Technical Report A

Number 148

Computer Laboratory

Extending coloured petri nets

Jonathan Billington

September 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Jonathan Billington

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Jensen’s Coloured Petri Nets (CP-nets) are taken as a starting point for the development of
a specification technique for complex concurrent systems. To increase its expressive power
CP-nets are extended by including capacity and inhibitor functions. A class of extended
CP-nets, known as P-nets, is defined that includes the capacity function and the threshold
inhibitor extension. The inhibitor extension is defined in a totally symmetrical way to that
of the usual pre place map (or incidence function). Thus the inhibitor and pre place maps
may be equated allowing a marking to be purged by a single transition occurrence, useful
when specifying the abortion of various procedures. A chapter is devoted to developing
the theory and notation for the purging of a place’s marking or part of its marking.

Two transformations from P-nets to CP-nets are presented and it is proved that they
preserve interleaving behaviour . These are based on the notion of complementary places
defined for PT-nets and involve the definition and proof of a new extended complementary
place invariant for CP-nets.

The graphical form of P-nets, known as a P-Gra;h, is presented formally and draws
upon the theories developed for algebraic specification. Arc inscriptions are multisets of
tuples of terms generated by a many-sorted signature. Transition conditions are Boolean
expressions derived from the same signature. An interpretation of the P-Graph is given
in terms of a corresponding P-net. The work is similar to that of Vautherin, but includes
the inhibitor and capacity extensions and a number of significant differences. In the
P-Graph concrete sets are associated with places, rather than sorts and likewise there
are concrete initial marking and capacity functions. Vautherin associates equations with
transitions rather than the more general Boolean expressions. P-Graphs are useful for
specification at a concrete level. Classes of the P-Graph, known as Many-sorted Algebraic
Nets and Many-sorted Predicate/Transition Nets, are defined and illustrated by a number
of examples. An extended place capacity notation is developed to allow for the convenient
representation of resource bounds in the graphical form.

Some communications-oriented examples are presented including queues and the Demon
Game of international standards fame.

The report concludes with a discussion of future work. In particular, an abstract P-
Graph is defined that is very similar to Vautherin’s Petri net-like schema, but including
the capacity and inhibitor extensions and associating Boolean expressions with transitions.
This will be useful for more abstract specifications (eg classes of communication protocols)
and for their analysis.

It is believed that this is the first coherent and formal presentation of these extensions in
the literature.

Contents

1 Introduction
1.1 P-net Design . .
1.2 The Nature of High-Level Nets

2 Coloured Petri Nets

...............................

2.1 Colouring Places and Transitions
2.2 Structureof ColourSets
2.3 Preand PostMaps e
2.4 Net Marking and Transition Rule I
2.5 Definitionof CP-nets
2.6 Relationship to Jensen’s CP-nets e e e

3.1 Place Capacity v
3.2 Imhibitor Arc Extension
3.2.1 Zero-Testing Inhibitor
3.2.2 Threshold Inhibitor
3.3 Pmets . ..
3.3.1 Definition L
3.3.2 Marking. L
333 Emabling
3.34 TransitionRule
3.3.5 Reachable Markings
336 Special Cases

4 Transforming P-nets to CP-nets

4.1 Extended Complementary Place Invariant

4.1.1

Definitions

..............................

10
10
11
11
13

14
14
15
15
15
16
16
17
17
17
17
17

18
18
18

4.2

4.1.2 Complementary Place Invariant

Interleaving Equivalence of P-nets and CP-nets
4.2.1 Complete Complementation Transformation
4.2.2 Proof of Interleaving Equivalence.
4.2.3 Less Restrictive Transformation

5 Graphical Representation

5.1

5.2

5.3

5.4
5.5

5.6

Informal Introduction
5.1 Gemeral
5.1.2 Imitial Marking
513 Places
5.1.4 Tramsitions L .
.15 Ares ..
5.1.6 Markings and Tokens
Mathematical Preliminaries
5.2.1 Signatures
5.2.2 Signatures with Variables
5.2.3 Natural and Boolean Signatures
5.2.4 Terms of a Signature with Variables
325 Tuplesof Terms
9.2.6 Multisetsof Tuples
5.2.7 Many-sorted Algebras
Graphical Formof P-nets

5.3.1 Definition

5.3.2 Discussion

...............................

..............................

Interpretation of the P-Graph asa P-net
Simple Examples
5.5.1 Consume any token
5.5.2 Consume any token and create any token
5.5.3 Imformation Flow, ..
5.5.4 Tramsition Condition
P-Graph Subclasses
5.6.1 Many-sorted AlgebraicNets
5.6.2 Many-sorted PrT Nets
Notation for Capacity

19
20
21
22
24

26
26
26
26
26
27
27
27
27
28
28
29
29

29
30
31
31
32
33
34
34
35
36
36
38
38
41
45

5.8.1

Interpretation of Extended Capacity Notation

6 Manipulation of Markings

8 Discussion

of Future Work

81 P-Graph
8.1.1 Tupling
8.1.2 Abstract P-Graphs

6.1 Completely resetting P-nets - a curiosity P
6.2 P-nets with thereset property.
6.3 Purging
6.3.1 Graphical Representation
6.3.2 Example: Purgingaplace.

6.4 Transferringa Marking.
6.5 Purging subbags of Markings
6.5.1 Graphical Representation
6.5.2 Notation for Subsets of Product Sets

6.6 Purging Partitions of Markings
6.6.1 Graphical Representation
6.6.2 Notation for Partitions of Product Sets
6.6.3 Example: Aborting a Broadcast F.
6.6.4 Purging a Selected Partition

6.7 Purging Subsets of Partitions of Markings
6.7.1 Graphical Representation P
6.7.2 Notation for Subsets of Partitions of Product Sets

7 Communications Examples

71 Quewes.
711 Funmctions L
712 Predicates
713 Examples

72 Demon Game
7.2.1 Narrative Description
7.2.2 MPrT-net Speciﬁcation
7.2.3 Discussion of Concurrency, Conflict and Interleaving

..........................

..........................

........................

84 Analysis e
8.5 Applications. e

Sets, Multisets and Vectors

Al Sets . .
A2 Multisets L

A.2.1 Vector or Sum representation,
A22 Membership
A23 Cardinality e e
A24 EqualityandInclusion.
A25 Operationso it e e e e e

A.3 Vectors

Some comments on Numerical Petri Nets
B.1 Background
B.2 Main NPN Distinguishing Features

B.2.1 Enabling Condition

B.2.2 Transition Rule
B.3 Definition
B.4 Enabling Condition
B.5 Transition Rule

B.6 Discussion

....................................

..................................

.....................

...................................

..............................

................................

...................................

-~

~]
D n

80
80
80
81
81
81
81
81
82

83
83
83
83
83
84
84
85
85

List of Figures

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

CP1: Basic Definition . . .

Overbar Notation

........................

Folding Input Place/Transition Pairs

More Complex Folding . . .

Information Flow

P-Graph with Transition Condition

Algebraic Net with an undefined follower marking.

Weakly-typed MAN interpretation of above AlgebraicNet
MPrT-Net of Safe Train Operation e
MP1T-Net of Resource Management

LAN Access Buffer

........................

Reset Net corresponding to Figure 5.3

Transitions ¢ and # cannot occur concurrently

Purging a place

Aborts: Address List Management

Selecting a member of a partition for PUrging

A more readable representation for purging a selected member of a parti-

tion

......................................

........................

........................

........................

........................

19
19
22
25

35
36
37
37
39
40
43
44
46
47

51
52

61
62

63

67
68
69
69
71

Chapter 1

Introduction

The limitations of Petri Nets for specifying complex systems have been well known for the
last 15 years. During the latter part of the 1970’s and particularly during the 1980’s high-
level nets [9,11,17,8,10,16] have been developed in an attempt to overcome this problem.
It is also recognised that High-level nets also have their limitations in expressive power
and this report tackles this issue.

The report defines a Petri net technique that is suitable for modelling or specifying the
dynamic behaviour of complex concurrent systems ¥uch as communications protocols and
services. The technique is based on Jensen’s Coloured Petri nets (CP-nets) [11,10]. We
extend the modelling convenience by introducing capacity and inhibitor functions and
show how these can be mapped back to CP-nets, with certain restrictions for the inhibitor
function.

The motivation for the introduction of the inhibitor function is to provide for more com-
pact descriptions and to allow for the manipulation of markings by a single transition
occurrence. For example, the (partial) purging of places, ie when we wish to empty a place
of all (or a subclass) of its tokens. The second last chapter is devoted to this topic.

A graphical form of P-nets, the P-Graph, is defined where arcs and transitions are anno-
tated by terms built from a many-sorted algebra. The notation is very similar to that of
Predicate/Transition nets (PrT nets) [9,8], and the approach is similar to that of [22].

Many-sorted Algebraic Nets (MAN) and many-sorted PrT nets (MPrT nets) are derived
as subclasses of the P-Graph. These are compared with the Algebraic Nets of [16} and
PrT nets [8]. It is shown how the difficulties of partial functions and loose typing of
variables that are encountered with Algebraic nets and PrT nets are overcome with their
many-sorted versions.

Many examples are included to illustrate the technique, including the Demon Game of
[1], which is intended as a test example for specification techniques for communication
protocols. The Demon Game can be specified on a single page using an MPrT net and
it provides a focus for the debate on interleaving versus truly concurrent specification
techniques.

The ideas formalised here stem from the author’s association with the development of
Numerical Petri Nets (NPNs) [18,19,4,23,5] for the specification of communication proto-
cols and services. A brief comparison of Numerical Petri Nets and P-nets is provided in
Appendix B.

The name P-net has been coined for the net defined in this report, to reflect its genesis in
the specification of protocols (P-net is an abbreviation for Protocol-net), but also because
it is sufficiently different from other high-level nets to warrant a new name. Although
P-nets have been specifically tailored for the protocol domain, it is believed that they
are generally applicable for the modelling of distributed systems including the functional
specification of telecommunication systems and services.

The report assumes a familiarity with nets [17,15,2] and also makes extensive use of multi-
sets. Multisets may be considered as a special class of vectors, sometimes called weighted-
sets. Definitions of sets together with multiset and vector notation and operations are
gathered together in Appendix A. The definition of many-sorted signatures and algebras
and their associated terminology has been included in the development of the P-Graph to
keep the report self-contained.

1.1 P-net Design

An aim of this report is the development of a formal technique to be used in systems
engineering and in particular for protocol engineering. This section briefly discusses some
of the requirements of such a technique.

The development of P-nets has been guided by the following conflicting requirements:

e Expressive ability
e Analvtic power

¢ Simplicity

There are two parts to expressive ability: modelling power and modelling convenience.
Modelling power is the ability of a technique to model a class of systems (cf Chomsky
hierarchy), whereas modelling convenience refers to the elegance or conciseness of expres-
sion of a property. It is well known [15] that there is a trade off between modelling power
and analytic power. (We increase modelling power at the expense of our ability to analyse
the model; more questions become undecidable.) In general we would like there to be just
enough modelling power for our requirements (so that analytic power can be maximised).

It is essential that the technique be able to express all of the properties that we wish to
express about protocols and their services. P-nets include the inhibitor extension which
raises its modelling power to that of a Turing Machine. This allows us to model any system
that is implementable. It turns out that most protocols do not require such modelling
power. The technique allows for a whole range of modelling power, from state machines to
Turing Machines, dependent on net structure and the use of inhibitors. The appropriate
modelling power can then be chosen to suit the application.

We would also like to increase the modelling convenience of the technique, so that impor-
tant elements in the application can be modelled relatively easily. We can add constructs
(notation) to do this which can be defined in terms of the basic elements of the technique.
The addition of too many constructs makes the language more complicated and difficult
to learn and we need to strive for a few powerful constructs.

-1

P-nets have been developed with these goals in mind. When considering a language for
protocol engineering, we need to consider the perspectives of the specifier, analyser and
implementer of protocols. It is hoped that P-nets provide a reasonable compronmiise.

1.2 The Nature of High-Level Nets

In applications we often find that we wish to model records (vectors) of information.
For example, in protocol specification we wish to model messages (Service Data Units
(SDUs) and Protocol Data Units (PDUs)) and compound state information (major states,
housekeeping variables, etc). Thus information is structured. It is useful to be able to
express this structure in our specification language.

In Place/Transition Nets, this structure can only be expressed by complex labelling of
places by values. One place is required for each value of the domain of a data structure
and there is no means of grouping places associated with the same data structure. The
structure is lost in an amorphous sea of net elements. This also leads to an explosion of
PT-net elements for even moderately complex applications, rendering the graphical form
useless.

High-level nets [9,8,11,10] have overcome this problem by providing a mechanism for group-
ing sets of (PT-net) places (transitions) together and considering them as entities in their
own right, but still usually referred to as (high-level) places (transitions). The places
in the high-level net are now typed (implicitly or explicitly) by the domain of the data
structure and tokens residing in the place take on values from the domain. Tokens may
now have a structure and because they represent a value are no longer anonymous and are
often referred to as individual tokens. The grouping of transitions allows sets (schemes)
of similar actions to be referred to by the one transition. The inscriptions on arcs are no
longer integers but involve multisets of terms, which when evaluated are multisets over the
domain associated with the place. The price paid for structuring the net is the increased
complexity of net inscriptions. The considerable advantage is being able to model systems
in a much more compact and natural way. For example PDUs and SDUs, compound states
and queues can all be represented by tokens in appropriately typed places.

Coloured Petri nets (CP-nets) [11,10] have been chosen as the basis for the development of
P-nets because of their generality (arbitrary grouping of places and transitions, cf restricted
arity of predicates in PrT nets); their transparent relationship to PT-nets; the possibility
of adding an abstract data type within the same framework [22]; and the increasing range
of analysis possibilities [21,14].

Chapter 2

Coloured Petri Nets

This chapter introduces the basic features of Coloured Petri Nets, including the colouring
of places and transitions, their pre and post maps, the net marking and transition rule
and culminates in a formal definition. It also relates the definition provided here to the
one used by Jensen in [10].

2.1 Colouring Places and Transifions

Consider a set of (high-level) places, S, and transitions, T. We wish to associate a set
with each place. Let there be a set D comprising the sets associated with each place. This
set determines a structure on the underlying Place/Transition net. (We allow the sets
associated with each place to be complex sets, such as unions of product sets egif DeD
then we may have D = (D; x D;) U D3). We define a place grouping function, GP, which
associates a set in D with a place in .

GP:5-—7D

We also associate a set of occurrence modes with each transition and in a similar way,
define the transition grouping function

GT:T— O

where O is the set of all the occurrence mode sets. (In most applications, we can derive
O from D)

For economy of definition, we can use a single grouping function, called the Colour Func-
tion by Jensen [10].
C:5uT — ¢

where C = DUO and C(s) = GP(s) and C(t) = GT(t). Jensen uses the term occurrence-
colours for occurrence modes and the term token-colours to describe the members of a
set in D. In this report the terms transition modes and occurrence modes will be used
interchangeably for occurrence-colours. We shall refer to the sets in C as colour sets.

2.2 Structure of Colour Sets

It should be emphasised that the colour sets may be quite complex and contain highly
structured elements or multisets over other sets.

As an example, we may structure places by letting C(s) be an arbitrary product set. For
all s € § let
C(s) = D1(s) x Dy(8) X ... x Dy, (s)

This may be compared with Predicate/Transition nets, where only a single arity (n;) is
allowed for a particular place. Note that our approach is more general. (We could allow
C(s) to be the union of a set of product sets, for example.) Places are not restricted
to a single arity (as we have here) as arbitrary grouping of the underlying places and
transitions is allowed. In many applications, a single arity for a place is all that is needed,
however for protocols, there are times when we may like to have tuples of differing lengths
associated with the same place. For example, it is convenient to allow a place to represent
a set of queues in an underlying service. Items in the queue will be Service Data Units
which will comprise messages which in general will need to be represented by tuples of
differing lengths.

2.3 Pre and Post Maps

We follow the approach taken in [24] defining pre and post mappings without the inter-
mediate step of defining a set of arcs.

We define two sets:
TRANS = {(t,m) | me C(t),t € T}

PLACE = {(s,9)| g € C(s),s € §}

TRANS is the set of transitions in the unfolded PT-net and likewise PLACE is the
unfolded set of places.

At times it will be useful to consider the above sets partitioned with respect to the set of
transitions and places. Thus we define

TRANS; = {(t,m) | m € C()}

PLACE, = {(s,9)| g € C(s)}

where
TRANS = | JTRANS,
teT
PLACE = | | PLACE,
s€S

We form the set of multisets over TRANS and PLACE and denote them UTRANS and
uPLACE respectively.

We may now state the relationship between places and transitions by two multirelations:

Pre,Post : TRANS ~— uPLACE

10

T is a finite set of transitions disjoint from S (SN T = §)

C is a finite set of non-empty colour sets

C:5UT — C is the colour function used to structure places and transitions

¢ Pre,Post : TRANS — pPLACE are the pre and post mappings with
TRANS ={(t,m)|me C(t),t € T}

PLACE = {(s,9)| g€ C(s),s € S}

Mo € pPLACE is a multiset known as the initial marking

Marking

A Marking is a multiset, M € uPLACE.

Enabling
A finite multiset of transitions T, € uTRANS is enabled at a marking M iff

Pre/(T,)C M

Thus 2 multiset of transitions is enabled if there are enough tokens on the input places to
satisfy the pre map.

Transition Rule

Given that a multiset of transitions T, is enabled at a marking M, then a step may occur
resulting in a new marking M’ given by

M'=M — Pre/(T,) + Post'(T,).

This is often denoted by M[T, > M'.

Set of Reachable Markings
The set of reachable markings, [My>, of CP is obtained inductively as follows.

o My € [,M0>; and
o if My € [Mo> and M;y[tr>M, for tr € TRANS, then M; € [My>.

12

2.4 Net Marking and Transition Rule

A marking multiset can now be defined for all places by
M e uPLACE

and we shall denote the initial marking by M.

Sometimes it will be useful to consider the marking of a particular place, s. This can be
achieved by partitioning the marking multiset according to places. We define, for s € §
and for all g € C(s),

M, € “{(379) [(Sv g) € ‘M}
such that muli((s, g), M,) = mult((s,g), M). (mult(z, A) is the multiplicity of z in the
multiset A - see Appendix A.) We have }",.s M, = M.
We can consider places to be marked by a multiset, M(s) € pC(s), where Vg € C(s),
mult(g, M(s)) = mult((s,g), M). M(s) is often considered as a multiset of tokens which

mark place s at marking M. Thus for any s € S, a token is a member of C(s) (cf
token-colour used by Jensen).

The transition rule follows immediately from [24]. We consider a finite multiset of transi-

tions, Ty, € yTRANS. By a linear extension of the above multirelations, we have
*

Pre’,Post’ : yTRANS — pPLACE

where
P(T,)= > mult(tr,T,)P(tr)
tr€eTRANS

with P = Pre or Post, 3 refers to multiset addition and the multiplication can be viewed
as scalar multiplication of a vector (see Appendix A).

We may now define a step (the simultaneous occurrence of a finite multiset of transition
modes) as follows:

M[T,> M iff Pre/(T,)C M

and
M' = M - Pre/(T,) + Post'(T,)

where ‘=’ and ‘4’ are interpreted as multiset subtraction and addition respectively.

2.5 Definition of CP-nets

We are now in a position to provide a definition of CP-nets as a summary of the discussion
above.

Definition

A CP-net is a structure CP = (§,T,C;C, Pre, Post, Mg) where

o S is a finite set of places

11

2.6 Relationship to Jensen’s CP-nets

CP-nets as defined above are very closely related to the way Jensen defines his CP-Matrix
(10]. The main differences are:

1. The structuring set of colour sets, C, is included in the structure CP.

2. The Pre and Post mappings are defined in general for the whole net, rather than a
set of functions, one for each arc.

3. The empty net (SUT = @) and isolated elements are allowed.

We shall now relate the pre and post mappings to Jensen’s positive and negative incidence
functions, I_(s,t) and I.(s,).

We define the following functions
Pre(s,t), Post(s,t) : C(t) — pC(s)

and
Pré/(s,t), Post'(s,t) : pCft) — pC(s)

so that Vm € C(t),t € T and Vg € C(s),s € §
o mult(g, Pre(s,t;m)) = mult((s,g), Pre(t,m)) and

o muli(g, Post(s,t; m)) = mult((s, g), Post(t, m))

and similarly for the multiset extensions which are identical to Jensen’s positive and neg-
ative incidence functions.

e Pre'(s,t) = I_(s,1)

e Post'(s,t) = I.(s,1)

As the multiset extension of a function includes the function itself, it is only necessary to
use the multiset extension function. Jensen adopts this approach. I prefer to retain the
original function and explicitly use it when the multiset extension is not required. This is
the case when we wish to define the pre and post maps for example. It is hoped that this
adds to the clarity of the presentation.

13

Chapter 3

Extensions to CP-nets

3.1 Place Capacity

In the definition of CP-nets it is assumed that places all have infinite capacity. We can
generalise the notion of place capacity for PT systems [2] (and PrT nets [9]) quite easily.
We denote the capacity by K, representing a multiset of tokens for each place

-x
K € ut PLACE.

This capacity cannot be exceeded by the marking: M C K. Specifically, the initial
Marking, Mo € uPLACE satisfies Mo C K. Note that the capacity may contain elements
with infinite multiplicities but zero multiplicities are not allowed.

The enabling condition now becomes
M[T, > M' iff Pre/(T,) C M C K — Post'(T,)

and the transition rule is unchanged. The subtraction used above is vector subtraction
and ‘inclusion’ is vector inclusion (see Appendix A).

We can consider a partition of K according to places in the same way as we did for
markings. We define for s € § and for all g € C(s),

K, € p{(s,9) | (s,9) € K}

such that mult((s, g), Ks) = mult((s,g), K) and Y,es K, = K.
It will be useful to consider the capacity of a particular place, s, by defining

K(s) € p,C(s)
as the multiset of tokens such that Vg € C(s)

mult(g, K(s)) = mult((s,g), K)

14

3.2 Inhibitor Arc Extension

3.2.1 Zero-Testing Inhibitor

There may be times when we would like to have the ability to test places for a null marking.
This corresponds to the well known inhtbitor arc extension to Petri nets which increases
its modelling power to that of a Turing machine [15].

We shall denote the power set of a set A by P(A4). We can generalise the notion of an
inhibitor arc for high-level nets, by introducing a function

Io: TRANS —s P(PLACE)

which associates with each transition a subset of places that will be used for zero testing.

To obtain a suitable inhibitor condition for a multiset of transitions we define the following
function:
Iy: y}TRANS — P(PLACE)

where Vir € TRANS and T'1,,T2, € uTRAN S we have
o (B)=10
o Ip(tr) = Ig(tr)
o In(T1,+T2,) = I§(T1,) UI(T2,)

Thus for example for n,m € N* and tr,trl,tr2€ TRANS
o Ii(ntr) = Iy(tr) = Iy(tr)
o Iy(ntrl + mir2) = Io(trl) U Ij(ir2) = Io(trl) U Ig(tr2)

The enabling condition is then formulated as the conjunction of two predicates: the CP-net
enabling predicate (section 2.5) and the inhibitor predicate, (M N I4(T,) =) as follows.

A finite multiset of transitions, T), € uTRANS is enabled by a marking M iff
(Pre'(T,) C M)A (M NIYT,) = 0)

Thus a multiset of transitions is enabled if there are enough tokens on the input places to
satisfy the pre maps, and no tokens reside on the inhibitor places.

The transition rule remains unchanged.

3.2.2 Threshold Inhibitor

For modelling convenience, we would like to introduce a threshold inhibitor condition,
which instead of requiring that certain tokens must be absent from the marking as above,
requires that certain tokens must not exceed a preset multiplicity, known as the threshold.
We do this by generalising the above inhibitor function to associate a general multiset of
place colours (the thresholds) with each transition mode.

I:TRANS — pu PLACE

15

This implies that the multiplicity of tokens not having a threshold will be infinite.
We can again extend this function to multisets of transitions by defining

I' :yTRANS — puPLACE
where Vir € TRANS, and T1,,72, € y)TRANS we have

o I'(0) = {(p,>) | p€ PLACE}
e I'(tr) = I(tr)
o I'(T1,+T2,)=1I'(T1,)NI'(T2,)

The first item ensures that I'(T1, + @) = I'(T1,).
As above, the enabling condition is then formulated as the conjunction of two predicates.

A finite multiset of transitions, T, € uTRANS, is enabled by a marking M iff
Pre/(T,)C M C I'(T,)

Thus a multiset of transitions is enabled if there are enough tokens on the input places to
satisfy the pre maps and the thresholds are not e>§geeded for the inhibitor places. Again
the transition rule remains unchanged.

For the graphical form it will be convenient to define an inhibitor map for each place-
transition pair as follows: fors € Sandt e T,

I(s,t): C(t) — uC(s)
where Ym € C(t),t € T and Vg € C(s),s € S

mult(g, I(s,t; m)) = mult((s, g),I(t,m))

3.3 P-nets

We are now in a position to define Protocol Nets, abbreviated to P-nets. P-nets are CP-
nets extended by the capacity function and the threshold inhibitor map. As suggested in
[12] we could use CPgj-nets as the name to avoid a proliferation of names of high-level
nets. After considering a number of options it was felt that the advantage of brevity;
that P-net can be considered an abbreviation for C' Pxy-net; and the mild link back to the
application domain of protocols where some of the ideas for the extensions arose; were
sufficient reasons to retain the name P-nets. One may also consider C Pg-nets to be a
broader class where the inhibitor extension may be defined differently, whereas with P-nets
the inhibitor extension is the threshold inhibitor as defined above.

3.3.1 Definition

A P-net, is the structure
P=(CPI,K)

where

16

o CPis a CP-net as defined in section 2.5 with initial marking restricted to comply
with the capacity multiset: My C K.

o I:TRANS — u PLACE is the threshold inhibitor map; and
o K € u, PLACE is a multiset known as the place capacity.

3.3.2 Marking

A Marking is a multiset, M € uPLACE, the same as for CP-nets.

3.3.3 Enabling

A finite multiset of transitions T, € uTRANS is enabled at a marking M iff
(Pre'(T,) C M C K — Post/(T,)) AN (M C I'(T,))
Thus a multiset of transitions is enabled if there are enough tokens on the input places to

satisfy the pre map, there is enough capacity left in the output places, and the inhibitor
thresholds are not exceeded.

3.3.4 Transition Rule

The transition rule is the same as for CP-nets and is given in section 2.5.

M' = M — Pre/(T,) + Post'(T,)

3.3.5 Reachable Markings

This is again defined in exactly the same way as for CP-nets (see section 2.5).

3.3.6 Special Cases

There are three obvious special cases of P-nets.

1. Capacity CP-nets (C Pg-nets)

When Vir € TRANS,Vp € PLACE, mult(p, I(tr)) > mult(p, K — Post'(T,)), then
M C I(T,) is guaranteed by M C K — Post’(T,), and the threshold inhibitor is
redundant. In this case P = (CP, K).

2. Inhibitor CP-nets (C P;-nets)

When the capacities of the places are infinite (Vp € PLACE, K(p) = o), the P-net
becomes an inhibitor CP-net, P = (CP,I).

3. CP-nets '

When the capacities of the places and the thresholds are infinite, ie
(Vpe PLACE,K(p) = oo) A(Vtr e TRANS Vp € PLACE, mult(p, I(tr)) = o0),
the P-net reduces to a CP-net, P = CP.

17

Chapter 4

Transforming P-nets to CP-nets

To allow the analysis techniques that have been and are being developed for CP-nets to
be directly applied to P-nets it is important to be able to transform P-nets to CP-nets
and to know precisely under which circumstances these transformations are applicable.
This chapter sets out two transformations under which the interleaving behaviours of the
P-net and CP-net are equivalent in the sense that there single-step reachability trees are

isomorphic. <

To motivate the transformations, it is first necessary to establish an eztended complemen-
tary place invariant for CP-nets, not previously published in the literature.

4.1 Extended Complementary Place Invariant

In this section we consider a class of CP-nets in which the set of places is partitioned into
two sets of the same cardinality such that for each place in one set there is a corresponding
place in the other. We also relate the pre and post maps restricted to one set of places to
the pre and post maps restricted to the other set, in such a way that an invariant exists
between the markings of the two sets of places.

This development has been inspired by the idea of complementation for PT nets [17].
We shall therefore call the corresponding set of places, complementary places. When
complementing a PT net the pre map (post map) on the complementary places is set
equal the post map (pre map) on the original set of places. This guarantees an invariant
on each pair of complementary places. If p is an original place and p its complement, then
for every reachable marking M, M(p) + M(p) = K(p) where K(p) = Mo(p) + Mo(p) is 2
constant, the capacity of place p.

The following generalises this idea in two ways. Firstly we relax the relationship between
the pre and post maps (we are only concerned with the equality of the differences in the
pre and post maps) and secondly we raise these notions to the level of CP-nets.

4.1.1 Definitions

Let CP1 = (51,T,C;C, Prel, Postl, M1,) be a coloured net where its components are
defined in figure 4.1. The hat notation is used to indicate complementary places or sets or

18

S1=Sus

where § = {§|s € §}

Vs € 5,C(3) =C(s)

PLACE1=PLACE UPLACE

PLACE = {(s,9)| g€ C(s),s€ S}
PLACE = {(3,9)| g € C(s),s € S}

The pre and post maps are factored: Vir € TRANS
Prel(tr) = Pre(tr) + Pre(tr)

Postl(tr) = Post(tr) + P’o\st(zr)

Pre, Post : TRANS — uPLACE
Pre,Post : TRANS — uPLACE

M1o = Mo+ Mo

where My € pPLACE and M, € uPLACE

Figure 4.1: CP1: Basic Definition

functions associated with complementary places. An overbar notation is defined in figure
4.2. It is used to complement the marking or pre and post maps associated with the
original places.

Let p=(s,9) € PLACFE and p = (3,9) € PLACE
If X € uPLACE then X € uPLACE such that
Vp € PLACE, Vp € PLACE, X(p) = X(p)

Figure 4.2: Overbar Notation

We now state the restriction on the pre and post maps which guarantees that the comple-
mentary place invariant holds. Vir € TRANS

Pre(ir) — Post(tr) = Post(tr) — Pre(ir) | (4.1)

4.1.2 Complementary Place Invariant

Let M1 € uPLACE}, a reachable marking of CP1, be factored so that M1=M+ M
where M € uPLACE and M ¢ uPLACE For convenience, let My + Mo = K where
Ke ;zPLACE then the invariant is given in the following proposition.

Proposition 4.1 For CP1 above, satisfying equation 4.1,

YM1le[Mlg> M+M=K

Proof

19

The proofis by induction over the reachable markings. The proposition is true by definition
for the initial marking. Given any reachable marking M1 = M + M, we assume that

M+M=F (4.2)

and then prove it is true for any follower marking.

Vitr € TRANS such that Prel(tr)CM1, the follower marking, M1/, is given by the tran-
sition rule:

M1 = M1+ Prel(ir) — Postl(ir)
= M+ M+ Pre(tr) + lgr\cz(tr) — Post(tr) — P/o\st(tr) -
= M + Pre(tr) — Post(tr) + M + Pre(tr) — Post(tr)

= M'+M
where
M' = M + Pre(tr) — Post(tr) (4.3)
M = M + Pre(tr) — Post(tr) (4.4)

Thus we need to prove that given equation 4.2
M+M=F (4.5)

Substituting for M’ and M ' using equations 4.3 and 4.4, rearranging and using equation
4.1 gives the required result.

M +M = M +Pre(ir) - Post(tr) + M + Pre(tr) — Post(tr)
= M+ M + Pre(tr) — Post(tr) + Pre(tr) — Post(tr)
= M+M

K

4.2 Interleaving Equivalence of P-nets and CP-nets

In this section we give transformations from P-nets to CP-nets which preserve their inter-
leaving behaviour and show that there is an isomorphism between the single step (inter-
leaving) reachability trees of P-nets and CP-nets, under weak assumptions.

The transformations are important as they allow the theory developed for the analysis of
CP-nets (high-level reachability trees and invariants analysis [10]) to be applied to P-nets
in most practical situations.

We firstly consider the most straightforward case where the capacities of all places in
the P-net are finite and then relax this condition when there is no inhibitor condition
associated with an underlying place.

20

4.2.1 Complete Complementation Transformation
A P-net, P =(S5,T,C;C, Pre, I, Post, K, M), with the restriction that
Vir € TRANS,Vp € PLACE, mult(p, I(tr)) < o0 = mult(p, K) < 00 (4.6)

can be transformed into CP-net CP = (S5, T,C; C, Pre, Post, M), where we have used the
underline to denote the CP-net elements.

Firstly we define a2 combined inhibitor-capacity function. For a P-net, the enabling con-
dition for tr € TRANS, at marking M, comprises

1. the precondition Pre(tr) C M
2. the capacity condition M C K — Post(tr) and

3. the inhibitor condition M C I(ir)
We identify two cases, for Vp € PLACE and Vtr € TRANS:

o Cl: mult(p, I(tr)) > mult(p, K — Post(tr))
o C2: mult(p, I(tr)) < mult(p, K ~ Post(tr))

It will be convenient to combine enabling conditions 2 and 3 above and we therefore define
the following inhibitor-capacity function:

IK :TRANS — pPLACE
where Vir € TRANS,IK(tr) C I(ir) such that

mult(p, K — Post(tr)) if C1

mult(p, IK(tr)) = { mult(p, I(tr)) if C2

The enabling condition becomes
1. Pre(tr)C M
2. M C IK(tr)

We shall replace the second enabling condition by an equivalent pre map on a set of
complementary places in the CP-net. The construction is as follows.

Firstly we impose the restriction that all places have finite capacity

Vp € PLACE, mult(p,K) < o

For each s € 5, we create a complementary place § and gather them together into a set of
complementary places, S = {3 | s € §}. The set of places of the CP-net is then S = SUS.

We denote the set of underlying complementary places by PLACE, given by
PLACE = {(3,g)]| g € C(s),s € §}

21

where Vs € S,Vt € T,C(s) = C(s),C(35) = C(s),C(t) = C(t)
The pre and post maps: Vir e TRANS

Pre(tr) = Pre(ir)+ K — TK (tr)

Post(tr) = Post(tr) + Pre(tr) — Post(tr) + K — TK(tr)
My=My+K—-M,y

Figure 4.3: P-net to CP-net Transformation

and use the notation defined in figure 4.2 for complementing multisets associated with
P-net places.

Let M denote the marking of the complementary places $, so that Me uPL’;i\CE . The
initial marking and pre and post maps will be chosen so that the following invariant holds

M+M=E& (4.7)

The Pre and Post maps are factored with respect to the original set of places and the set
of complementary places and thus Vir € TRANS

Pre(tr) = Pre(tr) + Pre(tr) (4.8)
Post(tr) = Post(tr) + Post(ir) (4.9)

where ﬁz,ﬁo\st : TRANS — pPLTCE . From proposition 4.1, the above invariant
holds if .
Vir € TRANS, Pre(tr) — Post(tr) = Post(tr) — Pre(tr) (4.10)

If we complement the second enabling condition and substitute for M using equation 4.7,
we obtain the equivalent precondition on the complementary places. Thus Vir € TRAN S

MCIK(tr) & MCTE(tr)
o K - MCTK(ir)
& K-TEK(tr)cM (4.11)

Thus Vir €e TRANS, IEZe(tr) = K — TEK(tr) which then gives us Pre(tr) from equation
4.8. Finally, knowing Pre(tr), the post map is derived from equations 4.10 and 4.9.

The transformation is summarized in figure 4.3.

4.2.2 Proof of Interleaving Equivalence

The interleaving behaviours of the P-net and corresponding CP-net defined above are

equivalent in the sense that their reachability trees (transition systems) are isomorphic.
This can be stated as

22

Theorem 4.1 1. For each reachable marking, M € [Mo> of P, there is a one-to-
one correspondence with a reachable marking M € [My> of CP. That is there is a
bijection:

p:{Mo>— Mg >
where M = p(M)= M + K - M; and
2. The single step occurrences of transition modes in P and CP are in one-to-one
correspondence:

MM p(M)-"Tp(M")

Proof:

The proof is by induction over the reachable markings. Point 1 is true for the initial
marking by definition: Mg = Mgy + K — My (see figure 4.3).

Assume
M=M+K-M (4.12)

We firstly need to prove that if a transition mode, tr, is enabled at M (in P), then it is
also enabled at M (in CP) and vice versa. This is formally stated in the following lemma.

Lemma 4.1 Enabling Lemma
Pre(tr) € M C IK(tr) iff Pre(tr) C M

Proof:

Starting with the CP-net, using equation 4.12 and substituting for the definition of Pre(tr)
reveals

(Pre(tr)+ K -~ TK(tr)) C (M + K — M)
Pre(tr)CM and MCIK(tr)
Pre(tr)CMCIK(ir)

which has proved the enabling lemma. O

t¢¢

We now prove 1 and 2 together in two parts. Firstly we prove that p is an injection and
the implication on the transition systems.

The enabling lemma tells us that if ¢ of P is enabled at M, then tr of CP is enabled at
M = M + K — M. Consider the successor markings

o M M'; and
° M—t—r-»i_'
Assuming equation 4.12, we wish to prove that Vtr € TRANS
MIMa>M+E-MZM+E-M

23

From the transition rule and the definitions of the pre and post maps for the CP-net, we
have

M = M+ K -M - Pre(tr) + Post(tr)

M + K — M - Pre(ir) + Post(tr) + Pre(tr) — Post(tr)
M — Pre(tr) + Post(tr) + K — M + Pre(tr) — Post(tr)
= M+K-M

Hence we have proved the one-way implication and also that p is an injection. We now
prove the reverse implication of 2 and that p is surjective. The proof has exactly the same
form as the previous proof.

Let R be the marking we get when a transition occurs in the P-net for mode tr at Marking
M. We need to prove Vir € TRANS

M+E-MEZM+E-M => MM

and hence that R = M'.

From the transition rule, the definitions of the pre and post maps for the CP-net and

equation 4.12, we have
*

R = M — Pre(tr)+ Post(ir)
= M — K + M — Pre(tr) + Post(tr)
M — Pre(tr) 4+ Post(tr) - K + M ~ Pre(tr) + Post(tr)
M-E+M
= M

Thus for each successor marking M’ = M’ + K — M in CP we have a corresponding
marking M’ in P, which completes the proof. O

4.2.3 Less Restrictive Transformation

We now remove the restriction that all places must have finite capacity. If case C1 above
applies for a p € PLACE, then the inhibitor condition is already satisfied by the capacity
condition. In particular, if for some p € PLACE, mult(p, K) = oo, then Vir € TRANS,
mult(p, I(tr)) = oo, to obey the initial restriction (equation 4.6). In this case only an
identity transformation is required.

We shall only create complementary places in the underlying PT net to eliminate the ca-
pacity condition, when finite, and the inhibitor condition, when C2 applies. The definition
of PLACE is modified to exclude an underlying place corresponding to p when K(p) = cc.

PLACE = {j|pe PLACE A K(p) # oo}

The set of complementary places now becomes

§'={3|3(4.9) € PLACE ;s € S, € C(s)}

24

S=5uf

where §' = {5 | 3(5,9) € PLACE ,s € §.g € C(s)}
and PLACE = {p|p€ PLACE A K(p) # oc}
T=T

c=Ccul

where C = {C(3) | 5 € 5"}

c:5u Sur — C

where Vs € §,Vt € T,

C(s)=C(s) .
C(3)={g1(5,9) € PLACE'}
C(t)=C(2)

The pre and post maps: Vir € TRANS

Pre(tr) = Pre(tr) + K — TK (tr)

Post(tr) = Post(tr) + Pre(tr) — Post(ir) + K — TE(tr)
My=Mo+ K -M,

where the overline bar is defined in section 4.2.3

Figure 4.4: Less Restrictive P-net to CP-net Transformation

where § = (3, g). The corresponding colour sets are Vs € 5,C(s) = C(s) and
Vi€ 5,0(3) = {9 (5,9) € PLACE')

so that the set of colour sets is C = C UC where € = {C(5) | d € S'I}.

The overbar notation is changed accordingly so that if X € uPLACE then X € uPL?l\C'E'

such that for p € PLACE, Vp € PLTC’E,,_X@) = X(p). Note that when K(p) = oo,
there is no corresponding element in X(X(5) = 0).

The desired transformation is given in figure 4.4.

Because the transformation is of the same form as before the proofs carry through to the
new transformation. Some care is needed with the enabling lemma in the implication
proof when ‘unbarring’ where we need to note that for p € PLACE and Vir € TRANS

. —-— —— 4
. l - u t 'f D A E
mult(p,][i(tr))_—_{ m t(p, IK (tr)) :)tﬁefw}i)sLe c

25

5.1 Informal Introduction

5.1.1 General

The graphical form comprises two parts: a Graph which represents the net elements graph-
ically and carries textual inscriptions; and a Declgration, defining all the sets, variables,
constants and functions that will be used to annotate the Graph part. The declaration
may also include the initial marking, the capacity and the colour function if these cannot
be inscribed on the graph part due to lack of space.

5.1.2 Initial Marking

The initial Marking is specified for each place by Mg(s) € uC(s), such that forall g € C(s)
andse S
mult(g, Mo(3)) = mult((s, g), Mo).

5.1.3 Places

In the usual way we shall represent places by circles (or ellipses). A place s may carry
four inscriptions.

¢ the place name;

o the colour set associated with the place, C(s);
o the place capacity, K(s); and

o the initial marking, My(s).

The first three would be inscribed close to the place, whereas the initial marking would
be inscribed inside the circle representing the place. C(s), K(s) and Mo(s) can be defined
in the Declaration if there is insufficient space in the Graph part. We shall adopt the
convention that places not annotated by a capacity multiset will have infinite capacity for

all tokens in C(s).

A useful notation for K'(s) is given later in section 5.7.

26

5.1.4 'Transitions

Transitions are represented by rectangles, annotated by a name and may be inscribed by
a boolean expression, known as the Transition Condition. The Transition Condition may
only involve the variables of the inscriptions of its surrounding arcs.

5.1.5 Arcs

We shall indicate that a place is related to a transition by the pre map, Pre, by an arrow
drawn from the place to the transition and for the post map, Post, by an arrow drawn
from the transition to the place. If a place is related to a transition by both mappings and
they are identical, then this may be shown by an arc with an arrow head at each end. (In
this case only a single inscription is required.) No arrow is drawn from place s to transition
tifand only iffort € T and s € §, Vg € C(s),Ym € C(t), mult(g, Pre(s,t;m)) = 0 and
similarly for the post map.

The usual convention will be adopted for the representation of the inhibitor map, I. If
a place is related to a transition by an inhibitor map, in which the multiplicities of at
least one token is not infinite, then this is represented by an edge from the place to the
transition with a small circle instead of an arrow head at its destination. Equivalently,
no inhibitor arc is drawn from place s to transition ? if and only iffort € T and s € §,
Vg € C(s),Vm € C(t), mult(g, I(s,t;m)) = 0.

The arcs will be annotated with multisets of tuples of terms of appropriate type (deter-
mined by the colour function). The terms, which include variables, are built from (the
signature of) 2 many sorted algebra (see section 5.2).

5.1.6 Markings and Tokens

A token is a member of |J,¢5C(s). A Marking of the net may be shown graphically
by annotating a place with its multiset of tokens M (s). We therefore need a convenient
representation for multisets. We use the symbolic sum or vector representation described
in Appendix A. The convention is adopted that all tokens are enclosed in angular brackets.
Thus if g € M(s), < ¢ > would appear written in the circle representing place s. We use
the natural numbers greater than one, to represent the multiplicity of the token in M(s).
Thus if mult(g, M(s)) = m, we would represent this by juxtaposition: m,; < g > and
this would be written inside the circle representing s. If m, = 1, it would be omitted
from the inscription. If g is an n-tuple (for example g = (a,b,c)), then we adopt the
convention of dropping the parentheses (eg (a,b,c) would be represented by < a,b,c >
and not < (a,b,c)>.)

5.2 Mathematical Preliminaries

In the graphical form, the P-net maps are represented by inscribing arcs with multisets
of tuples of terms involving variables, and transitions with Boolean expressions. Many-
sorted algebras provide an appropriate mathematical framework for this representation.
Signatures provide a convenient way to characterise many-sorted algebras at a syntactic
level. This section introduces the concepts of signatures, terms and many-sorted algebras

27

that will be required for the definition of the graphical form of P-nets. The ideas of this
section are not new and similar work may be found in [7,13].

5.2.1 Signatures
A many-sorted (or R-sorted) signature, £, is a pair:
Z=(R,Q)

where

® R is a set of sorts (the names of sets, eg Int for the integers); and

o (is a set of operators (the names of functions) together with their arity in R which
specifies the names of the domain and co-domain of each of the operators.

The arity is a function from § to R* X R, where R™ is the set of finite sequences, including
the empty string, €, over R. Thus every operator in {2 is indexed by a pair (¢,r), 7 € R*
and r € R denoted by w(g,). 0 € R” is known as the input sorts, and r as the output
sort of operator w. (The sequence of input sorts will define a cartesian product as the
domain of the function corresponding to the operator and the output sort will define its
co-domain - but this is jumping ahead to the many-sorted algebra.)

For example, if R = {Int, Bool}, then w(ns Int,Bool) Would represent a binary predicate
symbol such as equality (=) or less than (<). Using a standard convention, the type of
a constant may be declared by letting o = €. For example an integer constant would be
denoted by cons(g 1ny) Or simply consyn,.

Types of variables may also be declared in the same way. This leads to the consideration
of signatures with variables.

5.2.2 Signatures with Variables

A many-sorted signature with variables is the triple:
X =(R,Q,V)

where R is a set of sorts, Q a set of operators with associated arity as before and V is a
set of typed variables, known as an R-sorted set of variables. It is assumed that R, and
V are disjoint. The type of the variable is defined by the arity function: V — {¢} x R. A
variable in V' of sort r € R would be denoted by ?Y(g,r) OF more simply by v.. For example,
if Int € R, then an integer variable would be (g, Int) OT VInt-

V may be partitioned according to sorts, where V, denotes the set of variables of type
(sort) r (ilev, € V, iffa=r).

Including the variables in the signature is a convenient way of ensuring that they are
appropriately typed.

28

5.2.3 Natural and Boolean Signatures

The term Boolean Signature is used to mean a many-sorted signature where one of the
sorts is Boolean. Similarly, the term Natural Signature is used when one of the sorts
corresponds to the Naturals ().

5.2.4 Terms of a Signature with Variables

Terms of type r € R may be built from a signature & = (R,Q,V) in the normal way.
We denote a term, e, of type r by e : r and generate them inductively as follows. For
rr1,...,Tn € R (n>0)

1. A variable v, € V is a term of type r;

2. A constant w(g,) € Q is a term of type r; and

3. ey :r1...4 11, are terms, then w(,, . -, r(€1,...,€n) € Qis a term of type 7.

Thus if Int is a sort, integer constants and variables, and operators of output sort I'nt are
terms of type Int.

We denote the set of all terms of a signature with variables by TERM(2U V), the set of
all closed terms (those not containing variables) by TERM (), and the set of terms of
sort 7 € R, by TERM(X),, where X = Q or QUV.

5.2.5 Tuples of Terms
We can now denote tuples of terms of type o € R*\ {c} by

<€ly.eyn >iTy. . Triff €3 :71,...,85 1Ty,

We denote the set of all tuples of terms of a signature with variables by TU(Q U V), the
set of all tuples of closed terms by TU(R), and the set of tuples of type o, by TU(X)g,
where X = Qor QUV. ‘

5.2.6 Multisets of Tuples

Multisets or bags of tuples can also be built inductively from the signature if we assume
that we have a Natural signature. We define multisets of tuples this way to allow the
multiplicities to be terms of sort Nat, rather than just the Naturals themselves.

Let BTU(Q U V') be the set of multisets, then it is derived inductively as follows.
e TUMQUV)C BTU(QUV);
o if 1,02 € BTU(QU V), then (b1 +b2) € BTU(QUV); and
oif it € TERM(QUV)y,, and b € BTU(QUV), then ib € BTU(QUYV) where

juxtaposition represents scalar multiplication.

29

This may be extended to the set of bags with infinite multiplicities, B, TU{RRU V), as
follows

« BTU(QUV) C B, TU(QUV); and
e ifbe BTU(QUV), then ocb € B TU(QU V).

5.2.7 Many-sorted Algebras

A many-sorted algebra, (or I-Algebra), 4, provides an interpretation (meaning) for the
signature ¥. For every sort, 7 € R, there is a corresponding set, A,, known as a carrier
and for every operator W(r,..ra,r) € 2, there is a corresponding function

wy A, XX A, = A

For example, if £ = ({Int, Bool},{<(rnt.Int,Boot)}) then a corresponding many-sorted
algebra would be
A = (Z, Boolean; lessthan)

where Z is the set of integers: {...,-1,0,1,...}
Boolean = {true, false} -
and lessthan : Z X Z — Boolean is the usual integer comparison function.

It could also be
B = (N, Boolean;lessthan)

where N is the set of non-negative integers: {0,1,...}
Boolean = {true, false}
and lessthan : N x N — Boolean.

(The power of the signature is that it allows a class of algebras to be categorised.)

For signatures with variables, the type of a variable is defined by a sort. In the algebra,
the variable is typed by the carrier corresponding to the sort.

Some useful notation for product sets is now defined. For ¢ € R* and ¢ = ry75...7, then
the corresponding product carrier A, X ... X A, is denoted by Ag.

Assignment and Evaluation

Given an R-sorted algebra, H, with variables in V', an assignment ! for H and V is a set
of functions «, comprising an assignment function for each sort r € R,

ar: V., — H,.
This function may be extended to terms by considering the family of functions
o, : TERM(QUYV), — H,

for each sort 7 € R. The values are determined inductively as follows. For ¢ € R* \¢,
O =T1T2...Tq, withr,71,...,r, € R and ¢, ¢€,...,e, € TERM(QUYV),

!The terms binding and valuation are alsc used in this context.

30

o If e is a variable, then afe) is given by the assignment function.
o If eis a constant, w,, then a(w,) = wy € H,.

o If e is an operator, w(g), then a(w(g (1, -,€:)) = wh(aler),...,ale)) € Hy,
where e; : 7y ...e, : Ty

Tuples may now be evaluated, for a particular assignment, a. Let 7 € TU(QUV) and 0 =
Ty72...Tn, with other symbols as defined previously, then the valueof r =< €3,...,e, >€
TU(QUV)g in H for « is given by

Valy(t) =< ale1),...,a(e,) >€ Hg.
Knowing the values of tuples and terms we can determine the value of multisets of tuples
by expanding the multiset into a sum of scaled tuples and evaluating each scalar and
tuple for a particular assignment to variables. This is defined inductively as follows for
b,61,02€ BTU(QU V) and i e TERM(QU V)p,,
o Valg(bl 4 b2) = Valyg(bl) + Valy(h2)
o Valgy(ib) = Valg(i)Valy(b)

5.3 Graphical Form of P-nets

In this section a definition of the basic graphical form of P-nets is given by defining a P-
Graph. It consists of an inhibitor net where the arcs are annotated by multisets of tuples
of terms. The multiplicities of the multisets are non-negative integer terms. Transitions
are annotated by Boolean terms. The terms are built from a Natural-Boolean signature
which has an associated many-sorted algebra. The colour function restricted to places
is included. It associates with a place non-empty sets comprising unions of products of
carriers of the many-sorted algebra. The capacity and initial marking are multisets over
the place colour set as usual.

5.3.1 Definition
A P-Graph is a structure

PG = (IN,D,Z,C,AN, K, Mp)
where

e IN = (S5,T;F,IF)is an inhibitor net, with

— S a finite set of places;

~ T a finite set of transitions disjoint from §;
~ FC(S§xT)U(T x S) a set of arcs; and

- IF C S xT aset of inhibitor arcs.

31

D is a finite set of non-empty colour sets;

¥ =(R,Q.V)is a Natural-Boolean signature with variables. It has a corresponding
E-Algebra. H.

e C 85 — D is the colour function restricted to places. For all s € 5, the colour set
is chosen so that it is in general a union of product sets of carriers of A: C(s) =

U{Hg, |fori=1,...,n,0, € R*\ c}.

AN = (A,IA,TC)is a triple of net annotations.

— A:F - BTU(QUV)such thatfors € §,(z,y) € F,and z = sor y = s, then
Valg(A(z,y)) € puC(s). It is a function that annotates arcs with a multiset of
tuples which when evaluated is a multiset over C(s).

— IA: IF — B, ,TU(QUV) such that for every (s,t) € IF, Valg(IA(s,t)) €
HooC(s). It is a function that annotates inhibitor arcs with a multiset of tuples
which on evaluation must be in po, C(s).

— TC:T - TERM(QUV)p,o whereforallt € T, TC(t) € TERM(QUV (1)) Boul
and ¥'(t) is the set of variables occurring in the arc inscriptions associated with
t. TC is a function which annotates transitions with Boolean expressions.

¢ K:85 — U,esntC(s) where K(s) € p£ C(s)is the capacity function.

o My:S§ — U,esnC(s) such that Vs € S, Mo(s) C K(s), is the initial marking.

5.3.2 Discussion
Arc Annotations

When generating multisets of tuples for the arc inscriptions, we allow the multiplicities
to be natural number terms, so that the value can depend on the values of variables
and operators of other types. In particular this includes the generalised Kronecker delta
extension to PrT nets [8].

Strong Typing vs Weak Typing

The inclusion of the colour function, C, and associated colour sets, D, may be considered
unnecessary. This is because the co-domain of the capacity function and initial marking
function could be represented as the set of multisets of tuples in TU(f) evaluated in the
Z-Algebra, H. The colour set. of a place would be determined by the types of the tuples
in the annotations of the surrounding arcs (evaluated in H) and the capacity and initial
marking functions.

The inclusion of the colour function has a number of advantages. Firstly it encourages good
design, as the typing of places needs to be considered early in the specification of a system.
Secondly, it ensures that the initial marking, capacity function and arc annotations are all
consistently typed. This can be used to great advantage for type checking specifications
with automated tools. Finally, it allows a straightforward interpretation in terms of a
P-net.

32

‘e shall use the term strongly-typed for P-Graphs in which the colour function is included
and weakly-typed when it is not included.

Alternative Graphical Forms

Another graphical form would be to just consider an annotated net (rather than an in-
hibitor net). The definition would be as before, except that the inhibitor net N would
be replaced by a net N and annotations of the input and output arcs would be separated.
The ouput arcs would be annotated as before, but the input arcs would carry a pair as
an inscription. The first element of the pair would refer to the pre map and the second to
the inhibitor map. This may prove to be a more convenient graphical representation as
less arcs are involved and it would tend to de-emphasize the réle of the inhibitor. This is
desirable when the inhibitor is acting as a way of increasing modelling convenience rather
than modelling power, for example when purging places with finite capacities.

A slightly less syntactic approach would be to replace the signature with the many-sorted
algebra, a set of variables, and a typing function associating a variable with a particular
carrier of the algebra. This would be closer to the approach in [16] for Algebraic Nets.

There are a number of alternative graphical forms and the choice of the most suitable form
will depend on further experience in particular application domains. Present experience
indicates that the above definition is at least a useful one.

5.4 Interpretation of the P-Graph as a P-net
The P-Graph may be given an interpretation as a P-net in the following way.

1. Places: S is the set of places in the P-net.
2. Transitions: T is the set of transitions in the P-net.

3. Colour Sets: D is the subset of C to be associated with places. The colour set for a
transition is determined by the types of the variables occurring in the surroundmg
arc annotations restricted by its transition condition.

Let there be n; free variables associated with the arcs surrounding a transition
t € T. Let these have names v,,(2),...,%,, (t) € V. In the S-Algebra, H, for all
1 € {1,2,...,n:}, let the carrier correspondmg to r;. H,,, be denoted by G with
typed variables v;(t) : G;. Following [10], let g; € G;. then

1) ={(91,-+»9n) | (Mv3(2); - ., 0, (1)). TC())(G15 - - - Gn,)}

(The A-expression provides a means for formally substituting values for the variables
in the Transition Condition. Tuples which satisfy TC(t) are included in C(2).)

The set of colour sets for transitions is therefore O = {C(t) | t € T}. ThusC = DUO.

4. The Colour Function: The colour function restricted to places is defined in the
P-Graph and C(t) is given above.

33

5. Pre and Post Maps.

The pre and post maps are given, for all (s,?),(t,s) € F, by the following mappings
from C(t) into puC(s)

Pre(s,t): A(v1(t), ..., vn, (). A(s,)

Post(s,t) : Alvi(t), ..., v, (8)). A2, s)

For (s,t) ¢ F and Vm € C(t), Pre(s,t;m) = § and for (¢,s) ¢ F and Vm € C(t),
Post(s,t;m) = 0.

6. Inhibitor Map ’
The inhibitor map is a function from C(t) into pC(s) where for all (s,t) € I'F
I(s,t): A(vi(t),...,vn,(2)).TA(s,1)
and for (s,t) g IF, Vg € C(s),m € C(t),mult(g,I(s,t;m)) = co.

7. Capacity Function.
K(s) is as defined in the P-Graph.

8. Imnitial Marking. *
Moy(s) is as defined in the P-Graph.

5.5 Simple Examples
5.5.1 Consume any token

A simple P-Graph and its corresponding P-Net are shown in figure 5.1. It illustrates the
use of PrT net notation. For each value of z € A, there is an occurrence mode of t1.

Consider the (multi)set T, = {(¢1,z) | Vz € A}. Then
Pre(T,) = {(p1,2)| V2 € A} = My

Thus all modes of the transition are enabled and any subset could occur simultaneously.

This P-Net represents a set of |A| independent underlying input place/transition pairs,
which are concurrently enabled.

This example illustrates a number of conventions that are adopted in the graphical form.

e Inhibitors: It is quite often the case that inhibitor arcs are not present so that JF = {
and hence I'4 is also empty. The net is a CP-net and also a (many-sorted) PrT net.

¢ Omission of a capacity annotation or declaration indicates infinite capacity.

® Quite often it is not necessary to state the signature explicitly and we can operate
at the level of the algebra. Thus we can just declare the sets and operators. In this
case there are no operators.

34

P-Graph

A: Non-empty set

Mo(pl)= A
A 11
pl <z >
Linear P-Net
S ={pl}
T ={t1}

C={4}

Cpl)=C(t1)= A

Va € A, Pre(tl,a) = {(pl,a)}
Va € A, Post(tl,a) =0

the capacity of pl is infinite
Mo = {(pl,a)|a € A}

Figure 5.1: Folding Input Place/Transition Pairs

o Implicit typing of variables. When the colour set of a place is a simple product of
carriers (or a union of products of different degree), then the type of a variable in an
arc annotation is determined from its position in the tuple, the degree of the tuple
and the colour set definition. (If the variable occurs in the argument of a function,
then it is typed by the domain of the function.) In this example, z : A.

If the variable is used in a number of arc insciptions, then it is possible for mistakes to
be made with implicit typing, so that the typing of a specific variable is inconsistent.
Considerable care is required with implicit typing and ambiguity will be avoided if
all variables are declared in the Declaration.

e Default Transition Condition. If for t € T, TC(t) = true, t is left blank rather than
annotating it with the constant true. This is the convention adopted for 1 in this
example.

Remark: Choosing C(t) = A is demanded by the above transformation (section 5.4) but
this is not necessary. We could have chosen C(t) = B with |B| = |A| and defined Pre as
a bijection

Pre:{(11,b) | be B} — {(pl,a)|a € A}

Thus there is an isomorphism. We chose C(t) = A as it provides the simplest way of
defining the rule for Pre. Choosing C(t) = B would be equivalent to renaming the
transitions in the underlying PT-net.

5.5.2 Consume any token and create any token

P-Graph

A, B: Non-empty sets
Mo(pl) = A, Mo(p2) =0

A 11 B

Linear P-Net

§ = {pl,p2}

T = {1}

C = {4, B}

C(pl)=A

C(p2) = B

C(tl)=Ax B

Va € A,Vb € B, Pre(tl,a,b) = {(pl,a)}
Va € A,Vb € B, Post(tl,a,b) = {(p2,b)}
the capacities of pl and p2 are infinite
Mo = {(pl,a)|Va € A} .

Figure 5.2: More Complex Folding

The P-Net of figure 5.2 shows an example of more complex folding, where each underlying
place {(pl,a) | a € A} is an input to |B| transitions each of which has a different place
chosen from {(p2,b) | b € B} as an output place. The variables are implicitly typed: z: A
and y: B.

5.5.3 Information Flow

By replacing y by z in the above example, we can see how information can flow around
a net. To ensure that the resulting net is a P-Graph we must have that ACB and z : A.
In this case, including the type of z in the declaration is mandatory as implicit typing is
ambiguous (is z : A or z : B 7). The corresponding P-Net is shown in figure 5.3.

The underlying PT net is a set of | A| identical input place, transition, output place subnets.
There are also | B \ A] isolated places. (In an application, there would not be any isolated
places and the above would be a subnet. Another part of the total net would ensure that
no underlying places were isolated.)

5.5.4 Transition Condition
Consider the example of section 5.5.2 with the added constraint that z < y is attached as

a condition to transition t1. The P-Graph is given in figure 5.4. The comparison operator,
<, must be defined in the Declaration. Infix notation is used when it is customary. The

36

P-Graph

A, B: Non-empty sets
ACB;z: A
Mo(pl) = A, My(p2)=1¢

A

11

B

plO <z>

Linear P-Net

<z> Op2

§ = {pl, p2}
T = {t1}

C = {4, B)
Clpl)=4
C(p2)=HB
c(t1) = A

Va € A, Pre(tl,a) = {(pl,a)}

Ya € A, Post(tl,a) = {(p2,a)}

the capacities of pl and p2 are infinite
Mo = {(pl,a) | Va € A}

Figure 5.3: Information Flow

A, B: Non-empty sets
<: A X B — Boolean
Mo(pl) = A, Mo(p2) =0

A

11

B

PlQ<z>

<y

= (On

Figure 5.4: P-Graph with Transition Condition

37

corresponding linear form is the same as that of figure 5.5.2 except that the occurrence
modes are limited by the condition z < y so that fora € A,b € B,

C(11) = {(a,b) | @ < b}.

5.6 P-Graph Subclasses

Subclasses of the P-Graph can be formed by restricting its structure. In particular we can
derive many-sorted versions of recent formulations of two High-level nets: Algebraic Nets
[16] and Predicate/Transition Nets [8].

5.6.1 Many-sorted Algebraic Nets

Algebraic nets were proposed as a reformulation of PrT nets with an improved invariants
calculus in [16], where a partial algebra over a single carrier was employed. The many-
sorted nature of applications was captured by allowing the carrier to be the union of a
number of sets. This then lead to the definition of partial functions and their associated
operators to be used in the multiset of terms for agc inscriptions.

A colour function is not included in [16] and the net is therefore weakly-typed. We shall
consider two many-sorted algebraic nets: one weakly-typed and the other strongly-typed.

Weakly-typed many-sorted algebraic nets

A weakly-typed many-sorted algebraic net, AL,, is one of the simplest special cases of
a P-Graph, where the inhibitor arcs and annotations, the Transition Condition, and the
colour and capacity functions are removed (ie IF = @; (V¢ € T)TC(t) = true; all places
have infinite capacity; and the colour function is not included). The arc annotations
are also restricted to multisets where the multiplicities are constants rather than natural
number terms.

AL, = (N,X, A, My)
where
e N =(S5T;F)is anet.

e ¥ =(R,Q,V)is a an R-sorted signature with variables. It has a corresponding
R-sorted algebra, D.

* A: F— pTU(QU V) is the arc annotation function.

* Mo:S§ — p{Valp(r)|re TU(R)} is the initial marking.

I believe that this net captures the spirit of Algebraic nets in terms of a specification
language and it has the following advantages:

38

D=A4UB
A={a,....,a,},neNT
B={bl,...,bn}

f:D — D where
flai)=b;fori=1,...,n

f(b;) is undefined fori =1,...,n
A{o(pl) = B, Afo(pQ) = 0

11

Pl Q z @) Op2

Figure 5.5: Algebraic Net with an undefined follower marking

1. Punctions are total.

Because functions are partial in [16], it is possible to annotate arcs with terms that
are not defined in the algebra. This leads to difficulties in interpreting the behaviour
of such nets. An example of an Algebraic net illustrating the difficulty is shown in
figure 5.5.

Firstly, consider the situation when Mo(p1) = A. Using the terminology of Algebraic
nets, a valuation (assignment) for z, 8(z) = a; for example, will enable t1 in mode
B. When 11 occurs in mode S, a; is removed from place pl and f(a;) = b; is added
to p2, ie M(pl) = A\ {a1} and M(p2) = {b1}. A similar situation occurs for any
valuation, 8(z) € A. Any valuation, 8(z) € B, will not enable ¢1, due to the initial
marking of pl.

Now consider when Mo(pl) = B, (a perfectly legal initial marking as Mg : S — uD,
where D = AU B). A valuation, 3(z) € B, will now enable t1. When t1 occurs in
mode by, the follower marking for pl is clear, Mg(pl) = B \ {4;}, but the follower
marking for p2 is undefined as the value f(b;) is not defined.

This problem does not occur with many-sorted algebraic nets as defined above be-
cause functions are total. The intention of the designer of the above algebraic net
is unclear. A possible interpretation would be that transition, ¢1, is only enabled
when z is bound to an element of A. This interpretation is easily handled with a
many-sorted algebraic net (MAN) (see figure 5.6).

The MAN has essentially the same graphical form. The net part and initial marking
are identical, and the annotations very similar (ie the only difference is that angular
brackets are used to enclose each inscription). The main difference is that a signature
with variables is explicitly included. The sorts B = {rl,r2} have corresponding
carriers Dry = A and D2 = B. The set of operators includes a unary operator
f = w(y1,r2) and enough constants of type A U B to define the initial marking. The
set of variables, V, is a singleton z = v, and thus z : A. The function corresponding
to the operator f is a bijection fp : A — B, where for 4 = {a1,...,a,} and

39

Sorts: R = {rl,r2}

Carriers: Dyy = A and D = B
Operators: All constants from A and B
and unary operator f = w(,1,2)
Variable: z = v,y thus z: A
A={aj,...,an},ne Nt

B = {b,...,b,}

fp: A — B where
fplay=b;fori=1,...,n

Mo(pl) = AU B, Mo(p2) =0

11

Pl O <z <1@)> Q"ﬁ

Figure 5.6: Weakly-typed MAN interpretation of above Algebraic Net

B = {b,...,b.}, fo(a;) =bifori=1,..., n."To make the example more interesting
we have set the initial marking to Mp(pl) = AU B and My(p2) = 0.

Transition, t1, is enabled in all modes, m € A, and once all the a’s in pl have been
transformed into &'s in p2, t1 is dead. There is no possibility of binding z to an
element of B, as it is of type z : A as defined in the signature. Thus there are no
difficulties of interpretation.

. Sets can be simple.

The sets of the many-sorted algebra are simple (as opposed to complex unions of
other component sets) and correspond to the sets of the physical world that is being
modelled. This contrasts with Algebraic nets where there is only one carrier which
needs to contain the union of all the simple sets. This is more than an aesthetic
problem when developing automated tools, as valuations for each variable will be
over the rather large set D, instead of a much smaller domain corresponding to a
carrier of the many-sorted algebra.

. Tuples.

Tuples are built indirectly in Algebraic nets from operators and product sets which
must be contained in D. It is a much more straightforward task to build tuples in
the many-sorted algebraic net.

The implications for analysis, however, are still to be determined.

Strongly-typed many-sorted algebraic nets

A strongly-typed many-sorted algebraic net, AL,, includes a colour function and is given

AL, = (N,D,C, <, A, M)

40

where

o N=(S5T;F)is a net,
¢ D is a finite set of non-empty colour sets.

® C:5 — Dis the colour function restricted to places.

L = (R,Q,V) is a an R-sorted signature with variables. It has a corresponding
R-sorted algebra, D.

A:F - pTU(Q U V) is the arc annotation function. It is restricted so that for all
s€ S5 (z,y)€ F,and z = sor y = s, then for all a € A(z,y), a is of type o € R*\¢
where Do C C(s).

o Mo:S§ — U,es #C(3) such that Vs € S, My (s) € pC(3) is the initial marking.
The strongly-typed many-sorted algebraic net has the advantage that static type checking
can be done to eliminate errors as discussed before. In the above example, it may have
been that place pl should never be marked with tokens from B and that the initial marking
was just a mistake. In this case it would be appropriate to set C(pl) = A and, depending
on the application, C(p2) = B. In this case, setting Mo(pl) = B, would violate the typing

rules and be detected in a static check. This would not be the case in a weakly-typed

MAN, where the error would be detected at run time when an attempt to execute the net
would reveal that t1 was dead.

The P-nets of figures 5.1, 5.2 and 5.3 are examples of strongly-typed MANs, but figure
5.4 is not a strongly-typed MAN as it has a transition condition different from true.

5.6.2 Many-sorted PrT Nets

In the latest definition of Predicate/Transition Nets [8], Genrich mentions the use of many-
sorted structures and a ‘formalism for abstract data types’ (many-sorted algebras) but does
not pursue these ideas. PrT nets do not include the inhibitor extension nor the colour
function and in [8] a capacity function is not defined. This section presents a subclass of
the P-Graph which may be considered to be a many-sorted PrT net (MPrT).

Definition
A many-sorted PrT net is the structure
MPrT = (N, I, AN, M)
where '
o N =(S5,T;F)is a net.

e £=(R,Q,V)is a Natural-Boolean signature with variables. It has a corresponding
E-Algebra, H.

o AN = (A,TC)is a pair of net annotations.

41

— A:F - BTU(QU V) such that for s € §,(z,y) € F,and z = sor y = s, then
A(z,y) € BTU(QUV),,, where 0, € R™\ {¢}. It is a function that annotates
arcs leading into or out of place s with a multiset of tuples of type o,.

— TC:T - TERM(QUV)g,o whereforallt € T,TC(t) € TERM(QUV (t))Bool
and V(t) is the set of variables occurring in the arc inscriptions associated with
t. TC is a function which annotates transitions with Boolean expressions.

o My:S5 — p{Valy(r)| r € TU(QN)} such that for all s € §, Mo(s) € u{Valp(r) |
7 € TU(Q)g,}, is the initial marking. This is equivalent to Mo(s) € uHg,.

The colour function is easily derived from the type of the initial marking which is the same
as the type of the tuples annotating the associated arcs. Foralls € §

C(S) = Ho,

and thus C(s) is in general a product set of carriers. Hence, many-sorted PrT nets are
implicitly strongly-typed.

The advantages of many-sorted PrT nets over the PrT nets of (8] are the same as points
1 and 2 of those for many-sorted algebraic nets compared with Algebraic nets (see section
5.6.1). This is because of the single-sorted definition of PrT nets and that applications
are naturally many-sorted. To capture this, the domain of the relational structure used
to define PrT nets must comprise a union of setsxThis leads to the definition of partial
functions and loose typing of variables, as variables take on as a default the whole of
the domain as their type. PrT nets do allow variables to be typed by using a transition
condition, but as this is an option of the specifier, mistakes can easily arise.

Simple Examples

The four examples of the previous section (5.5) are all MPrT-nets, where the colour
function (C(s) = Hg,) has been used to annotate places explicitly.

Train Example

In [8], Genrich describes the operation of two trains travelling in the same direction on a
circular track of seven sections. For safe operation, the trains must never be on the same
section or even on adjacent sections. A MPrT-net is given in figure 5.7 where any number
of sections greater than 4 is allowed.

The model is a little different from that in [8]. Apart from the minor difference of general-
ising the number of track sections, the marking of place p2 represents which track sections
are vacant. In the original model, the same place represented the predicate that sections
i and i®1 were vacant. As a minor modelling point, the simpler meaning for a place is
preferred. The less intuitive predicate also necessitates the definition of two functions, the
modulo 7 successor and predecessor functions, whereas only one (modulo n addition) is
required in the MPrT-net. There is also no need for the transition condition and extra
variables.

The drawback of the PrT net is that the successor functions are partial, whereas the
variables all range over IUT. Thus there are legal substitutions for the variables for which
the transition condition is undefined. This situation does not arise with the MPrT-net.

42

Declarations

Set of Trains:T = {a,b}

Set of track sections:I = {0,1,...,n~1]n > 4}
n: number of sections

Variables x:T ; i:I

Function &:IxI—I is modulo n addition

Place pl: Sections occupied by trains

Place p2: Vacant sections

Mo(pl) = {<0.2>,<2,b>}

My(p2) = {1,3,...,n~1}

Graph

IxT t1 I
<ix> <i®l> + <i®2>
pl L A p2
<ipl.x> <i> + <ig2>

Figure 5.7: MPrT-Net of Safe Train Operation

It can be seen that this net is also a strongly-typed MAN.

Conditionals in arc expressions

In this example we use a variant of the readers/writers problem to illustrate the use of
conditionals in arc expressions. It is essentially the same as the resource management
scheme example of [8], but the model is considerably simplified by removing unnecessary
states and colours. The identities of the agents wishing to access the common resource
have been retained, but the access ‘tickets’ are not distinguished.

A number (N) of agents (processes) wish to access a shared resource (such as a file). Access
can be in one of two modes: shared (s), where up to L agents may have access at the same
time (eg reading) and exclusive (e), where only one agent may have access (eg writing).
No assumptions are made regarding scheduling. An MPrT-net model is given in figure
5.8.

It has been assumed that the initial state is when all the agents are idle or waiting to gain
access to the shared resource (with no queueing discipline assumed). Place Wait is marked
with all agents; Accessis empty and the Control place contains L ordinary tokens. An agent
can obtain access in one of two modes: if shared (m=s), then a single token is removed
from Control (as m=e is false) when enter occurs in a single mode; if exclusive (m=e), then
all L tokens are removed preventing further access until the resource is released (transition
Leave). Shared access is limited to a maximum of L agents as transition enter is disabled
when Control is empty.

Following [8] outfix notation has been used for the function Bool — {0,1} and this will be
used as a standard convention. It is assumed that integer addition and subtraction and
the equality predicate are primitive and do not need to be defined in the Declaration.

43

Declarations

Set of Agents:A = {ay,...,an}
Set of Access Modes:M = {s.e}
Control: C = {e}

Positive integer constants: N,L
Variables x:A ; m:M

Function [}:Bool — {0,1} where
[true] =1 and {false] =0
Mo(Wa.it) =A

Moy(Control) =L<e>
Mo(Accessing) = 0

Graph

Wait |

Enter
*
<X> <xX,m>
A
AxM <> Access
<x> <x,m>
Leave

<e> + [m=e](L-1)<e>

Control

o> + [m:e](L—1)<0>

Figure 5.8: MPrT-Net of Resource Management

44

Remark: The net of figure 5.8 is very like a PrT net. If the places were annotated by
predicates rather than colour sets and the domain was formed as the unijon D = AUMUC,
with variables x and m of type D, it would be a PrT net. The indices of the predicates
annotating Wait and Control would each be one, and that of Access, two. It is important
to note that the behaviour of the two nets is not the same. In the PrT net m can be bound
to any element of D. Hence an agent could gain access to the resource in a meaningless
mode e or a; for example. The meaning of this is unclear and contrary to the intention of
the specification.

5.7 Notation for Capacity

The capacity of a particular place, s, is given by the function
K(s):C(s) — N

It is convenient to use a shorthand notation for this function, particularly for annotating
places of the P-Graph. F irstly, consider a place with a product colour set:

C(s)=Gy1 x...xG,.

Let g; € G; be constants and v; : G; be typed variables for i € In = {1,...,n} and
neNt,

We shall use the following notation to annotate places in the graphical form, where the
capacity of each token is the same.

Capacity Notation for place s Meaning in terms of K(s)
K(vy,...,vo5)=m Vi € InVg, € G; K(3;91,...,9,)=m

With the capacity restricted in this way, it is the same as that defined for PrT nets [9].
We shall adopt the abbreviation A for K(v1,...,v,) as in [9], when there is no danger of
ambiguity.

This notation can be extended to colour sets that are unions of product sets by the
conjunction of the notation for the individual products. The meaning is then given by the
conjunction of the meanings for the notation of the individual products.

5.8 Extended Capacity Notation

Although the P-Net capacity function and the above notation may be of use in some
applications, it turns out that a much richer capacity notation is required that allows a
limit to be placed on the cardinality of multisets over elements of partitions of a place’s
colour set. An example is the fotal capacity of a place (ie the sum of all tokens in the
place) which represents a resource bound, eg a buffer capacity. Here we are not placing a
direct limit on the multiplicity of each element of the colour set but a limit on the sum of
multiplicities of elements and thus the capacity function is inadequate.

As a further illustration, consider the following example encountered while modelling the
M-Access Service of the Cambridge Fast Ring [3].

45

Declarations FREE
H: Set of Host Addresses
Me: Set of Host Messages
Mo(BUFFER) =0

Mo(FREE) = H I
<8 > <$>
DATA-
request BUFFER transfer
< s,d,m> U < s,d,m>
HxHxMe

Figure 5.9: LAN Access Buffer
*

A local area network interconnects a set of hosts, with addresses, H, so that each host can
send messages m : Me to each other host. Hosts access the network via a single buffer so
that only a single message is stored in the network per host before being delivered. The
source (s : H) and destination (d : H) addresses are appended to the message and then
submitted to the network where it is stored in the buffer. When resources are available
the message is transferred into the network for routing and delivery.

A P-Graph of the access procedure is shown in figure 5.9. Place BUFFER represents the
set of access buffers, one for each host. Place FREE indicates which buffers are available.
If this place contains a token with host a’s address, then host a’s buffer is free and can
be used for the next message host a wishes to submit to the network (transition DATA-
request occurs). The buffer will not be free again until the network accepts the message
(transition transfer occurs). Hence place FREE provides the control necessary to ensure
a capacity limit of one buffer per host.

In the graphical form of P-nets it would be convenient to replace the capacity control for
place BUFFER by an extended capacity inscription. This is shown in figure 5.10, where
place BUFFER is inscribed by ‘K (s, »,*) = 1’. We may interpret this to mean that there
is one buffer available for each host ie that the sum of tokens over d : H and m : Me
in place BUFFER for a particular value of s is at most one (Cher Zoeme < $,h,g ><
1). The #’s indicate sums over the variables they replace. This may be viewed as an
extended capacity condition on the marking of the place concerned. For all hosts (s€ H),
2heH LgeMc M(BUFFER;s,h,g) < K(s,*,%), for all markings of BUFFER.

More generally, a place, s, with C(s) = Gy X ...x Gy, may be annotated by an inscription
K(ay,...,an) = k with k € Nt where the syntax of a;,i € In is given by the production
rule a; ::=< v; > |* where angular brackets denote non-terminals. (At present we shall
leave open the choice of syntax for variables, but it would most likely be a finite string of
alphanumeric characters.) As above v; : G;.

46

Declarations

H: Set of Host Addresses
Me: Set of Host Messages

Mo(BUFFER) = 0

DATA-
request BUFFER transfer

< s,d,m >‘_/ < s,d,m >

HxHxMe
K(s,%,%x)=1

Figure 5.10: LAN Access Buffer illustrating extended capacity notation

We shall now give the meaning of this notation in terms of a P-Graph without it.

5.8.1 Interpretation of Extended Capacity Notation

When there are no stars present in the argument of X (a1,...,an), then the meaning has
already been given in the previous section. We now consider two cases:

» A. when there is at least one star but less than n stars

e B. when all arguments are stars.

For case A, for each place, s, inscribed by K(a;,.. -,@n) = k, we remove the inscription
and replace it with a projected complementary place, 3, and associated arcs in the following
manner. ’

1. From the argument of K create a tuple consisting of only the variables by deleting
the stars. This will be of the form < ;, .. LU > withi<j<n.

2. Create a place, 3, with colour set C(3) = G; x...x G ; derived from the types of the
above tuple, where G; is the type of the variable v; and so forth.

3. Create an arc (3,t) for each arc (¢,s),t € T and an arc (¥',3) for each arc (s,t),
teT.

4. Annotate each arc by the tuple < v;,...,v; >.

5. The initial Marking, Mo(3) is related to Mo(s) and the value of k in the following
way. For every g; € G;...g; € G;

mult((g;,...,9;), Mo(3)) + Z mult((g1,...,9n), Mo(s)) = k

47

where the sum is over the domains of the variables that have been replaced by stars
in the argunment of K.

For case B, for each place, s, inscribed by K(,...,*) = k, we remove the inscription and
replace it with a completely-projected complementary place, 3, (a PT place) and associated
arcs in the following manner.

1. Create a place, 3, with colour set C(3) = {s}.

2. Create an arc (3,1) for each arc (t,5), ¢ € T and an arc (t/,3) for each arc (s,t'),
teT.

3. Annotate each arc by the singleton < o >,

4. The initial Marking, Mo (3) is related to Mo(s) and the value of k in the following
way.

mult((s), Mo(3)) + S mult((gr, . ., ga), Mo(s)) = k

where the sum is over the domains of all the variables.

Case B corresponds to a resource limit and the notation K™ will be adopted for it (ie
K* = K(*,...,*)) as in Numerical Petri Nets [23]"

In this section the colour sets have been restricted to a single product set. No attempt is
made to generalise to unions of product sets as the complexity and infrequent usage do
not justify it.

48

Chapter 6

Manipulation of Markings

When modelling applications it is convenient to be able to manipulate markings atomically
(ie with the occurrence of a single mode of a transition). The purging of a queue [4] or
aborting a broadcast [3] are relevant examples.

The manipulation of the marking of a place can be achieved with P-nets by setting the
pre map equal to the inhibitor map and hence equal to the current marking when the
transition is enabled. The post map then allows thg desired manipulation of the marking
as it can be defined in terms of the pre map (ie the current marking).

The idea of removing a place marking (purging) on the single occurrence of a transition
has arisen in the context of PT-nets [20], where a class of nets known as self-modifying
nets was defined. The work of this section generalises this idea in the context of high-level
inhibitor nets, making it more expressive and suitable for complex applications.

The term reset will be used to connote the emptying of a place of all its tokens on the
single occurrence of a transition. A complete reset implies the resetting of all places on
the single occurrence of a transition.

Firstly we investigate P-nets with the complete reset property, the class of P-nets where
the pre map and inhibitor map are the same. This class of P-net turns out not to be
suitable for our purposes, but it is the simplest case conceptually and hence it is dealt
with first. Having dispensed with this curiosity, we consider P-nets with the reset property
where at least one place may be emptied by the single occurrence of a transition. The
term, purging a place, is introduced, to describe the resetting of a place irrespective of its
marking. A graphical representation of purging is given where a reset arc is defined as the
superposition of the inhibitor and normal arcs. It is inscribed by a variable typed by the
set of multisets over the colour set of the input place. The idea is generalised to purging
submultisets (subbags) of markings and further to considering partitions and subsets of
partitions of the input place’s colour set.

6.1 Completely resetting P-nets - a curiosity

Definition: A P-net with the property of completely resetting is a P-net with Pre = I
and Vir € TRAN S, pre(ir) # 0.

49

The possibility of having a transition connected to all places by zero-testing inhibitors is
excluded as it leads to either the transition always being dead of if enabled by the empty
marking then it is infinitely self-concurrently enabled. It appears that neither situation
is of practical value and the restriction leads to a simple statement for the following
proposition.

Proposition 6.1 A completely resetting P-net is an interleaving model in that no two
transttion modes can be concurrently enabled.

Proof: The proof is by contradiction. Assume that trl1,tr2 € TRANS are concurrently
enabled at a reachable marking M € [My>, then the following must hold from the defini-
tion of enabling

Pre/(tr1 + tr2)CMCI'(irl 4 tr2) (6.1)

From the definitions of Pre’ and I’

Pre'(tr14+1r2) = Pre(trl) + Pre(ir2) (6.2)
I'(trl+tr2) = I'(tr1)nI'(tr2)
= I(tr1)nI(tr2)
= Pre(trl) N Pre(tr2) (6.3)
Inserting equations 6.2 and 6.3 into 6.1
Pre(trl) + Pre(tr2)CM CPre(trl) N Pre(ir2) (6.4)

From the definition of multiset intersection (see Appendix A), this inequality can only be
satisfied if Pre(trl) = @ and Pre(tr2) = § which is forbidden by the above definition.
Hence two transitions cannot be concurrently enabled. &

Proposition 6.2 Fortr € TRANS enabled at a marking M, the transition rule is given
by
M' = Post(tr)

Proof: From Proposition 6.1, only one transition mode can occur at any instant (inter-
leaving) and the transition rule becomes for all tr € TRANS

M' = M — Pre(tr) + Post(tr) (6.5)

From the enabling condition and definition of compleiely resetting P-nets

Pre(tr)CMCI(tr)
= Pre(tr)CMCPre(tr)
’ = M = Pre(tr) (6.6)

and thus from equation 6.5, (Vir € TRANS)M' = Post(tr). O

Thus the follower marking is independent of the initial marking and it is this property
that gives rise to the term reset.

P-Graph

A, B: Non-empty sets
ACB

T:A, Zp A, Ym : uB
Mo(pl) = A, Mo(p2) = 0

A <r>+<zp> i1 <Y > B

1 <z>+<zpm> <¥Ym>
D

<zy;> <z>+<ym>

P-Net

S = {pl,p2}

T = {1}

C={A,B,Ax uA x uB}

C(pl)=A

C(p2)=B

C(tl)= Ax uA x uB
Pre(pl,tl)=m + m

I(pl,t1) = Pre(pl,tl)

Post(pl,t1) = m,

Pre(p2,t1) = 73

I(p2,t1) = Pre(p2,t1)

Post(p2,t1) = m

where 7,73, 73 are projection functions:
T :C(t1) > A

72 : C(t1) —» pd

73 : C(t1) — uB

the capacities of pl and p2 are infinite
Mo = {(pl,a)|a € 4}

Figure 6.1: Reset Net corresponding to Figure 5.3

51

p2

t S t

Y\/’%

Figure 6.2: Transitions t and ¢ cannot occur concurrently

Although it is possible to model applications with completely resetting P-nets, it is far too
unwieldy and often will not match with the intuition of the designer as every transition
affects every place. A simple example is given in figure 6.1. It models the situation in figure
5.3, where an item from a store is transferred to another store. With the net in figure 5.3,
as many items as exist in pl may be transferred as all the modes of t1 are concurrently
enabled. This is not the case in figure 6.1 as only one mode is enabled for any given
marking. The net is much more complex and rather convoluted and counter-intuitive. For
these reasons completely resetting P-nets will not be investigated further.

What we would like to do is to allow resetting only when it is necessary.

6.2 P-nets with the reset property

Instead of resetting the whole marking of a P-net, we now consider the resetting of the
marking of individual places. Consider the P-Graph of figure 6.2 where X and Y are
any legal arc insciptions. Transition ¢ has the reset property over place s. We assert that
transition ¢ cannot occur concurrently with any other transition mode, (including its own),
that has an enabling condition dependent on place s.

Proposition 6.3 For a P-net with transitions t,t' € T, and place s € S with Pre(s,t) =
I(s,t), a mode of t, m € C(t) where Pre(s,t;m) # 0 and a mode of t/, m’ € C(t') with
Pre(s,t';m') # 0, can not occur concurrently.

Proof: The proof is essentially the same as the proof of proposition 6.1. From the enabling
conditjon restricted to place s and the reset property, it follows that for any m € C (t) and
m’ € C(t')

Pre(s,t;m) + Pre(s,t'; m')CM(s)C Pre(s, t;m) N I(s,1'; m’)

A necessary condition for this inequality to be satisfied is Pre(s,t';m') = 0. Hence
transitions ¢ and ¢’ cannot occur concurrently when Pre(s,t;m') # §. O

An immediate specialisation of this proposition is:

Proposition 6.4 For a P-net with transiiont € T and place s € S such that Pre(s,t) =
I(s,t) and Ym € C(t), Pre(s,t;m) # @, the modes of t can never be concurrently enabled.

Proof: The proof follows from proposition 6.3 by setting t/ = ¢. O

The reset condition ensures that the only marking that can satisfy the precondition is
equality with the pre map. More precisely

52

Proposition 6.5 For a P-net with transitiont € T and place s € S such that Pre(s,t) =
I(s,t) and a mode, m € C(t), enabled at marking M(s), then Pre(s,t; m) = M(s).

Proof: The proof follows immediately from the reset property and the enabling condition.
For a mode m € C(t) enabled at 3 (s),

Pre(s,t;m)CM(s)CI(s,t;m)
= Pre(s,t;m)CM(s)C Pre(s,t;m)
=> M(s) = Pre(s,t;m) (6.7)

0O

Corollary 6.1 A consequence of proposition 6.5 is that if transition, t, occurs in mode
m, then the follower marking of place s is given by M'(s) = Post(s,t;m).

Proof: Follows immediately from the transition rule and equation 6.7. O

6.3 Purging

*
This section describes how to empty a place of its current marking. This will be referred
to as purging.
If we wish to purge a place s with a single occurrence of a mode of transition t, we need a
mode, m € C(2), for every marking of s, M(s) € pC(s). C(t) will in general be a product.
To guarantee a mode for each marking, let uC(s) be one of the sets in the product. We
also need the pre map, Pre(s,t), to select the current marking. From proposition 6.5
this can be done by using a reset: I(s,t) = Pre(s,t). Pre(s,t) and I(s,t) will then be
projection functions that select out a marking in uC(s) from C().
Let D, = uC(s) and C(t) = D, x D’ where D' is in general a product set dependent
upon the inscriptions of the other arcs connected to t. (If there is no requirement for a
product, then C(t) = D, or equivalently D’ contains a single nondescript element so that
the product D, x D’ is isomorphic to D,. We shall use the latter approach to include this
special case in the general presentation.)

A projection function is defined as

7y 1 C(t) — pC(s)
where 7,(d,,d") = d, withd, € D, and d’ € D'.
Then I(s,t) = Pre(s,t) = «,.

Corollary 6.1 ensures that whenever transition t occurs, place s will be emptied of its
current marking, so long as Post(s.t;m) = §.

The following propositions summarise the above discussion.

Proposition 6.6 Given a P-net witht € T, s € S, C(t) = uC(s) x D' and Pre(s,t) = =,
then 3m € C(t), such that Pre(s,t:m) = M(s) for any M(s) € puC(s).

33

Proof: Firstly M(s) € pC(s). From the definitions of C(t) and =, noting that =,
is surjective, Pre(s,t) ranges over uC(s). Hence we can always choose an appropriate
argument, m, of Pre(s,t) such that Pre(s,t;m) = M(s). O

The conditions under which this proposition holds ensure that a mode of transition t can
always be chosen so that the pre map Pre(s,t;m) is equal to the current marking.

Proposition 6.7 Given a P-net as in the previous proposition with Pre(s,t) = I(s,t)
and ¥m € C(1), Post(s,t;m) = @, then when t occurs, place s is purged, ie M'(s) = 0.

Proof: Follows immediately from corollary 6.1. O

6.3.1 Graphical Representation

In the P-Graph, pC(s) is a carrier of the many-sorted algebra, H, (ie H, = pC(s)) and
a variable that ranges over multisets over C(s) is included in the signature, for example
Y : pC(s). The arc (s,t) and inhibitor arc are annotated by a tuple consisting of this
variable: A(s,t) = IA(s,t) =Y. Any variable name could be chosen and the declaration
part would provide its type. However, a capital letter can be used to alert readers of the
graphical part that this variable is of higher order type.

To save space in the P-Graph, the normal and inhibitor arcs are superimposed and only
one inscription is used as A(s,t) = I A(s,t). This may be referred to as a reset arc.

6.3.2 Example: Purging a place

An example of a simple net where all tokens are removed from a Place, irrespective of its
marking, is shown in figure 6.3.

Transition t1 is always enabled in one of its modes but never concurrently with itself,
except when M(pl) = 0. When t1 occurs, pl is emptied (M’(pl) = 0). When M(pl) = 0,
tl is enabled by a mode in which I(tr) = Pre(tr) = §. An unusual phenomenon occurs
where the transition is infinitely self-concurrently enabled and its occurrence has no effect
on the current state. This possibility may be excluded by restricting the set of multisets
over A to be non-empty.

The situation is the same as in figure 6.3 with the following modifications. In the P-Graph
and in the P-net we replace uA4 by pA \ {#} so that Pre and I become injections. Hence
Pre(tr) # 0, Vir € TRANS. Thus t1 is not enabled when the marking is null, but is
enabled for all other markings.

6.4 Transferring a Marking

There are situations when we would like to be able to transfer the contents of one place
to another place [3]. This may be achieved by setting the post map for the receiving place
to the pre map for the place that is being purged.

Let s be the place that will be purged and s1 the one that will receive its contents. We
require that C(s) C C(s1).

P-Graph

P-Net

A: Non-empty set
Y :uAd

Mo(pl) =A

A t1

pl%

w

S = {p1}

T = {11}

C={A4,pA}

Clpl)= A

PLACE = {(pl,a) | a € A}

C(tl) = uA

TRANS = {(t11,m) | m € pA}

Pre and I are bijections: TRANS — uyPLACE
where for all m € pA, I(11,m) = Pre(tl,m) = (p1,m)
For all tr e TRANS, Post(tr) = §

Va€ A, K(pl,a) = o0

Mo = {(pl,a) | a € A}

Figure 6.3: Purging a place

55

As above we have I(s,t) = Pre(s,t) and we now set Post(sl,t) = Pre(s,t).

In the graphical form, we shall have a reset arc from s to ¢t annotated by Y as will be the
arc from ¢ to s1. (A(s,t) = TA(s,t) = A(t,s1)=Y.)

6.5 Purging subbags of Markings

Consider a transition, ¢, with an input place, s. Let G, be a subset of C(s), form the set
of multisets over G,, pG,, and include it as part of the product set comprising C(t) in a
similar way to section 6.3. Let D, = uG, and C(t) = D, X D’ as before and recalling the
projection function, the pre and inhibitor maps are

Pre(s,t) =,
I(s,t;m) = ms(m) + IN F(s,t)
where m € C(t) and INF(s,t) is an infinite multiset over C(s)\ G;, where
0 ifged,

oo otherwise

mult(g,INF(s,t)) = {

Thus the pre and inhibitor maps are completely determined by the subset G,.

We may now generalise the propositions in section 6.3.

Proposition 6.8 Given a P-net witht € T, s € §, C(t) = uG, x D' and Pre(s,t) = =,
then 3m € C(t), such that for any M(s) € uC(s), g € C(s)

mult(g, Pre(s,t;m)) = { gnult(g,bl(s)) :{tfefwi’e

Proof: Since the range of 7, and hence Pre(s,t) is uG, then for all m € C(t), and
g € G,, mult(g, Pre(s,t;m)) = 0. Now consider the subbag of M(s), SUB, where the
multiplicities of all elements not in G, are set to zero and the others are as they were in
M(s). Then SUB € uG,. Hence we may set m = (SUB,d’) and hence Pre(s,t;m) =
SUB. The proposition now follows immediately. O

Proposition 6.9 Given a P-net as in the previous proposition with for all m € C(t),
I(s,t;m) = m,(m) + INF(s,t) (as defined above) and Vm € C(t), Post(s,t;m) = 0, then
when t occurs, place s is purged of all tokens in G,, ie

N ifgeaq,
mult(g, M'(s)) = { mult(g, M(s)) otherwise

Proof: To prove this proposition we need the following lemma.
Lemma 6.1 Given a P-net witht € T, s € §, C(t) = uG, x D', Pre(s,t) = =, and for

all m € C(t), I(s,t;m) = m,(m) + INF(s,t) such that a mode m € C(t) is enabled at M,
then for g € C(s)

otherwise

mult(g, Pre(s, t; m)):{ (T)nult(g,M(s)) ifg € G,

56

Proof: From above, Vg € G,, mult(g, Pre(s,t;m)) = 0. From the enabling condition on
place s it follows that for g € G,

mult(g, Pre(s,t;m)) < mult(g, M(s)) < mult(g, I(s,t;m))
= mult(g, Pre(s,t;m)) < mult(g, M(s)) < mult(g, Pre(s,t;m))
=> mult(g, M(s)) = mult(g, Pre(s,t;m)) (6.8)

which proves the lemma. O

From the firing rule, this lemma, and that for all m € C(t), Post(s,t;m) = § ‘we have for
all m e C(t) _
M'(s) = M(s) — Pre(s,t;m) + Post(s,t;m)

= M'(s) = M(s) — Pre(s,t;m)

0 ifge G,

= mult(g, M'(s)) = { mult(g, M(s)) otherwise

which proves the proposition. O

The condition that for m € C(t) and ¢ ¢ G,, mult(g, I(s,t;m)) = oo implies that there is
no enabling requirement on tokens that are ot inthe subbag G,. Thus the enabling of ¢
only depends on places other than s.

6.5.1 Graphical Representation

Let uG, be a carrier of the many-sorted algebra and include a variable Z : uG, in the
signature. If we wish to purge place, s, of a subbag of M(s) by an occurrence of tran-
sition, t, then A(s,t) = IA(s,t) = Z. Note that we are using a convention that infinite
multiplicities for inhibitor arcs are not represented explicitly. (If all multiplicities for the
inhibitor map are infinite, then no inhibitor arc is drawn - it is just the natural extension
of this).

6.5.2 Notation for Subsets of Product Sets

Let G = G1 X ... x G, and represent an element of G by the tuple (g;, ...y gn), Where
gi € G| are constants for 7 € In where In = {1,...,n}.

We shall also use the notation (gy,...,gs) to represent the singleton set {(g1,--..,9n)}.
The notation * is introduced in position 7 to indicate a subset of G where all values of G;
are included. Thus (g1,-..,8i-1,*, gi+1,- .., 9n) represents the subset {g1} x...x {gi—1} X
GiX{gi+1} X...x{gn}. This may be generalised to allow a ‘+’ to replace any constant, g,
in the tuple where {gi} is then replaced by G to obtain the subset. If all the constants
are replaced by stars then the subset is the original set G.

In general, given a tuple consisting of constants and stars, let G,CG, and I.CIn be the
set of positions in which stars occur in the tuple. Then the subset of G corresponding to
the tuple notation is given by

Gs = {(gl’--"gn)lgi S Giai € I"}

37

For C(s) = Gy X...x Gp, it is convenient to use the above notation to indicate the subset
G,. We use the following annotation on the reset arc (s,t), to represent that a subbag of
M(s) is to be purged. For example

o A(s,t) = TA(s,t) = < #(91,.--,92) >. In this case, the subset of C(s) is the
singleton G, = {< g1,...,9n >}

i A(S,t) = IA(S,t) =< #(gly"-7gi—1=*7gi+17"'>gﬂ) > Here G: = {(glv"-7gﬂ) l
g: € Gi}.

The notation on the arc just represents a variable the type of which is the set of multisets
over G,. It allows the subset to be identified on the graph part of the P-Graph without
having to refer back to the declaration part.

6.6 Purging Partitions of Markings
Consider a partition of C(s)

C(s) = U{Gl, .oy, G¥}
andlet DI = puGiforj=1,...,k.
Define the colour set for transition, t, as follows.

c@)=(Jp)yx D
3

where D’ is as before.

Recalling the projection function (7, : C(t) — uC(s)) with C(t) = D, x D’ and D, =
U; D7, the pre and inhibitor maps are given by

e Pre(s,t) =,
e For all m € C(t), I(s,t;m) = w,(m) + INF(s,t;m)
where for m = (d,d'),d € D,,d' € D' and ¢’ € G? forall j = 1,2,...,k

0 ifdeD’

I . —
mult(g’, IN F(s,t;m)) = { oo otherwise

Similar propositions to those of the previous section may now be stated.

Proposition 6.10 Given ¢ P-net witht € T, s € 5, g € C(s), C(s) = U{G',...,G*},
D! = pG7 for j = 1,...,k, C(t) = (U; D?) x I’ and Pre(s,t) = x, then Im = (d,d') €
C(t), d” € D?, such that for any M(s) € pC(s),

mult(g, Pre(s,t; (dj,d’)) - { glult(!],M(s)) ift}gefuiae

58

Proof: Essentially the same as that for proposition 6.8. We have Pre(s,t; (&7,d") =
,.,(d d") = d’ where d° € pG’ and hence Vd?, Pre(s,t; (d7,d")) € pG’. Now if g ¢
G7 then g € pG’ and thus mult(g, Pre(s, t; (d7,d)) = 0. Further if g € G’, we may
always choose a multiset ¢’ € pG? such that mult(g,d’) = mult(g, M(s)) as they both
range over N. Hence we can always choose a mode m = = (d’,d") of t € T, such that
mult(g, Pre(s,t;(d?,d")) = mult(g, M(s)). O

We can now state that an occurrence of ¢ will purge a member of a partition of C(s).

Proposition 6.11 Given a P-net witht € T, s € S, g € C(s), C(s) = U{G,...,G*},
Di = uG7 forj=1,...,k, C(t) = (U; D!) x D', Pre(s,t) = 7, and I(s,t;m) = m,(m) +
INF(s,t;m) (as deﬁned above) and Vm € C(t), Post(s,t;m) = @, then when t occurs in
mode m = (d,d") € C(t), & € D, place s is purged of all tokens in G¥, ie

o ifge Gl
mult(g, M'(s)) —{ mult(g, M(s)) otherwise

Proof: Follows directly from proposition 6.9.0

6.6.1 Graphical Representation

x
Let D, = U; uG7 be a carrier of the many-sorted algebra and include a variable y : D, in
the signature. If we wish to purge place s of all elements of any member of a partition
of C(s) by an occurrence of transition t, then (s,t) € F and (s,t) € IF and A(s,t) =
TA(s,t) =<y>.

6.6.2 Notation for Partitions of Product Sets

For G as defined above (section 6.5.2), consider a tuple of typed variables (v1,...,vn) -
where Vi € In, v; : G;. This represents a partition of G in which each element of G is a
singleton set member of the partition. If Part(G) denotes a partition of G, then

Part(G) = {{(91,-..,9)} | g: € Gi,i € In}.

The * notation can now be used in the same way as in section 6.5.2 to allow sums over the
variables replaced by stars. For example, if v; is replaced by a star we obtain the notation
(V154 -3 Vim1, %, Vig1,. .., Un), and the resulting partition is

Part(G) = {{(g1,---,9n) | 9: € Gi},| g5 € Gj,j € In\ {i}}.

This may be extended to allow stars in any of the tuple positions.

Part(G) = {{(glv---7gﬂ) lgl €G,le I*}7|gj € Gj’j € In\I'}

with I, as defined in 6.5.2. If stars are placed in every position the partition is equal to
the original set.

For C(s) = G; X ... x G,, we may replace the variable y : D, annotating the reset arc
(s, 1), by the above tuple notation preceeded by a # to indicate the partition in the graph
part. Two examples are

59

o A(s,t) = [A(s,t) =< #(vy,...,vn) > The part in parenthesis is just notation
for identifying a partition as defined above. A generic member of the partition is

Gl = {(91, - -agn)}‘

o A(s,t) = TA(s,t) =< #(v1,...,Vim1, %, Vit1,. .., Un) > The part in parenthesis now
defines another partition determined by the notation defined above.

We may of course have a star in any of the positions of the tuple. (When there is no
partitioning of C(s), the corresponding notation is < #(*, *,...,*) > which is equivalent
to Y, where Y : uC(s).)

6.6.3 Example: Aborting a Broadcast

In concurrent systems design, situations often arise in which we wish to send information to
a list of destinations, for example broadcast protocols. Quite often there is a mechanism for
aborting, part-way through the broadcast. An elegant way of specifying this behaviour
is to have a list of possible destinations for each source and store them in a place. To
allow aborts to occur at any stage, the broadcast is done one destination at a time (the
destination being chosen arbitrarily from the list), with the destinations that have been
serviced being transferred one by one to another place (destinations serviced). When the
abort occurs from a particular source, all the destinations that have been serviced are
removed from the serviced list and reinstated on the original list. A P-net specification of
the management of the list is given in figure 6.4. ID1 and ID2 are identity functions.

6.6.4 Purging a Selected Partition

This section illustrates a notation for purging all elements of a member of a partition of
a place’s colour set, that occur in the place’s marking, where the member of the partition
is selected according to the marking of another place. This situation arises in aborting
broadcasts for example [3].

An example is shown in figure 6.5. The partition of AxB that is to be purged is determined
by the value of the variable x annotating the arc (p1,t1). y is a variable which ranges over
the sets of multisets over each of the partition members. Without the transition condition,
the colour set associated with t1 would be C(t1) = A X |J,ea #{(a,b) | b €B}. This would
correspond to any partition member being purged independently of the value of x. To
ensure that the partition selected does depend on the value of x, a transition condition is
used which restricts the colour set to

C(t1) = Uaea{a} x #{(a,b) | b €B}.

Although this representation does allow a direct translation from the P-Graph to the
P-net, according to section 5.4, it is rather complicated to understand. A more easily

understood graphical representation is shown in figure 6.6, where we have used the tuple
notation developed in the previous section.

For a€A, and x = a, we can read #(x,*) (associated with a reset arc) to mean: purge all
tokens in place p2 with the value ‘a’ in the first position of the pair, when t1 occurs. The
matching of the variable x in both arc inscriptions is used to imply that the transition
condition of figure 6.5 applies.

60

P-Graph

P-Net

Declarations

S: Finite set of source addresses

D: Finite set of destination addresses

Variables: s:5, d:D, #(s,%):U,es #{(s,d) | d €D}
VseS,vdeD, K(plisd)=1

VseS,vdeD, K(p2;s,d)=1

Mo(pl) =SxD

Mo(p2) =0

Graph

12
<#(s,*)> <#(s,*)>
SxD t1 ® SxD
pl 4> s.d> p2

§ = {p1,p2}
T = {t1,t2}

C = {SXD, Upes #{(s,) | d €D}}

C(pl) =C(p2) = SxD

C(t1) = SxD

C(t2) = Uses #(54) | d €D}

Pre(pl,tl) = Post(p2,t1) = ID1:SxD—SxD

Pre(p2,t2) = Post(pl,12) = ID2:C(2) — U,es #{(s,d) | d €D}
Vml € C(t1), Pre(p2,t1;ml) = Post(pl,il;ml) =0

Vm2 € C(t2), Pre(pl,t2;m2) = Post(p2,12;m2) =0

Ym2 € C(12),V(s,d)e SxD

I(p2,12; m2) =ID2(m2) + IN F(p2,12; m2) where

_ _J o ifm2ep{(s,d)|deD}
mult((s,d), IN F(p2,t2;m2)) = o otherwise
VYml € C(t1),V(s,d)€ SxD

mult((s,d), I(pl,t1;ml)) = o0

mult((s,d), [(p2,t1;ml)) = o0

Vm2 € C(12),V(s,d)€ SxD, mult((s,d), I(p1,t2;ml)) = oo

-The capacities and initial markings are given in the P-Graph.

Figure 6.4: Aborts: Address List Management

61

P-Graph

P-Net

Declarations

A: non-empty set

B: non-empty set

C = Usea{a} x u{(a,b) | b €B}
Variables: x:A, y:l,ea #{(a,b) | b €B}
Ya€A,VbeB, K(p2;a,b)=1

Mo(pl) CA

Mo(p2) = AxB

Graph
A _t1 AxB
pl @oo (z,g)F <y> O p2
§ = {p1,p2}
T = {tl} '
C = {A, AxB,U,ea{a} x p{(a,b) | b €B}}
C(pl) =A
C(p2) = AxB

C(t1) =U,eaf{a} x p{(a,b) | b €B}
Pre(pl,tl1) = my : Upea{a} x u{(2,b) | b €B} —A

Pre(p2,11) = 73 : Unea{a} x 4{(a,b) | b €B} — Uaea 1{(3,b) | b €B}

Vml € C(t1), Post(pl,tl;ml) = Post(p2,t1;ml) = @
Vml = (¢.d) € C(11),¥(a,b)e AxB
I(p2,t1;ml) = 72(ml) + IN F(p2,11;ml), where
, _J o ifdep{(a,b)|beB}
mult((a,b), IN F(p2,t1;(c,d))) = o otherwise
VYml € C(t1),Va€A, mult(a, I(pl,tl;ml)) = oo
Va€A, K(pl;a) = o0
Va€A,vVbeB, K(p2;a,b) =1
Initial markings are given in the P-Graph.

Figure 6.5: Selecting a member of a partition for purging

62

P-Graph

Declarations

A: non-empty set

B: non-empty set

Variables: x:A, #(x,*):{,es #{(2,b) | b €B}
Ya€A,VbeB, K(p2;2,b) =1

Mo(p1) CA

Mo(p2) =AXB

Graph

A tl AxB

2 G <x> —\<#(x,*)>O p2

Figure 6.6: A more readable representation for purging a selected member of a partition

6.7 Purging Subsets of Partitions of Markings

The above two sections may be generalised to allow for the purging of a subset of a

partition. Let
C(s) = | J{6",...,G*}

as before and I, be a set of indices that index members of the partition included in the
subset, so that I, C {1,2,...,k}. The set of occurrence modes for transition, ¢, is then
defined as
Ct)y=(J D) xD
Jel,
where D7 = uGY and the pre and inhibitor maps become

e Pre(s,t)=m,

e For all m € C(t), I(s,t;m) = m(m) + IN F(s,t;m)
where for m = (d,d’), d € Uj¢;, DideD and g’ € G forallje I,
0 ifde D’

oo otherwise

mult(g’, IN F(s,t;m)) = {
The propositions of section 6.6 apply when j € I,.

6.7.1 Graphical Representation

Let D, = Ujer, G’ be a carrier of the many-sorted algebra and include a variable y : D,
in the signature. If we wish to purge place s of all elements of any member of a subset of
a partition of C(s) by an occurrence of transition ¢, then (s,t) € F and (s,t) € IF and
A(s,t) = TA(s, t) =<y>.

63

6.7.2 Notation for Subsets of Partitions of Product Sets

We can combine the notation developed in sections 6.5.2 and 6.6.2 to obtain a tuple
notation consisting of constants, variables and stars to obtain subsets of partitions of
product sets. With G, g;, v; and i € I'n as previously defined we consider two situations.

The tuple (g1,...,9i—1, i Gi+1,.- -, gn) Tepresents a subset of the partition where all po-
sitions have variables. The subset is

{{{g1,---,9n)} 1 i € G:}.

We can generalise this for variables in any number of positions. Let I, C In be the set of
positions in which variables occur, then the subset is

{{(g1,-- 192} |1 € Gl € L}

When I, = In we have the notation described in section 6.6.2, where all positions of the
tuple are occupied by variables.

A complete notation is now obtained by allowing stars to occur in any position. Let
I. € In be the set of positions in which stars occur. The subset of partitions described
above (see section 6.6.2) when using stars and variables is

{{(91y---192) | gx € Gx,k € L.} | g1 € Gi,1 € I}

Of course, I, and I. must be disjoint.

For example, the tuple (g1,...,9i—1, % Gi+1,-- - Gk—1, *, Gk+1, - - -, §n) T€presents the fol-
lowing subset of a partition defined above (see section 6.6.2) with all variables in the tuple
except for a star at position k.

{{(g1,---,9n) | 9% € G&} | gi € Gi}

As before, when C(s) is a product set, we can use this notation, preceeded by a #, to
replace the variable y : D, annotating a reset arc (s,t) to indicate the subset of the
partition on the graph form. An example is

A(s,) = TA(s,t) =< #(3,b,%) >

where C(s) = N x Bool x Ng with b : Bool a Boolean variable and Ng = {0,1,...,7}.

64

Chapter 7

Communications Examples

7.1 Queues

Queues are important data structures in corhmunications. For example they are often
used when defining service specifications. We would therefore like to include a syntax for
the manipulation of queues.

A first observation is that the colour set will consist of strings, A*, over an alphabet, A.
We may have for a place, s, representing a queue or set of queues, that C(s) = A*, so
that a token represents a queue. We shall allow the queue to consist of structured items,
so that A may be the union of products of sets (eg A = (B x C)U DU (E x F x G)).

We shall denote the empty string by € and the set of strings over A of length no more
than n by A™.

7.1.1 Functions

We define two functions that will be generally useful for the specification of queuneing
systems.

Concatenation: A binary function on strings which appends one string to the tail of
another. _

AT X AT — AT
where if 2 = aja;...a; and y = byb,y... bk, then z.y = ajaz...a;b1b2... bk, with a; €
Aji=1...7b;€eA,i=1...kand z,y€ A~.

We use the convention that the first letter of the string is on the left and the last on the
right.

Word Length: A unary function returning the length of a string.
WL:A"— N

where for z = a,a,...a,, WL(z) = n. It will be convenient to use outfix notation |z| for
WL(z).

65

7.1.2 Predicates

We need predicates for string lengths. The standard binary predicates less than <, less
than or equal to <, equals =, not equals #, greater than > and greater than or equal to >
are useful. For example |z| < n, where z € A%,n € N, to restrict a queue size or |z| = n
to select strings of length n.

7.1.3 Examples

FIFO Queues

First-In-First-Out (FIFO) queues are important models for communications services and
protocols as they are a convenient way of representing sequence preservation. Let us firstly
consider an infinite (unbounded) FIFO queue.

A convenient representation is shown in the P-Graph of figure 7.1 along with its linear
form. Transition AF (Add to FIFO) adds items of type A to the queue, whereas SF' (Serve
FIFO) removes the head of the queue. The concatenation operator has been defined above
(section 7.1.1).

We now consider a bounded FIFO queue of length n as shown in figure 7.2. The addition
of items to the queue is restricted by the typing of ¢ to sequences of length less than n

(Jg| < m). Since |z| = 1, this ensures that the queue size never exceeds its bound, n. If
M(FIFO) = {s} and |s| = n, then AF is not enabled.

In an application, A may be the union of a number of product sets, which will allow items
to have their own structure. We may also index queues by setting C(FIFO) = J x A*
where J is a set of indices, which could also be a product set. A later example illustrates
these features.

The above representations have the problem that they require interleaving of enqueueing
and dequeueing, whereas these actions are inherently concurrent (unless the queue is full
or empty).

Where it is important that enqueueing and dequeueing are concurrent, the FIFO queue
can be represented as a circular buffer with pointers to the head and tail of the queue.
This representation is not as abstract and is at the level of an implementation. The costs
are in the complexity of the representation (you need to keep track of the values of the
pointers) and in the increase in the number of states. The situation is depicted in figure
7.3.

LIFO Queue

The Last-In-First-Out (LIFO) queue or stack is the same as the FIFO queue except that
items are added to the head (instead of the tail) of the queue. Thus the pre map for
adding is the same as the post map for serving and vice versa. A bounded LIFO queue is
shown in figure 7.4. Transition AL (Add-to-LIFO) adds items to the queue and transition
SL (Serve-LIFO) removes items from the queue.

With LIFO queues there is contention between adding items to the queue and removing
them. Thus it is important that these activities are in conflict, which is the case in figure

66

P-Graph

Declarations

A: Set of Queue Items
A*: Set of strings over A
e: Empty string

z:A,q: A*

‘.’ concatenation operator

Mo(FIFO) = {}

AF FIFQO SF
<qg> /-\ T <qg>
{)
<gz> _/ <zg>
A*
P-Net

S ={FIFO}
T = {AF,5F}
C = {A* A x A%}
C(FIFO) = A*

C(AF)=C(SF)= Ax A*

Vz € A,q € A*,Pre(FIFO,AF;(z,q)) = {q}
Vz € A,q€ A* Pre(FIFO,SF;(z,q)) = {z.q}
Vz € A,q € A*, Post(FIFO, AF;(z,q)) = {g.z}
Vr € A,q € A* Post(FIFO,SF;(z,q)) = {q}
Vge A*, K(FIFO;q) =

Mo(FIFO) = {¢}

Figure 7.1: Infinite FIFO Queue

P-Graph

Declarations

A: Set of Queue Items

A™: Set of strings, length < n
g: Empty string

z:A,q: AR-D=

.’ concatenation operator
My(FIFO) = {¢}

AF FIFO SF
<q¢> /7 N\ <g¢>
{)
<q.z > v <z.q>
Aﬂ‘
P-Net
5= {FIFO}
T = {AF,5F)}

C={A™, A x Al"-1)=}

C(FIFO) = A™

C(AF) = C(SF) = A x Aln-1)*

Vz € A,q € A1) Pre(FIFO,AF;(z,q)) = {q}
Vz € A,qge A1) Pre(FIFO,SF;(z,q)) = {z.q}
Vz € A,q € A1 Post(FIFO, AF;(z,q)) = {g.z}
Vz € A,g € AV Post(FIFO,SF;(z,q)) = {q}
Vs € A™ K(FIFO;s) = oo

Mo(FIFO) = {&}

Figure 7.2: Bounded FIFO Queue

68

Declarations

A: Set of Queue Items
N.={0,1,...,n-1},ne Nt

1:Ny,z: A
@ : N, x N, — N,, modulo n addition
My(FIFO)=19

Mo(PT) = My(PH) = {0}

PT PH
N, N,
<iPl>|{<i> <i®1l> <1>
| FIFO . 7
AF <i,z> () <iz> SF
N, x A
K*=n

Figure 7.3: Concurrent Bounded FIFO Queue

Declarations

A: Set of Queue Items

A™: Set of strings, length < =n
e: Empty string

z:4,q: Alr-1)=

‘.’ concatenation operator

Mo(FIFO) = {¢}

AL LIFO SL
<q> <g>
i
<z.g> <z.q>
A'n:-

Figure 7.4: Bounded LIFO Queue

69

7.4. We could build a model of the LIFO that did not involve sequences of items as
tokens, but single items as tokens. In this case we would need to have a pointer to the
head of the queue, with mutually exclusive access to it for adding and removing. This has
the disadvantage of having to store the value of the pointer and leads to a less abstract
description.

7.2 Demon Game

In this section a small example is presented that is being used as a test case for formal
methods being developed in ISO and CCITT with application to Open Systems Inter-
connection protocols and services. The example is called the Demon (Daemon) Game
[1].

The following provides a description of the demon game which is slightly more abstract
than the narrative description in [1] in that no assumption is made regarding commu-
nication. Thus there is no reference to the use of ‘signals’, as this is considered to be
prejudicing an implementation. It is believed that the spirit of the game is still the same!

7.2.1 Narrative Description

Assume that there is a demon which generates bumps. The aim of the game is to guess
when there has been an odd number of bumps generated. The demon informs a player of
the outcome of the guess: either win or lose corresponding to there being an odd or even
number of bumps respectively, at the time of the guess. The demon keeps a score which
is initially zero. It is incremented for a successful guess and decremented if unsuccessful.
A player can request his score at any time and the result will be returned by the demon.

The game can be played by several players. Before starting a game, a player must log-in.
A unique identifier is allocated to a player on logging-in and deallocated on logging-out.

7.2.2 MPrT-net Specification

The Demon Game can be specified using an MPrT-net without transition conditions. It
illustrates the use of simple many-sorted unary operators.

The game can be specified by 4 places and 5 transitions with their associated inscribed arcs
and is given in figure 7.5. The top two transitions and associated arcs and places specify
the behaviour of players logging-in and logging-out. The next two transitions specify how
to play the game (guessing and requesting the cumulative score) and the bottom transition
specifies the bumping of the demon.

The convention is used that if the annotation of the arcs associated with the same place
and transition are the same (A(s,t) = A(t,s)), then both the arcs and the annotations
are superimposed, producing a singly annotated arc with an arrowhead at both ends. As
an example, see f1 = (Scores,Request) and f2 = (Request,Scores) in figure 7.5.

Information about players is represented as a ternary relation comprising: an identifier;
the outcome of a guess (including initially the null outcome denoting that no guess has yvet
been made); and a score. This state information is stored as the marking of place Players.

70

Declarations

Set of Player Identifiers:I

Set of Game States:G = {win,lose,null}
State of Bumps:B = {even,odd}

Set of Integers:Z

Variables b:B;i:L;g:G;s,r:Z

Functions

Complement:B—B where

&ven =odd and odd = even
Score S:B— {—1,1} where

S(even) = —1 and S(odd) = 1
Outcome O:B—G where

O(even) = lose and O(odd) = win
Mo(IDs) =1

Mo(Scores) = 0

Mo(Players) = @

My(Bumps) = even

Graph
3
Login
<i>
<i,0> I C) IDs <i,null,0>
IxZ <I>! Logout IxGxZ
Scores <1,82> <Lgr> Players
i,8> <i,g,r>
Request
<1,g,8>
<i,s+S(b)> ' <i,0(b),r>
<i,s> <i,g,r>
Guess
- _/

B Bump-state
||
Bump

Figure 7.5: MPrT-Net of Demon Game

Unused identifiers are stored in place IDs; players’ scores in Scores; and the state of the
demon’s bumps in Bump-state.

Initially, there are no players (place Players is empty); no scores (place Scores is empty);
all identifiers are available (place IDs is marked with the complete set of identifiers 7): and
the demon has not begun to bump. As far as the game is concerned it is only important
to model the state of the bumps as even or odd, there is no need to count the actual
number of bumps. Thus initially there are an even (zero) number of bumps (place Bumps
is marked with the token even).

On logging-in (transition Login), a plaver’s state and score is initialised, and his identifier
is removed from the unused identifier list. He may now make a guess (transition Guess)
whereupon his score is updated and he is informed of the outcome. He may also request his
score (transition Request) or logout (transition Logout) with his identifier being returned
to the unused list and all information about him being destroyed. The demon bumps
whenever it wishes.

7.2.3 Discussion of Concurrency, Conflict and Interleaving

The bumping is arbitrarily interleaved with players making guesses (a conflict). Similarly,
after logging-in, a player may (non-deterministically) make a guess; request his score; or
logout (another conflict). This interleaving behaviour is an essential part of the design.
For example, it makes no sense to be able to logout and request the score simultaneously.
In analogy with the Readers/Writers problem it also makes no sense to guess and bump
at the same time or to guess and request the score simultaneously. These situations are
naturally in conflict and require interleaving of these events.

On the other hand, for a particular player, the events of requesting a score or logging in
or out are completely independent of the demon bumping. Hence transitions Login and
Bump; Logout and Bump; and Request and Bump are concurrent.

We would also expect that all players would act independently of one another and this
is mostly the case. Any number of players may login, logout or request their scores
concurrently but are limited to interleaving when making guesses. Here we have made the
assumption that ‘read access’ to the bump-state is exclusive. This is not essentlal and it
is valuable to delay such decisions to the implementation phase.

This limitation may be overcome by making copies of the Bump-state, and removing all
the old ones when the demon bumps (transition Bump). Let us assume that there can
be n simultaneous accesses to the bump-state, where n € N1, then setting A(Bump-
state, Bump) = n < b > and A(Bump, Bump-state) = n < b > achieves the desired
specification. Bump and Guess are still in conflict, but Guess may occur concurrently
with itself limited by n and the number of players logged-on.

These more subtle parts of the design would be completely glossed over with a technique
based on interleaving semantics. With an interleaving model, the implementer could be
unaware of which parts of the specification were intentionally in conflict and which could
be concurrent. Also, the need to specify the number of simultaneous accesses to a resource
could be completely overlooked.

Chapter 8

Discussion of Future Work

This report embodies a set of investigations concerning how the expressive power of CP-
nets may be extended while maintaining mappings back to CP-nets to allow for the analysis
of P-nets using techniques applicable to CP-nets. These investigations are by no means
complete and this section sets out some of the issues still needing further work. The future
work on the P-Graph and extended capacity notation has been particularly stimulated by

the comments of Jensen [12].
“«

8.1 P-Graph

8.1.1 Tupling

In the P-Graph definition we have included explicit tupling in the signature, in a similar
way to PrT-nets [8]. This has the advantage that only relatively simple sorts need be
included in the signature. It has the disadvantage that it makes for a more complex
definition. If complex sorts (eg those corresponding to products sets in the algebra) are
allowed in the signature, then tupling can always be done with identity operators in the
signature. Places may now be typed by a single sort and the relationship between sorts and
colour sets becomes more transparent as places may now be R-sorted with the associated
carrier (in the algebra) being the corresponding colour set. This is a more elegant approach
and it is pursued further in the next section.

The use of angular brackets for enclosing tuples has also followed the practice of PrT
nets. Its use is to distinguish between scalars and values (for example we would like to
distinguish 2 < 1 > from 21). The use of angular brackets can be criticised in that often
3 characters are used when only ore would suffice (eg < ¢ > instead of z). A notation
which allows scalars and values to be distinguished when required would be preferable.
The optional use of brackets would be one example (ie z, 2z, and 2(1) would be valid
syntax).

8.1.2 Abstract P-Graphs

The P-Graph defined previously included concrete colour sets, markings and capacities.
This is often the level at which telecommunication and other systems are specified. How-

73

ever it is very useful to have a more abstract specification that allows classes of systems
to be specified. For example the range of sequence numbers or window sizes in protocols
may be left open. The hope is that it will be possible to prove properties about systems
for a whole range of parameter values by just considering the more abstract specification.

This is the approach adopted by Vautherin [22] where he defines a Petri net-like schema,
T-schema, and provides an interpretation for it with a class of CP-nets. Vautherin does
not include capacity or inhibitor functions, only allows equations to be associated with
transitions and does not explicitly type variables in the signature. The following defines
a schema addressing these points. The term Abstract P-Graph is used for the schema as
suggested in [12].

Definition

A Abstract P-Graph or P-Graph Schema is a structure
APG = (IN,%,7,AN,K, M)

where

e IN =(S,T; F,IF) is an inhibitor net, with
— § a finite set of places;
—~ T a finite set of transitions disjoint from 5;

-~ FC(SxT)U(T x §S) a set of arcs; and
— IF C S xT aset of inhibitor arcs.

e ¥ =(R,Q,V)is a Natural-Boolean signature with variables.
e 7:5 — Ris afunction that types places. (Places are R-sorted.)
o AN = (A,IA,TC) is a triple of net annotations.

— A: F - BTERM(QUYV) such that for s € S, (z,y) € F, A(s,y),A(z,s) €
BTERM(QU V)T(,). Arcs are annotated with a multiset of terms which have
the same type as the associated place. ‘

— JA : IF - Bo,TERM(QUYV) such that for every (s,t) € IF, IA(s,t) €
BoTERM(QUV),,y. Inhibitor arcs are annotated with a multiset of terms
which have the same type as the associated place.

-TC:T — TERM(QUV)g,, where for all t € T, TC(t) € TERM(QU
V(t))Boot and V(t) is the set of variables occurring in the arc inscriptions as-

sociated with t. TC is a function which annotates transitions with Boolean
expressions.

e K: 85 — pTERM(Q) where Vs € S, K(s) € uL, TERM(Q),(,) is the capacity
function associating a multiset of closed terms with each place.

e Mo:S — puTERM(Q) such that Vs € S, My(s) C K(s), is the initial marking at a

syntactic level which respects the capacity.

BTERM(QUYV) and B TERM(QUYV) are multisets of terms generated in the same
way that multisets of tuples were generated in section 5.2.6.

74

Interpretation as a P-net

For a many-sorted algebra, H, satisfving the R-sorted signature, the interpretation of the
abstract P-Graph as a P-net is given in section 5.4, with the following exceptions.

1. Colour Sets. For each place s € S, C(s) = H,(;). C(t) is the same as in section 5.4
and C = {C(z) |z € SUT}.

2. Capacity Function. For all s € S, K(s) = Valg(K(s)).
3. Initial Marking. For all s € S, Mo(s) = Valg(Mo(s)).

8.2 Extended Capacity Notation

When extending the capacity notation care was taken to give an interpretation in terms
of another P-Graph. This meant that the basic P-net definition of the enabling condition
was retained.

A different and more general approach has been suggested by Jensen [12], where another
capacity colour set is associated with each place. Hence we need a capacity colour function.
If Ck(s) is the capacity colour set associated with place s € S, then we form the set
CAP = {(s,c) | ¢ € Ck(s),s € S} and define the capacity to be K € pL,CAP. We
introduce a new function k : puPLACE — pCAP and replace the capacity enabling
condition by

k(M + Post'(T,))CK

The usefulness of this generalisation and its effect on transformations back to CP-nets are
yet to be studied.

8.3 P-net to CP-net Transformations

The transformations presented in this report preserve the interleaving behaviour of the
P-net. Further work is envisaged in two directions. Firstly the restrictions imposed on the
pre and inhibitor maps to ensure that the truly concurrent behaviour is preserved, need to
be investigated. It is currently considered that this will be the case for many applications,
particularly where inhibitors are used for purging. Secondly, other transformations using
partial complementary places need to be studied. This is indicated by the MPrT net of
safe train operation. Place p2 and associated arcs could be removed and replaced by an
appropriately inscribed inhibitor arc from place pl to t1, indicating that there were no
trains on sections i @ 1 and 7 & 2. The properties preserved by these transformations also
need to be investigated.

8.4 Analysis

No attempt has been made in this report to present a set of analysis methods for P-
nets. However, due to the possibilities of transforming from P-nets back to CP-nets,
the analysis methods developed for CP-nets will be able to be applied. These analysis

75

techniques include reachability, invariants and reductions [6], model checking and also
analysis via the skeleton PT-net as discussed in [22]. It may also be the case that some of
these techniques may be able to be applied directly on the P-net.

8.5 Applications

A number of examples have been included in this report for illustrative purposes, but they
have all been rather small. The aim of the work is that P-nets will be able to be applied
to large industrial applications and particularly within the telecommunication and infor-
mation services sector. This will require ways of structuring and refining specifications.
The development of hierarchical CP-nets [12] shows promise here. This area has not been
addressed in this report and it will require a large amount of effort in the future.

76

Acknowledgements

I gratefully acknowledge the valuable discussions with my supervisor, Dr Glynn Winskel,
during the course of this work. In particular he suggested the use of many-sorted algebras
for P-Graphs, provided considerable help in formalising proofs and has made numerous
comments on earlier drafts which have considerably improved the report. I am also very
grateful for the detailed comments and suggestions of Dr Kurt Jensen on an earlier version
of this report. The comments of Dr Wolfgang Reisig and my colleague Geoff Wheeler have
also been taken into account.

The permission of the Director Research, Telecom Australia, to publish this report is
hereby acknowledged.

*

7

References

[1] ISO/TC 97/SC 21/WGL1. Revised guidelines for the application of formal description
techniques to OSI. ISO/TC 97/5C 21 N1534, September 1986. Output of joint
WG1/FDT-A and CCITT WP X/3.

[2] E. Best and C. Fernandez. Notations and Terminology on Petri Net Theory. Ar-
beitspapiere 195, GMD, January 1986.

[3] Jonathan Billington. A High-Level Petri Net Specification of the Cambridge Fast
Ring M-Access Service. Technical Report 121, University of Cambridge Computer
Laboratory, New Museums Site, Pembroke Street, Cambridge, England, December
1987. ~

[4] Jonathan Billington. Specification of the Transport Service using Numerical Petri
Nets. In C. Sunshine, editor, Protocol Specification, Testing and Verification,
pages 77-100, North Holland, Amsterdam, 1982.

(5] Jonathan Billington, Geoffrey Wheeler, and Michael Wilbur-Ham. PROTEAN: a
high-level Petri net tool for the specification and verification of communication pro-
tocols. IEEFE Transactions on Software Engineering, Special Issue on Tools for Com-
puter Communication Systems, SE-14(3):301-316, March 1988.

[6] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central Models and
Their Properties. Volume 254 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1987. Advances in Petri Nets 1986, Part 1: Proceedings of an Advanced
Course, Bad Honnef, September, 1986.

[7] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, Berlin, 1985.

(8] Hartmann J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and their Properties. Advances in
Petri Nets 1986, Part 1: Proceedings of an Advanced Course, Bad Honnef, September
1986, pages 207 — 247, Springer-Verlag, Berlin, February 1987. Lecture Notes in
Computer Science, Volume 254. '

[9] Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level Petri
nets. Theoretical Computer Science, 13:109-136, 1981.

[10] Kurt Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties. Advances in Petri Nets

78

1986, Part 1: Proceedings of an Advanced Course, Bad Honnef, September 1986,
pages 248 — 299, Springer-Verlag, Berlin, February 1987. Lecture Notes in Computer
Science, Vol. 254.

[11] Kurt Jensen. Coloured Petri Nets and the invariant-method. Theoretical Computer
Science, 14:317-336, 1981.

[12] Kurt Jensen. Private communication. July 1988.

[13] J. Loeckx. Algorithmic specifications: a constructive specification method for ab-

stract data types. ACM Transactions on Programming Languages and Systems,
9(4):646 — 685, October 1987.

(14] G. Memmi. Analysing nets by the invariant method. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties, pages 300 —
336, Springer-Verlag, Berlin, 1987. Lecture Notes in Computer Science, Vol. 254.

[15] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,
Englewood Cliffs, N.J., 1981.

[16] W. Reisig and J. Vautherin. An algebraic approach to high level Petri nets. In
Proceedings of the Eighth European Workshop on Application and Theory of Petri
Nets, pages 51-72, Zaragoza, Spain, 24-26 June 1987.

[17] Wolfgang Reisig. Petri Nets, An Introduction. Volume 4 of EATCS Monographs on
Theoretical Computer Science, Springer-Verlag, Berlin, 1985.

(18] F. J. W. Symons. Modelling and Analysis of Communication Protocols using Nu-
merical Petri Nets. PhD thesis, University of Essex, 1978. Dept. of Elec. Eng. Sci.
Telecommunication Systems Group Report No. 152, May 1978.

[19] F.J.W. Symons. Introduction to Numerical Petri Nets, a general graphical model of
concurrent processing systems. Australian Telecommunication Research, 14(1), 1980.

[20] R. Valk. Self-modifying nets, a natural extension of Petri nets. In Automatae, Lan-
guages and Programming, Udine (Lecture Notes in Computer Science 62), pages 464~
476, Springer-Verlag, 1978. '

(21] J. Vautherin. Calculation of semi-flows for Pr/T-systems. In M.K. Molloy and M.K.
Vernon, editors, Proceedings of the International Workshop on Petri Nets and Per-
formance Models, pages 174 — 183, IEEE Computer Society Press, Washington D.C.,
August 1987.

[22] J. Vautherin. Parallel systems specifications with Coloured Petri Nets and algebraic
specifications. In G. Rozenberg, editor, Advances in Petri Nets 1987, pages 293 —

308, Springer-Verlag, Berlin, April 1987. Lecture Notes in Computer Science, Vol.
266.

[23] G. R. Wheeler. Numerical Petri Nets - A Definition. Research Laboratories Re-
port 7780, Telecom Awustralia, May 1985.

[24] Glynn Winskel. Petri nets, algebras, morphisms, and compositionality. Information
and Computation, 72(3):197 — 238, March 1987. Earlier version published in Univer-
sity of Cambridge Computer Laboratory Technical Report 79, September 1985.

79

Appendix A

Sets, Multisets and Vectors

A.1 Sets

We shall make use of the following sets:

¢ N =4{0,1,...} the natural numbers.
Neo = N U {0} ' «

N+t = N\ {0}, the positive integers
Nt =Nt U {}

e Z=4{...,-1,0,1,.. .}, the integers

A.2 Multisets

We define a multiset, B, (also known as a bag) over a basis set, A, to be the function
B:A-—N

which associates a multiplicity, possibly zero, with each of the basis elements. The set
of multisets over A is denoted by uA (ie uA = [A — NJ]). For a multiset B € pA, to
avoid confusion, we sometimes use the notation mult(a, B) = B(a) where a € A, for the
multiplicity of a in B.

We may extend the definition to include the value oc, and denote the set of multisets over
A, that allows infinite multiplicities, by gooA = [A — N] and that which disallows
multiplicities of zero by ut A = [A — NZX].

A.2.1 Vector or Sum representation

We may represent a multiset as a symbolic sum of basis elements scaled by their multi-

plicity.
B= Z B(a)a
acA

80

A.2.2 Membership

Given a multiset, B € pA, we say that @ € A is a member of B, denoted a € B, if
B(a) > 0. and conversely if B(a) = 0, then a € B.

The empty multiset, @, has no members: Ya € 4, §(a) = 0.

A.2.3 Cardinality

We define multiset cardinality in the following way. The cardinality |B| of a multiset B,
is the sum of the multiplicities of each of the members of the multiset.

|B| = 3_ B(a)

a€EA

A.2.4 Equality and Inclusion

Two multisets, B1, B2 € pA, are equal, Bl = B2, iff Va € A, Bl(a) = B2(a), and Bl is
contained in B2, Bl C B2 iffVa € A, Bl(a) < B2(a).

A.2.5 Operations

We define the following four ‘set-like’ operations on multisets B1, B2 € uA. Foralla € A
we have:

Union B =Bl1UB2 iff B(a)= maz(Bl(a), B2(a))

Intersection B = F1NB2 iff B(a)= min(Bl(a), B2(a))

Addition B =Bl1+B2 iff B(a)= Bl(a)+ B2(a)

Subtraction B = FBl1-B2 iff B(a)= Bl(a)- B2(a) whea Bl(a) > B2(a)
We also define scalar multiplication of a multiset, B1 € uA, by a natural number, n € N,
to be

B = nB1 iff Va € A, B(a) = n x Bl(a)

A.3 Vectors

There are times when we wish to subtract one multiset from another when the above
restriction on multiset subtraction does not apply. We then need to consider multisets as
vectors. We define a vector, V, over a (basis) set, A, to be the function

V:iA— Z

which associates a negative, zero or positive multiplicity, with each of the basis elements.
The set of vectors over 4 is denoted by vA (ie vA = [A — Z]). For a vector, V € vA, to
avoid confusion, we sometimes use the notation mult(a,V) = V(a) where a € A, for the
multiplicity of ¢ in V.
Subtraction is a closed operation for vectors defined component-wise as follows. For
V1,V2€vA

T=V1-V2iff Ya€ A, V(a)=V1(a)~ V2(a)

81

We can also define scalar multiplication of a vector, V1 € v4, by an integer, z € Z, to be

V=2V1iff Va€ A,V(a) =z x V1(a)

A.3.1 Equality and Inclusion

Two vectors, V1,V2 € vA, are equal, V1 = V2, iff Va € 4, V1(a) = V2(a), and V1 is
less than V2, V1 C V2, iffVa € 4, V1(a) < V2(a).

Appendix B

Some comments on Numerical
Petri Nets

B.1 Background

Numerical Petri Nets (NPNs) were developed for the modelling and analysis of protocols
with the original ideas coming from Symons [18,1%]. NPNs evolved over several years,
culminating in a definition by Wheeler [23].

It is instructive to compare P-nets with NPNs in the same algebraic framework. Firstly
we note the major differences with the main stream of Net Theory.

B.2 Main NPN Distinguishing Features

What makes NPNs different from other high-level nets? The main differences concern the
enabling condition and transition rule.

B.2.1 Enabling Condition

Numerical Petri Nets generalise the enabling condition of Petri Nets to allow for a set of
binary predicates on the marking of a place. General logical formulae are then built up
with the negation operator and usual logical connectives.

B.2.2 Transition Rule

The transition rule is in general not dependent on the enabling condition. The multiset of
tokens to be removed from the input places when a transition occurs is defined separately.
In the framework of CP-nets, this corresponds to the function I..(s,t) with the difference
that this function need not be part of the enabling condition.

83

B.3 Definition

We can define NPNs in the same framework that we have used for the definition of P-nets.
A Numerical Petri Net is a structure NPN = (N, Pre2), where N is a P-net, except that
the capacity function is restricted as already discussed (see section 5.8). The function
Pre2 is like Pre

Pre2 :TRANS — uPLACE

It defines a multiset over which a logical formula is built for the precondition. The I
mapping is also used as a threshold in NPNs for the ‘between X and Y’ notation, where

the image of I defines the multiset for ‘Y’. These two maps define the ‘Input Condition’
of NPNs.

The images of the Pre and Post mappings define the ‘Destroyed Tokens’ and ‘Created
Tokens’ of NPNs respectively.

The ‘Transition Condition’ is taken into account by the colour function. It just provides
a restriction on C(t) in a similar way to that described in section 5.4.

Numerical Petri Nets have a set of variables that can be associated with particular tran-
sitions, known as ‘p-variables’. The value of a p-variable may be changed by a ‘Transition
Operation’. These variables are taken into account in the above definition. Each p-variable
of type W can be represented as a token in a place of colour W, where the token is the
current value of the variable. Any transition operations on the p-variable can be simulated
by the Pre and Post mappings.

A semantics for the ‘oldest notation’ of NPNs is provided in the section on queues (section
7.1) for P-nets.

B.4 Enabling Condition

The multiset returned by Pre2 is used with a set of binary predicates involving the marking
M € uPLACE. Let PRED be a set of binary predicate symbols, tr € TRANS, p €
PLACE and ¢ € PRED, then Q(Pre2(ir;p), M(p)) is an atomic predicate.

Consider a partition of PLACE: PART(PLACE) ={P;:1< i< n}.

Logical formulae are built inductively as follows:

o for1<:1<n,Q € PRED, (Vp; € P,)Q(Pre2(tr; p;), M(p;)) is a formula
e If/; and I3 are formulae, then

1. =l
2. Lhivl
3. L

are formulae. (The connectives —, «— could be derived in the usual way, although
these are not specifically included in NPNs as defined in [23].)

Let L, be the set of logical formulae so constructed with the restriction that a formula
must be effectively quantified over p € PLACE. That is, there must be exactly one

84

occurrence of a formula of the form (Vp; € P;)Q(Pre2(tr;p;), M(p);) for every member of
the partition of PLACE as part of a formula in L,,.

In NPNs three binary predicate symbols (<, =,>) are defined. When the predicates are
uniformly applied across the net, they can be replaced by predicates defined on multisets.
These are inclusion (the usual predicate of nets), equality and superbag (Pre2(tr) C M,
Pre2(tr) = M and Pre2(tr) D M).

A transition, tr € TRANS is enabled at 2 marking M, iff

Lir A(M C K - Post(tr)) A M C I(tr)

B.5 Transition Rule

Numerical Petri Nets are only defined with interleaving semantics, so we only need to
consider the occurrence of one transition at a time. As usual if several transitions are
enabled at the same time, one is chosen to occur arbitrarily.

If a transition tr is enabled at M, then it may occur resulting in a new marking M’ given
by
M' = (M - Pre(tr)) + Post(tr)
x

where ‘4’ is multiset addition, but ‘—’is an extension of multiset subtraction that is closed,
defined as follows. If B, B1, B2 are multisets over A and B’ = B1N B2, then Va € A

B = Bl — B2 = B(a) = Bl(e) — B'(a)

This transition rule is similar to the one for CP-nets, but it takes into account the fact that
one cannot remove tokens from a place if they dont exist. This only happens because the
enabling condition and transition rule have been divorced in NPNs. This feature provides
difficulties in translating NPNs to P-nets in a straightforward way (see discussion below).

B.6 Discussion

The above formulation is slightly more general than that described in (23], where a specific
syntax and semantics has been given for the ‘Input Conditions’. However, it is believed
that the above formulation does capture the spirit of NPNs.

NPNs gain expressive power by supporting a more complex enabling condition but with
the following penalties:

¢ A more complex structure with only interleaving;

¢ A reliance on reachability analysis as there is no clear mapping back to other forms
of nets which have richer analysis possibilities.

The main question to ask is whether the extra expressive power is worth the penalties.
My experience to date suggests that mostly it is not worth it. Most of the functionality
of protocols and services can be expressed quite easily with P-nets. The advantage with
P-nets is that the structure is less complex (and hence easier to learn) and that there are -

85

well defined mappings back to CP-nets under weak assumptions. It is also clear when the
inhibitor extension is required whereas with NPNs it may not be so clear.

Since both P-nets and NPNs have the modelling power of Turing Machines, it is always
possible to simulate an NPN with a P-net. In most cases translation of an NPN to a P-net
will be straightforward. It is conjectured that the Pre2 and I maps of an NPN can be
translated into the Pre and I maps of a P-net and the Pre and Post maps of an NPN
can be can be simulated by the Pre and Post maps of a P-net. For example, if Pre2 just
involves inclusion, then it translates to Pre in the P-net. If Pre2 involves equality, then
it translates to Pre= I = Pre2. If Pre2 involves superbag, then it translates to I. I in
the NPN will translate to [in the P-net.

In most cases, Post — Pre in the NPN will equal Post — Pre in the P-net where subtraction
is vector subtraction, with the restriction that for any tr € TRANS, [Post(tr;p)]p—net >
0. When dp € PLACE such that

[Post(tr; p)lnpn — [Pre(tr; p)inpN + [Pre(tr; p)]Ponet < 0

the translation is not straightforward and a single mode of an NPN transition would have
to be mapped onto several modes of a P-net transition.

It is not the intent of this appendix to provide a detailed translation as this would be a
major task and there is little justification for it. This is because alot of the more unusual
NPN constructs have very rarely been used in applications and that it is no longer intended
that NPNs be used as a specification technique for distributed systems. The intent has
been to show that NPNs can be cast into the same framework as P-nets and that most of
the time a translation from NPNs to P-nets will be relatively straightforward.

