Technical Report A

Number 129

Computer Laboratory

A methodology for automated design
of computer instruction sets

Jeremy Peter Bennett

March 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1988 Jeremy Peter Bennett

This technical report is based on a dissertation submitted January
1987 by the author for the degree of Doctor of Philosophy to the
University of Cambridge, Emmanuel College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/TechReports/
Series editor: Markus Kuhn

ISSN 1476-2986

Contents

e ——
COMBILS ...ttt ettt et e sesr e s et st se s s et e sunasesesnesnans ii
PIOIACEeviiiiict st ettt et sene st sr e st et s e ae s e e s benearen v

1. Analysis Of the ProbIBM ...ttt s seresseesse sesnnes soss e s snnennes 1

1.1 The ProbIem ...ttt e st e s ssse s sss s e e s nasssanns 1

1.2 CRrONOIOJYcoeuiiiiieininiiecren i terneeessre s ertesr e s easas ree e saesernessases sessessassensssnessesasnne 6

1.3 Direct Execution ArChECIURBSc.....ooiiiiericiriiniiecnecsrece et s cee s resn e srereennne 7

1.4 Analysis of Language USageccceeueeiceirinniiininescsrneecresssestesssssesessessssssseens 9

1.5 Byte Stream ArChItBCIUIESccc.eocieeeieciieiieeei et scrcse eeeesssssseessssssssssenessaens 12

1.6 CUuIrent RESEAICHcoociiiiiiieiircccer et st ea s et e s s st e a s eraeaneen 20

1.7 Theoretical Studies of INSrUCION SetScccoeeeemirieie et 23

1.8 A NeW MethOdOIOgYccccrireiriiinimieersrntneecrcsnisreestessessesessesesssssnesseasessessssssesss snsness 30

2. Experimental ODSEIVAIONc.oooieciecriciiecerccccee e sanesbes seresse sessosasaens 31

Contents

2.1 Command Usage

2.2 Language Usage

3. A BCPL Instruction Set

3.1 The BCPL World View

J.P. Bennett

..

..

...

..

3.2 A Canonical BCPL INSITUCHON Stccoeeieceieieiiccireeetereeerrese rsvsncsnaesesssssensssnsas

3.3 Design Rules for an InStrucion Setcoocmvivciininininin e,

3.4 ISGEN ...

3.5 Resultsccccenee....

3.6 Extensions to ISGEN ..

..

..

..

4. DL -ADeSign LANGUAGEccovvmrrreirecrecrirnrssrnsseiesssssestsssessaee sosssss ssssssssesaassnsens

4.1 Specification of DL

..

4.2 THE IMPIEBMENALON Of DLooe.eeeeeeeeeeeeeeeessmsensssessessmsssssssssssssssssessssssssas sessasessnes

5. Theoretical Models

51 ENropy ..ccccccevrcnrennnnn.

5.2 The Theoretical Basis Of ISGAENccc.cceeviiveneiiiieiiiieeirenrcsiaressssssssssmerrresessssensenssses

5.3 A Model of Instruction Set DeSIgNcccoccevrmmicii i

Conclusion

Primary References
Secondary References

Appendix A

..

..

--

...

ISGEN OUIDUL «.ceov oo ceseeeesee e seesseseseeesesessessesmesseses s ssmsemeses e sesessssssssene

A.1 A BCPL Instruction Set

A2 A POLY Instruction Set

...

..

»ae

32

38

48

51

57

61

67

75

80

80

85

89

92

94

99

101

101

103

Contents J.P. Bennett
Appendix B

DL GIBINITIALceeveeeeenerieeuseseessessseessesereeessssssnases srsssssssrserssenessesnsnonnssesssnsassarsanasarssons B-1
Appendix C

Proof Of MINHTHSANONcconeureieireiiirierenreiseeessenserserassmmeemmmeeesssrsssnsrasssssssssssssssssnssnss C-1

i SRR 7

Preface

With semiconductor technology providing scope for increasingly complex computer architectures
there is a need more than ever to rationalise the methodology behind computer design. In the
1970’s byte stream architectures offered a rationalisation of computer design well suited to
microcoded hardware. In the 1980's RISC technology has emerged to simplify computer design
and permit full advantage to be taken of very large scale integration. However such approaches
achieve their aims by simplifying the problem to a level where it is within the comprehension of a
single human being. Such an approach is not sufficient. There is a need to provide a
methodology that takes the burden of design detail away from the human designer, leaving him
free to cope with the underlying principles involved.

In this dissertation | present a methodology for the design of computer instruction sets that is
capable of automation in large part, removing the drudgery of individual instruction selection.
The methodology does not remove the need for the designer's skill, but rather allows precise

refinement of his ideas to obtain an optimal instruction set.

Preface J.P. Bennett

In developing this methodology a number of pieces of software have been designed and
implemented. Compilers have been written to generate trial instruction sets. An instruction set
generator program has been written and the instruction sets it proposes evaluated. Finally a
prototype language for instruction set design has been devised and implemented.

The first chapter is a survey of instruction set design in its historical context. The next three
chapters describe the development of the new design methodology and its evaluation. The final
chapter surveys the theoretical basis of the methodology in an attempt to discover ways of
improving instruction set design still further. No part of this work was done in collaboration, nor
has any of it been, nor is any of it currently being submitted for any degree, diploma or other
qualification of any other university.

| should like to thank my supervisor, Dr Martin Richards for his advice and encouragement over
the last three years. My thanks also go to my colleagues in the School of Mathematics at Bath
University; Professor James Davenport for endless advice and perceptive criticism, Dr. Geoff
Smith for teaching me the method of Lagrange Multipliers and the importance of mathematical
rigour and most important of all Professor John ffitch who has acted in loco supervisoris with
great vigour for the past three months. During the period of this work | was supported by a
Research Studentship from the Sclence and Engineering Research Council.

-vi-

1. Analysis of the Problem

“The value of a megabyte of memory strongly depends on the computer in which it is installed.”
[Wirth86).

The field of computer design is broad. It encompasses the work of the electrical engineer, the
computer theoretician, and the language designer. Any innovation in this field must take account
of a substantial body of existing work in a variety of fields. The first part of this chapter
examines the problems involved In instruction set design, and introduces the particular problems
with which this dissertation is concerned. The remainder is devoted to a survey of work done in

this field, with detailed examination of particularly relevant work.

1.1. The Problem

The instruction set of a computer represents the interface between the ideas expressible in a
high level language, and the functionality that can be provided by electronic hardware. With the

Analysis of the Problem J.P. Bennett

development of microcode as a design tool [Wilkes51] it has become relatively simple to adjust
the instruction set to “improve” the quality of this interface.

The question arises of what is meant by an improvement in quality. One measure might be the
absolute speed of compiled programs. Another might be the size of the compiled code.
However it is notoriously difficult to pin down what part of any improvement is due to change in
the interface. Part of any change must be attributed to alterations in the hardware such as
increase or decrease in gate delays. With microcoded architectures some benefit may be due to
programming tricks possible with particular instructions. Parnt of any gain must be attributed to
alterations in the compiler generating the instructions. Particular optimisation techniques may be
possible with one instruction set and not with another. Enabling such optimisations to be used is
all part of good instruction set design, but after such improvements have been aliowed for what
remains can be fairly said to be improvement due to better design of the interface. For practical
purposes the distinction may be irelevant. if an instruction set design methodology causes an
improvement it is a useful methodology, whatever the mechanism. However to a scientist
attempting to analyse the underlying behaviour, in the hope of improving the methodology, it is
vital that the source of the improvement be identified and characterised.

The term architecture and the phrase instruction set are used rather loosely throughout the
literature, with a variety of shades of meaning. Throughout this dissertation they are used with
precise meaning. Instruction set refers to the interface presented to the compiler writer as his
sole means of controlling the actions of the computer. Architecture means the complete

hardware of the computer supporting the instruction set, together with the instruction set itself.

There is one method of instruction set design in which performance improvements can be
attributed to the change in interface alone. This is when an instruction set is extended by
combining or splitting existing instructions or providing special cases of existing instructions.
There is no modification to the compiler, since the new instructions can be implemented by
peephole substitution of the existing instruction set as a post-compilation operation.
Furthermore if we use criteria of improvement that are not dependent on the hardware or

Analysis of the Problem J.P. Bennett

microcode implementation, such as static or dynamic code size' we can eliminate benefits due
to hardware or microcode changes. This dissertation concerns itself with instruction set design
using peephole optimisation. In chapter two the benefits that can be gained from minimising
static code size are investigated. Much of the work, in particular the design of an instruction set
for BCPL described in chapter three, will aim to minimise static code size. In the same chapter
application of the approach to other languages is demonstrated and a generalisation to suppornt

multiple languages and different design criteria is proposed and discussed.

The difference between the ideas expressed in high level language constructs and the ideas
implemented in low level hardware is termed the semantic gap and must be bridged by the
instruction set. It would seem reasonable to suppose that an ideal instruction set should reflect
concisely both sets of ideas, introducing as little redundant information as possible in describing
the algorithm written in a high level language to the hardware. How closely to either side of the
semantic gap an instruction set may lie is not clear. There have been a range of views
expressed by machine designers, from the approach used by SYMBOL {[Rice71], whose
instruction set is the high level language itself, to machines such as EDVAC and RISC-1
[Patterson82], whose instruction sets reflect closely the hardware. Where to stand along this
spectrum is unclear, and has changed over the years. The history of this change is described in
the rest of this chapter.

Currently two main strategies have evolved to bridge the semantic gap between high level
language and hardware. The first strategy attempts to provide relatively high level instructions,
that reflect the essential operations of a high level language. Such instructions perform complex
operations on multiple operands that can be addressed in many ways. There are models of
referencing that allow for indirectien and indexing and flow of control operations that understand
procedure calls and stack frames. Such machines are usually implemented as microcoded

architectures. Microcode is itself an interface to the low level operations of the hardware, but this

1 Static Code Size is used to mean the amount of space occupied by the compiled code. Clearly it is advantageous to
minimise this to obtain machines that nesd less main memory. Dynamic Code Size is used to mean the amount of
space occupied by the compiled code, weighted by the frequency with which each instruction is exaecuted. Clearly de-
creasing this will help reduce memory-processor bandwidth.

Analysis of the Problem J.P. Bennett

aspect of interface design is beyond the scope of this dissertation®. Architectures such as these
must support more than one language. This has often been done by making the high level
instructions more general in their specification. Such generalisation is not always successful, for
example the NS32000 series [National83] clearly supports Modula2, for which it was originally
designed, better than LISP or BCPL [Wilson83]. Recently there has been some development of
soft microcoded architectures which permit changing of instruction sets on the fly [HLH85]. This
offers one way out of this problem. Computers with architectures of this general type are known

as Complex Instruction Set Computers (CISC's).

Critics point out that to support many high level languages the instructions of a CISC must be
very general in their operation and parameterisation. As a result they are slower and larger than
needed for any one specific language. A classic example is seen in the implementation of
Portable Standard LISP [Griss82] on the VAX-11. Function calling does not make use of the
VAX-11 general purpose CALL opcode, as is the case with Franz LISP [Foderaro80], but uses a
sequence of simpler instructions that execute faster [Davenport83]. The alternative of
instruction sets that are more language specific makes the machine less general, and provides
the compiler writer with a heavy burden in generating code to use the instructions provided. A
solution 1o these problems that has come to prominence recently is the Reduced Instruction Set
Computer (RISC) [Patterson80).

RISC’s have a only a small number of very simple instructions, typically memory-register
transfer, register-register arithmetic and conditional branching. However the very simplicity
means that the compiler writer can select precisely the sequence of instructions he needs to
translate a particular high level construct, instead of searching, possibly unsuccessfully for a
complex instruction to perform the operation. By this means a precise semantic match is
obtained, and the amount of redundant information generated in the process of compilation
minimised. At first sight it would seem such processors would lose by virtue of having to
execute so many more instructions. However since there are so few instructions and they are

so very simple, a great deal of effort can be put into making them execute at high speed. The

2 For a general discussion of systems as multiple layers of interfaces see [Tanenbaum84).

Analysis of the Problem J.P. Bennett

processor can often be implemented directly in hardware, removing the overhead introduced by
the microengine. The processors that are now appearing certainly seem to bear this out, with
extremely good benchmark results. For example the Acorn RISC [Wilson86] runs BCPL at about
half the speed of an IBM 3081/D and LISP rather faster than a GEC 63.

RISC’s do have some problems. Their code is both statically and dynamically large, giving
extensive memory requirements, and heavy loading of the memory-processor bus. The Acorn
RISC produces BCPL code that is 1.2 times the size of code for the MC68000 and Modula2
code that is twice the size. It also has to use a 32 bit data bus and paged mode access to
memory to obtain the requisite 20Mbyte/second bandwidth required by the processor. Under
these conditions the fastest DRAM chips are operating at full speed. There is little scope for
increasing the speed of the CPU (as is proposed in the second version of the processor),
without radical redesign of the interface to memory. The fact that these overheads are not
larger is a reflection of the poor quality of CISC instruction sets, and the number of extra
instructions that have to be generated because of inexact mapping of high level constructs to
complex instructions. RISC’s have also failed to show the expected language independence.
invariably the simple instructions, and underlying architecture are better suited to some
languages than others. RISC-1 [Patterson82] is very much a machine for running C, and much
of its gain can be attributed to an original view of how C should be supported, rather than the
specific simplicity of its instruction set.

The argument over the relative merits of these two approaches has raged for some time, and is
as much about laboratory rivalry as computer science. A good survey of the debate can be
found in [Colwell85]. This dissertation attempts to combine the benefits of both design
methodologies to give processors with the compactness and light bus loading of CISC, but with
the speed and simplicity of RISC. To achieve this compromise we must look first at the evolution

of computer design and some histerical landmarks along the way.

Analysis of the Problem J.P. Bennett

1.2. Chronology

The key influence in opening up the field of computer design was the invention of microcode
[Wilkes51]. It was a simple mechanism for providing a specialised architecture on a general
machine. Although there was research into the influence of programming language use on
computer design as early as 1953 [Hopper53], it was not until technology advanced sufficiently
for microcoding to become a practical implementation technique that widespread
experimentation with the theory of computer architecture design became feasible. It is interesting
to see that the advances in computer design that have resulted from research and
experimentation over the past thity years have moved us towards computers in which
microcode is very little used, RISC machines.

It would be inappropriate to provide a comprehensive survey of the whole of computer
architecture within the context of this dissertation. There is an excellent survey of computer
architecture in general from the earliest days of computer design in [Siewiorek82]. This
dissertation concerns itself only with ideas germane to instruction set design for computers that
support high level languages. Supplementary material on early work with direct execution
architectures, particularly SYMBOL is to be found in [Chu75].

In the earliest computers the instruction set was a direct reflection of all the facilities the
computer provided. In effect the semantic gap did not exist. The early high level languages
were designed initially to support existing hardware, and so again there was little incentive to
provide specialist hardware. The three dimensional limit on FORTRAN-66 arrays had more to do
with indexing on the IBM 709 than language design considerations. However with high level
languages came a degree of abstraction and separation of software from the constraints of
hardware. Experience of designing algorithms in high level languages, devoid from such
restrictions, led to the problem being turned round. Algol60, COBOL and LISP represent a
development of languages influenced by the needs of the programmer, rather than the tacilities
of the hardware (as was the case with autocodes and to a large extent FORTRAN). With the
development of these languages, support in hardware was then required for the abstract
concepts they had introduced.

Analysis of the Problem J.P. Bennett

The Burroughs B5500 [Lonergan61] introduced a number of ideas to support high level
languages. It introduced the idea of a hardware stack for intermediate results during
expressions. it also introduced the idea of instructions composed of a number of symbols to
designate format opcode and operand information. The IBM 1401 and later IBM S/360
introduced character operations to support COBOL. Although in the light of modem
developments in hardware support for software these developments may seem small help, they
were significant enough for Rosen to suggest in 1968 [Rosen68] that

“All the features that have been designed into digital computers may be considered as reflec-

tions of software needs.”

Such innovations, for all their originality and long term significance, were still in essence minor
manipulations of existing ideas on how hardware should be built. In parallel with these efforts a
number of far more radical designs were under development. These diract execution
architectures were the first attempt to drive computer design purely from the perspective of the

programmer.

1.3. Direct Execution Architectures

The earliest workers were constrained by current technology to look at imaginary or “gedanken”
machines. The first approach used was to try to execute the textual source code directly.
Anderson [Anderson61] looked at the design of an extension to the B5500 that would execute
Algol-60 directly. It ran into the problem of dealing with operator precedence, and required a
second operator stack to resolve this problem. Other designs (for example SYMBOL, described
later in this section) introduced pre-processing into polish form to eliminate this problem.

There were a number of other gedanken machines during the 1960’s which looked at the idea of
supporting a high level language directly. Perhaps the most sophisticated analysis was by
Bashkov [Bashkov67]. This follkwed a microprogrammed design proposed in outline by
Melbourn and Pugmire [Melboumn65]. Bashkov proposed a machine to execute FORTRAN
programs, with minimal compilation. He was working with an early version of FORTRAN without

subroutines, yet his design still required an estimated 10 000 semiconductors to implement. It

-7-

Analysis of the Problem J.P. Bennett

was essentially a hardware implementation of a one pass load and go compiler. The only
translation performed before execution was the conversion of labels and variables to addresses,
everything else was kept in raw textual form. Bashkov suggested 4K words of memory would be

adequate for such a machine.

An example of a real machine following Bashkov’s way of thinking was developed in the
SYMBOL IR project, in the five years to 1971 [Rice71]. This provided a hardware compiler for
the SYMBOL Programming Language (SPL), capable of translating 70 000 - 100 000
statements a second. SPL is a high level procedural language in the Algol-60 mould. It is
translated by hardware into a reverse polish string of operation codes and operand addresses
for execution. A virtual memory system is provided, allocating and claiming back memory as
necessary. The various units that make up the machine were kept separate, to allow maximum
parallel processing. It made use of early integrated circuits, and needed a total of 68 printed
circuit boards using 18000 SSI chips. Both this and Bashkov’s machine moved away from the
von Neumann architecture that had become standard and returned to the separate code and
data spaces of the Harvard Mark |. The SYMBOL computer was a one off machine, and
although used for a while in research never fully met its design objective of demonstrating that
hardware implementation of languages would lead to better computer systems. Reviewing the
project ten years on the system designer expressed some frustration with the extent of the

machine’s success [Rice81].

These designs represented a switch from one side of the semantic gap to the other, with
instruction sets that were more or less identical to the high level language. Indeed they are
hardly instruction sets in the conventional meaning of the term. Euler was implemented as a
microcoded interpreter on the IBM S/360-30 [Weber67]. It represented a step away from the
compiler completely implemented in hardware, translating the source code with a microprogram
into a reverse Polish notation, more suited to hardware execution. A similar approach was
reported by several workers in microcoded translation of APL to a functional form for execution,
for example versions by Zaks in 1971 and Hassit in 1973 described in [Chu75]. Further evolution
away from the hardware compiler was suggested by Shapiro [Shapiro72] in his SNOBOL
machine. SNOBOL [Griswold71] is a language for manipulating data in string form, based on

Analysis of the Problem J.P. Bennett

Markov algorithms. Shapiro proposes a conventional von Neumann machine with additions to
support twin stacks, character data and pattern matching. At the time SNOBOL was
implemented by interpreting an intermediate code, OCODE, and such additions to a machine
would have given great improvement in performance. The development of the SNOBOL
compiiers, SPITBOL and Macro-SPITBOL [Dewar83], with an observed ten fold increase in
machine performance have rather undermined Shapiro’s work, and indicate the danger of
ignoring gains to be made by improving software.

Although very much in the direct execution tradition Shapiro’s suggestions for modification of
existing machines reflected a change in direction. The idea of a conventional machine that could
be configured to support a variety of language systems as needed, by microcoding of a very
general microengine, was perhaps centered on the development of the Burroughs B1700
[Wilner72]. The underlying machine was designed to support interpretation of whatever
intermediate machine was appropriate. Its use of the bit, rather than byte or word, as the basic
unit of information gave considerable scope for experimentation with instruction sets to support

particular languages.

1.4. Analysis of Language Usage

These early designs were very much influenced by what designers felt ought to be in a
language orientated machine. It was only at the start of the 1970’s that people started to
analyse the use of existing machines, to provide data with which to design future machines. The
first work of this sort was a comparative analysis of FORTRAN programs from industry and
commerce [Knuth71]. Knuth examined 440 programs, representing over 250000 lines of code
from Lockheed computer division and 11000 lines of code, representing rather more than 440
programs from Stanford undergraguates. The interesting points were not in the comparison of
style, but in the exposure of some unexpected details of language usage. Knuth discovered that
the average expression has only two operands, indicating that support for complex expression
evaluation is perhaps unjustified. Notable is the fact that a large proportion of expressions are of
the form x+1 or y*2. The fact that the commonest statement is assignment is perhaps

reassuring, since load and store operations are invariably well supported, particularly since 68%

-9-

Analysis of the Problem J.P. Bennett

also turned out to be simple repacements of the form A=B. The small size of loops (only 13%
containing more than five statements) would indicate that relative branches are a necessity,
particularly when modern machines require 24 or more bits for an absolute address operand.
The high frequency of particular operators (addition and multiplication) suggests a need for
specialist support. Knuth also distinguishes between static and dynamic statistics, showing for
the first time that optimisation of program size and program speed require different concepts.
His dynamic profile of 24 programs shows surprising similarity in frequencies of instructions, with
the exception of assignment (51% static, 67% dynamic) and DO loops (9% static, 3% dynamic).
The fall in DO loop count is to be expected, since we clearly execute statements inside the DO
loop more than the DO loop itself. The rise in the proportion of assignment statements would be

an indication that assignment is a common occurrence within loops.

Since Knuth’s original work analysis of high level language usage has become something of a
popular pastime. Weicker published a summary of sixteen such analyses [Weicker84]. The
quality of these analyses varies considerably, and in general reflect greater ease with which
static, rather than dynamic statistics may be collected. Weicker uses the statistics to derive a
program which has a typical static and dynamic distribution of constructs. The results are in
general agreement. Static results indicate assignment is the commonest statement, occurring
between 34% and 54% of the time, with the lower figures being for the block structured
languages. Procedure call is the next commonest statement throughout, although with a wider
range of results from 12% in Knuth's analysis of FORTRAN to 40% in Shimasaki's analysis of
Pascal. Here there was a clear distinction between languages, Pascal in the range 29%-40%,
Ada in the range 24%-27%, XPL and PL/l in the range 15%-17%. This shows clearly how
particular languages emphasise particular programming styles. IF statements of various forms
were next most common, accounting for 9%-18% of statements. GOTO is infrequent except in
FORTRAN (9%) and PL/I (3.8%), and a good predictor of the date of a language’s introduction.
Looping constructs other than FOR loops occur with a frequency roughly inversely proportional
to the frequency of GOTO statements. The dynamic data is less complete, but in general shows
the same result as Knuth, that is an increase in proportion of assignment statements and a
decrease in proportion of looping constructs. A summary of the left and right hand sides of

assignment statements is given. Statically, assignment to a simple variable is commonest,

-10 -

Analysis of the Problem J.P. Bennett

accounting for between 56% and 71% (it should be pointed out that there are only two analyses)
of all such statements. Assignment to structures is much rarer. The fairly obvious result that
assignment to array elements is much more common on a dynamic rather than static count is
given by [Grune79]. The right hand of an assignment is commonly a constant, occurring in
25%-44% of cases on a static count, and a slightly lower proportion reported for a dynamic
count. Components of a structure or array elements form the other common simple right hand
part of assignment statements. Between 19% and 24% of right hand sides are expressions on a
static count, with Tanenbaum reparting a dynamic count of 33.5% [Tanenbaum?78]. Static counts
suggest that 2% to 5% of right hand sides are expressions with more than one operator,
although Tanenbaum’s dynamic statistics suggest this rises to 13%. Addition and subtraction
dominate the dynamic and static statistics for arithmetic operators, although multiplication is
significant for FORTRAN and Algol68. Of the relational operators equality and inequality
dominate. Logical operations are relatively infrequent (2%-14%). Figures are also given for the
number of parameters in procedure calls. The two sets of figures for static counts suggest an
approximately exponential decay in frequency of occurrence against number of parameters, with
41%-47% having no parameters, 19%-31% having one, 14%-15% having two and so on down
to between 1% and 8% having five or more parameters. Tanenbaum’'s dynamic statistics
suggest that zero, one and two parameters are approximately equally common, with a fall off for
larger numbers of parameters. Operands are shown to be mostly simple integer variables.
Figures are given for the locality of variables. There is considerable variation from analysis to
analysis, but most fall into the category local or global, with local variables being more common
on dynamic analysis, and global on static analysis.

Waeicker's work is an excellent summary and analysis of the work to date, as has been shown
by the great amount of interest in his “Dhrystone” Benchmark, which attempts to behave as a
characteristic program. The volume of data is considerable, but it is essential that any language

or machine designer read and digest it thoroughly before proceeding.
Bashkov’s machine and SYMBOL |IR are both computers that attempt to eliminate any need for

compilers, and are truly machines that support directly executed languages. However high level

languages are designed to be written and read by human beings, and there is no reason why

-11 -

Analysis of the Problem J.P. Bennett

they are necessarily the best imterface to low level computer hardware. Following on from
hardware compilers have come machines with instruction sets that are a compromise between
the hardware and the software.

During the 1960’s machines had started to acquire features under the influence of high level
languages. The IBM S/360 is a prime example, drawing on earlier innovations in IBM design. it
provided floating point operations to support FORTRAN and character operations to suppornt
COBOL. The PDP-11 range drew on ideas introduced by the B5500 with its hardware stack.
These were all features provided by hardware innovators, whose background was in general

electronic engineering.

Much work, including this dissertation, has gone into looking at what is the best representation
of a high level language program for execution. The combination of machines such as the
B1700 that were easy to reconfigure and statistical analyses like that of Knuth gave rise to a
new breed of machine designers, who rather than being electronic engineers had a background

in compiler writing.

1.5. Byte Stream Architectures

Rather more innovative machines resulted from compiler writers who turned their hand to
machine design. The MESA instruction set for the Alto [Johnsson82] was an early example, and
the same approach was used for CINTCODE [Richards84]. The designers looked at operations
in existing machines which had proved most useful to them in existing instruction sets, and
produced machines that contained just those features, with support given to each feature
according to its importance. These machines all take a very simple view of an instruction set as
a single operation code, one byte long, with a number of arguments following after. This is a
development of the syllable structure of the B5500 architecture, and is in essence the approach
used by the IBM S/360 architecture. The instruction set is a prefix polish notation. Unlike other
architectures there is in general no format syllable, with the format being implied from the
opcode byte. Such instruction sets are simple to implement (at least at the conceptual level) as
table lookup on the opcode byte. Such an approach is well suited to microcode, with

-12-

Analysis of the Problem J.P. Bennett

microengines that automatically switch on the opcode byte. The size of one byte for an opcode
need not limit the number of instructions, since one or more of the opcodes can be “escape”
opcodes, with the next byte taken as a subsidiary opcode®. Architectures with instruction sets of
this type are known as byte stream architectures, and are sufficiently important that three
examples will be looked at in mere detail, to study the ideas that have evolved during their
development.

CINTCODE is a byte stream instruction set to support the BCPL programming language on
machines with 16-bit addressing. BCPL is a simple block-structured typeless language [see
Richards80 for a description]. It was not designed to be implemented in hardware, but to be
interpreted in software on small machines. The aim was to permit large BCPL programs to be
run on small machines, and compactness of compiled code was a major design criterion.
CINTCODE as published only supports 16 bit BCPL, appropriate given the size of machine it is
to run on. However 32 bit versions have been developed both by Padget and ffitch [Padget83]
and for the purpose of this dissertation. These have been used to make comparisons with other
32 bit architectures. As a commercial product details of its derivation have not been published,
although a summary may be found in [Richards82]. This account of its development is derived
from conversations with the designer during 1984. CINTCODE has been implemented on a
number of machines, and a measure of its success may be seen in the implementation of a
multi-tasking operating system, Trpos [Richards79], on the BBC microcomputer, a 6502 based
computer with 32Kbytes of memory [Baldwin8g4].

A CINTCODE instruction normally consists of a one-byte opcode followed by a number of one
or two byte arguments. The sole exception is the SWITCH instruction, used to implement the
BCPL SWITCHON statement, which has an arbitrary number of arguments, the number of such
arguments being given in the first argument byte. The instructions consist of a small core that
provide the basic operations to support the high level language, and a substantial number of
variants on these core instructions to improve the performance of the instruction set by dealing

3 For dlarity of notation the term opcode will be taken to refer to the initial opcode byte, and the term instruction will
refer to the opcode with its arguments as a whole entity. This is a source of considerable confusion throughout the
literature, with the two words often used inlerchangeably.

-13 -

Analysis of the Problem J.P. Bennett

with special cases efficiently. The machine has three general registers, that essentially hold the
top three elements of the local stack frame (A, B and C), and three registers to provide access
to local data (the stack pointer P), global data (the global base register G) and the code (the
program counter PC). There are three basic groups of instructions, which take 2-byte
arguments where necessary:

(1) Data access instructions to load and store data from the global and local areas, from an
absolute address, and to load constants

(2) Data manipulation instructions that operate on A, B and C.

(3) Flow of control instructions that provide conditional flow of control.

CINTCODE uses three variants on these basic instructions, to provide new instructions that will

take up less room.

(1) Variants are provided with one byte arguments, in cases where the arguments are
commonly in the range 0 - 285 (e.g. Load Local Byte). A version of this is also provided for

arguments in other ranges, e.g. for globals in the range 256 - 511.

(2) Variants are provided for cases where a particular argument is common, in which the
argument is implied in the instruction. Thus to load constant 0 into register A we have
Load Immediate Zero.

(3) Commonly used sequences of instructions are combined. Thus we have Call Global to
load a global value and then do a procedure call to that address.

These new instructions may themselves be combined to provide further instructions, for example
Add Constant One.

The choice of which instructions to choose from all the potential variants was based largely on
the designer's (considerable) experience of writing BCPL compilers, assisted by a limited
amount of statistical data collected by the compiler in everyday use. He felt that about half of the
instructions he generated were loading and storing values, in the ratio two load to one store, and
this is the density found in the instruction set. The idea of weighting the support given to
particular types of operation in the instruction set is the crucial advance in this style of computer
design, and must ultimately be attdbuted to Knuth’s work on analysing FORTRAN code. Prior to

-14 -

Analysis of the Problem J.P. Bennett

this, computers were designed without any consideration of the degree of support for particular
criteria. Although CINTCODE was not the first instruction set to make this distinction (a claim
that might more reasonably be made by designers of the Alto), it is typical of such designs.
Whether weighting the number of instructions of a particular type in proportion to the frequency
of the operation in compiled code e correct is discussed in a chapter five below.

A full analysis of CINTCODE used in practice has not been carried out, although the designer
estimates a three-fold improvement over existing instruction sets in static size. In chapter two,
an analysis of a 32-bit version of CINTCODE in comparison with other 32-bit machines is

presented, and this suggests that a two-fold improvement is more realistic.

Designs such as the Alto and CINTCODE all rely in essence on the designers experience of the
use of their language in compiled form. Following on from Knuth's work a number of people
have looked at the use of statisties to help explicitly in the design of computer instruction sets.
The key ideas here come from Tanenbaum, who designed a machine, EM-1 to support a simple
block structured programming language, SAL [Tanenbaum78]. In this respect it closely parallels
the CINTCODE machine for BCPL. The work is roughly contemporary with the development of
CINTCODE, although the two designs were independent. However Tanenbaum made a
thorough study of high level language usage, within the environment in which he was interested
(small student programs), before designing his machine. it is interesting that many of his
conclusions closely parallel those of earlier workers, who had used only their own intuition, and
his instruction set is very close to that for CINTCODE.

SAL is a language not dissimilar to BCPL, the one significant extension being the addition of
static scope for local variables. The programs under examination were written in a highly
structured style, with very short procedures (average 18.2 executable statements per
procedure). Tanenbaum collected a large number of static and dynamic statistics about high
level constructs. These showed Mke Knuth that programs are generally very simple. 93% of
executable statements are assignment, call or if statements. Expressions are generally simple
(usually a constant or a variable), most operands are constants or simple variables. Most

procedures have very few formal parameters, and very few scalar local variables. Tanenbaum

-15 -

Analysis of the Problem J.P. Bennett

suggests that design effort should go into instructions that handle these common simple cases.

EM-1 is a segmented machine with a byte stream instruction set, with separate program and
data segments being byte and “word” addressed respectively. In this respect it is unusual,
moving away from the standard von Neumann model of computing. The size of a word is not
defined, but is effectively constrained to be 16 bits. There is a special data segment for the
stack, addressed by a stack pointer register. EM-1 opcodes may have a single or double byte
argument. To increase the number of instructions (which normally would be 256 for a byte
stream instruction set) one opcode is reserved as an “escape” opcode, giving a further 255
instructions. Tanenbaum, drawing on the work of Huffman [Huffman52] and Shannon
[Shannon48] points out that the commonest instructions should be given the shortest encoding.
In this case with one escape opcode only, it is a rather trivial case of base 256 Huffman
encoding.

Tanenbaum’s instruction set consists of a number of instructions to support the operations
required by SAL forming a “core” instruction set. He then augments his instruction set with
additional instructions in the manner of CINTCODE. In fact Tanenbaum attacks the problem
from the opposite end to CINTCODE, with his core instruction set containing instructions with
single byte arguments. He adds epcodes with double byte arguments to deal with pathological
cases, which in practice due to their rarity are implemented as escaped opcodes. This is
derived from the assumption that since programs are small, argument values such as branch
addresses and stack frame offsets will be small and fit in one byte for the normal program.
Further instructions with implied arguments for particularly common cases are then added to

complete the instruction set.

The statistics on program usage are used to guide the augmentation process. Thus there are
three additional instructions for pushing constants onto the stack, eight for external variables,
and twelve for local variables, reflecting the importance of assignment, and the fact that local
variables are most common. Tanenbaum points out that although he is attempting to reduce
static size, this will also affect program execution time, by reducing processor-bus bandwidth,

and reducing working set sizes. To assist in improving performance he consu‘tts his dynamic

-16 -

Analysis of the Problem J.P. Bennett

statistics, although as he points out these may be dominated by a few very frequent loops, and
thus really reflect a much smaller sample of compiled code. With modern MIMD machines,
based on processors such as the INMOS Transputer [Cownie86], the desire to keep the amount
of memory per processor to a minimum, to save physical space and heating problems makes

reduction in static size more important than ever.

Statistics are given for the number of bytes required to compile each high level construct, in
comparison with the PDP-11, and a CDC Cyber. These suggest a 3 - 4 fold improvement in
size. For complete compiled programs the improvement seems to be more like 2 - 3 fold,
reflecting presumably the dominance of particular high level constructs.

As a rider Tanenbaum suggests a solution to the potential nightmare of compiling code for these
machines, with the use of a higher level assembly code as code-generator output, and the use
of an optimising assembler to select the best instruction in each case. This would also provide
more flexibility if the instruction mix had to be changed. This is not so far from the idea of
peephole substitution of a core instruction set mentioned in the introduction.

Tanenbaum’s work with its use of careful analysis of the target environment represents an
advance on designs such as CINTCODE and the initial instruction set for the Alto, which used
only minimal statistical data, and were far more dependent on the experience of the machine
designer. However he still only used statistical data to guide his design, rather than as a
calculus for instruction selection. A more rigorous methodology was followed by Sweet and
Sandman in their work to refine tive MESA instruction set. Although this was not designed from
scratch, their identification of which statistics were important in instruction set design was
valuable. Their calculation of expected improvements was the first use of statistical data to
estimate results attainable by instruction set refinement.

The MESA architecture was designed at Xerox to support the MESA programming system.
MESA is a high level systems pragramming language, designed to support the development of
large information processing applications. Throughout the project the processor architecture,
programming language and operating system were designed as a single unit.

-17 -

Analysis of the Problem J.P. Bennett

The three main goals of the architecture were stated to be [Johnsson82}:

- to enable the efficient implementation of a modular, high level programming language such as
MESA. The emphasis here is not on simplicity of the compiler, but on efficiency of the generated
object code and on a good match between the semantics of the language and the capabilities of

the processor.

- fo provide a very compact representation of programs and data so that large, complex systems

can run efficiently in machines with relatively small amounts of primary memory.

- to separate the architecture from any particular implementation of the processor, and thus ac-
commodate new implementations whenever it is technically or economically advantageous,

without materially affecting either system or application software.

The processors are general, in the sense that they aim to support any high level block structure
language, such as Pascal or Algol, and not just MESA, providing instruction set support for
those constructs that are common to such languages. The instruction set, like those discussed
before, is asymmetric, with the size and number of instructions based on frequency of use. It is
a stack machine, and has no general purpose registers. The basic unit of data is the 16 bit word
within a 2% word virtual address space in 256 word pages. Asynchronous processing is
supported via monitors and condition variables.

The instructions consist of a one byte opcode, followed by a number of byte or word arguments
(the format being implied from the opcode). The generic instruction has word sized arguments,
with special versions for commonly used cases having byte arguments, or implied arguments.
There are also instructions for common sequences of generic instructions. Compilation is by use
of the generic instruction, which may then be peephole optimised to one of the special case

instructions.

In their paper Sweet and Sandman describe the refinement of the MESA instruction set in the
light of statistics on its use [Sweet82]. They provide a formalisation of the statistics required, and
the method to be used. Their motivation was to reduce the static size of compiled code, since
the Alto (an early 64Kword MESA architecture, without virtual memory) had run out of address
space. They were already starting with an instruction set that had been influenced by the

designers’ experience of compiled code and included support for common instructions in the

-18 -

Analysis of the Problem J.P. Bennett

manner of CINTCODE and EM-1. They proposed a five stage design process to refine this

instruction set.

(1) Normalise the object code - Many of the instructions in existing compiled code were
special versions of generic instructions dealing with common cases. These were replaced
by their generic instructions, with all arguments explicit and word sized. In the case

presented by Sweet and Sandman this gave 2.5 million bytes of code to analyse.

(2) Collect Statistics - The resultant 2.5million bytes of code were analysed by pattern

matching to find particular statistical information.

(3) Propose New Instructions - The statistics from stage two were used to suggest new

instructions.
(4) Peephole Optimise - The object code was converted to use the new instructions.
(5) Repeat stages 2 - 4.

Normalisation is an important conoept in refining instruction sets. It is important to get rid of any
existing assumptions about benefigial instructions. The existing instruction set utilised 240 out of
a possible 256 instructions. The mormalised instruction set had 100 generic instructions, giving
scope for derivation of 156 new instructions.

Five sets of statistics were found to be useful. These were:

(1) Static instruction frequency

(2) Operand values - A histogram of argument values for each opcode.

(3) Instruction successors - A histogram of successor instructions for each instruction.
(4) Instruction predecessors - Difto for preceding instructions.

(5) Popular instruction pairs - The set of all instruction pairs, sorted by frequency.

It is clear that (3), (4) and (5) all report the same information. However (3) and (4) are a more
useful representation when considering conditional probabilities. These statistics were used to
guide the choice of new instructions. Note that there is no formalisation of the mechanism of
choice.

At the end of the process a new instruction set was obtained, with in fact more than 256 new

-19-

Analysis of the Problem J.P. Bennett

instructions, so that an escape op¢ode as in EM-1 was used. Sweet and Sandman were able to
use their statistics to predict the saving in space that would accrue from their work, 12%. Their
subsequent peephole substitution of the refined instruction set showed this prediction to be
accurate. This improvement may not seem dramatic, but bear in mind that they were competing
with a machine that had already been designed by some very experienced computer architects.
The 12% is a useful figure in indicating that mechanical analysis can have a benefit over human
knowledge and experience. Chapter 3 of this dissertation presents a system of mechanised
instruction set design that yielded 14% saving compared with CINTCODE in an instruction set
for BCPL, énd 71% saving in refining an instruction set for the programming language POLY
[Matthews85].

1.6. Current Research

Byte stream architectures of the sort described earlier in section 1.6 have had considerable
influence on current computer designs. Relatively few large modern computers are based purely
on byte stream instruction sets. The Xerox D-machines, descendants of the Alto are perhaps
the most important, although a number of 8-bit micros (for example the 6502 and the Z-80) used

such designs. Byte stream instruction sets are more common with soft microcoded machines*
used for experimental work in which the ability to reconfigure the instruction set is a valuable
asset. Examples of such machines are the ICL Perq [3rivers81] and the High Level Hardware
Orion [HLH85]. However modern mainstream architectures have all been influenced to some
extent by the need to support compiled high level languages in the computer instruction set.
Some machines such as the VAX-11 [DEC81] and the Motorola MC68000 [Motorola79] have
provided generally useful features, such as software stack support and procedure calling. Others
attempt to support a specific high ievel language. The NS32000 series is designed to support
Modula 2, with a falling software stack, scaled addressing and procedure call via link tables
[NationaiB3]. There is also some recognition of the need to support particularly common
constructs with additional instructions. Both the MC68000 and the NS32000 have special

4 That is microcoded machines in which the microcode is dynamically loaded from backing storage.

-20-

Analysis of the Problem J.P. Bennett

addressing modes to handle small constants efficiently. These are all conventional von
Neumann machines, suited to imperative procedural languages such as FORTRAN, COBOL,
Pascal and even to some extent LISP. More radical machines have had some success when
dealing with other types of computer language. The Symbolics LISP machine runs LISP far
more efficiently than conventional architectures, and has had considerable commercial success.
The combinator machine SKIM [Clark80] handles functional languages efficiently, and there has
been considerable work on architectures to support logic programming. In all these designs the
needs of compiled code have paid a large part in the choice of instruction set.

Recently there has been criticism of the complexity of instruction sets on machines such as the
VAX-11. Even the humble Z80 has over 700 different instructions. The VAX-11 with its three
address instructions has an even more compiex instruction set. There are for example two
different instructions for evaluating a polynomial. The RISC’s described earlier in this chapter are
a reaction to this heavyweight design approach, and have led to much faster and smaller

processors.

Figures have been given earlier in this chapter showing the performance of a recent RISC
design, the Acorn RISC Machine [Wilson86). It is worth looking at the first RISC design, RISC-1,
to identify the key elements in its design [Patterson82]. The aim was to produce a computer that
was effective and simple to implement as a single chip, which led to four constraints.

(1) One instruction are executed per cycle.
(2) Al instructions are the same size.

(3) The only access to memory is to load and store registers, all other operations operate on
intemal registers.

(4) The design is optimised towards high level language support.

RISC-1 meets these requirements. The success of its simple approach is seen in the fact that it
needed only 44500 transistors and that the first silicon worked with only one minor design error.
The processor supports 32 bit addeesses and 8, 16 and 32 bit data. It is optimised to support C.
Analysis of compiled C code for the VAX-11, PDP/11 and MC68000 showed that the most time-
consuming activity was procedure ¢all, and that most operands were local scalars or constants.

-21 -

Analysis of the Problem J.P. Bennett

These are the operations concentrated on. There are a total of 31 instructions, each of 32 bits.
Each instruction may optionally set a condition code, specify a destination register, and either
one or two source registers, or an immediate operand. There are a total of 32 registers, with
register zero permanently containing zero. By using r0 the number of memory addressing
modes is increased. Procedure call is facilitated by the use of overlapping register windows.
RISC-1 has a large bank of registers, and on procedure call allocates a new set. Not all 32 are
reallocated however. r0-r9 are global registers and never change. After a call registers r10-r15
become registers r25-r31 of the called routine, and a new set of registers r10-r24 is allocated.
This facilitates passing of arguments, as well as reducing memory accesses to save registers.
On overtlow the registers are dumped to memory by a software trap. To facilitate addressing on
the stack the register bank is mapped into the address space. Patterson and Sequin
[Patterson80] report work that suggests only 1% of all procedure calls will cause a software trap
if there are eight register banks. The data presented suggest that overlapping registers lead to a
considerable reduction in memory access due to saving and restoring of registers on procedure
call. As a consequence of the constraint on performing one instruction per cycle RISC-1
implements delayed jumps. It is not possible to read an address field from an instruction and
carry out the jump in one cycle, so the jump is delayed for one cycle. This is common in
microcode, for example the High Level Hardware Orion [HLH85], and is easily handled by a
compiler. It does emphasise the fact that RISC-1 is a high level language machine, and not for

the assembler programmer.

RISC-1 represents a turning point in computer architecture, but not because of the high
performance or novel instruction set. Patterson and Ditzel [Patterson80] were the first to
recognise the significance of the semantic gap in instruction set design. Their work throughout is
based on the assumption that the information in the high level language program must be
conveyed to the the low level processor with the introduction of as little redundant information as
possible. In giving the compiler writer very simple building blocks he has the opportunity to
translate each high level construct without introducing any extra ideas into the compiled code.
With the instruction set of the VAX-11 finding an exact semantic match is difficult. The
instructions are so complex that even with the large number of available instructions the chance

of having precisely the right flavour available is low. Having found a match the chance of the

-2

Analysis of the Probiem J.P. Bennett

operands and result being in the right place is also quite low. If the compiler writer does succeed
it is often because the instructions are so general they run painfully slowly. On the NS32000 up
to 57 cycles can be spent decoding operands for an instruction alone [Wilson86). By comparison

RISC instructions are generally simple enough to execute in one cycle.

RISC technology, like byte stream architecture before has started to influence new computer
designs. Many manufacturers are now bringing out RISC designs. Other architectures show
RISC influence, for example the Inmos Transputer has kept its instructions simple enough to

execute in a single cycle, atthough overall it is far from being a RISC design [Cownie86}.

1.7. Theoretical Studies of Instruction Sets

In parallel with work on actually designing instruction sets, a number of theoretical analyses of
the problems involved have been carried out. The whole area is clearly likely to be amenable to
information theoretic ideas, and indeed Huffman's paper [Huffman52] is a common reference
throughout the literature. Other approaches have also been taken in an attempt to estimate the
amount of “improvement” that can be obtained through instruction set design.

Wade and Stigall used information theory, and the concept of entropy to attempt to estimate
how much space compiled code for a particular high level language should require [Wade75].
Their approach was to treat the instruction stream as a sequence of symbols and consider the
information content of the stream and calculate its entropy. Shannon [Shannond8] defined the

information content of a symbol, s; in a stream of symbols as:

1
log(=")

where p; is the probability with which s; occurs. Shannon showed that it is convenient to use

logs to base 2,5 when the information given is measured as bits per symbol, the number of bits
that should be used to encode a symbol in an optimal encoding of the instruction stream. The

5 For the rest of this section logarithms should be assumed to be to base 2, unless explicitly subscripted.

-23-

Analysis of the Problem J.P. Bennett

average information per symbol is

H

N 1
3, pilog (—)
i=1 pl

N
—121Pi'°9(P1) .

This quantity is referred to as the entropy of a symbol stream by analogy with similar systems in
statistical mechanics. It represerts the average bits per symbol that are needed in an optimal
encoding of the symbol stream as binary numbers. Huffman [Huffman52] gives an algorithm for
assigning an optimal encoding.

Treating the opcode stream as a sequence of such symbols is particularly informative, since
then the problem of minimising code size becomes a problem in minimising the entropy of the
opcodes. Wade and Stigall considered first the replacement of a given sequence of opcodes by
a new opcode wherever it occurred. Suppose the string of opcodes sS85 - - - 5x occurs with
probability p; and wherever it ooours is replaced by a new symbol s ’, then Wade and Stigall
showed that the new entropy H ’ is given by.

Ps Ps
|
k-1ps % Tk,
kK p—ps Pi — Ps
2=k, 9 w0,
N pi
i =§+1 1_(k-1)p8

H' = -

)

P
log ((k-) -

1)Ps

Adjusting for the new length of the string of symbols they derived a formula for the reduction in
entropy. They then considered the values of p, for which this value is positive (i.e. it is a
reduction, not an increase!). For small p; he shows that this is given by:

k
Ps > eIIIp/ .
=1

where @ is the base of the natural logarithm. Thus there is a decrease in entropy if p, is greater
than

-24 -

Analysis of the Problem J.P. Bennett

k
i=1

This quantified the idea that replacing a common sequence of opcodes by a single opcode is
beneficial. It also justified the suggestion that rarely occurring opcodes may be replaced by a

stream of common opcodes.

Wade and Stigall also considered the idea of introducing state into a processor to modify the
action of opcodes. They divided the symbols into K groups, such that there are some symbols
which occur in only one group. Each time a group occurs it is preceded by a state symbol, and
the symbols unique to the group may share a representation with symbols unique to other
groups. Clearly the introduction of extra symbois means that we need to consider the break
even point at which it is worth having such symbols. A key factor here is the total probability of
all unique symbols over all groups. Clearly the higher this is the greater the benefit of dividing.
Wade and Stigall caiculated the break even point for various lengths of symbol stream, numbers
of groups, and total probability of unique symbols. They also considered the case K=2 and
worked out the saving in entropy for different total unique probability and symbol stream lengths.
The equations are large and are not repeated here, but they showed that for opcode streams of
length 500, 2 groups, and all opcedes in only one group a saving of 0.96 bits per symbol was
possible. For smaller streams, lasger numbers of groups and opcodes that are not unique fo

groups the savings are smaller.

Hammerstrom and Davidson used a similar analysis to look at the information content of
memory references in the IBM S/360 [Hammerstrom77]. They considered the entropy of
references as an n-order Markov process. If H, (S) is the entropy of a stream of symbols S

analysed as a n-order Markov process, then the absolute entropy is lim H, (S). This is clearly
n—=>oe0

only valid for an infinitely long stream of symbols, and so they derive a formula for an estimate
of H, H. This model was applied to data for the IBM S/360 architecture, using base and
displacement addressing. The estimates obtained suggest that the average information content
of such an address might be quite low, in one of their two sample programs as little as 0.1 bit
per reference. Given an IBM base and displacement address requires 16 bits this represents
over 99% redundancy.

-25-

Analysis of the Problem J.P. Bennett

As a theoretical basis for instruction set design entropy shows great promise. Although a
detailed study is beyond the scope of this dissertation, some analysis of the entropy of byte

stream instruction sets is discussed in chapter five.

Flynn and his co-workers took a rather more pragmatic approach and derived a Canonical
Interpretive Form as a best possible instruction set for a particular program, suggesting that for
FORTRAN, compiled code 10% of the size of the best current compiled code should be possible
[Flynn84]. Flynn restricts his analysis to a single high level language, in which all optimisations
have been done at source level. He defines the concept of an ideal execution architecture,

where by ideal he means:

(1) Transparent - i.e., transiation is a simple process which preserves equivalent source-

state information, thus allowing a ready reconstruction of source constructs.

(2) Optimal representation - i.e., space and time to compile and execute are minimised.

Translation (i.e. compilation) is viewed as providing a reduction in computational complexity,
through the partial binding of operands to addresses and operators to computational structures.

Remember that any optimisation has already been done, on a source to source basis.

Flynn goes into some detail on transparency. In general there may be any number of levels of
interpretation, from the high level language to the cpu electronics. Transparency between two
levels implies that state transitions in each level occur in the same order, and that in the
transition from state to state there is a one to one correspondence in states, and no new states
are introduced.

To clarify his views on optimising space and time Flynn introduces the concept of an
environment, that is all the information (registers, memory, interrupt state etc.) needed to
interpret a particular instruction. Within this concept the idea of distance is introduced. A
program will typically enter some environments repeatedly during execution. Distance is the
number of distinct environments entered. Distance ratio is the number of distinct environments

- 26 -

Analysis of the Problem J.P. Bennett

entered as a fraction of the total environments entered. The smaller this value, the greater the

opportunity for re-using state.

With these concepts Flynn defines five criteria for measuring architectures:

(1)

(2)

Correspondence - We want the low level representation to correspond to the source
representation. Correspondence may be viewed at many levels (program, procedure etc.),
but from the point of view of transparency, the high level language operation is the useful
unit of distinction. For any source program we define

A A Ay Ay

to be the number of static operation references, dynamic operation references, static data

references and dynamic data references respectively.
4 a & aq

are the comresponding counts for an actual execution architecture. The quadruple:
A A A A
& & 48y ag

is used as a measure of correspondence.

Size - We want a minimal encoding. This is merely the product of the dynamic counts
above, and the size indicated by the number of distinct operators (F) and operands (V)

A [ogzF| Ag Josev]

There is a slight problem here, since in a general programming language the number of
data operands may be arbitrarily large, and for practical purposes we wish to restrict the
value, so that the size of identifiers is finite. Flynn chooses the program as the correct
environment over which to carry out the analysis. This should perhaps be the largest
program we ever wish to run. An alternative would be the subroutine, since in many
programming languages there is locality of scope within subroutines. Flynn also
(deliberately) ignores saving possible through frequency based encodings.

-27-

Analysis of the Problem J.P. Bennett

3)

(4)

(5)

Referencing Activity - this is composed of both instruction fetches and data stores and
fetches. For instructions the number of references for the operation and operands is not
simply A; + Aq4, since Ay will be two for operands used both as domain and range. Instead

Flynn uses the concept of the dynamic syllable count:

As = A + ;(Ad)l

The data reference count is given simply by Ay .

Stability - this is a measure of the number of environments encountered, the number of
computed locations and the number of potential disruptions to serial instruction
sequencing. It is measured by the triple

SQ sc Sb
where S, is the total nhumber of environments encountered during executions, S, is the

total number of data references that have to be computed (e.g. record elements) and S, is
the number of control actions dynamically interpreted.

Distance - This is a measure of how often we have first encounters (i.e. first reference to a
branch address, data operand etc). It is given by the triple

De D: Dy

where D, is the number of unique environments entered, D, is the number of computed
addresses and D, is the number of unique branch targets.

With these definitions Flynn comes up with his five canonical interpretive measures of an ideal
execution architecture.

1)
(2)
(3)

Correspondence - measured by the quadruple A;, A;, Ay, A,.
Size - Each operator is of size [loggF] bits, each operand of size [Iogz V1 bits.

Referencing - Syllable references are measured by A,.
- Instruction references are measured by the pair M, A;.
- Data references are measured by A,.

-28 -

Analysis of the Problem J.P. Bennett

(4) Stability - measured by the trple S,, S;, Sp.

(5) Distance - measured by the triple D,, D, Dp.

Using these measures Flynn is able to calculate ideal execution space, i.e. the best possible
static size of a program as

3 [logaFa] % Ais + [logaVi | % Ao

[+

where the summation is over all esivironments o.

Flynn calculates ideal execution time as
aA; + bAy + ¢S,

where a, b and ¢ are arbitrary relative weights for transformational activity, data accessing and
environment change. The effect of a cache is to reduce a and b substantially, so that
environment change may dominate. Canonical Interpretive Form is defined as being an
interpretive form (that is instruction set) which has ideal execution space and time.

The presence of the weighting factors a, b and ¢ in the estimation of ideal execution time,
rather limit the use of this measure, but Flynn does give some comparisons between ideal and
actual execution space. For the three line FORTRAN fragment

I=I+1

IJ=(J-1) *I

K= (J-1) * (K-1I)

the ideal execution space is 30 bits (6 operators and 9 operands, each requiring 2 bits). This
compares with FORTRAN-H comgpiled code for the IBM S/370, which is 368 bits, over 12 times
the canonic measure. For a rather more complex Pascal program the CIF measure of execution
space is 277 bits, compared with 2800 bits for the PDP 11, 3056 bits for the IBM S/370 and
4960 bits for UCSD P-code.

Flynn's measures are based on semewhat simplistic views of the world, and again assume that

-29.-

Analysis of the Problem J.P. Bennett

bit-addressing is the norm. In addition he does not consider the space required to describe the
encoding he is using (you may only have § unique branch addresses, but at some stage they
have to be identified). He has tried to apply his ideas, and come up with instruction sets, Adept
to support Pascal, and DELtran to support FORTRAN, but in the Pascal example above Adept
still requires 1184 bits, four times the CIF ideal execution space.

These theoretical studies are very much of one type; they give a lower bound beyond which it is
not possible to improve. As some of Flynn's work shows such results have little to do with
reality. A far more useful resuk would be an upper bound rather than lower bound on
improvements possible in code size and speed. In chapter five we consider an approach to

achigving just such an upper bound.

1.8. A New Methodology

In demonstrating the importance of the semantic gap in instruction set design, RISC technology
has provided a model which shows great promise. The RISC approach suffers however from its
very verbose encoding and has lost the conciseness of representation found in byte stream
designs. This dissertation will present the thesis that it is possible to design an instruction set
that bridges the semantic gap between hardware and software as successfully as RISC and yet
has the conciseness of a byte-steam instruction set. The methodology is suited to automation
and is generalised to permit refinement of existing instruction sets- and to permit a design to

meet criteria other than static or dynamic compactness.

-30-

2. Experimental Observation

At the heart of work on instruction set design lies careful study of the environment in which the
instruction set is to work. For experimental purposes it is not necessary (nor even desirable) that
a full blown computer system and environment be used, but it is wise to select a subject for
analysis which is big enough to provoke the same problems. My experimental subject is the
Tripos operating system, and in particular the running of commands under the Tripos command
line interpreter.

Tripos [Richards79] is a small real-time operating system written in BCPL [Richards80]. it
implements message passing by shared memory for interprocess communication. There is no
support for virtual memory, nor is there any form of memory protection. In the system under
analysis it runs as a single user operating system on a Motorola MC68000 [Motorola79]
processor. The sole interface with the outside world is through a local area network, a
Cambridge Ring. The network interface is managed by a separate 6809 based 1/0 processor.
All services are provided remotely through the local area network. This system is well described
in [Needham82].

-31-

Experimental Observation J.P. Bennett

The Tripos system supports a simple command line interpreter as interface to the user with
commands in general written in BCPL. It is useful to look at the use of commands both in
relation to other commands and in relation to the overall activity of the processor. This is
described in the first half of the chapter and used to choose an appropriate design criterion for a
BCPL instruction set to support commands running within a distributed Tripos environment. The
second half of the chapter is devoted to experimental analysis of BCPL as used to write Tripos
commands. Those aspects particularly relevant to the chosen design criterion are examined in
detail. These results are used in the next chapter to guide the design of an instruction set to

support BCPL.

2.1. Command Usage

By virtue of the machines under analysis being linked by a local area network it is possible to
analyse their everyday use remotely. One simple preliminary analysis is to look at how much of
a machine’s time is spent carrying out various tasks (for example command execution, file
handling, terminal 1/0). A sampling technique was used to look at all the relevant machines in
active use on the network. The network resource manager was interrogated to find which
machines were in use, and each machine was interrogated in turn to discover which process
was active at the time. The interface from the host MC68000 processors to the network has its
own 6809 processor, which is capable of reading the host machine’s memory via a DMA link.
This was used to investigate system data structures to find the currently active process. Using
the interface processor feads to minimal influence on the performance of the host machine, an
important factor in this sort of analysis. The sampler repeatedly analysed each active machine,
building up a profile on the frequency with which different processes were found executing. The
sampling machine was masked out of the analysis to avoid biasing the results. Table 2.1
summarises the resuits, rounded to the nearest 1%. These data represent a total of 31579
samples, taken during a typical busy weekday afternoon. A total of 11 processors were
analysed, although not all were necessarily active the whole time. These are average results
(weighted by sample size) for all the machines, together with the maximum and minimum figures
for individual machines, to give a feel for the spread of activities. The time for the command line

interpreter process represents that percentage of time dedicated to running user programs. We

-32.-

Experimental Observation J.P. Bennett

Percentage Time

Process Details
Average | Minimum | Maximum
idle process 84% 60% 97%
command line interpreter 11% 2% 13%
terminal handler 2% 0% 3%
file handler 1% 0% 1%
all other processes 2% 0% 10%

Table 2.1 Processor Usage

might reasonably assume that some part of the time in the idle process is due to logged on
users not actually doing anything. However it is striking that 60% of the time is spent in the idle
process even in processors which were running chip simulation programs continuously
throughout the period. In other words within this environment there is inevitable idle time,
presumably due to communication delays on fully utilised processors. If we can reduce this we

can improve system performance.

It is interesting to look at what sort of programs are executed. The sampling program was
modified to identify the command being executed by the command line interpreter. As a result of
12575 samples, the data in table 2.2 were obtained. The figures are as a percentage of total
time in the command line interpreter. It can be seen that users spend most (84%) of their time
sitting in large interactive systems, with occasional demand on batch processing programs. In
particular the iarge number of small utilities (23 out of 30 programs analysed) take very little
time (2%). It is apparent that there is little to be gained within this environment by aiming to
increase overall processor throughput, since it would appear that the user is not using the
processor to full capacity anyway. However there would seem to be some benefit in increasing

processor throughput in short bursts, to improve response when the user runs a program.

Execution of a command by the user involves two stages, the loading of the command, and then
the execution of its code. It is worth looking at which of these dominates, and thus which has

-33-

Experimental Observation J.P. Bennett

Program Type Percentage Time
editors 53%
interactive LISP 31%
paginator 10%
BCPL compilers 2%
file transfer (MVSCP) 2%
system utilities 2%

Table 2.2 Types of Commands Executed

greatest scope for improvement.

The command line interpreter was modified to log details of each command that was executed,
together with load and execution times to a remote machine. This moditied program was
installed in the standard system t0 monitor typical usage. Note that the logging was done after
command execution was complete, using a very simple communication protocol to minimise
interference with system behaviour. Table 2.3 summarises the results. About the time these
results were being obtained a system for preloading common commands was being introduced,
reducing to zero the load time for such commands. Such results are separated and shown in the
first line of the table. We see that the majority of commands executed take very little time to
execute, but spend a relatively large amount of time being loaded. In total the time may not be
very large, but the effect of removing the burden of loading, as is achieved by the system of
preloading commands, is to give improved response from the computer. it is perhaps worth
looking in more detail at the nature of loading commands, to see if there is scope for

improvement in this area.

One way of improving response, as already hinted above, would be to preload commonly used
commands in main store. To get a feel for how much of the load time is due to waiting for the
secondary storage device (as opposed to the housekeeping of handling files), the standard
remote disc filing system was compared with an in-store “silicon disc” filing system. Rather than

-34-

Experimental Observation J.P. Bennett

Load Time | Execution Time Load Time as
Command Type Count
Average/s Average/s Percentage of Total
Preloaded 126 0 80.8 0%
Under 1s execution time 175 1.12 0.22 83%
1s - 10s execution time 99 2.42 3.62 40%
10s - 100s execution time 44 3.12 28.1 10%
Over 100s execution time 15 5.85 880 0%
Total non-preloaded 333 2.00 445 4%

Table 2.3 Command Load and Execution Times

rely on random observation, a simulation of the basic action of loading a command was used. A
program was written repeatedly to open a file, read each byte of it and close it. The remote
sampling program described at the start of this section was then used to compare two
processors, one running the test program reading a file from the file server, the other with a file
on the silicon disc. There are three processes of interest; the command line processor running
the test program, issuing requests to open read and close files, the file handler process, which
either obtains data from the silicon disc image or issues requests to the remote file server for
data, and the idle process, which is entered when neither of the other two processes may
proceed. The program that uses the remote file clearly will spend some time waiting for the file
server to respond to requests, and this time will be spent in the idle process. By looking at this
idle time we can get an estimate of the amount of time spent reading files that is due to waiting
for file server response. This is an upper bound on the time that could be saved by preloading
files. However use of a silicon disc means the local processor has to carry out additional work
with file handling that was previously done by the remote file server. By looking at the ratio
between execution time spent in the command line interpreter and in the file handier process we
can get a measure of how much extra work is being done by the local processor in running the
silicon disc. This will give us a lower bound on the amount of time that would be saved through

using a silicon disc. Table 2.4 shows the first of these results, the time spent idle when reading

-35-

Experimental Observation J.P. Bennett

remote files. The experiment was carried out three times using files of size 0, 1024 and 131072
bytes, and results are based on about 1125 samples in each case. The figures for 0 bytes and
1024 bytes are the most interesting, since they straddle the size of most small executable
commands. We see that there is a very large overhead in handiing these files, with at most 22%
of the processor time actually used. The larger figures for small files are because of the
overhead in opening a file and initiating transfer protocols. If we could eliminate the overhead of
remote file reading when loading small commands we might expect between a five fold and

twenty fold decrease in load times. Even for large files a halving of load time seems feasible.

Table 2.5 shows what happens to the time actually used in processing. For the system under
consideration this is divided between the file system handler process and the command line
process requesting the read operation. In using a silicon disc the overhead of having a local file
system should increase the propottion of the time spent in the file handler, and this can be used
to revise the estimate of the improvement possible in loading times. Table 2.5 shows the ratio of
file handler to command line interpreter times for remote file and silicon disc for each of the
three file sizes used above. The results have not turned out as expected. The silicon disc
handles a read request using between one tenth and one half of the processor cycles required
by the remote file handler. Although the filing system is local, the administrative overheads it
represents are less significant than the time in handling communication protocols to the remote
file server. This is perhaps emphasised by the fact that there is a bigger difference for smaller
files, for which the overheads of initiating a transfer represent a greater percentage of the total
activity. The expected decrease in loading times by use of a local file system could be
considerably more than twenty fold.

File Size Percentage Idle Time

0 bytes 95%
1024 bytes 78%
131072 bytes 53%

Table 2.4 Idle time reading remote files

-36-

Experimental Observation J.P. Bennett

Ratio Filing to Reading

File Size and Type
Remote File | Silicon Disc

0 bytes "4 0.82
1024 bytes 2.0 0.19
131072 bytes 0.35 0.15

Table 2.5 Efficiency of Filing Systems

To minimise the effects of uncontrollable environmental factors, such as load on the local
network these experiments were ¢arried out on identical machines in parallel at a weekend. The
results must be regarded as blased in favour of the remote file server. Under weekday
conditions of heavy network traffic and demand on the file server there is some evidence that up

to 98% of file loading time is spent waiting for the file server.

These experiments taken together indicate that within the environment being studied there is
considerable benefit to be gained from improving load times, rather than execution times of
commands. Since these experiments were carried out the preload filing system mentioned
earlier has been fully introduced into the Tripos operating system [Wilson85]. This is more
efficient than the silicon disc in that commands are preloaded ready for execution, and a request
for loading of a preloaded file results in a pointer to the file image in core being handed back,
with no copying in store. Multiple requests for the same program by several processes results in
reentrant use of the single program image. This system of preloading has resuited in substantial
improvements in response and reduction in load on the file server. It has also led to an increase
in the size of main store needed by users. Whereas 500K was adequate for most purposes
before preloading was introduced, now 1Mb or 1.5Mb is preferred, in order that sufficient
commands may be preloaded.

This last statement underlines what must be an important aim in providing an instruction set to

support a Tripos command environment - reduction in static size of compiled code. This will lead

to a reduction in space requirements for preloaded programs, making machines with small

-37-

Experimental Observation J.P. Bennett

amounts of memory suitable for use with such a system, and allowing better use of the memory
on large systems. By increasing the use of preloading the demand on the remote file server
becomes less, so improving its performance when it is used. Filing caches, both in the local
machine and the file server will work more efficiently with smaller programs. Instruction caches
will have a higher hit ratio. Under a virtual memory environment (which Tripos does not possess)
working sets would be reduced, a point discussed by Tafvelin and Wikstrom [Tafvelin75]. In the
remainder of this chapter we look at the BCPL language, used for almost all Tripos commands.
Considerable emphasis is placed on obtaining statistics about the static size of compiled BCPL.
This information will be used in chapter three in designing an instruction set for BCPL with the

design criterion of minimising the size of compiled code.

2.2. Language Usage

In any design work it is important to get a feel for the overall structure of the language being
supported. Many of the measurements described in this section are similar to those carried out
by others, as described in Weicker [Weicker84]. Tanenbaum’s analysis of SAL is particularly
relevant because of the great similarity between BCPL and SAL [Tanenbaum78]. It should be
emphasised that the aim of the current analysis of BCPL is not to provide a comprehensive
statistical analysis of every facet of the language as such statistics are not of direct use for the
design methodology proposed in the next chapter. The analysis is far more about giving the

designer a feel for the high level constructs that make up the language and how they are used.

High level analysis of the structure of BCPL programs was carried out by modification of the
SYN and TRN stages of the BCPL compiler. The SYN stage takes BCPL source and generates
a tree representation of it, the AE-tree. The TRN stage takes the AE-tree representation of the
BCPL source, and from it generates OCODE, an intermediate code for code generation.
Analyses were carried out on 102 commands from the Tripos system, representing 1020 BCPL
procedures, and an average of 19.6 statements per procedure (c.f. 18.4 statements per

procedure for SAL).

The first experiment looked at the static frequency of the various BCPL statement types. Table

-38-

Experimental Observation J.P. Bennett

2.6 shows the results for each BCPL statement as an absolute figure and as a percentage of
the total. The LET statement is included, since although it is a declaration it also implies an
assignment. There is no attempt to weight results according to complexity of the command,
these frequencies are straight counts of the number of occurrences of each construct in
compiled code. In line with other researchers’ results these figures are dominated by
assignment, procedure call and conditionals (82.7%). The precepts of structured programming
have clearly not yet totally got home to the programmers who produced this sample. GOTO is
still far too popular! A more concise representation of this data is given in table 2.7, which
groups statements into ditferent types. For comparison Tanenbaum’s results with SAL are given.
The similarity between the two sets of results are striking. There is no obvious explanation for
the rather smaller number of assignments in BCPL. The discrepancy in the use of
“unstructured” flow of control statements is perhaps surprising. This is in part due to the
relatively large number of flow of control statements possible in BCPL (GOTO, RETURN, LOOP,
BREAK, ENDCASE and RESULTIS). In addition RESULTIS is really part of an expression,
rather like a function and perhaps should not be counted as a statement. There is no equivalent
of the VALOF block in SAL, and if RESULTIS were excluded BCPL would have only 7.5% of
statements under the heading of flow of control. Finally SAL is used to teach students structured
programming, and so there is presumably rather more pressure to use “structured” techniques

than is found in the research environment from which the BCPL sample was taken.

Looking at high level constructs is not always the most helpful way of analysing language use,
since some statements are inherently more complex than others, and with almost any instruction
set would take up more space. A FOR statement is inevitably more verbose than a simple
assignment. An assignment of a constant to a simple variable is inevitably less verbose than
assignment of the result of a function call to an element of a vector. To get a feel of the relative
size of constructs it is helpful to look at compiled code. This immediately causes problems,
because of the presuppositions built into any code used for compilation. A number of remedies
are possible. We could collect data for a wide variety of target machines. However data would
then be biased in the general direction of current architectural trends. We could collect data on
an “objective” sample of target instruction sets. Even if such a sample exists we would however

be immediately prejudging the issue. We could use an iterative process, repeating the analysis

-39-

Experimental Observation J.P. Bennett

Statement Absolute Frequency | Percentage Frequency
assignment 5503 27.5%
procedure call 5215 26.0%
LET declarations 2459 12.3%
IF 2084 10.4%
RESULTIS 1010 5.0%
ENDCASE 679 3.4%
UNLESS 617 3.1%
TEST 544 2.7%
FOR 481 1.4%
GOTO 266 1.3%
RETURN 226 1.1%
BREAK 181 0.9%
SWITCHON 167 0.8%
UNTIL 166 0.8%
LOOP 139 0.7%
WHILE 109 0.5%
REPEAT 105 0.5%
REPEATUNTIL 47 0.2%
REPEATWHILE 32 0.2%
FINISH 12 0.1%
Total 21907 100.0%

Table 2.6 Frequency of BCPL statements

- 40 -

Experimental Observation J.P. Bennett

Frequency
Statement Type
BCPL SAL

assignment 39.7% | 46.5%
procedure call 26.0% 24.6%
conditional 17.0% 17.5%
flow of control 12.5% 5.6%
loop 4.7% 5.5%
other 0.3%
Total 100.0% | 100.0%

Table 2.7 Frequency of BCPL and SAL statements by type

on instruction sets we have designed, but there is no reason to believe this approach would
converge on the best instruction set, and it would be an extremely labour intensive approach.
The best approach might be to use the size of the translation tree for the construct as a
measure. This is perhaps the most abstract representation we can find. The slightly easier road
of using the intermediate code, OCODE, generated by the BCPL compiler is perhaps a practical
compromise. This already incorperates some assumptions about the world (for example that it
has three registers), but is probably closer to the spirit of the high level language than other
candidates. Even so the quantisation problems because of the small number of instructions
generated for a single high level construct make this a technique of only limited use, and better

suited to overall comparison of different instruction sets.

Larger, more heterogeneous structures are better candidates for examination by this technique,
with fewer quantisation problems. | have looked at the size of blocks generated by various loop
and conditional statements. The size of these blocks is an estimate of the size of offset needed
to reference one end of the block from the other. The average size of OCODE blocks generated
by some typical statements is shown in table 2.8. It can be seen that the average size of a
block is quite small, and relative addressing would certainly seem to be justified by this data.
These data are in line with Tanenbaum's observation that the majority (94%) of IF statement

- 41 -

Experimental Observation J.P. Bennett

Statement Average size of OCODE block (bytes)
IF 84
UNLESS 122
TEST-THEN 124
TEST-ELSE 179
FOR 145
UNTIL 194
WHILE 272
Weighted average 120

Table 2.8 Block sizes in BCPL

THEN parts contain less than ten statements. Note that the sign of the offset (i.e. whether we
are jumping backwards or forwards) is not relevant in the case of BCPL. We aiways know at
compile time whether the jump is forwards or backwards, and do not have to code this

information. It is thus not important that the examples in table 2.8 all involve forward jumps.

Many instruction sets provide optimised handling of the first few variables on the local stack
(CINTCODE and EM-1 for example), and it is worth considering whether this is justified. For it to
be worthwhile requires a compiler which assigns the smallest stack offsets to the commonest
local variables. The BCPL compiler under examination is designed for the MC68000, which
gives no significant advantage to such allocation of stack offsets, and such a scheme is not
implemented®. To enable data to be collected the TRN phase of the compiler was modified to
report statistics on local variable reference, which allowed calculation of “idealised stack

5 It is debatable whether altering the pesition of local variables is always permissible in BCPL. Certainly it is not
permissible to transform the order of proosdure arguments on the stack. Whilst it would seem that the proposed BCPL
standard allows other variables to be moved, there is some evidence of programmers assuming that consecutive local
variable declarations occupy consecutive stack locations. Such "hidden standards" are another trap for the unwary
computer designer!

-42 -

Experimental Observation J.P. Bennett

4908 —
3800 —
2008 —

1000 —

Frequency of reference

0 e I S A S A R S B e S S S R S A S S S |
4 18 20 3o 49 50

Idealised stack offset

Graph 2.1 Access 10 local variables

offsets”. These are the offsets which would give the most frequent variables the smallest stack
offset. Graph 2.1 illustrates the static frequency with which local variables are accessed in
compiled code as a function of idealised stack offset. It is clear that specialist support for the
first few is justified. These results are very much in line with similar results obtained by Sweet
and Sandman with MESA [Sweet82].

Of course compiled BCPL is not only code, but also static data, of which the most significant
part is literal strings. Before gefting too carried away with the reductions possible in space
required by BCPL it is sensible to look at what fraction of compiled BCPL is in fact static data,
since this provides a upper bound on the reduction in size that can be obtained from improving

the code. For the 102 programs under analysis, which generated 353786 bytes of compiled

-43 -

Experimental Observation J.P. Bennett

code, 44296 bytes, 12.5% of the total, were static data, and this figure provides an upper bound
on the reduction in static code size possible through instruction set design. However the amount
of static string data in a program is not directly proportional to its size, as is indicated by the
scatter diagram in graph 2.2. This shows that smaller programs tend to have a greater
proportion of static data, indicating that the potential benefits from denser code are greater for
larger programs. This is rather disappointing in the light of our earlier conclusion that small
programs (strictly speaking those that do not take long to execute) show most scope for savings
in load time by preloading. The amount of static data is very dependent on the type of program.

For other systems examined as little as 1% of code was static data.

As was discussed earlier in this dissertation, compiler design can perhaps be as important as

1.) A e A A, l A A A A l A A A N l A i I I

>
®
oo
+ o+

“
®
1

% String Data / bytes

)
(-]

N

¢’++
+

+
+

10—#4» *

+
T T 7T I LN B S ' LAAE SIS B ' LM S B I T=T==rT

° 5000 10000 15000 20000
Code Size / bytes

Graph 2.2 Static String Data in Compiled Code

- 44 -

Experimental Observation J.P. Bennett

instruction set design in improving efficiency. The effect of different instruction sets on static
code size can be seen from table 2.9, which compares three 32-bit instruction sets. The results
are referenced to OCODE as a norm. The results for CINTCODE and the IBM S/370 were
based on an earlier analysis of code generation from OCODE (not presented here), which gave
figures for the ratio of code size to OCODE size, and are rounded to the nearest 1000 bytes.
We see a ratio of nearly 2 to 1 between the size of compiled CINTCODE and compiled IBM
S/370 code. A 32-bit version of CINTCODE was designed, drawing on some of the ideas of
Padget and ffitch [Padget83], to enable a fair comparison. As a result the compiler is perhaps
not as well shaken down as the others, and the CINTCODE figure could well be improved given

some effort with the compiler.

For comparison table 2.10 shows the effect of using different compilers for the same instruction
set, the MC68000. BCPL is the standard compiler and was implemented as a general purpose
workhorse to implement Tripos. BCP is a recent optimising compiler, which also aims to provide
fast compilation. TBCPL is a commercial product aimed at generating very fast code. This is not
exactly ideal for our purposes, since we wish to look at static compactness, as was done with
the three different instruction sets in table 2.9. Static compactness and high speed code rarely
go together. The amount of OCODE generated is perhaps a useful indication, since it is in the
nature of BCPL compilers that most optimisation for speed occurs after the OCODE has been
generated. As compilers become more sophisticated the amount of intermediate code generated

tends to become smaller because global optimisation techniques remove redundancies. This is

Instruction Set | Code Size (bytes) | Size Relative to OCODE
OCODE 302273 100%
CINTCODE 240000 79%
MC 68000 385936 128%
IBM $/370 465000 154%

Table 2.9 Compiled code size for BCPL using different instruction sets

- 45 -

Experimental Observation J.P. Bennett

then countered at the code generation stage by use of in line substitution and loop flattening.
We see that for the two compilers where figures are available there is a 2 to 1 ratio in the
amount of OCODE generated, even though the amount of compiled MC68000 code finally
generated is more or less the same. There is reason to believe that the amount of OCODE
generated by TBCPL is even less than for BCP [Evans86], although without the source of the
compiler this is hard to verify. The figures show both the wide range of resuits that can be
obtained both by altering the instruction set (nearly a 2:1 factor between IBM S/370 and
CINTCODE) and the compiler, and by altering the compiler (nearly a 2:1 factor between BCPL
and BCP, and more for TBCPL OCODE). The results for the different compilers on the same
machine are perhaps not totally convincing. However there is evidence that the BCP compiler
produces code that on average runs twice as fast as that from the BCPL compiler on the
MC68000 [Brooks83]. Other examples of variation in compiler performance are also known. The
FORTRAN H compiler for the IBM S$/370 produces code that runs around twice as fast as that
from the FORTRAN G compiler [Bennett81]. It would not be unreasonable to suppose that in the
realm of static code size such results were possible. Work by Marks on compilation techniques
to improve static code size would certainly support this [Marks80]. It is clear that improvement in
computer instruction sets is only one part of improving computer performance. The effect of

compiler technology cannot be ignored.

The results presented in this chapter present some insight into the BCPL system we have
chosen to investigate. Minimisation of static size of compiled code has been shown to be a
worthwhile design criterion. Various aspects of compiled BCPL relevant to its compactness have

been analysed. In the next chapter this information is used to desigh a BCPL instruction set to

Compiler | OCODE size (bytes) | MC 68000 code size (bytes)

BCPL 302273 385936
BCP 153714 395487
TBCPL 380800

Table 2.10 Code sizes for different MC 68000 compilers

- 46 -

Experimental Observation J.P. Bennett

meet this design criterion.

-47 -

e RN A

s i i

T ——

3. A BCPL Instruction Set

In this chapter | consider the design of an instruction set to support BCPL as used in the Tripos
command environment. This work has led to an instruction set whose compiled code is
considerably more compact than that generated for existing instruction sets. The design
methods that evolved are brought together into a general design methodology at the end of this
chapter.

3.1. The BCPL World View

Any designer must first understand the language he is to support before commencing on design
work. BCPL has a very simple structure, but the same basic ideas underlie most imperative
programming languages. By its very simplicity it offers the possibility of an approach uncluttered
by excessive detail. It is certainly relevant to contemporary design, since although not that
widely used itself it is closely related to C.

There are three aspects of the BCPL world; data access, data manipulation and flow of control.

- 48 -

A BCPL Instruction Set J.P. Bennett

Schulthess in his paper on reduced instruction sets for high level languages comes to more or
less the same conclusion for block structured languages in general, although suggesting a fourth
set of constructs for stack administration [Schulthess84]. This fourth set seems rather
superfluous, particularly in the BCPL world, where dynamic free variables are not permitted. All
the operations in the fourth set, except possibly those involved with handling static chains could

equally well be classed as flow of control operations.

BCPL's data access revolves around four data areas; global data, static data, local data and
immediate data. Immediate data could perhaps be considered as an immutable form of
initialised static data. The natural way of modelling the first three data areas is as a base
register pointing to the start of a contiguous data area, with an index to reference a particular
value. Immediate data is by its very nature encoded within instructions. For local variables the
base pointer moves across procedure calls, behaving as a stack. It is interesting to remark that
whilst this model is used by most compilers for giobal and local data, few use it for static data,
preferring to compile such code in line, the exceptions being those machines which enforce
separate text and data spaces. The scope rules might suggest that grouping all the static
variables for a particular routine together is reasonable in order to minimise the offset from a
static base register, which would then have to change across procedure call and return.
However the scattering of data throughout the code, presumably to be indexed from the

program counter seems likely to lead to rather larger offsets.

BCPL's view of data manipulation is very elementary. It uses expressions, which take a number
of items from the various data areas and return a result to be used. A simple scratchpad and
reverse polish description would at first sight seem to be appropriate as a model. There is
certainly a sense in which it is desirable to avoid the use of the BCPL stack for temporary
values, since the local stack frame really reflects local variables described by the program.
However a little consideration reveals that any scratchpad would have to be arbitrarily large,
because of the possibilty of recursive functions requiring an arbitrary number of temporary
values to be held. Either a compromise, in which temporary variables are saved on the local
stack in the event of recursion, or the traditional approach of using the local stack for all

temporary results needs to be used. A third approach is a parallel expression stack. However

- 49 -

A BCPL Instruction Set J.P. Bennett

such a stack is moving away somewhat from the BCPL view of the world, and involves a not
insignificant amount of extra work at run time. The whole area of expression handling in BCPL is
rather unclear. This is due to BCPL’s view of an expression as a black box which takes a
number of arguments and returns a result. There is no understanding of the nature of
expression evaluation, this is a matter for the machine designer. In any design Knuth's
observations on the average size of expressions should be born in mind. Simple expressions

must be handled efficiently.

The BCPL view of flow of control would appear to be tree structured. A BCPL program can be
viewed as a collection of trees, each tree representing the flow of control in one procedure (this
of course does not reflect the scoping rules for variables). Calling a procedure is transfer to the
top of another tree, and retumn the resumption of position in an existing tree. In such an ideal
world addresses are virtually redundant, being needed only to describe the transfers between
trees. All other control of flow could be done by pushing addresses on to a control stack at the
start of constructs, and popping them at the end.

Unfortunately this does not work. BREAK, RESULTIS, LOOP, ENDCASE and GOTO all
represent jumps across the tree, rather than walking along it. The first four of these are at least
known at compile time, and could in principle be accommodated, however GOTO is evaluated at
run time, and its effect on a stack of control addresses in this simple model would be hard to
evaluate. Sadly it seems that we have to represent BCPL’s tree of control by explicit address
markers. In view of the number of flow of control constructs with associated offsets that need to
be compiled it is unfortunate that the potential elimination of addresses by use of a control stack
cannot be readily achieved. The design of an imperative language in which this could be
achieved is a research topic in its own right. Our model of BCPL flow of control will have to use
explicit branch addresses. In view of the data on average block sizes given in section 2.2 it

seems reasonable that all addressing should be program counter relative.
Having decided on the BCPL view of the world it is now time to choose an instruction set to

support it. We start off by introducing the concept of a canonical instruction set. This is a

minimal instruction set, representing a one to one mapping from each construct in the high level

-50-

A BCPL Instruction Set J.P. Bennett

language to the facilities available in the target low level hardware.

3.2. A Canonical BCPL Instruction Set

If a canonical instruction set is a one to one mapping from the high level instruction set we have
at least ensured no additional information is being introduced in bridging the semantic gap. Such
an instruction set seems a plausible starting point for a design methodology. The question
arises as to what constrains the instructions we chose (after all why not choose the original
constructs). At this stage we need to consider the nature of our target architecture (for example
CMOS bit-slice, discrete TTL, microprogrammed or interpreted). The instructions we chose must
then be implementable “simply” in this target architecture. The definition of “simply” is
necessarily vague, and reflects the fact that this stage of the design process is the least
regimented. It reflects the idea that instructions should be reasonable within the basic ideas of
the architecture. With TTL loading a register is reasonable, evaluating a polynomial is not.
Within an interpreter evaluating a polynomial may well be reasonable. There will undoubtably be
choices between equally good candidates, and the choice may be influenced ultimately by a
background knowledge of what our design criterion is (static size, dynamic size efc.), although at
this stage the design criterion is NOT the motivating force. The target architecture in this case
was chosen as the High Level Hardware Orion [HLH85). The Orion is a 32 bit soft
microprogrammable mini computer built from standard bit-slice TTL. Support is provided for
byte stream instruction sets, with hardware switch on a byte operand provided in the
microengine. The example canonical instruction set is therefore a byte stream instruction set.
Arguments to opcodes are all 32 bits in length.

Data manipulation is considered as a reverse polish operation using an internal scratch stack.
For data access we need a number of operators to push and pop items from this stack, in both
word and byte sized chunks, from each of the data areas, and from computed addresses. Table
3.1 summarises the operations provided. There is no distinction of datum size bn the internal
stack, all entries being word sized. PUSH-type instructions transfer data onio the internal
scratch stack, POP-type instructions take data off the internal scratch stack. It is a matter of
debate whether strictly there ought to be dyadic PUSH and POP instructions, so that the two

-51 -

A BCPL Instruction Set J.P. Bennett

Data Area

Operation
global static local immediate | computed

push word || GLOBALPUSH | STATICPUSH | LOCALPUSH | IMMEDIATE | PUSH

push byte PUSHBYTE
pop word || GLOBALPOP | STATICPOP LOCALPOP | —— | POP
pop byte POPBYTE

Table 3.1 Data access instructions

BCPL constructs
ta and alb

are both supported on a one to one basis. The instructions provided require alb to be interpreted
as l(a+b), introducing an addition operation. With the exception of the instructions which take
data from a computed address (PUSH, PUSHBYTE, POP and POPBYTE) all instructions have
a single argument. For the IMMEDIATE instruction, this is the datum to load, for the other
instructions it is the offset into the relevant data area. The data areas are addressed by three
internal registers, G, S and P for global, static and local data areas respectively, and all offsets
are in words. PUSH and POP take the word address of their data from the top of the internal
scratch stack. PUSHBYTE and POPBYTE take a word address and byte offset from the top of
the internal stack. Note that we do not need instructions to push and pop byte sized data from
the named data areas, since the only way of referencing byte data is by the computed byte

address construct

a%b

Data manipulation operators are straightforward. There is generally one instruction for each
BCPL operator, and these are listed in table 3.2. Conditional expressions do not have an
operator, but are transiated to an equivalent TEST statement to avoid the necessity of
evaluating both arms of the conditional. The only problems arise with VALOF blocks and

function calls. These can lead to arbitrary growth in the scratch stack by recursion, or undefined

-52-

A BCPL Instruction Set J.P. Bennett

change in its state by jumps out of VALOF blocks. The solution adopted is to cause only the top
element of the scratch stack to be valid after a VALOF block or procedure call. This means that
the code generator has to create temporary local variables to hold the intermediate values prior
to one of these occurring. This is a nuisance, and perhaps the use of an intemdl scratch stack
needs to be reconsidered in the light of the importance of procedure calls. Th+ discussion of
CALL, which is really a flow of control instruction will be found below with the desscription of the
other flow of control instructions. With the exception of CALL, none of these instructions have
any arguments. Niladic instructions push a value onto the stack (in some sense the instructions
to access data are niladic operators), monadic operators replace the top value on the stack and
dyadic operators replace the top two values by a single value. The only niladic operator is
QUERY, which pushes an undefined value onto the internal stack, corresponding to the ?
operator in BCPL. There is one instruction missing, an operator to return the address of an
operand corresponding to the address operator @ in BCPL. Once an item is loaded onto the
scratch stack it is no longer possible to find its address, and this is thus an operator that works
only in combination with instructions that access data. It is in some sense a data access
instruction in its own right, and so we need to add to our list of data access instructions the
three instructions, GLOBALPUSHLEFT, STATICPUSHLEFT and LOCALPUSHLEFT to push the

address of items in these three data areas onto the internal stack.

Flow of control instructions are more complex than the preceding instructions, since it is often

necessary to have more than one instruction to map one high level construct, for instance a

Instruction Type Instructions

niladic QUERY

monadic NEG NOT ABS

dyadic MULT DIV REM PLUS MINUS EQ NE LS GR LE GE LSHIFT
RSHIFT LOGAND LOGOR EQV NEQV

function CALL

Table 3.2 Data manipulation instructions

-53-

A BCPL instruction Set J.P. Bennett

WHILE needs to be paired with an ENDWHILE to bracket the block on which it operates. A
FOR loop needs an instruction to initialise the control variable and an instruction at each end of
the loop. Table 3.3 summarises the instructions required for each high level construct. Table
3.4 summarises the meaning of each instruction. in general references to data items are word
addresses or offsets, whilst jump addresses and offsets are to byte resolution. A number of
points need to be made about the details of the instructions. Results of functions and VALOF
blocks are left on the internal stack before executing RESULTIS or RETURN. Various
instruction use existing data access and manipulation instructions to initialise values and carry
out tests. The start of a WHILE or UNTIL loop is hence not the corresponding WHILE or UNTIL
instruction, but the instructions that carry out the loop test immediately beforehbnd. The FOR
instruction has to create an anonymous local variable for its end value, rather than holding it on
the scratch stack, lest the value is lost because of a VALOF block or function call. We now
have a large number of instructions which map one to one onto our high level language, and all
of which are straightforward to implement on an HLH Orion. However a number of these
instructions in fact are identical in action, and so the next phase is to eliminate duplicates. For
example ENDWHILE and ENDUNTIL are identical, as are IF and WHILE (a WHILE has an
ENDWHILE to cause the test to be performed many times). This is only possible for certain flow

Construct Instructions Construct Instructions
procedure call CALL TEST conditional TEST ... ELSE ...
FOR loop FOR ... ENDFOR SWITCH conditional SWITCH ...
REPEATUNTIL loop | .. REPEATUNTIL BREAK statement BREAK
REPEATWHILE loop | .. REPEATWHILE LOOP statement LOOP
REPEAT loop ... REPEAT RESULTIS statement | RESULTIS
WHILE loop WHILE ... ENDWHILE || ENDCASE statement | ENDCASE
UNTIL loop UNTIL ... ENDUNTIL RETURN statement RETURN
IF conditional IF .. GOTO statement GOTO

UNLESS conditional | UNLESS ... FINISH statement FINISH

Table 3.3 Flow of control instructions

-54 -

A BCPL Instruction Set J.P. Bennett

Instruction Meaning
CALL a4 Call procedure, current stack &4 words, result left on internal Tack
FOR a4 as as Start of FOR loop, control variable word offset &4 on local s ‘ck end
valwe offset &, on local stack, end of loop at byte offset 3. Skip to
ag ¥ loop complete. |

|
ENDFOR a4 a;, as End of FOR loop, control variable offset a4 on local stack, start of
loop at offset &5 backwards, loop increment 3. Perform ingrement

andt loop back. |

REPEATUNTIL &, End of REPEATUNTIL loop, start at offset @;. Pop top of}intemal
stagk and loop back if value is FALSE.

REPEATWHILE &, Diwe, but loop if value is TRUE.

REPEAT &, Diwo, but loop back without looking at internal stack.

WHILE &4 Start of WHILE loop, end at ofiset &4. Pop value off intamal stack,
and jump past end of loop if value is FALSE.

ENDWHILE &, End of WHILE loop, which starts at offset 4, back. Jump back &,
uncenditionally.

UNTIL a4 As WHILE, but jump if value is TRUE.

ENDUNTIL a,4 End of UNTIL loop, action as ENDWHILE.

IF a4 Pop vaiue from intemal stack; jump forward offset @4 if \Talue is
FALSE. ;

UNLESS a, Diwe, but jump if value is TRUE. |

TEST &, Identical to IF, but forward jump is to point immediately after E%E.

ELSE a, Unconditional jump forward &4. i

SWITCH &4, . .., 8, | Perform SWITCH. a, is offset for DEFAULT, &, is number o* cases.
Other arguments are pairs of value and offset for each CASE.

BREAK &, Jump out of loop. Unconditional branch forward &4.

LOOP a, Jump to end of loop. Unconditional branch forward &¢. Really needs
LOOPBACK as well for efficiency.

RESULTIS a4 Unconditional jump forward &4 out of VALOF block.

ENDCASE &, Unmnditfonal jump forward a4 out of SWITCH block.

RETURN Return from procedure. Absoiute branch address given in stack frame.

GOTO Jump to absolute address on top of internal stack.

FINISH Terminate program.

Table 3.4 Meaning of Instructions

-55-

A BCPL instruction Set J.P. Bennett

of control instructions in this instruction set, but there is no reason why such an dffect would not
be seen with other classes of instruction under different circumstances. It does ‘t eliminate the
one to one mapping, since there is still no introduction of redundant information in the
transiation. We end up with the flow of control instructions CALL, FQR, ENDFOR,
REPEATUNTIL, REPEATWHILE, JUMP, REPEAT, RETURN, GOTO, FINISH, IFWHILE,
UNLESSUNTIL, SWITCH. Table 3.5 is a revised version of table 3.3 showing ho‘ these unique
flow of control instructions are used. |

We now have a set of 48 canonioal instructions and can write a compiler. The s*andard way of
building a new compiler for BCPL is to write a code generator for the intermediate code
produced by the front end, OCODE. However OCODE, although a reasonable j?p(

the BCPL world has already imposed some of its own ideas, and is not therefor;b the best way

oximation to

of generating a new canonical instruction set. A far better source for the code 49nerator is the
AE-tree produced by the syntax analyser, which is a close representation of ithe high level
structure of the original BCPL program. Such a compiler for the canonical instruction set was
written for this project. The instructions of the canonical instruction set correspond very closely
to the node types on the AE-tree, and code generation is relatively easy. Constant folding and

Construct Instructions Construct Instructions
== i

procedure call CALL TEST conditional |FWH’LE .. JUMP ...
FOR loop FOR ... ENDFOR SWITCH conditional SWITFH
REPEATUNTIL loop | ... REPEATUNTIL BREAK statement JUMFj
REPEATWHILE loop | .. REPEATWHILE LOOP statement Jumj or REPEAT
REPEAT loop ... REPEAT RESULTIS statement JUMP}
WHILE loop IFWHILE .. REPEAT ENDCASE statement | Jump
UNTIL loop 4 UNLESSUNTIL ... REPEAT || RETURN statement RETJ?F(N
IF conditional IFWHILE ... GOTO statement GOTq
UNLESS conditional | UNLESSUNTIL ... FINISH statement FINISH

Table 3.5 Flow of control instructions (revised)

-56-

A BCPL Instruction Set J.P. Bennett

common sub-expression elimination can be carried out on the AE-tree, and amount effectively to
source code optimisations. We are thus working with optimised source code as| recommended
by Flynn [Flynn84]. The ease with which instructions match up to the AE-tree Is an indication

that our canonical instruction set is a valid one to one mapping.

To test the compiler, and if dynamic statistics are wanted, an interpreter need‘ to be written.
This is a far from trivial task, since although interpreting the instructions is easy, le also need to
interpret Tripos system calls if the sample programs are to be properly evaluat%d. This is not
helped by 3000 lines of the Tripos kernel being written in assembler. A simple }nterpreter was
built, and sufficient interface provided to show that simple Tripos commands would compile
correctly, an indication that the compiler is unlikely to be too wildly inaccurat “. However the
implementation of sufficient operating system to enable all 102 test progran*as to run and
produce useful data was deemed to be unnecessary. The prime interest is in st;&atic code size,

and dynamic statistics are not of immediate importance.

This experimental compiler was used to obtain static code statistics on the 102 BCPL programs
from the TRIPOS command environment. These generated 520 053 bytes of cot That this is
substantially larger than the figures given for other machines above is not worrying, since at this
stage all instructions have explicht arguments which are 32 bits long. If anything| it is surprising
that it is only 21% larger than equivalent code for the IBM S/370. This is the equi+alent of Sweet
and Sandman’s normalised code [Sweet82]. We must now look at how to refine }this instruction

set to obtain a version that meets our criterion of static compactness.

3.3. Design Rules for an Instruction Set >

New instructions may be derivad from those provided in the canonical instrqclion set in a
number of ways. Such methods of deriving new instructions from those existi#vg already are

called “design rules” Three methods can be found explicitly in the literature and are used by
Sweet and Sandman for MESA, and Tanenbaum for EM-1. These design rules are

-57-

A BCPL Instruction Set ‘ J.P. Bennett

(1) Create a new instruction with a smaller argument. This can then be used for all the cases
of the old instruction where the argument would fit in the new argument size. For example
(GLOBALPUSHBYTEARG1) could be derived from GLOBALPUSH to push global

variables 0-255 onto the scratch stack.

(2) Create a new instruction with a single value of one argument implied. Thus
(IMMEDIATEARG1=0) could be derived from IMMEDIATE, to push constant zero onto the

scratch stack.

(3) Create a new instruction by concatenating two existing instructions. For example
GLOBALPUSH and CALL could be combined to give (GLOBALPUSHCALL), to call a
global routine. The arguments to each of the original opcodes become arguments to the

new opcode in the order of their corresponding opcode.

Derived instructions are added to the pool of instructions, and the rules may then be applied to
these new instructions. For example we may get ((GLOBALPUSHARG1=73)(CALLBYTEARG1))
to call global routine 73 (which under Tripos is the routine WRITES, which writés out a string)

with a stack frame offset in the range 0-255.

These are far from being the only rules that could be used. Rule 2 could be generalised so that
new instructions with arguments of a limited range, not necessarily starting from zero could be
created. We could then derive an instruction to push globals in the range 256-511 for example.
Such a design rule is effectively used in the derivation of CINTCODE described earlier in section
1.5. Wade and Stigall's work with the entropy of instruction sets [Wade75] justifies the splitting
up of instructions into streams of simpler instructions. For example FOR and ENDFOR could be
replaced by IFWHILE and REPEAT with some initialisation instructions. UNLESSUNTIL could be
replaced by NOT and IFWHILE. Such a rule would require some initial information on rewriting
instructions in the canonical instruction set. A simpler version of this rule would be to remove
any instruction that becomes completely unused. The number of rules that may be derived is
limited by the ingenuity of the designer, although the potential gain from the more obscure rules
is small. The only constraint is the same as that placed on the original choice pf instructions.
The rules must lead to instructions that can be implemented “simply” using the target
architecture.

-58 -

A BCPL Instruction Set i J.P. Bennett

The names of the generated instructions are designed to give a guide as to the fprmation of the
instruction. They are constructed as follows: |

(1) When an argument is shrunk, the sufix BYTEARGx, HALFWORDARGx or
THREEBYTEARGX is added, where x is the number of the argument involv d.

i
(2) When an argument is implied within an instruction, the suffix ARGx=y is adéjed, where x is
the argument involved, and y the value being combined. |

(3) When two instructions are combined, the new name is the concatenation in order of their

two names.

Each new instruction name is then surrounded by brackets to avoid ambiguity. The names are
not perfect. In particular the use of rule three leads to wrong numbering of ?#rguments; the
numbering refers to the original pesition of arguments within instructions, and the bosition in new
instructions must be resolved by observation. Such names are inherently ve*bose but it is
anticipated that once an instruction set has been finalised more concise mnehnnbs for the
instructions would be provided. ‘

To decide which rule to apply statistical data on the compiled code will be reqLired. The first
analysis to be carried out is to look at instruction distribution. Table 3.6 slﬂows the static

frequency’ distribution of instructions in the compiled code to the nearest 0.01%.

One simplification has been made to the statistics as used. SWITCH is the only instruction to
have a variable number of arguments. To simplify the analysis at this stage, tbe value-offset
pairs that comprise the bulk of a SWITCH instruction have been removed, some #0768 bytes of
data, which would have increased the frequency of the SWITCH instruction‘to 4.4%, and
decreased other frequencies by a factor of about 0.96. The data as presented r#present some

7 Frequency is a rather ambiguous word in this context. It does not mean the number of times a pWa instruction
occurred as a percentage of all instruction occurrences, but is rather the amount of space occupi#d by a particular
instruction as a percentage of the space occupied by all the compiled instructions. This means thatt instructions with
several arguments (e.g. FOR, SWITCH) will be more prominent than those with no arguments (for example the
operators). Since we are interested in the minimisation of code size this is the definition of fre ncy that is most
meaningful, and unless otherwise indicated such weighted frequencies are used throughout the rest of this chapter.

-59-

A BCPL Instruction Set i J.P. Bennett

instruction Frequency Instruction Frequency Instruction Frequency
IMMEDIATE 20.23% *PUSH 0.66% POPBYTE || 0.06%
LOCALPUSH 17.75% || LOCALPUSHLEFT 0.42% Ls 0.05%
GLOBALPUSH 15.17% SWITCH 0.41% REPEATWHILE 0.04%
CALL 9.92% || RETURN 0.34% MULT 0.04%
LOCALPOP 9.79% || POP 0.27% NOT 0.04%
IFWHILE 4.42% || LocanD 0.23% | GE | o0.0%
JUMP 3.76% " MINUS 0.18% || DIV | 0.03%
GLOBALPOP 321% || NE 0.16% RSHIFT | 0.03%
STATICPUSH 2.48% || LOGOR 0.15% LSHIFT 0.02%
STATICPUSHLEFT 2.38% || PUSHBYTE 0.13% QUERY | 0.02%
FOR 1.72% || STATICPOP 0.11% REM 0.01%
ENDFOR 1.72% || LE 0.10% NEG | 0.01%
PLUS 1.21% || GLOBALPUSHLEFT 0.08% ABS | 0.01%
UNLESSUNTIL 1.03% || GR 0.07% FINISH 0.00%
EQ 0.74% GOTO 0.07% NEQV 0.00%
REPEAT 0.67% || REPEATUNTIL 0.06% EQV | o0.00%
Table 3.5 Canenical Instruction Set Frequency Distribution

499285 bytes of compiled code, with the SWITCH instruction transformed into q two argument
instruction. This is a simplification that will be considered in the final section of thi$ chapter when

the analysis is extended.

It is striking the frequency distribution is dominated by just a small number of ibstructions. All
instructions were used, but some extremely rarely. EQV occurred twice - 0{30004% of the
compiled code. The first 10 instructions take up almost 90% of the compile# code space.
However this should not be a cause for surprise, since these are all instructions tﬁpat are likely to
be used in the compilation of assignment, procedure call and conditional statemerjks, which were

shown in section 2.2 to comprise nearly 83% of all statements.

- 60 -

A BCPL Instruction Set J.P. Bennett

If we follow Sweet and Sandman’s approach we should also obtain histograrﬂs of argument
distributions, and of pair frequencies. Such statistics were obtained, but are verbose in the

extreme. They may be obtained in machine readable form from the author on request. It shouid
be noted when considering argument distributions that idealised stack offsets as described in the
section 2.2 have not been implemented. Given the nature of the design rule , which favour
instructions in which particular argument values are very frequent this is an imprbvement which
should be considered for future refinement of the system. Given the volume of djbta it is difficult
to observe particular items of interest in the pair frequency information. Howe 1 r it is notable
that the second commonest pair is PLUS followed by PUSH, suggesting thal the failure to
include dyadic PUSH and POP instructions was a mistake.

Using these rules we may generate an arbitrary number of instructions. The numr is limited
initially in this example to 256 instructions, although with escape opcodes ther§ is no reason
why more instructions may not be used, as in EM-1. The major advance in tljiis new design
methodology over previous work is in the way in which new instructions ar}e chosen. We
consider which rule, applied to which opcode(s) and argument(s) will lead tﬁ the greatest
improvement in the design criterion, in this case static code size. To do this a ipmgram called

ISGEN, an instruction set generator has been developed. The next section /describes this

system and considers whether the statistics on compiled code derived above ab‘e adequate to
|

select the correct instruction. In section 5.2 below the theoretical justification of th*s methodology

is considered.

3.4. ISGEN

ISGEN works by taking a set of statistics on a given instruction set, and conside‘hng which rule
would lead to the greatest saving in size. The design rules are implemented ;tas pairs of C
procedures, one to determine the best saving in static space that can be obtaine#j with the rule,
the second to create an information node for a new instruction created by that?f rule and then
deduce statistical information for it. This process is repeated until the requii}ed number of
instructions have been created, in this case 256. ‘

-61 -

A BCPL Instruction Set ! J.P. Bennett

Statistical information for each instruction is held in a linked structure as shown wﬂ figure 3.1. By
chosing a fairly general linked structure of this form it is possible to extenfd the sort of
information held in future versions of ISGEN with a minimum of disruption. T p name of the
instruction is held as a tree structured node, to facilitate the construction of new instruction
names in the manner described in the previous section. The size of an instructioh is the size of
its opcode and the sum of the sizes of its arguments. For convenience the tdtal size of the
instruction as well as the size of the opcode itself is held in the opcode pq;rt of the data

structure. The frequency heid in the opcode node is a count of the occurrence of he instruction,
i.e. not weighted by instruction size. In general frequency information held in th jdata structure

out weighling expiickly when necegsary. The information nodes for each argument identify which
id 1

name ’—"—1
size

is not weighted by instruction (or opcode, or argument) size, it being more con:rﬁvl to carry

text
total size
‘,_-————o left part
frequency ? right part
arguments ? \
id
top
bottom
freq
top i i
. T distrib
size
relative {/F-J
distrib o - ’
top
subsidiary b)
freq
arglist ? di i
? distrib
Next argument top
freq
"—/ ’ distrib
Subsidiary
Opcodes
Fig 3.1 Deta structure for instruction information
-62-

A BCPL Instruction Set t J.P. Bennett

E
argument it is, and give a range of data it may hold, as well as the size of the a‘P‘gument (really
only two of these three items are needed, but is convenient to have all three jto hand). The
relative field marks whether this argument is a program counter relative ofiset. if it is such an
argument then its value is likely to change as the size of compiled code as a whc%e shrinks. The
distribution of argument values is represented as a linked list, representing a histogram of
argument values. The subsidiary field points to a related instruction with narrowér specification.
This is to cope with the case where shrinking code means more of a relative argfjnmeri can fit in
a smaller size. For example many of the argument values used with a JUMP inéﬁ,truction will be
too large to fit in the argument to a JUMPBYTE opcode. However by the en{i of instruction
generation, when code size, and hence offsets are substantially smaller, far rrjtore will fit. All
frequencies are done as unweighted integer counts of instructions, rather than ;%as fractions of
the total sample code size. This makes for faster arithmetic, and ensures rounjk:ﬁng errors are
noticed. A preliminary version of the program used floating point, expreséing instruction
frequencies as a fraction of the total code size. It was very difficult to distinbuish between
systematic errors due to flaws in the algorithm (such as fence-post problem# with the last
argument value in a new instruction) and general rounding errors due to the Iaijrge amount of
floating point arithmetic being used. With integer arithmetic, and frequencies hek* as number of
bytes of a particular instruction there are no rounding errors. Any systematic errdm show up as
the loss of a complete instruction from the sample data and are readily monito}ed. Given the
large volume of data, and the non-trivial nature of some of the calculations this is|a useful guard

against mistakes.

For each rule all possible opcode/argument combinations are tried, and the stajitistics used to
estimate the saving that would accrue by applying the rule to this corﬂ;\bination. The
combinations that give the best result from each rule are compared, and thei best of those
selected. This is the opcode that will next be created. An information node is Jpreated for the
new opcode, and estimates are made of the statistical information about it. jThe statistical
information about existing instructions is adjusted correspondingly. ‘

We need to consider how the statistical information is used for each of tha rules | have

described, and how statistical information about the use of new instructions proposed can be

-63-

A BCPL Instruction Set F J.P. Bennett

generated.

In the case of the rule to shrink an argument the amount of space saved in bytes|is given by
n x (os — ns)

where n is the number of existing examples of this instruction for which the argument concerned

has a value that could be handled by the new instruction. This is found by counting down the
distribution histogram finding all the argument values that are small enough ta fit in the new
instruction. os is the size of the existing argument under consideration, ns is the size of the

corresponding argument in the new instruction.

It is easy to calculate the statistics for the new instruction if the existing instruction has only one
argument, since in this case that part of the distribution list for the argument that @Mains values
small enough to fit in the new instruction argument goes to the new instn.qction, and the
remainder stays with the existing instruction. However if there are other amumehs we need to
consider how their distributions are affected. ISGEN assumes that the distrilj)ution of other
arguments is independent of the argument under consideration. Some of thip experimental
results given in the next section undertine the fact that this is not always a va‘id assumption.
There is precedence for the assumption; it was used by Wade and Stigall in cal4ulatim opcode
entropies [Wade75]. Consideration of the theoretical significance of this assuMbn is given in
section 5.1 below. As in the single argument case such additional arguments may be partitioned
between the new and existing anguments. Other arguments have their frequend}.y distributions
partitioned element for element in the same ratio. Care is taken to ensure that ijunding errors
are propagated, so that the total occurrence of each argument for a given opcodie is the same.®
Handling the relationship between instruction pairs is non-trivial. Again the assuﬁiption is made
that the probability of any instruction occurring is independent of its neigtbourin%sg instructions.
Using this the relationship between the new instruction and any other instruction 4m the existing
instruction and any other instruction can be calculated as fractions of the rela}bmhip to the
existing instruction.

8 If an instruction occurs 5 times, clearly each of its arguments must also occur 5 times. The only jpxception is if the
instruction has a variable number of arguments, e.g. the SWITCH instruction.

-64 -

A BCPL Instruction Set - J.P. Bennett

_ _nf
P(n,x) = P (o, x) x PYRWT;
_ nf
P(x,n) = P (x, 0)x YT
_ —of
P{o,x) = P (o0, x) x oF T nf
_ of
P(x,0) = P(x,0)x YT
where
o is the existing instruction
n is the new instruction

nf is the frequency of the new instruction deduced from argument splitﬁng
of is the revised frequency of the existing instruction

P(x,y) is the frequency of the x,y instruction pair

All frequencies are unweighted.

These equations are fine, so long as the frequencies involving the new instructiorﬁ are evaluated
first. All values involving the new instruction are derived in terms of frequencies ir%volving the old
instruction, before such frequencies are themselves adijusted. In particular P (n, IT?) is derived as
the original P (0, 0) twice multiplied by the appropriate factor. This is a prirrjﬁe case where
checking that the frequencies total the same before and after will avoid errors in c?plculation.

An almost identical process is involved in creating an instruction with a schiﬁc value of
argument implied, indeed it is akin to creating an opcode with a zero sized arguni}ent. There is a
problem with relative address arguments, which will clearly change in value ias generation
progresses, and instructions become smaller and move together. However at pj}resent ISGEN
ignores the problem, by not applying this rule to relative arguments. This is p%rhaps not the
correct approach, since as code shrinks we would expect arguments of the same value to be
affected equally implying that the instruction would quite likely still be justifiejid, but with a
different argument value. Given that the savings due to this rule are not as grlyeat as for the
shrinking rule, and the rather wide spread of relative arguments anyway the errorLi'n making this

assumption would be quite small. In the next section an estimate of the size ¢f this error is

-65 -

A BCPL Instruction Set . J.P. Bennett

given.

The rule that combines instructions creates some different problems. To esti i1ate the saving
from the statistics is easy and accurate, since the space required by the new ingtruction will be
the same space for all the arguments, and space for one opcode rather than . Assuming all
opcodes are one byte the saving is the unweighted frequency of the given instrction pair as a
number of bytes.

Generating argument distributions for the new instruction makes the same ;assumption of
argument independence as before. Argument lists are reduced in frequency a¢oording to the
unweighted frequency of the new instruction, and the remainder given to the r“éew instruction.
Calculation of the new instruction pair frequencies is similar to the earlier examplias and is given
by the equations:

P(n,x) = fn2x P (02, x)
P(x,n) = fn1x P (x, 01)
P (02, x) = fo1xP (02, x)
P (x,01) = fo2x P (x, 01)
Where:

_ P(o1)-P (02)

fo1 = P (01)
P (02)— P (n)

f =
02 P (02)

)R
fnl = 5101

- P
fn2 = 5109)
n is the new instruction
o1 is the first original instruction

02 is the second original instruction ’

-66 -

A BCPL Instruction Set ¢ J.P. Bennett

X is an arbitrary instruction
P (x) is the frequency of instruction x (before n was created)

P (x1, x2) is the frequency of instruction pair x1, x2

Once again frequencies involving the new instruction are calculated first. Again Lross checking

that the total of all the frequencies is unchanged is important.

3.5. Results

The evaluation of the results from ISGEN was carried out with the aid of a si@pb peephole
optimiser, which added the new instructions to the existing code. The peephole ¢ptimiser takes
data from ISGEN giving details of the instructions that were generated, and sdbstitutes each
instruction in turn, thus copying the behaviour of the generator. This is not a comj:lete peephole
optimiser, in that it does not consiier adding all the instructions at once, and will hot always use

New Instruction
Name Individual | Cumulative
49 | (IMMEDIATEBYTEARG1) 89.04% 89.04%
50 | (LOCALPUSHBYTEARG1) 88.04% 78.39%
51 | (GLOBALPUSHBYTEARG1) 89.69% 70.31%
52 | (CALLBYTEARGY1) 91.54% 64.36%
53 | (LOCALPOPBYTEARG1) 90.88% 58 .49%
54 | (FWHILEBYTEARG1) 95.61% | 55.92%
55 | (GLOBALPOPBYTEARG1) 96.74% 54.10%
56 | (JUMPBYTEARG1) 96.70% 52.31%
57 | ((GLOBALPUSHBYTEARG1)(CALLBYTEARG1)) | 97.27% 50.88"4
58 | (IMMEDIATEBYTEARG1)ARG1=0) 97.19% | 49.46%

Table 3.6 The first few ISGEN results

-67-

A BCPL Instruction Set | J.P. Bennett

|

the best instructions for substitution. However it is helpful in that it allows us !o look at how
individual predictions have fared. A typical listing from ISGEN is shown in Appel’:bdix A, and the
first few results are given in table 3.6. The results are given as percentage r iuction in total
code size, both individually and cumulatively. These results are perhaps seen more clearly
graphically. Graph 3.1. is a graph of predicted saving (note this is 100% -|the figure for
reduction above) against instruction number. Instruction numbers are assigned i) sequence, so
this gives the order in which the instructions were found. The final predicted rebuction in size
was to 28.16% of the original size. The jagged nature of graph 3.1 might seem a contradiction,
since for example it seems that instruction 50 contributes a greater saving than instruction 49
(11.96% for instruction 50 against 10.96% for instruction 49), and hence ought to have been
generated first. However this is bacause these results are given as percentage sévings over the
size of the code after the previous reduction, and thus the absolute saving in ood¢ size is in fact
less (10.65% of original size for instruction 50 as opposed to 10.96% for instructioh 49).

Looking at the actual instructions generated we see they fall very much in the pat;tem expected.
The first two and the fifth are associated with assignment to local variables, the third and fourth
with procedure calling, and the sixth instruction with conditional branching.f The lack of
orthogonality is also striking, in contrast to many modern processor designL. Only those

instructions actually needed are generated.

The peephole optimiser was applied to try out the suggested new instructions as given by
ISGEN. Table 3.7 shows the savings obtained with the peephole optimiser fop' the first few
instructions compared with the predicted values obtained using ISGEN. From thi# table it would
seem that predictions are remarkably accurate, and overall this would seem to be true, with a
predicted code size of 28.16%, and an actual achieved code size of 28.53% colhmpared to the
original code size. However there is a need to look closely at the results of optirbisation. There
are a number of individual instructions where the predicted and peephole fsavings differ
significantly. Admittedly most of these examples occur late on in the generation énd their effect
in absolute terms is not large, however it is important to examine the cause$ behind such
erroneous predictions, lest they reveal a flaw in the system as a whole. Of pa; icular interest
are the fourteen instructions in table 3.8 which aithough predicted to make savings, in fact are

-68 -

A BCPL Instruction Set J.P. Bennett

15
b
0 10 .
ct
c
[\
=
o
o
]
Q
o ;
=1 |
2 i
Y i
o]
[
wn
2 5 _|
=
]
Q
0 Y WA ohn |
] | i

Graph 3.1 Code Size Saving v Instruction Number

-69-

A BCPL instruction Set J.P. Bennett

New Instruction
¥ Name Peephole Predict?d
49 | (MMEDIATEBYTEARGH) 10.96% | 10.96
50 | (LOCALPUSHBYTEARGT) 11.96% | 11.96
51 | (GLOBALPUSHBYTEARG1) 10.31% 10.31°;
52 | (CALLBYTEARGY) 8.46% 8.46%
53 | (LOCALPOPBYTEARGY) 9.12% | 9.12%
54 | (FWHILEBYTEARG1) 4.39% 4.39%
55 | (GLOBALPOPBYTEARG1) 3.26% 3.26%
56 | (JUMPBYTEARG1) 3.30% 3.30%
57 | ((GLOBALPUSHBYTEARG1)CALLBYTEARGY) | 2.56% 2.73%
58 | (IMMEDIATEBYTEARG1)ARG1=0) 2.80% 2.81%

Table 3.7 Peephole and Predicted Savings from ISGEN

never used. Most interesting is the case of (((IMMEDIATEBYTEARG1)ARG1=0)MINUS). In this
case the first generations to (IMMEDIATEBYTEARG1) and then to
(IMMEDIATEBYTEARG1)ARG1=0) are reasonable enough. However our ibitial data on
instruction pairs had IMMEDIATE followed by MINUS a very common pair. Reas¢nable enough,
since subtracting a constant is a common operation. Our data on IMMEDIATE shbwed that zero
was its commonest argument. Our assumption of independence of instructionsj; meant that in
deriving information about IMMEDIATE followed by MINUS we assume that the;most common
IMMEDIATE value to be subtracted is zero. Only common sense tells us othewvis?p.

((GLOBALPUSHBYTEARG1)ARG1=74) illustrates another problem. Global valqe 74 is under
TRIPOS the very common routine WRITEF, and it is reasonable that we sljtuould have an
instruction to load this value. However it is always followed by a CALL instructid}n, and by the
time we come o generate ((GLOBALPUSHBYTEARG1)ARG1=74) all } mences of
GLOBALPUSHBYTE with argument value 74 have already been subsumed into
((GLOBALPUSHBYTEARG1)CALLBYTEARG1) and ((GLOBALPUSHBYTEARG1)CALL).

-70 -

A BCPL Instruction Set J.P. Bennett

New Instruction

Name
123 | ((JUMPBYTEARG1)RETURN) 0.22%
131 | ((LOCALPOPBYTEARG1)LOCALPUSHBYTEARG1))ARG1=0) 0.19%
143 | ((JUMPBYTEARG1)((IMMEDIATEBYTEARG1)ARG1=0)) 0.15%
153 | ((LOCALPOPBYTEARG1)(((FORBYTEARG1)BYTEARG2)BYTEARGS)) 0.13%
190 | ((IMMEDIATEBYTEARG1)ARG1=0)MINUS) - 0.09%
221 | ((JUMPBYTEARG1)((STATICPUSHLEFTHALFWORDARG1)BYTEARG1)) 0.07%

222 | (((LOCALPOPBYTEARG1)ARG1=0)(((FORBYTEARG1)BYTEARG2)BYTEARGS)) | 0.07%

228 | ((GLOBALPUSHBYTEARG1)ARG1=74) 0.07%
230 | ((JUMPHALFWORDARG1)RETURN) 0.07%
238 | ((JUMPBYTEARG1)((LOCALPUSHBYTEARG1)ARG1=0)) 0.06%
244 | ((GLOBALPUSHBYTEARG1)ARG1=73) 0.06%

249 | ((LOCALPOPBYTEARG1)ARG1=1){((FORBYTEARG1)BYTEARG2)BYTEARG3)) | 0.06%
252 | ((JUMPBYTEARG1)(LOCALPUSHBYTEARG1)) 0.06%

254 | (((LOCALPOPBYTEARG1)(LOCALPUSHBYTEARG1))ARG2=1)ARG1=0) 10.06%

i

Table 3.8 Predicted Savings with no Peephole Saving

It is clear that our statistical data is not complete enough to cope with these interdependencies.
This is an example of the standard result from Operations Research that local opﬂimisatbn does
not necessarily lead to global optirnisation.

The system as described uses three rules. Adding more rules would appedar to lead to
diminishing returns. The results of using one two and three rules are summariseh in Table 3.9.
The rule to reduce the size of an argument is clearly the most beneficial. However this must to
a certain extent be a reflection of the use of 32 bit arguments throughout the canonical
instruction set. More important is the non-cumulative nature of the results. This| indicates that

rules interact to some extent.

-71-

A BCPL Instruction Set % J.P. Bennett
|

Rules Predicted Saving
Shrink argument (S.A.) 44.19%
Combine argument and opcode (C.A.) 51.19%
Combine instruction pairs (C.1.) 87.22%
S.A. and C.A. 31.74%
S.A.and C.L 32.56%
C.A.and C.l. 53.31%
S.A,CA and C.l 28.16%

Table 3.9 The effect of using various rules

The original discussion of the nature of BCPL came to the conclusion that instryctions fell into
three basic groups; data access, data manipulation and flow of control. The canoshical instruction
set contains respectively 14, 21 and 13 instructions in each group. In compilbd code these
groups occur with (unweighted) frequency 73%, 3% and 24% respectively. The question arises
of what proportion of the final instruction set should support each group. If we are to take the
same view as Richards did with CINTCODE [Richards84], then we should propose that our final
instruction set reflect the distribution of instructions within compiled code. In otheriwords the final
instruction set should be 73% data access instructions, 3% data manipulation alhd 24% flow of
control. Table 3.10 shows the observed results in using the ISGEN instruction set (the fractional
instruction counts reflect instructions combined from two groups). Leaving aside the fact that
with 21 canonical data manipulation instructions we could not hope to have lebs than 8% of
such instructions in the final instruction set, these do not bear out Richards'i'hypothesis. In
section 5.3 below we consider whether this result is to be expected when generaiing an optimal
instruction set, and the validity of Richards’ hypothesis.

In the light of all these results we need to consider the degree of success in seledting instruction
sets achieved by ISGEN. We have seen that the statistics used along the Iineé suggested by
Sweet and Sandman are not totally adequate, in that they cannot express global idependemies.
However as a first approximation they work reasonably well, the worst error ob#ewed being a

-72-

A BCPL Instruction Set , J.P. Bennett

Instruction Set Compiled Code

Group
% # %

Data Access 150.970 | 59% | 363068 | 73%
Data Manipulation | 35.814 14% 15609 3%
Fiow of Control 69.756 | 27% | 120608 | 24%

Total 256.000 | 100% | 499285 | 100%

Table 3.10 Distribution of instruction types

predicted 0.22% reduction that did not materialise, at a time when the code ha(jl already been
reduced to 32.25% of its original size, an overall error of 0.08% of the original size. Such errors
are due to the use of deduced “statistics.” Much better would be to perform peephole
substitution as each instruction is created and then regenerate the statistics from the substituted
code. This would lead to an increase in running time, which at present is about ho minutes on
an unioaded HLH Orion, to about an hour, roughly the time the current peedhole optimiser
takes.

The use of a greedy algorithm, taking the best instruction each time has not beep justified, and
this is considered in section 5.2 below. However the evidence of interacting rules presented
above might indicate that better algorithms could be used. Some form of Iookahehd, to estimate
at least local interdependencies might lead to improvement in the quality ibf instructions
generated, although the computing power required could be increased dramai;ically by such
aigorithms. The current aigorithm Is simplistic in a number of respects, notably inEits handiing of
relative arguments. The exclusion of such arguments from the combine amumem rule was
mentioned in the previous section. To release this restriction is not difficult, but as suspected it

makes little difference, with a predicted reduction in code size of 28.08% as opposed to the

28.16% with the restriction imposed. More significant is the way shrinking af code is not
compensated for when evaluating the savings due to instructions with reduced abumm sizes,
as in the case of (JUMPBYTEARG1) for example. With code size reduction by a factor of nearly

-73-

A BCPL Instruction Set J.P. Bennett

four, offsets of up to around 1000 when using the canonical instruction set would fit in a one
byte argument at the end of instruction generation. Fortunately some approximate investigation
suggests that this is not as much of a problem as might be supposed. The biggast difference is
with(JUMPBYTEARG1). Without allowing for shrinkage this is responsible for a saving of
3.30%. Allowing for shrinkage this saving would go up to around 3.83%, at a stage when the
code size has already been shrunk by nearly 50%. In total by allowing for shrinkage the
predicted code compaction is estimated to go up to 27.69%, from 28.16% without allowing for

shrinking relative arguments. It would certainly seem this is not an error worth serious worry.

Another point worth noting that can be seen from the full listing in appendix A is that 256
instructions are not really needed. Over 90% of the saving in space is achieved by the first 41
new instructions created, a total of 89 instructions. The last 43 instructions contribute less than
1% to the saving. This places something of a question mark over those byte stream instruction
sets that make use of an escape opcode. A further aspect of this particular point is to note the
need for a rule to eliminate redundant instructions. Some of the canonical instructions are totally
subsumed into new instructions. Even some of the new instructions generated early on are
taken up completely by later instructions. Whilst there might be a requirement to keep some
redundant instructions for system completeness, there is clearly a need to remove some. This

reduces further the number of instructions required for a successful compact instruction set.

Finally we need to look at the degree of success achieved by ISGEN. Table 3.11 is a revised
version of table 2.9 and shows the size of compiled code for the 102 sample programs for
various target instruction sets, including the canonical instruction set and the new instruction set
proposed by ISGEN. The resuits have been adjusted to allow for static string data and the
SWITCH jump tables that were removed before analysis. Once again results are relative to
OCODE. Considerable success has been achieved. The compiled code, even with 12.5% static
string data is around half the size of code for popular existing instruction sets, including a
modern “high level” instruction set, the MC 68000. Even more pleasing, compil%d code for the
new instruction set is 14% smaller than compiled CINTCODE, itself designed éas a compact

instruction set. Clearly mechanised design can improve over human experience.

-74-

A BCPL Instruction Set | J.P. Bennett
E
Instruction Set Code Size (bytes) | Size Relative to OCQDE
OCODE 302273 100%
New Instruction Set 207510 67%
CINTCODE 240000 79%
MC 68000 385936 128%
IBM S/370 465000 154%
Canonical instruction Set 564349 187%

Table 3.11 Compiled code size for BCPL using different instruction sets

This example has shown how a complex program, representing many man-months work can
automatically refine an instruction set for BCPL. To be useful such a program imust be more
general, capable of dealing with other languages, meeting other design criteria, ahd dealing with
more complex systems. In the final section of this chapter we look at ISGEN applied to a
different language system, and consider how well it can handle different design ctiteria, or more
complex systems.

3.6. Extensions to ISGEN

ISGEN as it stands is already general enough to deal with other languages in1p|ememed via
byte stream instruction sets. It was used to refine an instruction set for the polymorphic
programming language, POLY [Matthews85]. This uses a 16 bit byte stream insjmdbn set as
an intermediate code output by the compiler front end. Matthews wished to refinethis to reduce
the space occupied by this intermediate code. it was hoped that the resultant |instruction set
would also be suitable for microooding as a machine to run POLY directly. Inj this example
ISGEN was used to refine the existing instruction set, along the lines used by Sweet and
Sandman with MESA. The existing intermediate code, with 24 instructions was taken as the
canonical instruction set. The same three design rules as applied with the expetimental BCPL
instruction set were used. Sample statistics were provided from 214074 bytes of mpiled code.

-75 -

A BCPL Instruction Set J.P. Bennett

Appendix A includes the output from the run of ISGEN on this data. A reduction in code size to
38.46% of the original size was predicted. That this reduction in size is not as great as that
found with the BCPL canonical instruction set is not surprising. It is an effect of working with a
16 bit instruction set, so that there are not so many large savings due to common instructions
with large arguments being almost totally replaced by instructions with small arguments. This is
reflected in the fact that to achieve 90% of the total saving required the generation of 90 new

instructions (a total of 114 instructions), compared with only 41 new instructions for BCPL.

Matthews used this proposed instruction set in a rather different way to the instruction set
proposed for BCPL. He accepted only the first 97 proposed instructions, responsible for around
88% of the improvement and incorporated them into his compiler, rather than using peephole
substitution. This permitted him to take advantage of global interaction between instructions,
which was seen to be a disadvantage with straightforward peephole optimisation. He then used
his new compiler to generate further statistics. The new compiler produced 82560 bytes of
compiled code, a reduction to 38.57% of the original code size. This suggests that there is a
not insignificant gain to be achieved from global interaction of new instructions. These new
statistics were then fed back into ISGEN, which proposed a further refinement of the instruction
set to achieve a predicted reduction in size to 74.87%. These revisions have yet to be used, but
even allowing for no gain due to global interaction an overall reduction to 29% of the size of the
original code seems plausible. This is rather more impressive than the reduction to 28%
achieved with BCPL in that it was achieved not over an artificially verbose 32 bit canonical

instruction set, but over an existing 16 bit instruction set.

To develop instruction sets to support an individual language is not always good enough. For
example the HLH Orion on which much of this work has been carried out is regularly used for
running LISP, C, BCPL and FORTRAN. One approach already mentioned is to use machines
with a number of alternative instruction sets, swapping in the required instruction set as
necessary. Indeed the HLH Orion is one of the few machines that permit this mode of operation.
However such instruction set swapping does represent one more run time overhead, which it
would be helpful to avoid. | suggest that such an approach is heavy handed. Both the examples
presented obtained most of their gains with less than half the available 256 instrudtions. A single

-76-

A BCPL Instruction Set - J.P. Bennett

byte stream instruction set could incorporate both with almost all the gain found with the
individual instruction sets. Such an idea is not new. The IBM S/360 contained thdi instruction set
from earlier commercial machines, to support COBOL and from earlier sdeMﬁi{: machines, to
support FORTRAN. It is likely that many instruction sets could be incorporated inﬂo a single byte
stream instruction set because of overlap of instructions. For a single Iamuabe system we
design a canonical instruction set for one language, and merge instructions (sich as IF and
WHILE with BCPL) which are semantically identical. For a multiple language system we design
a canonical instruction set for each language, and then merge instructions acrpss instruction
sets that are semantically identical. In a multi-language system there is likely to ble considerable
common ground, not only in simple arithmetic operations, but also with higher level instructions.
It is highly likely that in sharing a system languages will have to share a stack strcture to some
extent and obey linking convertions. Having designed a common canonical linstruction set
compilers can be written for each language and used to obtain a combined statislical sample on
programs to be run in the target environment. ISGEN will then yield an oqtimal common
instruction set. There are greater constraints with this type of design. It would not be particularly
amenable to design of one instruation set from scratch (as was done for BCPL) and refinement
of another existing instruction set (as was done for POLY), because of the latk of similarity
between the canonical instruction sets.

ISGEN as developed optimises instruction sets with respect to static size of ¢ompiled code.

However it is clear that any criterion of optimisation can be used subject to two conditions:

(1) The criterion must be quantifiable, in order that we can distinguish which rule applied to
which opcodes and arguments will lead to the greatest saving with regard toithe criterion.

(2) It must be possible to obtain statistics for derived instructions from the avaﬁable data. For
static code size this is straightforward. For dynamic code size this might mean running a

simulator on the new code, or performing fairly complex flow analysis.

The design criteria need not be so prosaic as these. There is no reason why minimising chip
count or manufacturing cost could not be used.

To summarise the complete methodology that is proposed, and which has been dtmonstrated in
the design of byte stream instruction sets for two very different languages is as follows:

-77-

A BCPL instruction Set : J.P. Bennett

M

(2)

(3)

4

()

Design a canonical instruction set. If designing from scratch this is done on the basis of a
one to one mapping from high level construct to low level instruction, within the bounds
imposed by the target architecture. For a multiple language system a canonical instruction
set is designed for each language and the instruction sets combined. Ar}y semantically
identical instructions are merged. This stage of the process is not automated and is where
the designers’ expertise must be brought to bear. If the methodology is u:td to refine an
existing instruction set, then this is used as the canonical instruction set.

Write compilers for each language under consideration and generate code using the
canonical instruction set. Care should be taken to avoid the introduction of redundant
information, for example by use of existing intermediate codes. A sample body of code
should be obtained by compilation of programs to be used within the targét environment.
This body of code will be used to obtain statistical data to drive ISGEN.

Specify design rules. These specify ways of deriving new instructions: from existing
instructions within the constraints imposed by the target architecture, with the aim of
improving the instruction set with respect to the design criterion. It must be possible to
quantify the degree of benefit obtainable by application of a rule in a parlicblar case. This
is the other stage in the prooess where the designers’ expertise may be brought to bear.

Derive a new instruction set by repeated application of the design rules, along the lines
used by ISGEN, generating one instruction at a time. Initially and after eaoh instruction is
generated statistical information must be obtained for each instruction. This may be by
substitution of each instruction and analysis of the resultant code, or may be by
transformation of existing statistical data obtained initially. In the latter case the
transformation effactively forms part of the design rule.

Apply the new instruction set. This may be by simple peephole substitution of the
canonical instruction set, or may be by modification of the existing compiler. if desired only
some of the proposed instructions need be used, and the whole design prdacess repeated
with the new instruction set as the canonical instruction set. This may bé the preferred
route if the new instruction set has been used in a modified compiler ratherithan peephole

substituted, in order to take advantage of global interactions of instructions.

-78 -

A BCPL Instruction Set . J.P. Bennett

|
!
I
3
|

The main problem with ISGEN is in the implementation of design rules. Each represents about
500-1000 lines of C, and needs a lot of care and attention. Each rule is very anscious of the
data structures it is handling and the design criterion it is trying to meet. Whilst i‘unning ISGEN
on a POLY instruction set to meet the criterion of compactness was straightfon}vard, changing
ISGEN to minimise memory-processor bandwidth for BCPL would be a ijor operation.
Changing the system to handle RISC rather than byte stream instruction sets %vould probably
involve starting from scratch. There is certainly little scope for making anything|other than the
minutest changes to the underlying aigorithm. In an attempt to overcome some of these
problems a language for speckying canonical instruction sets and design ryles has been
devised. This is the subject of the next chapter.

-79 -

4. DL - A Design Language

The preceding chapter has shown that ISGEN is a cumbersome program to extend, and that
implementing new design rules within it is far from trivial. Refinement of the selejction algorithm
is also prohibitively iaborious. In large part this is because of the interdependendy between the
rules and the underlying algorithm. it would be of immense help if the rules and the canonical
instruction set on which they are to operate could be specified in some independent fashion. To
this end a design language, DL, has been designed. DL is implemented as a front end to the
Unix C compiler. As it stands at present DL is geared towards byte stream irjstruction sets.
However it is an advance on ISGEN, since it offers scope for use of arbitrary mjes and saving
functions.

4.1. Specification of DL

There are essentially four aspects to specifying a rule:

-80 -

DL - A Design Language . J.P. Bennett

?

(1) Matching - A specification of what sequence of opcodes, or opcodes and arguments this
rule will deal with. For example the rule that generates a new instruction iwith a smaller

range for one argument is a rule that takes any opcode with one of its argun!sents.

(2) Saving - A function, which given a particular sequence of opcodes or| opcodes and
arguments, will return the benefit accrued were the rule to be applied to that sequence.
Clearly this requires access % statistical data about the instruction set.

(3) Specification - A specification of the characteristics of an instruction derived by this rule in
terms of the characteristics of the opcodes and arguments from which it is derived.

(4) Generation - A specification of how and under what circumstances the new instruction may
replace existing instructions, and how to calculate the argument values for the new opcode
if substituted.

To complete the system we need a specification of the characteristics of the canonical

instruction set.

Fig. 1 shows an example DL program with just one rule, which specifies instructions with smailer
argument ranges. This rule is more compiex than that used in the ISGEN example of the
previous chapter, in that the argument range may start from any value, not just zero. The rule
is introduced by the word RULE (note that DL reserved words are in upper case, and variables
in lower case) and terminated by a matching ENDRULE. The rule is given a narhe after RULE,
purely for clarity. Following the RULE statement are a number of subsidigry information
variables. These are used to hold subsidiary information calculated in the saving stage of the DL
program that may be used by the specification and generation stages. In this cdse range_starnt
specifies the start of the argument range and size the size of the argument for a particular
application of the rule.

Matching is introduced by a MATCH clause. This specifies a sequence of opcodes, introduced
by the keyword OPCODE. Each apcode may specify a number of subsidiary arg{bments with an
ARG keyword and finally an ARGLIST for those arguments, such as switch tabbs whose size
depends on another argument. The language at present assumes that there is dnly one arglist
at most for any opcode, and that it follows any ordinary arguments. It is far fro+| clear how to
represent the size of an arglist, which is usually a simple function of one of?the preceding

-81 -

DL - A Design Language ; J.P. Bennett
I

/* Example Design Language Program */
GET "iset.h"

RULE shrink argument

INT range_staxt ;

INT sixze ;
/* Genexate an instruction with a smaller argument */

ARG arg /* Must be more than 1 byte */

SAVING

{

INT best_start ;

INT best_size ;

INT best_saving ;

best_saving=0 ;

/* Find the best size to shgink to. */
l‘?!c:l.u (1)TO (arg . SISE-1)

INT saving

range = 1 << (size*8);

range_start = £ind range (arg, range) ;

range_freq = find freq (arg, range_start,
range_start + range -1) ;

saving = range freq* (axg . SIZE - size) ;

I}' (saving > best_saving)

best_start = range_start ;
best_size =gsgize;
best_saving = saving ;

/* Now retuxrn the results */
range start = best_start ;
size = best_size ;
RESULT best_saving ;

SPEC
{

OPCODE new_ : "(" + opc . TEXT + size + "BYTESBASE" + range_start +
axg . ID+")",
1, opc . RARGS
ARGS new_arxg : (new_axg . ID == axrg . ID) —> size,
) opc [new_arg .ID] . SIZE |
GENERATION ((axg . VALUE >= range_stazt) &&
(arg . VALUE <= (range_start + (1 << (size *8)))))

OPCODE new_opc
ARGS new_arg : opc [new_arg . ID] . VALUE

}
ENDRULE /* shrink argument (range_staxrxt, size) */

Fig. 1. Example DL Program

arguments. The current implementation ignores this by not translating arglists. zris was one of
the problems that faced ISGEN, and must be added at some stage. Howev r it is a major

-82-

DL - A Design Language J.P. Bennett

complication. How for example are rules that transform an arglist into a number of fixed
arguments to be handled? How is the combination of two opcodes with arglists to be dealt
with? For the time being the issue is ighored in the interests of completing the design of a viable
language. The DL evaluator may call the saving function for each possible opcode and
argument sequence. The keywords OPCODE, ARG and ARGLIST each specify a name by
which the relevant item may be addressed. In the example the match sequence is for a single
opcode and argument. The generator will be invoked for each possible combination of an
opcode and one of its arguments. Care must be exercised at this stage. It is clearly possible to
specify a match for say a sequence of four opcodes, but with say 49 canonical instructions this
could invoive 49* (around 6 million) invocations on the first pass, and on pass 207 to find the
last new opcode 255* (around 4 billion) invocations. More than 2 opcodes in a sequence is
essentially to be discouraged. If larger numbers of opcodes are to be matched then
consideration of the algorithm of the DL evaluator is required to prevent all possible matches

being carried out.

The key part of the rule is the saving section, introduced by the SAVING keyward. This has a
format rather like a C function, aithough much stripped down, and with a syntax that draws
some ideas from BCPL. Variables may be specified. By implication the routine has available the
opcodes and arguments specified in the MATCH section, and the variables specified by the
RULE statement for returning subsidiary information. There are six types available in DL, INT’s
(integers), BOOL's (booleans), STRING’s (text), OPCODE’s (opcode data structure), ARG’s
(argument data structure) and ARGLIST’s (arglist data structure). Fields within data structure
types may be referenced using the *“.” operator. Possible fields are SIZE, ID and TEXT. In

addition OPCODE types can reference their arguments using the notation:

opclargnumber]
The saving function may be called for any opcode, arg, arglist combination possible within the
MATCH specification, and returns as result the saving that would result from applying the rule to
that combination. Subsidiary information is put in the subsidiary variables before a result is
returned. Typically the DL evaluator keeps a record of the best saving possible, and the

functions, which are in fact written in C. Two are used here, find_range and fin

subsidiary information for the rule. Access to the statistical data is providﬁ by external
freq. It is not

f

-83-

DL - A Design Language J.P. Bennett

difficult to add extra routines as needed for particular rules, although a complete system should
have a wide range of useful routines built in. Using the saving function the DL evaluator decides
which rule to apply to which opcode and arguments in order to create the maximum possible

saving.

Having decided on which rule to apply to which opcodes and arguments the DL evaluator may
need to specify new instructions. The specification section of a DL program is used to create a
specification routine. This takes details of opcodes and arguments together with any subsidiary
information as provided by the saving section and sets up data structures to describe the new
instructions. The specification is introduced by the OPCODE keyword, and specifies a name by
which the opcode may be referred; this is separated by a colon from initialisation data, giving the
textual name of the new instruction, the opcode’s size (which for 256 opcodes is typically one
byte), and the number of arguments it has. These may be derived from existing data, as is the
case here where the new opcode has the same number of arguments as the existing opcode.
For each opcode there is an ARGS subsidiary specification. This gives a name to reference the
argument, and initialisation data, being the new argument’s size. This is invoked once for each
argument in turn, with the argument ID field being set automatically; effectively an implied FOR
loop. Finally there is an ARGLIST specification to add an arglist specification if necessary. This

is not currently implemented.

The last part of the rule is the GENERATION section, which handles peephole substitution of
instructions. Once again this is used to create a function. The peephole optimiser scans along
the sample compiled code. Unless the sequence of opcodes and arguments being read meets
the rule MATCH specification the code is copied unchanged. If its does match the generation
routine is called. It tests the condition given after the GENERATION keyword, and if this
succeeds does a peephole substitution. The generation routine retums TRUE or FALSE
depending on whether or not the substitution was carried out. The GENERATION section
specifies a sequence of opcodes to substitute. Each opcode is introduced by the OPCODE
keyword, and followed by the name of an opcode. This inserts the ID field of that opcode in a
number of bytes given by the SIZE field of the opcode. For each opcode there ‘is a subsidiary

ARGS field, which is used for each argument in the new opcode, and specifies ai value to insert

-84 -

DL - A Design Language J.P. Bennett

for that argument. This is the only part of a DL program where the VALUE selector of an ARG
may be used. In addition there is an ARGLIST specification to insert an ARGLIST if needed,
although again this is not yet implemented.

In addition to specifying rules a DL program has to specify the canonical instructioln set on which
it is to operate. This is done by an initial specification section at the head of a D;lTprogram. This
may be kept separate and inserted in the main DL program by means of a GET directive, as
has been done with the example included above. Fig. 2 shows part of the specification of the
canonical instruction set for BCPL described in section 3.2. It is similar to the SPEC section of
a rule, but opcodes, args and arglists are not given names. Enough information is available here

to enable the initial statistics to be gathered for use in instruction set generation.

From this description the reader should be able to understand a DL program. The language is
implemented using the YACC parser generator under Unix, to produce a C program. This is
then combined with an evaluator and library routines written in C. Library routines may be added
as required by the instruction set designer, but do require an understanding of the underlying

data structures in the evaluator. The complete YACC grammar for DL is given in Appendix B.

4.2. The implementation of DL

The translation of a DL program yields one main specification program and three routines for
each rule. Details of instructions are held in a data structure similar to that used for ISGEN. The
specification of ISGEN provides sufficient data to enable instruction frequency data, argument
frequency data and instruction pair data to be obtained from a sample of compiled code. It is
quite likely that more data might be needed within the specification section if DL is to be used
on certain types of optimisation, for example details of bus loading by instructions. This can only
be found out by experience. It is certainly adequate for work on dynamic code size, if sample
data is presented as an instruction by instruction execution profile, since then the same statistics
as used for static data size may be employed. A more general version of DL might provide
opportunity for the specification of statistical data required, as well as instruction format. This is

beyond the scope of this dissertation.

-85-

DL - A Design Language . J.P. Bennett

8PEC

{

OPCODE "unknown”, 1, 0

OPCODE "globalpush”, 1, 1
ARGS 4

OPCODE "staticpush”, 1, 1
ARGS 4

OPCODE "localpush”, 1, 1
ARGS 4

OPCODE "push”, 1, 0

OPCODE "pushbyte”, 1, o

OPCODE "globalpushleft”, 1, 1
ARGS 4

OPCODE "staticpushleft”, 1, 1
ARGS 4

OPCODE "loocalpushleft", 1, 1
ARGS 4

OPCODE "immediate”, 1, 1
ARGS 4

OPCODE "globalpop”, 1, 1
ARGS 4

OPCODE "staticpop”, 1, 1
ARGS 4

OPCODE "localpop”, 1, 1
ARGS 4

OPCODE "pop”, 1, o
OPCODE "popbyte”, 1, 0

OPCODE "unlessuntil”, 1, 1
ARGS 4

OPCODE "switch”, 1, 2
ARGS 4

Fig. 2 Initial Specification of a DL Program

The algorithm implemented in the prototype DL compiler is essentially that emploi'ed by ISGEN.
The saving possible by applying each design rule to each sequence of opcodes and arguments
is evaluated, and the instruction giving the greatest saving selected. Peephole: substitution is
then carried out immediately (unlike ISGEN), and a new set of statistics obtainéd. The use of

peephole substitution after each instruction will hopefully avoid some of the absurd instructions
produced by the use of “derived” statistics in ISGEN.

-86 -

DL - A Design Language 1 J.P. Bennett

DL is very much a prototype system, to demonstrate that in principle such @a language is
possible. The ability to separate design rules from the underlying generation algo}'nhm is clearly
vital if there is to be any scope for investigating other generation algorithms; Whatever its

limitations, it is clear that DL is at least as powerful as ISGEN.

-87-

5. Theoretical Models

There have been a number of attempts over the years to place iinstruction sdt design on a
sound theoretical footing. These have taken two forms. Modelling of the structure of instruction
sets has been used to estimate the most compact instruction set that can be obtained to
support a particular language [Flynn84]. The consideration of the entropy of the problem has
been used to examine code size [Wade75] and redundancy in addressing [Hammérstrom77].

Both these approaches have been hampered by the need to constrain the problem in ways that
are often unreasonable, and the need to make approximations of behaviour of instruction sets.
The net effect is usually that predictions of behaviour are wildly over optimistic. Flynn suggests
instruction sets that are ten times as compact as existing machines, something he cannot
himself achieve in practice. His approach, with its basis in essentially ad hoc canonical
interpretive measures is not well parameterised, and offers little hope of extension or
improvement. it will not be discussed further, but must not be rejected out of handi. Although the
theory of canonical interpretive measures is not particularly helpful, Flynn does|raise many of

the questions that need to be handied by a model of instruction set behaviour.

-88 -

Theoretical Models J.P. Bennett

Analyses involving the entropy of an instruction stream offer far more hope. Wéde and Stigall
with their consideration of the theoretical basis of instruction set refinement giv;p considerable
theoretical backing to the approach used by ISGEN and DL. Hammerstrom and Davidson take a
more sophisticated approach and analyse data on the dynamic behaviour of |instruction set
addressing. Their suggestion that memory references in the IBM S/370 contain up to 99%
redundant information is worthy of serious consideration. Such a level of predictability would
reduce memory processor bandwidth substantially, if only through the ability to design effective
memory caches. If such an analysis could be extended to instruction stream andidata stream in
general the benefit would be enormous. These models and their limitation are considered in this
chapter with regard to the canonical instruction set for BCPL presented in chapterithree.

There is a need to investigate the algorithm used by ISGEN and DL, to ascertain whether they
do lead to the best possible instruction set, and if not where the limitations lie. The analysis that
they perform is based on statistical analysis of a large body of code. The size af code sample
needed to obtain reliable results is an important consideration. Examining excessive amounts of

code is time consuming; the minimum necessary for deriving the instruction set shouid be used.

From the design point of view it would be useful to have a model of behaviour that could predict
the savings attainable by the use of automatic instruction set generators with far less computer
time. This would then make experimentation with the canonical instruction set design more

feasible. In the final section of this chapter the derivation of such a model is considered.

5.1. Entropy

The concepts of the information content and entropy of a stream of symbols and their
mathematical analysis are essentially due to Shannon [Shannond8]. There are many textbooks
on information theory that provide an introduction [for example Abramson63). The approach has
great promise as a mathematical formulation but as it stands there are two sdrious flaws, at
least in Wade and Stigall’s work [Wade75], discussed in section 1.7. The first is the treatment of
an instruction stream as purely a sequence of opcodes. In reality opcodes have 4rgumerts, and
this needs to be considered. The second failing is the assumption that an instruction stream can

-89 -

Theoretical Models . J.P. Bennett

be considered as a sequence of independent symbols. This is clearly absurd. :Consider byte
stream code compiled for the canonical BCPL instruction set described in chap@er three. The
probability of the occurrence of a CALL instruction is virtually zero after ag GLOBALPOP
instruction, but is very high after a GLOBALPUSH instruction. After a GLOBALPUSH 73 (global
73 being the BCPL routine WRITES) the probability approaches unity. A far better approach is
to consider an instruction set as an m-stage Markov process, where the probability of an
instruction occurring is a function of the previous m instructions in the stream. This is the
approach used by Hammerstrom and Davidson [Hammerstrom77], who considet the sequence
of addresses referenced in IBM $/370 code as an m-stage Markov process as m tends 10 c. If
we consider the preceding m symbols, (s;,.sj,. - - -, Sj,) as a single state then fthe conditional
probability of the next symbol being s; is P(s;/ s;,.S),, - - - , Sj,,)- By analogy ihe information
obtained if s; occurs whilst we are in state (s;,.S;,, - . ., 5},) is

1
= log(P(s; / Sj1Sjpr - - - ,Sjm)

I(S; / 8j,+Sj,s - - -+ Sj,)) .

Averaging over all possible states we can obtain a formula for the average information in the

instruction stream [see Abramsoné3].

1
/ 311,312, e ,S]m)

H = % P(s;,8S}, - - -1 8},:8) - log (Fls

sm+1

where the notation S*, the k" extension of S means all possible streams of symbols of length

k in a stream of symbols S and P(s},:sy, - .18, is the probability of the state
(8},1Sjp - - - +Sj,»51) occurring. This is essentially the approach which Hammerstrom and

Davidson took to its limit.

To tabulate these results for varous values of m is straightforward, if expensive in machine
resources. Table 5.1 shows the results considering only the opcode bytes in 500K of canonical
BCPL code (116125 opcodes) and the results considering all the bytes of the insiruction stream
for different numbers of stages in the Markov process. The figures for opcodes alone show the
weakness of Wade’s assumption that the opcodes are independent. We see thatg even as a first

order Markov process the reduction in entropy is nearly 28%, more than one bit per symbol. For
fith order processes we are approaching a mere one bit requirement per symbol. When

-90 -

Theoretical Models é J.P. Bennett

Entropy
Order | opcodes Only | Complete Instructions
(bits/symbol) (bits/symbol)
0 3.98 3.24
1 2.87 2.64
2 2.35 2.28
3 2.03 2.01
4 1.62 1.77
5 1.19 1.26
6 0.80 1.03
7 0.51 0.97
8 0.32 0.81
9 0.20 0.50
10 0.13
15 0.04
20 0.02
25 0.01

Table 4.1 Opcode and Instruction Entropies as N-order Markov Procegses

considering the entire instruction stream, we get far less order. This is not surprising since we
are throwing away the information we have on instruction structure, with argufhents following
opcodes. This is without even imposing knowledge that arguments follow opcodes in a
predefined way. Such small entrepies lead to problems when considering the eéncoding of the
instruction set. More than one writer has suggested the use of Huffman encoded instructions
and bit addressed machines. Indeed such a machine, the Burroughs B1700, was built
[Wilner72]. However Huffman encoding only offers the best approximation io the optimal
encoding using a binary coding. With entropies around 0.01 bits per sy I almost all
instructions will have less than one bit of information in them. Clearly a one bit encoding is

inappropriate. The manner in which the instructions are to be represented will nged much more
|

-91-

Theoretical Models . J.P. Bennett

encoding. This is the problem that in practice faces Hammerstrom and Davidson.

Hammerstrom and Davidson also have the problem that their address data is cakulated at run-
time. The handling of dynamic data like this is a potential minefield, not ope which they
investigate.

There is considerable scope for developing these ideas, and they could form aldissertation in
their own right. However further investigation is beyond the scope of this digsertation. It is
sufficient to note the data as presented. From our point of view we may wish to note that the
zero order model suggests less than four bits per symbol, and it may be sensible to consider

nybble-stream® architectures.

5.2. The Theoretical Basis of ISGEN

The whole approach to the design of instruction sets presented here has been based on the
principle of refinement of a canonical instruction set by addition of “special” instructions by
peephole refinement. By this we mean the addition of extra instructions ovet the minimum
necessary for a viable machine in order to handle particularly common cases nhore efficiently.
The problem of selecting which “special” instructions to add to support particuldr constructs is
equivalent to a standard problem in dynamic programming, the stock cutting problem.

Let us suppose that our instructions are partitioned into t types, T4, To, ..., T;. This may be at
the level of partitioning into data access, data manipulation and flow of confrol instructions
(t = 3), or it may be at the level of the canonical instruction set, with initially one instruction only
of each type, and t possibly quite large. This latter partitioning is of greater relgvance, since it
reflects the behaviour of ISGEN in refining a canonical instruction set. We now cénstruct our full
instruction set by adding a number of special instructions to support each partigular type. For
each type T7; let there be x; special instructions. In any body of compiled code we observe that

9 Where a nybble is half a byte, i.e. four bits.

-92-

Theoretical Models | J.P. Bennett

1
i

instructions of type T; occur with frequency f;. Clearly the higher this frequency the larger we
might expect x; to be, since then we increase the saving due to these instrthions. For any

given type adding special instructions will save space s;, given by some function g, of x;

si = gi(x)
And thus the total space saved will be

t

S = Z S;i
i=1
t

= Y g(q)

i=1

t
We wish to maximise S subject to the constraint ¥, x; = ¢, i.e. there is a limit onithe number of
1

special instructions permitted, typically 256 less the number of canonical instructions. In the
case of instruction set design we know also that if we define

Asij = g (j)-g (J-1)
then As;; 4 < As;;forallie1,...,t and j>1

Under this constraint we have the stock cutting problem. It is a standard result that a “greedy”
algorithm of adding one special instruction, the best available, at a time until we have reached

the constraint, i.e. we have ¢ spa¢ial instructions will yield an optimal selection of !instructions.

This immediately reveals the source of one of the problems found with ISGEN, for the stock
cutting problem assumes that the values As; ; are independent. This is not aiways the case with
ISGEN. The saving due to the creation of ((GLOBALPUSHBYTEARG1)ARG1=74) is very
dependent on whether or not ((GLOBALPUSHBYTEARG1)CALL) has alreadyébeen created.
Howaever errors such as this tend to come late on in the generation of an instrugtion set, and it
is perhaps reasonable to believe that the errors due to this sort of interdependence are small,
and that it not optimal, the instruction set generated by ISGEN or DL is not too sub-optimal. If
we wish to generalise the problem, such that arbitrary dependencies are allowed, then we have
a general problem which is believed to be NP-complete. However there are a series of
approximations known to the general problem, which involve using lookahead when substituting.
The greater the lookahead, the closer the approximation. This is a justification fir incorporating
lookahead into ISGEN or DL's algorithm. We should then have to consider lue use of o

-93-

Theoretical Models | J.P. Bennett

pruning techniques, common in computer chess programs, in order to reduce computation time.

The current version of ISGEN takes 5 to 10 minutes with no lookahead.

The amount of statistical data used by ISGEN is large. For the BCPL instructio | set of chapter
three nearly half a megabyte of code was analysed, for POLY nearly a quarter of|a megabyte. If

this is to be refined and re-analysed for each instruction (as is the case with DL), Fhen it is worth
considering how much code needs to be analysed. Essentially we need to be sunjb that the As;
giving the greatest saving in each case is correct. We have only an approximation to As;,
based on analysis of our data sample. ISGEN and DL would perhaps do well t¢ incorporate a
confidence test to check the reliability of As; ;. For the early stages of design this could reduce
substantially the degree of statistical analysis required, whilst instruction geneﬂation could be
halted once no more reliable data remained. Under these conditions lookahead ﬁemmes much

more viable.

This is fine as a methodology of instruction set design, apart from the fact that deriving an
estimate of values of As;; is extremely difficult, involving much computer time. This is in
essence the weakness of ISGEN and DL. The amount of computer time requiredito generate an
instruction set is a hindrance to experimentation with the canonical instruction set. It would be a
considerable help with this aspect of instruction set design if we could derive a mpdel that would

enable us to predict the relative merits of different canonical instruction sets.

5.3. A Model of Instruction Set Design
The model considered here considers the case of optimising the space occupiéed by compiled
code, but the technique is identical for any other quantifiable design criterion. Let us suppose we

can approximate the benefit functions, g;, by a decaying exponential.

Let s;, x; and f; be defined as above. Let us suppose there exist non-negative constants a;,
such that:

-94-

Theoretical Models i J.P. Bennett

1

s = of; (1-e "), where o is a suitably dimensioned constant.

Thus the total space saved is:
s ! —aIX,
= 0121 fi(1-e ") | (Eqn. 1)

subject to the constraint 3, x; = ¢, where ¢ is the number of special instructions Ewe have room
for in our instruction set of 256 Instructions.The attraction of this model is that it is in some
senses natural; negative exponential terms are what one might expect. If values of a; cannot be
found to model real choices of instructions accurately we may have to find a diﬁeirent version of
Eqgn. 1 or even reject the model completely.

We use the method of Lagrange Multipliers to maximise the saving. A proof derived by Smith in
[Bennett87] is repeated in Appendix C. He shows that a choice of x; given by

X = oG (-F) (Eqn. 2)

will maximise S, where

e = (acf)?

[}
r = rI [aff[]l . e %

=1

~—

d;

M-

b=

i=1

and d; = f[a .

jur
The formula of Eqn. 2 as given is unsuitable for computation. With g around 5x1072 and i
around 10, d; and b are of the order of 10~'2, making r and n of the form 10¢'™, far too
close to unity for easy manipulation by computer. This is solved by noting that the last term
may be rewritten

1090 () = loge (k) ~ 10ge (1)

loge (nk)= loge (akfx)°

-95-

Theoretical Models J.P. Bennett

= b .loge (axfx)

and log, (r)= logs [f[[a, f,]d’ . %]
i=1

t
= 12:1 d; loge (a;f;) — ac

These formulas now involve only numbers of the order of 10~'2, well within the capabilities of an

ordinary computer.

We tested the validity of this model by looking at the first of our examples, thé design of an
instruction set to support BCPL using ISGEN. We used the information on the benefit accruing
as each instruction is added given by ISGEN to fit Eqn. 1 and obtain values for & and of;. For
the purpose of our experiments we divided the canonical instructions into thn‘ee‘ types, and
looked at the predicted and observed support for these three types in the final iinstruction set.
The three groupings were data access instructions, data manipulation instructions and flow of
control instructions. In the canonical instruction set we had 14, 21 and 14 instructions
respectively supporting these three types. Compiled canonical code is observed to contain 72%,
3% and 25% of the three types respectively.

We tried fitting Eqn. 1 to our data, to obtain values of g, f; and hence obtain predictions of the
number of instructions of each type to be incorporated in the instruction set. There is a slight
problem in that instructions formed by combination of instructions of two different types end up
belonging to a new sort of combined type (for example CALLGLOBAL), but this problem is
overcome by counting such an instruction as half an instruction of one type and half of the
other. Statistically fitting Eqn. 1 by least squares regression is far from satisfactory, particularly
since we have no model of error behaviour. However Table 5.2 shows the best iresults that we
could achieve using our model, Eqn. 1. The prediction of number of opcodes is not too bad;
ISGEN suggests a partition of 137, 10 and 60 is optimal. However the predicted saving of 72400
bytes is out by a factor of neary 5 from the saving of 358762 bytes in the sige of the code
sample achieved with the instruction set selected by ISGEN.

The model of Eqn. 1. would appear inadequate for the task. It is unable to give really reliable

-96-

Theoretical Models . J.P. Bennett

a
g
i
|
?

i of; a; X; S;

1 133000 | 0.003 | 127 | 42100
12000 | 0.04 16 | 6550
3 54000 | 0.009 | 64 | 23700

Total 207 | 72400

Table 5.2 Model Instruction set distribution for three types

predictions of the number of opcodes of different types required. its predictions of! the savings to
be achieved bear no discernible relationship to reality. To be of any use in practic§ we would not
measure of; and & by curve fitting of completed data, but would attempt to es|timate them in

advance. This would of course lead to even less believable predictions.

The source of the problem with this model can be seen if we look at the savingsithat accrue as
we add opcodes with ISGEN. A graph of space occupied by the sample compiled code as a
percentage of its initial size as we incorporate in turn each additional opcodel suggested by
ISGEN is given in Graph 5.1. The fact is that whether we use 110 or 140 opcodes of type 1, or
10 or 20 of type 2 or 60 or 70 of type 3 makes very little difference. Almost all our benefit is
coming from the first few special opcodes that we add. 30% of the space saved is achieved
from the first 44 additional opcodes of all types. Thereafter additional opcodes make very little
difference. When we look at our model we see that this is where we are on the!flat part of the
exponential decay. We can aiso explain the error in estimation of savings. This is| due to error in
fitting the first rapidly decaying part of the exponential. Slight errors in estimation of a; will lead
to gross under or over estimates of the savings to be expected. Our efforts to réfine to the last
opcode the addition of opcodes to our instruction set is really pointless. We can achieve 90% of
our aim with an instruction set of just 93 opcodes. If we look at less easily quan}iﬁed measures
of benefit, such as dynamic code size or memory bus loading, we are unlikely to be able to
quantify the benefit due to a particular opcode with as much as 10% accuracy anyway.

For comparison we took a second example, an instruction set for the prograrvlming language

-97-

Theoretical Models ~ J.P. Bennett

100 _
90 _|

80 _|

70 _|

60

50 4

40

patdnooQ ooeds §

30

20 _

10

| [| [I I {] | |
0 20 40 60 80 100 120 140 160 180 200

Number of Additional Opcodes

Graph 5.1 - Percentage space saving due to additional opcodes

POLY. This is a far more sophisticated language than BCPL with a polymorphic type system.
We might expect to need a larger instruction set, but even here 90% of the benelfit possibie with
a full complement of 256 opcodes is achieved using just 116.

it seems there is a simple message for the designer of a byte stream architedture. Only add
those extra opcodes you really need. There really is little point in filling up an instruction set with
litle used opcodes. Fewer opcodes mean less microcode, and more silicon for hardware
assistance. It also makes the compiler writer's job easier, with fewer options in selecting
opcodes. Under these conditions many of the benefits seen from RISC techmology may be
possible, whilst retaining the advantages found with byte stream architectu‘ - the thesis
proposed at the end of chapter one.

-98 -

Conclusion

In this dissertation a methodology of instruction set design has been presented which ! believe
to be an advance on existing approaches. It offers the scope for accurate asséssment of the
quality of an instruction set and the automation of much of the drudgery involved in instruction
set design. The computer designer has greater freedom to experiment with underlying principles,
secure in the knowledge that he can always obtain the best possible results with his target
architecture.

This work is not complete; it opens up new avenues of research. The instruction sets specified
by programs such as ISGEN must still be implemented, itself a laborious proce$s. There is no

reason why ISGEN could not be made to generate microcode, or even perhaps silicon layouts.

ISGEN and DL clearly must be generalised to cope with designs using other than byte stream
instruction sets. However this need not be restricted to the conventional software - hardware
interface. The principles involved could as well be applied to the derivation of suger combinators

from combinatory logic as to design of computer instruction sets.

-99 -

Conclusion J.P. Bennett

Analysis of the mechanism of instruction set design has forced a closer study of the theoretical
basis of computer instruction sets. What little we have seen has revealed the need for further

investigation in this area. This dissertation may help to promote such research.

- 100 -

Bibliography

This bibliography is in two parts, ene for primary references, the other for secondary references.
Primary references are works that are central to this thesis and which have played major parts
in the evolution of the ideas contained herein. Secondary references are material that is needed

for clarification and information on specific points, but which is not necessary for a general
understanding of the subject.

Primary References

Chu75

Chu Y. ed., High-level Language Computer Architecture. Academic Press, 1975.
Colwelis5

Colwell R.P. et.al., Instruction Sets and Beyond: Computers Complexity and Controversy.
Computer, 18(9), 8-19 (September 1985).

- 101 -

Bibliography J.P. Bennett

Hammerstrom77
Hammerstrom D.W. and Davidson E.S., Information Content of CPU Memory Referencing
Behaviour. Proceedings of the Fourth Annual ACM/IEEE Symposium on Computer
Architecture, 184-192, March 1977.

Huffman52
Huffman D.A.,, A Method for the Construction of Minimum-Reduridancy Codes.
Proceedings of the IRE, 40(9), 1098-1101 (September 1952).

Johnssong82
Johnsson R.K. and Wick J.D., An Overview of the MESA Processor Architecture.
Proceedings of the ACM Symposium on Architectural Support for Programming Languages
and Operating Systems, 225-234, Palo Alto, March 1982.

Knuth71
Knuth D.E., An Empirical Study of FORTRAN Programs. Software - Practice and
Experience, 1(2), 105-133 (1971).

Patterson80
Patterson D.A. and Ditzel D.R. The Case for the Reduced Instruction Set Computer.
Computer Architecture News, 8(6), 25-33 (October 1980).

Patterson82 ‘
Patterson D.A. and Sequin C.H., A VLS/ RISC. Computer, 15(9), 8-21 (September 1982).

Richards84
Richards M., The Design of CINTCODE. Personal Communication, 1984.

Shannon48
Shannon C.E., A Mathematical Theory of Communication. Bell Systems Technical
Joumnal, 27, 379-423 and 623-656 (1948).

Siewiorek82
Siewiorek D.P., Bell C.G. and Newell A., Computer Structures: Principles and Examples.
McGraw Hill, 1982.

Sweet82
Sweet R.E. and Sandman J.G., Empirical Analysis of the MESA Instruction Set.
Proceedings of the ACM Symposium on Architectural Support for Programming Languages

-102-

Bibliography J.P. Bennett

and Operating Systems, 235-243, Palo Alto, March 1982.
Tanenbaum78
Tanenbaum A.S., Implications of Structured Programming for Machine Architecture.
Communications of the ACM, 21(3), 237-246 (March 1978).
Wade75
Wade J.F. and Stigall P.D., Instruction Design to Minimize Program Size. Proceedings of
the Second Annual ACM/IEEE Symposium on Computer Architecture, 41 -44, 1975.
Weicker84
Weicker R.P., Dhrystone: A Synthetic Systems Programming Benchmark.
Communications of the ACM, 27(10), 1013-1030 (October 1984).
Wilkes51
Wilkes M.V., The Best Way to Design an Automatic Calculating Machine. Manchester
University Computer Inaugural Conference, Ferranti Ltd., London, July 1951.

Secondary References

Abramson63
Abramson N., Information Theory and Coding. McGraw Hill, 1963.
Andersoné1
Anderson J.P., A Computer for Direct Execution of Algorithmic Languages. Proceedings
of the AFIPS Fall Joint Computer Conference, 20, 184-193 (1961), reported in Chu75.
Baldwing4
Baldwin T.J., An Implementation of the Tripos Operating System for the BBC micro.
Dissertation for the Computer Science Tripos, Cambridge University, May 1984.
Bashkov67
Bashkov T.R., Sasson A. and Kronfeld A., System Design of a FORTRAN machine. |EEE
Transactions on Electronic Computers, EC-16(4), 485-499 (August 1967).
Bennett81
Bennett J.P., A Comparison of FORTRAN compilers on the IBM S/370. Contribution to

-103 -

Bibliography J.P. Bennett

Seminar for the Computer Science Tripos, Cambridge University, 1981.

Bennett87
Bennett J.P. and Smith G.C., The Need for Reduced Byte Stream Instruction Sets. To be
published in The Computer Journal, 1989.

Brooks83
Brooks P.T.M., Quality of Code produced by the BCP Compiler. Personal ¢ommunication,
1983.

Clarks0
Clark T.JW., Gladstone P.J.S., MacLean C.D. and Norman A.C., SKIM - The S, K, |
Reduction Machine. Proceedings of the LISP Conference, 128-135, Stanford, August
1980.

Cownie86
The Meiko Computing Surface, an application of the INMOS Transputer. Seminar given at
Bath University, England by J.H. Cownie, December 1986.

Davenport83

A Comparison of Franz LISP and PSL. Personal Communication, 1983.
DEC81

VAX Architecture Handbook. Digital Equipment Corporation, 1981.

Dewar83
Dewar R.B.K., McCann A.P., Jardine C. and McLaren N.M., Macro-Spitbol on the IBM
370. Cambridge University Computing Service, 1983.
Evans86
Evans R.D., OCODE generated by the TBCPL compiler. Personal communication, 1986.
Flynng4 |
Flynn M.J. and Hoevel L.W., Measures of Ideal Execution Architectures. 1BM Journal of
Research and Development, 28(4), 356-369 (July 1984).
Foderaro80

Foderaro J.K. and Skiower K., Franz LISP Manual. University of California, Berkeley,
1980.

-104 -

Bibliography J.P. Bennett

Griss82
Griss M.L., Benson E. and Maguire G.Q. Jr., PSL: A Portable LISP System. Proceedings
of the ACM Symposium on LISP and Functional Programming, 88-97, 1982.

Griswold71
Griswold R.E., Poage J.F. and Polonsky I.P., The SNOBOL4 Programming Language,
Second Edition. Prentice Hall, 1971.

Grune79
Grune D., Some Statistics on ALGOL 68 Programs. SIGPLAN Notices, 14(7), 38-46 (July
1979).

HLH85
Microcoding the Orion. High Level Hardware, Oxford, 1985.

Hopper53
Hopper G.M. and Mauchly J.W., Influence of Programming Techniques on the Design of
Computers. Proceedings of the IRE, 41(10), 1250-1254 (October 1953).

Lonergané1

Lonergan W. and King P., Design of the B5000 System. Datamation 7, 28-32 (1961),
reported in Chu75.

Marks80
Marks B., Compilation to Compact Code. IBM Journal of Research and Development
24(6), 684-691 (November 1980).

Matthews85
Matthews D.C.J., Poly Manual. Cambridge University Computer Laboratory Technical
Report No. 63 (1985).

MelbournéSs
Melbourn A.J. and Pugmire J.M., A Small Computer for Direct Processing of FORTRAN
Statements. The Computer Journal, 8, 24-27 (April 1965).

Motorola79
MC68000 User's Manual. Motorola, 1979.

-105 -

Bibliography J.P. Bennett

Nationai83
NS32032-6, NS32032-4 High-Performance Microprocessors. Preliminary Specification,
National Semiconductor, 1983.

Needham82
Needham R.M. and Herbert A.J., The Cambridge Distributed Computing System. Addison
Waesley, 1982.

Padget83
Padget J.A. and ffitch J.P., Perq BCPL Documentation. School of Mathematics, University
of Bath, 1983.

Jrivers81
PERQ System Software Reference Manual. Three Rivers Computer Corporation, July
1981.

Rice71
Rice R. and Smith W.R., SYMBOL - A Major Departure from Classic Software Dominated
von Neumann Computing 8ystems. Proceedings of the AFIPS Spring Joint Computer
Conference, 38, 575-587 (1971).

Rice81
Rice R., The Chief Architect's Reflections on Symbol lIR. Computer, 14(7), 49-54 (July
1981).

Richards79
Richards M. et al., Tripos - A Portable Operating System for Mini-computers. Software -
Practice and Experience, 9(7), 513-526 (July 1979).

Richards80
Richards M. and Whitby-Strevens C., BCPL - The Language and its Compiler. Cambridge
University Press, 1980.

Richards82
Richards J. and Jobson C., BCPL for the BBC Microcomputer. Acomsoft, 1983.

Rosen68
Rosen S., Hardware Design Reflecting Software Requirements. Proceedings of the AFIPS
Fall Joint Computer Conference, 33, 1443-1449 (1968).

- 106 -

Bibliography J.P. Bennett

Shapiro72
Shapiro M.D., A SNOBOL Machine: Functional Architectural Concepts of A String
Processor. Dissertation, Purdue University, Lafayette, Indianna, 1982, reported in Chu75.
Schulthess84
Schulthess P.U., A Reduced High-Level-Language Instruction Set. |EEE Micro, 4(3), 55-
66 (June 1984).
Tafvelin75
Tafvelin S. and Wikstrom A. Aspects of Compact Programs and Directly Executed
Languages. BIT 15(2), 203-214 (1975).
Tanenbaumg4
Tanenbaum A.S., Structured Computer Organisation, Second Edition. Prentice Hall, 1984.
Weber67
Weber H., A Microprogrammed Implementation of EULER on IBM System 360 Model 30.
Communications of the ACM, 10(9) 549-558 (September 1967).
Wilner72
Wilner W.T., Design of the Burroughs B1700. Proceedings of the AFIPS Fall Joint
Computer Conference, 41, 489-497, (1972).
Wilson83
Wilson A.R. The Design of the NS16032. Personal Communication, 1983.

Wilson85

A System for Preloading Tripos commands. Systems Research Group Note, Cambridge
University Computer Laboratory, 1985.

Wilson86
The Acorn RISC Machine. Seminar given at Bath University, England by A.R. Wilson and
D. Flynn, December 1986.

Wirth8é

Wirth N., Microprocessor Architectures: A Comparison Based on Code Generation by
Compiler. Communications of the ACM, 29(10), 978-990 (October 1986).

-107 -

Bibliography J.P. Bennett

This is another line
| hope we are now complete - dissard this page.

- 108 -

Appendix A. ISGEN Output

This shows sample runs from ISGEN in generating a BCPL instruction set (section 3.4) and in

generating a POLY instruction set (section 3.6). For clarity a certain amount of debugging

information has been removed in each case.

A.1 A BCPL Instruction Set

ISGEN version 1.30

49 redn 89.
50 redn 88.
51 redn 89.
. 548,
53 redn 90.
54 redn 95.
55 redn 96.
56 redn 96.
57 redn 97.
58 redn 97.
59 redn 97.
60 redn 98.
61 redn 98.
62 redn 98.
63 redn 98.
64 redn 98.
65 redn 98.
66 redn 98.
67 redn 98.
68 redn 98.

52 redn 91

04s,
048,
69%,

88y,
61%,
74%,
708,
27%,
19%,
25%,
028,
198,
348,
508,
608,
68%,
708%,
74%,
868,

total 89.
total 78.
total 70.
total 64.
total 58.
total 85.
total 54.
total 52.
total 50.
total 49.
total 48.
total 47.
total 46.
total 45.
total 44.
total 44.
total 43.
total 43.
total 42.
total 42.

- A1 -

Appendix A

69 redn 99.04%,
70 redn 99.05%,
71 redn 99.04%,
72 redn 99.10%,
73 redn 99.10%,
74 redn 99.10%,
75 redn 99.15%,
76 redn 99.16%,
77 redn 99.17%,
78 redn 99.18%,
79 redn 99.18%,
80 redn 99.17%,
81 redn 99.27%,
82 redn 99.33%,
83 redn 99.35%,
84 redn 99.38%,
85 redn 99.39%,
86 redn 99.42%,
87 redn 99.47%,
88 redn 99.50%,
89 redn 99.52%,
90 redn 99.54%,
91 redn 99.54%,
92 redn 99.58%,
93 redn 99.59%,
94 redn 99.61%,
95 redn 99.62%,
96 redn 99.62%,
97 redn 99.62%,
98 redn 99.63%,
99 redn 99.63%,
100 redn 99.64%,
101 redn 99.67%,
102 redn 99.68%,
103 redn 99.70%,
104 redn 99.71%,
105 redn 99.71%,
106 redn 99.71%,
107 redn 99.72%,
108 redn 99.73%,
109 redn 99.73%,
110 redn 99.73%,
111 redn 99.73%,
112 redn 99.74%,
113 redn 99.74%,
114 redn 99.74%,
115 redn 99.75%,
116 redn 99.75%,
117 redn 99.75%,
118 redn 99.76%,
119 redn 99.76%,
120 redn 99.77%,
121 redn 99.77%,
122 redn 99.78%,
123 redn 99.78%,
124 redn 99.79%,
125 redn 99.79%,
126 redn 99.79%,
127 redn 99.80%,
128 redn 99.80%,
129 redn 99.81%,
130 redn 99.81%,
131 redn 99.81%,
132 redn 99, 82%,
133 redn 99.82%,
134 redn 99.82%,
135 redn 99.83%,
136 redn 99.83%,
137 redn 99.83%,
138 redn 99.83%,
139 redn 99.84%,
140 redn 99.84%,
141 redn 99.84%,
142 redn 99.85%,
143 redn 99.85%,
144 redn 99.85%,
145 redn 99.85%,
146 redn 99.85%,

total 41.63%,
total 41.23%,
total 40.83%,
total 40.47%,
total 40.10%,
total 39.74%,
total 39.41%,
total 39.08%,
total 38.75%,
total 38.43%,
total 38.12%,
total 37.80%,
total 37.53%,
total 37.28%,
total 37.03%,
total 36.81%,
total 36.58%,
total 36.37%,
total 36.18%,
total 36.00%,
total 35.82%,
total 35.66%,
total 35.50%,
total 35.34%,
total 35.20%,
total 35.06%,
total 34.93%,
total 34.79%,
total 34.66%,
total 34.53%,
total 34.40%,
total 34.28%,
total 34.17%,
total 34.06%,
total 33.96%,
total 33.86%,
total 33.76%,
total 33.66%,
total 33.57%,
total 33.47%,
total 33,38%,
total 33.29%,

total 33.21%, (

total 33.12%,
total 33.03%,
total 32.95%,
total 32.86%,
total 32.78%,
total 32.70%,
total 32.62%,
total 32.55%,
total 32.47%,
total 32.40%,
total 32.33%,
total 32.25%,
total 32.19%,
total 32.12%,
total 32.05%,
total 31.99%,
total 31.92%,
total 31.86%,
total 31.80%,
total 31.74%,
total 31.69%,
total 31.63%,
total 31.57%,
total 31.52%,
total 31.47%,
total 31.41%,
total 31.36%,
total 31.31%,
total 31.26%,
total 31.21%,
total 31.16%,
total 31.12%,
total 31.07%,
total 31.02%,
total 30.98%,

J.P. Bennett

((LOCALPUSHBYTEARG1) ARG1=1)
(FORBYTEARG1)
((FORBYTEARG1) BYTEARG2)
(EQ (IFWHILEBYTEARG1))
{ (RNDFORARG2=1) BYTEARG1)
(((’'ORBYTEARG1) BYTEARG2) BYTEARG3)
((STATICPUSHBYTEARG1) (CALLBYTEARG1))
(((ENDFORARG2=]1) BYTEARG1) BYTEARG3)
(IMMRDIATEBALFWORDARG1)
((LOCALPUSHBYTEARG1) ARG1=2)
{ (BYATICPUSHLEFTHALFWORDARG1) BYTEARGL)
(JUMPHALFWORDARG1)
(REPEATBYTRARGL)
(LOCALPUSHLEFTBYTEARG])
(PLUSPOP)
{ (LOCALPOPBYTEARG1) ARG1=0)
((IMMEDIATEBYTEARGL) ARG1m2)
((LOCALPUSHBYTEARG1) ARG1=3)
((LOCALPOPBYTEARG1) ARG1=1)
{ (GLOBALPUSHHALFWORDARG1) (CALLBYTEARG1))
{ ((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=0)
((LOCALPUSHBYTEARG1) ARG1=4)
((LOCALPOPBYTEARG1) ARG1=2)
((GLOBALPUSHBYTEARG1) ((IMMEDIATEBYTEARG1)ARG1=0))
{ (IMMEDIATEBYTEARG1) ARG1=3)
(SWITCHBYTBARG2)
((LOCALPUSHBYTEARG1) ARG1=5)
{ ((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=1)
(((GLOBALP USHBYTEARG1) (CALLBYTEARG1)) ARG2=2)
((GLOBALPUSHBYTEARG1) (IMMEDIATERYTRARGL))
(((GLOBALP USHBYTRARG1) (CALLBYTEARG1)) ARG2=3)
((LOCALPOPBYTEARG1) ARG1=3)
((LOCALPUSHBYTEARG]) ((IMMEDIATEBYTEARG1) ARG1=0))
(RQ(UNLESSUNTILBYTEARG1))
{ (LOCALPOPBYTEARGL) ARG1=4)
{ (IMMEDIATEBYTRARG]1) ARG1=10)
((LOCALPUSHBYTEARG1) ARG1=6)
{ { (LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG2=]1)
({ (ITMMEDIATEBYTEARG]1) ARG1=0) (EQ (IFWHILEBYTEARG1)))
((SWITCHBY TEARG2) HALFWORDARG1)
{ (IMMEDIATERYTEARG]1) ARG1=4)
{ { (GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=4)
R

QLOGOR)
(MB (IFWHILEBYTEARGL))
(LOGAND (IFWHILEBYTEARG1))
(STATICPUSHHALFWORDARGL)
(RERPEATHALFWORDARG1)
((GLOBALPUSHBYTEARG1) (GLOBALPUSHBYTEARG1))

(((LOCALPUSHBYTEARG1) ARG1=0) ((IMMEDIATEBYTEARG1) ARG1=0))

{ { (LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG2=2)
{ ((GLOBALPUSHBYTEBARG1) (CALLBYTRARG1)) ARG2=5)

{ (LOCALPOPBYTEARG1) ARG1=5)

((IMMEDIATEBYTEARG1) (EQ (IFWHILERBYTEARGL)))

(((IMMEDIATEBYTEARGL) ARG1=0) (GLOBALPOPBYTEARG1))
({(SUMPBYTEARG1) RETURN)

(GLOBALPOP HALFWORDARG1)

(({IMMEDIATEBYTEARG]) ARG1=0) (PLUSPUSH))

((LOCALPUSHBYTEARG1) (IMMEDIATEBYTEARG))

{ ($TATICPUSHBYTEARG1) GOTO)

((SLOBALPUSHBYTEARG1) (PLUSPUSH))

((BLOBALPUSHBYTEARG1) ((IMMEDIATEBYTEARGL)ARG1=1))
(SPATICPOPBYTEARG1)

(((LOCALPOPBYTEARGL) (LOCALPUSHBYTEARG1)) ARG1=0)
(((LOCALPUSHBYTRARG]) ARG1=0) (IMMEDIATEBYTEARG1))
((LOCALPOPBYTEARG1) ARG1=6)

(({GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=6)
(IPWHILEHALFWORDARG1)

{ (LOCALPUSHBYTEARG1) ARG1=8)

{ (LOCALPUSHBYTEARG1) ARG1=7)

((GLOBALPOPBYTEARGL) ((IMMEDIATEBYTEARG1)ARG1=0))
{ { (LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG1m=1)
(GR (IFWHILEBYTEARGL))

((SLOBALPUSHBYTEARG]) ((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)))

((IMMEDIATEBYTEARGL) (PLUSPUSH))

((JUMPBYTEARGL) ((IMMEDIATEBYTEARG1)ARG1=0))

((IMMEDIATEBYTEARGL) (GLOBALPOPBYTEARGL))

(((LOCALPUSHBYTEARG1) ARG1=0) (PLUSPUSH))

(((IMMEDIATEBYTEARG1) ARG1l=1l) (EQ (IFWHILEBYTEARG1)))

-A2-

Appendix A

147 redn 99.85%, total 30.93%,
148 redn 99.85%, total 30.89%,
149 redn 99.85%, total 30.84%,
150 redn 99.86%, total 30.80%,
151 redn 99.87%, total 30.76%,
152 redn 99.87%, total 30.72%,
153 redn 99.87%, total 30.68%,
154 redn 99.87%, total 30.64%,
155 redn 99.87%, total 30.60%,
156 redn 99.87%, total 30.56%,
157 redn 99.88%, total 30.52%,
158 redn 99.88%, total 30.49%,
159 redn 99.88%, total 30.45%,
160 redn 99.88%, total 30.41%,
161 redn 99.88%, total 30.38%,
162 redn 99.88%, total 30.34%,
163 redn 99.88%, total 30.31%,
164 redn 99.88%, total 30.27%,
165 redn 99.89%, total 30.24%,
166 redn 99.89%, total 30.20%,
167 redn 99.89%, total 30.17%,
168 redn 99.89%, total 30.14%,
169 redn 99.89%, total 30.10%,
170 redn 99.89%, total 30.07%,
171 redn 99.89%, total 30.04%,
172 redn 99.89%, total 30.01%,
173 redn 99.89%, total 29.97%,
174 redn 99.89%, total 29.94%,
175 redn 99.89%, total 29.91%,
176 redn 99.89%, total 29.88%,
177 redn 99.89%, total 29.84%,
178 redn 99.89%, total 29.81%,
179 redn 99.89%, total 29.78%,
{(CALLBYTRARG1)))

180 redn 99.90%, total 29.75%,
181 redn 99.90%, total 29.72%,
182 redn 99.90%, total 29.69%,
183 redn 99.90%, total 29.66%,
184 redn 99.90%, total 29.63%,
185 redn 99.90%, total 29.60%,
186 redn 99.91%, total 29.57%,
187 redn 99.91%, total 29.55%,
188 redn 99.91%, total 29.52%,
189 redn 99.91%, total 29.49%,
190 redn 99.91%, total 29.46%,
191 redn 99.91%, total 29.44%,
192 redn 99.91%, total 29.41%,
193 redn 99.91%, total 29.39%,
194 redn 99.91%, total 29.36%,
195 redn 99.91%, total 29.33%,
196 redn 99.91%, total 29.31%,
197 redn 99.92%, total 29.28%,
198 redn 99.92%, total 29.26%,
199 redn 99.92%, total 29.23%,
200 redn 99.92%, total 29.21%,
201 redn 99.92%, total 29.18%,
202 redn 99.92%, total 29.16%,
203 redn 99.92%, total 29.14%,
204 redn 99.92%, total 29.11%,
205 redn 99.92%, total 29.09%,
206 redn 99.92%, total 29.07%,
207 redn 99.92%, total 29.04%,
208 redn 99.92%, total 29.02%,
209 redn 99.92%, total 29.00%,
210 redn 99.93%, total 28.98%,
211 redn 99.93%, total 28.96%,
212 redn 99.93%, total 28, 94%,
213 redn 99.93%, total 28.91%,
214 redn 99.93%, total 28.89%,
215 redn 99.93%, total 28.87%,
216 redn 99.93%, total 28.85%,
217 redn 99.93%, total 28.83%,
218 redn 99.93%, total 28.81%s,
219 redn 99.93%, total 28.79%,
220 redn 99.93%, total 28.77%,
221 redn 99.93%, total 28.75%,
222 redn 99.93%, total 28.73%,
223 redn 99.93%, total 28.71%,

J.P. Bennett

(PLUS (GLOBALPOPBYTEARG1))

((LOCALPUSHBYTEARG1) (PLUSPUSH))
(GLOBALPUSHLEFTBYTEARG])

(((LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG1=2)

(((STATICPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=0)

({ (STATICPUSHLEFTHALFWORDARG]) BYTEARGL) (GLOBALPUSHBYTEARG1))
((LOCALPOPBYTEARGL) (((FORBYTEARG1) BYTEARG2) BYTRARG3))
{ (LOCALPOPBYTEARGL) ((IMMEDIATEBYTEARG1) ARG1=0))

((IMMEDIATEBYTEARG1) ARG1=5)

(((CLOBALPUSHBYTEARG1) (CALLBYTEARG1)) RETURN)

((IMMEDIATEBYTEARG1) ARG1=8)

{ (WOCALPOPBYTEARG1) ((LOCALPUSHBYTEARG1) ARG1=0))

((IMMEDIATEBYTRARGL) ARG1=7)

({ (LOCALPUSHBYTEARG]1) ARG1=1) ((IMMEDIATEBYTEARG1) ARG1=0))
((GLOBALPUSHBYTEARG1) (GLOBALPOPBYTEARG1))

(((IMMEDIATEBYTEARG1)ARGl=1) (PLUSPUSH))

(((GLOBALPUSHBYTEARG1) (CALLBYTEARGl)) (JUMPBYTEARG1))
{ (LOCALPUSHBYTEARG1) ARG1=9)

{ (L OCALPUSHBYTEARG1) ARG1=11)

{ ((IMMEDIATEBYTEARG1) ARG1l=1l) (GLOBALPOPBYTEARG))

((IMMEDIATEBYTEARGL) ARG1=6)

{ (GLOBALPUSHBYTEARG1) PLUS)

(EMDFORBYTEARGL)

(L8 (IFWRILEBYTEARG1))

(((IMMEDIATEBYTEARG1) ARG1=0) EQ)

(((STATICPUSHBYTEARG1) (CALLBYTEARGL)) ARG1=0)

((IMMEDIATEBYTEARG1) ARG1=32)

((QLOBALPUSHBYTEARG1) (IFWHILEBYTEARGL))

(UMLESSUNT ILHALFWORDARG1)

(({LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG1=3)
(RERPEATUNTILBYTEARG1)

((IMMEDIATEBYTEARG1) ARG1=20)

(((STATICP USHLEFTHALFWORDARG1) BYTEARG]) ((GLOBALPUSHBYTEARGL)

((STATICPUSHHALFWORDARG1) (CALLBYTEARG1))

((BQLOGOR) (IFWHILEBYTEARGL))

(((IMEDIATEBYTEARGL) ARG1l=0) PLUS)

((BNDFORBYTEARG1) BYTEARG3)

((LOCALPOPBYTEARG1) ARG1=7)

(((LOCALPUSHBYTEARG1) ARG1=0) ((IMMEDIATEBYTEARG1) ARG1l=1))
((GLOBALP USHHALFWORDARGL) (CALLBYTEARGL)) ARG1=256)
((STATICPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=2)

((STATICPUSHBYTEARG1) (CALLBYTEARGL)) ARG2=1)

((STATICPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=3)

((IMMEDIATEBYTEARG]) ARG1=0) MINUS)

((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=7)

{ (LOCALPOPBYTEARGL) (LOCALPUSHBYTEARG1)) ARG1=4)

I(alIDGl.ND
(

(

{
(

)
(SWITCHBYTEARG2) HALFWORDARG]) BYTEARG1)
LOCALPUSHBYTEARGL) ((IMMEDIATEBYTEARGL1) ARG1l=1l))
(BTATICPUSHLEFTHALFWORDARGL) BYTEARG1) (JUMPBYTEARGL))
GLOBALPUSHHALFWORDARG1) ARG1=256)
{LOCALPUSHBYTEARG1) ARG1=0) PLUS)
(IMMEDIATEBYTEARG1) ARGl=48)
(GLOBALPUSHBYTEARGL) (PLUSPOP))
(((LOCALPUSHBYTEARG1) ARG1=1) (PLUSPUSH))
(((LOCALPUSHBYTEARG1) ARG1=2) ((IMMEDIATEBYTEARG1)ARG1=0))
{ { (FORBYTEARG1) BYTEARG2) HALFWORDARG3)
(((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=9)
((IMMEDIATEBYTEARG1) ARG1=9)
((LOCALPUSHBYTEARG1) PLUS)
{ (LOCALPOPBYTEARG1) ARG1=8)
(((GLOBALP USHHALFWORDARG1) (CALLBYTEARG1)) ARG1=259)
(((IMMEDIATEBYTEARG]) ARG1=0) (JUMPBYTEARG1))
(((LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG2=3)
((GLOBALPOPBYTEARG1) RETURN)
((LOCALPUSHBYTEARG1) ARG1=13)
(((ENDFORARG2=1) BYTEARG1) RALFWORDARG3)
(LOGOR (IFWHILEBYTEARGL))
(((IMMEDIATEBYTRARG1) ARG1=0) (PLUSPOP))
(((GLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=10)
(((CLOBALPUSHBYTEARG1) (CALLBYTEARG1)) ARG2=8)
((GLOBALPUSHBYTEARGL) ((IMMEDIATEBYTEARG1)ARG1=2))
{REPEATWHILEBYTEARG1)
{ (LOCALPUSHBYTEARG1) ARG1=10)
((JUMPBYTEARG1) ((STATICPUSHLEF THALFWORDARG1) BYTEARGL))
({ (LOCALPOPBYTEARG1) ARG1=0) (((FORBYTEARG1) BYTEARGZ2) BYTEARG3))
((SLOBALPUSEEALFWORDARG1) ARG1=259)

SN S S S, S P S S S, S, S, P, P, S P

-A3-

Appendix A

224 redn 99.93%,
225 redn 99.93%,
226 redn 99.93%,
227 redn 99.93%,
228 redn 99.93%,
229 redn 99.93%,
230 redn 99.93%,
231 redn 99.93%,
232 redn 99.93%,
233 redn 99.94%,
234 redn 99.94%,
235 redn 99.94%,
236 redn 99.94%,
237 radn 99.94%,
238 redn 99.94%,
239 redn 99.94%,
240 redn 99.94%,
241 redn 99.94%,
242 redn 99.94%,
243 redn 99.94%,
244 redn 99.94%,
245 redn 99.94%,
246 redn 99.94%,
247 redn 99.94%,
248 redn 99.94%,
249 redn 99.94%,
250 redn 99.94%,
251 redn 99.94%,
252 redn 99.94%,
253 redn 99.94%,
254 redn 99.94%,
255 redn 99.94%,

total 28.70%,
total 28.68%,
total 28.66%,
total 28.64%,
total 28.62%,
total 28.60%,
total 28.58%,
total 28.56%,
total 28.54%,
total 28.53%,
total 28.51%,
total 28.49%,
total 28.47%,
total 28.45%,
total 28. 44%,
total 28.42%,
total 28.40%,
total 28.38%,
total 28.37%,

total 28.35%, (

total 28.33%,
total 28.32%,
total 28.30%,
total 28,28%,
total 28.27%,
total 28.25%,
total 28,23%,
total 28.22%,
total 28.20%,
total 28.19%,
total 28.17%,
total 28.16%,

J.P. Bennett

(((ENDFORBYTEARG1) BYTEARG3) ARG2=4294967295)
(((LOCALPUSHBYTEARG1) ARG1l=2) (PLUSPUSH))
{ ((IMMEDIATEBYTEARG1) ARG1=0) (EQ (UNLESSUNTILBYTEARG1)))
({ (IMMEDIATEBYTRARG]) ARG1=1) EQ)
((GLOBALPUSHBYTEARG1) ARG1=74)
(GR (IFWRILEBYTEARG1))
{ (JUMPHALFWORDARG1) RETURN)
({ (STATICPUSHBYTRARG1) (CALLBYTEARG1)) ARG2=4)
(((GLOBALP USHHALFWORDARG1) (CALLBYTEARG1)) ARG2=0)
{ ((CLOBALPUSHBYTEARG1) (CALLBYTRARG1)) ARG2=12)
{ (LOCALPUSHBYTEARG1) ARG1=12)
((LOCALPOPBYTEARG1) ARG1=9)
((QLOBALPOPBYTEARG1) ARG1=10)
((GLOBALPUSHBYTEARG1) (IMMEDIATEARG1=4294967295))
((JUMPBYTEARG1) ((LOCALPUSHBYTEARG1)ARG1=0))
(POPBYTE (((ENDFORARG2=1) BYTEARGL) BYTEARG3))
(((LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG2=4)
(((IMMEDIATEBYTEARG]) ARG1=1) PLUS)
(((LOCALPUSHBYTEARG1) ARG1=0) (PLUSPOP))
NRLOGAND

)
((GLOBALPUSHBYTEARG1) ARG1=73)
((IMMEDIATEBYTEARG1) EQ)
(((STATICPUSHBYTEARG1) (CALLBYTEARGL)) ARG2=5)
(1B (LOGAND (IFWHILEBYTEARG1)))
{ ((IMMEDIATREBYTEARGL) ARG1w2) (EQ (IFWHILEBYTEARG1)))
{ ({LOCALPOPBYTEARGL) ARG1=1) (((FORBYTEARG1) BYTEARG2) BYTEARG3))
((LOCALPUSHLEFTBYTREARG1) ARG1=1)
{MINUS (GLOBALPOPBYTEARGL))
{ (JUMPBYTEARG]) (LOCALPUSHBYTEARG1))
(((IMMEDIATEBYTEARG1) ARG1=0) (NE (IFWHILEBYTRARG1)))
((((LOCALPOPBYTEARG1) (LOCALPUSHBYTEARG1)) ARG2=1) ARG1=0)
((IMMEDIATEARG1=4294967295) (EQ (IFWHILEBYTRARG1)))

A.2 A POLY Ins'truction Set

ISGEN versionl.

26 redn 93.05%,
27 redn 96.64%,
28 redn 96.71%,
29 redn 96.72%,
30 redn 96.87%,
31 redn 97.03%,
32 redn 97.15%,
33 redn 97.34%,
34 redn 97.57%,
35 redn 97. 64%,
36 redn 98.20%,
37 redn 98.25%,
38 redn 98.22%,
39 redn 98.33%,
40 redn 98.42%,
41 redn 98.57%,
42 redn 98. 68%,
43 redn 98.71%,
44 redn 98.79%,
45 redn 98.84%,
46 redn 98.96%,
47 redn 98.96%,
48 redn 98.95%,
49 redn 98.95%,
50 redn 98.94%,
51 redn 98.94%,
52 redn 98.98%,
53 redn 99.03%,
54 redn 99.04%,
55 redn 99.22%,
56 redn 99.33%,
57 redn 99. 40%,
58 redn 99.41%,
59 redn 99.42%,
60 redn 99.42%,

30

total 93.05%,
total 89.92%,
total 86.96%,
total 84.11%,
total 81.48%,
total 79.06%,
total 76.81%,
total 74.76%,
total 72.94%,
total 71,22%,
total 69.94%,
total 68.72%,
total 67.49%,
total 66.37%,
total 65.32%,
total 64.39%,
total 63.53%,
total 62.71%,
total 61.95%,
total 61.23%,
total 60.60%,
total 59.96%,
total 59.34%,
total 58.71%,
total 58.09%,
total 57.47%,
total 56.89%,
total 56.34%,
total 55.80%,
total 55.36%,
total 54.99%,
total 54.66%,
total 54.34%,
total 54.03%,
total 53.72%,

(localBYTEARGL)

(returnARG1=0)

(indirectBYTEARG1)

(move_to_vecBYTEARG1)

(const_intBYTEARG1)

(io_vec_entrycall closure)

(non_localARG2ml)

{(LocalBYTEARG]1) (indirectBYTEARGL))
{reset_rARGl=l)

{(const_addrBYTEARG1)

(returnARGl=l)

(resetARG1l=1)

((1ocalBYTRARG]1) ARG1=1)
{(non_localARG2=]1)BYTEARG]L)
{{{non_localARG2=1) BYTEARG1) BYTRARG3)
((const_intBYTEARGL) (io_vec_entrycall_closure))
(reset_rARG1m2)

{ (LocalBYTEARG1) ARG1=0)

(Jump_fal seBYTEARG1)

((Lo0calBYTRARG1) ARG1=2)

(get_storeARGl=2)

(({1ocalBYTEARG1) (indirectBYTEARG1)) ARG2=0)
(((1LocalBYTEARG]) (indirectBYTEARG1)) ARG2=1)
(non_localARG2=2)

((move_to_vecBYTEARG1)ARG1=0)
((move_to_vecBYTEARG1)ARGlm=l)

(JumpBYTEARG1)

((LocalBYTEARG1) ARG1=3)
((({non_localARG2=1)BYTEARG1) BYTEARG3) (indirectBYTEARG1))
((const_intBYTEARG1) ARG1=0)

((localBYTEARG1)ARG1=4)

(returnARGl=2)

((const_addrBYTEARG1) (move to_vecBYTEARG1))
(get_storeBYTEARG1)

{(non_localARG2=2) BYTEARG1)

-A4-

Appendix A

61 redn 99.43%,
62 redn 99. 44%,
63 redn 99.45%,
64 redn 99.45%,
65 redn 99.49%,
66 redn 99.50%,
67 redn 99.50%,
68 redn 99.51%,
69 redn 99.53%,
70 redn 99.53%,
71 redn 99.53%,
72 redn 99.53%,
73 redn 99.56%,
74 redn 99. 60%,
75 redn 99.60%,
76 redn 99.61%,
77 redn 99.61%,
78 redn 99.63%,
79 redn 99. 64%,
80 redn 99.64%,
81 redn 99.65%,
82 redn 99.66%,
83 redn 99.67%,
84 redn 99.67%,
85 redn 99.67%,
86 redn 99.68%,
87 redn 99.68%,
88 redn 99.69%,
89 redn 99.70%,
90 redn 99.72%,
91 redn 99.72%,
92 redn 99.72%,
93 redn 99.73%,
94 redn 99.73%,
95 redn 99.73%,
96 redn 99.73%,
97 redn 99.74%,
98 redn 99.74%,
99 redn 99.74%,
100 redn 99.75%,
101 redn 99.75%,
102 redn 99.75%,
103 redn 99.76%,
104 redn 99.76%,
105 redn 99.76%,
106 redn 99.76%,
107 redn 99.77%,
108 redn 99.77%,
109 redn 99.77%,
110 redn 99.77%,
111 redn 99.78%,
112 redn 99.78%,
113 redn 99.79%,
114 redn 99.79%,
115 redn 99.79%,
116 redn 99.79%,
117 redn 99.80%,
118 redn 99.80%,
119 redn 99.81%,
120 redn 99.81%,
121 redn 59.81%,
122 redn 99.82%,
123 redn 99.82%,
124 redn 99.82%,
125 redn 99.83%,
126 redn 99.83%,
127 redn 99.83%,
128 redn 99.83%,
129 redn 99.84%,
130 redn 99.84%,
131 redn 99.84%,
132 redn 99.84%,
133 redn 99.84%,
134 redn 99.84%,
135 redn 99.84%,
136 redn 99.84%,
137 redn 99.84%,
138 redn 99.85%,

total 53.41%,
total 53.11%,
total 52.82%,
total 52.53%,
total 52.26%,
total 52.00%,
total 51.74%,
total 51.49%,
total 51.24%,
total 51.00%,
total 50.76%,
total 50.52%,
total 50.30%,
total 50.09%,
total 49.89%,
total 49.69%,
total 49.50%,
total 49.32%,
total 49.14%,
total 48.97%,
total 48.80%,
total 48.63%,
total 48.47%,
total 48.31%,
total 48.15%,
total 48.00%,
total 47.84%,
total 47.69%,
total 47.55%,
total 47.42%,
total 47.28%,
total 47.15%,
total 47.03%,
total 46.90%,
total 46.78%,
total 46.65%,
total 46.53%,
total 46.41%,
total 46.29%,
total 46.17%,
total 46.06%,
total 45.94%,
total 45.83%,
total 45.72%,
total 45.61%,
total 45.50%,
total 45.40%,
total 45.29%,
total 45.19%,
total 45.08%,
total 44.98%,
total 44.88%,
total 44.79%,
total 44.69%,
total 44.60%,
total 44.51%,
total 44.42%,
total 44.33%,
total 44.25%,
total 44.16%,
total 44.08%,
total 44.00%,
total 43.92%,
total 43.85%,
total 43.77%,
total 43.70%,
total 43.62%,
total 43.55%,
total 43.48%,
total 43.41%,
total 43.34%,
total 43.27%,
total 43.20%,
total 43.13%,
total 43.06%,
total 42.99%,
total 42.92%,
total 42.86%,

J.P. Bennett

({io_vec_entrycall_ closure)ARGl=7)

{ (const_addrBYTEARG1) (returnARG1l=0))

((const_intBYTEARGL) ARG1=1l)

{({non_localARG2=2) BYTEARG1) BYTEARG3)

{ (LocalBYTEARG1) ARG1=5)

(call_slARG3=0)

{reset_rARGl=3)

({io_vec_entrycall_closure)ARGl=229)

((move_to_vecBYTEARGl)ARGl=2)

(io_vec_entryralise_ex)

((const_addrBYTEARG1) call _closure)

{((const_intBYTEARG1) (io_vec_entrycall closure))ARG1=0)
{ (1ocalBYTEARG1) ARG1=6)
{((((non_localARG2=1)BYTEARG])BYTEARG3) (indirectBYTEARG1)) ARG3=1)
(call_closure (returnhARG1l=0))

({(10calBYTEARGl) (indirectBYTEARGl)) ARG1=])
((((non_localARG2=1)BYTEARG1) BYTEARG3) ARG3m~1)
(call_closure (resetARGl=l))

{(10calBYTEARGL) ARG1=7)

(call_closure (jump_falseBYTEARG1))

(call_closure (reset_rARGl=l))
{ (const_intBYTEARG1) ARG1=48)

{(const_addr (returniARG1=0))

(((const_intBYTEARG1) (io_vec_entrycall_closure))ARGl=l)
{({{localBYTEARGL) (indirectBYTEARGL)) ARG2=(0) ARG1=1)
{(({10calBYTEARGl) (indirectBYTEARGl)) ARG2=1)ARGl=1)

{ (move_to_vecBYTEARG1)ARG1=3)
(({(non_localARG2=2)BYTEARG1) BYTEARG3) (indirectBYTEARGl))
(LocalBYTEARG1) ARG1=8)
((localBYTEARGL) (indirectBYTEARGL)) ARG2=2)
((((non_localARG2=1)BYTEARG1)BYTEARG3) (indirectBYTEARG1)) ARG3=2)
(call_slARG3=0)BYTREARG2)
(io_vec_entrycall_ closure) (returnARGl=0))
((const_addrBYTEARGL) ((move_to_vecBYTEARG1) ARG1=0))
{ (const_addrBYTEARGL) ((move_to_vecBYTEARGL)ARGl=l))
{(({non_localARG2=]1) BYTEARG1) BYTEARG3) ARG3=2)

((const_addrBYTEARG1) (returnARGi=l))

(const_addr (move_to_vecBYTEARGL))

(returnBYTRARG])

((const_intBYTRARG1) ARG1=49)

(del_handler_ rBYTEARGl)

((io_vec_entrycall_closure) (resetARGl=1))

((get_storeBYTEARG]L) ARG1=3)

({io_vec_entrycall_closure) (jump_falseBYTEARG1))
(({const_intBYTEARG1) (1o_vec_entrycall_ closure))ARG2=7)
((reset_rARGlm=l) (jump falseBYTEARG1))
({{{localBYTEARG1) (indirectBYTEARG1)) ARG2=0) ARG1=0)
({({{localBYTEARG1) (indirectBYTEARG1)) ARG2=1) ARG1=0)
(resetBYTRARG1)

(((localBYTEARG1)ARGlx=1l) (move_to_vecBYTEARG1))
({(localBYTEARGL) (indirectBYTEARG1)) ARG1=0)

((localBRYTREARG1)ARG1=9)

(set_stack_valBYTEARG1)

{(((localBYTEARGL) (indirectBYTEARG1)) ARG2=0) ARG1=2)
((((LocalBYTEARGL) (indirectBYTEARG1)) ARG2=1) ARGl=2)
((io_vec_entrycall_ closure) (reset_rARGl=1))
(({const_intBYTEARG1) (io_vec_entrycall_closure)) ARG2=229)
(((LocalBYTEARG1) (indirectBYTEARG1)) ARG1=2)
(non_localBYTEARG1)

{ (non_localBYTEARG]) BYTEARG2)

(call_closure (returnARGl=1))

(call_closure (reset_rARGl=2))
{((non_localBYTRARG1)BYTEARG2)BYTEARG3)
(set_handlerBYTEARG1)
({({(non_localARG2=1)BYTEARG1)BYTEARG3) (indirectBYTEARGl)) ARG3=3)
{ (move_to_vecBYTEARG1) ARG1=4)

{ (LocalBYTRARG1) ARG1=10)

((((non_localARG2=1)BYTEARG1) BYTRARG3) ARG3=3)
({((localBYTEARG1) (indirectBYTEARG1)) ARG2=0) ARG1=3)
((((1ocalBYTEARG]) (indirectBYTEARG1)) ARG2=1)ARG1=3)

{ (get_storeBYTEARG]) ARG1=4)

{ (Andirect BYTEARG1) ARG1=0)

((indirectBYTEARG1)ARGl=1)

{((10calBYTEARGL) (indirectBYTEARG1)) ARG1=3)
(reset_rBYTRARG1)

(const_addr ((move_to_vecBYTEARG1)ARG1=0))

(const_addr ((move_to_vecBYTEARG1l)ARGl=1l))
(oall_slBYTEARG3)

(
(
(
(
(

- A5 -

Appendix A

139 redn 99.85%,
140 redn 99.85%,
141 redn 99.85%,
ARG3=1) ARG4=0)

142 redn 99.85%,
ARG3=1) ARG4=]1)

143 redn 99.86%,
144 redn 99.86%,
145 redn 99.86%,
146 redn 99.86%,
147 redn 99.86%,
148 redn 99.86%,
149 redn 99.87%,
150 redn 99.87%,
151 redn 99.87%,
152 redn 99.87%,
153 redn 99.87%,
154 redn 99.87%,
155 redn 99.88%,
156 redn $9.88%,
157 redn 99.88%,
158 redn 99.88%,
159 redn 99.88%,
160 redn 99.88%,
161 redn 99.88%,
162 redn 99.88%,
163 redn 99.89%,
164 redn 99.89%,
165 redn 99.89%,
166 redn 99.89%,
167 redn 99.89%,
168 redn 99.89%,
169 redn 99.89%,
170 redn 99.89%,
171 redn 99.90%,
172 redn 99.90%,
173 redn 99.90%,
174 redn 99.90%,
175 redn 99.90%,
176 redn 99.90%,
177 redn 99.90%,
178 redn 99.90%,
ARG3=2) ARG4=1)

179 redn 99.90%,
ARG3=2) ARG 4=0)

180 redn 99.90%,
181 redn 99.90%,
182 redn 99.90%,
183 redn 99.90%,
184 redn 99.90%,
185 redn 99.90%,
186 redn 99.90%,
187 redn 99.91%,
188 redn 99.91%,
189 redn 99.91%,
190 redn 99.91%,
191 redn 99.91%,
192 redn 99.91%,
193 redn 99.91%,
194 redn 99.91%,
195 redn 99.91%,
196 redn 99.92%,
197 redn 99.92%,
198 redn 99.91%,
199 redn 99.91%,
200 redn 99.92%,
201 redn 99.92%,
202 redn 99.92%,
203 redn 99.92%,
204 redn 99.92%,
205 redn 99.92%,
206 redn 99.92%,
207 redn 99.92%,
208 redn 99.92%,
209 redn 99.92%,
210 redn 99.92%,
211 redn 99.92%,
212 redn 99.92%,

total 42.79%,
total 42.73%,
total 42.67%,

total 42.60%,

total 42.54%,
total 42.48%,
total 42.42%,
total 42.36%,
total 42.30%,
total 42.25%,
total 42.19%,
total 42.13%,
total 42.08%,
total 42.02%,
total 41.97%,
total 41.92%,
total 41.86%,
total 41.81%,
total 41.76%,
total 41.71%,
total 41.66%,
total 41.61%,
total 41.56%,
total 41.51%,
total 41.46%,
total 41.42%,
total 41.37%,
total 41.32%,
total 41.27%,
total 41.23%,
total 41.18%,
total 41.14%,
total 41.10%,
total 41.05%,
total 41.01%,
total 40.97%,
total 40.93%,
total 40.89%,
total 40.85%,
total 40.81%,

total 40.77%,

total 40.73%,
total 40.69%,
total 40.65%,
total 40.61%,
total 40.57%,
total 40.53%,
total 40.49%,
total 40.45%,
total 40.42%,
total 40.38%,
total 40.34%,
total 40.31%,
total 40.27%,
total 40.24%,
total 40.20%,
total 40.17%,
total 40.13%,
total 40.10%,
total 40.07%,
total 40.03%,
total 40.00%,
total 39. 96%,
total 39.93%,
total 39.90%,
total 39.87%,
total 39.83%,
total 39.80%,
total 39.77%,
total 39.73%,
total 39.70%,
total 39.67%,
total 39.64%,
total 39. 61%,

J.P. Bennett

(const_addr (returnARGl=1))
((call_slBYTEARG3)BYTEARG2)
({{(((non_localARG2=1) BYTRARG1) BYTEARG3) (indirectBYTEARGL))

((({((non_localARG2=1) BYTEARG]1) BYTEARG3) (indirectBYTEARG1))

({(LocalBYTEARG1)ARG1=0) (move_to_vecBYTEARGl))
(((const_addrBYTEARG]) (move_to_vecBYTEARGL)) ARG2=2)

{ (returnBYTEARG1) ARG1=3)

({(LocalBYTEARG1) ARGl=l) ((move_to_vecBYTEARG1)ARG1=0))
(({localBYTEARG1)ARG1x=l) ((move_to_vecBYTEARG1)ARG1i=l))

{ (const_intBYTEARGL) ARG1=3)

({(const_intBYTEARG1) (io_vec_entrycall closure))ARG1=48)

((const_intBYTEARGL) ARG1=2)
{(((((non_localARG2=2)BYTEARG1)BYTEARG3) (indirectBYTEARG1)) ARG3=1)
(((call_slARG3=0)BYTEARG2) BYTEARG1)

{({(1ocalBYTRARG1) ARG1l=2) (move_to_vecBYTEARG1))
({{(non_localARG2=2)BYTEARG1) BYTRARG3) ARG3=1)

((resetBYTEARG1) ARG1=2)

((io_vec_entrycall_ closure) (returnARGl=l))

((const_addrBYTEARG]) raise_ex)

((reset_rARGl=2) (jump_ f£alseBYTEARG1))
({{({(non_localARG2=1)BYTEARG1) BYTEARG3) (indirectBYTEARG1)) ARG3=4)
((io_vec_entryraise_ex)ARG1=7)

{({((const_intBYTEARG1) (io_vec_entrycall_closure))ARG1=0) ARG2=7)
(const_addrcall_closure)

{({(localBYTEARGL) (indirectBYTEARG1)) ARG2=0) ARG1=4)
({({(localBYTEARG1) (indirectBYTEARG1)) ARG2=1) ARG1=4)
{(20calBYTEARG1)ARG1=11)

(({(non_localARG2=])BYTEARG1) BYTEARG3) ARG3=4)

{ (move_to_vecBYTEARG1) ARG1luwS5)

(({(LocalBYTEARGL) (indirectBYTEARG1)) ARG1=4)

((reset_rARGl=l) (returnARGl=0))

((((localBYTEARGl) (indirectBYTEARG1)) ARG1=1l) ARG2=2)
((io_vec_entrycall_closure) (reset_xARG1lw2))
(((io_vec_entrycall_closure)ARGl=7) (returnARGl=0))
(((non_localARG2=1) BYTEARG1) ARG3=65535)

((resetBYTEARG1) ARG1=3)

({(oonst_intBYTRARG1)ARGl=4)

((io_vec_entryraise_ex) ARG1=229)

(({{const_intBYTEARG1) (1o_vec_entrycall_closure)) ARG1l=0) ARG2=229)
({{({((non_localARG2=1) BYTEARG]1)BYTEARG3) (indirectBYTEARG1))

((

{(({non_localARG2=1l)BYTEARG])BYTEARG3) (indirectBYTEARGl))

(localBYTEARG1) ARG1l=1) ((localBYTEARG1)ARG1=1))
{const_intBYTEARG1) (io_vec_entrycall_closure)) ARG1m=49)
(const_addrBYTEARG1) (move_to_veaBYTRARGL)) ARG2=3)
({non_localBYTEARG1)BYTEARG2) BYTEARG3) ARG2=4)
{(non_localBYTEARG1) BYTRARG2) BYTEARG3) ARG2=3)
(1ocalBYTEARG1) ARG1=0) ((move_to_vecBYTEARG1)ARG1=0))
(localBYTEARGL) ARG1=0) ((move_to_vecBYTEARG1)ARG1l=l))
{io_vec_entrycall_ closure)ARGl=7) (resetARGl=l))
{(localBYTEARG1)ARG1=3) (move_to_vecBYTEARG1))
{io_vec_entrycall_closure)ARGl=7) (jump falseBYTEARG1))
({{non_localARG2=2) BYTEARG1) BYTEARG3) (indirectBYTEARG1)) ARG3=2)
set_stack valBYTEARGL) (resetARGl=l))
(((non localARG2=1) BYTEARG1) BYTEARG3) (indirectBYTEARG1l)) ARG3=5)
{io_vec_entrycall_closure)ARG1=229) (returnARG1=0))
{ (non_localARG2=2)BYTEARG1) BYTEARG3) ARG3=2)

nst_addrBYTEARG1) (io_vec_entrycall_closure))
{(localBYTEARGL) (indirectBYTEARG1)) ARG2=0) ARG1=5)
{(10calBYTEARGL) (indirectBYTEARG1)) ARG2=1) ARG1=5)
(localBYTEARG1)ARG1=2) ((move_to_vecBYTEARG1)ARG1=0))
{localBYTEARG1)ARG1l=2) ((move_to_vecBYTRARGL)ARG1=l))
reset rARGl=1l) (JumpBYTEARG1))
{(localBYTEARG1)ARG1=1)call_ closure)
{(const_intBYTRARG1) (io_vec_entrycall_closure)) ARGlsl)ARG2=7)
returnBYTEARGL) ARG1=4)
{const_addrBYTEARG1)call closure) (returnARGl=0))
{ (const_1intBYTEARGL) ARG1=10)
{((localBYTEARGL) (indirectBYTEARG1)) ARG1=5)
(({(non_localARG2=1)BYTEARG1) BYTRARG3) ARG3=5)
(const_addr ((move_to_vecBYTEARG1)ARG1l=2))
(((1ocalBYTBARG1)ARGl=1l) (io_vec _entrycall closure))
{((localBYTEARG1) ARG1=l) (returnARG1l=0))
(({const_intBYTEARG1) (io_vec_entrycall_closure)) (returnARG1l=0))
((move_to_vecBYTEARGL)ARG1=6)

((
«
((
((
1§
((
((
((
((
((
((
((
(
(
((
((oo
o
((
(
g
((
(
((
(¢
1

- A6 -

Appendix A

213 redn 99.92%,
214 redn 99.92%,
215 redn 99.92%,
216 redn 99.92%,
217 redn 99.92%,
218 redn 99.92%,
219 redn 99.92%,
220 redn 99.92%,
221 redn 99.93%,
222 redn 99.93%,
223 redn 99.93%,
224 redn 99.93%,
225 redn 99.93%,
226 redn 99.93%,
227 redn 99.93%,
228 redn 99.93%,
229 redn 99.93%,
230 redn 99.93%,
231 redn 99.93%,
232 redn 99.93%,
233 redn 99.93%,
234 redn 99.93%,
235 redn 99.93%,
236 redn 99.93%,
237 redn 99.93%,
238 redn 99.93%,
239 redn 99.93%,
240 redn 99.93%,
241 redn 99.93%,
242 redn 99.93%,
243 redn 99.94%,
244 redn 99.94%,
245 redn 99.94%,
246 redn 99.94%,
ARG3=3) ARG 4=])

247 redn 99.94%,
248 redn 99.94%,
249 redn 99.94%,
250 redn 99.94%,
251 redn 99.94%,
252 redn 99.94%,
253 redn 99.94%,
ARG3=3) ARG 4=0)

254 redn 99.94%,
255 redn 99.94%,

total 39.57%,
total 39.54%,
total 39.51%,
total 39.48%,
total 39.45%,
total 39.42%,
total 39.39%,
total 39.36%,
total 39.33%,
total 39.30%,
total 39.28%,
total 39.25%,
total 39.22%,
total 39.19%,
total 39.16%,
total 39.14%,
total 39.11%,
total 39.08%,
total 39.05%,
total 39.03%,
total 39.00%,
total 38.97%,
total 38.95%,
total 38.92%,
total 38.89%,
total 38.87%,
total 38.84%,
total 38.82%,
total 38.79%,
total 38.76%,
total 38.74%,
total 38.72%,
total 38.69%,
total 38.67%,

total 38.64%,
total 38.62%,
total 38.60%,
total 38.57%,
total 38.55%,
total 38.53%,
total 38.51%,

total 38.48%,
total 38.46%,

J.P. Bennett

((const_addrBYTEARG1) (returniARGl=2))
(({io_vec_entrycall closure)ARG1l=229) (resetARGl=l))
{ (geot_storeBYTEARG1) ARG1=5)
(const_intARG1=300)
{{{((non_localARG2=1)BYTEARG]) BYTEARG3) ARG3=1) ARG1=3)
((reset_rARGlml) (del_ handler_ rBYTEARG1))
(((io_vec_entrycall closure)ARG1l=229) (jump_falseBYTEARG1))
({ {(const_addrBYTEARGl)call closure) (resetARGl=sl))
{{{(1ocalBYTEARG]) (indirectBYTEARG1)) ARG2=2) ARG1=0)
reset_rBYTEARG1)ARG1=4)
((localBYTEARG]L) (indirectBYTRARG1)) ARG2=0) ARG1=6)

(

2

{{const_addrBYTEARGl)call_closure) (jump_falseBYTEARG1))

{(1ocalBYTEARG]) (indirectBYTEARG1)) ARG1=6)

((non_localARG2=1) BYTEARG1) ARG3I=€5531)

{((localBYTEARGl) (indirectBYTEARG1)) ARG2=1)ARG1=6)
const_addrraise_ex)

(

(

{

(

{10calBYTEARG1)ARG1l=]l) ((move_to_vecBYTEARG1)ARG1=2))
{call_slBYTEARG3) BYTEARG2)BYTEARGL)
{move_to_vecBYTEARG1)ARG1=7)
{{{localBYTEARG1l) (indirectBYTEARG1)) ARG2=2) ARG1=2)
{(const_intBYTEARG1)ARG1=5)
{{1ocalBYTEARG1)ARG1=3) ((move_to_vecBYTEARG1)ARG1l=0))
{ (10calBYTEARG1) ARG1=3) ((move_to_vecBYTEARGL) ARGl=l))
{(const_addrBYTEARGl) (move_to_vecBYTEARGL)) ARG2=4)
{localBYTRARG1)ARG1l=l) (reset_rARGl=1l))
{10calBYTEARGL1)ARG1=1) ((localBYTEARG1) ARG1=0))
call_closure (reset_rARGl=l)) (jump_ falseBYTEARGL))
(((non_localARG2w=1)BYTEARG1) BYTEARG3) ARG3=1) ARG1=4)
localBYTEARG1) ARG1=12)
{((non_localARG2=1)BYTEARG1)BYTEARG3) ARG3=1) ARG1=5)
{({(non_localARG2=1) BYTEARG1) BYTEARG3) (indirectBYTBARG1))

_stack_valBYTEARG1) (JumpBYTEARG1))

(10 vec_entrycall closure)ARGl=7) (reset_rARGl=l))

localBYTEARG1) ARG1=13)

{ (LocalBYTEARG]1) (indirectBYTEARG])) ARG2=0) ARG1=7)

{{localBYTEARG]) (indirectBYTEARG1)) ARG2=1) ARG1=7)
_8storeBYTEARG1) ARG1=6)

((non localARG2=1) BYTEARGL) BYTEARG3) (indirectBYTREARGL))

(
(
(
(
(
(
(
(
(co
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
((get.
(

(

(

(
(
(
{
(
{
{
(
(set
(
(
(
{
{
(
(
(

(«
{localBYTEARG1)ARGl=l) ((LocalBYTEARG1) ARG1=2))
{localBYTEARG1) ARG1=0) call_closure)

- A7 -

{const_intBYTEARG1) (io_vec_entrycall closure)) (resetARGl=l))

(conlt_intBY'l‘EhRG 1) (io_vec_entrycall_closure)) (jump_falseBYTEARE
{ (const_intBYTEARG1l) (io_vec_entrycall_closure)) ARGl=1l)ARG2=229)

Appendix B. DL Grammar

This is the YACC parser for DL. A certain amount of header and trailer code is present,
providing the interface to the rest of the compiler.

Vada dd it 2 24 22 DT 2 il Il l 2l oty S g R R Sy e
RREKRRAANREARRAAAREAAARRARERRRRABRRARRRRRANARRRRRRARAARAATRARARRRRARERNREANRER R

pDDDDD LL ceece
DDDDDDD LL cesccce
DD DD LL cc

DD DD LL ce

DD DD LL cc

DD DD LL cc

DDDDDDD LLLLLLLI CCCCCCC
DDDDDD LLLLLLLL CCCCC

PPPPPPP AAAA RRRRRRR &$SSSS EEEEEEEE RRRRRRR
PPPPPPPP AAMAAAA RRRRRRRR BSSSSSSS EEREEEEE RRRRRRRR
PP PP AL AA RR RR 88 ER RR RR

PPPPPPP AAAAAAAA RRRRRRRR SSSSSSS EEREEE RRRRRRRR
PP AA AA RRRRRRR &8 EE RRRRRRR

PP AA AA RR RR Sg RE RR RR

PP AA AA RR RR 888 8 RR RR

PP AA AA RR RR 888 EREEEERE RR RR

KRRRERARANNRRRARRRARRERRRRRRAANBREAREAAAAARRRRRRARARRRRRRRRNEARRRARRAAN kR hdkd
ARRRBAARERANRRAARREARRRRNRRRRRARERRARRRARRARARRARRRARARRARRRR kR h A khhh R hddkkhddd

DIC - A Design Language Compiler

Appendix B J.P. Bennett

This is the parser for the compiler. It is written for use by the YACC
compiler compiler.

NRERRRRERREREEREARNRRARAENARRERNBRRARRRAR N EAR AR R AR RAAN AR AR AR RT AT hd
ARENENERRERNRRRRRRARRRRAARRARRASRNAARRREAANR RS AR T AR RAARRAR ***************ﬁiﬁ/

/* Pirst tokens that are in fact caractexs */

Stoken T _CURLYBRA 123 I*7{ >/
Stoken T _CURLYKRT 125 ") */
Stoken T _COLON 58 ARSI
Stoken T_COMMA 44 /e, %/
Stoken T_SEMICOLON 59 I* ;" %/
Sstoken T_POINT 46 /x1." %/
Stoken T PLUS 43 [* 4" */
Stoken T_] 42 VARA AT
Stoken T REM 37 /* 8’ %/
Stoken T BRA 40 /*®° (" */
Stoken T_KET 41 /x*)' %/
Stoken T _SQBRA 91 /&7’ */
Stoken T_SOKRT 93 /1 %/
Stoken T DIV 47 /*/ ®/
Stoken T _ASSIGN 61 /8w *f
Stoken T_MNINUS 45 [& -t %/
$token T LT 60 I*'<’ */
Stoken T_GT 62 [% > *f
Stoken T_NOT 33 VA M

/* The endmarker */
Stoken T_ENDMARKER 0
/* ¥ow composite symbols */

Stoken T _EQ 257
Stoken T_COND 258
Stoken T _LE 259
Stoken T_LSHIFT 260
Stoken T_GE 261
Stoken T _RSHIFT 262
Stoken T ME 263
Stoken T_LOGAND 264

Stoken T_LOGOR 265

/* Other data items */

Stoken T _NWUMBER 266
Stoken T_WAME 267
Stoken T_STRLITERAL 268

/* Reserved words */

Stoken T_SPRC 269
Stoken T_ORPCODE 270
$token T 271
Stoken T _ARGLIST 272
Stoken T_RULR 273
Stoken T RMDRULE 274
Stoken T_IN? 278
Stoken T_STRING 276
Stoken T_BOOL 277
Stoken T_MATCH 278
Stoken T_ARG 279
Stoken T_SAVING 280
Stoken T_TEXT 281
Stoken T_SIZE 282
Stoken T_ID 283
Stoken T _VALUE 284
Stoken T NARGS 285
Stoken T_TRUE 286
Stoken T FALSR 287
Stoken T_RESULT 288
Stoken T_IF 289
Stoken T TEST 2%0
Stoken T_RLSE 291

Stoken T _FOR 292
Stoken T _TO 293
Stoken T _DO 294

Appendix B

Stoken T WHILE 295
Stoken T GRNRRATION 296

/* Internal tokens */
Stoken T_UNKNOWN 297
Stoken T_GRT 298
Stoken T_UMINUS 299
/* The start token */

Sstart program

/* Operator precedence */

$left ', ’
$left T_LOGAMD, T LOGOR

/* Used for precedence */

Sleft T ®Q, T ME, '<’, T LE, '>', 2 GE

Sleft "4/ -/

‘1.“ R 14 I/I l‘l

Sleft T LSHIFT T_RSHIFT
Sleft ‘Y’

Sleft T_UMINUS

/* Code to include as part of the header */

#

#includs <stdio.h>
#inoclude "dle.h"
#include "og.h"®

/* Routines local to this section %/

int mknode () ;
int mkname () ;
int mknum () ;
int mkstr () ;
%}
%

/* The rules section */

program {: spec_part rules

/* At this stage we should have an appropriate tree.

It ends up inyyval. */
}8$-nknod. (N_PROORAM, $1, §2) ;

; /* End of rule for <program> */

spec_part (: T_SPEC spec_bloek

/* We needn’ t do angthing here */

$8=82;
}

; /* Bnd of rule for <spec_sequence> */

spec_block { : '{’ spea_list '}’

/* We needn’t do angthing here */

§8=82;
}

: /* End of rule for <spec block> */

spec_list : spec

J.P. Bennett

Appendix B

{
/* List of one. */

$3 = mknode (N_SPRC_LIST, §1, NIL) ;
}
| lroc spec_list

/* Build up the list */
,es = mknode (N_SPEC_LIST, $1, $2) ;

; /* End of rule for <apec_list> */

spec :{ opcode_spec

/* Put in null elemsnts for args and arglist */
}36 = mknode (X_SPEC, $1, NIL, NIL) ;

| orood._tpoc args_spec

/* Put in null elements for arglist */
}83 = mknode (N_SPRC, $1, §2, NIL) ;

| opcode_spec arglist_spec

/* Put in null elements for args */
}38 =mknode (N_SPEC, $1, NIL, 82) ;

| orood-_ppcc axgs_spec arglist_spec

/* Put in all elesamts */
}ss--knodn (N_SPEC, $1, §2, 83) ;

; /* End of rule for <gpec> */
opcode_spec { : T_OPCODE opc_text ’,’ opc_size ’',’ nargs

/* Put in null elemsnts for name */
}83 = mknode (N_OPCODE_SPEC, NIL, $2, $4, §6) ;

| T OPCODE opc_name ’:’ opc_text ’,’ opc_size ’',’ nargs

/* Put in all the elements for name */
}33 = mknode (N_OPODDE_SPEC, 82, §4, §6, §8) ;

; /* End of rule for <epcode_spec> */
opc_name (: T_NAME

/* Make up a namenode */
}ss-mknm (yytext) ;

-B-4-

J.P. Bennett

Appendix B J.P. Bennett

; /* End of rule for <epc_name> */
opc_text : expression
/* An expression - it will do on its own */
; /* End of rule for <epc_text> */
opc_size : expression
/* An expression - it will do on its own */
; /* End of rule for <epc_size> */
nargs : expression
/* An expression - it will do on its own */
: /* End of rule for <sargs> */
args_spec { : T_ARGS arg_size

/* The nane is NIL here */
$8 = mknode (N_ARGS SPEC, NIL, §2) ;

| T_ARGS arg name ':’ arg_size

r
/* A full spec */
$$ = mknode (N_ARGS_SPEC, §2, $4) ;
}
; /% End of rule for <args_spec> */
arg_name : T_NAME

/* A name */
$$ = skname (yytext) ;
)
; /* End of rule for <arg name> */
arg_size : expression
/* An expression - it will do on its own */
; /* Bnd of rule for <arg_size> */

arglist_spec (: T_ARGLIST arglist_count ’,’ arglist_esl_size

/* A NIL name in this case */
84 = mknode (N_ARGEIST SPEC, NIL, $2, $4) ;
}

| T_ARGLIST arglist_name ':’ arglist_count ’,’
‘ arglist_el_size
/* A real name in this case */
85 = mknode (N_ARGRIST_SPEC, $2, 84, §6) ;
}

: /* End of rule for <arglist_spec> */

arglist_name : T_NAME

Appendix B

/* Just a name */
$8 = mkname (yytext) ;
}

; /* Bnd of rule for <arglist_name> */

arglist_count

.

: expression
/* This is an expression - nothing to do */
/* End of rule for <arglist_count> */

arglist_el_size : expression

»
’

rules

~

rule

’

rule_header

rule_name

decl_list

/* This is an expression - nothing to do */
/* End of rule for <arglist_el_size> */

: rule
{

/* A list of one */
§8 = mknode (N_RULES, $§1, NIL) ;

rule rules

/* A list of rules %/
$§ = mknode (N_RUIRS, $1, $2) :
}
/* End of rule for <yules> */
:‘ T_RULE rule_header rule_body T_ENDRULE

/* A single rule */
48 = mknode (N_RULE, §2, $3) ;
}
/* End of rule for <zule> */
: rule_name decl_list

/* A full spec */
§% = mknode (N_RULR_HEADER, $1, $§2) ;

}
/* Bnd of rule for <rule_headear> */

: T_NAME

/* Just a name */
$§ = mkname (yytext) ;
}
/* Bnd of rule for <rule _name> */

/* Wo declaration, return NIL */
88 = NIL ;

-B-6-

J.P. Bennett

Appendix B J.P. Bennett

}
| di-cl decl_list

/* A 1list of declarations ¥/
§$§ = mknode (N_DECL_LIST, 81, §2) ;
}
; /* Bnd of rule for <decl_list> */
decl :{ type variable ’;’

/% A typed list */
$§ = mknode (N_DECL, $1, $2) ;
}
; /* Bnd of rule for <dacl> */
type :{ T_INT

/* Do nothing */
8§ =T INT;

}
| T_STRING

/% Do nothing */
$§ = T_STRING ;
}

| T _BOOL

s
/* Do nothing */
§§ =T _BOOL ;
}
; /* End of rule for <type> */
variable ¢ T_NAME

/* Just a name */
$4 = mkname (yytext) ;
}
; /* Bad of rule for <variable> */
rule_body ‘ : match_part saving part generation_part

/* No spec in this pule body */
§8 = mknode (N_RULE BODY, §1, §2, NIL, $3) ;

}
| l;atch _part saving part spec_part generation_part

/* Full rule body */
$6 = mknode (N_RULE_BODY, $1, $2, §3, $4) ;
}

Appendix B

match_part

match_body

’

match_item

opcode_match

/* Bnd of rule for <xule body> */

}

: T_MATCH ’'{’ mateh _body '}’

/* Amatch part is just its body */

$8=83;

/* End of rule for <match_part> */

: match_item

/* Nothing to do hare */

44 = aknode (N_MATCH BODY, $1, NIL) ;

}
n{ntch_iton ! ;' match body

}

{

/* Build up a list »/

§8 = mknode (N_MATCH BODY, §1, §3) ;

: opcode_match

/* No arg or arglist match */

$§ = mknode (N_MATCH_ITENM, $1, NIL, NIL) ;

}
o‘poodc_mtch arg _match

}
orcodo__mtoh arg_match arglist_match

}

/* Wo arg or arglist match */

8§ = mknode (N_MATCH ITEM, $1, $2, NIL) ;

o}roodn_utoh

/* No arg or arglist match */

4§ = mknode (N_MATCH ITEM, $1, NIL, $2) ;

/* No arg or arglist match */

$8 = mknode (N_MATCH_ITEM, $1, $2, §3) ;

/* End of rule <match_item> */

}

: T_OPCODE opc_name

/* Just the name */
S8 =82 ;

; /* End of rule for <match_body> */

arglist_match

: /* End of rule for <opcode_match> */

-B8-

J.P. Bennett

Appendix B

arg_match (: T_ARG arg_name

/* An arg match is really just a name */
$6=82;
}
; /* Bnd of rule for <arg match> */
arglist_match (: T_ARGLIST arglist_name

/* An arglist matoh is really just a name */
$$=82;
}
; /* Bnd of rule for <arglist_match> */
saving part { : T_SAVING ’{’ saving_body '}’

/* Just a body */
$6=283;
}
: /* End of rule for <saving_part> */
saving_body (: command_body

/* Just pass back a command body */

}
; /* End of rule for <saving body> */
command_body { : decl_list command_list

/* A command body */
$$ = mknode (N_COMMAND_BODY, $1, §2) ;
}
; /* End of rule */
command_list (: command

/* A list of one. */
$8 = mknode (N_COMMAND_LIST, $1, NIL) ;

}
| c{omand command list

/* A 1list of commands */
$4 = mknode (N_COMMAND_LIST, $1, $2) ;

}
; /* End of rule */
command (: assign_command

/* Just return the sommand found */

}

J.P. Bennett

Appendix B J.P. Bennett

| x.io-ult_oomnd
/* Just return the command found */
| if_command
/* Just return the command found */
| for_command
/* Just return the sommand found */
| do_command
/* Just return the gconmand found */
}
| v{hilo_omd
/* Just return the command found */
}
| '{{' command_body '}’

/* Just return the ¢ommand found */
$8=82;
}

; /* BEnd of rule for <command> */

as-.tqn_co_and{ : variable ‘=’ expression ’;’

/* Assignment command */
88 mmknode ('=’, §1, $3) ;

}
; /* Bnd of rule */

expression { : cond_expression
/* Return itself */
}
| a{::l.th__.xprc-lion

/* Return itself */

}
; /*End of rule */
oond_cxptonsio? : conditional ® _COND expression ’',’ expression

/* An expression node */
$8 = mknode (T_COMD, $1, $3, §5) ;
}

; /* BEnd of rule */

- B-10 -

Appendix B

conditional

.
’

arith_qxp:--li{on

: ('’ expression’)’

/* Return the expression */
§=52;

}

/* Bnd of rule */

88 = mknode (T_LOGOR, 31, §3
}

: expression T_LOGOR expression

)

o{xprols:l.on T_LOGAND expression

$8 = mknode (T_LOGAND, $1, §3) ;

.{xpr-nsion T EQ aexpression
44§ = mknode (T_EQ, #1, $3) ;
o:xpros.ion T NE aespression
$$ = mknode (T_NE, §1, §3) ;
expression '<’ expression
$§ mmknode ('<’, 81, §3) :
expression T_LE expression
$$ =mknode (T _LE, #1, §3) ;
expression '>’ expression
$$ mmknode ('>', §1, §3) ;
.:xpr.-sion T_GE aexpression
$4 mmknode (T _GE, §1, $3) ;
expression '+’ expression
§$ =mknode ('+', 81, 83) ;
.}xpxoll:l.on f ot expression
4§ mmknode ('-’, 81, §3) ;
expression ’'*’ expression
$8 mmknode ('*’, §1, §3) ;

expression '/’ expression

-B-11 -

J.P. Bennett

Appendix B J.P. Bennett

{
$$ =mknode ('/, 81, §3) ;

| o‘xpross:l.on 'y’ expression
$§ = mknode ('%', 81, §3) ;
| c{xpro-lion T _LSHIF?T expression
$$ = mknode (T_LSHIFT, §1, §3) ;
| cixpr.l-:lon T_RSHIF? expression
$8 = mknode (T_RSHIFT, $1, §3) ;
] '{!' expression
46 =mknode ('1’, $2) ;
| '{-’ expression $pres T_UMINUS
$$ = mknode (T_UMINUS, §2) ;
i p:rimry

/* Return itself */

}
; /* End of rule for <axrith_expression> */
primary (: variable

/* Return itself */
}
| selection
{
/* Raturn itself */
}
| f{unction_np
/* Return itself */
| constant
/* Return itself */
| '((’ expression ')’

/* Return the expression */
§8=82;
}

; /* End of rule */

-B-12 -

Appendix B J.P. Bennett

selection : variable ’'.’ selector

/* A selection */
$8 = mknode (N_SELBCTION, $1, NIL, $3) ;
}

| variable ’' [’ expression ‘]’ ‘.’ selector
{
/* A selection of an arg */
§4 = mknode (N_SELECTION, §1, §3, §6) ;
}

; /* BEnd of rule for <selection> */

selector : T_TEXT

/* Return itself */
$8 = T_TEXT ;

| d s
{

/* Return itself */
§8 =T SIZE ;

| ©_ID

/* Return itself */
§§=T ID;
}
| T_VALUE

-

/%* Return itself */
$8 = T_VALUE ;

|!}ums

T

/* Return itself */
$8 = T NARGS ;
}
; /* Bnd of rule for <sslector> */

constant : T_NUMBER

/* Make a number node */
88 = mknum (yylval) ;

}
| T STRLITERAL

/* Make a string node */

- B-13 -

Appendix B J.P. Bennett

88 m mkstr { yytext) ;
| T}TRUR

{

/* A true node */

$8 = mknode (T _TRUB) :

| '.E) FALSE
/* A false node */
$$ =mknode (T_FALSE) ;
}
: /* End of rule for <constant> */

function_ap (: function_name ' (’ ')’

/* No args */
$8 = mknode (N_FUMCTION_AP, $1, NIL) ;

}
| t{unct:l.on_nm ('’ expr_list ')’

/* Arg list */
$§ = mknode (N_FUMETION AP, §1, §3) ;
}
; /* Bnd of rule for <function_ap> */
function_name : T_NAME

/* Just make a nams node */
44 = nkname (yytext) ;

}
; /* Bnd of rule for <function_name> */

expr_list (! expression

/* A 1list of one */

88 = mknode (N_EXPR LIST, $1, NIL) :
}
| o{xproc-ion ’,’ expx_list

/* A 1list of expressions */
$§ = mknode (N_EXPR_LIST, §1, 8§3) ;
}
; /* BEnd of rule for <expr_list> */
result_command : T_RESULT expression ’;’

/* A RESULT command */
88 = mknode (T_RERSWULT, $2) :
}

-B-14 -

Appendix B

if command

for_command

start_expr

end_expr

do_command

while_command

’

I

/* End of rule */
: T_IF conditional command

/* An IF command with no ELSE */
88 = mknode (T_IF, $2, §3, NIL) ;
}

T TEST conditional gommand T ELSE command

/* An IF command with an ELSE */
$8 = mknode (T_IF, $2, 83, §5) ;
}
/* End of rule for <if_command> */

: T_FOR variable start_expr T_TO end_expr command

/* A FOR nodas */
$$ =mknode (T_FOR, $2, §3, §5, §6) ;
}
/* End of rule for <for_command> */
: ' (’ expression ')’

{

/* Just itself */
$=82;

}

/* End of rule for <start_expr> */
{: '’ (' expression ’)’
/* Just itself */
§=42;

}

/* End of rule for <end_expr> */

: T_DO command T_WHILE conditional

/* A loop tested at the end */
$$ = mknode (T _DO, $2, $4) ;
}
/* BEnd of rule for <do_command> */
: T_WHILE conditional command

/* A loop tested at the end */
8§ = mknode (T_WHILE, $2, §3) ;
}

/* End of rule <while_command> */

- B-15 -

J.P. Bennett

Appendix B

generation __par:: : T _GENERATIOM conditional ‘{’ generation_seq ‘}’

/* Now the generation code */
88 = gknode (T_GEMERATION, $2, $4) ;
}

; /* Bnd of rule for <generation_part> */
gtn.x:ation_uq{

/* Nothing is NIL */
88 = NIL ;

}
| g{.noration_itm generation_seq

/* List of generation items */
$% = mknode (N_GEMBRATION_SEQ, $§1, $2) ;
}
; /* End of rule for generation_seq> */
gcmrntion_it.? : opcode_gener args_gener

/* No arglist */
$$ = mknode (N_GEMERATION ITEM, $1, §2, NIL) ;

}
i orood._g.nnr arglist_gener

/* No args of arglist */
§§ = mknode (N_GEMBRRATION_ITEM, $§1, NIL, §2) ;

}
| orcod-_g.n-r args_gener arglist_gener

/* No args of arglist */
$% = mknode (N_GEMBRATION_ITEM, §1, $2, $3) ;
}
; /* End of rule for <gmneration_item> */
opcode_gener (: T_OPCODE opc_name

/* Really just a name */
$=82;
}

; /* End of rule */

args_gener (: T_ARGS arg_value

/* NIL name */
88 = mknode (N_ARGS_GENER, NIL, §2) ;

| T _ARGS arg_name ':’ arg_value

o

- B-16 -

J.P. Bennett

Appendix B J.P. Bennett

/* NIL name */
$8 = mknode (N_ARGS_GENER, §2, §4) :
}
; /* Bnd of rule for <args_gener> */
arg _value { : expression

/* Just itself */
}
; /* End of rule for <axg value> */
arglist_gener (: T_ARGLIST arglist_value

/* NIL name */
$8 = mknode (R_ARGLIST GENER, NIL, §2) ;

}
(R l_nausr arglist_name ’:’ arglist_value

/* name */
86 = mknode (N_ARGLIST GENER, §2, $4) ;
}

; /* End of rule */

arglist_value : expression

/* Just itself */
}
; /* End of rule */
%

/* Useful routines */

int mknode (type, al, a2, a3, a4, a5, a6)

int type : /* Node id */
int al, a2, a3, a4, a5, a6 ;

/* Make a new treencde. This is all rather horrible, since the compiler
expects integers to be passed areund. We solve the problem by casting
to and from integers. */

{
struoct treenode *node = get_tresnode () ;

node -> type = type ;

node -> al = (struct treenode *) al ;
node -> a2 = (struct treencde *) a2;
node -> a3 = (struct treenode*) a3 ;
node -> a4 = (struct treenode *) a4 ;
node -> a5 = (struot treenode ®*) a5 ;
node -> a6 = (struct treenode *) a6 ;
return (int) node ; /% This is APPALLING */

} /* mknode (type, al, a2, a3, a4, a5, a6) */

-B-17 -

Appendix B

int mkname (text)
char *text ;

/* Make the name permanent, and return a name node */

{ohar *ptext = get_str (text) ;
return mknode (T_WAME, (int) ptext) ;
} /* mkname (text) */

int mknum (value)
int value ;

/* Set up a value node */

return mknode (T NUMBER, value) ;
} /* mknum (value) */

int mkstr (text)
char *text ;

/* Make the string permanent, and return a literal node */

{ohar *ptext = get_str (text) ;
return mknode (T_STRLITERAL, (int) ptext) ;
} /* mkstr (text) */

-B-18 -

J.P. Bennett

Appendix C. Proof of Minimisation

This is the proof of the minimisation of code size used in section 5.3 and derived by Smith
{Bennett87).

Smith uses the method of Lagrange Multipliers to maximise the saving. Let s;, x; and t be
defined as in chapter five. Let us suppose there exist hon-negative constants a;, such that:
s; = of; (1-e ™), where & is a suitably dimensioned constant.

Thus the total space saved is:

! =8 X;
S = 0121 fi(1-e) (Egn. 1)

subject to the constraint Y, x; = ¢, where c is the number of special instructions we have room
for in our instruction set of 256 instructions.

t
Let g = Y x—c and S be given by Eqn 1.
=1

Let y=S+Ag

-C-1-

Appendix C

We must solve simultaneously

Vy=0 and g=0

Thus
atie” = af;e " foralli,je{1,...,t}
t
Ltet d = J] a .thenforanyk e {1,..., t} we have
I=1
jwmi

t d, - d
n [akfke"“x"] ' = H [a, f; e a,x,] ! .

i=1 =1

Therefore
¢

t
[akfke“‘kxk]1§1d’ - 11:11 [a’f’]d’ . e"a,‘:_‘,’x,

where

a=1]]a.
=1

t
Now g=0 so Y x=c¢
i=1

t
let b=Y d .
f=1

Now we have

b !
[a,, fi quxk] = H

i=1

q
[a, f,]' . %

J.P. Bennett

Let r denote the right hand side of this equation (which is independent of k). Let N, = (ax fx)?

and then

N« e-b'k"k =r

and finally we have
1 n
X = ga-1oge (=)

Such a choice of x; 's will maximise S.

-C-2-

(Eqgn. 2)

Appendix C J.P. Bennett

The method of Lagrange multipliess ensures that we have found a critical point of the saving
function. This is in fact a maximum, as may be seen by considering the problem in question,
although Smith does not give a proof of this.

