Technical Report A e

Number 146

Computer Laboratory

Automating recursive type
definitions in higher order logic

Thomas F. Melham

September 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1988 Thomas F. Melham

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

| 1 ‘.Septemb.er 8, ‘14988 |
“Automatmg Recurswe Type Deﬁnltlons
1n ngher Order Loglc |
' Thomas F. Melham

~ University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street
- Cambridge, CB2 3QG, England.

Abstract: The ‘expressive p.oWer of .higbe’r. ordér'lbgic makes it possible to
define a wide variety of types within the logic and to prove theorems that state

- the properties of these types concisely and abstractly. This paper contains a

~ tutorial introduction to the logical basis for such type definitions. Examples
~ are given of the formal definitions in Iogchof several simple types. A method
" is then described for systematically defining any instance of a certain class of
- commonly-used recursive types. The automation of this method in HOL, an
interactive system for generating proofs in higber order logic, is also disczissed .

: 1To appear in Current Trends in Hardware Verzﬁcatzon and Automated Theorem

B Proving, proceedings of the 1988 Banff Workshop on Hardware Verification, edited

by G. Birtwistle and P. Subrahmanyam (Springer- Verlag, 1988).

Revised January 28, 1989

/:Ci)ntents

~ Introduction
1 Introduction to ngher Order Loglc . o o
1.1 ‘Notation P
- 12 Typesin ngher Order Logic e e e
~ 121 The Syntax onypes R SRR |
.‘1.3 Hllbert S &- operator . '; e e e e e e e e |
The HOL Theorem Provmg System I
3 Deﬁnmg New Loglcal Types ' S o
3.1 Outline of the Method for Deﬁnmg a NeW Type e
3.2 Type Definition Axioms e
3.3 Deﬁnlng Representatlon and Abstractlon Functlons
Three Slmple Type Deﬁmtlons o :
4.1 The Type Constant ome |
- 4.1.1 The Representation |
© 4.1.2 The Type Definition ‘
" 4.1.3 Deriving the Axiomatization of one.
.~ 414 A Theorem about one P =
- 4.2 The Type Operator prod
4.2.1 The Representation S
 4.2.2 The Type Definition
4.2.3 Deriving the Ax1omatlzat10n of prod :
. 424 Theorems about prod, C e e U e
- 4.3 The Type Operator sum R
" 431 The Representation
_ :4.3.2 The Type Definition e e e
433 - Deriving the Ax10mat1zat10n of sum ... L. L .

' 434 Theorems about SUM . .

: Two Recurswe Types Numbers and Llsts o

5.1 The Natural Numbers e ,
- 5.1.1 The Representatlon and Type Deﬂmtlon
~5.1.2 Deriving the Axiomatization of num ..o

5.1, 3 The Pr1m1t1ve Recursmn Theorem‘ S

U 52 lete-length Lists L .v . .

" Index L

62

- 5.2.1 The Representation and Type Definition31
5.2.2 Deriving the Axiomatization of (a)list 32
‘5 2. 3 Theorems about (a)lzst “ee e e 34
.6 ‘»'Two Recurswe Types of Trees S T AN .- 34“‘
o '61 The Type of Trees: iree . e, 35
o | "_6 1.1 The Representatlon and Type Definition ‘." . |
, 6.1.2 The Axiomatization oftree e
. .6.1.3 An Outhne of the Proof of the Amom for tree IR
6.2 The Type of Labelled Trees: (@)Tree. 41
R 6.2.1 - The Representatlon and Type Definition41

7 6 2.2 Denvmg the. Amomatlzatlon of (a)Tree BRI | 3

-7 'Automatmg Recurswe Type Deﬁnltlons45
: 7 1 Informal Type Specifications
- 7.1.1 Some Examples of Type Specifications 48
72 Formula,tmg Abstract Axioms for Recursive Types 49
7.3 Constructing Representations for Recursive Types Bl
. 7.3.1 An Example: the Representatlon of Binary Trees ... 0Bl
7.3.2 Defining the Subset Predicate for btree 52
- 7.3.3 Finding Representations in General
74 Der1v1ng Abstract Axioms for Recursive Types b6
7.4.1 Example Derlvmg the Axmm for btree e L
8 Concludmg Remarks 61
o Acknowledgements 62
| ",'References ‘

Introduction

Recursive structures such as lists and trees, are widely used by computer
scientists in formal reasoning about the properties of both hardware and
- software systems. The aim of this paper is to show how recursive structures
of this kind can be defined in higher order logic, the logical formalism used
by the HOL interactive proof-generating system [7].

Higher order logic is a typed logic. Each variable in the logic has an
assoclated logical type which specifies the kind of values it ranges over. Sets
which contain recursive structures such as lists and trees can be represented
in higher order logic by extending the syntax of types in the logic with new
type expressions that denote these sets. In the version of higher order logic
supported by the HOL system, this is done by first defining these new types
in terms of already existing types and then deriving properties about the new
types by formal proof. This guarantees that adding a new type to the logic
will not introduce inconsistency. Sections 3 through 6 of this paper explain
the formal mechanism for defining new types in higher order logic and give a
series of detailed examples illustrating this mechanism.

In general, defining a new type in higher order logic can be tricky; the
‘details of the definition have to be got just right to yield a type with the
desired properties. But certain kinds of types can be defined systematically,
and the process of defining them and proving that they have the required
- properties can therefore be automated. However, for this to be of practical
value in a theorem prover such as HOL, it is essential that the automated
tools for defining new types be reasonably efficient. To derive the properties
~of a defined type in HOL, all the logical inferences involved must be actually
carried out in the system. To automate the definition of new types in HOL,
it is therefore desirable to reduce to a minimum the amount of inference that
must be done. Section 7 of this paper shows how a certain class of widely-used
concrete recursive types can be defined by a method which requires relatively
little logical inference; and can therefore be efficiently automated in HOL.

All the theorems shown in this paper have been proved completely formally
- in the HOL system. And the method for automating recursive type definitions
described in Section 7 has been fully implemented and is included in the latest
- release of HOL.

- The Organization of the Paper

The organization of the paper is as follows. Section 1 contains an introduction
to the version of higher order logic that is used in the paper. Section 2

5

describes how proofs in this formulation of higher order logic are mechanized
in the HOL theorem prover. It is not possible to give more than a sketch
of the HOL approach to theorem proving in this section; but a full descrip-
tion of HOL can be found in Gordon’s paper [7]. In Sectlon 3, a method is

described by which new logical types can be defined as conservative exten-

sions of higher order logic. Sections 4 through 6 consist of a series of examples
- which illustrate this method for defining new types. In Section 4, three simple
B logical types are defined: the ‘trivial’ type with only one value, the cartesian
~ product type, and the disjoint sum type. In Sectlon 5, two 51mple recursive

: . types are defined:. the type of natural numbers, ‘and the type of lists. And) |

L ~1n Section 6, the construction of two recursive types of trees is described.
: '_'Fma,lly, Section 7 outlines an efﬁc1ent method for automating the definition -

~of arbitrary concrete recursive types in higher order logic. This method uses
~types previously defined in Sections 4,5, and 6. The implementation of the
- algorithm in the HOL system is also dlscussed in this section.

- Note: Type constructions of the kind described in this paper are well-known -
in set theory (and logic), and no new theory of type constructions is presented
here. The contribution of this paper consists rather in: (1) working out the

 details of defining these types in the particular logic implemented by the HOL = =

- theorem prover, and (2) building a logical basis for the eﬁiczent a.utomatlon
of recursive type deﬁnltlons i HOL. ' e a

1 Introd.ué‘t'ionto'-Higher Order Logic

The version of higher order logic supported by the HOL system is based on -

- Church’s type theory [3], extended with the type discipline of the LCF logic

" PPA [8]. This formulation of higher order logic was developed by Mike Gordon
at the University of Cambridge, and is described in detail in [6]. This section
gives a brief and informal introduction to the notation and some of the
' 1mportant features of this loglc :

1.1 Notatlon o
" The syntax of hlgher order logic used in the HOL theorem prover includes

terms corresponding to the conventional notation of predicate calculus. A

term of the form Pz expresses the proposition that = has property P, and a
term of the form R(z, y) means that the relation R holds between z and v.
The usual logical operators =, A, V, D and = denote negation, conjunction,

.6 '

d1SJunct10n 1mpllcat10n and equlvalence respectlvely The syntax of terms

- ..in HOL also includes the conventional notatlon for universal and existential
' __quant1ﬁers V2.P £ means that P holds for every value of z, and J2.Pz

means that P holds for at least one value of . The additional quantifier 3!
“denotes unique existence: 3!z.P £ means that P holds for exactly one value of -
. Nested quantifiers of the form Vv;.Vvs. -+ Yu,. tm can also be written
VYvi vz - vy tm. Other notation includes (¢ = % | tz) to denote the

,condltlonal “if ¢ then #; else t5°, and fog to denote the composition of the
functions f and g. The constants T and F denote the truth values true and

- false respectively. - LTl e e :

- .- Higher order logic extends the notatlon of predrcate calculus in three im-
' portant ways: (1) variables are allowed to range over functions and predicates,
".(2) functions can take functions as arguments and yield functions as results,

and (3) the notation of the A- calculus can be used to write terms which denote

-+ functions.

The first two of these notatronal extens1ons are 1llustrated by the theorem
, of hrgher order log1c shown below | ‘ '

b Vaf. ((rec o= 2) A Vn (rec f) (n+1) = ((rec fn)

Th1s theorem states that functrons can be deﬁned on the natural numbers

- -such that they satisfy simple primitive recursive equations. It asserts that
- for any value z and any function f, the term (rec f) denotes a functlon that

o y1elds T when apphed to 0 and satlsﬁes the recurswe equation

(rec f) (n+1) f ((rec f) n) for all n.

- The un1versally quantlﬁed varlable f in this theorem is an example of a hrgher—
- order variable: it ranges over functions. And the constant rec is an example

- ofa hlgher order function: it both takes a function as an argument and yields

a function as a result. Conventional practice is that function application in

. . higher order logic associates to the left. So for example the term (rec Hn
- can also be written rec fn.- L

The syntax of hlgher order log1c also 1ncludes express1ons of the (typed)
~ A-calculus. If ¢m is a term and v is a variable, then the express1on ‘Av.tm’
‘_1s also a term. It denotes the function whose value for an argument z is

i given by substituting « for v in ¢m. The term An. n+1, for example, denotes
- . - the successor function on natural numbers; and the term (An.n+1)7 can be
- simplified to 7+1 by subst1tut1ng 7 for nin n+1 Srmphﬁcatlons of this kind

are called ﬂ—reductlons

[r— S — T ——

1.2 Types in Higher Order Logic

Higher order logic is a typed logic; every syntactically well-formed term of
the logic must have a type that is consistent with the types of its subterms. -
Informally, types can be thought of as denoting sets of values and terms as
denoting elements of these sets.? As a syntactic device, types are necessary in
higher order logic to eliminate certain paradoxes (e.g. Russell’s paradox) which
would otherwise arise because variables are allowed to range over functions
and predicates.

Writing ¢m:ty indicates explicitly that the term ¢m has type ty. Such
explicit type information will usually be omitted, however, when it is clear
from the form or context of the term what its type must be. The HOL
mechanization of higher order logic uses Milner’s elegant algorithm for type
inference [11] to assign consistent types to logical terms entered by the user.
The user of HOL therefore only occa,smnally has to give the types of terms

explicitly.

1.2.1 The Syntax of Types

There are three syntactlc classes of types in higher order loglc type constants,
type variables, and compound types.

Type constants are identifiers that name sets of values. Examples are the
two primitive types bool and ind, which denote the set of booleans and the
set of ‘individuals’ (an infinite set) respectively. Another example is the type
constant num, which denotes the set of natural numbers. The type num is not
primitive but is defined in terms of ind; its definition is given in Section 5.1.

Type variables are used to stand for ‘any type’; they are written o, 3, v, etc.
Types that contain type variables are called polymorphic types. A substitution
instance of a polymorphic type ty is a type obtained by substituting types for
all occurrences of one or more of the type variables in ty. Theorems of higher
order logic that contain polymorphic types are also true for any substitution
instance of these types.

Compound types are expressions built from other types using type operators.
They have the form: (ty1,%y2,...,tYs)op, where ty; through iy, are types
and op is the name of an n-ary type operator. An example is the binary
type operator fun, which denotes the function space operation on types. The
compound type (ind, bool) fun, for instance, is the type of all total functions

2Because of the polymorphism introduced by type variables, the notion of types as sets
is inadequate for a formal semantics of the logic. But it will do for the purposes of this

paper.

from ind to bool. Types constructed using the type operator fun can also
be written in a special infix form: ty; —ty,. The infix type operator — asso-
ciates to the right; so the type ind—bool—bool, for example, is the same as
(ind, (bool, bool) fun) fun.

In principle, every type needed for doing proofs in higher order logic can
be written using type variables, the primitive type constants bool and ind,
and the type operator fun. In practice, however, it is desirable to extend the
syntax of types to help make theorems and proofs more concise and intelligible
than would otherwise be possible. Section 3 shows how this can be done
by adding new type constants and type operators to the logic using type
‘definitions’. - - | | |

1.3 Hilbert’s e-operator

An important primitive constant of higher order logic, which will be used
frequently in this paper, is Hilbert’s e-operator. Its syntax and informal
semantics are as follows. If P[z] is a boolean term involving a variable z of
type ty then ez.P[z] denotes some value, v say, of type ¢y such that P[v] is
true. If there is no such value (i.e. P[v] is false for each value v of type ty) then
ez. P[z] denotes some fixed but arbitrarily chosen value of type ¢ty. Thus, for
example, ‘en.4<n An<6’ denotes the value 5, ‘en. (Im. n=2xm)’ denotes an
unspecified even natural number, and ‘en. n<n’ denotes an arbitrary natural
number. ' .

The informal semantics of Hilbert’s e-operator outlined above is formalized
in higher order logic by the following theorem:

FVP.(3x. Pxz) D P(ex. P x)

It follows that if P is a predicate and I Jz. Pz is a theorem of the logic, then

so is I P(ex.Pxz). The e-operator can therefore be used to obtain a logical

term which provably denotes a value with a given property P from a theorem

merely stating that such a value ezists. This property of ¢ is used extensively

~ 1n the proofs outlined in this paper. For further discussion of the g-operator,
see [10]. - o :

An immediate consequence of the semantics of € described above is that all
logical types must denote non-empty sets. For any type ty, the term ex:ty. T
denotes an element of the set denoted by ty. Thus the set denoted by ty
must have at least one element. This will be important when the method for
adding new types to the logic is discussed in Section 3.

2 The HOL Theo{fem Proving System

The HOL system [7] is a mechanized proof-assistant developed by Mike Gordon
at the University of Cambridge for conducting proofs in the version of higher
order logic described in the previous section. It has been primarily used to
reason about the correctness of digital hardware. But much of what has been
developed in HOL for hardware verification—the theory of arithmetic, for
example—is also fundamental to many other applications. The underlymg
logic and basic facilities of the system are completely general and can in
principle be used to support reasoning in any area that can be formalized in
higher order logic.

HOL is based on the LCF approach to interactive theorem proving and
has many features in common with the LCF theorem provers developed at
Cambridge [12] and Edinburgh [8]. Like LCF, the HOL system supports secure
theorem proving by representing its logic in the strongly-typed functional
programming language ML [4]. Propositions and theorems of the logic are
represented by ML abstract data types, and interaction with the theorem
prover takes place by executing ML procedures that operate on values of these
data types. Because HOL is built on top of a general-purpose programming
language, the user can write arbitrarily complex programs to implement proof
strategies. Furthermore, because of the way the logic is represented using
ML abstract data types, such user-defined proof strategies are guaranteed to
perform only valid logical inferences.

The HOL system has a special ML abstract data type thm whose values
are theorems of higher order logic. There are no literals of type thm; that is,
‘it is not possible to obtain an object of type thm by simply typing one in.
There are, however, certain predefined ML identifiers which are given values
of type thm when the system is built. These values correspond to the axioms
of higher order logic. In addition, HOL makes available several predefined ML
procedures that take theorems as arguments and return theorems as results.
Each of these procedures corresponds to one of the primitive inference rules
of the logic and returns only theorems that logically follow from its input
theorems using the corresponding inference rule. Since ML is a strongly-typed
language, the type checker ensures that values of type thm can be generated
only by using these predefined functions. In HOL, therefore, every value of
type thm must either be an axiom or have been obtained by computation
using the predefined functions that represent the primitive inference rules of
the logic. Thus every theorem in HOL must be generated from the axioms
using the inference rules. In this way, the ML type checker guarantees the

10

sotindness of the HOL theorem prover. . |
- In addition to the primitive inference rules, there are many derived inference
rules available in HOL. These are ML procedures which perform commonly-
~ used sequences of primitive inferences by applying the appropriate sequence
~ of primitive inference rules. Derived inference rules relieve the HOL user of
the need to explicitly give all the primitive inferences required in a proof.
The ML code for a derived rule can be. arbitrarily complex; but it will never
return a theorem that does not follow by valid logical inference, since the type
checker ensures that derived rules can only return theorems if they have been
obtained by a series of calls to the primitive inference rules. ' ‘
The approach to theorem provmg described above ensures the soundness of

~ the HOL theorem prover—but it is computatlonally expensive. Formal proofs .
- of even simple theorems in higher order logic can take thousands of primitive
~inferences. And when these proofs are done in HOL, all the inferences must

~actually be carried out by executing the corresponding ML procedures.

‘There are, however, two important features of HOL which together allow
efficient proof strategles to be programmed. The first of these is merely
~ this: theorems proved in HOL can ‘be saved on disk and therefore do not
have to be generated each time they are needed in future proofs. The second
feature is just the expressive power of higher order logic itself, which allows
~ useful and very general ‘lemmas’to be stated in the logic. The amount of
‘inference that a programmed proof rule must do can therefore be reduced
by pre-proving general theorems from which the desired results follow by a
relatively small amount of deduction. These theorems can then be saved and
used by the derived inference rule in future proofs. This strategy of replacing
- ‘run time’ inference by pre-proved theorems is possible in HOL because type
polymorphism and higher-order variables make the logic expressive enough to
~ yield theorems of sufficient generality. This is illustrated in Section 7.4 of this
paper, where a single general theorem is given from which the ‘axiomatization’
of any concrete recursi've,type can be 'efﬁciently deduced.

3 Deﬁmng N ew Loglcal Types R

- The primary functlon of types n hlgher order logic is to eliminate the potential
for inconsistency that comes with allowing higher order variables. The type
expressions needed to prevent inconsistency have a very simple and economical

. syntax; all that is needed are the types that can be constructed from type

~ variables, the two primitive types bool and ind, and the type operator —
~In principle, every type needed for doing proofs in higher order logic can be

 written using only these primitive types. But in practice 1t is desirable to

~extend the syntax of types to include more kmds of types than are strictlye:-_ .

'necessary to prevent inconsistency.
Extending the syntax of type is of practical importance; it makes it possible

“to formulate propositions in logic in a more natural and concise way than can

| “be done with only the primitive types. This pragmatic motivation for a rich h :
- syntax of types is similar to the motivation for the use of abstract data types

in ‘high-level programmmg languages using higher level data types helps to -

_control the size and complexity of proofs. This is essential in a theorem

" proving system (such as HOL) 1ntended to be used -as. a practlcal tool for. -~

| e generatmg large formal proofs : -
This section shows how new types can be cons1stent1y added to hlgher order L

"loglc by defining them in terms of already existing types. ‘This is done in a ’
way that allows theorems which ‘axiomatize’ these new types to be derived -

by formal proof from their definitions. The motivation for first defining a

o type and then deriving abstract ¢ ‘axioms’ for it is that this process guarantees
. consistency. Simply. postulating axioms to describe the properties of new .

- types may introduce inconsistency into the logic. But deﬁnlng new types-in
‘ ‘terms of already existing types and then der1v1ng axioms for them amounts o
to glvmg a conmstency proof of these axioms. : R

: f3 1 Outhne of the Method for Deﬁnlng a NeW Type

.The approach to defining new a logical type used in this paper 1nvolves the
) followmg three distlnct steps ‘ . - : ‘

1 ﬁndlng an approprlate subset of an emsting type to represent the neWV
‘ .type , S .

2. extending the syntax of logical types to include a new type syrnbel and
: -~us1ng a type deﬁnztzon aziom to relate this new type to 1ts representatlon
and - | -

3. deriving from the type"'deﬁnition'a,)dom and the properties of the rep- o
~ resenting type a set of theorems that serves as an amomatlzatlon of :
» the new type. '

In the ﬁrst of these steps a model for the new type is given by spec1fy1ng a

- set of values that will be used to represent it. "'This is done formally by defining

a predicate P on an existing type such that the set of values satisfying P has .
exa,ctly the properties that the new type 18 expected to have In general,

T '_

_ﬁflding repreSentatioﬁs for new types and defining pr‘edicatesv' thatvspec'ify
:v'them can be difficult; but, as will be shown in Section 7.3, the representations
of a certain class of recursive types can be constructed systematically.

In the second step, the syntax of types is extended to include a new type

- constant (or type operator) which denotes the set of values of the new type.
“This is done by adding a type definition aziom to the logic that serves to relate

values of the new type to the corresponding values of the existing type that -

represent them. Type definition axioms are explained below in Section 3.2.

In the last step, a collection of theorems is proved that abstractly charac- -
 ‘terizes the new type. These theorems state the essential properties of the new

type without reference to the way its values are represented and therefore

~act as an abstract ‘axiomatization’ of it. ‘They are not, however, axioms in
- the sense that they are postulated without proof, but are derived by formal |

“proof from the definition of the subset predicate given in step (1) and the type
definition axiom postulated in step (2). This final step therefore amounts to
giving a consistency proof of the axioms for the new type by showing that
there is a model for them. - Several 'eXamples of the derivation of axioms for

‘new types are given in Sections 4-6; and, in Section 7, a method is described -
~whereby the proof of the amoms for concrete recursive types can be efficiently

' a,utomated

Type Deﬁnltlon Ax1oms

The syntax of types in higher order loglc can be extended to include new type
constants as well as new type operators, by means of type definition azioms.
'This type definition mechanism is based on a suggestion by Mike Fourman
~which was formalized by Mike Gordon in [6]. The idea is that a new type is

~ defined by adding an axiom to the logic which asserts that it is isomorphic to-

'a,n approprlate subset’ of an ex1st1ng type

/ .
n zsomorphzsm 1 /7 - t

=

7 Suppose" for example that ‘ty 18 a. type‘of the logic and P't;'y.——>boo'l is a
o predlcate on values of type ty that defines some useful subset of the set denoted

by ty. A type definition axiom defines a new type constant #y» which denotes

 -aset having exactly the same properties as the subset defined by P. Thls is

done by extending the syntax of types to include the new type constant ty.
and then adding an aziom to the logic asserting that the set of values denoted
by the new type is isomorphic to the set specified by P:

F Af tye—ty. (1)
(Valazfal fagjal—aQ)/\(VrPr_(Ela r=fa)) |

This axiom states that there is a function f from the new type ty. to the
existing type {y which is one-to-one and onto the subset defined by P. The
function f can be thought of as a representation function that maps a value
- of the new type tye to the value of type ¢y that represents it. Because f is
an isomorphism, it can be shown that the set denoted by #y has the same
properties as the subset of ty defined by P. By adding this axiom to the logic,
- the new type tyy is therefore defined in terms of the existing type ty. ‘

As was discussed in Section 1.3, the semantics of € requires all types of the
logic to denote non-empty sets. This means that the predicate P used in the
type definition above must be true of at least one value of the representing
type; i.e. it must be the case that F Jz:ty. P z. This existence theorem must
be proved before the type definition axiom can be added to the logic. In the
HOL theorem prover, the system requires the user to supply such an existence
theorem before allowing a type definition axiom to be created.

If the subset defined by P is non-empty, then adding the type definition
axiom (1) shown above is a conservative extension of the logic.3 That is,
for all boolean terms tm not containing the new type, F tm is a theorem
of the extended logic if and only if it is a theorem of the original logic. In
particular, I F is a theorem of the extended logic if and only if it is a theorem
of the original logic. Thus adding type definition axioms to the logic will not
introduce inconsistency; adding type definition axioms is ‘safe’.

In addition to type constants, new type operators can also be defined by
adding axioms of the form shown above. For example, if ty[a, 8] is an existing
type that contains type variables o and 3, and P:ty[«, 8]—bool is a predicate
where I Jz. P z, then a new binary type operator («, ,B)Op can be defined by
assertmg the axiom:

F 3f:(a, B)op—iyla, B].
(Va1 as.f a1 = f as D a1 = az) A (Vr. Pr=(da.r = f a))

*The term P in the type definition axiom must also satisfy certain syntactic conditions
(which will not be discussed here) having to do with free variables and polymorphism.

14

Detailed eXamples of type operatorbdeﬁnitio‘ns are giyen in Sections 4.2 and = -

- 4.3 below, where deﬁnltlons ‘are described for the bmary type operators prod)

| v(cartes1a,n product) and sum (dlSJOlIlt sum)

| v;‘-.3 3 Deﬁnlng Representatlon and Abstractlon Functlons _' B

A type deﬁnltlon axiom of the form shown above merely asserts the existence

- ~of an isomorphism between a new type and the corresponding subset of an

existing type. To formulate abstract axioms for a new type, it is convenient

_‘vto have logical constants which-in fact denote such an isomorphism and its
“inverse. These mappings are used to define operatlons on the values of a

new type in terms of opera,tlons on values of the representlng type. These

o operations can then be used to formulate the abstract axioms for the new type.

- Using the primitive constant ¢ described in Section 1.3, constants denoting

‘isomorphisms between new types and the subsets of ex1st1ng types which
- represent them are easily defined as follows. :
Given a type definition axiom stating the emstence of an 1somorph1sm

. between a new type typ and a subset of an ex1st1ng type ty defined by a

' predlcate pP: ‘ S o . |
R 3f typ—>ty (Val as. f a=f a2 :')"al ‘= az) A (Vr P r= (Ela. r=fa))

a corresponding representatzon function REP:ty.—ty can be defined which '

- maps a value of type tys to the value of type ty which represents it. Usmg |

the e-operator, the function REP is defined by: _
F REP =¢f. (Valagfal fag Dal_ag)/\(Vr Pr—(Ha r_fa))

“From the property of ¢ dlscussed in Section 1. 3, it follows immediately that
- the function REP i 18 one—to—one and onto the subset of ty glven by P:

F Va1 as. REP a1 REP as D a1 = az S
l—VrPr_(EIa, r__REPa)

| Once the representation functlon REP is deﬁned the g-operator can be used
K to define the i inverse- abstmctzon functlon ABS ty—->typ as follows

F Vr. ABSr—(sa r_REPa)

It is stra,lghtforward to prove that the abstractlon functlon ABS is one-to-one
,-:for values of type ty satlsfymg P and that ABS i 1s onto the new type tys:

b Ve, Pr > (P 73D (ABS 1 1 = ABS 7'237'1—7’2))
l—Va 3r(a_ABSr)/\Pr o :

| }t It also follows from the :deﬁnitio.n‘s of the ebStraction e,nd representatlon |
- functions that ABS is the left inverse of REP and for values of type ty satls— o
fying P, REP is the left inverse of ABS: o - .

FVa.ABS(REPa)=a
FVr.Pr=(REP(ABSr)=r)

| Abstra,ct1on and representatlon functlons of the kind 1llustrated by ABS a,nd
) »REP are used in every new type definition described in this paper. Ineach case,

'f'these functlons are defined formally using the corresponding type definition |
- axiom in the way shown above for ABS and REP. Theorems corresponding to

o ~ those shown above for ABS and REP are used i in’ the proofs of abstract axioms =
'--'l_f“for each new type deﬁned N o S o

4 Three Slmple Type Deﬁnltlons

” 'Three SImple examples are glven in thls section to lllustrate the method for

. defining new types described above in Section 3. In each example, a new type

" is defined using the three steps described in Section 3.1. First, an appropriate
subset of an existing type is found to represent the values of the new type, and

' a predicate is defined to specify this subset. A type definition axiom for the "

‘new type is then postulated, and abstraction and representation functions are
- defined as described in Section 3.3. An abstract axiomatization is then formu-
lated for the new type, which describes its properties without reference to the
~_way it is represented and defined. This axiomatization follows by formal proof
from the properties of the new type’s representation. Some basic theorems
about the new type are then derived from its abstract axiomatization.
- - The three types defined in this section will be used as basic ‘building blocks’ o
~ in the general method outlined in Sectlon 7.3 for finding appropriate rep- -
' resentatlons for arbltrary concrete recursive types ' : .

N 4 1 The Type Constant one

o Thls sectlon descrlbes the deﬁnltlon and a,x1oma,tlza,tlon of the s1mplest (and o

- the smallest) type possible in higher order logic: the type constant one, Whlch
. denotes a set havmg exactly one element |

_ ?_5’4 1 1 The Representatlon o

©To represent the type one, any smgleton subset of an e}astmg type will do In
~ the type definition given below the subset of bool containing only the truth—v N

16

value T will be used. This subset can be specified by the predicate \b:bool. b,
which denotes the identity function on bool. The set of booleans satisfying
this predicate clearly has the property that the new type one is expected to
have, namely the property of having exactly one element.

4.1.2 The Type Deﬁnition

As discussed in Section 3.2, a type definition axiom cannot be added to the
logic unless the representing subset is non-empty. In the present case, the
representing subset is specified by the predicate Ab. b. It is trivial to prove that
this predicate specifies a non-empty set of booleans; the theorem - Jz. (Ab.b)x
follows immediately from F (Ab.b)T, which is itself equivalent to - T. Once
it has been shown that Ab.b specifies a non-empty set of booleans, the type
constant one can be defined by postulatmg the type definition axiom shown
below.

F df:one—bool.
(Vaias.f a1 = f ay Dal_az)/\(\?’r (Ab.D) r = (Ha. r—‘fa))

Usmg this type definition axiom, a representation function:
REP _one:one—bool

can be defined to map the single value of type one to the boolean value T
which represents it. As described in Section 3.3, this representation function
can be defined such that it is one-to-one: :

F Va; as. REP_one a; = REP_one as D a1 = a2 . (2)
and onto the subset of bool defined by Ab.b: |
F V7. (Ab.b) r = (Ja.r = REP_one a)

which, by the g- reductlon F (Ab.b) r» =7, mlmedlately yields the following
theorem :

FVr.r = (Ja. r_REPonea) - | (3)

Theorems (2) and (3) about the representatlon function REP_one will be used
in the proof given in the following section of the abstract axiomatization of
one. The inverse abstraction function ABS_one:bool—one will not be needed
in this proof.?

“In fact, the axiomatization of one can be derived directly from its type definition
theorem; the constant REP _one is defined here merely to simplify the presentation of the
proof that follows.

17

'> 4 1. 3 Derlvmg the Ax1omat1zat10n of one

- The axromatlzatlon of the type one Wlll consrst of the followmg smgle theorem
l— Vf a—one. Vg a—one. (f = g)

This theorem states that a,ny two functlons f and g ma.ppmg va,lues of type o
to values of type one are equal. From this it follows that there is only one value

. of type one, since if there were more than one such value it would be possible)
* to define two different functions of type a—one. This theorem is therefore an

. abstract characterization of the type one; it expresses the essential properties T

S -"'Of the type, but does so without reference to the way the type is represented. . -
" 'The proof of the axiom for one uses the properties of REP_one given by el
theorems (2) and (3) above Specrahzmg the varrable r in (3) to the term

REP_one(I :c) y1elds |
t— REP_one(f :c) (Ela REP_one(f z) = REP_one a)

B iThe right hand s1de of thrs equatron is equa.l to T; this theorem can there— o
fore be simplified to I REP_one(f z). Similar reasoning y161dS the theorem
+ REP_one(g z), from Whrch 1t follows tha,t | o e

F REP_one(f :1:) REP_one(g :c)

~ From this theorem and theorem (2) stating that the function REP_one is one-
. to-one, it follows that + f z = g z and therefore that F V f g-(f = 9), as
: 'desrred ’ '

o 4.1 4 A Theorem about one

Once the axiom for one has been proved 1t is stralghtforward to prove a
- theorem which states explicitly that there is only one value of type one. This

~ 1s done by defining a constant one to denote the single value of type one.
- _Usmg the e—opera,tor the definition of one can be ertten ' =

" one = 6x:one.T-‘

- From the axiom for one, it follows that F Az:a.v = Az:a.one. Applying
- both sides of this equation to #:c, and doing a S-reduction, gives - v = one.
~ Generalizing v yields F Vv:one.v = ‘one, which states that every value v of

type one is equal to the constant one, i.e. there is only one value of type one.

18

4 2 The Type Operator prod

~In th1s sectlon a blnary type operator prod is deﬁned to denote the cartes1an

- product operation on types. If ty; and ty, are any two types, then the type
(ty1,ty2)prod will be the type of ordered pairs Whose first component is of
| -.type ty:1 and whose second component is of type tys.” :

- 4.2, 1 The Representatlon | T _
-'--,The type (e, ,B)prod can be represented by a subset of the. polymorphlc prim- -

S “itive type a—B—bool. ‘The idea i is tha,t an ordered pa,rr (a o, b ,8) will be

. _,__represented by the functlon Y::,,‘ B
DeyGEgA@=y

~which yields the truth-value T when applied to the two components ¢ and
b of the pair, and y1elds F when applied to any other two values of types «
o and B. _
- Every pair can be represented by a functlon of the form shown above but
not every function of type a—B3—bool represents a pair. The functions that
- do represent pairs are those which satisfy the predicate ls_pair_REP defined
I— Is_palr REP f Elvl V5. f /\xy (m—vl) /\(y_vz)
i.e. those functlons f which have the form Az y. (z=v1) A (y_ ve) for some pair
of values v; and vy. This will be the subset predicate for the representation of

- (o, B)prod. As will be shown below, the set of functions satisfying Is_pair_REP -
”has exactly the standa,rd propertres of the cartesmn product of types a and ﬂ

. 4 2 2 The Type Deﬁnltlon ,‘ ; o

| - To lntroduce a type deﬁmtlon axiom for prod one must first show that the
G predlcate Is_pair_REP: defines a non-empty subset of a—f3—bool. This is easy, |
- - since it is the case that I Vab. Is_pair.REP(Az y. (z=a) A (y=b)) and therefore

+ 3 f Is_pair_REPf." Once this theorem has been proved, a type definition
axiom of the usual form can be 1ntroduced for the type operator prod: '

-+ EIf (e, ,B)prod—>(a—>ﬁ—>bool) o - '
- (Vay az.f al_f as D al._az) A (Vr ls_palr_REP r= (Ha r—f a))

‘This theorem defines the cempound type (a, ,B)prod to be isomorphic to the

subset of a—f—bool defined by Is_pair_REP. Since the type variablesa and § |

in this theorem can be instantiated to any two types, it has the effect of giving
a representation not only for the particular type (o, ,B)prod’ but also for the
_ product of any two types. For example, instantiating both « and 8 to bool
~ yields a type definition axiom for the cartesian product (bool, bool)prod. As
~will be shown below, the abstract axiomatization of prod derived from the type
definition axiom given above is also formulated in terms of the compound type

'V(a ﬂ)prod It therefore also holds for any substltutlon mstance of (a ﬁ)prod o

 i.e. for the product of any two types.

- The abstract axiomatization of prod derived in the followmg sectlon Wlll SRS

_ vuse the abstractlon and representatlon functlons

'ABS_pa|r (a—>,6—>bool)—>(a B)prod and»_
REP_palr (a ﬁ)prod——>(a—>,3——>bool)

| | Whlch relate pairs to the functlons of type a— fB—bool which represent them.
‘These representation and abstraction functions are defined formally as de- -
scribed above in Section 3. 3. A set of theorems stating that Abs_pair and

" Rep_pair are 1somorphlsms can also be proved as outlined in Section 3.3. These -

~ theorems will be used i in the proof of the axiom for prod glven in the next
section. r ~

For notational convenience, an infix type operator ‘x’ will be used in the
remainder of this paper for the product of two types. Type expressions of the
form ty; x ty, will be simply syntactic abbreviations for (ty;,tys)prod. |

4.2.3 Deriving the Axiomatization of prod.
- To formulate .the a}riematization of (¢ x B), two constants will be defined: :
Fst:(a x f)—a and Snd:(a x B)—p.

These denote the usual vprojectz'on functions on pairs; the function Fst extracts |
. the first component of a pair, and the function Snd extracts the second com- .
ponent of a pair. The definitions of these functions are: '

F Fst p =ez.Jy. (REP_pair Py
+ Snd p =¢ey. 3z (REP_palr pzry .

‘ These deﬁnltlons ﬁrst use the representation functron RE P_palr to map a pair.
- p to the function that represents it. They then ‘select’ the required component

2

of the | pair usmg the e-operator From the deﬁnltlons of Fst and Snd, 1t is

o posmble to show that o

-k Fst(ABS_palr()\:cy (:L' a) A (y_b))) =a

+ Snd(ABS_palr(/\:cy (a:—a) A (y_b))) = b ».‘ o | (4)

.by usmg the fact that Rep_palr is the left inverse of ABS_pair for funct1ons

_ . that satisfy the subset predicate Is_pair_REP. Once these two theorems have
~ been proved, the axiomatization of the cartesian product of two types can be

- derived without further reference to the way Fst and Snd are defined. ;
‘Using the functions Fst and Snd, the axiomatization of the cartesian product

. 'of two types can be formulated based on the notlon of a product in category
- “theory. The followmg theorem Wlll be the single axiom for the product of two

.types :
| FVf7—>a Vg'y——)ﬁ H'h'y——)(axﬂ) (Fstoh f)/\(Sndoh—-g)

This theorem states that for. all functlons f and g, there 1S a unlque function
h such that the dragram ' .

(ax,@)

s commutatlve ie. VIL' Fst(h :c) f z and V:I: Snd(h x) =g x. As noted above
" this theorem is proved for the polymorphic type (a x B). It therefore charac— g

 terizes the product of any two types, since the type variables o and 3 in this

theorem can be instantiated to any two types of the loglc to yield an axiom
for their product. =~ : S

~An outline of the proof of the axiom shown above is as follows. leen two
- Vfunctlons [r—a and g: v— (3, define the functlon h: 'y—>(oz X ,8) as follows:

h v= ABS_palr(/\a:y (a: f v) A (y—g v))

| ._Usmg the theorems (4) above 1t follows that Fst © h = f and Snd o h = g

To show that h is unique ‘suppose that there is also a function A’ such that

Fst o ' = f and Snd o b’ = g. Suppose v is some value of type 7- Since

“ABS_pair is onto (a x B), there exist a and b such that
K= ABS_palr(/\a:y (.'z: a) A (y_b))
" From th1s it follows that: |

V'fv = Fst(h’ v) = Fst(ABS_palr(A:vy (m—a) A (y—b))) = (‘1‘ a and
g -; Snd(h/ v) = vSnd}(ABS__p‘alr()\:c_y (a:—a)/\(y—b))) -

[l
o~

Whlch means that | |
- kv = ABS_palr(/\:cy (a:_f 'u) A (y__g v))
.v"a)nd therefore that b’ = h.

_ 4.2.4' 'Theorems_about'prod el

. Using the axiom for pro‘dncts proved in the previous section, an infix operator
- ® can be defined such that for all functions f:y—« and g:y—f the expression

f®g denotes the unique function of type y—(a x B) which the axiom asserts

to exist. This operator can be defined using the e-operator as follows:

P—Vfg.(f@g):6h.(Fstoh=f)/\(Sndoh=g)

It follows from the axiom for products and the property of ¢ discussed above
- 1n Section 1.3 that (f®g) denotes a function which makes the diagram shown |
above commute: - : '

'-E-Fsto'(f®!])’:.f‘ a‘rid" "FSndov(f’®g)¥9 |

It can also be shown that for all fand g, the term f ® g denotes the unlque
. functlon with this property ' '

FVfgh. (Fstoh= f)/\(Sndoh_g)D(h (f@g)).'

Using the operator ®, an infix pairing function ¢,” can be defined to give
- the usual syntax for pairs, with (a,b) denoting the ordered pair having ﬁrst
' cornponent a and second component b The definition is:

E-Vab(ab) ((Ka)®l)b WhereK /\aba andl-)\aa

" The projection functlons Fst_ and, Snd and the constructor ¢ deﬁned ‘above

22

satlsfy three theorems shown below Whlch are commonly used to charactemze
_‘ palrs -

F Va b."lf;"c(a, b)=a
“FVab.Snd(a,b)=b
FVp.p= (Fst P, Snd p)

e The first two of these theorerns follow from the definition of the 1nﬁx pairing -
| operator ‘, and the fact that :

I— Fst o ((K a) ® I) =Ka | and | I-Snd o((K a) ®) ‘= l. |

N The th1rd theorem follows from the umqueness of funct1ons deﬁned usmg .

- 4, 3 The Type Operator sum

‘The final example in this section is the deﬁnltlon and axiomatization of a
binary type operator sum to denote the disjoint sum operation on types. The
set that will denoted by the compound type (ty1,tys)sum can be thought of
as the union of two disjoint sets: a copy of the set denoted by ty;, in which
~each element is labelled as coming from ty;; and a copy of the set denoted by
tys, in which each element is labelled as coming from ty,. Thus each value of
type (ty1,ty2)sum will correspond either to a value of type ty; or toa value -
of type ty.. Furthermore, each value of type ty; and each value of type tys
will correspond to a unlque value of type (tyl, tyg)sum

_74 3 1 The Representatmn

- One way of representmg a value v of type (a ﬁ)sum Would be to use a trlple
(a,b, f) of type @ x B x bool, where f is a boolean ‘flag’ stating whether v
corresponds to the value a of type « or the value b of type £. With this 'rep-
resentation, each value a of type o would correspond to a triple (a,dg, T) in
- the representation, where dp is some fixed ‘dummy’ value of type 8. Likewise,
,. ‘each value b of type 8 would have a correspondmg triple (dq, b, F) in the rep-
resentation, where d, is a dummy value of type «. Using this representation,
- every value in the representing subset of o x 8 x bool would correspond either
~ to a value of type « labelled by T or to a value of type 3 labelled by F.
- The representation of values of type (a,f)sum can be both simplified
o -_‘a,nd made 1ndependent of the product type operator by notlng that a triple

(a dﬁ, T) for example, can 1tself be represented by the functron
ey fL(e=a) A(y=dg) A(JI=T) o

This functlon is true exactly when apphed to the value a, , the dummy value

- d g and the truth-value T. Every function of this form corresponds to unique

value of type o, and every value of type o corresponds to a function of this

. _form But the same can be said of functlons of the form

A:v y fl. (:r—a) A (fl—T)

.The dummy value dg 1s therefore not necessary. A value of type (a)sum '
that corresponds to a value b of type ,6 can hkeW1se be represented by a

| ['ﬁmctlon of the form:

By y fl.(y=b) A (fl F) | |
The type («, f)sum can therefore be represented by the subset of functions
of type a— B—bool—bool that satisfy the predlcate Is_sum._ REP defined by:
| ' ls.sum_REP f=3v.f = Azy fl. (z=v1) A (fl= T)) Y
| (Fvz.f = Az y fl. (y=v2) A (FI=F))

}The set of functlons satlsfyrng ls_sum_REP contains exactly one function for

_each value of type a and exactly one function for each value of type 8. It
therefore represents the disjoint sum of the set of values of type o and the set
of values of type B.

‘4 3.2 The Type Deﬁnltlon

The type definition axiom for sum is 1ntroduced in exactly the same way as
' the defining axioms for one and prod. The first step is to prove a theorem
'statmg that Is_sum_REP is true of at least one value in the representing set,
Le. F 3df. Is_sum REP f A type deﬁnltlon ax1om of the usual form can then |
be mtroduced

- l- af: (a ,B)sum—+(a—>ﬂ—>bool) S ' '
" (Vay a2.f a1=f a3z D ay=az) A (Vr.lssum_REP r = (Ela r._f a))

and the abstraction and representatlon functions

| ABS_sum (a—>,3—>bool——>bool)—>(a B)sum and
“REP_sum:(e, B)sum—(c:—B—bool—bool)

~ defined in the usual way. As outlined in Section 3.3, the definitions of Abs_snm

B 7 O

and REP_sum and the type definition axiom for sum yield the usual isomor-
phism theorems about such abstraction and representation functions. These

 theorems will be used in the derivation of the abstract axiom for sum.

- For notational clarity, an infix type operator ‘+’ will now be used for the
disjoint sum of two types. In what follows, the syntactic abbreviation ty; +ty,
~will be used instead of the form (ty;, tys)sum.
' 4.3.3 Deriving the Axiorhatizétion of sum |
The a.xiomatizeition"of (a4 ,8)7 will Iisetwo constants:
 Inl:a—(a +,8) ~and Inr:f—(a+B)
B deﬁnedby | n | |
Flnla = ABS_sun'_r(/\m y fl. (z=a) A (fI=T))
FInr b = ABS_sum(Az y f1. (y=b) A (fI=F))

~ The constants Inl and Inr denote the left and right injection functions for sums.
- Every value of type (a +) is either a left injection Inl a for some value a:o
or a right injection Inr b for some value b:3.

The form of the axiom for (a +) is based on the categorical notion of a
coproduct. The axiom for (a + ﬂ) is:

FVfia—y. Vg: ,8—>-y 3'h(a+,8)——>7 (holnl f)/\(holnr—g)

Thls theorem asserts that for all functions f and g there is a unique function _
- h such that the diagram shown below is commutative. '

-~(a_+ﬂ) |

The proof of the ax10m for sums is smular to the one outhned in the prev1ous
sectlon for products The proof Wlll therefore not be given in full here. The

existence of h follows simply by defining |
hs= (@2 =Inlv) = flevr.z = Inl vg) | gevs. z = Inr v3))

for given f and g. The uniqueness of h follows from the fact that Inl and Inr _
are one—to-one and from the fa,ct that ABS_sum is onto. :

B 4.3. 4. Theorems about sum

o Usmg the axiom for sums, it is poss1ble to define an operator @ wluch is
_'-a,na,logous to the operator ® defined above for products The deﬁmtlon is:

|-Vfg (f@g)_sh (holnl)/\(holnr-y)

From the axiom for sums it follows that for all functions f and g the term
(f GB g) denotes a fuuctlon that makes the dlagra,m for sums commute: '

I—(féBg)olnl f and l-(fEBg)olnrzg
' a,nd that (f ® g) denotes the un1que functlon w1th th1s property
l—Vfgh (h o Inl :f)v/\(ho Inr:g) D (h>— (féBg)) ‘

Using @, it is possible to deﬁne two dzscrzmznatorfunctlons Isl:(a+ B8)—bool
~and lsr:(« + ﬁ)—>bool as follows:

l—lsl (KT)GB(KF) ‘and l—lsr—(KF)GB(KT)

‘From these definitions, and the properties of ® shown above, it follows that
every value of type (« +) satisfies either Isl or lsr:

+ Vs:(a+ B):IslsVisrs
‘and that‘: Isl is true of :left'injections and I'sr‘ is true of right injections:

© FValsl(inla) FVe.-lsl(inr B)
B Vb.Isr(Inr b) F Va. —lsr(Inl a)

'The infix operator @ can- also be used to define two projection functions
Outl:(@ + B)—« and Outr:(« + §)— 3 that map values of type (¢ +B) to the
correspondmg values of type a or 3. Their deﬁn1t10ns are:

FOutl=1o (.K'sb. F) -_a,nd -l‘VOutr = (K'{-:a. F) o I

where ea.F and eb. F denote arbitra,ry values of .ty‘pe o and [respectively.
- From these definitions, it follows that the prOJeCthIl functions Outl and Outr
have the properties: '

F Va. Outl(Inl a):v‘a k F ‘v's Isl s jlrﬁI(OutI s)=s
I Va. Outr(lnr a)=a. ‘_I— Vs.lsrs D Inr(Outr s)=s

5 Two Recurswe Types* N umbers and Lists

Thls section outhnes the deﬁmtlon of two recursive types: num (the type
natural numbers) and (e)list (the polymorphlc type of lists). Both num and
| (a)lzst are simple examples of the kind of recursive types which can be defined
‘using the general method that will be described in Section 7. Their definitions
~ are given here as examples to introduce the idea of defining recursive types in
higher order logic. They also provide examples of the general form of abstract
- axiomatization that will be used in Section 7 for such types. '

* Both num and (a)list will be used in Section 6 to construct representations
for two logical types of trees. Along with the basic building blocks: one, prod
-and sum, these types of trees will then be used in Section 7.3 to construct
representatlons for arbltrary concrete recursive types

5.1 The NatUral Nu‘mb’ers‘ -

The construction of the natural numbers described in this section is based
on the definition of the type num outlined by Gordon in [6]. The type num
of natural numbers is defined using a subset of the primitive type ind of
- individuals. This primitive type is characterlzed by a smgle ax1om the ‘axiom
of 1nﬁn1ty shown below o

I-Elfind—n'nd S o o 5)
(V21 22. (fml fazg)D(xl—azg))/\—l(Vy El:cy fx) v

h1s theorem is one of the ba,su: axioms of hlgher order loglc It asserts: the
existence of a function f from znd to ind which is one-to-one but not onto.

From this axiom, it follows that there are at least a countably infinite
number of distinct values of type ind. Informally, this follows by observing

- that there is at least one value of type ind which is not in the image of f.

~ Call this value io. Now define #; to be f(io). Since #; is in the image of the
function f and %y is not, it follows that they are distinct values of type ind.

Now, define 25 to be f(i;). By the same argument as given above for i, it is
clear that i2 1s not equal to 5. Furthermore, i5 is also not equal to i;, since
from the fact that f is one-to-one it follows that if ¢ = ¢; then f(i;) = f(%0)
and so #; = 1p. So 73 is distinct from both ¢; and 7p. Defining i3 to be f(i2), 14
to be f(i3), etc. gives—Dby the same reasoning—an infinite sequence of distinct
values of type ¢nd. This infinite sequence can be used to represent the natural
numbers.

5.1.1 The Representation and Type Definition

As was outlined informally above, it follows from the axiom of infinity (5) that
there exists a function which can be used to ‘generate’ an infinite sequence of
distinct values of type ind. The axiom of infinity merely asserts the existence
of this function; the first step in representing the natural numbers is therefore
to define a constant S:ind—ind which in fact denotes this function. Using the ,
g-operator, the definition of S is simply:

F S =ef:ind—ind. (VéL’l ZTa. (f zi=f 372) D) (mlza:z)) A —|(Vy, de. y:fa:)

Once S has been defined, a constant Z:ind can be defined which denotes a
value not in the image of S. From this value Z, an infinite sequence of distinct
individuals can then be generated by repeated application of S. The definition
of 7 simply uses the ¢-operator to choose an arbitrary value not in the image

of S:
FZ = cyind.Ve.~(y=S x)

From the definitions of S and Z, the semantics of ¢, and the axiom of infinity,
it follows immediately that Z is not in the image of S and that S is one-to-one.
Formally:

Vi (S i = 2)

6
b Viyis. (Siy = Sdy) D (iy = iz) (6)

By the informal argument given in the introduction to this section, these two
theorems imply that the individuals denoted by Z, S(Z), S(S(Z)), S(S(5(2))),

. form an infinite sequence of distinct values, and can therefore be used
to represent the type num of natural numbers. To make a type definition
for num, a predicate N:ind—bool must be defined which is true of just those
individuals in this infinite sequence. This can be done by defining N to be true
of the values of type ind in the smallest subset of individuals which contains

- 28

Z and is closed under S. The formal definition of N in higher order logic is:
FN¢=VPiund—bool. PZA(Nz.P2 D> P(Sz))DPi

This definition states that N is true of a value i:ind exactly when i is an
element of every subset of ind which contains Z and is closed under S. This
means that the subset of ind defined by N is the smallest such set and therefore
contains just those individuals obtainable from Z by zero or more applications
of S. : : :

From the definition of N, it is easy to prove the following three theorems:

FNZ |
FVi.N i > N(S 4) T (7)
FVP.(PZAV. (PzDP(Sz))DVz NzDPz |

The first two of these theorems state that the subset of ind defined by N
contains Z and is closed under the function S. The third theorem states that
the subset of ind defined by N is the smallest such set. That is, any set of
individuals containing Z and closed under S has the set of individuals specified
by N as a subset.

Using the predicate N, the type constant num can be defined by introducing
a type definition axiom of the usual form. From the theorem F N Z, it follows
immediately that t--3i. N <. The following type definition axiom for the type
num can therefore be introduced:

F 3f:num—ind. (Vay a3.f ax=f as D a1=as) A (Vr.N r = (Ja.r=f a))
and the usual abstraction and representation functions
ABS_num:ind—num - and REP_num:num—ind

for mapping between values of type num and their representations of type
ind can defined as described in Sectlon 3.3.

5.1.2 Deriving the Axiomatization of num

The natural numbers are conventionally axiomatized by Peano’s postulates.
The five theorems labelled (6) and (7) in the previous section amount to a
formulation of the Peano postulates for the natural numbers represented by
- individuals. It is therefore easy to derive Peano’s postulates for the type num

of natural numbers from these corresponding theorems about the subset of
znd specified by N.

29

| The ﬁrst step 1n derivmg the Peano postulates for num is to deﬁne the two

o constants

0:num and = Suc:num—num,

“which denote the number zero and the successor function on natural numbers.

~ Using the abstraction and representatron functions ABS_num and REP -num,

; ;the constants 0 a.nd Suc can be deﬁned as follows :

- 0 ABS-num 7z L
l— Suc n= ABS_num(S(REP_num n))

From these deﬁmtions the five theorems labelled (6) and (7) and the fa,ct,}, L

‘that the abstraction and representation functions ABS_num and REP_num

' are isomorphisms, it is easy to prove the abstract ax1omatlzat10n of num,

‘ conmstmg of the. three Peano postulates shown below:

-k Vn. —:(Suc n= 0)
I-Vn1n2 Suc nl'— Suc ngj)nl—nz .
F VP.(POAVn.PnD P(Sucn)) DVn.Pn_
" The first of Pean‘o’s .postulates shoizvn, above states that zero is not the
successor of any natural number. This theorem follows immediately from the

- corresponding theorem Vi. =(S ¢ = Z) derived in the previous section for the
" representing values of type ind. Likewise, the second of Peano’s postulates,

" which states that Suc is one-to-one, follows from the corresponding theorem |
~about S. The third postulate states the validity of mathematical induction on -

" natural numbers; it follows from the last of three theorems (7). derived in the" o

_ 'prev1ous sectlon

o 5.1. 3 The Prmrntlve Recurs1on Theorem

: Once Peano s postulates have been proved all the usual properties of the‘

" natural numbers can be derived from them. One important property is that
functions can be uniquely defined on the natural numbers by primitive recur-
sion. This is stated by the prrmitrve recursron theorem shown below: - |

I-V:r:f B'fn (an—a:)/\Vn fn (Suc n) f(fn n)n | (8) ',

TlllS theorem states that a functlon fn num—a can be umquely defined - -
'by primitive recursion—i.e. by specifying a value for z to define the value

of fn(0) and an expression f to define the value of fn(Suc n) recursively in
“terms of fn(n) and n. The proof of this theorem will not be given here, but
“an outline of the proof can be found in Gordon’s paper [6] The proof of a
~similar theorem for a logical type of trees is given in Section 6.1.3. -
An important fact about the primitive recursion theorem is that it is equiv-

‘alent to the three Peano postulates for num derived i in Section 5.1.2. The
~ single theorem (8) can therefore be used as the abstract a)uomatmatlon of the
defined type num, instead of the three separate theorems expressing Peano’s
postulates In Section 7.2, it will be shown how any concrete recursive type

‘can be axiomatized in h1gher order logic by a similar ‘primitive recursion’
. theorem. e ~ : SRR - ‘
- Any function’ deﬁmtlon by prlmltwe recursion on natural numbers can be
 justified formally in logic by appropriately spec1ahz1ng z and fin theorem (8). |

- For example, spec1al1zmg x and f to: : ,

/\n n and)\fm /\m Suc(f m)

in a sultably type—1nstant1ated version of the pr1m1t1ve recurs1on theorem-
.ylelds (after some s1mpl1ﬁcatlon) the theorem:

F 3! fn. (ann—n)AVnm (fn (Suc n)m Suc(fnnm))

which asserts the (umque) ex1stence of an addition funct1on on natural num-
| bers. Pr1m1t1ve recursive definitions of other standard arithmetic opera-
“tions (e.g. +, X, and exponentmtlon) can also be formally Justlﬁed using
| ,theorem (8) : o v : L

5 2 lete-length Llsts |

: Thls sectlon describes the deﬁmtlon of a recursive type (a)lzst of lists Wh1ch
contain values of type c. In principle, it is possible to represent this type by

a subset of some primitive compound type. But in practice, it is easier to
~ use the defined type constant num and the type operator x (defined above in P
Section 4. 2).. The representation using num and x descrlbed below is based

on Gordon s constructlon of lists in [6]

5. 2. 1 The Representatlon and Type Deﬁmtlon

B Llsts are s1mply finite sequences of values all of the same type A list W1th :

o ‘n values of type a will be represented by a pair (f,n), where f is a function

: of type num—o and nis a value of type num. The 1dea, 18 that the function

f will glve the sequence of values in the hst f(O) erl be the ﬁrst value f (1)
. will be the second value, and so on. The second component of a pair (fin)
representing a list will be a number 7 giving the length of the list represented.

- The set of values used to represent lists can not be simply the set of all pairs o
o of type (num—>a) X num. The pairs used must be restricted so that each list -

-~ has a unigue representation. The one-element list [42], for example, will be
- represented by a pair (f, 1), where f(0)=42. But there are an infinite number
"~ of different functions f:num—num that satisfy the equation f(0)=42. To
- make the representation of [42] unique, some ‘standard’ value must be chosen

""'_*}for the value of f(m) when m > 0. The predicate Islist_REP defined below =

- uses the standard value ez: a T to specrfy a set of palrs contarnlng a umque -
! representatlon for each hst S -

t— ls_hst REP(f,n) Vm m>n D (fm—e:caT)

If a palr (f, n) satisfies Is.list_ REP ‘then for m < n the value of f(m) will
be the correspondlng element of the list represented. For m > n, the value

. of f(m) will be the standard value ez.T. With this representation, there i 1s,' SRR

exactly one pair (f, n) for each finite-length list of values of type a.
It is easy to prove that F 3f n. Is_hst_REP(f,n), since Is_list. REP holds of

the pair (An.e2.T,0). A type deﬁmtlon axiom of the usual form can therefore o

“be introduced for the type (a)list:

F— 3 f (a)lzst—+((num—>a) X num)
(Val az.f o —-f a2 D al—ag) A (Vr. Ilest_REP r = (Ja. r_f a))

- and the abstractlon and representatlon functlons

~ABSist: ((num—m) X num)-—>(a)lzst | and i
REP_hst (a)lzst—>((num—>a) X num)

R V: ‘can be deﬁned based on the type deﬁmtlon ax10m in the usual way.

5.2, 2 Derlvmg the Ax10mat1zat10n of (a)lzst
| '.The abstract axiomatization of hsts W111 be based on two constructors
Nil: (a)lzst and ~ Cons: a—»(a)lzste(a)hst

 The constant Nil denotes the empty list. The functlon Cons constructs lists -
~ in the usual way: if h is a value of type a and t is a list then Cons h t denotes

' the hst with head h and tall t

The deﬁmtlon of N|I is - .
- l‘ Nil = ABS llst(()\n nUm E:E . T) 0)

- This equation simply deﬁnes Nil to be the list Whose representatlon is the pair
- (£,0), where f(n) has the value ez.T for all n. | '
‘The constructor Cons can be defined by first deﬁnlng a correspondmg fune-

~ tion Cons_REP Whlch performs the Cons—operatlon on list representatlons 1

. :} ' The deﬁnltlon 18:.
l— Cons_REP h (f, n) = (()\m (m—O = h |f(m —-1))) n+ 1)

h i ‘The functlon Cons REP takes a value h and pau' (f,n) representlng a hst
~ and yields the representation of the result of inserting h at the head of the -
- tepresented list. - This result is a pair whose first component 1s a function

. yielding value h when applied to 0 (the head of the resulting list) and the value
“given by f(m—1) when applied to m for all m>0 (the tail of the resulting list).
The second component is the length n+1 one greater than the length of the_

1nput list representation. *

.- Once Cons_REP has been deﬁned 1t is easy to deﬁne Cons The deﬁnltlon .
. 13: . . . E

+ Cons h t= ABS_hst(Cons REP h (REP_llSt t))

_-',The functlon Cons defined by this equatlon s1mply takes a value h and a list |
t, maps t to its representation, computes the representation of the desired
result using Cons_ REP, and then maps that result back to the corresponding

.~ abstract list.

~Once Nil and Cons have been deﬁned ‘the followmg abstract axiom for lists
can be derlved by formal proof S : : . |

t-Va:f fn. (fn(Nll)—.'c)/\(Vht fn(Consht)—f(fn t)ht) () |

This axiom is analogous to the prmntlve recursion theorem for natural num-

. bers, and is an example of the general form of the theorems which will be used - -

in Sect1on 7 to characterize all recursive types. Like the primitive recursion -
theorem, the abstract axiom for lists asserts that functions can be uniquely =
‘defined by primitive recursion. Once this theorem has been derived from the
~ type definition axiom for lists and the definitions of Cons and Nil, all the usual
. propertles of lists follow without further reference to the way hsts are defined.
~ The axiom (9) for lists can be proved formally from the type definition for
~(a)list. Full detalls wﬂl not be glven here ‘but the proof is comparatlvely

‘simple. The existence of the function fn in theorem (9) follows by demon-
strating the existence of a corresponding function on list representations. This

function can be defined by primitive recursion on the length component of the

representation by using the primitive recursion theorem (8) for natural num-

bers. The uniqueness.of the function fn in the abstract axiom for lists can
‘then be proved by mathematlcal 1nductlon on the length component of list
'representatlons - : o

5. 2 3 Theorems about (a)lzst o

~ Once the abstract axiom (9) for hsts has been proved the following three |
theorems can be derlved from it: » , -

}- Vht. -1(N|| = Cons h t) Dl - -
I‘ Vhl h2 tl t2 (Cons h1 tl Cons h2 tg) D) ((hl = h2) /\ (tl = t2))
- FVYP.(P(Nil) A VL. P> Vh. P(Cons ht)) DVILPI |

- These three theorems are ana.logous to the Peano postulates for the natural |

numbers derived in Section 5.1.2. The first theorem states that Nil is not -
equal to any list constructed by Cons. The second theorem states that Cons is
one-to-one. And the third theorem asserts the valldlty of structural 1nduct10n

on llsts

6 Two Recurswe Types of Trees

Thls sectlon descnbes the formal deﬁnltlons of two dlﬂ'erent loglcal types |
f Whlch denote sets of trees. First, a type tree is defined which denotes the set o

~ of all trees whose nodes can branch any (finite) number of times. This typeis -
“then used to define a second logical type of trees, (a)T'ree, which denotes the

£ set of labelled trees. These have the same sort of structure as values of type
R ‘tree but they also have alabel of type o associated with each node. .
- The type (e)T'ree deﬁned in this section is of interest because each loglcal. B

| ‘type in the class of recursive types dlscussed in Sectlon 7 can be represented by
- some subset of it. Once the type of labelled trees has been defined, it can be

‘used (along with the type one and the type operators x and +) to construct
systematically a representation for any concrete recursive type.. This avoids

 the problem of having to find an ad hoc representation for each recursive type, -
and so makes it possible to mechamze efﬁc1ently the formal deﬁmtlon of such

| . types

| 34 o

- 6. 1 The Type of Trees. tree

'Values of the logical type tree deﬁned in thls section will be finite trees whose | B

internal nodes can branch any finite number of times. These trees will be
ordered. That is, the relative order of each node’s immediate subtrees will

~ be important; and two similar trees which differ only in the order of their

: subtrees Wlll be consrdered to be drﬁ'erent trees

6. 1 1 The Representatlon and Type Deﬁmtlon |

- Trees will be represented by codmg them as na,tural numbers each tree will -
‘be represented by a unique value of type num. The smallest possible tree

consists of a single leaf node. with no subtrees, it will be represented by

~ the number 0. To represent a tree with one or more subtrees, a function
node_REP:(num)list—num will be defined which computes the natural num-

' . ber representing such a tree from a list of the numbers which represent its

subtrees. The function node_REP will take as an argument a list / of num-

* bers. If each of the numbers in the list represents a tree, then node_REP I will

" represent the tree whose subtrees are represented by the numbers in . .

-~ Consider, for example, a tree with three subtrees: ti, t2, and t3. Suppose

E -that the three subtrees t1, i3, and t3 are represented by the natural numbers
t 7, a,nd Ic respectlvely ' : :

represented by i represented by _7 | represented by &
‘The number representmg the tree. Whlch has t1, i, a,nd i3 as subtrees will

then be denoted by node._ REP[z],k‘]

represented by node REP[z J,k]

~ where the conventional list notation [i; j; k] is a,'synta,ctic”abbreviation for the
list denoted by Cons i (Cons j (Cons & Nil)). |

~ Since node_REP takes a list of numbers as a,rguments it can be used to
‘compute the code for a tree with any finite number of immediate subtrees.
- Thus, using node_REP, the na,turel number representing a tree of any shape

. 35 o

can be computed recursively from the natural numbers representing its sub-
~ trees. The only property that node_REP must have for this to work is the
property of being a one-to-one function on lists of numbers:

Vi 13. (node_REP I; = node_REP) D (I; = I») (10)

This theorem asserts that lf node REP computes the same natural number
from two lists {; and /5, then these lists must be equal and therefore must
consist of the same finité sequence of numbers. If node_REP has this prop-
erty, then it can be used to compute a unique numerical representation for
every possible tree. It remains to define the function node_REP such that
theorem (10) holds.

One way of formally defining node_REP is to use the well-known codlng
function (n,m) — (2n + 1) x 2™ which codes a pair of natural numbers by
a single natural number. Using this coding function, node_REP can be defined
by recursion on lists such that the following two theorems hold:

" I node_REP Nil =20

F node_REP {Cons n t) = ((2xn)+1) x (2 Exp (node_REP t)) (11)
. These two equations define the value of node_REP I by ‘primitive recursion’
on the list {. When [is the empty list Nil, the result is 0. When [is a non-
empty list with head n and tail ¢, the result is computed by coding as a single
natural number the pair consisting of n and the result of applying node_REP
recursively to ¢. Primitive recursive definitions of this kind can be justified
by formal proof using the abstract axiom (9) for lists derived in Section 5.2.2;
the two theorems (11) can be derived from an appropriate instance of this
axiom and a non-recursive definition of the constant node_REP.

Theorem (10) stating that node_REP is one-to-one can be derived from the
two theorems (11) which define node_REP by primitive recursion. The proof
1s done by structural induction on the lists /; and I, using the theorem shown
in Section 5.2.3 stating the validity of proofs by induction on lists.

The function node_REP can be used to compute a number to represent
any finitely branching tree. To make a type definition for the type constant
iree, a predicate on natural numbers Is_tree_REP:num—bool must be defined
which 1s true of just those numbers representing trees. This predicate will
be defined in the same way as the corresponding predicate was defined in
Section 5.1.1 for the representation of numbers by individuals: Is_tree_REP n

~will be true if the number n is in the smallest set of natural numbers closed

under node_REP.

36

The formal definition of Is_tree_REP uses an auxiliary function Every, defined
recursively on lists as follows:

F Every P Nil =T
- Every P (Cons ht) = (P h)AEvery Pt

These two theoréms define Every P [to mean that the predicate P holds of
~ every element of the list . Using Every, the predicate Is_tree_REP is defined
as follows: ’

I ls_tree_REP n = VP.(V¢l. Every P ¢l D P(node_REP t1)) D P n

This definition states that a number n represents a tree exactly when it is an
element of every subset of num which is closed under node_REP. It follows
that the set of numbers for which Is_tree_REP is true is the smallest set closed
under node_REP. This set contains just those natural numbers which can be
computed using node_REP and therefore contains only those numbers which
represent trees. _ | _

To use Is_tree_REP to define a new type, the theorem F 3n. ls_tree_.REP n
must first be proved. This theorem follows immediately from the fact that
Is_tree_REP is true of 0, i.e. the number denoted by node_REP Nil. Once this

theorem has been proved, a type definition axiom of the usual form can be
introduced:

F 3f:tree—num.
(Vai az.f a1=f as D ay=as) A (Vr.ls_tree_.REP r = (3a.r=f a))

along with the usual abstraction and representation functions:
ABS_tree:num—tree and vREP_tree:tree——mum.

6.1.2 The Axiomatization of tree

The abstract axiom for ¢ree will be baséd on the constructor:
node:(tree)list—iree

The function node builds trees from smaller trees. If ¢/ :(tree)list is a list of
trees, then the term node ¢/ denotes the tree whose immediate subtrees are
the trees in the list 1. If ¢/ is the empty list of trees, then node ¢/ denotes the
tree consisting of a single leaf node. Using node, it is possible to construct a

37

tree of any shape. For example, the tree:

s denoted by the expressmn
node[node Nil; node Nl| node[node Nil; node NIl]]

: _~An auxiliary functlon Map will be used in the formal definition of the con-

\—j" “structor node. The function Map is the usual mapping function for lists; it i

takes a function f:a—p and a list I:(a)list and yields the result of applying
f to each member of I in turn. The recursive definition of Map is:

R MapfNIl = NI N
'+ Map f (Cons h t) = Cons (f h) (Map f t)

Us1ng Map and the function node_ REP (num)lzst-—mum deﬁned in the pre--
~ vious sectlon the formal deﬁnltlon in logic of node 1s: '

F node tl = (ABS tree(node REP(Map REP_tree tl)))

The constructor node deﬁned by this equation takes a list of trees I, applies

node_REP to the corresponding list of numbers representing the trees in tl,

and then maps the result to the corresponding abstract tree.

- The following two important theorems follow from the formal deﬁmtlon of -
 node given above; they are analogous to the Peano postulates for the natural

B numbers, and are used to prove the abstract axiom for the type tree '

Rt '(node th = node tls) S (th = tlg)
i— VP (th Every Ptl> P (node t1)) D Vi. P t

" The ﬁrst of these theorems states that the constructor node is one—to—one
~ This follows directly from theorem (10), which states that the corresponding

function node_REP is one-to-one. The second theorem shown above asserts
the validity of induction on trees, and can be used to justify proving proper-
ties of trees by structural induction. This theorem can be proved from the
definitions of node and Is_tree_REP and the fact that ABS_tree and REP_tree
- are isomorphisms relating trees and the numbers that represent them.

38

The abstract ax10mat1zat10n of the deﬁned type tree consists of the single
- theorem shown below L '

FVf. 3 fn. th fn(node tl) _f (Map fn tl) o | (12)

; Thls theorem is. analogous to the pr1m1t1ve recurs10n theorem (8) for natural
numbers and the abstract axiom (9) for lists. It asserts the unique existence
of functions defined recursively on trees. The universally quantified variable f
Tanges over functions that map a list of values of type « and a list of trees to a
~-value of type a. For any such function, there is a unique function fn:tree—a
that satisfies the equation fn(node tl) =f (Map fn tl) tl. For any tree
(node tl), this equation defines the value of fn(node tl) recursively in terms
of the result of applying fn :to each of the immediate subtrees in the list ¢l.

'd

6.1.3 An Outhne of the Proof of the Ax1om for tree

It is stralghtforward to prove the uniqueness part of the abstract axiom for
trees; the uniqueness of the function fn in theorem (12) follows by structural
induction on trees using the induction theorem for the defined type tree.
The existence part of theorem (12) is considerably more difficult to prove. It
~follows from a slightly weaker theorem in which the list of subtrees tl is not
an argument to the unlversa]ly quantlﬁed functlon f '

- Vf Efn Vil. fn(node) = f (Map fn tl) | (13)
This Weaker theorem can be proved by first deﬁnlng a helght functlon

Ht tree—+num

_on irees and then provmg that for any number n, there exists a function
fun which satisfies the desu‘ed recursive equatron for trees whose height is

bounded by n:

FVfn. EIfun th (Ht(node tl) < n) D IR " ”
(fun(node t) = f (Map fun tI)) (14)

The main step 1n the proof of this theorem 1S an 1nduct10n on the natural
" number n. : ' '

Theorem (14) can be used to deﬁne a higher order function fun which yields
approximations of the function fn whose existence is asserted by theorem (13).
For any n and f, the term (fun n f) denotes an approximation of fn which
satisfies the recursive equation in theorem (13) for trees whose height is no

greater than n. This is stated formally by the fo_llOWi‘ng theorem:

- FVYfntl (Ht(node th<n) O SR '
(fun n f (node tl) = f (Map (fun n f) tl)) (15)
-The approximations of fn constructed by fun have the following important
property: for any two numbers n and m, the corresponding functions con-
structed vby fun behave the same for trees whose height is bounded by both
n and m. This property follows by structura,l induction on trees and is
expressed forma,lly by the theorem : v

F Vi nmf (Htt)<nA(Htt)<mD (fun nft_fun mft) (16)

_ Theorem (13) asserts the ex1stence of a function fn for any glven f . the |
hlgher order function fun can be used to explicitly construct this function

fn from the given function f. For any f, the term At.fun (Ht(node [t])) f ¢ .
denotes the function which satisfies the desired recursive equation. An outline

of the proof of this is as follows. Specializing f, n, and ¢ in theorem (15) to
~ f, Ht(node[node tl]), and ¢l respectlvely y1elds the followmg 1mphcatron

F Ht(node tl) < Ht(node[node t) D
- fun (Ht(node[node tl])) f (node tl)
‘= f(Map (fun (Ht(node[node) f) tl)

- The helght function Ht has the property: F Ve.Ht ¢ < Ht(node [t]). The.
antecedent of the implication shown above is therefore always true, and the

theorem can be s1mphﬁed to:

l— fun (Ht(node[node tl])) f (node tl)
= f(Map (fun (Ht(node[node tl])) Ht)

 The property of fun expressed by theorem (16) 1mp11es that the above theorem o
s equlvalent to: : : . e

l— fun (Ht(node[node tl])) f (node tl) -
o f(Map (At. fun (Ht(node[t])) f t) tl)

Whlch is 1tself equlvalent (by ﬁ-reductlon) to:

F (/\t fun (Ht(node[t]))f t)(node tl) -
: f(Map (At. fun (Ht(node[t])) f ¢) t1)

Theorem (13) follows immediately from this last result The stronger
theorem (12), which axiomatizes the defined type tree, then follows from
theorem (13) by a relatrvely stralghtforward formal proof

6.2 The Type of Labelled Trees' (a)Tree
~ This sectlon outlines the definition of the type (a)Tree Wh1ch denotes the set} v

 of labelled trees. Labelled trees of the kind defined in this section have the
- same sort of general structure as values of the logical type tree defined in the .

- previous section_. The only difference is that a tree of type (a)Tree has a value
- or ‘label’ of type o associated with each of its nodes. It is therefore compar-
atively simple to define the type (a)T'ree, since the values of the structurally

s1m11ar type tree can be used n 1ts representatmn ‘ '

| 6 2. 1 The Representatmn and Type Deﬁmtlon :

" The representatlon of a labelled tree of type (a)Tree Wlll be a pair (t l) Where
't is a value of type tree giving the shape of the tree being represented and I
is a list of type (a)list containing the values associated with its nodes. The -
~values in the list { will occur in the sequence which corresponds to a preorder
traversal of the labelled tree being represented Consrder for example, the
labelled tree shown below ' :

3 4 7T 8
"This tree has a natural number associated with each node and can be rep-
‘resented by a pair (¢,1) of type tree x (num)list. The first component ¢ of this
pair will be the value of type tree whose structure' corresponds to the above
picture. The second component | will be a list of length eight containing the
numbers associated with the nodes of the correspondrng labelled tree. The
" numbers in this list will occur in the order [1;2;3;4;5;6;7;8], _corresponding -

~ to a preorder traversal of the labelled tree bemg represented

Any a-labelled tree can be s1m1larly represented by a pair of logical type
| tree x (a)list; but not every such pair represents a tree. For a pair (¢,1) to
- represent a labelled tree, the length of the list I must be the same as the
number of nodes n the tree t. This can be expressed in log1c by defining two
~ functions:

Length: (a)lz’st-'-énum | and Size: tree—mum

which compute the length of a list and the number of nodes in a tree respec-
t1vely The function Length can be deﬁned recursrvely by using the abstra,ct

"‘41‘.,

an(iom (9) for lists to derive the following two'equations:
FlengthNil =0
I- Length (Cons h t) = (Length t) +1

" The functlon Slze can be defined by first deﬁmng a recursive functlon on hsts_ -
Sum:(num)list—num which computes the sum of a list of natural numbers:

FSumNi =0
t—Sum (Consnl) = n+(Sum I)

- “a.nd then usmg the abstract axiom (12) for the deﬁned type tree to denve the
followmg recurswe definition of Size: , o

I— Slze(node tl) = (Sum(Map Slze tI)) +1

Usmg the functions Length and Snze the values of type tree X (a)lzst that

‘represent. labelled trees can be specified by the predlcate Is_Tree. REP defined - :

- as follows

F Is_Tree REP(t I) = (Length = Snze t)

This predlcate is true of just those pairs (t 1) where the number of nodes in

" the tree ¢ equals the length of the list I. It is therefore true of precisely those

' _' values of type tree x (a)list which can be used to represent labelled trees.
For any value v:q, the predlcate Is_Tree. REP holds of the palr . '

(node N|l ['v])

: ‘From thls it 1mmed1ately follows that t- Hp ls_Tree REP p. The follow1ng type N
- definition axiom can therefore be 1ntroduced to deﬁne (a)Tree -

- l— 3 f (a)Tree—->(tree X (a)lzst)
(Va1 as.f al_f az :) al_ag) A (Vr Is Tree REP r= (EJa r._f a))

- The assoc1ated abstractlon and representatlon functlons

| ’ABS_Tree (tree X (a)lzst)—+(a)Tree an‘d -
REP_Tree (a)Tree——>(tree X (a)lzst) :

 can then be deﬁned in the usual Way (as descnbed in Sectlon 3 3) ;

6.2. 2 Derlvmg the Ax1omat1zat10n of (a)Tree

‘The abstract axiom for (a)Tree is based on the constructor

Node a—>((a)Tree)lzst—-+(a)Tree

. 'Whlch 1S analogous to the constructor node for tree If visa value of type a,
and [is a list of labelled trees, then the term (Node v 1) denotes the labelled
tree whose immediate subtrees are those occurring in ! and whose root node is
- labelled by the value v. The function Node can be used to construct labelled' ’
'dtrees of a,ny shape For example ‘the tree: . A

| 3 5 1 |
is denoted by the term: Node 2 [Node 3 Nil; Node 5 Nil; Node 7 Nill.
- The formal deﬁn1t1on of Node uses an auxﬂlary funct1on

Flat: ((a)lzst)lzst——»(a)lzst

" which takes a list of lists and y1elds the result of appending them all together
into a smgle hst The recursive deﬁn1t1on of Flat 1s:

CFFatNil = Nil
I Flat (Cons ht) = "Append h (Flat-t-)
Where Append is deﬁned (also recurswely) by

| l—Append Nill S o -l‘:"' .
F Append (Cons h ll) l, = Cons h (Append 11 Ig)

Using Flat and the mapping function Map deﬁned above in Section 6.1.2,
the formal deﬁn1t10n of the constructor Node 1S given by the followmg theorem:

F Node v 1= ABS_Tree((node(Map (Fst o REP_Tree) D),
((Cons v (Flat(Map (Snd o REP_Tree) l)))))

'This deﬁn1t1on uses REP_Tree to obtam the representainon of each labelled

~ tree in the list I. This yields a list of pairs representing labelled trees. The

function node is then used to construct a new tree whose subtrees are the tree
components in this list of pairs, and Flat is used to construct the corresponding

43

list of node—values The result is then mapped back to an abstract labelled
tree usmg the abstraction functlon ABS_Tree. - : - S

Using the constructor Node v [defined above the abstract axiom for
(a)Tree can be Wntten |

| I—Vf Hlfn V'utl fn(Node vtl) = f(Map fn tl) 'utI e (17); S

This theorem is of the same general form as theorem (12) the abstract ax10m'”
for the defined type tree. It states the uniqueness of functions defined by

‘primitive recursion’ on labelled trees. The proof of this theorem is straight- - P

~ forward, but it ‘Tequires some tricky (and umnterestmg) lemmas mvolvmg the
-'part1t1on1ng of lists. Details of the proof will therefore not be given here. The

~ general strategy of the proof is to use the abstract axiom for values of type - :
~ tree to define a recursive function on representations which 1mplements the

f functlon fn asserted to exist by the axiom 7).

a4

7 Automatlng Recurswe Type Deﬁmtlons

Thls sectlon outhnes a method for formally deﬁmng any 51mple concrete
recursive type in higher order logic. This method has been used to implement
an efficient derived inference rule in HOL which defines such recursive types
©automatically. The input to this derived rule is a. user-supplied informal®

speclﬁcatlon of the recursive type to be defined. This type specification is

“written in a notation which resembles a data type declaration in functional

- programming languages like Standard ML [9]. It simply states the names of
~ the new type’s constructors and the logical types of their arguments. The -

~“output is a theorem of hlgher order logic which abstractly characterizes the
properties of the desued recursive type——l e.a denved ax1omatlzat10n of the .
” An overview of the algonthm used by thls programmed 1nference rule to
define a new recursive type is shown in the dlagram below. The algorithm
-_,'follows the three steps for deﬁmng a new loglcal type descnbed in Section 3.1.

R ,mforma,l spe’c1ﬁcat10n of rty' 2
| Cbnstruct a repfesentation using

the defined types one, X, + and
(a)T'ree. ‘ -

. 1 Subset predicate: All P,.,,

Postulate a type definition axiom
for rty, and define ABS and REP.

' Va. ABS(REP a)=a
k Vr.All Pryy = (REP(ABS r)=r))

Y

Prove an abstract axiom for rty.

. va,bS‘tract.aXiom for rt_ly L

~5In this context, z'nformdl means not in the language of higher order logic.

In the first step, an appropriate representation is found for the values of the |
“recursive type rty to be defined. This representation is always some subset:
of a substitution instance-of (a)Tree—i:e. a subset of some type (ty)T'ree of -
, general trees labelled by values of type ty. The type ty of labels for these trees
- is built up systematlcally using the type constant one and the type operators
'x and +. The output of this stage is a ‘subset predicate’ ‘which defines the set

of labelled trees used to represent values of the new type rty. This predlcatet -

, has the standard form: ‘All Pyyy’, where Pny is a predicate whose exact form |

s determined by the specification of the type to be defined. (The meaning - N
of ‘AII’ is explained below in Section 7.3.2.) No logical 1nference needs to be:

‘done in this step; so the ML code whlch 1mplements it In the HOL system is -
‘L qulte fast. " S S : : : . o
~ " In the second step, a type deﬁmtlon axiom is mtroduced for the new type,

~ based on the subset predicate All Priy. The associated abstraction and rep-
*resentation functions ABS and REP are then defined and proved to be isomor-
* phisms between the new type rty and the set of values specified by All Py

. The output of this stage consists of the two theorems about ABS and REP

shown in the diagram above. The proofs done in this step are easy and routine
(see Section 3.3), and their mechamzatlon in HOL 1s therefore efﬁc1ent and

- straightforward. . , -
In the final step, an abstract axiom for the new type rty is derrved by L

formal proof from the definition of the subset predicate All Pty and the two
~ theorems about ABS and REP proved in the previous stage. This is the only
step in the algorithm where a non-trivial amount of logical inference has to be

‘done. The ML implementation of this step therefore uses the ‘optimization’
strategy for HOL derived inference rules discussed in Section 2: a pre-proved

. general theorem about recursive types is used to reduce to a minimum the
- .amount of inference that has to be done at ‘run time’ to derive the desired
result This pre—proved theorem has the form shown below -

= VP (,3 lS 1somorph1c to: ‘All P) D (abstract axrom for ,8)

e 'Informa,lly, this theorem states that any type B which is represented by a set“ e

of labelled trees “All P’ satisfies an abstract axiomatization of the required - -

form. By spec1ahzmg P in this theorem to the predicate P,-ty constructed

in the first step, the abstract axiom for rty follows simply by modus ponens =
~ (using the theorems about ABS and REP derived in the second step) and a

relatively small amount of stra,lghtforwa,rd 31mp11ﬁcat10n ,
A detailed descrlptlon of the HOL implementation of this algonthm for ‘
defining recursive types is beyond the scope of this paper; but the sections

which’ follow give an overview of the loglcal basm of thls 1mplementat10n
In Section 7.1, the syntax of informal type specifications is described, and
~ some simple exa,mples are given of type specifications written in this notation.
- Section 7.2 then describes the general form of the abstract axioms that are
" derived by the system. Section 7.3 explalns how appropriate representatlons :
~for these types can be systematlcally constructed from their informal type
- specifications. Finally, Section 7.4 gives the general theorem stating that -

. any recursive type represented 1n the way described i In Section 7.3 satlsﬁes

“an abstract axiom of the form shown in Sectlon 7 2 An example of the

T N apphcatlon of thls theorem is also grven RN

: A7 1 Informal Type Spec1ﬁcat10ns

- Every logical type which can be deﬁned by the method outhned in the follow—
ing sections can be described 1nformally by a type speczﬁcatzon of the following
’ general form: U , o o

(al,.-.. an)rty = C‘1‘:ty} tykl N I Cm W ... tyem (18)

~ where each tyl is either an emstmg logical type (not ‘containing rty) or is
‘the type expression (1, ..., an)rty itself. This equation specifies a type
(al, ., @n)rty with n type variables oy, ..., an, Where n > 0. If n=0 then rty
is a type constant; otherwise rty 1s an n-ary type operator. The type speci-
fied has m dlstlnct constructors Cy, ..., C,,, where m > 1. Each constructor
C; takes k; arguments where k; > 0; and the types of these arguments are
given by the type expressions ty’ for 1 < j < k;. If one or more of the type
~ expressions ty’ is the type (a1, ..., an)rty itself, then the equation specifies a

recursive type. In any spec1ﬁcat10n of a.recursive type, at least one constructor
must be non-recursive—i.e. all its arguments must have types which already

 exist in the logic.

The logical type spec1ﬁed by equatlon (18) denotes the set of all values
which can be finitely generated us1ng the constructors Ci, ..., Cy, where each
constructor- is one-to-one and any two different constructors yield different
‘values. Le. the type specified by (18) is the initial algebra [2] with constructors
Ciy o5 G Every value of this logical type is denoted by some term of the
form: C zl ... a: ¢ where 1:'7 is a term of logrcal type ty7 for1<j<k;. In

8Some of the nota.tlon used i in t}us sectlon is. adapted from. Brrd a.nd Wadler’s clear
descnptxon of the syntax of type deﬁmtlons in their excellent book [1] on functional
programlmng ' - T Lo :

o4

addition, any two terms: C; 2} ... zF and ; zl ... 257 denote equal values
exactly when their constructors are the same (i.e. 7 =) and these constructors
are applied to equal arguments (that is, 2} = 7 for 1 < n < k).

7.1.1 Some Examples of Type Spemﬁcatlons

The two simple recursive types num and (a)list that were defined in Sectlon 5
are both examples of types that can be described by type specifications of the
general form illustrated by (18) above.

The specification of the type num of natural numbers is the simple equation
shown below:

num == 0 | Suc num

This equation specifies the type constant num to have two constructors:
0:num and Suc:num—num. The type num which is described by this type
specification denotes the set of values generated from the constant 0 by zero
or more applications of the constructor Suc—i.e. the set of values denoted by
terms of the form: 0, Suc(0), Suc(Suc(0)), ... etc.

The type specification for the type (a)list of finite lists is sumlar to the one
given above for num. It is:

(a)list == Nil | Cons a (a)list

This equation says that the type (a)list denotes the set of all values generated
by the two constructors: Nil:(a)list and Cons:a—(a)list—(a)list.

A slightly more complex example is the recursive type btree, described by
the type specification shown below:

bitree == Lleaf num | Tree biree btree

This equation specifies a type of binary trees whose leaf nodes (but not
~ internal nodes) are labelled by natural numbers. When defined formally
in higher order logic, this type has two constructors: Leaf:num—biree and
Tree:biree—btree—biree. The function Leaf constructs leaf nodes; if n is a
value of type num, then (Leaf n) denotes a leaf node labelled by n. The
constructor Tree builds binary trees from smaller binary trees; if {; and ¢, are
binary trees then (Tree ¢; ¢2) denotes the bmary tree with left subtree t; and
right subtree t,. .

In addition to recursive types, simple enumerated and ‘record’ types can
also be specified by equations of the form given by (18). For example, the

48

type constant one and the two type operators prod and sum whose formal

" definitions were given 1nvSect10n 4, can be 1nforrna11y spec1fied by the three

equations shown below:

~ome = one .

e I
N "'(av B)sum = Inl o A '“’ ?3

-The first of these spec1ﬁcat10ns simply states that one is the enumerated type
with’ exactly one value: the value denoted by the constant one. The second

- specification states that every value of type (a B)prod . is denoted by some

 term of the form (pa|r a b), i.e. an ordered pair with first component a:«

~ and second component b:4. The third equation states that every value of

~ type (a, ﬂ)sum is either a left 1n3ect10n constructed by Inl or a right 1n_]ect10n :

_constructed by Inr. o ‘ - -

~~ Many more examples of types—both recursive and non—recursrve—Whlch _

- can be specified by equations of the form given by (18) can be found in books -
on functional programming. (See, for example, chapter 8 of [1].)

72 f.For'mulatin"gfAbstract, Axioms ‘Vfo‘r"Recpursive Types

The input to the HOL programmed inference rule which defines types is, in
general an mformal spec1ﬁcat10n of the form _

(al, ,an)rty | “Cltyl L tyh -”l SN Cm tynz- typr

‘Each type (al, an)rty spec1ﬁed by an equatlon of th1s form can be ab-
. stractly characterlzed by a single theorem of higher order logic. This theorem
is the output of the HOL derrved rule for deﬁmng types and has the followmg
general form SRR : :

»‘:-for fm El'fn (al, an)rty—>ﬁ S | .
Va:% ¥ tofn(Cr o2 RERK: 1) =fi (fn :81) (fn x’fl) :L‘l m’fl A
i o | s | (19) ;

Vel .- gkm fn(C :l':i .. k"‘) fm (fn:c) (fn :ck"n) z,,
dWhere the rrght hand s1des of the equatlons 1nclude recursive apphcatlons '
(fn @) of the functron fn only for varrables z} of type (ay, ..., an)rty.

| ;49,;';‘ :

‘Theorem (19) states that for any m functions f1, .., fm there is a uniQue
function fn which satisfies a ‘primitive recursive’ deﬁnltlon whose form is
“determined by the given functions fi, ..., fm. This is an abstract character-
ization of the type (a1,...,ap)rty: it states the essential properties of the

©type, but does so Wlthout reference to the way it is represented. It follows -

from this theorem that every value of type (ai,...,an)rty is constructed by
“one of the constructors Ci, ..., Gy, that each of these constructors is one-

o ‘to-one, and that different constructors yield different values. The proof that .

- theorem (19) implies these properties of (al, .. a,,)rty and the constructors |
~ Ci, ..., G can be outlined as follows. e = e
-The fact that every value of type (al, a,,)rty is constructed by one of

" the functions Cy, ..., Gy follows from the umqueness part of theorem (19).

: Suppose there is some value v say, such that v;é(C zl .. ek ;for1<i<m.
Ie. v is not constructed by any C;. One could then deﬁne two functions f
“and g of type (ai,...,a,)rty—bool Wh1ch y1eld the boolean T for all values
- constructed by any constructor C;: : : |

. Va} FoR(Cal 2l = g(Ca: ' ’°) T (20)"

for 1 <i < m, and When appl1ed to v yield drfferent results f v = T and - B

gv=F. If f and g are defined this way then f+#g, since f v#g v. But from
the uniqueness part of theorem (19) it follows that if f and g satisfy (20) then
~ f=g- Therefore no such value v exists, and every value of type (1, - an)rty _
is constructed by some C;. . ‘

The fact that the constructors C1, eer, Gy are one—to—one can be proved by -
using theorem (19) to define a ‘destructor functlon D; for each ¢F such that :

II-D(C:c . z) (a:,,

- For each constructor C,, such a functlon can be deﬁned by appropnately
- specializing the correspondlng quantified variable fiin theorem (19). From
 the property of the destructor D shown above 1t is then easy to prove that _

l-(C:v . k)_(zyz' yz)j(:”a —yzA' A:B':yl)

Whrch states that C; is one—to—one as desued : o .

Fmally, the fact that different constructors yield dlﬂ'erent values can be ‘
proved by approprlately spec1allzlng the umversally quantified functions fi,
. fm in theorem (19) to obtaln a theorem assertmg the proposrt1on shown .

below

Sl fn(c o af)=i fol<i<m

This states the existence of a function fn which yields the natural number
¢ when applied to values constructed by the ith constructor. This means
that any two different constructors C; and C; yield different values of type
(o, ..., an)rty, since applying fn to these values gives different natural num-
bers. . o '

Using theorems of the form illustrated by (19) to axiomatize recursive types
1s closely related to the initial algebra approach to the theory of abstract data
types [2,5]. This approach is very elegant from a theoretical point of view,
but it is also of practical value in the HOL mechanization of recursive type
definitions. Each recursive type is characterized by a single theorem, and all
the theorems which characterize such types have the same general form. This
uniform treatment of recursive types is the basis for the efficient automation
of their construction in HOL. It allows the axiom for any recursive type to be
quickly derived from a pre-proved theorem stating that axioms of this kind
hold for all such types. Furthermore, it makes it possible to derive useful
standard properties of recursive types (e.g. structural induction) in a uniform
way, with relatively short formal proofs and therefore by efficient programmed
inference rules. ‘ ‘

7.3 Constructing Representations for Recursive Types

This section outlines a method by which a representation can be found for
any type specified by an equation of the form described in Section 7.1. Each
representation is an appropriately-defined subset of a type constructed using
the type constant one, the type operators X and +, and the type («)T'ree.
A simple example is first given in Sections 7.3.1 and 7.3.2; the method for
finding representations in general is then outlined in Section 7.3.3.

7.3.1 An Example: the Representation of Binai‘y Trees

Consider the type btree described above in Section 7.1.1. This type was
specified informally by:

biree := Leaf num | Tree biree biree

The type biree specified by this equation can be represented in higher order
logic by a subset of the set denoted by the compound type (num + one)T'ree.
This type denotes the set of all trees (of any shape) whose nodes are labelled
either by a value of type num or by the single value one of type one. The idea
of this representation is that each binary tree ¢ of type biree is represented

51 -

by a correspondmg tree of type (num + one)Tree Whlch has both the saine
‘shape as ¢ and the same labels on its nodes as . :
Consider, for example the binary tree (Leaf n) cons1st1ng of a smgle leaf
node labelled by the natural number n. This binary tree will be represented
by a leaf node of type (num + one)Tree labelled by the left injection (Inl n):

o Leafn o esented by _ | .Node (Inl n) Nil
® S . — - . ® -

A binary tree (Tree t; t2) which i is not a leaf node, but has two subtrees 1 N
‘and ¢, will be represented by a tree of type (num + one)Tree which also has
| two subtrees and is labelled by the rlght 1nJect10n (Inr one) | | :

Tree t1 tg L _' R R Node (Inr one) [rl,rg]

" represented by

Y

; Where r1 and r9 are the representatlons of the two blnary trees 4 and iy

- respectively. The ‘dummy’ value (lnr one) is used in this case to label the

- root node of the representation, since the correspondmg binary tree bemg
‘ represented has no- value assocrated Wlth 1ts root node :

7.3.2 Deﬁnmg the Subset Predlcate for btree

To 1ntroduce a type definition axiom for btree a predlcate IsJ)tree_REP must
first be defined which is true of just those values of type (num + one)T'ree
‘which represent binary trees using the scheme outlined above. This predicate
is defined formally by buﬂdmg it up from two auxiliary predicates: Is_Leaf and
- Is_Tree. These two auxiliary predicates correspond to the two kinds of binary -
~ trees which will be represented, and each one states what the representatlon o
. of the corresponding kind of bmary tree looks like. AR :
" The predlcates Is_Leaf and Is_Tree are defined as follows. Every value in

- the representation is a tree of the form (Node v tl), where v is a label of

~type (num + one) and # is a list of subtrees. If such a tree represents a leaf
. node (Leaf n), then the label v must be the value (Inl n) and the list ¢/ must
~ be empty. These conditions. are expressed formally by the predlcate Is_Leaf .
jdeﬁnedasfollows o | ; | PR oL

l— ls_Leaf v = (Bn v= lnl nA Length tl = 0)

If (Node v tl). rebresents a bin'a‘.ryntree: '(Treertlytg) with two subtrees, then the
- list of subtrees ¢/ must have length two, and the label v must be the value
(Inr one) The deﬁn1t1on of Is_Tree is therefore -
L l— Is_Tree v tl (v -.Inr one /\ Length tl'— 2)

" The two predrcates Is_Leaf and Is_Tree sta,te What klnd of values v and

1 must be for the tree (Node v #l) to be. the root node of legal binary-tree
~_ representation. But if a general tree of type (num+one)Tree in fact represents

a binary tree, then not only its root node but every node it contains (i.e. all

o its subtrees) must also satisfy either Is_Leaf or ls_Tree. This can be expressed .

. formally in log1c by first deﬁnlng a hlgher order function All recurswely on .
—_-._trees as follows o Ca ST |

F All P (Node v tl) = P v tI A Every (AII P) 1158

N . .Usmg AII the predlcate ls_btree REP can then be deﬁned such that it is true

of a tree t exactly when the label and subtree list of every node in ¢ satisfies
~either Is_Leaf or Is_Tree. The definition of Is_ btree REP 1s simply:

F ls_btree REP t= AII (/\v Atl. ls_Leaf vt v Is_Tree vitl) t

Th1s pred1cate exactly spec1ﬁes the subset of (num+0ne)Tree whose values '

_ represent binary trees, and can therefore be used to introduce a type definition
~axiom for the new type btree in the usual way. All the predicates which specify
_representations of recursive type are deﬁned usmg AII In exactly the way shown
“above for Is_btree REP ' - '

) '7 3.3 ”Fmdmg Repres'ent‘ations‘ in General

“The representatmn of binary trees by a subset of (num + one)Tree 1llustrates

| the general method for finding representations of any type specrﬁed by an
~equation of the form descnbed in Section 7.1. In general, a recursive type .
specified by an equation of this kind denotes a set of labelled trees with a

fixed number of different kinds of nodes. Any such type can therefore be
represented by a subset of values denoted by some 1nstance of the deﬁned
type (a)T'ree of general trees.

Suppose, for example that (o, .. an)rty is spec1ﬁed by

| . - | -
(o, Cvn)ﬂty i= G toh ...ty b] Gty -ty
leleS equation spec1ﬁes a type with m dlﬁ'erent kmds of values correspondmg

~ to the m constructors Cy, ..., C. When this type is. deﬁned formally in

- S

hrgher order loglc each of 1ts va,lues will be denoted by some term of the
form: '

Cial ...zl
Where C;isa constructor and each argument a: is a value of type ty’ for -
1 < j < k;. In the general case of a recursive type, some of the k; arguments to
C; will have existing logical types and some will have the type (a1, ..., an)rty
itself. Let p; be the number of arguments which have existing logical types and
et g; be the number of arguments which have type (e, .. ., ay)rty, Where k; =
Pt q;.- The abstract value of type (ay, ..., a,)rty denoted by C; =} ... xf'
can be represented by a tree. which has q; subtrees and p; values assoc1ated

'Wlth its root: node Thrs is illustrated by the diagram shown below

: "p,; labels ‘

o R p; arguments having
o | ' existing logical types
| | : q; arguments

of type (a1, ..., om)rty

Y

4 srrl)(trees |

' In the generel ca,se_illustrat‘ed by this diagram, the tree representi'ng |

- Ci :B,l :L’zk'

 islabelled ,by p;-tuple of Values.' Each of these values is one of the p; argurnents
~ to C; which are not of type (a1, . . ., an)rty but have types which already exist -

~in the logic. When pi = 0, the representing tree is labelled not by a tuple

~ but by the constant one (as was done for the constructor Tree of biree). And.
X When p; = 1 the representing tree is labelled simply by a single value of the -

_* appropriate type (as was done for the constructor Leaf of btree). The ¢;
. subtrees shown in the diagram are the representations of the arguments to C;.

which have the type (al, an)rty Ifg; =0 then the representmg tree has

' no subtrees.

Each of the m kinds of values constructed by C1, o Cm can be represented
- by a tree using the scheme outlined above. In general, a value obtained using
“the zth constructor C; will be represented by a tree labelled by a tuple of

p; values. The representing type for (ag,..., a.n)rtybwill therefore be a type
expression of the form: .

sum of m products
-

(Ety X eee X ty/) + o+ (ty x - X ty)\)Tree.

v ~
product of p; types product of pn, types

where the ty’s are the existing logical types occurring in the equation which
specifies the new type (a1, ..., ay)rty being defined.

Using this scheme, a predicate Is_rty_REP can be defined to specify a set of
trees to represent (a1, ..., o,)7ty in exactly the same way as the predicate
Is_btree_REP was defined for the representation of btree. The definition of
Is_rty_REP will have the form: :

Flsorty REP ¢t = All (Av. Ml ls.Cyvtl V --- V Is.Cp, v tl) t

where each Is_C; is an auxiliary predicate specifying which trees represent
values constructed. by the corresponding constructor C;. The ith auxiliary
predicate Is_C; is defined as follows. When i # m, the definition is:

ks Ciovtl= .
dzy...zp,.v=Inl(Inr---(Inr(z1,...,2,,)) - -) A Length ¢l = g;
- Tp Inr - - (lnr(pi))-7) AlLeng g
i-1 Inrs

where p; is the number of arguments to C; which have existing logical types,
and g¢; is the number of arguments of type (a,...,an)rty. This definition
states that if a tree (Node v ¢l) represents a value C; @} ... z¥* then it must
~ have the right number subtrees in ¢/ and its label v must be an appropriate

injection of some p;-tuple (of the right logical type, of course). When i = m,
the definition is similar: |

Fls.Cpn v tl = |
dxq...zp,. v =(Inr---(Inr(z1,...,25,_))---) A Length t{ = ¢,
1---Tp (Inr - -- (Inr(z; pm)) ") AlLeng q

m—1 Inrs

The only difference is that the last injection applied is Inr, not Inl.

59

7.4 Deriving Abstract Axioms for Recursive Types

‘The uniform treatment of representations for recursive types makes it possi-
ble to write a HOL derived inference rule which proves abstract axioms for
them efficiently. Every representation is some subset ‘All P’ of an instance
of (a)Tree. A general theorem can therefore be formulated stating that an
abstract axiom of the required form holds for any recursive type represented
this way. This theorem can then be simply 1nstant1ated to obtain an abstract
axiom for any particular recursive type. '

The theorem stating that every recursive type satisfies an abstract axiom
of the desired form is shown below: '

FVP.VAbs:(a«)Tree—pf. YRep:f—(a)Tree.
(Va. Abs(Rep a)_a A Vr AllPr= (Rep(Abs r)=r)) D
Vi 3 fn. - (21)
- Votl. Pv(Map Reptl) D
fn(Abs(Node v (Map Rep tl))) = f (Map fatl) vl

Informally, this theorem states that any type @ which is represented by (i.e. is
isomorphic to) a set ‘All P’ of trees satisfies an abstract axiom of the form
described in Section 7.2. Theorem 21 makes this assertion in form of an
implication: :

FYP.... (8 is isomorphic to ‘All P’) D (abstract axiom for 5)
where the antecedent of this implication is written formally as follows:
Va. Abs(Rep a)=a A Vr.All P r = (Rep(Abs r)=r)

“This simply says that 8 is isomorphic to the set of trees of type (a)Tree which
satisfy All P. The type variable 8 stands for the new recursive type which is
represented by All P, and the variables Abs and Rep are the abstraction and
representation functlons for B.

The conclusion of theorem (21) states that functions can be umquely defined
by ‘primitive recursion’ on the structure which 3 inherits from All P. That

1s, for any f, there is a unique function fn:8—7 which satisfies the recursive

equation:
fn(Abs(Node v (Map Reptl))) = (Map fnthvtl

Whenever the condition P v (Map Rep tl) holds of v and #l. This condition
on v and ¢l restricts the recursive equation shown above to apply only to

56

‘well-constructed’ values of type 8. If P v (Map Rep tl) holds, then All Pis
true of the value Node v (Map Rep tl) on the left hand side of the equation.

The corresponding abstract value, denoted by:
Abs(Node v (Map Rep tl)),

will then be a correctly-represented value of type 8. The example given in
Section 7.4.1 below shows how the form of the predicate P in the condition
P v (Map Rep tl) determines the final ‘shape’ of the resulting axiom.
Theorem (21) illustrates the expressive power which higher-order variables
and type polymorphism give to higher order logic. The variable P in this
theorem ranges (essentially) over all predicates on (a)T'ree; and the two type
“variables o and B can be instantiated to any two logical types. Theorem (21)
therefore asserts that an abstract axiom holds for any recursive type, since
any such type is isomorphic to an appropriate subset All P of some instance
of (a)Tree. Because general results like theorem (21) can be formulated as
theorems in the logic, they can be used to make programmed inference rules
in HOL efficient. Derived inference rules can use such pre-proved general
theorems to avoid having to do costly ‘run time’ inference. Theorem (21) is
used in this way by the derived rule which automates recursive type defini-
tions. : : _ .
The example given in the following section shows how this derived rule uses
the general theorem (21) to prove the abstract axiom for a particular recursive

type.

7.4.1 Example: Deriving the Axiom for biree

The example given in this section is the proof of the abstract axiom for btree,
the type whose representation was described in Section 7.3.2. The following is
the sequence of main steps which the HOL system carries out to define btree
and derive an abstract axiom for it:

(1) Define the subset predicate Is_btree_REP, introduce a type definition ax-

iom for biree, and define the associated abstraction and representation
functions:

ABS:(num + one)Tree—btree and
REP:btree—(num + one)T'ree.

This is done as outlined in Sections 7.3.2 and 3.3. The result of this step

o7

is the two theorems shown beloW:

I—VaABS(REPa)—e D L
FVr. AII Is btree REP r = (REP(ABS r) = r))

"These theorems 51mply state that the newly-mtroduced type constant -

btree denotes a set of values which is 1somorph1c to the subset of the i

R type (num+one)Tree deﬁned by AII Is_btree REP o

E

If the type varlables a and ﬁ in theorem (21) are mstantlated to the -

Use theorem (21) to obtam an (uns1mphﬁed) abstract axiom for btree

" types (num+one) and btree respectively, then the universally quantified

- variables P, Abs, and Rep can be specialized to ls_btree_.REP, ABS, and

REP. The resulting instance of theorem (21) is an implication whose

“antecedent matches the two theorems about ABS and REP derived in

the previous step. The theorem shown below therefore follows simply by -

-~ modus ponens (and rewriting, with the definition of Is_btree_REP):

I-Vf Afn. | B
Vo tl. (Is_Leaf v (Map REP tI) Vlis_Tree v (Map REPtl)) D> -
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

* This theorem expresses the essence of the des1red abstract ‘axiom for

biree. The remaining steps carried out by the system are sequence

~ of straightforward simplifications of thls theorem Wh_lch put it into the
) ’desued ﬁnal form | , . o

- The theorem derived i in the prev1ous step contams a term which has the f o

vRemove the dlsJunctlon Is_Leaf v (Map REP tl)VIs Tree v (Map REP tl) .

- - form Vv tl.(PV Q) D R. By a simple proof in predlcate calculus, this
~term is equivalent to the conjunction: (V'u tL.PORYAMetl.Q D R).
| The theorem derived i in the prev1ous step is therefore equlvalent to:

I-VfEl'fn e |
Vv tl Is_Leaf v (Map REP tI) :) .
" fn(ABS(Node v (Map REP tI))) = (Map fn tl) v tl A
Vv tl Is_Tree v (Map REP ¢I) D o
fn(ABS(Node v (Map REP tl))) = f (Map fn tI) v tI |

- 58

In the general case of a type Wlth m constructors the subset predlcate

~ contains a dlSjUIlCthIl of the general form

IsCyw (Map Rep tl) Vv Is_C v (Map Rep tl)

o When thrs step is done it Wlll 1ntroduce a conjunctlon of m 1mp11cat10ns'

@)

(5)

in the body of the abstract axiom, each of Wthh corresponds to one of

B the m constructors Cl, 'Cmf |

'Rewnte Wlth the deﬁmtrons of Is_Leaf and Is_Tree Th1s ylelds

I‘Vf':'!'fn | S
Vel (Hn v= Inl nA Length(Map REP tl) = 0) D
 fn(ABS(Node v (Map REP t))) = f (Map fntl) vil A
Vv tl. (v = Inr one A Length(Map REP tl) = 2) D »
fn(ABS(Node v (Map REP tl))) = f (Map fn tl) v tl

‘Note In the HOL 1mplementat10n the predlcates Is_Leaf and Is_Tree are

not actually defined as new constants; they are instead written using -
A-terms.. This step therefore “does not need to be done in the HOL
1mplementatlon '

Simplify terms of the form: Length(Map REP tl) =

| A term of the form Length(Map REP t{) = m is equivalent to a simplified

term of the form Length ¢/ = m. This in turn is equivalent to saying
that I is equal to some list of m values: 3ty ...%,,.1 = [t1;...;tm]-
The terms involving Length in the previous theorem can therefore be

simpliﬁed resulting in the following theorem:

N TEIL |
- Vuitl.(3n. v_lnln/\tl_Nll)D ‘ »
fn(ABS(Node v (Map REP ¢l))) = f (Map fnthvtl A
Vo tl.(v=Inrone Adt;t5.1l = [ti;ta) D
fn(ABS(Node v (Map REP tl))) = f (Map fntl) vl

This step mtroduces the variables #; and . They range over values of
type btree and occur in the axrom for btree in its final form.

59

(6)

(1)

(8)

(9)

Remove equations of the form: v =---and t{=---.

The antecedents of the two logical implications in the previous theorem
both contain equations giving values for v and #l. These can be removed
by using (a generalization of) the fact that in predicate calculus a term of
the form Vy. (3z.y = tmq[z]) D tma[y] is equivalent to V. tmy[tm,[z]].
The result of removmg the equations for v and / is:

FVf. 3 fn. Vn frn(ABS(Node (Inl n)(Map REP NII)))
= f (Map fn Nil) (Inl n) Nil A
Vi1 t3. fn(ABS(Node (Inr one) (Map REP [tl,tz])))
= f (Map fn [t1;22]) (Inr one) [t1;22]

The body of the theorem now consists of two equations. These define
the value of fn for the two different kinds of binary trees.

Rewrite with the definition of Map. This yields:

FVf. 3 fn.Vn. fn(ABS(Node (Inl n) Nil))
= f Nil (Inl ») Nil A
: th 9. fn(ABS(Node (Inr one) [REP tl; REP tg]))
= f [fn t1; Fnts] (Inr one) [t1;1,]

Define the abstract constructors Leaf and Tree as follows:

Fleafn - = ABS(Node (Inl n) Nil)
 FTreety tp = ABS(Node (Inr one) [REP t1; REP t5])

‘The constructors Leaf _ and Tree defined by these equations first use Node

to construct the representations of the required values and then use ABS
to obtain the correspondmg values of type biree. Rewriting the theorem |
demved in the prev1ous step with these deﬁmtlons yields:

F Vf.f]!fn.\;/n.fn(l_eaf n) = f Nil (Inl n) Nil A |
Vi, tg_.fn(Tree t1te)=f[fn t1; fn t2] (Inr one) [tl,tz]

Introduce two functlons f1 and fz in place of f

With an a,ppropna,te choice of value for the umversally quantified vari-
able f, two functions f and f, can be introduced for the right hand

60

o sides of the two equat'ions""These'.d'eﬁne'the value of fn separatel.y. for
~ ‘the two constructors Leaf and Tree. Specializing_ f to the appropriate -
function, and simplifying, gives: -~

-k Vf1 f2 H'fn Vn. fn(Leaf n)=fin /\ : '
: ’ th tg fn(Tree tl tz) = fg (fn tl) (fn tz) tl tz))

* Thrs theorem is the abstract axrom for btree——-rn 1ts ﬁnal form

‘ The HOL derlved Tule Whrch automates recurswe type deﬁnltrons carries |
‘ out the sequence of steps shown above for each informal type specrﬁcatron

ﬂ .."'}*entered by the user. ~An approprlate instance of theorem: (21) yields an
" ‘unsimplified’ abstract axiom for the type being defined. This axiom is then

systematically transformed into the form described in Section 7.2 by the
~ sequence of simple equivalence-preserving steps shown above. The amount
-of actual logrcal inference that must be carried out is relatively small, and
each step is a straightforward. transforrnatlon of the theorem derived in the
_previous step. The HOL 1mplementat10n of this procedure is therefore both
efﬁc1ent and robust

_8 Concludlng Remarks

The method for deﬁnmg recursive types descrrbed in Section 7 is the loglcal

- basis for a set of efficient theorem-proving tools the HOL system. In addition
~ to the derived inference rule which automates recursive type definitions, a
. number of related tools have been implemented in HOL for generatrng proofs

| ‘ lnvolvmg recursive types These 1nclude

e an 1nference rule Whrch derrves structural 1nduct10n for recursive types

- and related tools for 1nteract1vely generating proofs by structural induc-

tron (e.g-a general structural 1nduct10n tactzc)

" ea set of rules Whlch automate the 1nference necessary to deﬁne functions
by ‘primitive recursion’ on recursive types '

. denved rules Whlch prove that the constructors of recursive types are
one—to—one and yleld drstlnct values and g ' '

e tools for generatrng interactive proofs by case analysrs on the construc—
tors of recursrve types :

Prehmrnary work 1is underway to extend these tools to deal Wlth mutually
recursive types and types with equational constraints. .
Defining a logical type in HOL is rarely the primary goal of the user of
the system, but often a necessary part of some more interesting proof. The
efficient automation of type definitions in HOL is therefore of significant
practrcal value, since defining types ‘by hand’ in the system is tedious and
“tricky. The mechamzatlon of type definitions described in this paper allows
new recursive types to be introduced by the HOL user quickly and easily. This
is made possible by the systematic construction of representations for these
| types, the uniform treatment of abstract axioms for them (using essentially
the mltlal algebra approach to type spec1ﬁcat10ns) and the expresswe power |
of hrgher order logrc 1tse1f __— o

: Acknowledgements _{

- Thanks are due to Albert Camlllerl Inder Dhmgra and Mike Gordon for -

helpful comments on drafts of this paper, and to Thomas Forster for useful

~ discussions about the construction of trees. I am grateful to Gonville and
~Caius College Cambridge for support in the form of an unofﬁc1al fellowshlp, -
durlng Whlch the work described in this paper was done.

o Re‘fe’rences

[1] Brrd R and Wadler P, Introductzon to Functzonal Programmmg, Pren— |
' trce Hall Internatlonal Series in Computer Scrence (Prentlce Hall 1988)

s [2] Burstall R., and Goguen J ‘Algebras theorles and ﬁ'eeness an intro-

: ductlon for computer sc1ent1sts ,in: Theoretical Foundations of Program-

- ming M ethodology, edited by M ersmg and G. Schmidt, Proceedings of |
the 1981 Marktoberdorf NATO Summer School NATO ASI Serles Vol.
- C91 (Reldel 1982) pp- 329-350. : ’

[] Church A, ‘A Formulatlon of the Slmple Theory of Types Journal of |
Symbolzc Lo_qzc Vol 5. (1940) pp 56—68 B

[] Cousmeau G G Huet and L Paulson The ML Handbook INRIA’
S -

| [] Goguen 7. A J VV Thatcher and E G Wagner ‘An mrtlal alo'ebra ap-
' _proach to t‘he speelﬁcatlon correctness, | and 1mp1ement_atlon of abstract

e

18]

8]
9]
[10]

[11]

[12]

data types’, in: C’urrent Trends mn Progmmmmg Methodology, edited by
R.T. Yeh (Prentice-Hall, New Jersey, 1978), IV, pp. 80-149.

Gordon, M., ‘HOL: A Machine Oriented Formulation of Higher Order
Logic’, Technlcal Report No. 68, Computer Laboratory, The University

‘of Cambridge, Revised version (July 1985).

Gordon, M.J.C., ‘HOL: A Proof Generating System for Higher-Order

- Logic’, in: VLSI Specification, Verification and Synthesis, edited by G.

Birtwistle and P.A. Subrahmanyam, Kluwer International Series in En-
gineering and Computer Science, SECS35 (Kluwer Academic Publishers,
Boston, 1988), pp. 73 128.

Gordon M.J., R Mllner and C.P. Wadsworth ‘Edlnburgh LCF: A
Mechanised Loglc of Computatlon Lecture Notes in Computer Science;
Vol. 78 (Springer-Verlag, Berlin, 1979).

Harper, R., D. MacQueen, and R. Milner, Standard ML, Report No.
ECS-LFCS-86-2, Laboratory for Foundations of Computer Science, De-

partment of Computer Science, The University of Edmburgh (March
1986). | » |

Leisenring, A.C., Mathematical Logic and Hilbert’s e-Symbol, University
Mathematical Series (Macdonald & Co., London, 1969).

Milner, R., ‘A Theory of Type Polymorphism in Programming’, Journal
of Computer and System Sciences, No. 17 (1978).

Paulson, L.C. ALogz’c and Computation: ‘Inte.mctzve Proof with Cambridge
LCF, Cambrldge Tracts in Theoretical Computer Sc1ence 2 (Cambridge
Un1vers1ty Press, Cambrldge 1987)

63

" Index

,B—reduction 7

_Camlllen A J 62

o cartes1an product type 19 23 49

) Dhmgra IS 62

| } drs_]omt sum type, 23 27,49

Forster B 62

3Fourmau M 13

: “Gordon M. .6, 10 1362

hlgher order loglc 6, 7
typesin, 5,8, 9
Hilbert’s e-operator, 9

’HOL568121445464951,”

- 56, 87, 61, 62

derlved mference rules in, 11,, ‘

57
,‘ mltlal algebra 47 51 62

‘}/\—ca,lculus 7
LCF, 6, 10 .

o lists, 3134 8

' ’mathematlca,l mductlon 30

'»"m-,,Mllner R, 8
. ML, 10 11 46

o na,tural numbers 27—31 48 |

Peano’s postulates, 29, 30, 34,’38'
predicate calculus notation, 6

primitive recursion, 7, 30, 31 50' .

- b6,61
~ on labelled trees, 4

64

- on lists, 33, 36

- on trees, 39 .

- ‘Russ.ell’s paraldox,‘ 8 o

~ Standard ML, 45 |

~structural induction, 51, 61

on lists, 34
~on trees, 38

L -tactlc 61

| }b B trees 35—40

binary, 48, 51- 53, 57—61
labelled, 41-44, 46, 53

. type constants, 8, 9, 13, 47

“type definition axioms, 13 15, 46 -
- type definitions, 11-15 | -
automating, 5, 6, 13, 45 47,

61, 62

type inference, 8
“type operators 8, 9 13 15, 47

~ type varlables 8,9, 11 14 20 21

| 7 types

57

abstract axioms for 12 13 49— -
~51 AR .

v ‘enumera,ted 48
S record 48

o -recursive, 13 34 45 47

representa.tlon of 12 13 53— '
55 S S

