢1 t

Def py (t4+1)

Def i, (t+1)

Def ¢3 (t+1)

Def p1 (¢+2)

Def 41 (¢42)

Def iy (t42)

Val_Abs op (t4+2) =
Val_Abs p; (t+2) V

~ | (Val Abs i1 (t42) A
(Val_Abs iz (t42))

(3.45)

> > > > > > > > > >

61

CIOCk(le’gl) ¢27$2)

pNory(é1, 21,72, p1) :
" 1 Def py (2+1) A
Wh iz 1 Def p; (t4+2) A
F |isHi ¢, ¢ P (3.46)

Def py (¢43)
Val_Abs p; (t4+2) =
Val_Abs 77 (¢42) Vv
~ (Val_Abs iy (t42))

Def ¢y (t+1)
Def 45 (¢41)
Def i3 (¢42)

> > > > > > > >
U

Equation 3.46 states that under certain conditions, the line p; is “Well Be-
haved,” and “Well Defined” over certain times. These exact conditions on the line
p1 also form the assumptions for equation 3.45. So by eliminating the assumptions
of one by the conclusions of the other (by Modus Ponens), these two implications
can be combined to give the following intermediate result;

Clock(1, @y, $a, 63)
pNory(é1,%1,42,p1)
nAndNor(é,, p1, 1, %3, op)
Wb iy ¢4 A Wb iy §,
Wb iy ¢1 A Wb iy &,
isHi ¢y ¢

Def iy (t+1)

Def i (¢+1)

Def 4; (¢-2)

Def iy (¢42)

Val_Abs py (t+2) =
Val_Abs 7 (t+42) V
~ <VaI_Abs iy (t+2))
A
Val_Abs op (t+2) =
Val_Abs p; (¢42) V

~ | (Val_Abs iy (t+2) A
\ Val_Abs i, (t+2)

> > > > > > > > >

N—

By rewriting from the first conjunct on the right hand side of the implication
to the second conjunct, the term “Val_Abs p; (t+2)” in the above equation can be
eliminated. This results in the following:

Val Abs op (t42) =
Val_Abs i (t4+2) Vv
~ (Val_Abs iy (t+2))
Val_Abs 71 (¢4+2) A
(VaI-Abs 22 (t43))

F(-)D

Now by simple logical manipulation, the right hand side of this implication can
be reduced to the exclusive-or function. So restating the above result with this
simplification applied, gives:

62

Val Abs op (t+2) =

F(-9)D Val_Abs ¢; (t42) &
Val_Abs i3 (t42)

This is almost in the final form for the correctness statement of the n-type
exclusive-or gate. The problem is that the line p; still occurs on the right hand side
of this implication. The following rule is used to hide this line, which existentially
binds the line p; around only those places where it occurs.

F tm[z]

Exists Intro: m

Using this rule would result in the term “pNory(...,p1,...) A nAndNor(...,ps,...)”
being changed to “Jp;. pNory(...,p1,...) A nAndNor(...,py,...)”. Now since this
new term is identical to the definition of the predicate nXor as defined in equa-
tion 3.44, the final form of the correctness statement is derived by rewriting this
term by nXor(...). So now the final derived correctness statement for the n-type
exclusive-or gate can be stated as follows:

Clock(¢1, @1, b2, 65)
nXor(¢1, ¢y, %1, i2, 0p)
Wb 4 ¢1 A Wb iy §,
Wb iy ¢1 A Wb iy @,
F o |isHi ¢, ¢

Def 41 (t+1)

Def 4, (¢+1)

Def 41 (t42)

Def 4y (£42)

Val Abs op (t+2) =
D Val_Abs i1 (t4+2) @ (3.47)
Val_Abs i, (¢+42)

> > > > > > > >

There are two points which must be mentioned before progressing further.
Firstly, the final form of the correctness statement derived above (equation 3.47)
is in no way different from any of the correctness statements that could be derived
for the CLIC primitive gates. By this, it is meant that the correctness statement
derived above has the following aspects, which are common to all correctness
statements for CLIC gates and circuits.

e The gate is driven by a well behaved clock, namely Clock.

e The time reference used for stating the behaviour is isHi é1.

63

e The inputs have “Well Behaved” and “Well Defined” conditions.

This means that in formal analysis an arbitrary cluster of CLIC gates can be treated
just as a single gate is treated.

Secondly, this correctness statement requires that the inputs be “Well Behaved”
with respect to both ¢; and @,. This is because these inputs feed both n-type and
p-type gates internally to the exclusive-or gate. The only device which satisfies
this behaviour is the latch. So from this it follows that the exclusive-or gate can
only be driven by either a latch, or a latch buffered by a static inverter.

3.8.3 Example: CLIC Gates Driven by
Different Clock Phases

This example illustrates how a correctness statement can be derived for gates
driven by different phases of the clock. The example used is the design of a
dynamic register cell in cLIC. This is built using two latches, one driven by ¢y and
&1, and the other driven by ¢, and @,. The circuit for this is shown in figure 3.12.

ip—-[>c 1 {><} op

Figure 3.12: Implementing a dynamic register cell in c1.1C

This implementation is captured in formal notation by the following definition:

Reg(¢1,$1,¢2,$2,ip, Op) =def 3pl-
Latch(¢1,$l,ip,p1) A (3.48)
Latch(és, 5, p1, 0p)

The correctness statements for the two latches used in this implementation can
be stated as the two theorems 3.49 and 3.50. The first of these theorems is identical
to the derived result as stated earlier as theorem 3.36. The second theorem (3.50),
however, is derived from equation 3.36 by the technique outlined in section 3.8.1.
This results in a correctness statement in which the Latch device is driven by the
$2 and @, clock phases.

Clock(1, @y, b2, d3) A Val_Abs p; ¢ = ~Val Absipt A

Latch(¢1, @1,4p,p1) A Val_Abs p; (t+1) = ~Val_Abs ip t A (3.49)

isHi ¢ ¢ A Val_Abs p; (t+2) = ~Val Absipt A| "
\Def ipt Val_Abs p; (t+3) = ~Val_Abs ip ¢

64

Clock(¢1, 61, ¢2,85) A
Latch(¢z, ¢y, p1,0p) A
isHi ¢ ¢ A
Def p1 (t4+2)
Val_Abs op (t+2) = ~Val_Abs p; (t+2) A
Val_Abs op (t43) = ~Val_Abs p; (t4+2) A
Val_Abs op (t+4) = ~Val_Abs p; (t+2) A
Val_Abs op (t4-5) = ~Val_Abs p; (t+2)

D

(3.50)

These two correctness statements can now be combined. The derivation pro-
cedure is relatively straightforward and is identical to that used in the previous
section. This is not repeated here. The final derived result is:

Clock(1, ¢y, b2, B,) A

Reg(¢1,$l)¢2a$27ipaop) A
isHi ¢, ¢ A
Def ip ¢

D

| (3.51)
Val_Abs op (t+2) = Val_Absipt A

Val_Abs op (t4+3) = Val_Abs ip t A
Val_Abs op (t+4) = Val_Abs ip t A
Val_Abs op (t+5) = Val_Abs ip ¢

This derived result doesn’t quite capture the conceptual behaviour of a dynamic
register. What is generally understood as a register device is one which exhibits
a unit delay type of behaviour. This derived result could however be moulded to
show that it does have the same behaviour. This is done by abstracting the signals
on the input and the output lines from a fine grain of time to a coarse grain of
time. So rather than having four ticks of time per clock cycle, only one tick of
time per clock cycle is used. This technique of going from one granularity of time
to another is known as “temporal abstraction?.” The most useful predicate that
needs to be understood to follow the correctness statements given below is the
when predicate. Informally this can be defined as follows:

2The ideas in this direction were first discussed in the weekly Hardware Verification Research
Group meetings. In 1984 Mike Gordon presented a technique by which multiple states at one level
of time could be amalgamated into a single state at the higher more abstract level. Based on
this idea, Tom Melham [Melham 88a] developed the present (most elegant) set of predicates which
are adopted in this thesis. John Herbert also uses some of these ideas in his thesis [Herbert 86]
in showing the correctness of one of the parts of the Cambridge Fast Ring. The predicates used
in this thesis have all been defined by the author and may not follow exactly the same line of
development as that used by Melham. Note also that the techniques involved in applying these
ideas to the two phase clocking scheme are all new,

65

(sig when ctl) n = The value on the wire sig at the time when the control
signal c¢tl is true for the nth time.

In formal notation this when predicate is defined by the following four definitions
(see [Melham 88a] for a more thorough discussion on how to implement this in the
HOL system):

Next tl tg f =def (tl < tz) A

(f tz) A
Vi ti<t<t, D ~(f 1)

IsTimeOf 0 ft =gp (ft) A V. (¥'<t) D ~(fF)
IsTimeOf (n+1) ft =gy 3t IsTimeOfn f¢' A Nextt't f

TimeOf fn =45 et IsTimeOfn ft
sig when ctl =45 An. sig(TimeOf ctl n)

The first three of these predicates can now be informally described in the same
way that the when predicate was described above.

Next ¢1 t3 f = A relation stating that the next time after ¢; when f
is true is at time ¢,.

IsTimeOf n f ¢ = A relation stating that the nth time that f is true is
at time ¢.

TimeOf f n = The time of the event when f is true for the nth time.

From these definition, two of the most useful lemmas about the two phase clock
can be derived. These are formally stated as equations 3.52 and 3.53. The first one
captures the fact that it is always the case that the clock phase ¢; is Hi exactly at
the times when ¢y is Hi. This is rather circular but is infact quite a useful lemma.
The second lemma (equation 3.53) captures the notion that the clock phase ¢, is
Hi every four units of time.

F Clock(¢s, &y, b2, #5) D Vn. (isHi ¢1)(TimeOf (isHi ¢1) n) (3.52)

F Clock(d1, 6y, b2, ;) D

Vn. TimeOf (isHi ¢1) (n+1) = (TimeOf (isHi ¢1) n) + 4 (3.53)

66

With this more abstract view of time and by using these derived lemmas about
clock (equations 3.52 and 3.53), the behaviour of the register device begins to look
more like what is required. The final derived theorem for this device can now be
stated as follows:

CIOCk(¢17$Ia ¢2,$2) A
+ Reg(¢1,$1,q52,$2,ip,op) A D
Vn. ((Def ip) when (isHi ¢,)) n
let ipy, = (Val_Abs ip) when (isHi ¢)
in
let opy, = (Val_Abs op) when (isHi ¢,)

1n
Vi, opy, (t41) = ipe(2)

(3.54)

This theorem (equation 3.54) can be stated in English terms as follows:

Assuming a correct relation exists between the clock lines, .
and a correct implementation of the Reg device exists,
and the value on the input line is always defined when the value
on the clock line ¢y is Hi,
then the temporally abstracted value on the output is equal to
the temporally abstracted value on the input delayed by one,
where a signal which is temporally abstracted means that the value
on it is sampled every time that the clock line ¢; is Hi.

There are two main points to note about this final derived result; firstly, all the
various ideas present in it are separated into custom designed predicates, and sec-
ondly, these predicates nicely fit together to allow this final correctness statement
to be derived.

3.8.4 Example: CLIC Circuits with Feedback

This example illustrates how CLIC circuits with feedback are handled. It is infact
just a more elaborate version of the previous example. This time no derivations are
presented since the procedure used is almost identical to that of the previous two
cases. The example is an implementation of a toggle flip-flop cell in cric3. This
device has a single input and a single output. On every clock cycle, depending on
the state of the input at certain times, the output of the device is inverted if the
input is Hi, and left unchanged if it is Lo. The circuit implementing this device is
shown in figure 3.13.

3The dependency of the theories necessary for this example are shown as a tree in appendix A,
and the detailed ML code for the proof of correctness of the toggle flip-flop is given in appendix B,

67

Figure 3.13: Implementing a Toggle flip-flop in cLIC

This implementation is captured in formal notation by the following definition:

Togg'e(¢1>$1, ¢2)_$2>7:p7 op) =def apl P2 P3 P4
Latch(é1, dy,ip,p1) A
Latch(¢2,$2,0P>P2) A
Stat_Inv(py, ps) A
nXor(¢1, ¢4, p1,P3,pa) A
Latch(gz, ¢y, P4, 0p)

(3.55)

The final derived correctness statement for this device is shown in equation 3.56.
Note the similarity between this correctness statement and that of the previous
example; they are almost identical except for the one extra condition. This condi-
tion, represented in this derived theorem as the line “((Def op) when (isHi ¢;)) 0,
states that the value on the output(op) must be “Well Defined” at the point in
time when the line ¢; is Hi for the first time. This is necessary since the output
line is used for feedback, and so the value on it must be defined before it can be
used. It is important to note that this condition dictates the value on the output
only for the first time. Furthermore, it does not require the output node to be set
to a particular value, only that it be “Well Defined” so no errors can occur. For
all subsequent times, the circuit dictates what the value on the output should be,
so this is not required as an assumption in this correctness statement.

CIOCk(¢1a$1>¢2a$2) A
- Toggle(qﬁl,gl, ¢2)$2,ipa Op) A 5
((Def op) when (isHi ¢1)) 0 A
Vn. ((Def ip) when (isHi ¢;)) n
let ipy, = (Val_Abs ip) when (isHi ¢;) (8.56)

in
let opy, = (Val.Abs op) when (isHi ¢;)
in

Vi opg, (t4+1) = (ipg, t) = ~(opg, t) | (opg, 1)

68

3.8.5 Example: Using Higher Level CLIC Building Blocks

The previous three examples have all illustrated how the correctness statements are
derived for particular CLIC circuits design techniques. In this example higher level
CLIC building blocks are used, such as the circuits used in the previous examples, to
demonstrate that the correctness statements of these higher level building blocks
can be used to derive the next higher level correctness statement, just as the
correctness statements for the previous examples are derived from those of the
CLIC primitive gates. The example used is infact a dynamic shift register. This is
trivially built by connecting many Reg device together in a chain. The correctness
statement for the Reg device has already been derived above in section 3.8.3. The
circuit which implements this dynamic shift register is shown in figure 3.14

op(n) Regt— op(n+1)

tp Reg Regf— I — Reg

S 4

Figure 3.14: Implementing a Dynamic Shift Register in CLIC

This implementation is captured in formal notation by the following definition:

ShiftReg 0 ¢1 @y d2 $,ip op =45 (0p(0) = ip)

ShiftReg (n+1) ¢1 ¢, 2 Gy ip 0p =aes (3.57)
ShiftReg n ¢1 @, ¢ B, ip op(n) A
Reg(¢17 51, ¢2, 52, op(n), Op(’l’H—l))

The derived correctness statement for this device is shown below as equa-
tion 3.58. Note the similarity between this theorem and that for the Reg device
derived earlier as equation 3.54.

C'°Ck(¢1,$p¢3’$2) B A
- ShiftReg n ¢1 ¢y ¢o ¢, ip op A 5
Vt. ((Def ip) when (isHi ¢1)) ¢ A
Vm. m<n D ((Def (op m)) when (isHi ¢,)) 0
let ipy, = (Val_Abs ip) when (isHi ¢;) (3.58)

in
let opg, = (Val_Abs op) when (isHi ¢)
in

\ V. opy,(t+n) = ipy, (1)

69

This theorem has the assumption that the input(ip) must be “Well Defined”
every time it is sampled with ¢; being Hi. This is as expected since the Reg device
too has this assumption. But this theorem also has an additional assumption which
states that the inputs of all the Reg devices must be “Well Defined” when the b1
line is Hi for the first time. This is necessary so that only defined values propagate
down the chain. If errors were allowed to propagate down the chain then the
values on the output nodes could not be abstracted to the boolean domain. Since
the previously derived results are stated only in terms of signals abstracted to the
boolean level, it is necessary that this assumption also be present here otherwise
the previous results could not be used.

Finally, note that this extra condition assumes the nodes only to be “Well
Defined,” and not given any particular value. Furthermore, this is only necessary
for the first time that ¢y is Hi, and thereafter the circuit itself can satisfy the
various constraints of the building blocks.

3.9 Summary

In this chapter a technique has been presented for formalising a dynamic integrated
circuit design style in higher-order logic. The design style used as the basis of this
work is known as the CLIC design style. First an informal description of this design
style was given to highlight the various aspects which need to be formalised. The
two phase clocking scheme used, and the charge storage problems of dynamic gates
were then discussed. Finally a complete list of the rules for designing integrated
circuits using this design style was compiled. The remainder of this chapter was
devoted to the formalisation of these rules in logic.

In formalising the CLIC design style, first the algebra of signals on wires was
axiomatised, then the six primitive devices of the cMOS technology were defined;
these being, power, ground, n-type and p-type transistors, a capacitor for charge
storage, and a join device for generating wired-or junctions. Note that all the
building blocks used in the CLIC integrated circuit design style were designed using
only these six primitive devices. For example, capacitors which have a decay time
of greater than one unit of time can be built by joining together many unit-decay-
time capacitors. Infact a formal proof of correctness of a capacitor with decay
time n has been done, and the final statement of correctness was presented in this
chapter.

The two phased clocking scheme was then formalised as the predicate Clock.

This captures exactly the relation between the various clock lines, without impos-

70

ing extra conditions on them such as their values at time 0. This is an important
aspect of the formalisation of the clock. In general if one is presented with the two
phases of a clock, all that can be discerned is the relation between the two, but
it is impossible to say which is ¢; and which is ¢;. Infact calling one of the clock
lines ¢; is merely a label so that one can refer to it later as necessary. Indeed,
the symmetry of the clock between its two phases is an important aspect which
designers make use of all the time. For example a dynamic gate driven by one
phase of the clock is identical in every respect to an equivalent gate driven by the
other phase of the clock, except that the behaviour is also shifted as the clock
phases are shifted. In this chapter, this particular aspect of the clock was also
put to good use. A technique was presented which enabled the behaviour of gates
driven by the ¢, and ¢, phases of the clock, to be derived from equivalent gates
driven by ¢; and @, phases of the clock.

Having dealt with the preliminaries, the specific rules of the design style were
then formalised in logic. An important predicate defined to aid in this respect
was the “Well Behaved (Wb)” predicate. This captures the constraints that must
be imposed on the inputs of CLIC gates to ensure that they operate correctly, and
also expresses the behaviour of well-defined outputs. With the aid of this predicate
Wb, a method was presented to derive the correctness statements for the entire
class of CLIC gates. This method relies on the fact that the form of the correctness
statement developed is uniform across the entire range, from primitive gates to
large and complex circuits.

The use of these formal techniques were then demonstrated through a num-
ber of worked examples, each illustrating a different aspects of combining CLIC
circuits. In each case the form of the derived correctness statement was shown
to be identical. Various different abstraction techniques [Melham 88a] were also
illustrated through these examples. These include representing the behaviour of
circuits at different granularities of time, and using different data types.

71

Chapter 4

Formulating the Correctness

of a Random Walk Filter

In this chapter the statement of correctness for a Random
Walk Filter (RWF) is formulated. The RWF is designed in the
CLIC design style. Integers are used in the specification of
this device since they help represent the functionality in a
more natural way. This does, however, complicate the proof
considerably at the higher level which is not covered in this
chapter. This chapter focuses on deriving the correctness
statement from a cluster of CLIC gates using the formal tech-
niques of the previous chapter.

4.1 Introduction

The Random Walk Filter (RWF) is a device used in applications where it is nec-
essary to keep an average of a sequence of two opposing events. An example of
this might be keeping a track of the number of heads over tails and vice versa in
tossing a coin. In fact this device was specifically designed to provide a correction
signal in a digital phase-locked loop [Cessna 72]. Here, a binary phase detector is
used which gives an indication at each cycle whether the phase of the incoming
signal is leading or lagging the locally generated clock. These lead/lag signals are
then “averaged” using a RWF to provide a correction signal to the loop.

The RWF device can be viewed as an up/down counter which resets itself to
the center position in the count range when it overflows. In fact it is more natural

to view it as an up/down counter over the integers which resets itself to the zero

73

position if it overflows in the positive or the negative direction. This is a more
natural view since the events being counted can be seen to be adding one or
subtracting one from the internal state of the device. So when the internal state
reaches a predetermined value, positive or negative, then the system resets itself
to zero and begins again. Figure 4.1 shows a schematic view of the random walk
filter from the top level with two inputs and two outputs as originally proposed by
Cessna and Levy [Cessna 72]. The or-gate here is used to reset the counter back to
the zero position when an output occurs on either the + N or the — N output ports.
Note how this schematic exactly mimics the informal description given above.

RWF
—— == — — -
o |
Us —+ +N , Uo
| reset |
to zero
o |
Dq —1 -N ' Do
I t

Figure 4.1: Schematic view of an implementation of the RWF

In the remainder of this chapter a specification and an implementation of this
device are formally stated in higher-order logic. The implementation chosen is
different to the above schematic but has identical top level behaviour and goes all
the way down to the CLIC gate level. A formal proof of correctness is then outlined
showing how the implementation chosen actually meets the formal specification.
"This proof has been completed in the HOL system and is not given here fully; only
some of the more interesting parts are presented. In particular a lot of the details
of the top level part of the proof are left out, since they only distract attention
from the main point of this chapter, namely to show that complex devices designed
in the CLIC design style can be formally analysed with the techniques outlined in
the previous chapter.

4.2 Formal Specification

As a first stab at writing the specification, consider a device which is very similar to
the RWF as described above, but is a little more “general.” In this case the device
has only one input and one output. The input, instead of being sequences of pairs
of booleans, is a sequence of integers. The output similarly is a sequence of integers.
This new “more general” device has an internal state which can count up to n.
The top level view of this is illustrated in figure 4.2, as a device with a single input
(p), a single output (op), an internal state (S), and a parameter n which limits

74

the value of the internal state so that it can only be incremented /decremented
to £n.

RwfSpec
ip——| (Sgn) —o0P

Figure 4.2: RwfSpec — An Up/Down Accumulator with overflow

Before constructing a formal specification for this device, note that it does not
match the behaviour of a RWF device as described earlier. The input and the
output ports of this device can take any integer values according to what has been
stated above. But in the case of the actual RWF device, the signals on the input
and the output ports can only be one of three possible values. These values in
their abstract form in the above context can be either a +1, a —1, or a 0, but not
any integer. So to take this into account in the specification, a new type Zjg is
declared for the input and the output signals.

This new type has three values, namely N, U, and D. These stand for, “do
Nothing,” “change(ed) Up by one,” and “change(ed) Down by one” respectively.
The axiomatisation of this new type in the HOL system is a fairly tedious, but
a logically straight forward task. Having declared it as a new type, the usual
theorems enumerating this type and stating the that the objects of this type are
distinct can be derived. These derived theorems are stated here respectively as
follows:

FVe. ea=U V o2=N V =D
EUED AN UAEN AN N £D

The representing type used for this new type is in fact the pairs of booleans.
With this new type definition two new functions are declared. These two functions
map objects of the new type, to its representing type, and back again. The rela-
tionship between these two types is shown figure 4.3 with the two functions named
as “bbtoZjy : bool x bool — Zj2;” and “Zyytobb : I3 — bool x bool” respectively.
Formally these mapping functions are defined as the two equations 4.1 and 4.2.

bbtoTiy(T,F) =a0r U
bbtoZiy(T, T) =aey N
bbtoZjy(F, T) =gy D
bbtoZjy(F,F) =gy N

(4.1)

75

bbtol'm

.I|2|t0|nt
-—_———» _—_»
D
IlZItObb
: bool X bool : Iy :int

Figure 4.3: Relationship between the new type Zjp and others

I|2|tobb U =gef (T, F)
Imtobb D =def (F, T) (4.2)
Imtobb N =def (T, T)

From these definitions note that the function bbtoZjy is not equal to the inverse
of the function Zjgtobb. This can be stated in more formal terms as the theorem:
“F bbtoZjy o Zjgtobb £ I,” where | is the identity function. The reason for this
inequality is due to the fact that the function bbtoZ); is defined in such a way that
it maps (F,F) to V. If the clause (bbtoZjy(F,F) =4e; N') was missed out from the
definition of this function, then the above inequality would hold., The reason for
defining this type conversion (abstraction) function in this way will become clear
in the proof of correctness for the RWF device.

Assuming the input and the output of the RwfSpec device are now a sequence
of values of this new type (Zj), then the behaviour for this device can be formally
stated as equation 4.3. Note that this definition makes use of another type conver-
sion (abstraction) function Zjytolnt, which is also defined below, and the graphical
mapping of it is illustrated in figure 4.3.

RwfSpec n ip op S =gy

S(0) = 0 A
let ipin: = At Zptolnt ip(t)
in (4.3)

V. ipina(t) + S(2)| < 271 —
op(t) =N A S(t+1) = ipime(t) + S(t) |
op(t) =ip(t) A S{t+1)=0
where T tolnt U =405 +1, Ipgjtolnt D =4.p —1, Ipytolnt N =45 0.

76

This looks like a rather complex specification, but it is defined in this way
because it captures all the various aspects that are necessary. Examining it a little
more closely reveals that the value of the internal state S at time zero is 0. Also,
since the input and the output are now defined to have type Iy, their abstracted
value at the integer level can also be only one of the three values; +1, —1, or 0.
This specification states that if adding the integer value of the input to the internal
state causes it to overflow in either direction, then the output is set to the same
value as the input (which indicates the direction of the overflow), and the value of
the internal state is reset to 0. However if the integer value of the input added to
the internal state does not cause it to overflow, then the output is set to indicate
no-overflow(N), and the internal state is changed by adding the integer value of
the input to it.

An interesting lemma that can be derived from this definition is shown in
equation 4.4. This states that the RWF device behaves a bit like an adder; i.e., the
sum of the input and the internal state is equal to the sum of the new state plus
271 times the output. So the output of this device behaves a bit like the carry

out of an adder.

F RwfSpecnipop S D
let ipyy = At. Ipgjtolnt ip(t)
in
let opiny = At. Ipgjtolnt op(t)
in

Vt. ipina(t) + S(£) = 27 opii(t) + S(t+1)

(4.4)

4.3 Implementation

The implementation of the RWF device in the the CLIC design style is done in a
structured way. The design of the whole device is hierarchically separated into the
design of a series of lower level components. At the lowest level there is a device
called the RwfHalfSlice. This is directly implemented in the cLIC design style using
the various CLIC gates. There are two implementations of this component—an n-
type and a p-type. These are illustrated in figure 4.4(a) and 4.4(b) respectively.
Then the RwiSlice device is built by joining two of these RwfHalfSlice devices
together. This is illustrated in figure 4.4(c). Finally a RWF of size n is built by
chaining together n copies of the RwfSlice device together. A RWF device of size n
means that the value at which it resets itself to zero is £27+1,

7

Uz‘—Dc

Ds

:)D - @O— Uo

S

U zd Uz Dz
(a) The n-type RwfHalfSlice

i

j:@ - é: 0— Uo

N

zu xd Uz Dz
(b) The p-type RwfHalfSlice

) nRwfHalfSlice
Ui
Su Uo
[zv xd Uz Dz
zu zd Uz Dz
Dz
Sd Do

pRwfHalfSlice

(c) The RwfSlice

Figure 4.4: A CLIC gate level implementation of the RwfSlice device

78

The implementations of all of these devices is captured in formal notation as
the following three definitions:

nRwiHalfSlice(é1, ¢;, 2, ¢y, Ui, Di, zu, zd, Uz, Dz, Uo, St =gef
dp1 pa2 ps P4 Ps Pe.
Stat_Inv(U%, py) A
Latch(¢1, 6y, St,pa) A
LatCh(¢1’glaP1,p3) A
nXor(¢i,$1aP2,P3, Uz) A ws)
nNory(éy, p2, ps, zu) A
A
A
A
A

PNa“d3(¢1,P2,P3, D$,P4)
pNand, (1, Uz, zd, ps)
nNand?(alapllap&pG)

LatCh(%,%»Pe, St)
HNOI'3($2,p1, St7 DZ, UO)

pRwiHalfSlice(¢1, @y, ¢2, $3; Ui, D, wu, od, Uz, Dz, Uo, 1) =gy

dp1 p2 P3 P4 s Pe.
Stat_Inv(U7, py) A
LatCh(¢1,$1, Sta Pz) A
LatCh(¢1>$1>p1,p3) A
nXor(¢i, 1,02,p3, Uz) A (46)

nNory(@y, pa, ps, zu) A

A

A

A

A

pNand3(¢1,pg,p3, D(I}, p4)
pNand,(¢1, Uz, zd, ps)
nNandz(é,, p4, ps, ps)
Latch(é2, ¢,, ps, St)
pNors(@y, p1, St, Di, Uo)

RwiSlice(¢1, 8, b2, Ba, Ui, Di, Uo, Do, Su, Sd) —a.
dzu zd Uz Da.
nRwfHalfSlice(¢1, ¢y, b3, ¢3, Ui, Di, zu, zd, Uz, Dz, Uo, Su) A
pRwfHalfSlice($1, ¢y, ¢2, ¢y, Di, Ui, zd, zu, Dz, Uz, Do, Sd)

(4.7)

With these definitions in place, the implementation of the RWF device of size n
can be given. Figure 4.5 below shows the circuit that implements this RWF device.
Note that it is entirely built out of RwfSlice devices just as the dynamic shift
register was as presented in the previous chapter. The RWF was in fact designed

79

. Uo(n)
vi—] oo et o 1 R Ruf [— Uo(nt1)
pi| Slice Slice | | Stice [Po(m) Slice | 1,011y
Su(0) Su(1) Su(n) Su(n+1)
Sd(0) Sd(1) Sd(n) Sd(n+1)

n (counting from 0)
Figure 4.5: Implementing a Dynamic Shift Register in CLIC

this way intentionally. Other more efficient implementations could have been used
but this style lends itself more easily to formal analysis.

This implementation is captured in formal notation as the following definition:

Rwf 0 ¢ 51 b2 $2 Ui Di Uo Do Su Sd =ge¢
RWfSIice(qSlaal) ¢2>$2a UZ') Di, UO(O)’ D0(0)7 ,S'u(O), Sd(O))

Rwf (n+1) ¢1 ¢, é2 @, Us Di Uo Do Su §d =gy (4.8)
Rwfn ¢1 ¢, ¢y ¢, Ui Di Uo Do Su Sd A
RwiSlice(¢1, 6y, $2, 62, Uo(n), Do(n), Uo(n+1), Do(n+1), Su(n+1), Sd(n+1))

4.4 Proof of Correctness

In order to make the presentation of this proof of correctness readable, most of the
details of the proof are glossed over. The overall strategy used in constructing this
proof however should be clear from what is described in this section. The detailed
ML code for the proof of correctness of this device is given in appendix C.

The first thing that is done in the process of arriving at the correctness state-
ment for any CLIC circuit is to ensure that the inputs and the outputs of the
various gates are correctly connected. This is done by deriving the various theo-
rems which state that the outputs of the circuit are “Well Behaved,” and “Well
Defined.” Having ensured that the various gates are correctly interconnected, the
next step is to derive the theorem which captures the behaviour of the circuit.
The specification for the RWF has already been stated and defined as the predicate
RwfSpec. In the remainder of this section some of the more interesting intermedi-
ate results are described, together with the final derived statement of correctness
for this device.

One of the most useful lemmas in doing this proof is first stated here as equa-
tion 4.9. The derivation of this lemma is not presented here since it mostly involves

80

considerable manipulations to do with integers. The next chapter makes ample
use of integer arithmetic and it should be clear from that how proofs involving
integers are done.

- Jz. RwiSpec n ip & (Valg, n) A 5
RwfSpec 0 2 op (At. Zppptolnt(S (n+1) ¢))
RwfSpec (n+1) ip op (Valg, (n+1) S)

(4.9)

where

VaII|2| 0 St =def I|2|tolnt(S 0 t)
Va|1|2| (n+1) St =def (Valz'm nS t) + 2“+1(I|2|tolnt(.5' (7’L+1) t))

Informally, this lemma (equation 4.9) states that if two RwfSpec devices of size
n and size 0 are composed together, then what results is a RwfSpec device of size
n+1. There are a number of restrictions necessary for the validity of this lemma;
namely that the value represented by the internal state is always less than 27+1,
where n is the size of the RwfSpec device. This restriction is introduced implicitly
in the lemma as apparent by the use of the two functions Zjytolnt and Valz,,. In
fact this lemma more accurately captures the behaviour of a chain of devices which
are very similar to the RwfSpec device of size 0, with the only difference being that
the type of the internal state of these devices is Tj31- Such a device can easily be
defined and will be quite useful in the proof that follows. The definition of this is
given in equation 4.10. Here a new predicate Slice is defined with three arguments
all of which are now a sequence of values of type Zygy.

Slice ip op S =gy let Siny = At. Ipyjtolnt(S ¢)
in (4.10)
RwfSpec 0 ip op Sin

With the aid of this predicate, the statement of correctness capturing the
behaviour of the RwfSlice device can be derived. The actual derived theorem
is stated here as equation 4.11. Note that it has the same general form as the
various derived correctness statements of CLIC circuits in the previous chapter.
This theorem (equation 4.11) can be stated in English as follows:

Assuming a correct relation exists between the clock lines,

and a correct implementation of the RwfSlice device exists,

81

and the signals on the two input lines U: and Di are “Well Behaved,” and “Well
Defined” at certain points in time during every clock cycle,

and the values of the internal states and the outputs of the RwfSlice device are
initially defined to be Hi and Lo respectively,

then allowing for certain abstractions, the inputs, the outputs and the internal
states of this device satisfy the behaviour as defined by the predicate Slice.

Clock(¢1, ¢1, 42, $2) A
RwiSlice(¢1, B, b2, Ba, Ui, Di, Uo, Do, Su, Sd) A
Wb U: ¢, A
Wb Di ¢, A
~((Val_Abs Uo) when (isHi ¢1) 0) A
- ~((Val_Abs Do) when (isHi ¢1) 0) A 5

((Val_Abs Su) when (isHi ¢1) 0) A
((Val_Abs $d) when (isHi ¢;) 0) A
(Vt. (Def Ut) when (isHi ¢1) t) A
(Vt. (Def Di) when (isHi ¢;) t) A
(Vt. (Def Ui o $43) when (isHi ¢;) t) A
(Vt. (Def Di o $4-3) when (isHi ¢;1) t)

let Ui = (Val_Abs U:) when (isHi ¢;)

in

let Di = (Val_Abs D7) when (isHi ¢;)

in (4.11)

let ip = At. bbtoZy,(Uit, Dit)

in

let Uo = (Val.Abs Uo) when (isHi ¢1)

in

let Do = (Val_Abs Do) when (isHi ¢,)

in

let op = At. bbtoZjy(Uo t, Do t)

in

let Su = (Val_Abs Su) when (isHi ;)

in

let §d = (Val_Abs Sd) when (isHi ¢;)

in

let S = Mt. bbtoZjy(~Sut, ~Sdt)
in
Slice 2p op S

82

The intermediate results so far can now be summarised as follows:

F ... RwfSlice ... D ... Slice ...
F ... Slice ...=... RwfSpecO ...

By using these two theorems together with the lemma regarding RwfSpec stated
earlier as equation 4.9, the final result can now be derived. The derivation of this
theorem proceeds by a chain of derivations based on the fact that the form of
the lemma (equation 4.9) is identical to the form of the implementation (equa-
tion 4.8). Note that the implementation consists of a chain of devices known as
RwfSlice. This is directly mimicked by the specification, as is apparent by the
lemma (equation 4.9), where use is made of the predicate Slice. Since one of
the above two results (equation 4.11) shows that the RwfSlice device is a correct
implementation of the specification stated by Slice, then by a little extra logical
manipulation, the final result is derived. This is stated below as equation 4.12,

In its simplest form, the final derived theorem(equation 4.12) states that the
implementation represented by the predicate Rwf, implies the specification repre-
sented by the predicate RwfSpec. This is naturally allowing for certain abstrac-
tions, both on the data type and the time grains at which the signals are viewed
at various nodes. As before this result can be stated in English as follows:

Assuming a correct relation exists between the clock lines,
and a correct implementation of the Rwf device exists,

and the signals on the two input lines Uz and Di are “Well Behaved,” and “Well
Defined” at certain points in time during every clock cycle,

and the values of the internal states of each of the sub-components are initially

Hi,
and the values on the outputs of each of the sub-components are initially Lo,

then allowing for certain abstractions, the inputs, the outputs and the internal
states of this device satisfy the behaviour as defined by the predicate Rwf.

83

C|°Ck(¢1,$1, ¢2>$2)
Rwfn ¢y é;, ¢y é, Ui Di Uo Do Su Sd

Wb Ui ¢,
Wb Di 3,
(Vn. ~((Val_Abs (Uo n)) when (isHi ¢;) 0)

> > > > > > > >

L | (Vn. ~((Val_Abs (Do n)) when (isHi ¢,) 0) 5
(Vn. ((Val_Abs (Su n)) when (isHi #;) 0)
(Vn. ((Val_Abs (Sd n)) when (isHi ¢;) 0)
The lines Ui and D1 are defined at various times,
let Ui = (Val_Abs U%) when (isHi ¢,)
in
let Di = (Val_Abs D1) when (isHi #,)
in
let ip = At. bbtoZyy(Uit, Dit)
in
let Uo = Val Abs(Uo n) when (isHi ¢;)
in
let Do = Val_Abs(Do n) when (isHi ¢;)
in
let op = At. bbtoZyy(Uo t, Do t)
in
let Su = Az. §~ o (Val_Abs(Su z) when (isHi ¢1))
in

let Sd = Az. $~ o (Val_Abs(5d z) when (isHi 4;))
in

let S = Az t. bbtoZjy(Su = t, Sd z t)

in

RwfSpec n ip op (Valg, n S)

(4.12)

Where § in the above expression is a means of quoting the negation(~) function.

84

4.5 Summary

In this chapter a fairly complex device known as the Random Walk Filter (RWF)
has been analysed. A full gate level implementation of this device in the cLIC
design style has been presented. The design is done as a series of cells which can
be joined together to generate a RWF device of arbitrary size. The critical path
through a cell is optimised such that there is minimal delay, in this case only one
gate delay.

A formal specification for this device is then formulated. This specification is
formulated with the assumption that at start-up time, the internal state of the
RWF device is zero. Since nothing in the design of the RWF device states that
the internal state at start-up time should be zero, the final derived statement of
correctness instead carries it as an assumption. Also since the specification is
stated at a fairly abstract level, various abstraction functions are used in the final
statement of correctness to link the specification with the implementation.

The form of the correctness statements for the various cells, and for the random
walk filter, are identical to the various examples presented in the previous chapter.
This is an important factor in using this formal design technique. If at each level
the statement of correctness has the same general form, then arbitrary mixing
of complex and trivial devices can be done with ease. This is often the case in
designing large circuits, where the outputs of large macro blocks are connected to
the inputs of primitive gates and vice versa. The example used in the next chapter
is typical in this respect.

85

Chapter 5

Proof Plan for the Correctness of
a Window Comparator

In this chapter a plan for the proof of correctness of the
Window Comparator is presented. This is also known as
the CWIT device — Compare WithIn Tolerance. The proof
uses integers and modular arithmetic, but it does not go
all the way down to the transistor level as in the previous
chapter. However, the primitive devices used in constructing
this device can be trivially proved down to the transistor
level. An informal specification is first given which is then
improved as the proof develops.

5.1 Introduction

Content addressable memories, associative memories and window addressable mem-
ories: these are the areas for which the Window Comparator device was originally
designed. Window Addressable Memories (or WAMs) are a class of devices where
the memory architecture is set up in such a way that the incoming data is compared
to the stored values, and the address of a matching data-set is output.

One particular WAM design developed at Racal Research by Orton and his
team [Darby86], had the requirements that the incoming data only had to be
within the window setup by the data set, rather than being an exact match. In
this design the stored data is split into n words. For each of these n words there
Is a corresponding tolerance value that is stored in a parallel bank of memory.
These two banks of memories are set up as two barrels which can be rotated by

87

incrementing the address counter. Then, by wiring the window comparator in the
middle of these two memory banks, the design of a window addressable memory
results. This WAM provides the address of the first data-set that contains the value
of the incoming data using an n-dimensional window space.

The architecture and design of this WAM is not the concern of this chapter, but
the window comparator used in its design is. This WAM does however illustrate
the possible uses of the window comparator. See [Darby 86] for further details of
this WAM design.

Presented here is an outline of a proof of correctness of the window comparator
(also known as the CWIT device — Compare WithIn Tolerance). Some of the
steps in the proof are difficult to formalise though the intuitions behind them are
relatively straightforward. The presentation given relies on the readers intuition
of arithmetic and hence cannot be called a formal proof. However the proof plan
presented here contains sufficient details, and can be used as the basis for doing
this proof in an environment in which each step is checked by a theorem proving
system giving rise to a formal proof.

Before proceeding further, the following (old) question arises:
“What does it mean to do a proof?”

A proof in the context of this chapter means showing that the implementation
implies the top level specification. So, to finally arrive at this implication, the
remainder of this chapter is separated into the following parts:

e Formulating the specifications.

e The presentation of the implementation, i.e. a means of realising the
specifications in hardware.

e A proof outline to show the correctness of this device.

5.2 Formulating the Specification

The CcWIT device is simply a device which takes three numbers and returns an
answer True or False. This is illustrated in figure 5.1 as a device with three inputs
and a single output. The function of this device is to return a True answer if
the number on the data input lies within the range “mean — margin® to “mean +
margin,” and False otherwise.

88

margin —
data — CWIT |— output
mean —

Figure 5.1: Top Level view of the cWIT device

This English description can be formally stated as follows:

Cwit_Spec mean margin data output =g

5.1
output = ((mean — margin) < date < (mean + margin)) (5-1)

5.3 Implementation

The implementation for performing this CWIT operation is illustrated by the di-
agram in figure 5.2. The architecture used is optimised for speed of calculation
rather than reducing the size, or simplicity of design.

msb

Adder

~S

Not_Gates n
7

>0~

margin

Cin
I
True

Mux

e outpul
msb —{>O———o/ i

Adder

®

~.S

data

Cin

|
True

msbh

Adder

Not_Gates

mean—?L———— —{>O—

~3

Cin
I
True

Figure 5.2: Block Diagram of the cWIT Device

Note that data, mean, and margin are parallel n-bit inputs and the output is
a single bit which is either True or False. All functional boxes are individually

89

realisable in hardware and have relatively simple top level definitions. The three
input adders could have been built out of two input adders, but this combined
three input adder architecture was used for reasons of speed. Note also that only
the most significant bit (MSB) of each of the adders is used, so a substantial part
of the logic circuitry is missing. This further helps to speed up the calculation
since it reduces the total loading on some of the internal gates. The two different
kinds of NOT blocks in the above diagram are merely a short hand for a bit-wise
negation of the signals going in. So the inside of an n-bit NOT block is simply n
inverters in parallel.

Finally note that it is not obvious that this implementation actually performs
the required CWIT operation. The purpose of the proof outline that follows will
be to show that this is so.

5.4 Proof of Correctness

The proof presented is what is known as a “forward proof” where the top level
statement of correctness is derived by composing the statement of correctness of
the lower level devices. As an overview of the proof that is to follow, here is an
approximate list of the steps that are involved:

1. State the interpretations given to the various signals on each of the wires or

busses.

2. Specify the behaviour of all the internal blocks of the CWIT device in terms
of the above interpretations for the various signals.

3. Compose the specifications of the internal blocks and derive the top level
statement of correctness for the CWIT device.

4. Massage this derived top level statement of correctness and transform it into
the form in which it is required.

5.4.1 Interpretations of Signals

Before the proof can begin, it is necessary to clearly state the interpretations
given to the signals on each of the wires or busses. Consider for example the
interpretation given to the data input. This could be interpreted as simply the set

90

of positive integers, or the set of positive and negative integers. In fact there are
various different interpretations for negative integers that could be used.

To begin, note that in the specifications, a difference needs to be performed
between two inputs as a means of finding out which of the two is greater. This
implies that a subtraction needs to be done, followed by a check on the sign of the
result. Now since a subtraction needs to be performed, it is convenient to use an
interpretation on the inputs which allows negative number representation. This
allows for many different representations but in this case the “2’s complement”
interpretation on the inputs is used. This is because it is easier to do both addition
and subtraction using the same hardware if this interpretation is used. Also it is
helpful not to have to do conversions in the proof from one number representation
and another.

In summary it can be stated that all single bit wires are interpreted as booleans
and all busses carrying numbers are interpreted in 2’s complement form.

5.4.1.1 2’s Complement Number Representation

An n-bit vector in 2’s complement form represents a number in the range, —2" to
2™ — 1, where n in the number of bits counting from zero. e.g. for n = 3 the range
of numbers is from —8 to 7, i.e. there are actually 4 bits in this vector.

The most significant bit of the number represents its sign, but the remaining
bits do not represent the magnitude in a simple linear fashion as might be expected.
This is so to make the hardware simple. i.e. a simple n-bit adder can be used to
do both addition and subtraction by only using additional inverters, as is the case
in the CWIT device. Note, to take the 2’s complement of a number is equivalent
to multiplying the number by minus one.

The following definitions are used to convert a bit-vector into an integer.
BitVal 2 =4y If (z)

Then 1
Else 0

A° =def 1
Antl =def A x A"

Val 0 z =4 BitVal 2o
Val (n+1) = =4y Valnz + 271 xBitVal 2,4

91

iVal 0 T =gey —BitVal z¢
iVal (n+1) 2 =45 Valnz — 2™ xBitVal 2,44

Note the last definition given above is not really recursive but it is presented in
that form because the two cases are different.

5.4.2 Specification of the CWIT primitives

There are essentially three kinds of primitive devices used in the design of the
CWIT device:
e The n-bit and the single bit NOT device.

e The three input and two input full adders, with carry in, and only
the Most Significant Bit (MSB) as output.

e The Multiplexer (Mux) Device.

The specifications of these are given below.

5.4.2.1 The NOT Device

There are two versions of this device. One version takes a single input and gen-
erates a single output, and the other takes n inputs and generates n outputs. In
order to differentiate between the two, the first shall be referred to as the Not_Gate
device and the second the Not_Gates device. These can both be defined as follows:

Not_Gate Ty =def (y = N(E)

n
Not_Gates n ¢ y =g,y /\ Not_Gate z; y;

1=0

Notice how the second definition is defined in terms of the first. This directly
reflects the implementation, which states that the n-bit Not_Gates device is simply
a parallel array of inverters, i.e. a parallel array of Not_Gate devices.

Having stated these definitions is not enough. Recall that the 2’s complement
number representation is being used on all busses. So in order to make the specifi-
cations of the Not_Gates device useful, its behaviour must be represented in terms

92

of 2’s complement numbers both going in and coming out. Rather than state
the behaviour of the Not_Gates device in this way, it can be derived from the the
previously defined iVal function and the other related definitions. However for the
moment only the final derived result is stated:

Not.Gatesnzy = (Valny = —(Valnz + 1)imod 2"*!) (5.2)

Where imod is used to represent modular arithmetic over the integers just as one
uses the mod function over the natural numbers., The definition for the imod
predicate is given below. An important thing to note about this definition is
that it most naturally reflects the way one thinks about the addition that occurs
when using an n-bit hardware adder. So this will also be useful in specifying the
behaviour of the adder device.

& imod 2™t =, . If z >2" Then (¢ — 2"*1) imod 27+1
Elself z < —2™ Then (z 4 2"t1) imod 2"t!
Else = .

5.4.2.2 The ADDER Device

The Adder device as used in the CWIT implementation is not what is normally
understood to be the hardware adder. Normally an n-bit adder has an n-bit output
but in the case of this Adder device, only the MSB is computed and presented at the
output. In order to appreciate what is really going on, think of this Adder device
as being composed of two devices. One is the traditional adder device with an
n-bit output, and the other is a “ghost” device which selects the most significant
bit of the output of the adder. For clarity these two new internal devices shall be
called the Adder’ and the MSB’ devices respectively, and the final device they form
shall be referred to as the Adder device. This is illustrated in figure 5.3.

Adder
e e e e i Bl |
! oo |
PITT pdder 1 s L op
ipz—/L——: :

Figure 5.3: Inside view of the 2 input Adder as used in the cwIT device

In selecting the MSB of the output of the Adder’, the MSB’ “ghost” device also
cats away the excess circuitry in the Adder. So the net effect of having these

93

two devices connected in this way is to leave behind only that circuitry which is
necessary to calculate the MSB of the add operation over the two inputs.

Rather than giving a single definition for the Adder device, given below are
definitions for both the internal devices. The reason for this will become clear
when the time comes to compose all of these device specifications together to
generate the top level specification for the cwIT device.

Here then are the definitions for the two internal devices of the Adder. These
definitions do not reflect how the Adder’ or the MSB' devices are implemented, but
merely state their most abstract specifications.

iVal n ’I:pl +

Adder’ n ¢, ipy ipy sum =g¢ey Valn sum = |Val nip, +|imod 27!
BitVal ¢;,

MSB' n ip sign =g (sign = —2" < (Val n ip) < 0)

In the definition of the MSB' device it is necessary to make clear that two
separate comparisons are not being performed followed by a conjunction of the
results. Under modulo arithmetic there is no “less than” operation, so the above
definition must be interpreted as a means of checking to see if (\Val n ip) lies
within the specified range. An alternative to this notation is to use the “interval”
notation. There are four different sorts of intervals which can be represented in
this interval notation, namely:

. z € (ab) = a < z < b
2. =z e (ab)] = a < 2z < b
3. =z € [a,b) = a < z < b
4, z e [a,))] = a < 2z < b

The third one of the above interval structures would be used in the MSB’ de-
vice. The definition of the MSB’ device using this interval structure would then be
modified to look as follows:

MSB' n ip sign = (sign = (iVal n ip) ¢ [-2",0))

An interesting feature of this particular interval structure is that, to say some-
thing does not belong to an interval is equivalent to swapping the two limits.

94

Rule 5.1 (NOT Rule) ~(z € [a,0)) = =z €l[ba)

'This will be useful when the specifications of these devices are composed together.

Before going on there is perhaps one further advantage about this half closed
interval structure which needs to be pointed out. Recall that the specification for
the Adder’ device uses the imod predicate. In natural numbers (2 mod n) is always
less than n; i.e. (# mod n) < n. However for the integers this changes and, based
on the definition of the imod predicate given earlier, it becomes:

Van -—2"<(zimod2"!) < 2"

This can now be rewritten using the same half closed interval structure as used
for the MSB’ device as follows:

V2 n. (zimod 2"1) ¢ [—27 27)

Note: The definition for the three input Adder as used in the Window Comparator
device is a simple extension of the definitions given above, and will not be
presented here.

5.4.2.3 The MUX Device

This device has three inputs and a single output as illustrated in figure 5.4. It is
perhaps the simplest to define, as compared to the Adder or the NOT devices as
given above. In English the behaviour could be stated as “If the ¢t input is high,
Then the output equals ip;, Else the output equals ip,”.

ipg—I—e Mux
_e——output

?:pl——c/

ctl

Figure 5.4: Multiplexer used in the cWIT device

This English description can be formally stated as follows:

Mux ctl ipy ip; output =gy output = If (ctl)
Then ip, (5.3)
Else ipy

95

5.4.3 Top Level Behaviour of CWIT

In this section the top level specification of the CWIT device is derived using the
various definitions of the primitives and the interpretation functions stated above.

To start with, notice that the mean input goes through the Not_Gates device
to the three Adder devices (see figure 5.2 on page 89). Also, all these three Adder
devices have their ¢;, signals held true. Taking just one of these slices and explod-
ing the Adder device to show the internal “ghost” device gives rise to the picture
in figure 5.5.

oy
tp1 7
. n, n res
ip2 /n ST —{ Adder’ MSB! — output
ot_Gates mean
mean ——f— TS0 / Cin

[
True

Figure 5.5: Single Stage of the inside of the CWIT device

Using the names of the internal nodes as stated in figure 5.5, the structure of this
Slice can be formally stated as follows:

Slice n ipy mean ip; output =gyef
dmean’ cin res. (cin = True) A
Not_Gates n mean mean’ A
Adder’ n c;, ip; ip; mean’ res A
MSB’ n res output

From this definition the following theorem stating the behaviour of the Slice device
can easily be derived,

Slice n ip; mean ip; output O

iVal n ipy + (5.4)
output = | [iVal n ip; — |imod 2"+ | € [-2",0)
iVal n mean

The steps involved in arriving at this theorem are as follows:

96

1. Set the goal to be proved:

Slice n ip; mean ipy output D
¢« iVal n ipy + 7
output = | [Valnip; —|imod 27+ | e [—27 0)
iVal n mean

[

2. Rewrite for Slice in the above subgoal and then move the result to the as-
sumption list. Simplify the assumption list by first choosing free names
for the existentially quantified variables and then splitting up the resultant

conjunct.

iVal n ip; + 99
output = | |iVal n ip; — [imod 2"+1 | ¢ [-27,0)
iVal n mean
(¢in = True)

Not_Gates n mean mean’

44

Adder’ n ¢, ipy tp; mean' res
MSB’ n res output

3. Rewrite for the specifications of the Not_Gates, Adder’ and the MSB’ devices
in the above assumption list,.

@ iVal n ip; + 59
output = | |iVal nip; —|imod 2"t | € [-27 0)
iVal n mean
[(cin, = True) 7
(Val n mean’ = —(iVal n mean + 1) imod 2+1)
iVal n ip, +
iVal n res = :\\;:: Z Zrizan' i imod 271
BitVal ¢;,
|(output = (iVal n res) e [—2",0)) |

4. Finally the theorem is proved by rewriting with the assumptions together
with the following simplifying theorems:

BitVal True = 1
—(iVal n mean + 1)imod 2! = —(iVal n mean + 1)
R I R

97

With the aid of this relatively abstract specification for the Slice(equation 5.4),
a more usable description can now be given to the signals coming out of the three
Adder devices as shown in figure 5.2 on page 89. The block diagram in figure 5.6
below shows the CWIT device with the Slice block inserted in place the Adder, etc.

devices.

Not_Gates | % margin' [
/

I>o-

\\3

margin

- Slice

Mux

n / o]
data —+ + Slice JL—I>OJL---‘/

@

+

output

Slice

\\§
1

mean

Figure 5.6: Block Diagram of the cWIT Device using Slice

Note that for this proof all arithmetic has been “imod 27*” and will continue
unchanged. Also, for all the busses, their value is always used under the assumption
that they carry a number represented in 2’s complement form, hence the iVal
function is always used. So for brevity the following notational abbreviations will

be made:
(¢ +y)mod 2 = (2[y)
(z — y)imod 2" = (g)
(Val n data) = data
(Val n mean) = mean
(Val n margin) = margin

The proof of the CWIT device given below follows almost an identical pattern as
that presented for the Slice device above. So, rather than writing large equations
giving all the assumptions etc., only the interesting parts of the goal are shown at

98

any time. This is done in the hope of making the proof more readable, but the
derived result will be shown in full at the end,

Using the specifications for the Slice block as derived above (equation 5.4), the
equations describing the signals on the internal wires z, Yy, z and y’ can be stated

as follows:
z = (data margin’ [Z] mean) € [—27,0)
y = (data margin [Z] mean) € [—-27,0)
z = (date [F] mean) e [-270)
yoo= o~y
Where
margin' = —margin 1 by equation 5.2

Rewriting for margin’ in the equation for z above and simplifying gives:

¢ = (deta [5] margin B mean‘El 1) e [-2%0)

and rewriting for y in the equation for y' above and simplifying using the
NOT Rule (Rule 5.1, page 95) gives:

Yy = (date margin [7] mean) € [0,—2")

Now before going on to the Mux device, it is worth rearranging the three derived
equations for z, ¥’ and z as follows:

¢ = date e [mean[¥] margin[7] 1 []2", mean [¥] margin [7]1)
Y = data € [mean [£] margin, mean [Z] margin =] 2")
Z = dala e [meen[]2", mean)

With the equations in this form and with the aid of the following rules for the
intersection and union of intervals, the resultant equation for the output of the
Mux device can be simplified considerably.

Rule 5.2 (Intersect) <: : {?2 /\) = ze ([a,0) N [ed))

99

Rule 5.3 (Union) Cﬁ : {j’g V) = ze ([a,0) U [c,d))

Where N and U represent interval intersection and union respectively,

Now by using equation 5.3 from page 95, the specification for the Mux device
in the above context can be stated as follows:

output = If (2)
Then 3’
Else =z

Rewriting for #, y’ and z in this gives:

output = If data e [mean [7] 27, mean)
Then date € [mean [T] margin, mean [-] margin [7] 2")

Else date e [mean [+] margin[]1 12", mean[¥] margin[7]1)

Now since all the components of the above “If... Then.. .Else...” statement
are booleans, the following transformation can be applied.

If a
Rule 5.4 | Thenb]| = (aAb)V (~aA c)
Else ¢

This transformation together with the NOT Rule (Rule 5.1, page 95) applied
to the result of the Mux device gives:

date € [mean[]2", mean) A v
output — dote € [mean [T margin, mean [£] margin [7] 2™)
(data, ¢ [mean, mean[7]2") A
data € [mean[7] margin[7] 1 [£]12", mean [7] margin [7] 1)

And now by using the union and intersection rules, this can be transformed to:

[mean [7] 2", mean) N U
[mean [Z] margin, mean [-] margin [7] 27)

[mean, mean[7]27) n
[mean [T] margin [7] 1 [[]12", mean [+] margin[7]1)

100

output = data e (

So the final derived result for the cwiIT device can be stated as follows:

Cwit_lmp mean margin data output D

([z_n_w_nEIQ“, mean) N) y

[mean 7] margin, mean 5] margin [7] 27)
[mean, mean[Z]2") N
[mean [7] margin [7]1 [5] 2", mean [7] margin [7]1)

where Cwit_Imp represents the implementation of the cwIT device.

output = data e <

Not surprisingly, this looks nothing like the original specifications(equation 5.1)
for the cWIT device. However note that the original specifications were incomplete
and did not contain the complications of number wrap around when using modulo
arithmetic. If the numbers are guaranteed to be small and there is no wrap around
when doing arithmetic, then the above derived result will simplify to look very
much like equation 5.1 of the original specifications. Before attempting this it is
necessary to transform the specifications as stated in equation 5.1 to be in the
same form as the above derived result.

5.4.4 Specification Transformation

Here the specifications are transformed is such a way that they use the same
interval notation as used in the above derived result. The steps involved are
trivial and are not stated here; only the final results are shown. However these
steps can be followed by reference to the definitions of the interval structures as
stated on page 94.

output = (mean — margin) < date < (mean + margin)
= data € [mean — margin, mean + data] (5.5)

= data € [mean — margin, mean + data + 1)

5.4.5 Result Transformation

In order to show that the implementation meets the specification under certain
circumstances, a case split is done on the basis of the value of margin.
e Either margin is positive. 1i.e. margin ¢ [0, 2)
e Or margin is negative. i.e. margin € [2", 0)
101

In the proof that follows, use is made of circular diagrams as a means of
representing modulo-n integers. Figure 5.7 illustrates a simple example where
the entire circle represents the entire cyclic number range, and the directed arc
represents the half closed interval [a, b).

a

Figure 5.7: Example of representing an interval over a cyclic number range

Armed with this pictorial notation for cyclic numbers, the proof of the various

cases can now begin.

5.4.5.1 Case: margin is positive

The equation that needs to be simplified is the right hand side of the derived result
which can be stated as follows:

[mean [Z] 2", mean) N U
data ¢ [mean [7] margin, mean [Z] margin [7] 2")
[mean, meanEl 2m) N ,)

mean [+] ma,rqzn 1 2™, mean [¥] marqin[+] 1
[+]

This is best tackled by splitting the calculation into three parts; simplify the two
intersections first and then take their union.

First Intersection

[mean [7]2", mean) N [meen 7] margin, mean [5] margin] 2")

The simplified form of this can be easily seen from the following diagram il-
lustrating an arbitrary intersection of these two intervals. Care has been taken
to make sure that the two intervals are in the correct relation, i.e. the value

“mean [Z] margin” must lie within the range “[mean [F] 2%, mean)” to satisty
the initial condition on the value of margin.

102

3
o
=
3

|
I

mean [] margin

mean [Z] marqgin =] 2n

mean []] n

[mean[T] 2", mean) N [mean [T mergin, mean [£] margin [-] 2")

=simp |mean [T] margin, mean)

Second Intersection

[mean, mean[5]2") N [mean [7] margin [7] 1 [5] 2", mean [¥] margin[7]1)

Following a similar argument to above but this time ensuring that the value
“mean [¥] margin [¥] 1”7 lies within the range “[mean, mean [£]2%)”.

mean [+ marqin 1

mean [1] marqgin 1 =] 2"

mean B pA

[mean, mean[T]2") N [mean [7] margin [7] 1 [£]2", mean[+] margin[+]1)
=simp |IREEN, mean [T] margin 1)

103

Union of the above two results

Now the union of the above gives the required result:

[mean [C] margin, mean) U [mean, mean [+] margin[+]1)

=simp |meEQAN [£] margin, mean[+] mergin[+] 1)

Stating this final result more clearly shows the similarity between this and the
transformed specification as derived earlier (equation 5.5, page 101).

Assuming margin € [0, 2")

Then output = data € [mean [T] margin, mean [x] margin[7]1)

= date e [mean[o] margin, mean [+] margin]

5.4.5.2 Case: margn is negative

Again the equation that needs to be simplified is the right hand side of the derived
result which can be stated as follows:

mean [-] margin, mean [-] marqin =] 2m)

GmeanE}Z”, mean) N) U
[me

mean, mean [7]2") N
[mean [¥] margin [+] 1 [£] 2", mean [+] margin[7] 1)

Exactly the same argument as for the previous case shall be followed except
that this time around the assumption on the value of margin has changed. This
will influence the way the intervals intersect and so the diagrams will change.

First Intersection

[mean [7] 2%, mean) N [mean 5] margin, meen [7] margin [£]2")

The result is again demonstrated by the familiar circular number system di-
agram as before but this time the value “mean [5] margin [7] 27" lies within the
range “[mean [7] 2", mean)” instead of “mean [] margin” as in the previous case.
This is because margin is negative this time around.

104

5
5
=

mean [T] marqin

mean [-] margin 12"

mean [-] A

[mean] 2%, mean) N [mean [Z) margin, mean [Z] margin [Z]2")

=simp [mean 7] 2", mean [T] margin [=]2")

Second Intersection

[mean, mean [7]2%) N [mean [] margin [+] 1 [5] 2", mean [7] margin [£]1)

Again following a similar argument to above but this time ensuring that the
value “mean [7] margin [+] 1 [5] 2"” lies within the range “[mean, mean [5]2%)”.

mean [+] marqgin [+] 1

mean [3] margin[+] 1 = 2n
mean E] 2"

[mean, mean[T]2") N [mean [] margin [+]1[2] 2", meen [7] margin [7]1)
=simp |mean 7] margin[7]1 [£]2", mean[Z]2")

105

Union of the above two results

Again the union of the above two intersection gives the required result.

[mean [¥] margin [+]1 [£] 2", mean[5]2")
Zeimp |Me0N [T] margin[+] 1 [F]2", mean 7] margin[Z]2")

([mcan [£]2", mean] margin[Z]2") U)

So the result for margin being negative can be summarised as follows:

Assuming margin € [27, 0)
Then output = date € [mean [7] margin [¥] 1 [5] 2% mean 5] margin [Z] 2)

= data € (mean [Z]2" [3] margin, mean [7] 2" marqin
gate € (mean [-] 2" [+] ; =] margin

5.4.5.3 Final result by combining cases

By combining the above two cases which are based on the sign of margin, the
final result for the cWIT device can be derived, Since the behaviour is different
dependent on the sign of margin, this is reflected in the following derived equation
which uses the “If ... Then...Else...” construct to reflect this fact.

Cwit_Imp mean margin data output D
output = If margin € [0, 27)
Then data ¢ [mean [T] margin, mean [7] margin]
Else data ¢ (mean[T] 2" [¥] margin, mean [5] 2" [£] margin)

5.5 Summary

In this chapter a fairly complex proof of correctness has been outlined which
uses integers and modular arithmetic. In order to construct the proof (and for the
proof to be readable) many new predicates were defined which capture some of the
behavioural properties of the components used. For example, the imod predicate
was specifically defined in this fashion to reflect the 2’s complement arithmetic
capabilities of a hardware adder. Note that the CWIT device is not a trivial device,
even though its top level specification is small. To give an indication of the size

106

of such a device, a 16-bit implementation of the cCWIT device designed in the cLIC
design style contains approximately 1500 transistors.

Here is a summary of the main results.

Abstract Specification:

output = (mean — margin) < date < (mean + margin)
= data € [mean — margin, mean -+ datal

data € [mean — margin, mean + data + 1)

Il

Derived Result from the Implementation:

Cwit_Imp mean margin date output D
output = If margin € [0, 2")
Then data € [mean [Z] margin, mean [7] margin]

Else data € (mean [7] 2" [¥] margin, mean [Z] 2" [£] margin)

Where (z[ly) = (z-+y)imod 27t
(z[F]y) = (z—y)imod 2"t
data = (Val n data)
mean = (\Val n mean)
margin = (Val n margin)

Note that the derived result uses abstraction functions. These functions map
the representations of data and operations on that data from the implementa-
tion domain to their abstract counterparts. For example the function iVal maps
from number represented in 2’s complement form on a bus to an integer in base
10. Similarly, other functions in the derived result are used to mimic the opera-
tions performed in the specifications; but they too are limited to work within the
restricted set of integers that a particular CWIT implementation is designed for.

With the aid of these abstraction functions it becomes easier to see that the
implementation only meets the specifications if the inputs are restricted to be
within certain limits. This is particularly so for the margin input. The initial
specifications do not say anything about how numbers are to be represented, or
even if there is any bound to the number range for which the specifications are

valid. But from the derived result it is easily seen that if the conditions are not

107

met, then the result generated by the cwIT device will not be to the required
specifications.

Note also that the initial specification was vague and incomplete. It said noth-
ing of the range of numbers within which the device was to operate or if there
were any restrictions as to its operation. However, it must be said that enough
information was present to allow a designer to go ahead and design such a device.
The final design works even if it imposes restrictions on the external ports, and it
is up to the user of this device to say whether these restrictions are too severe or
acceptable.

Perhaps the most valuable lesson that can be learnt from this exercise is that
formal analysis, be it for reasons of proof or not, can, and does help improve and
sharpen the final specifications.

108

Chapter 6

A New Design of a Verifiable
Digital Phase-Locked Loop

This chapter first gives a brief overview of control systems
with particular emphasis on Digital Phase-Locked Loops
(DPLLs). Then a novel design for a new class of phase-locked
loops is presented which uses the devices of the previous two
chapters. A formal specification for this device is presented
together with a sketch for an informal proof of correctness.
Some of the difficulties involved in arriving at the correctness
statement and constructing the proof are then discussed.

6.1 Introduction

Phase-Locked Loops (PLL) have many applications. They form the heart of most
modern communications systems. Perhaps the most familiar device which uses a
phase-locked loop is the high quality turntable, where the speed of the turntable
is controlled by a simple PLL. Phase-locked loops constructed out of purely digital
components are referred to as Digital Phase-Locked Loops (DPLL). They form
a particularly interesting set of devices, since the cost of manufacturing them is
considerably lowered with the use of modern integrated circuit technology. Fur-
thermore, they do not suffer from the problems associated with their analogue
counterparts: sensitivity to de drifts and component saturations, the difficulties
encountered in building higher order loops, and the need for both initial calibration
and periodic adjustments. Elaborate real-time processing on the signal samples
also adds to the attraction of DPLLs.

109

6.1.1 What is a Phase-Locked Loop?

The term “phase-locked loop” refers to a feedback control system in which the
input and the feedback parameters of interest are the relative phases of the wave-
forms. The function of a PLL is to track small differences in phase between the
input and the feedback signal. In the IEEE Standard Dictionary it is said that
the loop circuit locks (synchronises) a variable local oscillator with the phase of an
incoming signal. In fact there is slight contention in the literature as to what these
devices should be called. The term “phase-locked loop” has stood the test of time,
but some would argue that it does not reflect the true workings of the device. So
other terms have been suggested, such as “phase-lock loop,” “phase-locking loop,”
“phase-tracking loop” etc.. In the editorial note of the special issue of the IEEE
Transactions on Communications on Phase-Locked Loops [Lindsey 82}, Lindsey
and Chie argue that the term “phase-tracking loop” should be adopted. They say
that ‘the loop tracks, or tries to track, as well as it can, but isn’t really “locked”
(after all the loop loses lock periodically).” To this a rather intriguing response is
made, in the same article:

A phase-lock(ed) loop: “After long years my phase is locked
Synchronised to the incoming clock
Now some thoughtless nincompoop
Says I'm just a phase-tracking loop?”
—-R. Huang, TRW Systems, Redondo Beach, CA
[Lindsey 82]

So now a “Feedback Control System” needs to be defined. A useful definition
of this was given by the Institute of Radio Engineers (U.S.A) in 1956 as follows:

Feedback Control System. A control system, comprising one or
more feedback control loops, which combines functions of the controlled
signals with functions of the commands to tend to maintain prescribed
relationships between the commands and the controlled signals.

[IRE 56, section 2.4.2]

The idea of automatic control is in fact quite old, stemming back to about 1790
when James Watt invented the centrifugal governor [Clark 68, Trinks68] to control
the speed of his steam engines. The problem was that when a load was applied the
engine’s speed fell, and when the load was removed the speed increased. So the

centrifugal governor was used to maintain constant speed. The governor controlled

110

the opening of the valve feeding the steam to the engine. When an extra load is
applied, the speed of the engine tends to fall which causes the governor to increase
the opening of the valve allowing more steam pressure to the engine. The speed
thus tends to rise, counteracting the original tendency for it to fall. Similarly if the
load is removed the speed tends to increase, which causes the governer to close the
valve and thus counteract any tendency for the speed to rise (for a more elaborate
explanation of this control mechanism see [Atkinson 78, pages 1-6]).

So the purpose of the governer can be thought of as a device trying to maintain
a constant relationship between the actual speed and the required speed of the
engine. In fact it is the difference between the actual and the required speed which
is used to control the opening and closing of the valve. This entire procedure can
be modeled as a system with three basic building blocks; the Error Detector, the
Controller and the Output Element. Figure 6.1 shows how these building blocks
are used in constructing a simple feedback control system.

Error
Detector

error |~ troller Output

; » 0P
ip—op Element

ip

Feedback

Figure 6.1: A simple feedback control system

The Error Detector generates an instantaneous difference between the input
(¢p) and the output (op) known as the error. In the case of the governer, the input
would be the speed at which the engine is required to run, and the output would
be the actual speed of the engine. The instantaneous error signal is then passed to
the Controller. The purpose of the Controller is to translate the signals from the
Error Detector into control signals that are more reliable than the instantaneous
error. In the case of the governer this is accomplished by the momentum of the
device which can be thought of as performing a weighted running average of the
previous values. Finally the Output Element uses this control signal to modify
the output in the appropriate way. In the above example this would include the
equipment which opens and closes the valve, the boiler, the steam engine, and
everything else necessary in make the engine run.

Like all feedback control systems, the phase-locked loop also conforms to this
abstract model. The error detector is more commonly referred to as the Phase
Detector. The output of this is a voltage V., being some function of the phase dif-

111

ference between its two input waveforms. This error voltage (V,) is approximately
proportional to the phase difference between the two waveforms when the phase
difference is small. The controller is now a simple low-pass filter used to give a
more reliable control signal (V,) rather than the instantaneous phase difference.
Finally the output element is replaced by a Voltage-Controlled Oscillator (vco).
This device generates a waveform whose frequency is controlled by its input volt-
age. For small input variations the rate of change of phase in the output waveform
is proportional to its input voltage. An analogue PLL using these components is
illustrated in figure 6.2. Note how closely this model of a phase locked loop mimics
the abstract model of a feedback control system presented above.

Phase
Detector
v Low-pass v
?:p d ‘ j Filter ¢ VCO - OP
Feedback

Figure 6.2: Block diagram of an analogue phase-locked loop

6.1.2 Digital Phase-Locked Loops

Early efforts on digital PLLs concentrated on partially replacing the analogue com-
ponents with digital ones. Perhaps the earliest reported accounts in this direction
are by Clark in 1949 [Clark49], and Hugenholtz in 1950 [Hugenholtz 50]. Clark
used a sample and hold circuit in the phase detector, and Hugenholtz described a
method for discontinuously varying the output frequency. Surveys of DPLLs giving
many references are presented in [Lindsey 81,Rey 82], where further details of the
historical development of the various types of DPLLs can also be found.

In their survey of DPLLs [Lindsey81], Lindsey and Chie separate the various
classes of loops into four categories, based on the design of the phase detector.

e Flip Flop (FF)-DPLL
The phase error is derived from the duration between the set and the reset
times of a flip-flop triggered by positive zero crossings of the input signal
and the local clock.

e Nyquist Rate (NR)-DPLL
The input signal is sampled at the Nyquist rate.

112

e Zero Crossing (ZC)-DPLL
In this case the loop tries to sample at the zero crossings of the incoming

signal.

e Lead/Lag (LL)-DPLL
Here the phase detector determines at each cycle whether the input leads or
lags the locally generated clock.

The one that is of interest here is the lead/lag DPLL, Only this will be described
here in more detail. For details of the other types of DPLLs, see Lindsey and Chie’s
survey.

6.1.3 The Lead/Lag Digital Phase-Locked Loop

Beginning in 1961 at the University of Iowa, the lead /lag DPLL was employed in the
Injun I-III satellite program. It was originally proposed and analysed by Cessna
[Cessna 70a,Cessna 70b] in 1970. Later in 1972, Cessna and Levy [Cessna 72] pre-
sented the behaviour of this type of loop in white Gaussian noise conditions. They
presented two realisations of the sequential filter (random walk filter) and made
comparisons to a first-order linear loop. A block diagram of this type of loop is
shown in figure 6.3.

Error Controller Output Stage

Detector r-— === === === A

: Fixed :

| Frequency :

1| Clock |

| |

| !

. lead : advance | |

_ Binary Sequential 7| Addor |
9 — Phase lg | Loop vetard | Delete +K > 0P

Detector Filter p| one Cycle |

b o e e e e = = o - — .

Feedback

Figure 6.3: A lead/lag DPLL due to Cessna and Levy

The operation of this loop can be divided into three parts: 1) the phase de-
tector, 2) the loop filter, and 3) the output stage. At each cycle the binary phase
detector determines whether the input leads or lags the locally generated clock.
This, in fact, is an extremely coarse error detector, and its result is indicated

113

as a pulse on either the lead or the lag output. These instantaneous error sig-
nals are then passed through the loop filter to generate advance/retard signals
which are more accurate than the signals lead/lag. The loop filter accomplishes
this translation by dealing with signals “lead” and “lag” in a statistical manner.
These advance/retard signals are then passed to the output stage. Here a single
pulse is added/subtracted to the local high frequency clock pulse train for each
advance/retard signal, and then divided by K to generate the controlled output,
In this way the loop output is matched to the incoming signal, phase for phase.

Note that the output can only be adjusted in phase by increments of 360/,
Also the time interval between such adjustments is limited to how often the correc-
tion signal can be generated by the sequential loop filter. A typical implementation
of the sequential loop filter is the Random Walk Filter (RWT) as illustrated in fig-
ure 6.4. With this implementation, the maximum rate at which a correction signal
can be generated is every N input transitions. The duration time between two
such correction signals is maximised when the probability of the lead and the lag
signals is equal.

RWF
-r— = = == - n }
| |
lead 1 +] | advance
! 1o mero [
| |
lag -t N T retard
e — e . — — - -

Figure 6.4: Implementation of the Random Walk Filter

The rate at which such a loop can track the phase of an input signal is limited
by the size of the RWF, and the size of the phase adjustment step (K) in the output
stage. Since the latter is limited by the maximum resolution of the phase error
that can be tolerated by the specifications (360/K°), this reduces the problem of
control to the RWF. If the size of N in the RWF is decreased, it results in shorter
delay before any output is produced. This will have the desired effect of improving
the tracking ability of the loop, but a byproduct of this is to introduce Jitter on
the output. Jitter is the tendency of the output to oscillate around the desired
value.

Clearly these two required properties of DPLLs, namely low phase jitter and
good tracking ability, are contrary to each other in this design. This problem has
been tackled in the literature in two different ways. Firstly, by providing additional
control in the loop filter, and secondly by adding additional control in the phase
detector and the output stage.

114

6.1.3.1 Improving the Loop Filter

This technique involves introducing a sort of a “memory” into the RwF. This re-
sults in a second order loop filter type of behaviour. It was reported by Yamamoto
and Mori [Yamamoto 78] in 1978. If the RWF as presented above is referred to as
the 0-reset-RWF, since it resets itself to the zero position when it overflows in ei-
ther the positive or the negative direction, then the new filter as presented by
Yamamoto and Mori is a RWF which has a variable reset position which they
call the variable-reset-RWF(VR-RWF). It consists of two RWFs, one of which is the
O-reset-RWF controlling the resetter to the other. This is illustrated in figure 6.5.

lead +1 +N - advance

lag -1 -N retard

Preset

+1 +N +
{
';e::w @ Resetter
> -1 -N 3

Figure 6.5: The variable-reset-RWF due to Yamamoto and Mori

The principle involved here is that if on average there are more lead signals
than lag, then the reset value of the output RWF is increased to help it generate an
advance signal with fewer input transitions. Similarly if there are more lag than
lead signals on average, then the reset value of the output RWF is decreased which
results in a retard signal being generated sooner. If the probability of both the
lead and lag are equal then the whole system behaves like a 0-reset-RWF.

6.1.3.2 Improving the Phase-Detector and the Output Stage

This technique was reported in 1984 by Sandoz and Steenaart [Sandoz84] and
involves having two additional binary phase detectors. These additional phase
detectors are set up such that they sample the input signal shifted by +A and
—A respectively. Now if the PLL is assumed to track the positive zero-crossings
(£ edges) of the input signal, then the sign of the additional phase detector results
(+1 or —1) can be used to determine whether the PLL output is relatively close
to the incoming f edges, or not. Figure 6.6 shows the four possible cases of the
input signal with respect to the three phase detectors.

115

tH t H tHH
(+1,+1,41) (+1,41,-1) (-1,-1,-1) (—1,+1,+1)

Case 1 Case 2 Case 3 Case 4

Figure 6.6: Cases of the input signal being sampled by 3 phase detectors

In cases 1, 2, and 3, the additional phase detector results are (+1, +1), (+1,—1)
and (—1,—1) respectively. These will all be interpreted by the system to mean
that the output is not close to the incoming f edges, and so a larger step would
be used in changing the output signal. In fact the only case under which the loop
output will be considered to be “close” to the incoming f edges is in the last case
where the additional phase detector results will be (—1,+1); namely case 4 in
figure 6.6. Here the phase correction in the PLL will be small resulting in higher
resolution and hence lower steady state error on the output.

Both these techniques help improve the performance of the basic lead/lag DPLL
as presented by Cessna and Levy. In the first case, the loop filter is dynamically
modified in such a way as to result in the duration between the correction signals
being reduced when the loop is some distance from the lock position. In the
second case, instead of changing the loop filter, additional phase detectors are
used to indicate when the loop output is relatively close to the lock position.
While the loop is not close to the lock position, large correction steps are used
in the output signal. This results in the loop output moving towards its target
position somewhat faster than before. Note that both of these techniques could
be used to advantage in a single design.

6.2 Overview of a New Design for a
Lead/Lag DPLL

Given above was an informal review of digital phase-locked loops with particular
emphasis on the lead/lag DPLL. Two techniques were described for improving the
performance of this loop. In this section a more general technique is presented
to further improve the design of such DPLLs. To motivate the new design, the
problem of a PLL is first posed in a slightly different way.

116

The purpose of any control system can be summarised by saying that a certain
controlled variable is to be reduced to zero. In the case of a PLL, this variable is the
phase angle 6, between the input waveform and the loop output waveform (or some
function of the loop output waveform). The input and the loop output signals can
be represented as two vectors in a phase diagram, with the angle between them
representing the phase difference between the two signals. This is illustrated in
figure 6.7, with the input and the output vectors marked ip and op respectively,
and with a phase difference of § between them.

ip

2\
>

Figure 6.7: Phase relation between the input and the output of a PLL

The workings of a PLL changes the phase angle 8 by iteratively changing the
output to reduce the error. This results in moving the op vector in the phase
diagram, towards the reference vector ip. Note the similarity between this phase
diagram (figure 6.7), and the familiar diagrams of the previous chapter, used in
the proof outline of the window comparator (CWIT device). This cWIT device is in
fact used in the design of a new type of a digital phase detector which is described
next.

6.2.1 A Self-Modifying Digital Phase Detector

In this section, the design of a new type of a Digital Phase Detector (DPD) is
outlined which uses the cwIT device. In fact, a slightly modified version of the
CWIT device is used which has an extra output. This extra output is merely
one of the internal signals brought to the outside, hence no extra circuitry is
necessary. The top level view, and the behaviour of this new cWIT device can best
be explained by using the circular diagrams of the previous chapter.

The top level view of this new CWIT device, and a modulo-n diagram illus-
trating the relationship between the various input and output signals is shown in
Figure 6.8. If the target input (¢) to the CWIT device is set to the required phase
difference between the vectors ip and op, and the data input(d) is set to the actual
measured phase difference 6, then what results is a device which has a similar
behaviour to using three binary digital phase detectors. In fact the behaviour is

117

exactly the same as the three phase detector combination of section 6.1.3.2 if the
range value(r) is set to A.

n
target

SaN(a—t) | lead/lag /2—7"\(
n, t—r t+7r
data=—F>d CWIT

t=r < d < ttrl== in /Ul
T

rangeﬁnl—__f

(a) The top level view (b) The modulo-n diagram

Figure 6.8: The modified CWIT device

The behaviour of this new CWIT device is best explained by using the modulo-
n diagram of figure 6.8b. Since it has two outputs, they can both be treated
separately:

e The lead/lag output.

This output is true if the data input is greater than the target value. Note
that the concept of z being “greater than” y here means that & lies within
the half circle on the right hand side of y. In the case of the CWIT device,
d being greater than ¢t would mean that the d value lies somewhere in the
half circle on the right hand side of ¢t. Or, as marked in the cwIT device,
the lead/lag output is true if the sign of d—t is positive. So if d is the actual
measured phase difference, and ¢ is the desired phase difference, then the
lead/lag output gives an indication as to the direction of the error between
these two values.

e The in/out output.
The range input(r) to the cCWIT device sets up a window as marked by the
wedge of size 2r in figure 6.8b. The output in/out is true if the data input
lies somewhere inside this wedge, and false otherwise.

"The two outputs of this new modified CWIT device can jointly be used to indicate
in which of the four carved out wedges of the modulo-n diagram, the data input
(d) lies. However, in order to use the CWIT device as a phase detector, the various
inputs must be digital words.

At this point it is worth noting that the output stages of the DPLLs presented
above generally have a +I counter as their final device. This is used for generating
both the output and the feedback signals. Consider using all the outputs of the

118

various stages in this counter as a “word” for feedback, instead of only using
the most-significant-bit. Then, at the times of the incoming f edges, the value
represented by this word will reflect the phase difference between the input and
the output waveforms. Now by using a simple digital sample and hold circuit, an
n-bit word becomes available which represents the phase error 6, where n is the
number of stages in the =K counter.

'This technique for generating the phase error, in conjunction with deploying the
OWIT device as outlined above results in a new type of a Digital Phase Detector
(DPD). This new DPD has two new characteristics not found in earlier designs;
namely the ability to choose an arbitrary phase relation between the input and
the feedback signals, and the ability to vary the size of the window around the
target phase relation.

One interesting application of this new DPD would be to dynamically adjust the
size of the window to the cWIT device, such that approximately 50% of the phase
error samples lie within the window, and the other 50% outside. Then by using
a few logic gates to combine the two outputs of the cWIT device, a new output
can be computed which has three possible values: 0, +1 or —1. The value of this
output can best be viewed in conjunction with the modulo-n diagram as shown in
figure 6.9. The output value is 0 if the data input(d) lies within the window 2r,
otherwise it is either +1 or —1, depending on whether it is greater or less than
t respectively. This three valued output is an instantaneous correction signal for
that particular input edge. In general this signal will then be passed through a
random walk filter to generate the more reliable signal advance/retard, which will
then be used to make the actual correction in the phase of the loop output signal.

2r
t—r t+r

Figure 6.9: The three state output of the new digital phase detector

Note that this self modifying DPD has one very interesting characteristic: it
adapts the size of the window dynamically depending on how noisy the input signal
is. In any real system there will be some noise in the phase of the incoming signal.
Assuming this noise has a Gaussian distribution, then the distribution of the phase
error signal will be normally distributed about the actual phase difference. For
a noisy input signal, this normal distribution curve will have a high standard
deviation(c), or in more informal terms the curve will tend to be relatively fat.

119

Similarly for a clean input signal, the standard deviation will be low, or informally
the curve will tend to be relatively thin. This is illustrated in figure 6.10 where
the size of the window of the CWIT device is also shown for a noisy and a clean

input signal.

T T T
—0.670 +0.670 —0.670 +0.670

(a) Noisy input signal (b) Clean input signal

Figure 6.10: Normal distribution curves for noisy and clean input signals

This technique of dynamically adjusting the size of the window of the cWIT device
also dynamically adapts the behaviour of the DPD, from one which is optimised to
noisy environments with poor tracking ability, to one which is optimised to clean
environments with good tracking ability.

6.2.2 The New Lead/Lag Digital Phase-Locked Loop

Proposed here is the design of a new digital phase locked-loop (DPLL) based on the
principle of a three state, self modifying digital phase detector (DPD) as outlined in
the previous section, The operation of this loop could be explained by the analysis
of the three classical components that comprise any control system; namely, the
phase detector, the loop filter and the output stage. Unfortunately the operation
of each of these three components of this DPLL are not so clearly identifiable. Some
of the components that comprise the phase detector are often shared by the loop
filter and the output element. So the operations of this new DPLL is best explained
by examining the general control strategy of the loop and tracing the state of the
system for various input signals. A block diagram illustrating the new design of
the DPLL is given in figure 6.11 on page 121.

120

1030939(J 9seYJ SuLdJIpow jes © Juisn T1dq © 10§ UBISOp MU Y 170 231

MOPISA0
ou UM
I0)R[NWNIOY
NIW
AMYA - >
X H + XY
0
-
duys qirm < Tno,/ur W41 Sp S u—s S——
40 s 19JUNO)) IMYT < 21807 IIMD P ordureg [= oSpq A.ﬁl d
i - = < (3~pP)NBS
T+ T+ bvy/poay 2

o o _

osey J 1091e],

121

6.2.2.1 The Loop Control Strategy

From even a cursory glance at the block diagram of the new DPLL design (fig-
ure 6.11), it is apparent that there are two control loops and hence at least two
means of controlling the behaviour of the system. In fact there are three things
which influence the behaviour of this system, the third being the “target phase”
input. In the design outlined here, the target phase input is merely a constant
indicating the desired phase relation between the input and the loop output signal.
If the target phase input is zero, for example, then the system will try to maintain
zero phase error between the input and the loop output waveforms.

The inner loop forms a part of the DPD which has been described in section 6.2.1
above. Note that the in/out output of the cwWIT device is used for feedback. This
signal is passed through a random walk filter (RWF) to generate an “average” over
time of the various in/out conditions. The output of the RWF is used to increment
or decrement an accumulator. Finally the output of this accumulator is then used
to control the size of the window (represented by r) of the cwIT device. This
loop tries to maintain approximately 50% of the incoming error samples within
the window(2r) and the other 50% outside of it. Note that this does not provide
any form of a control signal to the output stage directly, but merely varies the
size of the window of the CWIT device. Another interesting point to note is that
the accumulator output (or the range input to the cwiT device) provides some
measure of the relationship between the system input(ip) and the output(op). If
the system has high confidence with the op signal being closely matched to the
ip signal, then the accumulator output is low (near to MIN), and if there is poor
match then this output is high (near to MAX).

"The other control mechanism actually provides a correction signal to the output
stage. In figure 6.11 the output stage is marked as the “up counter with skip.”
This is exactly the same as the output stage of the lead/lag DPLL due to Cessna
and Levy as shown earlier in figure 6.3 on page 113. The control mechanism used
is also very similar to that of Cessna and Levy. The difference here is in the RWF.
Instead of changing the state of the RWF for every incoming f edge, a change is only
made if the error between the input and the feedback signal is outside the window
of the OWIT device. Many other control mechanisms are possible. In particular,
the ideas presented in sections 6.1.3.1 and 6.1.3.2 can easily be accommodated.
The present design was chosen for the sake of simplicity but with full knowledge
that the hooks provided in the design make it very flexible.

122

6.2.2.2 Loop Behaviour for Various Inputs

The DPLL design presented in figure 6.11 has in fact been designed all the way
down to the CLIC gate level. A fairly minimal loop of this type was simulated
as part of a fairly large project at Racal Research involving cellular telephones.
The simulation environment! was designed to test the receiver for various noise
conditions. This set up was used to generate the input waveform for the DPLL
from a random data stream. The reason for using this particular set up was that
it provided a fairly realistic means for modelling the noise on the input waveform
to the DPLL. The noise in this case was introduced by having 200 oscillators evenly
placed about the transmission frequency of the cellular-phone. All the outputs of
these 200 oscillators were then summed together with the transmitted signal to
generate the input to the receiver.

A number of simple simulations were performed with up to 2000 data bits. The
first 25 data points for one of the more trivial simulation runs are illustrated in
figure 6.12. This simulation starts with the DPLL output(op) F edges being as far
from the required position as possible. In this case the required position is such
that the output f edges be approximately 90° out of phase to the average of the
incoming edges. Note that the loop quickly adjusts the output phase, so that by
about the 20¢h data point, the output is approximately correct. Furthermore, the
loop maintains this relation to incoming edges even if there are no input edges for
some time, e.g. a short continuous stream of 1’s.

or SLTLALAUL UL UL AL AL LL

date 101 0101010101010110011101

Figure 6.12: A simple simulation result for the new DPLL

The loop used for this simulation was extremely simple; with a fixed small
window to the CWIT device, and no RWF in the outer loop to smooth the correction
signal to the loop output stage. This set up was chosen to allow the loop to have
an extremely fast response to input variations so that the operation of a PLL can
be seen with very few data points. Though the loop is extremely fast, it still
exhibits some jitter suppression characteristics due to the small window to the

IThe simulation environment to test the receiver was set up by Mike Dumbrill and others of
Racal Research. I did the additional work of fitting the new DPLL into this environment and
analysing the results.

123

CWIT device. A more sophisticated loop would require significantly more data
points to demonstrate this locking behaviour; but once locked it would exhibit
performance significantly superior to the trivial case used for the simulation run
here.

These various characteristics can be seen in the full theoretical analysis of this
loop. Unfortunately such an analysis is beyond the scope of this thesis and will
not be given here. However, it is recognised that a full formal analysis of this new
DPLL design will have to be considered to determine its full potential. This is left
for future work.

6.3 Formulating the Correctness Statement

In order to develop a correctness statement which fully characterises a particular
DPLL design, it is necessary to define a number of predicates which capture all
the ideas present in that design. In this section an extremely simple top level
correctness statement for a DPLL is formulated. It does not take into account all
of the complexities of the DPLL, because the techniques involved in formulating
some of these ideas are very complex, as will become apparent in this treatment.
So to begin, the DPLL in its most abstract form can be viewed as a device which
has a single input and a single output as shown in figure 6.13.

data recovered
(.)din——* DPLL — rco | clock
mput

output

Figure 6.13: The most abstract view of a DPLL

Before giving the various clauses which constitute the correctness statement
in a formal notation, they are first presented informally in English. This English
description is separated into three parts, reflecting the way in which the correctness
statement will be formulated.

1. Period Correctness.
The DPLL generates a continuously running clock on its output irrespective
of what the input is doing. The frequency of this varies within certain limits.
This variation is controlled by the DPLL which is directly influenced by the
input signal. In fact the control is applied in such a way as to synchronise
the output waveform to the input, phase for phase.

124

2. Lock Correctness.
It the output waveform of the DPLL is in “phase lock” with the loop input
waveform, then, provided the input frequency remains within the working
range of the DPLL, and provided the input does not change too quickly, the
DPLL output waveform will continue to remain in “phase lock” with the input
waveform.

3. Capture Correctness.
No matter what the input has been doing in the past, but provided it begins
to behave itself now and continue to do so for a certain period of time, then
at the end of that period of time the DPLL output waveform will be in phase
lock with the input waveform.

Even when trying to formulate the correctness statement of a DPLL in English
as above, it is apparent that other terms, such as the concept of “phase lock,”
need to be defined first. In fact, when this English description is translated into a
formal notation, the concepts which need to be clarified further become even more
visible. However before going on to give the correctness statement in a formal
notation, here is an informal definition of the term “phase lock:”

Phase Lock: The DPLL input and output waveforms can be under-
stood to be in “phase lock” if over a number of samples the input and
the output waveforms continue to remain within the specified phase
relation,

Rather than continuing with this English description and iteratively refining it
until all subterms are clearly defined, it is better to start the formal presentation in
parallel. This is because there are concepts which can more easily be presented in
the formal notation using existing predicates, rather than battling to give a clear
English description of them first. This is particularly so in the case of the formal
statement for the first clause (Period Correctness) as presented in equation 6.2.
The other two clauses of the correctness statement are captured in formal notation
in equations 6.3 and 6.4.

So here is the first attempt at formulating the correctness statement for the
first clause:

Period_Correctness a b rco =def

Next ¢ ¢’ (Edge rco) /\) (6.1)

!
Vt. Edge rcot D 3t (ag(t'—t)gb

125

This says that the time interval between all consecutive edges on the line rco
is between a and b. Also, since the correctness statement is in the form of an
implication, it is possible to satisfy this by a device with an output which never
has any edges on it. So to exclude such devices from this correctness statement, it
is necessary to add an extra clause to it. This new clause simply says that there
is always at least one edge on the line rco. This results in the following equation

for Period_Correctness.

Period_Correctness a b rco =g¢
(3t. Edge rcot) A (6.2)

Next ¢ ¢' (Edge rco) A
/
Vt. Edge rcot D 3t (as(t'—t)sb)

In the above correctness statements two new predicates are used; namely, Next
and Edge. These can now be defined separately as follows:

Next 11 o f =def t1<ta A

f(t2) A
Vt. t1<t<t2 D Nf(t)

Edge ft =45 Rise ft V Fall ft

Where

Rise f ¢ =def f(t):LO A f(t-l—l):Hi
Fall ft =45 f(t)=Hi A fit+1)=Lo

Note how in this formulation of the first clause of the correctness statement,
various concepts are iteratively refined until there is no ambiguity. Similar tech-
niques are employed in generating the other two clauses of the correctness state-
ment. These are given below without formal statements for the various predicates

used in defining them.

Lock-Correctness din rco =g¢y

Phase_Lock din rcon A . (6.3)
Vn. (Small_Change din reo 1) D Phase_Lock din rco (n+1)
Capture_Correctness n din rco =gy
: p<n A (6.4)
Vm. Stable_Forn din m D Fp. (Phase_Lock din rco (m+p)>

126

For the moment it suffices to say that these two equations (6.3 and 6.4) reflect
the informal English description given earlier. The three new predicates, namely
Phase_Lock, Small_Change and Stable_For, are necessary to reflect the way in which
the English description was given. These predicates will have to be given a clear
semantics, together with formal definitions which fully characterise them, just as
the predicates Next and Edge were defined for equation 6.2 (the period correctness
clause). Following the same pattern as before, given below is the 1nformal English
description for each of these predicates.

e Phase_Lock din rco n
The term “phase lock” was defined earlier as a relation between two wave-
forms. The predicate here however, has three arguments. The first two are
the waveforms which may or may not be in “phaselock.” The third argument

n actually states when the two waveforms din and rco are in “phase lock,”
such that the predicate Phase_Lock is true. However for the two waveforms
to be in phase lock requires that the relation between them be monitored for
a certain number of samples n. So the following question arises:

What is n?

This could be a measure of time, or a measure of the number of input edges.
It can be argued that it should not be time, since the ticks of time bear little
relation to the actual edges of the input or the output waveforms. Recall
that it is on the edges of the input signal that the DPLL makes any changes
to the internal state and the output waveform. So this leaves behind two
options; namely, n being a direct measure of the number of the input edges
or a function of a group of input edges.

It is preferable to use small groups of input edges as a single packet, and let
n be a count over these packets. The reason for this is that the DPLL makes
changes to the output waveform, after observing the input waveform for a
certain number of edges. So if the packet size can be made to be identical
to the DPLL correction interval, then perhaps the analysis and the proofs
of correctness might be simplified. So now the system behaviour at n and
n+1 will be different depending on how the DPLL made the correction to the
output waveform.

e Small_Change din rco n

What this predicate is designed to capture is that the change in phase be-
tween the two waveforms, din and rco, over two sets of samples, n and n+1,

is less than a certain amount. This amount is assumed to be a constant and

127

is embodied in the definition of the predicate. However in a more general
case, this predicate would have an extra argument indicating the size of the
change required.

e Stable.For n din m
"This should be read as “the waveform din is stable for n units starting at m.”

These units are in fact packets of edges on the input waveform, as described
for the Phase_Lock predicate above. The Stable_For predicate captures the
notion that the signal on din is not wildly varying, but has stabilised in
phase and hence in frequency. Further this frequency is within the working
range of the DPLL. Again this information regarding the frequency should
be provided as an argument to this predicate for it to be more general. But
for now it has been assumed as a constant and is embodied in the definition
of this predicate.

Finally, with these three clauses formally captured as predicates (equations 6.2,
6.3 and 6.4), a single new predicate can now be defined for the DPLL which makes
use of all of these as follows:

DPLL_Correctness a b n din rco =44
Period_Correctness a b rco A (6.5)
Lock_Correctness din rco A '

Capture_Correctness n din rco

With a single predicate in place which captures the various aspects of the DPLL
behaviour as in equation 6.5, the form of the correctness statement can now be
established. So here is a naive first attempt at writing the correctness statement
for the DPLL system using the DPLL_Correctness predicate.

DPLL.Imp din rco D DPLL_Correctness a b n din rco

Where the predicate DPLL_Imp represents the implementation of the DPLL device
as pictured in figure 6.11 on page 121.

Note that this statement is truly naive since it says little about the conditions
that may be necessary on the input and output lines. It does however have the
correct general form which can be expanded further. Recall that if the DPLL
device is built using the cLIC design style, then there will be a clock present which
will have to be connected to the DPLL device implementation for it to function

128

correctly. There may also be some set up conditions necessary on the input and
output lines of this device. All these things can be added to the form of the above
correctness statement resulting in the following more refined equation.

Ip_Cond din A
Op_Cond rco

A
Clock(¢1, ¢y, d2,85) A
DPLLImp ¢1 @, é2 @, din rco

D DPLL_Correctness a b n din rco (6.6)

Here the predicates Ip_Cond and Op.Cond reflect the set up conditions on the input
and output lines din and rco respectively.

6.4 Formulating the Proof Plan

Just as the correctness statement was split up into three parts, so the proof too
can be split into three similar parts. The three clauses which need to be proved to
establish the correctness statement for the DPLL device can be stated as follows:

Ip_Cond din A
Op-Cond rco A
- — D Period_Correctness a b rc 6.7
Clock($1,31,62,82) A) e e ©7)
DPLLImp ¢1 ¢, ¢2 &, din rco
A D Lock-Correctness din rco (6.8)
DPLLAmp ¢1 @, ¢2 &, din rco

2 - D Capture_Correctness n din rco (6.9)
DPLL-Imp ¢1 ¢, ¢2 ¢, din rco

The proof of the first of these clauses (equation 6.7) is in fact fairly straightfor-
ward. Note that the last stage in the DPLL design is a device called “Up Counter
with skip” (see figure 6.11 on page 121). From the implementation of this device,
coupled with the fact that the clock driving it is continuously running, it can easily
be proved that the edge to edge time on the output is always between 22—1 and
27+1, where z is the number of stages in the counter and the count sequence is
simple binary. Note also that the rest of the devices in the implementation of the

129

DPLL are not used in this proof. In fact the proof is done as three separate cases
based on the three possible values that can occur on the input line of this counter.
Finally all that remains to be checked for the proof to be finished is that a < 27—1
and 27+1 < b to satisfy the predicate Period_Correctness.

The proof of the next two clauses however requires significantly different proof
techniques than those which have been used up to now. In order to prove these
clauses, a “measure” needs to be generated indicating how close in phase the output
waveform is to the input waveform. Some function of the error signal indicating the
phase difference between the input and the output waveforms could form the basis
for evaluating this “measure (£).” Based on the fact that the error signal dictates
the behaviour of the DPLL system, a new equation can then be developed which
uses £ instead of the error signal. This equation in its most abstract form could
be formulated to state that the next value of £ is a function(P) of the previous
value of £, where the function P embodies the behaviour of the DPLL system. This
equation is referred to in the literature as the difference equation for the loop, and
its abstract form can be stated as follows:

Eu1 = P(&) (6.10)

In fact the behaviour of the DPLL system can be thought of as a special purpose
device which tries to find a solution to equation 6.10 for various input conditions.
"The convergence of this equation to a steady state value for various input condi-
tions also indicates whether the DPLL will lock. If such a solution exists, and is
within the scope of the DPLL system to find it, then, the DPLL system will exhibit
a steady state response settling to a value &, as a solution for this equation, i.e.
limy 00 €; = E,. This can be stated in the same form as equation 6.10 as follows:

E. = P&) (6.11)

The value &, satisfying equation 6.11 is called a fized point [Bird 76, chapter 7]
of P. The conditions under which such convergence occurs can be used as the
basis for showing the correctness of the third clause (equation 6.9). This difference
equation can also be used to show the correctness of the second clause, by analysing
the the range over which the system will continue to maintain a steady state
solution if the input phase is swept. Indeed at this point it seems questionable
whether the correctness statements captures the required aspects of the behaviour
of the DPLL. Other more interesting aspects, such as the time to settle to a steady

130

state value, can now be derived from this difference equation for various input
conditions.

The only other work in this area using the fixed point technique for finding a
solution to the DPLL system is that done by Osborne [Osborne 80a,0sborne 80b].
In [Osborne80a] the fixed point technique for analysing a first order (CW)DPLL is
presented. This work is extended to the analysis of the second and third order loops
in [Osborne80b]. It is hoped that similar techniques can be used for the analysis
of the self modifying lead/lag type of DPLL presented here. Further research work
in this area will also lead to improvements in the correctness statement and the
proof,

6.5 Summary

In this chapter a brief overview of control systems was given with particular em-
phasis on digital phase-locked loops (DPLLs). Then a new design for a lead/lag
digital phase-locked loop was presented. This new DPLL is adaptive and can dy-
namically adjust its characteristics. Depending on how noisy the input signal is,
the new DPLL can change its characteristics from one which is optimised to noisy
environments with poor tracking ability, to one which is optimised to clean envi-
ronments with good tracking ability. The particular DPLL design described in this
chapter is also considerably more flexible, because the phase relation between the
input and the output waveforms can be easily programmed. In fact this control
mechanism can also be used to do simple tests on the new DPLL. For example,
suddenly changing the “target phase” input (i.e. the required phase relation) from
0° to 90° has the effect of the output tracing out the step response of the DPLL
system. Also by varying this target phase relation in other ways, different char-
acteristics of the new DPLL can be tested. To demonstrate the viability of this
new DPLL design, it was simulated with various data patterns as part of a cellular
telephone receiver.

Also in this chapter a correctness statement for a DPLL was developed as three
separate clauses capturing the three basic properties of a DPLL, namely:

1. Period Correctness.
The DPLL generates a continuously running clock on its output. The period
of this is dictated within certain limits by the behaviour of the input.

2. Lock Correciness.
If the output waveform of the DPLL is in “phase lock” with the loop input

131

waveform, then, provided the input frequency remains within the working
range of the DPLL, and provided the input does not change too fast, then
the DPLL output waveform will continue to remain in “phase lock” with the
input waveform,

3. Capture Correctness.
No matter what the input has been doing in the past, but provided it begins
to behave itself now and continue to do so for a certain period of time, then
at the end of that period of time the DPLL output waveform will be in phase
lock with the input waveform.

A proof plan was then presented outlining how this correctness statement could
be derived. The proof of the first clause is shown to be relatively straightforward,
but not so for the other two clauses. Finally a technique was briefly outlined
which transforms the formal definitions of the DPLL into a form known as the
difference equation. Solutions to this difference equation are then used as the
basis for showing the correctness of these two clauses. One technique for finding
such solutions, briefly described here, is the use of fixed points. The conditions
and the range over which convergence to a fixed point occurs can be used as the
basis for showing the correctness of these two clauses.

132

Chapter 7

Concluding Remarks

7.1 Summary of Work Done

A technique has been presented to show that the informal design rules of an in-
tegrated circuit design style can be formalised in higher-order logic. The design
style used as the basis of this work was the CLIC design style. First an informal
description of this design style was given to highlight the various aspects which
need to be formalised. Then a complete list of the rules for designing integrated
circuits using this design style was compiled. Based on this description, the prim-
itive components for building devices were then defined in logic, together with
the axiomatisation of the four-valued algebra for signals. The specific rules of
the design style were then formalised in logic. An important predicate defined to
aid in this respect was the “Well Behaved (Wb)” predicate. This captures the
constraints that must be imposed on the inputs of CLIC gates to ensure that they
operate correctly, and also expresses the behaviour of well-defined outputs. With
the aid of this predicate Wb, a method was presented to derive the correctness
statements for the entire class of CLIC gates. This method relies on the fact that
the form of the correctness statement developed is uniform across the entire range,
from primitive gates to large and complex circuits.

The use of these formal techniques were then demonstrated through a number
of worked examples, ranging from an exclusive-or gate to a random walk filter.
In each case the form of the derived correctness statement was identical. This
is an important factor in using such formal design techniques. If the statement
of correctness has the same general form at each level, then arbitrary mixing of
complex and trivial devices can be done with ease. This is often the case in
designing large circuits, where the outputs of large macro blocks are connected to
the inputs of primitive gates and vice versa.

133

Two further case studies were presented, illustrating how formal techniques
help in the specification and the design of devices. The first of these is a window
comparator device, which is useful in the design of content addressable memories,
associative memories, and window addressable memories. Based on a simple top
level specification for this device, an informal proof of correctness was outlined
illustrating how such formal techniques can help improve and sharpen the final

specifications.

The last case study presented shows a new design for a digital phase-locked loop
(DPLL). This has been designed down to the gate level using the cLIC design style,
and has been described and simulated using ELLA. Two of the major components
used in the design of this device form the basis of the previous two case studies.
So while the correctness statements for some of the components of this device were
stated without proof, others were formally derived. The correctness statement for
the phase-locked loop was then formulated by three separate clauses, capturing
the following properties:

1. Period Correctness.
The DPLL generates a continuously running clock on its output. The period
of this is dictated within certain limits by the behaviour of the input.

2. Lock Correctness. '
If the output waveform of the DPLL is in “phase lock” with the loop input
waveform, then, provided the input frequency remains within the working
range of the DPLL, and provided the input does not change too fast, the
DPLL output waveform will continue to remain in “phase lock” with the
input waveform.

3. Capture Correctness.
No matter what the input has been doing in the past, but provided it begins
to behave itself now and continues to do so for a certain period of time, then
at the end of that period of time the DPLL output waveform will be in phase
lock with the input waveform.

A proof plan was presented outlining how these clauses could be satisfied. Finally
a technique was briefly outlined which transforms the formal definitions of the
DPLL into a form known as the difference equation. Solutions to this difference
equation could then be used as the basis for showing the correctness of these
clauses. One technique for finding such solutions, which was briefly described, is
the use of fixed points. The conditions and the range over which convergence to
a fixed point occurs can be used as the basis for showing the correctness of these

clauses.

134

7.2 Discussion and Future Work

A number of difficulties were encountered in doing some of this work. These are
discussed below, together with some ideas for further research. Also outlined in
this section is how the work done here can be related to other fields.

The greatest problem in formalising the CLIC design style was to do with the
rather simple models of the primitives used, particularly the transistors. The
proofs of correctness of primitive CLIC gates are based on a simple notion of
whether two nodes are linked or not linked. The transistor model used, however,
does not directly reflect this fact. The solution used was satisfactory, but in gen-
eral a more accurate model of the primitive devices to reality is needed. A model
based on the link relation being the primitive would be ideal, but it is not clear
how to adopt this into the present framework. The work of Winskel [Winskel 8]
is particularly relevant, where the simulation model used in [Bryant 81] is embed-
ded in logic. But this is not yet developed to the point where it is usable for the
dynamic behaviour of circuits. Another approach would be to formally show that
the simpler models are adequate in the environment in which they are used. This
requires relating models at one level to models at another [Winskel 87).

The work presented here using the “Well Behaved (Wb)” predicate to check
which CLIC gates can be connected together, can be viewed as an elaborate way of
doing type-checking. An interesting area for future research would be to formally
specify and derive types for the external ports of devices in the particular design
style. So now, checking that the rules of a design style are obeyed is reduced to
doing simple type-checking on the ports. For example, in the case of the CLIC
design style, the ports of a device which satisfy “Wb ¢1” could be viewed as ports
which have type Whby,. The type definition package for the HOL system recently
developed by Melham [Melham 88b] should be a useful tool in this respect.

The other area where considerable difficulty is encountered is in writing formal
specifications for large and complex systems. This was clearly illustrated by the
last case study, where a concise top level statement of correctness for the digital
phase-locked loop was not formulated, but only an outline was presented. The
difficulty here lies in trying to capture intuitive notions about the system, without
making the specifications so complex that they no longer reflect its intended be-
haviour. So a number of new predicates are needed, carefully chosen and defined
to make the specification task easier. These predicates must embody key ideas
specific to the particular application. For example, designers often use different
notations for writing specifications for specialist areas, such as Digital Filters,
Computer Architectures, Control Systems etc. There is a good reason why a par-

135

ticular notation is used in each case, and forcing the designer to reformulate his
ideas in a single notation may be unacceptable. If specifications must be written
in a unified notation, then providing the designer with application specific phrases
to capture his intuitions would greatly ease the task of writing specifications.

In order to illustrate the usefulness and difficulty of this task, consider what it
means for a Phase-Locked Loop system to lock on to an input signal. This is not
merely a simple relation stating that the output is equal to the input. Part of what
it means for a system to be “in lock,” is, “if the input frequency changes within
certain constraints then the output will ¢rack the input.” Note the introduction of
two new concepts, namely, “change in input frequency,” and “output tracking the
input.” Concepts such as these need to be formulated as predicates in higher-order
logic, so that they can be used in writing concise formal specifications.

Some of the more directly related areas where these ideas can be applied include
other integrated circuit design styles, such as “Hot-Clocks NMOS” [Seitz 84] and
“Zipper cMOs” [Lee86]. Indeed, the various concepts developed here should be
applicable to any system which uses building blocks with interconnection rules.
Customised predicates can be developed for the appropriate application, just as
the Wb predicate was developed for the cLIC design style. An interesting new
application would be to apply these ideas to the structure of pipelines in integrated
circuits. In fact, circuits built in the cLIC design can abstractly be viewed as
pipelines, since all evaluations in the CLIC design style propagate down chains.

From a more general perspective, the work presented in this thesis has concen-
trated on roughly the middle of the integrated circuit design process. If a fully
formal integrated circuit design methodology is to be developed—going from the
early stages of concept development to the final components—then what has been
presented here should aid the design, and (in particular) the specification and
verification process. These phases in the design process are still some distance
from the final manufacturing stage. As the verification technology matures and
permeates both top level specifications and the lower level descriptions of circuits,
formally verified devices in safety-critical applications should become a reality.

136

Bibliography

[Atkinson 78] P. Atkinson. Feedback Control Theory for Engineers. Heineman
Educational Books Ltd, 1978.

[Bardeen48] J. Bardeen and W. H. Brattin. The transistor, a semiconductor triod.
Physical Review, 230-1, July 1948. The announcement also acknowl-
edged the help of William Schockley and others at Bell Laboratories.

[Barrow 84] H. G. Barrow. Proving the correctness of digital hardware designs.
VLSI Design, V(7):64-77, July 1984,

[Bird76] R. Bird. Programs and Machines: An Introduction to the Theory of
Computation. Wiley, 1976,

[Birkhoff48] Garrett Birkhoff. Lattice Theory — Revised Edition. Volume XXV,
American Mathematical Society Colloquium Publications, 531 West
116th Street, New York City, 1948.

[Boole54] G. Boole. An Investigation of the Laws of Thought, on which are
Founded the Mathematical Theories of Logic and Probability (1849).
New York: Dover, (reprint), 1954.

[Boyer79] R. Boyer and J. Moore. 4 Computational Logic. Academic Press, 1979.

[Braun 78] Ernest Braun and Stuart MacDonald. Revolution in Miniature. Cam-
bridge University Press, Cambridge, England, 1978.

[Bryant81] Randal Everitt Bryant. A Switch-Level Simulation Model for Inte-
grated Logic Circuits. PhD thesis, Laboratory for Computer Science,
MIT, Massachusetts, March 1981. Available as Technical Report MIT/-
LCS/TR-259.

137

[Camilleri87] A. Camilleri, M. Gordon, and T. Melham. Hardware verification
using higher-order logic. In Proceedings of the IFIP WG 10.2 Working
Conference: From H.D.L. Descriptions to Guaranteed Correct Circust
Designs, D. Borrione, editor, pages 43-67, North-Holland, Amsterdam,
1987. Conference held in Grenoble, September 1986.

[Cessna70a] James R. Cessna. Steady State and Transient Analysis of a Class of
Digital Phase-Locked Loops Employing Coarse Amplitude Quantization
and Sequential Filters. PhD thesis, Department of Electrical Engineer-
ing, University of Iowa, Iowa City, January 1970.

[Cessna 70b] James R. Cessna. Steady state and transient analysis of a bit-
synchronization phase-locked loop. In Proceedings of the IEEE Inter-
national Conference on Communications, June 1970,

[Cessna72] James R. Cessna and Donald M. Levy. Phase noise and transient
times for a binary quantized digital phase-locked loop in white Gaus-
sian noise. IEEE Transactions on Communications, COM-20(2):94—
104, April 1972.

[Church40] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5, 1940.

[Clark49] E. L. Clark. Automatic frequency phase control of television sweep
circuits. Proceeding of the IRE, 37:497, 1949,

[Clark 68] Maxwell J. Clark. On governers. Proceedings of the Royal Society,
London, 16:270-283, 1868.

[Cohn 88] Avera Cohn. A proof of correctness of the Viper microprocessor: the
first level. In VLSI Specification, Verification and Synthesis, Graham
Birtwistle and P. A. Subrahmanyam, editors, pages 27-71, Kluwer Aca-
demic Publishers, 1988. Proceedings of the conference held on 12-16
January 1987 at Calgary, Canada.

[Cullyer88] W. J. Cullyer. Implementing safety-critical systems: the Viper micro-
processor. In VLSI Specification, Verification and Synthesis, Graham
Birtwistle and P. A. Subrahmanyam, editors, pages 1-25, Kluwer Aca-
demic Publishers, 1988. Proceedings of the conference held on 12-16
January 1987 at Calgary, Canada.

[Darby 86] B. J. Darby and D. W. R. Orton. Structured approaches to design.
IEE Proceedings, 133-E(3):123-126, May 1986.

138

[Dhingra88] I. S. Dhingra. Formal validation of an integrated circuit design style.
In VLSI Specification, Verification and Synthesis, Graham Birtwistle
and P. A. Subrahmanyam, editors, pages 293-321, Kluwer Academic
Publishers, 1988. Proceedings of the conference held on 12-16 January
1987 at Calgary, Canada.

[Goncalves82] Nelson F. Goncalves and Hugo J. de Man. n-p-CMOS: a racefree
dynamic CMOS technique for pipelined logic structures. In ESSCIRC
Digest of Technical Papers, pages 141-144, September 1982,

[Goncalves83] Nelson F. Goncalves and Hugo J. de Man. NORA: a racefree dy-
namic CMOS technique for pipelined logic structures. IEEE Journal
of Solid-State Circuits, SC-18(3):261-266, June 1983.

[Gordon79] M. J. C. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF.
Volume 78 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1979.

[Gordon82] M. J. C. Gordon. A Model of Register Transfer Systems with Applica-
tions to Microcode and VLSI correctness. Technical Report CSR-82-81,
Department of Computer Science, University of Edinburgh, U.K., May
1982.

[Gordon83a] M. J. C. Gordon. LOF-LSM: A System for Specifying and Verifying
Hardware. Technical Report 41, Computer Laboratory, University of
Cambridge, U.K., 1983.

[Gordon83b] M. J. C. Gordon. Proving a Computer Correct with the LCF-LSM
Hardware Verification System. Technical Report 42, Computer Labo-
ratory, University of Cambridge, U.K., 1983.

[Gordon85a] M. J. C. Gordon and J. Herbert. A Formal Hardware Verification
Methodology and its Application to a Network Interface Chip. Technical
Report 66, Computer Laboratory, University of Cambridge, U.K., 1985,

[Gordon85b] M. J. C. Gordon, HOL: A Machine Oriented Formulation of Higher-
Order Logic. Technical Report 68, Computer Laboratory, University of
Cambridge, U.K., 1985.

[Gordon85c] M. J. C. Gordon. Hardware Verification by Formal Proof. Techni-
cal Report 74, Computer Laboratory, University of Cambridge, UK.,
August 1985,

139

[Gordon86] M. J. C. Gordon. Why higher-order logic is a good formalism for
specifying and verifying hardware. In Formal Aspects of VLSI Design:
Proceedings of the 1985 Edinburgh Conference on ,VLSI, G. J. Milne
and P. A, Subrahmanyam, editors, pages 153-177, North-Holland, 1986.

[Gordon 88] Michael J. C. Gordon. HOL: a proof generating system for higher-
order logic. In VLSI Specification, Verification and Synthesis, Graham
Birtwistle and P. A. Subrahmanyam, editors, pages 73-128, Kluwer
Academic Publishers, 1988. Proceedings of the conference held on 12-
16 January 1987 at Calgary, Canada.

[Hale 88b] Roger W. S. Hale. Forthcoming. PhD thesis, Computer Laboratory,
University of Cambridge, England, 1988,

[Hanna86a] F. K. Hanna and N. Daeche. Specification and verification of digital
systems using higher-order predicate logic. IEEE Proceedings, 133-
E(5):242-254, September 1986.

[Hanna86b] F. K. Hanna and N. Daeche. Specification and verification using
higher-order logic: a case study. In Formal Aspects of VLSI Design:
Proceedings of the 1985 Edinburgh Conference on ,VLSI, G. J. Milne
and P. A, Subrahmanyam, editors, pages 179-213, North-Holland, 1986.

[Herbert 86] J. M. J. Herbert, Applications of Formal Methods to Digital Systems
Design. PhD thesis, Computer Laboratory, University of Cambridge,
England, December 1986.

[Hugenholtz 50] E. H. Hugenholtz. The application of impulse-governed oscillators
in aircraft transmitters. Communication News, 11(13), May 1950.

[Hunt87] W. A. Hunt. The mechanical verification of a microprocessor design. In
Proceedings of the IFIP WG 10.2 Working Conference: From H.D.L.
Descriptions to Guaranteed Correct Circuit Designs, D. Borrione, edi-
tor, pages 89-129, North-Holland, Amsterdam, 1987. Conference held
in Grenoble, September 1986.

[IRE56] IRE Standards Committee. Standards on terminology for feedback
control systems. Proceedings of the IRE, 107-109, January 1956.

[Joyce88] Jeffrey J. Joyce. Formal verification and implementation of a micro-
processor. In VLSI Specification, Verification and Synthesis, Graham
Birtwistle and P. A. Subrahmanyam, editors, pages 129-157, Kluwer
Academic Publishers, 1988. Proceedings of the conference held on 12-
16 January 1987 at Calgary, Canada.

140

[Krambeck 82] R. H. Krambeck, Charles M. Lee, and Hung-Fai Stephen Law.
High-speed compact circuits with CMOS. IEEE Journal of Solid-State
Circuits, SC-17(3):614-619, June 1982,
This is also known as DOMINO Logic.

[Lee86] Charles M. Lee and Ellen W, Szeto. Zipper CMOS. IEEE Circuits and
Devices Magazine, 2(3):10-16, May 1986.

[Leeser 87] M. E. Leeser. Reasoning about the Function and Timing of Integrated
Circuits with Prolog and Temporal Logic. PhD thesis, Computer Lab-
oratory, University of Cambridge, England, December 1987,

[Leisenring69] A. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. Mac-
donald and Co. Ltd., London, 1969.

[Lindsey 81] William C. Lindsey and Chak Ming Chie. A survey of digital phase-
locked loops. Proceedings of the IEEE, 69(4):410-431, April 1981.

[Lindsey 82] William C. Lindsey and Chak Ming Chie. Editorial note: special
issue on phase-locked loops. IEEE Transactions on Communications,
COM-30(10):2221-2223, October 1982,

[Mealy 55] G. H. Mealy. A method for synthesizing sequential circuits. Bell Sys-
tem Technology Journal, 34(5):1045-1080, 1955.

[Melham 88a] Thomas F. Melham. Abstraction mechanisms for hardware veri-
fication. In VLSI Specification, Verification and Synthesis, Graham
Birtwistle and P. A. Subrahmanyam, editors, pages 267-291, Kluwer
Academic Publishers, 1988. Proceedings of the conference held on 12-
16 January 1987 at Calgary, Canada.

[Melham 88b] Thomas F. Melham. Forthcoming. PhD thesis, Computer Labora-
tory, University of Cambridge, England, 1988.

[Milne79] G. J. Milne and R. Milner. Concurrent processes and their syntax.
Journal of the ACM, 26(2), April 1979.

[Milne83a] G. J. Milne. CIRCAL: a calculus for circuit description. Integration,
1(2-3):121-160, October 1983.
Also available as Technical Report CSR-122-82 from Department of
Computer Science, University of Edinburgh, U.K.

[Milne83b] G. J. Milne. CIRCAL and the Representation of Communication,
Concurrency and Time. Technical Report CSR-151-83, Department of
Computer Science, University of Edinburgh, U.K., November 1983.

141

[Milner 80] R. Milner. A Calculus of Communicating Systems. Volume 92 of
Lecture Notes in Computer Science, Springer Verlag, 1980.

[Milner 82] R. Milner. Calculi for Synchrony and Asynchrony. Technical Report
CSR-104-82, Department of Computer Science, University of Edin-
burgh, U.K., August 1982,

[Moore64] E. F, Moore. Sequential Machines: Selected Papers. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1964.

[Morison84] J. Morison et al. ELLA: hardware description or specification?
In Proceedings IEEE International Conference, CAD-8/, Santa Clara,
November 1984.

[Moszkowski83a] B. C. Moszkowski. A temporal logic for multi-level reasoning
about hardware. In Proceedings of the 6th International Symposium
on Computer Hardware Description Languages, pages 79-90, North-
Holland Publishing Co., Pittsburgh, Pennsylvania, May 1983.

Also available as Technical Report STAN-CS-82-952 from Department
of Computer Science, Stanford University.

[Moszkowski83b] B. C. Moszkowski. Reasoning about Digital Circuits. PhD the-
sis, Department of Computer Science, Stanford University, July 1983.
Also available as Technical Report STAN-CS-83-970.

[Moszkowski86] B. C. Moszkowski. Ezecuting Temporal Logic Programs. Cam-
bridge University Press, 1986.

[Orton84] D. W. R. Orton. Clocked Dynamic Logic for CMOS. Internal Memo,
Racal Research Ltd, Worton Drive, Worton Grange Industrial Est.,
Reading RG2 OSB, England, January 1984.

[Osborne80a] Holly C. Osborne. Stability analysis of an Nth power digital phase-
locked loop—part I: first-order DPLL. IEEE Transactions on Commu-
nications, COM-28(8):1343-1354, August 1980.

[Osborne80b] Holly C. Osborne. Stability analysis of an Nth power digital phase-
locked loop—part II: second- and third-order DPLL’s. IEEE Transac-
tions on Communications, COM-28(8):1355-1364, August 1980.

[Paulson83a] L. C. Paulson. A higher-order implementation of rewriting. Science
of Computer Programming, 3(2):119-149, August 1983,

[Paulson83b] L. C. Paulson. Tactics and Tacticals in Cambridge LCF. Technical
Report 39, Computer Laboratory, University of Cambridge, U.K., 1983.

142

[Rey 82] Thomas J. Rey. Comments on “A survey of digital phase-locked loops”.
Proceedings of the IEEE, 70(2):201-202, February 1982,

[Sandoz84] Jean-Paul SanDoz and Willem Steenaart. Performance improvements
of a binary quanitzed all-digital phase-locked loop with a new aided-
acquisition technique. IEEE Transactions on Communications, COM-
32(12):1269-1984, December 1984,

[Seitz84] Charles L. Seitz et al. Hot-Clocks nM0S. Technical Report
9177:TR:85, Computer Science Department, California Institute of
Technology, 1984.

[Sheeran 83] Mary Sheeran. uFP, An Algebraic VLSI Design Language. PhD
thesis, University of Oxford, U.K., November 1983.

[Suzuki73] Y. Suzuki, K. Oagawa, and T. Abe. Clocked CMOS calculator cir-
cuitry. IEEE Journal of Solid-State Circuits, SC-8:462-469, December
1973.

[Traub83] N. Traub. A Lisp Based CIRCAL Environment. Technical Report
CSR-152-83, Department of Computer Science, University of Edin-
burgh, U.K., November 1983,

[Traub87] Niklas Traub. A Formal Approach to Hardware Analysis. PhD the-
sis, Department of Computer Science, University of Edinburgh, U.K.,
March 1987. Also available as Technical Report CST-43-87.

[Trinks68] W. Trinks. Governers and the Governing of Prime Movers. D. Van
Nostrand Co., Princeton, New Jersey, 1868.

[Weste85] Neil Weste and Kamran Eshraghian, Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1985.

[Winskel87] Glynn Winskel. Relating two models of hardware. In Category The-
ory and Computer Science. Volume 283 of Lecture Notes in Computer
Science, D. H. Pill, A, Poigné, and D. E. Rydeheard, editors, pages 98—
113, Springer-Verlag, Berlin, 1987,

[Winskel 88] Glynn Winskel. A compositional model of MOS circuits. In VISI
Specification, Verification and Synthesis, Graham Birtwistle and P. A.
Subrahmanyam, editors, pages 323-347, Kluwer Academic Publishers,
1988. Proceedings of the conference held on 12-16 January 1987 at
Calgary, Canada.

143

[Yamamoto 78] Hisao Yamamoto and Shinsaku Mori. Performance of a binary
quantised all digital phase-locked loop with a new class of sequential
filter. IEEE Transactions on Communications, COM-26(1):35-45, Jan-
uary 1978.

[Yukawa73] J. Yukawa and S. Mori. A binary quantised all digital phase-locked
loop. IECE, 56-A(12), December 1973.

144

Appendix A

The Hierarchy of Theories

This appendix contains the comments in the makefile which
builds the entire set of theories for the CLIC world. These
comments show the dependencies of the various theories rep-
resented as a tree. The leaves of this tree represent the list of
theories corresponding to the various examples used in this
thesis. The top most parent to all this work is the hol the-
ory representing the basic HOL system which is not shown

in here

145

|Clock_lem/Clock_Def.ml

|my_CONV/RM_LEQ_CONV.m1|

|
[Clock_lem/Clock_Sym.ml | f---------=- e T ’ | |
|Clock_lem/eq._CASES.ml | | when da
[Clock_lem/CASES.ml | hol_thms | !
[Clock_lem/isHi_Cyclel.ml| e immmmem e +
IClock_lem/eq_LoLo.ml | I I | I
|Clock_lem/Shift_isHi.ml | ________ tri BigAnd | mod
[Clock_lem/TimeOf.ml I [l I I I
e et Hommo e - ——————————— e T + |
I I
Clock cmos
P |
| I I
| OptLink Cap
e e | I
|
Shell
___________________ I
I I I
Wb Link NoLink
eeea I |
I oo I
I I
| WbLink
I I
| KO | e e e
| I I I | I | | I I I I
| StatInv | nAndNor | nNor2 | nNor3 | nNand2 | nNand3
Latch | | | pNor2 | pNor3 | pNand2 | pNand3 |
| I oo oo I PN PRPRVUY PUVUVUVEY PUPSRY DRNRURY PRI
- | [I
[| nXor |
(I R P oo |
| I I |
Reg Toggle gates-1ib hol_thms
| I I S
Shift_Reg I I !
I | int_mod2 int
I I
| I
I RWF
e e e |
|
Rwf

146

Appendix B

ML Code for the Correctness of
the Toggle Device

This appendix contains the ML code for the proof of correct-
ness of a Toggle flip-flop device designed in the CLIC design
style. Considerable background knowledge of the HOL sys-
tem is needed in order to follow this code.

Before giving the actual code, here is a table which shows how the logical
connectives as used in the body of this thesis are represented in the machine
readable form as used in this appendix.

Logical Terms | Machine Readable Form
~Z X

t1 Aty t1 /\ t2

ty V iy t1 \/ t2

t1 D tg t1 ==> £2

1 =1, t1 <=> 12

t1 =15 t1 = t2
V. tm[z) 'x. tm[x]
Jz. tm[z] 7x. tm[x]
ex. tm(z] 0x. tm[x]
(b=t | t2) (b => t1 | £2)
let z=a let x = a
in in

#(@) £(x)

147

| An approximation to a TOGGLE flip-flop designed in the CLIC.

FILE
DESCRIPTION

Toggle.ml

All the useful theorems to do with the Toggle device
are proved in this file. These theorems are collated
and then brought together at the end into a single
theorem as usual called: Toggle_ THM

The Toggle device takes a single input and if the
input is high then the output is toggled otherwise
the output is held static at its old value.

This can be formally stated as follows:

op(t+1) (ip t) => “(op t) | (op t)

op(t+1) (ip t) xor (op t)

(N A I
¢---|L 0---] 0--,
-/ 7 1 - -
- “==)) \ FA
[\)) N >=-=|L 0--4--- op
ip ---~|L 0---------=- DI ./
-/

I
I
I
I
I
+

READS FILES : nXor.th Latch.th StatInv.th
WRITES FILES : Toggle.th

DATE : 16.APR.86
AUTHOR : I. S. Dhingra

e D T T Gt " 2 " 3 v £ - D 4 b o o o . . o o s

new_theory ‘Toggle®;;
maptok new_parent ‘nXor Latch StatInv®;;

let gig = ":num =-> tri";;

148

let Toggle =
new.definition
(‘Toggle®,

"!phil phil’ phi2 phi2’ ip op :"sig.

Toggle(phil, phil’, phi2, phi2’,

7pl p2 p3 p4.

)i

let Toggle_Spec =
nev_definition
(‘Toggle_Spec*,
"tip op.
't
)is

close_theory();;

‘Clock"
‘Clock"
‘Clock"
‘Clock

load_theorem
load_theoremn
load_theorem
load_theorem

‘nXor*
‘nXor*
‘nXor*
‘nXor*

load_theorem
load_theorem
load_theorem
load_theorem

‘Latch®
‘Latch’
‘Latch®
‘Latch®
‘Latch®

load_theorem
load_theorem
load_theorem
load_theorem
load_theorem

‘StatInv’
‘StatInv®
‘StatInv’

load_theorem
load_theorem
load_theorem
load_theorem ‘xor*

load_definition ‘when®

op) =
pl)
p2)

ip,
ip,
op,

Latch(phil, phii1’,
Latch(phil, phil’,
StatInv(p2, p3)

nXor(phil, phil’,
Latch(phi2, phi2’,

p3, p4)
op)

pi,

Toggle_Spec(ip,op) =
op(t+1) = (ip t) => “(op t) | op t"

‘Clock_Sym‘;
‘Clock_Shift_isHi¢;
‘Clock_isHi_TimeOf_isHi¢;
‘Clock.TimeOf _isHi_plus4‘;

‘nXor_Wb*;
‘nXor_Def*¢;
‘nXor_SPEC_1°¢;
‘nXor_SPEC_2°¢;

‘Latch_Wb¢;
‘Latch_Def‘;
‘Latch_Def_phi2*¢;
‘Latch_SPEC¢;
‘Latch_SPEC_phi2‘;

‘StatInv_Wb¢;
‘StatInv_Def*;
‘StatInv_SPEC¢;
‘xor_CLAUSES‘;

‘when‘;;

149

/\
/\
/\
/\

let BETA_TAC = CONV_TAC (DEPTH_CONV BETA_CONV);;

let EQ_RES_.TAC = (IMP_RES_TAC o GEN_ALL o fst o EQ_IMP_RULE o SPEC_ALL);;

let Toggle Wb =
prove_thm
(‘Toggle._Wb¢,
"1phil phil’ phi2 phi2’.
Clock(phil,phii’,phi2,phi2’) ==>
!ip op. Toggle(phii,phil’,phi2,phi2’,ip,op) ==> (Wb op phi2 /\
Wb op phi2’)",
PURE_REWRITE_TAC [Togglel
THEN REPEAT STRIP_TAC
THEN EQ_RES_TAC Clock_Sym
THEN IMP_RES_TAC Latch_Wb
THEN RES_TAC
)i

let Toggle_Def =
prove_thm
(‘Toggle_Def‘,
"iphil phil’ phi2 phi2’.
Clock(phii,phii’,phi2,phi2’) ==
!ip op. Toggle(phii,phil’,phi2,phi2’,ip,op) ==
't, (isHi phil t) ==> (Def op (t+2) /\
Def op (t+3) /\
Def op (t+4) /\
Def op (t+5))",
PURE_REWRITE_TAC [Toggle]
THEN REPEAT (FILTER_STRIP_TAC "isHi") .
THEN REPEAT DISCH_TAC
THEN IMP_RES_TAC nXor_Def
THEN IMP_RES_TAC Latch_Def_phi2
THEN RES_TAC
THEN ASM_REWRITE_TAC []
)i

150

let Toggle SPEC =
prove_thm
(‘Toggle_SPEC®,
"1phil phil’ phi2 phi2’,
Clock(phil,phii’,phi2,phi2’)

1
{8
v

'ip op.

Toggle(phil,phil’,phi2,phi2’,ip,op) ==>

It (isHi phil t) ==>
Def ip t ==>
Def op t ==>

(ValAbs op (t+2)
(ValAbs op (t+3)
(Valabs op (t+4)
(ValAbs op (t+5)

PURE_REWRITE_TAC [Toggle]

THEN REPEAT (FILTER_STRIP_TAC '"Def")

THEN REPEAT DISCH_TAC

THEN EQ_RES_TAC Clock_Sym

THEN IMP_RES_TAC Latch_Def

THEN IMP_RES_TAC StatInv_Def

THEN IMP_RES_TAC nXor_Def

THEN IMP_RES_TAC Latch_Def_phi2

THEN IMP_RES_TAC Latch_SPEC

THEN IMP_RES_TAC StatInv_SPEC

THEN IMP_RES_TAC nXor_SPEC_2

THEN IMP_RES_TAC Latch_SPEC_phi2

THEN IMP_RES_TAC Latch_Wb

THEN IMP_RES_TAC StatInv_Wb

THEN IMP_RES_TAC nXor_Wb

THEN RES_TAC

THEN ASM_REWRITE_TAC [xor_CLAUSES]

)i

(Valabs ip t) =xor (Valdbs op t)) /\
(ValAbs ip t) xor (Valhbs op t)) /\
(ValAbs ip t) xor (ValAbs op t)) /\
(ValAbs ip t) xor (Valhbs op t)) ",

151

let Toggle THM =
prove_thm
(‘Toggle_THM®,
"Iphil phii’ phi2 phi2’.

Clock(phii,phil’,phi2,phi2?) ==>

tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) ==>
(Wb op phi2
Wb op phi2’
't., (isHi phii t) ==> (Def op
Def op
Def op
Def op
Def ip t ==>
Def op t ==
(ValAbs op(t+2) = (ValAbs ip t)
(ValAbs op(t+3) = (ValAbs ip t)
(ValAbs op(t+4) = (ValAbs ip t)
(ValAbs op(t+5) = (ValAbs ip t)

",
REPEAT STRIP_TAC
THEN IMP_RES_TAC Toggle_Wb
THEN IMP_RES_TAC Toggle_Def
THEN IMP_RES_TAC Toggle_SPEC
THEN RES_TAC
)i

152

(t+2) /\
(£+3) /\
(t+4) /\
(t+6))

xor (ValAbs
xor (ValAbs
xor (ValAbs
xor (ValAbs

/\
/\

/\

op t)) /\
op t)) /\
op t)) /\
op t))

let Toggle.when_phil =
prove_thm
(‘Toggle_when_phil‘,
“Iphil phiil’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’)

il
J
v

tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) ==
((Def op) when (isHi phil)) 0 ==>
(1t. ((Def ip) when (isHi phil)) t) ==
't, (((ValAbs op) when (isHi phii)) (t+1) =
((ValAbs ip) when (isHi phil)) t xor
((ValAbs op) when (isHi phil)) t o,
REWRITE_TAC [when]
THEN BETA_TAC
THEN REPEAT (FILTER_STRIP_TAC "Def ip")
THEN DISCH_THEN (\th. INDUCT_TAC THEN MP_TAC th)
THENL [DISCH_THEN (ASSUME_TAC o (SPEC "0"))
THEN IMP_RES_THEN (ASSUME_TAC o (SPEC "O"))
Clock_isHi_TimeOf_isHi
THEN IMP_RES_THEN (\th. REWRITE_TAC [th])
Clock_TimeOf _isHi_plus4
THEN IMP_RES_TAC Toggle_SPEC
; DISCH.THEN (MP_TAC o (SPEC "t+1"))
THEN IMP_RES_THEN (MP_TAC o (SPEC "t+1i"))
Clock_isHi_TimeOf_.isHi
THEN IMP_RES_THEN (\th. REWRITE_TAC [ADD1; th])
Clock_TimeOf_isHi_plus4
THEN IMP_RES_THEN (ASSUME_TAC o (SPEC "t"))
Clock_isHi_TimeOf_isHi
THEN (IMP_RES_THEN o IMP_RES_THEN)
IMP_RES_TAC
Toggle_Def
THEN REPEAT STRIP_TAC
THEN IMP_RES_TAC Toggle_SPEC

v

153

let xor_lemma =
TAC_PROOF
1,
"la b, axorbs=2C(a=>"b}| b"M,
X_GEN_TAC "a"
THEN BOOL_CASES_TAC "a"
THEN REWRITE_TAC [xor_CLAUSES]
)i

let Toggle_Correct =
save_thm
(‘Toggle_Correct®,
REWRITE_RULE [xor_lemma] Toggle_when_phil
i

Here is the printout of the theory that is generated by all this code.

#print_theory ‘Toggle‘;;

The Theory Toggle
Parents -- HOL nXor Latch StatInv
Constants -~
Toggle
Ui (num -> tri) #
((num -> tri) #
((num -> tri) # ((num -> tri) # (Cnum =-> tri) # (aum -> tri))))) ->
bool"
Toggle_Spec ":(num -> bool) # (num -> bool) -> bool"
Definitions --
Toggle
|- 'phil phii’ phi2 phi2’ ip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) =
(?p1 p2 p3 p4.
Latch(phil,phii’,ip,p1) /\
Latch(phil,phil’,op,p2) /\
StatInv(p2,p3) /\
nXor(phil,phil’,p1,p3,p4) /\
Latch(phi2,phi2’,p4,op))
Toggle_Spec
|- 'ip op.
Toggle_Spec(ip,op) = (!t. op(t + 1) = (ip t => “op t | op t))

154

Theorems --
Toggle Wb
|- !phil phil’ phi2 phi2’,
Clock(phii,phii’,phi2,phi2’) ==
(tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op)
Wb op phi2 /\ Wb op phi2’)
Toggle_Def
|- !'phii phii’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’) ==
(tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op)
(!t
isHi phil t ==
Def op(t + 2) /\
Def op(t + 3) /\
Def op(t + 4) /\
Def op(t + B)))
Toggle_SPEC
|- !'phii phil’ phi2 phi2’,
Clock(phii,phii’,phi2,phi2’) ==>
(!ip op.
Toggle(phil,phil’,phi2,phi2’,ip,op)
(1t.
isHi phil t ==
Def ip t ==
Def op t ==
(Valabs op(t + 2)
(Valabs op(t + 3)
(ValAbs op(t + 4)
(ValAbs op(t + 5)

1]
I
v

]
I
v

it
1l
v

(ValAbs ip t) xor (ValAbs op t)) /\
(Valabs ip t) xor (ValAbs op t)) /\
(Valdbs ip t) xor (ValAbs op t)) /\
(ValAbs ip t) xor (ValAbs op t))))

155

Toggle _THM
|- !phil phil’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2’) ==
(tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) ==
Wb op phi2 /\
Wb op phi2’ /\

('t.

isHi phiil t ==>
(Def op(t + 2) /\
Def op(t + 3) /\
Def op(t + 4) /\
Def op(t + 5)) /\

Def ip t ==>

Def op t ==

(Valabs op(t + 2)
(ValAbs op(t + 3)
(ValAbs op(t + 4)
(ValAbs op(t + 5)
Toggle_when_phil
|- !phiil phil’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2?) ==
(tip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) ==
((Def op) when (isHi phil))0 ==
(tt. ((Def ip) when (isHi phil))t) ==
('t
((ValAbs op) when (isHi phil))(t + 1) =
(((ValAbs ip) when (isHi phil))t) xor
(((ValAbs op) when (isHi phi1))t)))
Toggle_Correct
|- !phii phiil’ phi2 phi2’.
Clock(phii,phil’,phi2,phi2’) ==
('ip op.
Toggle(phil,phil’,phi2,phi2’,ip,op) ==
((Def op) when (isHi phi1))0 ==
(!t. ((Def ip) when (isHi phil))t) ==>
('t.
((ValAbs op) when (isHi phi1))(t + 1) =
(((ValAbs ip) when (isHi phi1))t =>
“((ValAbs op) when (isHi phii))t |
((Valabs op) when (isHi phil))t)))

(ValAbs ip t) xor (ValAbs op t)) /\
(ValAbs ip t) xor (ValAbs op t)) /\
(ValAbs ip t) xor (ValAbs op t)) /\
(ValAbs ip t) xor (ValAbs op t))))

]

sfe sk ok ok s sk koK stk K sk ke sk ok ok s ok sk ok e s ok ok sk sk sk ek sk ok o ok ok
() : void

#

156

Appendix C

ML Code for the Correctness of
the Random Walk Filter

This appendix contains the ML code for the proof of correct-
ness of a random walk filter device designed in the CLIC de-
sign style. Considerable background knowledge of the HOL
system is needed in order to follow this code.

Before giving the actual code, here is a table which shows how the logical
connectives as used in the body of this thesis are represented in the machine
readable form as used in this appendix.

Logical Terms | Machine Readable Form
~T “x
t A o t1 /\ t2
i1Vt t1 \/ t2
t1 D ts t1 ==> £2
t =1, t1 <=> 12
ty =1, t1 = 2
Va. tm[z] 'x. tm[x]
Jz. tm[z] 7x. tm[x]
€. tm|z] 0x. tm[x]
(b=t | t2) (b => t1 | t2)
let z =a let x = a
in in
f(a) £(x)

157

new_theory ‘Rwf‘;;

maptok new_parent ‘gates-1ib RWF¢;;

0--Uo

e e e e et e
L e e e

| D e e e e e e e e e e e |

| H (I

| AN — I

| R) 1 e |\ ol LT,
| I 1/] meemmmm e e I[P 0- I

I pil p2| [p3 v==lo../ Ip4 ___ I

| IN TN (I — | =1\ p6I\N | -=) O\
| Ui-=| Q==#-=]LO-=|-+--)) \ | . IN 0--|LO-+-=---)N

| I/ 17 11)PN demm=t=|==| N\ ==|___/ I/ =)o/
| +=|=-=))__./ ' I |P 0-’p5 |

| | R R B N |

| Dimmmememmceeeeem [=|==mmmemeeee =] =] e !

[(I [

| I ==) \ o

| I JN 0-. | | Dx

I Ml tD JY A B B 0'<

[| xd

| xu

| R L LR .

| Ui ----- | nRwf_Half_Slice |

| I = Uo

| Di ----- | St |

| € o e e e e e e o)

| | | ! |

| xu xd Ux Dx
__ Y

let nRwf_Half_Slice =
new_definition
(‘nRwf_Half_Slice®,
" phil phi1’ phi2 phi2’ Ui Di xu xd Ux Dx Uo St.
anf_Half_Slice(phil,phii’,phiz,phiz’,Ui,Di,xu,xd,Ux,Dx,Uo,St) =

?pl p2 p3 p4 p5 p6. StatInv(Ui, pl)
Latch(phii,phil’, St, p2)
Latch(phil,phil’, pi, p3)
nXor(phil,phii’, p2, p3, Ux)
nNor2(phit1’, P2, p3, xu)
pNand3(phit, p2, p3, Dx, p4)
pNand2(phil, Ux, xd, p5)
nNand?2(phit?, p4, p5, p6)
Latch(phi2,phi2’, p6, St)
nNor3(phi2’, pi, St, Di, Uo)
")

158

/\
/\
/\
/\
/\
/\
/\
/\
/\

- —— 5 0) - T 0 S D S ot o 8 - T - -

|
|
I I I
| | l
| | €= |LO-=4====mmmmeemcmccmee e I\ el e St
| A ke L L L LT IP O-. (!
| pil p2! |p3 m=lod Ip4 .. [
I NN T — | ‘-1 Npsl\ | == A\
| Ui-=] 0--+=-=|LO-=|-4==)) \ R IN 0--|LO-+----)P 0--Uo
| I/ [/ 11 PN de———d=|-=| \ —=|___/ |/ =)ol
I +=|=-=))___/ 1 IPp 0-’p5 |
| I I R Ll ' |
| Di---m=ommmmmemee e R R R R i UL ’
| | I (N
| I ==) '\ (A
| | JN 0-. | | Dx
| femm=d/ 1] Ux
| | xd
| xu
|
| R il D B L Lt .
I Ui -e--- | pRwf_Half_Slice |
| I [===== Uo
| Di === | St |
| e e o ———)
| | | | |
| xu xd Ux Dx
__ Y
let pRwf_Half_Slice =
new_definition
(‘pRwf_Half_Slice®,
" phil phil’ phi2 phi2’ Ui Di xu xd Ux Dx Uo St.
pRwi_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,U0,St) =
?pl p2 p3 p4 p5 p6. StatInv(Ui, pl) /\
Latch(phil,phil’, St, p2) /\
Latch(phii,phil’, pi, p3) /\
nXor(phil,phiil’, P2, p3, Ux) /\
nNor2(phii’, p2, p3, xu) /\
pNand3(phiil, p2, p3, Dx, p4) /\
pNand2(phit1, Ux, xd, p5) /\
nNand2(phi1’, p4, pb, p6) /\
Latch(phi2,phi2’, p6, St) /\
pNor3(phi2, pl, St, Di, Uo)
§]
)5

159

|

| Ui -=--- +

| | | |-==-- Uo
l -1 Su |

| N aun L EE LI ’

| I \ / \ 7/

| I \/ \/

| I /\ /\

l bl /A /\

| I e DI

l Di -=--- [-=+--| Sd l

| | | [----- Do
| fmmmmm | pRwf_Half_Slice |

| € ot e o ot o o e o e o o)

l

| mmm————————

| Ui ==---- I [EEETEE Uo
| | Rwf_Slice |

| Di ------ | [T Do
|

|

let Rwf_Slice =
new_definition
(‘Rwf_Slice’,
" phil phii’ phi2 phi2’ Ui Di Uo Do Su sd.
wa_Slice(phii,phii’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd) =
7xu xd Ux Dx.
nRwf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,Su) /\
prf~Ha1f_Slice(phil,phil’,phi2,ph12’,Di,Ui,xd,xu,Dx,Ux,Do,Sd)

)i

160

I
|
I
I
l — —
I Ui ==>] |==> ... ==>| [|-=> Uo(n) -->| |--> Uo(n+1)
I o [(.
| Di ==>|___l-=> ... ==>|___|-=> Do(n) ==>|___|-=> Do(n+1)
| Su(0) . su(n) Su(n+1)
| $d(0) e Sd(n) Sd(n+1)
let Rwf =
new_prim_rec_definition
(‘Rwf‘,
e phii phii’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf 0 phil phil’ phi2 phi2’ Ui Di Uo Do Su 8d =
Rwf_Slice (phii,phii’,phi2,phi2’,Ui,Di,(Uo 0),(Do 0),
(su 0),(sd 0)) DAVAN
(! n phil phii’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf (SUC n)phii phil’ phi2 phi2’ Ui Di Uo Do Su Sd =
Rwf n phil phii’ phi2 phi2’ Ui Di Uo Do Su Sd /\
Rwf_Slice (phii,phil’,phi2,phi2’,(Uo n), (Do n),
(Uo(SUC n)),(Do(SUC n)),
(Su(SUC n)),(Sd(SUC n))))
")

| Rwf_Half_Slice_Spec =

[|- Rwf_Half_Slice_Spec t Ui Di xu xd Ux Dx Uo St =

| 't. (Ux t = Sttt xor Uit DEWAN
| (xu t = "S5t t /\ "Uit) /\
| (Uo t = Uit /\ Stt/\ “Dit) /\
I (St(t+1) = St t /\ Uit /\ Dxt \/

| (8t t xor Ui t)/\ xd t)

let Rwf_Half_Slice_Spec =
new_definition
(‘Rwf_Half_Slice_Spec®,
"1Ui Di xu xd Ux Dx Uo St.
Rwf_Half_Slice_Spec Ui Di xu xd Ux Dx Uo St =

1t, (Ux t = St t xor Ui t) /\
(xu t = St t /\ Uit DA
(Uo t = Uit /\ Stt/\ “Dit) /\
(St(t+1) = St t /\ Uit /\ Dx+t \/

(8t t xor Ui t)/\ xd t)
")

161

Rwf_Slice_Spec =
|- Rwf_Slice_Spec Ui Di Uo Do Su Sd =

|

I

I 1t, (Uo (t+1) = Ui (t+1) /\ Su (t+1) /\ “Di (t+1))y /\
| (Do (t+1) = Di (t+1) /\ Sd (t+1) /\ ~Ui (t+1))y /\
| (Su (t+1) =Sut /\ Uit /\ (Sd t xor Di t) \/

| (Su t xor Ui t) /\ *Sd t /\ "Di t Y /\
| (8d (t+1) =84t /\ Dit /\ (Sut xor Ui t) \/

| (Sd t xor Di t) /\ *Sut /\ "Ui t)

let Rwf_Slice_Spec =
new_definition
(‘Rwf_Slice_Spec®,
"1Ui Di Uo Do Su 8d4.
Rwf_Slice_Spec Ui Di Uo Do Su Sd =

't. (Uo (t+1) = Ui (t+1) /\ Su (t+1) /\ *Di (t+1) DAVAN
(Do (t+1) = Di (t+1) /\ Sd (t+1) /\ "Ui (t+1)) /N
(Su (t+1) =sut /\ Uit /\ (Sdt xor Di t) \/
(Sut xor Ui t) /\ *sd t /\ “Di ¢) /\
(8d (t+1) =8d t /\ Dit /\ (Sut xor Ui t) \/
(8d t xor Di t) /\ “Su t /\ Ui t)
)i
0/. __
Rwi_Spec n ——
| |
ip -==-- | 8 |=mwe- op

l

l

I

I “rint_mod2" |___| ":int_mod2"

I

| Note: The parameter "n" is used to determine to what value the internal

| state "s" is suppose to count up to.

let Rwf_Spec =

new.definition
(‘Rwf_Spec*,
"!n ip op s. Rwf_Spec n ip op 8 =
(s © = INT 0) /\
't. (NUM(int_.mod2_INT ip t+ plus s t) < 2 EXP (n+1))
=> ((op t = zero) /\ (s (SUC t) = (int_mod2_INT ip t plus s t)))
| ((op t =ipt) /\ (s (SUC t) = INT 0))

)..
3

close_theory();;

162

let BETA_TAC = CONV_TAC (DEPTH_CONV BETA_CONV);;

let EQ_RES_TAC = (IMP_RES_TAC o GEN_ALL o fst o EQ_IMP_RULE o SPEC_ALL)

and EQ_RES_THEN ttac eqth =
IMP_RES_THEN ttac ((GEN_ALL o fst o EQ_IMP_RULE o SPEC_ALL) eqth);;

loadt ‘my_CONV/REPEAT_IMP_RES_TACf;;

load_theorem ‘hol_thms‘ ‘fun_comp‘;
load_theorem ‘Clockf ‘Clock_Sym‘;
load_theorem ‘Clockf “Clock_Shift_isHi¢;
load_theorem ‘Clock ‘Clock_isHi_TimeDf_isHi¢;
load_theorem ‘Clockf ‘Clock.TimeOf _isHi_plus4‘;
load_theorem ‘StatInv‘ f‘StatInv_Wb‘;
load_theorem ‘StatInv‘ ‘StatInv_Def‘;
load_theorem ‘StatInv‘’ ‘StatInv_SPEC¢;
load_theorem ‘Latch® ‘Latch_Wb*¢;
load_theorem ‘Latch® ‘Latch_Def‘;
load_theorem ‘Latch® ‘Latch_Def_phi2¢;
load_theorem ‘Latch® ‘Latch_SPEC*;
load_theorem ‘Latchf ‘Latch_SPEC_phi2‘;
load_theorem ‘nXorf ‘nXor Wb¢;
load_theorem ‘nXorf ‘nXor_Def‘;
load_theorem ‘nXor¢ ‘nXor_SPEC_1¢;
load_theorem ‘nXorf ‘nXor_SPEC_2°¢;
load_definition ‘xorf¢ fxort;
load_theorem ‘xor* ‘xor_CLAUSES¢;
load_theorem ‘nNor2‘¢ ‘nNor2_Wb*¢;
load_theorem ‘nNor2¢ ‘nNor2_Def‘;
load_theorem ‘nNor2¢ ‘nNor2_SPEC_1¢;
load_theorem ‘nNor2¢ ‘nNor2_SPEC_2°¢;
load_theorem ‘nNor3*¢ ‘nNor3_Wb¢;
load_theorem ‘nNor3¢ ‘nNor3_Def‘;
load_theorem ‘nNor3‘ ‘nNor3_Def_phi2‘;
load_theorem ‘nNor3¢ ‘nNor3_SPEC_1°¢;
load_theorem ‘nNor3¢ ‘nNor3_SPEC_2°¢;
load_theorem ‘nNor3*¢ ‘nNor3_SPEC_phi2‘;

163

load_theorem f‘pNor3* ‘pNor3_Wb¢;

load_theorem ‘pNor3‘ ‘pNor3_Def¢;
load_theorem ‘pNor3‘ ‘pNor3_Def_phi2‘;
load_theorem ‘pNor3* ‘pNor3_SPEC_1°¢;
load_theorem ‘pNor3‘ ‘pNor3_SPEC_2¢;
load_theorem ‘pNor3¢ ‘pNor3_SPEC_phi2‘;
load_theorem ‘pNand3‘ ‘pNand3_Wb*¢;
load._theorem ‘pNand3‘ ‘pNand3_Def‘;
load_theorem ‘pNand3°¢ ‘pNand3_SPEC_1°;
load_theorem ‘pNand3¢ ‘pNand3_SPEC_2°¢;
load_theorem ‘pNand2‘ ‘pNand2_Wb*¢;
load_theorem ‘pNand2‘ ‘pNand2_Def ¢ ;
load_theorem ‘pNand2‘ ‘pNand2_SPEC_1°¢;
load_theorem ‘pNand2‘ ‘pNand2_SPEC_2°¢;
load_theorem ‘nNand2¢ ‘nNand2_Wb*;
load_theorem ‘nNand2¢ ‘nNand2_Def‘;

load_theorem ‘nNand2¢ ‘nNand2_SPEC_1°:
load_theorem ‘nNand2°¢ ‘nNand2_SPEC_2¢;

load_definition ‘when® ‘when;;

| Rwf_Half_Slice_Spec_EQ =
| |- Rwf_Half_Slice_Spec = RWF_HALF_SLICE

let Rwf_Half_Slice_Spec_EQ =
prove_thm
(‘Rwf_Half_Slice_Spec_EQ‘,
"Rwf_.Half_Slice_Spec = RWF_HALF_SLICE",
REPEAT (CHANGED_TAC (CONV_TAC (ONCE_DEPTH_CONV FUN_EQ_CONV)))
THEN REWRITE_TAC [Rwf_Half_Slice_Spec
; Xor
; CONV_RULE (ONCE_DEPTH_CONV AND_FORALL_CONV)
(theorem ‘RWF¢ ‘RWF_HALF_SLICE_THM®)
]

164

| Rwf_Slice_Spec_EQ =

| |- tUi Di Uo Do Su Sd.

| (Rwf_Slice_Spec Ui Di Uo Do Su Sd /\
[“(Uo 0) /\ "(Do 0) /\ “(Su 0) /\
! “(sd 0)) =
l
|
|

(RWF_SLICE Ui Di Uo Do Su Sd /\

“(Su 0) /\

“(sd 0))
__ %
let Rwf_Slice.Spec_EQ =

prove_thm
(‘Rwf_Slice_Spec_EQ¢,
"1Ui Di Uo Do Su S8d.
(Rwf_Slice_Spec Ui Di Uo Do Su 8d /\
“(Uo 0) /\ ~(Do 0) /\ ~(3u 0) /\
“(sd 0)) =
(RWF_SLICE Ui Di Uo Do Su Sd /\
“(8u 0) /\
“(sd 0) v,
REWRITE_TAC [theorem ‘RWF¢ ‘RWF_SLICE_THM®
; CONV_RULE (DEPTH_CONV (CHANGED_CONV FORALL_AND_CONV))
Rwf_Slice_Spec
; Xor
]
THEN REPEAT GEN_TAC
THEN EQ_TAC
THEN STRIP_.TAC
THEN ASM_REWRITE_TAC[]
THEN CONJ_TAC
THEN X_GEN_TAC "¢
THEN STRIP_ASSUME_TAC (SPEC '"t'" num_CASES)
THEN ASM_REWRITE_TAC [ADD1]
1)
= = e e e e e e e e e e
| Rwf_Spec_EQ = |- Rwf_Spec = RWF_SPEC
__ "
let Rwf_Spec_EQ =
prove_thm
(‘Rwf_Spec_EQ‘,
"Ruf_Spec = RWF_SPEC",

REPEAT (CHANGED_TAC (CONV_TAC (ONCE_DEPTH_CONV FUN_EQ_CONV)))
THEN REWRITE.TAC [Rwf_Spec; definition ‘RWF‘ ‘RWF_SPEC®]
)i

165

let nRwf_Half_Slice_Wb =
prove_thm
(‘nRwf_Half_Slice_Wb*,

"1phil phil’ phi2 phi2’. Clock(phii,phil’,

'Ui Di xu xd Ux Dx Uo St.

phi2,phi2’)

anf_Half_Slice(phil,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice
THEN EQ_RES_TAC Clock_Sym

THEN REPEAT_IMP_RES_TAC Latch_Wb

THEN REPEAT_IMP_RES_TAC nNor3_Wb

THEN REPEAT_IMP_RES_TAC nNor2_Wb

THEN REPEAT_IMP_RES_TAC nXor_Wb

THEN ASM_REWRITE_TAC []

)i

let pRwf_Half_Slice_Wb =
prove_thm
(‘pRwf_Half_Slice_Wb¢,
"Iphil phiil’ phi2 phi2’,
Ui Di xu xd Ux Dx Uo St.

(Wb St phi2

/\

Wb St phi2’ /\

Wb Uo phi2
Wb xu phil
Wb Ux phiil

Clock(phii,phil’,phi2,phi2°®)

prf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice
THEN EQ.RES_TAC Clock_Sym

THEN REPEAT_IMP_RES_TAC Latch_Wb

THEN REPEAT_IMP_RES_TAC pNor3_Wb

THEN REPEAT_IMP_RES_TAC nNor2_Wb

THEN REPEAT_IMP_RES_TAC nXor_Wb

THEN ASM_REWRITE_TAC []

)i

166

(Wb St phi2
Wb St phi2’
Wb Uo phi2’
Wb xu phit
Wb Ux phii

/\
/\

=>

/\
/\
/\
/\

)ll,

o,

let nRwf_Half_Slice_Def =

prove_thm

(‘nRwf_Half_Slice_Def*,
"iphil phil’ phi2 phi2’,
Ui Di xu xd Ux Dx Uo St.

nRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
p p p P

It.
(Def St
Def Uo

(t+2) /\ Def St
(t+2) /\ Def Uo

I
I
v

Clock(phil,phil’,phi2,phi2’)

=>
(isHi phil t) ==
(t+3) /\ Def St (t+4) /\ Def St (t+5) /\

(t+43) /\ Def Uo (t+4) /\ Def Uo (t+5) /\

Def xu (t) /\ Def xu (t+1) /\ Def xu (t+2) /\ Def xu (t+3) /\

Def Ux

(t) /\ Def Ux

(t+1) /\ Def Ux (t+2) /\ Def Ux (t+3))",

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN

)i

let pRwf_Half_Slice_Def =

prove_thm

(‘pRwf_Half_Slice_Def‘,
"iphi1 phil’ phi2 phi2’,
Ui Di xu xd Ux Dx Uo St.

pRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

',

(Def St
Def Uo
Def xu
Def Ux

(t+2) /\ Def St
(t+2) /\ Def Uo
(t) /\ Def xu
(t) /\ Def Ux

EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice
REPEAT_IMP_RES_TAC nXor_Def
REPEAT_IMP_RES_TAC nNor2_Def
REPEAT_IMP_RES_TAC nNor3_Def_phi2
REPEAT_IMP_RES_TAC nNand2_Def
REPEAT_IMP_RES_TAC Latch_Def_phi2
ASM_REWRITE_TAC []

Clock(phil,phii’,phi2,phi2’)

1]
I
\'4

=>

(isHi phiil t)
(t+3) /\ Def St (t+4) /\ Def St (t+5) /\
(t+3) /\ Def Uo (t+4) /\ Def Uo (t+5) /\
(t+1) /\ Def xu (t+2) /\ Def xu (t+3) /\
(t+1) /\ Def Ux (t+2) /\ Def Ux (t+3))",

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
)i

EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice
REPEAT_IMP_RES_TAC nXor_Def
REPEAT_IMP_RES_TAC nNor2_Def
REPEAT_IMP_RES_TAC pNor3_Def_phi?2
REPEAT_IMP_RES_TAC nNand2_Def
REPEAT_IMP_RES_TAC Latch_Def_phi2
ASM_REWRITE_TAC []

167

let Rwf_Slice_Wb =

prove_thm

(‘Rwf_Slice_Wb*¢,
“iphil phil’ phi2 phi2’.
Ui Di Uo Do Su Sd.

Clock(phil,phil’,phi2,phi2’)

Rwf_Slice(phil,phil’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd)

(Wb Su
Wb Sd
Wb Uo
Wb Do

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC Rwf_Slice
THEN REPEAT_IMP_RES_TAC nRwf_Half_Slice_Wb
THEN REPEAT_IMP_RES_TAC pRwf_Half_Slice_Wb

THEN ASM_REWRITE_TAC []

)i

let Rwf_Slice_Def =

prove_thm

(‘Rwf_Slice_Def®,
“iphi1l phil’ phi2 phi2’.
Ui Di Uo Do Su Sd.

Clock(phil,phil’,phi2,phi2’)

Rwf_Slice(phil,phii’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd)

't

(isHi phitl)

1]
I
v

phi2 /\
phi2’ /\
phi2 /\
phiZ’)u’

1]
]
\'4

1]
[
v

==

(Def Su (t+2) /\ Def Su (t+3) /\ Def Su (t+4) /\ Def Su (t+5) /\
Def Sd (t+2) /\ Def Sd (t+3) /\ Def Sd (t+4) /\ Def Sd (t+5) /\

Def Uo (t+2) /\ Def Uo
Def Do (t+2) /\ Def Do

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC Rwf_Slice
THEN REPEAT_IMP_RES_TAC nRwf_Half_Slice_Def
THEN REPEAT_IMP_RES_TAC pRwf_Half_Slice_Def

THEN ASM_REWRITE_TAC []

)i

168

(t+3) /\ Def Uo (t+4) /\ Def Uo (t+5) /\
(t+3) /\ Def Do (t+4) /\ Def Do (t+5))",

let Rwf_Wb =
prove_thm
(*RWf_Wb*,
"!phil phil’ phi2 phi2’. Clock(phil,phil’,phi2,phi2’) ==>
'n Ui Di Uo Do Su Sd. '
Rwf n phii phiil’ phi2 phi2’ Ui Di Uo Do Su Sd ==
(Wb (Su n) phi2 /\
Wb (Sd n) phi2’ /\
Wb (Uo n) phi2 /\
Wb (Do n) phi2’)",
REPEAT GEN_TAC
THEN DISCH_TAC
THEN INDUCT_TAC
THEN PURE_REWRITE_TAC [Rwf]
THEN REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN REPEAT_IMP_RES_TAC Rwf_Slice_Wb
THEN ASM_REWRITE_TAC []

)i

let Rwf_Def =
prove_thm
(‘Rwf_Def*,
"1phil phii’ phi2 phi2’. Clock(phil,phil’,phi2,phi2’)
!n Ui Di Uo Do Su sd.
Rwf n phii phiil’ phi2 phi2’ Ui Di Uo Do Su Sd ==>
It, (isHi phil t) ==
(Def (Su n) (t+2) /\ Def(Su n) (t+3) /\ Def(Su n) (t+4) /\ Def(Su n) (t+5) /\
Def(8d n) (t+2) /\ Def(Sd n)(t+3) /\ Def(Sd n)(t+4) /\ Def(Sd n)(t+5) /\
Def(Uo n) (t+2) /\ Def(Uo n)(t+3) /\ Def(Uo n) (t+4) /\ Def (Uo n) (t+5) /\
Def (Do n)(t+2) /\ Def(Do n)(t+3) /\ Def(Do n)(t+4) /\ Def(Do n) (t+5) JLLR
REPEAT GEN_TAC
THEN DISCH_TAC
THEN INDUCT_TAC
THEN PURE_REWRITE_TAC [Rwf]
THEN REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN REPEAT_IMP_RES_TAC Rwf_Slice_Def
THEN ASM_REWRITE_TAC []
)3

1]
1)
v

n

169

let nRwf_Half_Slice_Ux
"Iphil phiil’ phi2 phi2’,

prove_thm (‘nRwf_Half_Slice_Ux°®,

Clock(phii,phii’,phi2,phi2’)

Ui Di xu xd Ux Dx Uo St.
nRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
Wb Ui phi2
Wb Di phi2’
Wb xd phii
Wb Dx phiil
(isHi phit

(ValAbs Ux (t+1)
(ValAbs Ux (t+2)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

let pRwf_Half_Slice_Ux
"!phil phii’ phi2 phi2’,

REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC

StatInv_SPEC
StatInv_Def
Latch_SPEC
Latch_Def
nXor_SPEC_1
Latch_Wb
nXor_SPEC_2

ASM_REWRITE_TAC [DE_MORGAN_THM; xor_CLAUSES]);;

prove_thm (‘pRwf_Half_Slice_Ux‘,
Clock(phil,phil’,phi2,phi2’)

Ui Di xu xd Ux Dx Uo S%.

pRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
P P P
Wb Ui phi2’

It,

(ValAdbs Ux (t+1)
(ValAbs Ux (t+2)

Def Ui
Def St

“ValAbs St t xor ValAbs Ui
“ValAbs St t xor ValAbs Ui

t)

ct ot ot
~

Wb Di phi2
Wb xd phit
Wb Dx phit

(isHi phiil t)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice
REPEAT_IMP_RES_TAC StatInv_SPEC
REPEAT_IMP_RES_TAC StatInv_Def
REPEAT_.IMP_RES_TAC Latch_SPEC
REPEAT_IMP_RES_TAC Latch_Def

REPEAT_IMP_RES_TAC nXor_SPEC_1
REPEAT_IMP_RES_TAC Latch_Wb

REPEAT _IMP_RES_TAC nXor_SPEC_2

ASM_REWRITE_TAC [DE_MORGAN_THM; xor_CLAUSES]);;

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

170

Def Ui
Def St

“Valdbs St t xor ValAbs Ui
“ValAbs St t xor ValAbs Ui

ct o o
~

{
L
\'%

[| | N { N (S| | |
n n n a a n u
VvV V V V V vV VvV

~ u
~

t
]
v

o un o u u nn
n u o nn u o
V V V V V Vv Vv

1

~
~

let nRwf_Half_Slice_xu = prove_thm (‘nRwf_Half_Slice_xuf,

"Iphil phil’ phi2 phi2’, Clock(phil,phii’,phi2,phi2’)

Ui

nRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

1l
i
v

Di xu xd Ux Dx Uo St.

woun
I u
v Vv

Wb Ui phi?2

Wb Di phi2’

Wb xd phii

Wb Dx phil

(isHi phil t)

Def Ui

Def St

(ValAbs xu (t+1) Valdbs St t /\ ~ValAbs Ui
(Valabs xu (t+2) = ValAbs St t /\ “ValAbs Ui

nu w u n
N 0oun nou onon
~ VvV V V V V V

ct o o o
~
0

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice
REPEAT_IMP_RES_TAC StatInv_SPEC
REPEAT_IMP_RES_TAC StatInv_Def
REPEAT_IMP_RES_TAC Latch_SPEC
REPEAT_IMP_RES_TAC Latch_Def
REPEAT_IMP_RES_TAC nNor2_SPEC_1
REPEAT_IMP_RES_TAC Latch_Wb
REPEAT_IMP_RES_TAC nNor2_SPEC_2
ASM_REWRITE_TAC [DE_MORGAN_THM]);;

let pRwf_Half_Slice_xu = prove_thm (‘pRwf_Half_Slice_xu‘,

"Iphil phii’ phi2 phi2’. Clock(phitl,phi1’,phi2,phi2?)

Ui

prf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

[}
il
v

Di xu xd Ux Dx Uo St.

{
il
v

Wb Ui phi2’ ==>

Wb Di phi2 ==>

Wb xd phil ==>

Wb Dx phii ==>

(isHi phil t) ==>

Def Ui t ==>

Def St t ==>

(ValAbs xu (t+1) = ValAbs St t /\ “~Valdbs Ui t) /\
(ValAbs xu (t+2) = ValAbs St t /\ “ValAbs Ui t)y

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice
REPEAT_IMP_RES_TAC StatInv_SPEC
REPEAT_IMP_RES_TAC StatInv_Def
REPEAT_IMP_RES_TAC Latch_SPEC
REPEAT_IMP_RES_TAC Latch_Def
REPEAT_IMP_RES_TAC nNor2_SPEC_1
REPEAT_IMP_RES_TAC Latch_Wb

REPEAT _IMP_RES_TAC nNor2_SPEC_2
ASM_REWRITE_TAC [DE_MORGAN_THM]);;

17

let nRuf_Half_Slice_Uo =
prove_thm
(*nRwf_Half_Slice_Uof¢,

"iphii phi1’ phi2 phi2’.

Ui

Di xu xd Ux Dx Uo St.

Clock(phil,phil’,phi2,phi2’)

nRwf _Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
Wb Ui phi2
Wb Di phi2’
(isHi phil t)

]

Def Ui
Def Ui
Def Di
Def Di

ValAbs Ui(t+3) /\

*ValAbs St(t+3) /\

“ValAbs Di(t+3)) /\

ValAbs Ui(t+4) /\

“ValAbs St(t+4) /\

“ValAbs Di(t+4))

(ValAbs Uo(t+3)

(ValAbs Uo(t+4)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

)i

EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice
EQ_RES_TAC Clock_Sym

REPEAT_IMP_RES_TAC StatInv_Def
REPEAT_IMP_RES_TAC StatInv_Wb
REPEAT_IMP_RES_TAC nNand2_Def
REPEAT_IMP_RES_TAC Latch_Def_phi2
REPEAT_IMP_RES_TAC Latch_Wb
REPEAT_IMP_RES_TAC nNor3_SPEC_phi2
REPEAT_IMP_RES_TAC StatInv_SPEC
ASM_REWRITE_TAC [DE_MORGAN_THM]

172

(t+3)
(t+4)
(t+3)
(t+4)

1]
il
v

n u n o 0 1 u
0 u n n w uu
VvV V V V V VvV Vv

il
il
v

let pRuf_Half_Slice_Uo =
prove_thm

(‘pRwf_Half_Slice_Uo¢,

"!1phil phil’ phi2 phi2’, Clock(phil,phii’,phi2,phi2’)

Ui Di xu xd Ux Dx Uo St.

prf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)

Wb Ui phi2’

Wb Di phi2

t. (isHi phil t)

Def Ui (t+3)

Def Ui (t+4)

Def Di (t+3)

Def Di (t+4)

(ValAbs Uo(t+3)

ValAbs Ui(t+3) /\
“ValAbs St(t+3) /\
“ValAbs Di(t+3)) /\

ValAbs Ui(t+4) /\
“ValAbs St(t+4) /\
“ValAbs Di(t+4))

(ValAbs Uo(t+4)

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice
THEN EQ_RES_TAC Clock_Sym

THEN REPEAT_IMP_RES_TAC StatInv_Def

THEN REPEAT_IMP_RES_TAC StatInv_Wb

THEN REPEAT_IMP_RES_TAC nNand2_Def

THEN REPEAT_IMP_RES_TAC Latch_Def_phi2

THEN REPEAT_IMP_RES_TAC Latch_Wb

THEN REPEAT_IMP_RES_TAC pNor3_SPEC_phi2

THEN REPEAT_IMP_RES_TAC StatInv_SPEC

THEN ASM_REWRITE_TAC [DE_MORGAN_THM]

)i

173

1]
]
v

nm s o n un ny
hu o nua u a
vV V V V V Vv Vv

1]
It
v

let nRwf_Half_Slice_St =
prove_thm
(‘nRwf_Half_Slice_St°¢,
"!1phil phil’ phi2 phi2’,
Ui Di xu xd Ux Dx Uo St.

nRwf_Half_Slice(phil,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
Wb Ui phi2
Wb Di phi2’
Wb xd phil
Wb Dx phil

(isHi
Def

Def

Def

Def
Def

Def
“ValAbs
“ValAbs
“ValAbs
“ValAbs

(ValAbs St(t+3) = (ValAbs St t \/ “ValAbs Ui t \/
((ValAbs St t xor Valdbs Ui t) \/
(ValAbs St(t+4) = (ValAbs St t \/ “Valibs Ui t \/
((ValAbs St t xor ValAbs Ui t) \/
n
REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EQ_RES_THEN STRIP_ASSUME_TAC nRwf_Half_Slice
THEN REPEAT_IMP_RES_TAC nRwf_Half_Slice_Def
THEN REPEAT_IMP_RES_TAC StatInv_Def
THEN REPEAT_IMP_RES_TAC Latch_Def
THEN REPEAT_IMP_RES_TAC pNand2_Def
THEN REPEAT_IMP_RES_TAC pNand3_Def
THEN REPEAT_IMP_RES_TAC nNand2_Def
THEN REPEAT_IMP_RES_TAC StatInv_Wb
THEN REPEAT_IMP_RES_TAC Latch_Wb
THEN REPEAT_IMP_RES_TAC nRwf_Half_Slice_Wb
THEN REPEAT_IMP_RES_TAC pNand3_Wb
THEN REPEAT_IMP_RES_TAC pNand2_Wb
THEN REPEAT_IMP_RES_TAC nNand2_Wb

Clock(phil,phil’,phi2,phi2’)

THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN REPEAT_IMP_RES_TAC
THEN
)i

StatInv_SPEC
Latch_SPEC
nRwf_Half_Slice_Ux
pNand2_SPEC_2
pNand3_SPEC_2
nNand2_SPEC_2
Latch_SPEC_phi2

ASM_REWRITE_TAC [DE_MORGAN_THM]

174

1]
i
\'4

n o o u o n
i u ua o u
VvV V. V VvV v v

phii t)
St t
Ui t
xd(t+1)
*¥d(t+2)
Dx(t+1)
Dx (t+2)
Dx(t+2))
xd(£+2))
Dx(t+2)) /\
xd{(t+2)))

n a0 w u
oo u unon
v VvV VvV Vv v

n

=>
/\
VA

let pRwf_Half_Slice.St =
prove_thm
(‘pRwf_Half_Slice_St°¢,
“iphii phiil’ phi2 phi2’.
Ui Di xu xd Ux Dx Uo St,

pRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St)
Wb Ui phi2’
Wb Di phi2
Wb xd phiil
Wb Dx phiil

(ValAbs St(t+3) = (Vallbs St t \/ “Valdbs Ui t \/
((VvalAibs St t xor ValAbs Ui t) \/
(ValAbs St(t+4) = (ValAbs St t \/ "Valdbs Ui t \/
((ValAbs St t xor ValAbs Ui t) \/

Clock(phil,phil’,phi2,phi2’)

(isHi
Def
Def
Def
Def
Def
Def

“Valdbs
“ValAbs
“ValAbs
“ValAbs

b
REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN

REPEAT_IMP_RES_TAC pRwf_Half_Slice_Def
REPEAT_IMP_RES_TAC StatInv_Def

EQ_RES_THEN STRIP_ASSUME_TAC pRwf_Half_Slice

4]
it
v

m a4 a4 o a
n un u o u
Vv V V V Vv Vv

phil t)
St t
Uit
xd(t+1)
x4 (t+2)
Dx(t+1)
Dx (t+2)
Dx{(t+2))
xd(t+2))
Dx(t+2)) /\
xd(t+2))

n ua n u
mou u un
vV VvV VvV Vv

n
i
v

=>
/\

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

)i

REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC
REPEAT_IMP_RES_TAC

Latch_Def
pNand2_Def
pNand3_Def
nNand2_Def
StatInv_Wb
Latch.Wb
pRuf_Half_Slice_Wb
pNand3_Wb
pNand2_Wb
nNand2_Wb
StatInv_SPEC
Latch_SPEC
pRwf_Half_Slice_Ux
pNand2_SPEC_2
pNand3_SPEC_2
nNand2_SPEC_2
Latch_SPEC_phi2

ASM_REWRITE_TAC [DE_MORGAN_THM]

175

YA
)

let Rwf_Slice_SPEC =
prove_thm
(‘Rwf_Slice_SPEC¢,

"!1phil phil’ phi2 phi2’. Clock(phil,phil’,phi2,phi2?)

1]
1]
v

Ui Di Uo Do Su Sd.

Rwf_Slice(phii,phil’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd)

(ValAbs
(ValAbs
(ValAbs

il
il
v

fl
It
v

Wb Ui phi2
Wb Di phi2’
(isHi phiil t)
Def Su t
Def Sd t
Def Ui ¢
Def Ui(t+3)
Def Ui(t+4)
Def Di %
Def Di(t+3)
Def Di(t+4) ==>

a u u 0w nun
g 4 u o u u u
Vv V V V V VvV Vv

1]
)
A4

v

Uo(t+4) = ValAbs Ui(t+4) /\ “Valhbs Su(t+4) /\ “ValAbs Di(t+4))/\
Do(t+4) = ValAbs Di(t+4) /\ ~ValAbs Sd(t+4) /\ “ValAbs Ui(t+4))/\
Su(t+4) =

(ValAbs Su t \/ “ValAbs Ui t \/ (Valibs Sd t xor Valibs Di t)) /\
((Valibs Su t xor Valibs Ui t) \/ "ValAbs Sd t \/ ValAbs Di t) Y\

(ValAbs

Sd(t+4) =

(ValAbs Sd t \/ “ValAbs Di t \/ (ValAbs Su t xor ValAbs Ui t)) /\
((ValAdbs Sd t xor ValAbs Di t) \/ *“Valdbs Sut \/ ValAbs Ui t))

1
’

REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

)i

EQ.RES_THEN STRIP_ASSUME_TAC Rwf_Slice
REPEAT_IMP_RES_TAC nRwf_Half_Slice_Def
REPEAT_IMP_RES_TAC pRwf_Half_Slice_Def
REPEAT_IMP_RES_TAC nRwf_Half_Slice_Wb
REPEAT_IMP_RES_TAC pRwf_Half_Slice_Wb
REPEAT_IMP_RES_TAC nRwf_Half_Slice_Ux
REPEAT_IMP_RES_TAC nRwf_Half_Slice_xu
REPEAT_IMP_RES_TAC nRwf_Half_Slice_Uo
REPEAT_IMP_RES_TAC nRwf_Half_Slice_St
REPEAT_IMP_RES_TAC pRwf_Half_Slice_Ux
REPEAT_IMP_RES_TAC pRwf_Half_Slice_xu
REPEAT_IMP_RES_TAC pRwf_Half_Slice_Uo
REPEAT_IMP_RES_TAC pRwf_Half_Slice_St
FILTER_ASM_REWRITE_TAC (can (match "x=y"))
[xor_CLAUSES; DE_MORGAN_THM]

176

let Rwf_Slice_imp_SLICE =
prove_thm
(‘Rwf_Slice_imp_SLICE®,
"1UL Di Uo Do Su 8d,
Rwf_Slice_Spec Ui Di Uo Do Su Sd

1]
It
\'4

“(Uo 0) ==>
“(Do 0) ==>
“(Su 0) ==>
“(Sd 0) ==> SLICE (MK_int_mod2a (Ui,Di))

(MK_int_mod2a (Uo,Do))
(MK_int_mod2a (Su,sd))
]
REPEAT STRIP_TAC
THEN EQ_RES_TAC Rwf_Slice_Spec_EQ
THEN IMP_RES_TAC (theorem ‘RWF ‘RWF_SLICE_imp_SLICE¢)

)i

let Rwf_Def_when_phil =
prove_thm
(‘Rwf_Def_when_phil®,
"!phil phil’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’) ==>
!n Ui Di Uo Do Su Sd.
Rwf n phil phii’ phi2 phi2’ Ui Di Uo Do Su Sd ==
(('t. ((Def(Su n) o $+3) when (isHi phii)) t) /\
(*t. ((Def(Sd n) o $+3) when (isHi phi1)) t) /\
(%, ((Def(Uo n) o $+3) when (isHi phil)) t) /\
(t. ((Def(Do n) o $+3) when (isHi phi1)) t) /\

('t. ((Def(Su n)) when (isHi phi1))(t+1)) /\
('t. ((Def(Sd n)) when (isHi phi1))(t+1)) /\
(1t. ((Def(Uo n)) when (isHi phi1))(t+1)) /\
('t. ((Def(Do n)) when (isHi phil))(t+1))) v,

REPEAT (FILTER_STRIP_TAC "Rwf")

THEN DISCH_TAC

THEN PURE_REWRITE_TAC [when]

THEN BETA_TAC

THEN IMP_RES_THEN (\th. REWRITE_TAC [th ; fun_comp ; SPEC "3'" ADD_SYM]
) Clock_TimeOf_isHi_plus4

THEN CONV_TAC AND_FORALL_CONV

THEN X_GEN_TAC "

THEN IMP_RES_THEN (ASSUME_TAC o (SPEC "t"))
Clock_isHi_TimeOf_isHi

THEN REPEAT_IMP_RES_TAC Rwf_Def

THEN ASM_REWRITE_TAC []

N

177

set_goal([],

"Iphil phil’ phi2 phi2’. Clock(phil,phii’,phi2,phi2’)

Ui Di Uo Do Su Sd.

Rwf_Slice(phii,phi1’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd)

Wb Ui phi2

Wb Di phi2’

((Def Su) when (isHi phii)) O

((Def Sd) when (isHi phil)) 0

(1. ((Def Ui) when (isHi phil)) t)
(', ((Def Di) when (isHi phil)) t)
('t. ((Def Ui o $+3) when (isHi phii1)) t)
(1t. ((Def Di o $+3) when (isHi phiil)) t)

let UI = ((ValAbs Ui) when (isHi phil))
in
let DI = ((ValAbs Di) when (isHi phil))
in
let U0 = ((ValAbs Uo) when (isHi phil))
in
let DO = ((ValAbs Do) when (isHi phii))
in
let SU = ((ValAbs Su) when (isHi phiil))
in
let SD = ((ValAbs Sd) when (isHi phii))
in

Rwf_Slice_Spec UI DI U0 DO ($~ o SU) ($~ o SD)
")

expand (PURE_REWRITE_TAC [LET_DEF; when]
THEN BETA_TAC
THEN REPEAT STRIP_TAC
THEN PURE_REWRITE_TAC [Rwf_Slice_Spec]
THEN BETA_TAC
THEN INDUCT_TAC
THENL [ALL_TAC ; POP_ASSUM (K ALL_TAC)]
)i

178

il
il
v

a B o0 o 0w 8 0
i o o a4 6 u a4 u
vV V V V V V V Vv

n
0
v

expand (POP_ASSUM (MP_TAC o (SPEC "O D) e
THEN POP_ASSUM (MP_TAC o (SPEC "O")]
THEN POP_ASSUM (\th. MP_TAC (SPEC "O" th)

THEN

THEN

THEN

THEN
THEN
THEN
THEN

)i

expand (POP_ASSUM (MP_TAC o (SPEC "t+1")

THEN
THEN

THEN

THEN

THEN

THEN
THEN
THEN
THEN
THEN

)i

THEN MP_TAC (SPEC "0+1" th))
POP_ASSUM (\th. MP_TAC (SPEC "O" th)
THEN MP_TAC (SPEC "0+1" th))
IMP_RES_THEN
(\th. REWRITE_TAC [th; fun_comp; SPEC "3" ADD_SYM])
Clock_TimeQf_isHi_plus4
IMP_RES_THEN (ASSUME_TAC o (SPEC "0"))
Clock_isHi_TimeOf_isHi
REPEAT DISCH_TAC
BETA_TAC
REPEAT_IMP_RES_TAC Rwf_Slice_SPEC
IMP_RES_THEN
(\th. FILTER_ASM_REWRITE_TAC
(can (match "x:i*=y"))
[th; xor_CLAUSES; DE_MORGAN_THM])
Clock_TimeOf _isHi_plus4

POP_ASSUM (MP_TAC o (SPEC "t+1"))
POP_ASSUM (\th. MP_TAC (SPEC "t+1" th)
THEN MP_TAC (SPEC "t+1+1" th))
POP_ASSUM (\th. MP_TAC (SPEC "t+1" th)
THEN MP_TAC (SPEC "t+1+1' th))
IMP_RES_THEN

Case t

(\th, ASSUME_TAC (SPEC “t" th) THEN MP_TAC (SPEC "t+1" th))

Clock_isHi_TimeOf_isHi
IMP_RES_THEN (\th. REWRITE_TAC [th
; fun_comp
; SPEC "“3" ADD_SYM
; ADD1
; ADD_ASS0C
]
) Clock_TimeOf_isHi_plus4
REPEAT_IMP_RES_TAC Rwf_Slice_Def
REPEAT DISCH_TAC
BETA_TAC
REPEAT_IMP_RES_TAC Rwf_Slice_SPEC
IMP_RES_THEN (\th. FILTER_ASM_REWRITE_TAC
(can (match “x:k=y"))
[th; xor_CLAUSES; DE_MORGAN_THM]
) Clock_TimeOf_isHi_plus4

let Rwf_Slice_when_phil = save_top_thm ‘Rwf_Slice_when_phil¢;;

179

0%

________ Case (SUC t) Y

let SLICE_Correct = SUBS [SYM Rwf_Spec_EQ]
(theorem ‘RWF¢ ‘SLICE_CORRECT®);;

let Rwf_Spec_CORRECT = SUBS [SYM Rwf_Spec_EQ]
(theorem ‘RWF‘ ‘RWF_SPEC_CORRECT®);;

let Rwf_Slice_when_phil’ =
BETA_RULE (REWRITE_RULE [LET_DEF] Rwf_Slice_when_phil);;

set_goal([],
"iphiil phil’ phi2 phi2’.

Clock(phil,phil’,phi2,phi2’) ==>

!In Ui Di Uo Do Su Sd.
Rwi n phil phil’ phi2 phi2’ Ui Di Uo Do Su 84 ==>
Wb Ui phi2 ==>
Wb Di phi2’ ==>
(In. ((Def (Su n)) when (isHi phil)) 0) ==>
(In. ((Def (8d n)) when (isHi phii)) 0) ==>
(In. ((Def (Uo n)) when (isHi phil)) 0) ==>
(In. ((Def (Do n)) when (isHi phil)) 0) ==>
(in. ((ValAbs (Su n)) when (isHi phil)) 0) ==>
(In, ((ValAbs (Sd n)) when (isHi phii)) 0) ==>
(In. ~((ValAbs (Uo n)) when (isHi phil)) 0) ==>
(In., "~ ((ValAbs (Do n)) when (isHi phii)) 0) ==>
('t. ((Def Ui) when (isHi phii)) t) ==>
('t. ((Def Di) when (isHi phii)) t) ==>
('t. ((Def Ui o $+3) when (isHi phil)) t) ==>
('t, ((Def Di o $+3) when (isHi phii)) t) ==>

let UI = ValAbs Ui when (isHi phil)

in
let DI = ValAbs Di when (isHi phil)

in

let ip = MK_int_mod2a (UI, DI)

in

let U0 = ValAbs (Uo n) when (isHi phil)

in

let DO = ValAbs (Do n) when (isHi phil)

in

let op = MK_int_mod2a (UQ, DO)

in

let SU = (\x. $ o (ValAbs (Su x) when (isHi phil)))
in

let SD = (\x. $” o (ValAbs (Sd x) when (isHi phi1)))
in

let St = (\x. MK_int_mod2a (SU x, SD x))

in

Ruf_Spec n ip op (VAL n St)

")

180

expand (REPEAT GEN_TAC
THEN DISCH_TAC
THEN PURE_REWRITE_TAC [LET_DEF]
THEN BETA_TAC
THEN BETA_.TAC

THEN INDUCT_TAC

)i

let Strong_Induction =
TAC_PROOF
(C{1, "tP. P 0 /\ (!n. P(n+1)) ==> !n. P n"),
GEN_TAC

THEN
THEN

STRIP_TAC
INDUCT_TAC

THEN ASM_REWRITE_TAC [ADD1]

)i

% Base Case Y
expand (REWRITE_TAC [VAL; SYM (SPEC_ALL SLICE_Correct); Rwf]

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

)3

REPEAT (FILTER_STRIP_TAC '"Def")
(\th.
(\th.
(\th.
(\th.
(\th.
(\th.
(\th.
(\th.
REPEAT STRIP_TAC

DISCH_THEN
DISCH_THEN
DISCH_THEN
DISCH_THEN
DISCH_THEN
DISCH_THEN
DISCH_THEN
DISCH_THEN

BETA_TAC

ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC

th
th
th
th
th
th
th
th

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC
ASSUME_TAC

REPEAT_IMP_RES_TAC Rwf_Slice_when_phil’
REPEAT_IMP_RES_TAC Rwf_Slice_imp_SLICE

POP_ASSUM (\th.

REPEAT_IMP_RES_TAC
(REWRITE_RULE [fun_comp] th))

181

(SPEC
(SPEC
(SPEC
(SPEC
(SPEC
(SPEC
(SPEC
(SPEC

Iloll
IIOII
I!OII
HOII
IIOI!
IIOII
lloll
I|OII

th))
th))
th))
th))
th))
th))
th))
th))

% Inductive Case Y
expand (POP_ASSUM
(\th. PURE_REWRITE_TAC [Rwf; Rwf_Spec_CORRECT]
THEN REPEAT (GEN_TAC ORELSE DISCH_THEN STRIP_ASSUME_TAC)
THEN EXISTS_TAC op
THEN REPEAT_IMP_RES_TAC th
)
THEN POP_ASSUM (\th. REWRITE_TAC [th; SYM (SPEC_ALL SLICE_Correct)])
THEN BETA_TAC
THEN POP_ASSUM (K ALL_TAC)
THEN POP_ASSUM (K ALL_TAC)
THEN POP_ASSUM (K ALL_TAC)
THEN POP_ASSUM (K ALL_TAC)
THEN POP_ASSUM
(\thi., POP_ASSUM
\th2. POP_ASSUM
\th3. POP_ASSUM
\th4, POP_ASSUM
\th5. POP_ASSUM
\thé. POP_ASSUM
\th7. POP_ASSUM
\th8. ASSUME_TAC (SPEC "SUC n" th8)
THEN ASSUME_TAC (SPEC "SUC n" th7)
THEN ASSUME_TAC (SPEC 'n" th6)
THEN ASSUME_TAC (SPEC n" thbs)
THEN ASSUME_TAC (SPEC "SUC n" th4)
THEN ASSUME_TAC (SPEC "SUC n" th3)
THEN ASSUME_TAC (SPEC “SUC n" th2)
THEN ASSUME_TAC (SPEC "SUC n" thi)
)
THEN IMP_RES_THEN IMP_RES_TAC Rwf_Def_when_phil
THEN IMP_RES_THEN IMP_RES_TAC Strong_Induction
THEN REPEAT_IMP_RES_TAC Rwf_Wb
THEN REPEAT_IMP_RES_TAC Rwf_Slice_when_phiil’
THEN REPEAT_IMP_RES_TAC Rwf_Slice_imp_SLICE
THEN POP_ASSUM (REPEAT_IMP_RES_TAC o (REWRITE_RULE [fun_comp]))
)
where op = "MK_int_mod2a ((ValAbs (Uo n)) when (isHi phii) ,
(ValAbs (Do n)) when (isHi phii))v;;

let Rwf_when_phil = save_top_thm ‘Rwf_when_phil‘;;

182

#print_theory ‘Rwf‘;;
The Theory Rwf
Parents -- HOL gates~-1lib RWF
Constants ==
nRwf_Half_Slice
" (num -> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) #
((aum -> tri) #
((num ~-> tri) #
((num -> tri) #
((num -> tri) #
((aum -> tri) # ((qum -> tri) # (qum -> tri)))))))))) ->
bool"
pRwf_Half_Slice
":(num -> tri) #
((hum -> tri) #
((num -> tri) #
((num => tri) #
((hum -> tri) #
((npum =-> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) # ((oum -> tri) # (num -> tri))))))))))) ->
bool"
Rwf_Slice
"y(num -> tri) #
((num -> tri) #
((aum -> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) #
((num -> tri) #

((num => tri) # ((num => tri) # (num -> tri))))))))) >
bool"

183

Rwf
"ipum ->
((um -> tri) ->
((num => tri) ->
((num -> tri) ->
((aun -> tri) ->
((num -> tri) -»
((num -> tri) ->
((num -> (num -> tri)) ->
((num -> (num -> tri)) =->
((num => (num -> tri)) -> ((num -> (num => tri)) => bool))))))))))n
Rwf_Half_Slice_Spec
":(num -> bool) ->
((num =-> bool) =->
((num -> bool) =->
((num -> bool) ->
((num -> bool) =->
((num => bool) -> ((num -> bool) -> ((num -> bool) -> bool)))))))"
Rwf_Slice_Spec
":(num -> bool) ->
((num -> bool) ->
((num -> bool) ->
((num -> bool) -> ((num -> bool) -> ((num -> bool) -> bool)))))"
Rwf _Spec
":num ->
((num => int_mod2) =-> ,
((aum -> int_mod2) -> ((num -» int) -> bool)))"
Definitions -~
nRwf_Half_Slice
|- !phil phil’ phi2 phi2’ Ui Di xu xd Ux Dx Uo St.
nRwf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) =
(7p1 p2 p3 p4 p5 pé.
StatInv(Ui,p1) /\
Latch(phil,phil’,St,p2) /\
Latch(phii,phii?’,p1,p3) /\
nXor(phil,phi1’,p2,p3,Ux) /\
nNor2(phil’,p2,p3,xu) /\
pNand3(phil,p2,p3,Dx,pd) /\
pNand2(phil,Ux,xd,p5) /\
nNand2(phil’,p4,p5,p6) /\
Latch(phi2,phi2’,p6,St) /\
nNor3(phi2’,pi,St,Di,Uo))

184

pRwf_Half_Slice
|- !'phil phii’ phi2 phi2’ Ui Di xu xd Ux Dx Uo St.
pRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) =
(?p1 p2 p3 p4d p5 pbé.
StatInv(Ui,p1) /\
Latch(phiil,phil’,St,p2) /\
Latch(phii,phil’,p1,p3) /\
nXor(phil,phil’,p2,p3,Ux) /\
nNor2(phii’,p2,p3,xu) /\
pNand3(phii,p2,p3,Dx,p4) /\
pNand2(phil,Ux,xd,p5) /\
nNand2(phil’,p4,p5,p6) /\
Latch(phi2,phi2’,p6,St) /\
pNor3(phi2,p1,St,Di,Uo))
Rwf _Slice
|- !phii phii’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf_Slice(phil,phil’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd) =
(?xu xd Ux Dx.
nRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,Su) /\
pRwf_Half_Slice(phil,phil’,phi2,phi2’,Di,Ui,xd,xu,Dx,Ux,Do,Sd))
Rwf _DEF
|- Rwf =
PRIM_REC
(\phi1l phii’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf_Slice(phii,phil?,phi2,phi2’,Ui,Di,Uo 0,Do 0,Su 0,Sd 0))
(\go0004 n phii phil’ phi2 phi2’ Ui Di Uo Do Su Sd.
g00004 phil phil’ phi2 phi2’ Ui Di Uo Do Su Sd /\
Rwf_Slice
(phit,phii’,phi2,phi2’,Uo n,Do n,Uo(SUC n),Do(SUC n),Su(SUC n),
Sd(SUC n)))
Rwf_Half_Slice_Spec
|- 'Ui Di xu xd Ux Dx Uo St.
Rwf_Half_Slice_Spec Ui Di xu xd Ux Dx Uo St =
(1t.
(Ux t = (St t) xor (Ui t)) /\
(xu t = "St t /\ “Ui t) /\

it

(Uo t =Uit /\Stt /\ “Di t) /\
(st(t + 1) =
St t /N UL t /\Dx t \/ (St t) xor (Ui t) /\ xd t))

185

Rwf_Slice_Spec
|- Ui Di Uo Do Su sd.
Rwf_Slice_Spec Ui Di Uo Do Su Sd =

(tt.
(Uo(t + 1) = Uit + 1) /\ Sult + 1) /\ “Di(t + 1)) /\
(Dot + 1) = Di(t + 1) /\ Sd(t + 1) /\ “Ui(t + 1)) /\
(su(t + 1) =

Sut /\ Uit /\ (Sd t) xor (Di t) \/
(Su t) xor (Ui t) /\ *sd t /\ *Di t) /\
(8d(t + 1) =
Sd t /\ Di t /\ (Su t) xor (Ui t) \/
(8d t) xor (Di t) /\ “Su t /\ “Ui t))
Ruf_Spec
[- !'n ip op s.
Ruf_Spec n ip op 8 =
(s 0 = INT 0) /\
(1t.
((NUM((int_mod2_INT ip t) plus (s t))) < (2 EXP (n + 1)) =>
(Cop t = zero) /\ (s(SUC t) = (int_mod2_INT ip t) plus (s t))) |
((op t = ip t) /\ (8(SUC t) = INT 0))))

Theorems =--
Rwif
- (!phil phiil’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf O phil phii’ phi2 phi2’ Ui Di Uo Do Su Sd =
Rwf_Slice(phit,phil’,phi2,phi2’,Ui,Di,Uo 0,Do 0,Su 0,8d 0)) /\
(!n phiil phi1’ phi2 phi2’ Ui Di Uo Do Su Sd.
Rwf(SUC n)phil phii’ phi2 phi2’ Ui Di Uo Do Su Sd =
Rwf n phiil phil’ phi2 phi2’ Ui Di Uo Do Su 8d /\
Rwf_Slice
(phii,phil’,phi2,phi2’,Uo n,Do n,Uo(SUC n),Do(SUC n),Su(SUC n),
8d(sUC n)))
Rwf_Half_Slice_Spec_EQ |- Rwf_Half_Slice_Spec = RWF_HALF_SLICE
Rwf_Slice_Spec_EQ
|- 'Ui Di Uo Do Su 3d.
Rwf_Slice_Spec Ui Di Uo Do Su Sd /\
“Uo 0 /\
“Do 0 /\
“Su 0 /\
“Sd 0 =
RWF_SLICE Ui Di Uo Do Su 8d /\ “Su 0 /\ "84 0
Rwf_Spec_EQ |- Rwf_Spec = RWF_SPEC

186

nRwf_Half_Slice_Wb
|- !phii phil’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’) ==
('Ui Di xu xd Ux Dx Uo St.
nRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==
Wb St phi2 /\
Wb St phi2’ /\
Wb Uo phi2 /\
Wb xu phii /\
Wb Ux phil)
pRwf_Half_Slice_Wb
|- !phil phiil’ phi2 phi2’.
Clock(phii,phii’,phi2,phi2’) ==>
('Ui Di xu xd Ux Dx Uo St.
pRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo0,St) ==
Wb St phi2 /\
Wb St phi2’ /\
Wb Uo phi2’ /\
Wb xu phi1 /\
Wb Ux phii)
Rwf_Slice_Wb
- tphil phil’ phi2 phi2’.
Clock(phii,phil’,phi2,phi2’) ==
(!Ui Di Uo Do Su Sd.
Rwf_Slice(phil,phil’,phi2,phi2?’,Ui,Di,Uo,Do,Su,Sd) ==
Wb Su phi2 /\ Wb Sd phi2’ /\ Wb Uo phi2 /\ Wb Do phi2’)
nRwf_Half_Slice_Def
|- tphil phil’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2’) ==
(!Ui Di xu xd Ux Dx Uo St.
nRwf_Half_Slice(phil,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==
('t. isHi phil t ==>

Def St(t + 2) /\
Def St(t + 3) /\
Def St(t + 4) /\
Def St(t + B) /\
Def Uo(t + 2) /\
Def Uo(t + 3) /\
Def Uo(t + 4) /\
Def Uo(t + B) /\
Def xu t /\

Def xu(t + 1) /\
Def xu(t + 2) /\
Def xu(t + 3) /\
Def Ux t /\

Def Ux(t + 1) /\
Def Ux(t + 2) /\
Def Ux(t + 3)))

187

pRwf_Half_Slice_Def
|- !phii phii’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’) ==
(Ui Di xu xd Ux Dx Uo St.
pRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>

('t

isHi phil t ==>
Def St(t + 2) /\
Def St(t + 3) /\
Def St(t + 4) /\
Def St(t + 5) /\
Def Uo(t + 2) /\
Def Uo(t + 3) /\
Def Uo(t + 4) /\
Def Uo(t + 5) /\
Def xu t /\

Def xu(t + 1) /\

Def xu(t + 2) /\

Def xu(t + 3) /\

Def Ux t /\

Def Ux(t + 1) /\

Def Ux(t + 2) /\

Def Ux(t + 3)))

Rwf_Slice_Def
|- !'phil phil’ phi2 phi2’,
Clock(phil,phii’,phi2,phi2’) ==
(Ui Di Uo Do Su Sd.
Rwf_Slice(phii,phil’,phi2,phi2?,Ui,Di,Uo,Do,Su,Sd) ==

('t.

isHi phil t ==

Def Su(t + 2) /\
Def Su(t + 3) /\
Def Su(t + 4) /\
Def Suft + 5) /\
Def Sd(t + 2) /\
Def Sd(t + 3) /\
Def Sd(t + 4) /\
Def Sd(t + 5) /\
Def Uo(t + 2) /\
Def Uo(t + 3) /\
Def Uo(t + 4) /\
Def Uo(t + 5) /\
Def Do(t + 2) /\
Def Do(t + 3) /\
Def Do(t + 4) /\
Def Do(t + 5)))

188

Rwf _Wb
|- !phil phil’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2’) ==
(!n Ui Di Uo Do Su Sd.
Rwf n phiil phil’ phi2 phi2’ Ui Di Uo Do Su Sd ==>
Wb(Su n)phi2 /\ Wb(Sd n)phi2’ /\ Wb(Uo n)phi2 /\ Wb(Do n)phi2’)
Rwf _Def
|- !phil phil’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’) ==
('n Ui Di Uo Do Su Sd.
Rwf n phil phil’ phi2 phi2’ Ui Di Uo Do Su Sd
(It.
isHi phil ¢t =
Def(Su n)(t +
Def(Su n)(t +
Def(Su n)(t +
Def(Su n)(t +
Def(Sd n)(t +
Def(Sd n)(t + 3) /\
Def(Sd n)(t + 4) /\
Def(Sd n)(t + 5) /\
+
+
+
+
+
+
+
+

i}
1
v

=>

2) /\
3) /\
4) /\
5) /\
2) /\

Def(Uo n)(t + 2) /\
Def(Uo n)(t + 3) /\
Def(Uo n)(t + 4) /\
Def(Uo n)(t + 5) /\
Def (Do n)(t + 2) /\
Def(Do n){(t + 3) /\
Def(Do n)(t + 4) /\
Def(Do n)(t + 5)))
nRwf_Half_Slice_Ux
|- !phil phii’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2’) ==
('Ui Di xu xd Ux Dx Uo St.

nRwf_Half_Slice(phil,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>

Wb Ui phi2 ==>

Wb Di phi2’ ==

Wb xd phil ==>

Wb Dx phil ==>

(1t
isHi phii t ==>
Def Ui t ==
Def St t ==
(ValAbs Ux(t + 1)
(Valdbs Ux(t + 2)

“(ValAbs St t) xor (ValAbs Ui t)) /\
“(ValAbs St t) xor (Valdbs Ui t))))

189

pRwf_Half_Slice_Ux
|- tphii phil’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’) ==
(¥Ui Di xu xd Ux Dx Uo St.
prf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>
Wb Ui phi2’ ==
Wb Di phi2 ==
Wb xd phil ==>
Wb Dx phil ==>
('t
isHi phil t ==
Def Ui t ==>
Def St t ==>
(ValAbs Ux(t + 1)
(ValAbs Ux(t + 2)
nRwf_Half_Slice_xu
|- !phil phil’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’) ==>
('Ui Di xu xd Ux Dx Uo St.
anf_Half_Slice(phii,phii’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==
Wb Ui phi2 ==>
Wb Di phi2’ ==>
Wb xd phii ==>
Wb Dx phil ==>
(1t.
isHi phil t ==>
Def Ui t ==
Def St t ==
(ValAbs xu(t + 1)
(ValAbs xu(t + 2)
pRwf_Half _Slice_xu
|- !'phii phil’ phi2 phi2’.
Clock(phii,phil’,phi2,phi2’) ==
('Ui Di xu xd Ux Dx Uo St.
prf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==
Wb Ui phi2’ ==
Wb Di phi2
Wb xd phiil
Wb Dx phil
(1t.
isHi phil t ==
Def Ui t ==
Def St t ==
(ValAbs xu(t + 1)
(Valabs xu(t + 2)

“(ValAbs St t) xor (ValAbs Ui t)) /\
“(ValAbs St t) xor (ValAbs Ui t))))

Valdbs St t /\ “Valdbs Ui t) /\
ValAbs St t /\ “ValAbs Ui t)))

1]
I
v

1]
il
\'4

1]
1
v

ValAbs St t /\ “ValAbs Ui t) /\
ValAbs St t /\ “ValAbs Ui t)))

190

nRwf_Half_Slice_Uo
|- tphil phil’ phi2 phi2’,
Clock(phii,phil’,phi2,phi2’) ==>
('Ui Di xu xd Ux Dx Uo St.

nRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo0,St) ==>

Wb Ui phi2 ==

Wb Di phi2’ ==>

(1t
isHi phil t ==
Def Ui(t + 3) ==>
Def Ui(t + 4) ==>
Def Di(t + 3) ==>
Def Di(t + 4) ==>

(ValAbs Uo(t + 3) =

ValAbs Ui(t + 3) /\ *ValAbs St(t + 3) /\ “ValAbs Di(t + 3)) /\

(Valabs Uo(t + 4) =

ValAbs Ui(t + 4) /\ ~ValAbs St(t + 4) /\ “ValAbs Di(t + 4))))

pRwf_Half_Slice_Uo
|- tphii phii’ phi2 phi2’.
Clock(phiil,phil’,phi2,phi2’) ==>
('Ui Di xu xd Ux Dx Uo St.

prf_Half_Slice(phii,phii’,phiz,phiz’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>

Wb Ui phi2’ ==

Wb Di phi2 ==

(e,
isHi phil t ==
Def Ui(t + 3) ==>
Def Ui(t + 4) ==>
Def Di(t + 3) ==>
Def Di(t + 4) ==>

(Valabs Uo(t + 3) =

ValAbs Ui(t + 3) /\ "ValAbs St(t + 3) /\ “ValAbs Di(t + 3)) /\

(Valdbs Uo(t + 4) =

ValAbs Ui(t + 4) /\ "ValAbs St(t + 4) /\ “ValAbs Di(t + 4))))

191

nRwf_Half_Slice_St
|- !phii phil’ phi2 phi2’,
Clock(phil,phil’,phi2,phi2’
('Ui Di xu xd Ux Dx Uo St.

nRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>

Wb Ui phi2 ==
Wb Di phi2’ ==
Wb xd phiil
Wb Dx phil ==>
(e,
isHi phil t ==>
Def St t ==
Def Ui t
Def xd(t
Def xd(t +
Def Dx(t
Def Dx(t + 2)
(Valabs St(t + 3) =

v

+
=N e
N Nt N

nm n a0 #

LI ¢ T S (]

vV V Vv Vv

(ValAbs St t \/ “Valdbs Ui ¢ \/ ~ValAbs Dx(t + 2)) /\
((Valabs St t) xor (Valdbs Ui t) \/ “ValAbs xd(t + 2))) /\

(ValAbs St(t + 4) =

(ValAbs St t \/ “ValAbs Ui t \/ “Vallbs Dx(t + 2)) /\
((Valabs St t) xor (ValAbs Ui t) \/ ~ValAbs xd(t + 2)))))

pRwf_Half_Slice_St
[- 'phii phil’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’
('Ui Di xu xd Ux Dx Uo St,

pRwf_Half_Slice(phii,phil’,phi2,phi2’,Ui,Di,xu,xd,Ux,Dx,Uo,St) ==>

Wb Ui phi2’ ==>
Wb Di phi2 ==>
Wb xd phil ==>
Wb Dx phil ==>

('t

isHi phil t ==
Def St t ==

Def Ui t ==>

Def xd(t + 1) ==>
Def xd(t + 2) ==>
Def Dx(t + 1) ==>
Def Dx(t + 2) ==>

(ValAbs St(t + 3)
(ValAbs St t \/ *ValAbs Ui t \/ "“ValAbs Dx(t + 2)) /\
((ValAbs St t) xor (ValAbs Ui t) \/ *ValAbs xd(t + 2))) /\

(ValAbs St(t + 4) =
(ValAbs St t \/ “ValAbs Ui t \/ “ValAbs Dx(t + 2)) /\
((ValAbs St t) xor (ValAbs Ui t) \/ "ValAbs xd(t + 2)))))

192

Rwf_Slice_SPEC
|- !'phii phil’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’) ==
(Ui Di Uo Do Su 8d,
Rwf_Slice(phil,phil’,phi2,phi2’,Ui,Di,Uo,Do,Su,Sd) ==>
Wb Ui phi2 ==
Wb Di phi2’ ==
(',
isHi phil t ==>
Def Su t ==
Def Sd t ==>
Def Ui t =
Def Ui(t +
Def Ui(t +
Def Di t ==>
Def Di(t + 3)
Def Di(t + 4)
(Valabs Uo(t +
ValAbs Ui(t +
(ValAbs Do(t +
+
+

B W
~—
n n
o
v v

1]
I
v

R N Y
B~ 1 ~ 1

ValAbs Di(t

(ValAbs Su(t
(ValAbs Su t \/
“ValAbs Ui t \/
(ValAbs Sd t) xor (ValAbs Di t)) /\
((ValAbs Su t) xor (ValAdbs Ui t) \/
“ValAbs Sd t \/
ValAbs Di t)) /\

(ValAbs Sd(t + 4) =

(Valdbs Sd t \/
“Valdbs Di t \/
(ValAibs Su t) xor (ValAbs Ui t)) /\
((ValAbs Sd t) xor (ValAbs Di t) \/
“Valdbs Su t \/
ValAbs Ui t))))

Rwf_Slice_imp_SLICE
|- 'Ui Di Uo Do Su sd.
Rwf_Slice_Spec Ui Di Uo Do Su Sd ==

N s >

“Uo 0 ==>
“Do 0 ==>
“Su 0 ==>
“Sd 0 ==>
SLICE

(MK_int_mod2a(Ui,Di))
(MK_int_mod2a(Uo,Do))
(MK_int_mod2a(Su,Sd))

193

\ “ValAbs Su(t + 4) /\ *ValAbs Di(t + 4)) /\

\ “ValAbs Sd(t + 4) /\ *ValAbs Ui(t + 4)) /\

Rwf_Def_when_phii
|- !phil phii’ phi2 phi2’,

Clock(phii,phil’,phi2,phi2’) ==

(!n Ui Di Uo Do Su Sd.

Rwf n phil phii’ phi2 phi2’ Ui Di Uo Do
(1t. (((Def(Su n)) o ($+ 3))
('t. (((Def(Sd n)) o ($+ 3))
('t. (((Def(Uo n)) o ($+ 3))
('t. (((Def(Do n)) o ($+ 3))
('t. ((Def(Su n)) when (isHi
('t, ((Def(Sd n)) when (isHi
(1t. ((Def(Uo n)) when (isHi
('t. ((Def(Do n)) when (isHi

Rwf_Slice_when_phil
|- !phii phii’ phi2 phi2’,

when (isHi
when (isHi
when (isHi
when (isHi
phi1)) (t +
phi1)) (t +
phi1))(t +
phi1))(t +

Clock(phii,phii’,phi2,phi2’) ==>

('Ui Di Uo Do Su sd.

Su S8d ==
phi1))t) /\
phi1))t) /\
phil))t) /\
phi1))t) /\
1)) /\

1)) /\

1)) /\

1))

wa_Slice(phil,phii’,phi2,ph12’,Ui,Di,Uo,Do,Su,Sd) ==>

Wb Ui phi2 ==
Wb Di phi2’ ==

((Def Su) when (isHi phi1))o

((Def Sd) when (isHi

('t. ((Def Ui) when (isHi phii))t)
(1t. ((Def Di) when (isHi phii1))t)
(tt. (((Def Ui) o ($+ 3)) when (isHi phi1))t)
(!t. (((Def Di) o ($+ 3)) when (isHi phi1))t)

phi1))o

=>

let UI = (ValAbs Ui) when (isHi phil)

in
let DI
in
let UD
in
let DO
in
let SU
in
let SD
in
Rwf_Slice_Spec UI DI

(Valibs Uo)

(Valabs Do)

(Valdbs Su)

(Valibs S4)

(ValAbs Di) when (isHi phit)

vhen (isHi phii)

when (isHi phitl)

when (isHi phiil)

when (isHi phil)

v

nu
H o
v

U0 DO($” o SUY($~ o SD))

194

Rwf_when_phiil

|- 1phii phil’ phi2 phi2’.
Clock(phil,phil’,phi2,phi2’) ==
(!n Ui Di Uo Do Su sd. '
Rwf n phil phil’ phi2 phi2’ Ui Di Uo Do Su Sd ==
Wb Ui phi2 ==

Wb Di phi2’

('n.
(In,
(!n.
('n.
(!n.
(In,
(!n.
('n.
('t
(',
('t
(1.
let
in
let
in
let
in
let
in
let
in
let
in
let
in
let
in
let
in

Rwf_Spec

Ul
DI
ip
U0
DO
op
sU
SD

St

o

It
]
v

((Def(Su n)) when (isHi phi1))0)
((Def(Sd n)) when (isHi phil))0)
((Def(Uo n)) when (isHi phil))o0)
((Def(Do n)) when (isHi phi1))0) ==
((ValAbs(Su n)) when (isHi phi1))o)
((ValAbs(Sd n)) when (isHi phil))0) ==>
~((ValAbs(Uo n)) when (isHi phii))O0)
“((ValAbs(Do n)) when (isHi phi1))o0)
((Def Ui) when (isHi phil))t) ==
((Def Di) when (isHi phil))t) ==>
(((Detf Ui) o ($+ 3)) when (isHi phii))t)
(((Def Di) o ($+ 8)) when (isHi phii))t)
(ValAbs Ui) when (isHi phit)

[}
1
v

>
>

==

1]
1]
0
v

1]
I
v

(ValAbs Di) when (isHi phil)

MK_int_mod2a(UI,DI)

(ValAbs(Uo n)) when (isHi phii)

(ValAbs(Do n)) when (isHi phit)

MK_int_mod2a(U0,D0)

\x. $ o ((ValAbs(Su x)) when (isHi phiil))

\x. $” o ((ValAbs(Sd x)) when (isHi phii))

\x. MK_int_mod2a(SU x,SD x)

n ip op(VAL n St))

st ke ok ok ok ok ok ok ok ok ok sk e ok sk st ok ok kst sk ok ok ok sk ok ok ok 3k ok oK ok sk sk ok

O

#

¢ void

195

