Technical Report e

Number 126

Computer Laboratory

Reasoning about the function
and timing of integrated circuits
with Prolog and temporal logic

M.E. Leeser

February 1988

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1988 M.E. Leeser

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

_Reasoning about the Function and Timin-g of
Integrated Clrcults with Prolog and Temporal
| Loglc |

| M.. E. Leésqr

February 12, 1988
Abstract

This article describes the application of formal methods to transistor le;'el deScfip-
t.lons of cu‘cults Formal hardware verification uses t.echmques hased on mathe-
 matical loglc to formally prove that a circuit correctly |mplements |ts behavnoral‘
spec1ﬁcatlon In the a.pproach descnbed here. the structure of c1rcmts and thelr
func’tlona! behavior are described with Int’.erval Temporal Loglc. These specnhcg- 3

tions are expressed in Prolog, and the logical manipulations of the proof process.

are aChieved with a Prolog s*vstvem To demonstralé the »approach the behavior of

several example cnrcults is dorlvod from the behavior of thelr components down to

 the tranSIStor level These e‘(amples include a dynamlc latch whlch uses a 2-phnqe _
clockmg scheme a.nd e‘cplmts ('ha,rge storage. Tlmmg as well as functlonal-as‘pects ,
of beha.vnor are donved and constramts on’ the way a c1rcu|t mteracts wn,h its

, enwronment are reasoned about formally

1 Introduction

The increasing complexity of integrated circuits has generated interest in new
methods for the computer aided design of these circuits. One such method is
‘fo‘rme;l‘hardware vefiﬁcation — using techniques based on mathematical logic to
forrnally prove that a circuit correctly implements its behavioral specification.
This approach was inspired by work by Gordon [15] and Barrow [1]. In general,
the formal verification of a circuit proceeds as follows. A circuit implementation
is described as the composition of circuit elements. Each occurrence of a circuit
element is replaced by its behavioral description. The resulting description is then

manipulated using rules of mathematical logic to show that the implementation

logically implies the specification of the circuit behavior.

1.1 A Simple Example: a CMOS Inverter

¥ * * Put Figure 1 near here. * * *

As a simple example, coﬁsider the formal verification of the CMOS inverter shown
“in Figure 1. This circuit’s behavior will be specified and verified using first-order
~logic. The first-order logic operators not (=), and (A) and or (v) should be
familiar from boolean algebra. In addition We u:;e implies (O), for all (¥) and
there ezists (3), which will be explainéd as we go alongT Examples discussed in
later sections will use Interval Temporal Logic, an extension of first-order logic

with special logical operators for reasoning about time.

The behavior of the inverter is defined by a p‘reclica'te which states that the inverter
hés two ports and the port labeled Out is equal to the logical inverse () of the

port labeled I'n. Note that =4 s used for ‘is defined by’: . v

2.

_invert(In,Out) = Out = -In

The structure of this circuit is described by the first-order logic predicate:

mvert-struct(In Out) =g
ptrans(ln 1,0ut) A ntrans(In,0, Out)

Here the predrcates ptrans(G Cl,C'g) and ntrans(G C,Cy) represent p-type and _
n-type transrstors respectlvely. where G is the gate node, and C; and C; are the. -

channel nodes. The constants 1 and 0 speclfy connections to power and ground.

Forrnal veriﬁcation consists of showing that invert-struct is equivalent to in'vert.'
As we shall see, this is done by transformlng the structural description mto a
behavioral specrﬁcatlon In this case we show the two are equlva.lent but this =
VAIS not true in general. Frequently the |mplementat|on is more detailed than the
specrﬁcatlon. but we still wish to show tha.t the behavror is correctly |mplemented.

The more general correctness statement is:

circuit structure D circuit behavior

Logical implieation is defined by:

"ADB =4 -~AVB

Note that A B is more restrictive since if A and B are equal then AD B but)

the converse is not necessanly true

The behavior of an n-type transistor is Speciﬁe'd as an ideal switch whose ‘e:hann’el
nodes are connected when the gate has value 1. Similarly, the behavior of a p-type '
transrstor is specrﬁed as an rdeal swntch whose channel nodes are connected when -

the gate has value 0.

ntrans G,Cl,Cz =def G = l D C|
ptrans(G,C,, C, =def G=0>(Cy=

There are a few thmgs to note about these beha.vnoral specnﬁcatlons Flrst these
: .formulas do not specll'y the behavror of the transistors when the gates are inactive..

In addltlon, no distinction is made between the two channel nodes.

Formal i'eriﬁcation involves proving that the behavior of a circuit can be derived
" 'frorn_ its structure end the behavior of its 'components. The first step is to expand
the structure of the circuit with the behavioral descriptions of the components in
| that structure For complex circuits this may mvolve several levels of verification.

' 'For this simple example, there is only one level of desrgn hierarchy We proceed.
by expandmg the transrstor predlcates by their behaviors in the specnﬁca.tron of

'mverter structure:

invert- struct(In Out) =4
ptrans(In, 1,0ut) A ntrans(In,0, Out) =
(In=0D> (1=0ut)) A (In=1D (0 =Out))

“We can‘pr‘oile‘ this by considering two cases: I n = 0 and In=1. This is called case

artalysl's,‘ end is anelogous_ to eimulating tlie circuit for all possible combi-nations
of mputs It is more elﬁcient' than simula.tion since all possible combinations of
mputs are consndered for snrnple components which have only a few mputs Using
" case analySIs we derlve R

0=Out . and
1 = Out)

ol

‘ invert-struct(1, Out
©invert-struct(0, Out

: It then follows‘r that:
inVert-’st‘ruct(In',Out) = (Out = f.[,,')

4

- This is ‘equiva.lent to the behavioral specification for the inverter stated at the -

beginning of this section, so we have verified the implementat‘ion of the circuit.

“Even though this is a very simple ercample, it glves a flavor of what is invoIVed‘
~in hardware verlﬁcatlon In addltlon, it can be used to |llustrate the beneﬁts of
modularlty in verlﬁca,tlon Once an mverter has been proved correct the derlved '
behavnor can be used wherever an mverter appears in the ctrcunt specnﬁcatlon :“_
T.he mverter need not be formally verlﬁed agam For an inverter thls |s a small
gain, but for more complex modules whlch are reused often, such as adders and -

. counters, the gams are s1gn1ﬁcant

1.2 Formal Hardware Verlﬁcatlon of More Complex Clr-_
| cults | |

In general, verification is done hierarchically. The behavior of a circuit conlpo- :
nent is veriﬁed. by ‘ch_ecking that it is logicallyv lmplied by the composlition of the
component behaviors. The verified behavior is then used as the descri_ption of
the circuit compon'ent ‘when that component is used in the design process This
is called behamoral abstract:on An advantage of. hlerarchlcal verlﬁca.tlon is that
" a circuit component needs to be venﬁed only once, no matter how many tlmesv' :
it is used in the circuit. A component is reused snmply by renammg its ports to
their connections. When components are composed hlerarchlcally, mternal lmes

are hidden. These variables are elfectlvely extstentmlly quantzﬁed In addltlon |
, constramts on the way a circuit mteracts with 1ts env1ronment may be descnbed

These constraints are composed and reasoned about in a slmllar manner to be-

ha\noral specifications. When a circuvit element is composed with others to form : a

larger circuit component, some of its ports may become inaccessible to other parts

of the circuit. Constraints on these ports must be met. Other constraints which

_are not met become constraints of the larger component.

We use Prologto specify the implenlentation of ,cireuits and lnterval Temporal
| ngic (ITL) [26] to reason about the'f‘unetion and timing behai)ior of circuits. In
. 'this article we describe how different circuit elernents are ‘modeled, and us_e exam-
ples to show :how these models are nsed in hierarchical verification. Coxnposing

circuit elements, renamlng, hldlng external lines, and abstractmg the behavior of |

} components are all used in these exa.mples For each example, constramts as well

as behawors are manipulated. These examples employ Prolog notatxon ~Upper
case letters denote Prolog variables. Lower case letters denote constants The

Prolog notatlon is used l'or anonymous variables.

The c.ircnits. discussed are VLSI circuits speciﬁed’ down to the _ttanslstor level.
A restricted class of CMOS circuits are consideredt These are.synchronous clrf
cuits whel'e all feedba_ek loops ate l)rolten by elocks and there are no branches
. m cOtnbinational logie which nlerge together agal‘n. vAs ‘.we shall see, many tim-
ing _conlstraints are satisfied by this iclas_s of cirenits. Note that th.e same class of

circuits was conside_red_ by Lin and l\'/[ead‘ [23].

T |mmgraspects as well as functional aspects of behavmr are venﬁed Thls allows
tlmmg models to be related to lugher level behavmral models using temporal ab-
rstractwn The same descnptlon of a circuit can be used for tlmmg as well as other .'
;‘.'analysm and dlllerent levels of descrlptlon can be related formally The demgner '
has l_ncreasedv confidence t‘hat varlo_us aspects of the desxgn are _correct, since differ- -

~ent tools all work on related representati'ons of that design- Thus, we ensure that

o dnﬂ"erent levels of descrlptlon actually descrlbe the same circuit. We derive low

'- level tlmmg details such as delay and set—up and hold tlmes from ITL descnptlons
a of Cerlllt components The t|m|ng analyms is done in conjunctlon with behaworal ‘

venhcatlon Delay, for example depends on the functlon as well as the timing

36 .

. characteristics of its components. In ,é.ddrition,r this approach allows us to detect.
~errors dhe to' incorrect relations between signals and different clock phases. Such
- -errors are not detected by other tlmmg analysm techmques ([28] [20]) because

they do not consider functlonallty
1.3 Organization of this Paper

The remamder of thls paper descnbes the dlﬂ'erent steps for provmg a transnstor _
level descnptlon of a circuit. A scenarlo for verlfymg a circuit Whlch uses these

: steps is:

1. Specify the behavior in ITL.
2. Specify the circuit structure in Pro_log{ _

‘3. Use the signal flow analysis algorithm to automatically derive direction of

signal flow through the compbnerit.

4. Use the PALM system to prove the structure correctly implements the be-. o |

havioral specification.

Note that this is only one possible scenario. Steps 1 and 2 may be reversed, or mofe
frequently,iitera.ted. In addition, the propf process may ‘detecter_rors which.affect

the structure or cause the designer to reconsider the behavioral requir_emehts. o

‘The next section presents the use of Prolog to specify cn'cmt structures, and
describes the S|gnal flow analysns algonthm Sectlon 3 glves a brief mtroductlon to)
Interval Temp.oraleog‘lc (ITL). In Sectlon 4 we,dlscuss how dlfferent types ofmrcult a
co.mponents are vmodele(‘i with ITL and illustrate these models with exaniples.
Then a more complex example'whi‘eh uses 2-phase elocking is p‘resentevd." The'sev' ’

7

~ examples were derived using the PALM (Prolog Assistant for Logic Manipulation)

system [22]| which was developed to mechanize these manipulations. The article

concludes with a discussion of the work presented, related work and conclusions.

2 Prolog for Circuit Specification and Manipu-

lation | |

Circﬁits can be specified, simulated and reasoned about using logic programming,
which is‘ based on first-order logic. We use the logic programming l&nguage Pro-
log [7] to represent the structure of circuitsland to reason about these structures.
These Prolog descriptiohs directly reflect the structure a.n& hierarchy of a circuit
as shown in a circuit schematic. In this section, we show how circuits are specified

in Prolog and discuss how these specifications can be manipulated.

A circutt is an interconnected set of components. Components can be composed

hierarchically, where components are specified in terms of constituent components.

At the bottom of the hierarchy are primitive components. We describe CMOS

circuits; the primitive components are n-type and p-type transistors, and power

and ground sources. There are no strict rules about the levels of hierarchy. A

- component may be made up of primitive as well as non-primitive components.

Each component has ports for external connections. A port may be an input, an

“output, or bidirectional. A node is a junction of ports. Nodes which are ezternal

to a component are formed by connecting one of the ports of that component to
one or more ports of other components. Nodes which are internal to a component

are formed by connections of the ports of the constituents of that component.

The structure of the CMOS inverter presented in the previous section was defined

using first-order logic:

’ invert-struct(ln.Out) Sget
ptrans(/n, l,Oqt) A ntrans(In,0, Out)

The equivalent Prolog description is:

ihvert-struct(In,‘Out) :- ptrans(In, I,Out),ntréns(In,0,0ut).‘

This is the definitional method for specifying circuits i‘n Prolog. This and other
methods are described and compared in [5] In this method, a circuit is represented
as a set of Horn clauses which are a subset of the formulas of first-order logic. A
component with n ports is represented as a predicate with n arguments whose
left-hand side represents the component being defined. The body of the predicate
is a composition of the constituent compvoinents which define the component. Con-
stituents are composed‘ with the comma, connective. The order of the components

‘:-’ connective of Prolog is reinterpreted to

in the body is not important. The
mean ‘is defined by’. A node is represented by a unique variable name. A node
which is named by a variable not appearing in the left-hand side of the clause is

an internal node.

* * % Put Figure 2 near here. * * *

Figure 2 shows a dynamic latch. Its structural description in Prolog is:

dlatch-struct(L, D, Q, ®,, ®,) :-
invert-mux(L, D, Q, ®,,Y),
shiftstage(Y, Q, ®2).

" Where the structures of invert-mux and shiftstage are specified by:

2'invert-mux-bstruct(A B,C,®,D) :-
- two-one-mux(A, B,C, X, (I>),
mvert(X D).

shlftstage-struct(A B) :-
- trans-gate(Phi, A,C),
invert(C, B). -

" The struol;ure of a clocked two-to-one multibloker,'shown in. Figure 9, is specified
a’s;: v
. two-one—mux(G‘ A,B,X,9) - A

trans-gate((G A Phi), A, X, M),
trans-gate((~(G) A Phi), B, X, M).

- There all-e. sovero.l tllirngs_, to note a.boul;_'thls example.- Fifst, the 'polrts'ol' these
compon'eots d_o bn,ot have direction specified. As we's.ha.ll see later, port directions
~ can be cletérmined_ automatically and héed nol; be specified by th'evusver. Second,‘

| io th'e} top level spociﬁcotion of dlat_ch_-sltruct, the variable ¥ defines the ‘hidden’
node ‘b.etweon' ‘the oult‘pu.t of tlle invert-ml’jx','a.'nd‘th‘e itlput of the shiftotage This
' vanable does not appear in the left- hand side of the specnﬁcatlon for dlatch-struct.
'“ln addmon there is no rlgld definition of dllferent levels of hlera.rchy For example,

'the deﬁmtlon of shlftstage-struct mixes transmlsswn gates and mverters Thls ex-

o ample uses many levels of hlerarchy to descnbe a s1mple circuit component This

_ | was not necessary, the dynarnlc latch structure could have been specified w1th one
level of hlerarchy where a.Il components were transnstors ThlS was not done for
_ .several~reaso,ns. lho examplevll_lustrates the use ol' hlera.rchy in c_u‘cmt descrip-
t;iorl_:.Usi}ng hierarchioa.l d_escrifptvionsv makes it eosier to prove bohavlor correct. In

i addition, the proofs of several of the oomponenté have been used in deriving the

l" 10

behavior of other components.‘ For example, the shiftstage is also a compo'nent of

~ a shift register.

Specifying circuits in this manner has several advantages. The descriptlons dlrectly
reflect the structure and hlerarchy of a circuit as shown in a schematlc an(l are ':
therefore easy to write. These descrlptlons also lend themselves to easy modular
: specification for several reasons. The component name is expllcltly part of the
specrﬁcation lnternal connectlons are named by varlables which do not appear ‘. :
in the left-hand side of the clause a.nd are eﬁ'ectwely htdden from users of the
structure. In addition, the deﬁmtlon ol“. ports of components is inherently non-
' directional. Thisis. important for specifying c_ornponents, such as pass transbis_t_ors

and transmission gates, which have bidirectional ports.

Anotheradvantage of this approach is that‘_ the specifications can be ma‘n_ipulated_'»

or directly executed by Prolog systerns‘,. Clocksinv[5] describes tools for.ma_nip-

ulating these Prolog speciﬁcations.z These tools include symbolic simulation of: :
circuits by direct execution of their descriptions, gate assignment circuit rewrit-
ing and component specrallzatlon ‘The Advanced Slllcon Compller PrOJect at the R
Umversrty of Callforma at Berkeley also uses Prolog descriptions of clrcults at the 3
transistor level and above. Their tools for mampulatmg these descrlptlons mclude
the Prolog Tlmmg Analyzer [30| whlch calculates the delays of all nodes using a
lumped RC delay model, and a srmulated annealing algorithm to assrgn sizes to

transistors in a VLSI schematlc (9].

" Another tool yve have written for- manipnlating Prolog descriptio‘ns of circuits,‘v_ '
determines the.signal ﬂowth_rou’gh a network of transistors [6]. Signa.l flow allaly'sis ‘

is used to determine the direction of all transistors ina circhit and the directions |
of ports of components of a circuit. These directions are used when deriving the

behavnor of c1rcu|ts As we shall see, the Interval Temporal Lovlc descnptlon of :

.11_;

~ transistor behavior assumes that transistor direction is assigned. The signal flow
~ analyzer has been used with all the examples preSénted in this papef. The result

~ of signal flow analysis for the dynamic latch is shown in Figure 3.

|* * * Put Figure 3 near here. * * *

3 'Intéfval Temporal Logic

Temporal logic is a formalism for reasoning about time which has been used for
-specify.ing‘ ﬁnd prpving properties of solftware aﬂd hardware. There afe several
ways of reasoning about 'time_with logic. Classical tempo“r'a.l. logic‘a.dds operators
I'or_reasoni'ng about;. time to the logic o_peré.tors ‘introduced in Section 1.1. Interval
. Tempofal Logic (ITL), due to Moszkowski [26], is a development of classical linear
t;ime teniporal logic which édds operators for reasonihg about intervals of time.
In this'séctiori, the subsetv of ITL whi(':vh‘ we use to specify and reason al_)out‘ the
f\iﬁction and timing of hardware is presented. The opé_rators presented in this

- section are summarized in Appendix A.

"An ITL formula describes behavior on an interval of time. ITL operators include
(1 (always), O (next), and ; (chop). An intuitive description of these operators |

i fol,_lows.

* %k %

~|* * ¥ Put Figure 4 near here.

An interval is a non-empty sequence of states. (The notation () is used to delimit

| ihtérvals.) "A state can be viewed as an instantaneous snapshbt of a system. The

length of an interval is one less than the number of states it contains. An interval
. . . ') A, .

of length 0 is called an empty interv'ai; it has one state and is just an instant

12

of time. A unit interval has length one. Throughout‘ this'article, we assume all

unlt mtervals have the same duratlon For example, consider Flgure 4, which
mlght be a voltage waveform sampled at drscrete mstances of time. In Flgure 4,

(so,sl,s;,ss) and (sz) are mtervals The state (sz) is an empty mterval

Formulas are true or false wnth respect to an mterval A formula w Wthl’l contams
no temporal operators is true on an mterval 1f it is true in the first state of that

g mterval In Flgure 4, the formula X 0 is true on the mterval <30,31,82,83)

Ow (always w) is true on (so,sl, . Sn) lf w is true in every submterval whlch»_ v

ﬁmshes in the ﬁnal state. In Flgure 4 DX = 1 ls true on the interval <S|,82,83) B

It is also true on several other mterva.ls mcludmg (81,52) and (52,33)

Srrmlarly, Oow (next w) where w is a formula, is true on an mterval (so, S1y++-sSn)y

if w is true on the sub-mterval (sl, ,s,.)T In Flgure 4, the formula OX_ =1is

true on the interval (so, 81, 32, 33).

The chop operator (;) allows an mterva.l to be broken in two. The formula wl ; we
" can be read as w, followed by ‘UJ2 Wy wy s true on an mterval (so,sl, ,s,,) if
there exists an mtermedlate state s; where both w; and w; are true, w, is true on

the interval (so,sl, .+ +y8i), and w, is true on the sub_mterval (Siye-vy8n).

The formula skip is true of any interval of length one. It is often necessary to

~ use skip in formulas employmg the chop operator For example, the sngnal ‘{ m'

Flgure 4 rlses from O to 1. The temporal loglc formula

(X =0); skip; ('X =1)

is true on the interval (so,sl',32,33) The chop operator sphts an mterval mtoﬁ

two sub-mtervals which share a common state. It is lmpossrble for the srgnal Y '

13

to be both 0 and 1 at the same time, so lt is necessary to use skzp to represent.
the mterval of length one where X is changmg Here skip represents the mterval

(so,sl) whlch has length one.

" Temporal operat_orsfor e)tpressing sueh concepts as temporal equality and delay
can be built out of formulas using the operators described above. These and other
~ operators are defined in App‘endix- A. Formal syntax and semantics of ITL are
presented in |26]. ITL constructs w:ll be explamed when they are used in the rest

“of this artlcle

Most variables in these logical descriptions are s:'gnals Moszkowski 27] describes
~delayless combmatlonal elements and memory elements, hls 51gnals are boolean
val_ues ‘We describe switch- level models of transistor c1rcu|ts, whlch depend on

capacntlve strength as well as logical value. Thus Moszkowski’s deﬁmtlon of signals

7 have been extended as have the logical and temporal operators whxch operate on

R them Slgnals are {value, strength} pairs. Each of the ﬁelds value and strength |
| can have value 0 or l The valuc field represents the boolean loglc value of a
' S|gnal. The strength ﬁeld representsvthe strength of a sngnal whrch may be either
| capamtlve (0) or drlven (1) The use of the strength ﬁeld is lllustrated in the next

'.sectlon

Al ‘the logical.operators described so far examine the value field of a signal only.

Fo‘r vex'ample, AANB is true if the value of Ais'1 and the value'of'B is 1. This
: } applles to the operator " as well. The symbol & s used to denote equivalence |
- ol sugnals Ae Bif and only if the value ﬁelds and the strength fields of A and
| B are equal. Thus the follo_wmg statements are true., '

0,1} = {0,0} |
_lo, 1l {0, 1}

The fun.ctions weaken and stren.gthen operate only on the 'strength field of a'signal.

14

The weaken function takes a signal and retj.urn’s' a signal with the same value field -

whose strength is 0. The strengthen function is described similarly. .

Signals are combined at a node using the join operafer (L). The result of joining

two si_gnals.of diﬁerent .strength is a signal with the same valne and strength as

the stronger signal. The result of j _|ommg two sngnals with the same value and: E

strength isa sngnal with equa.l value and strength Note that j jommg two sngnals

- with dl_fferent value but the same st;ength results‘ in an error.

" Temporal assignment (—) allows one signal at the beginning of an interval to be
‘assigned to another signal at the end of the Yinte'rva;l Mobrve than one sig‘narl may

be assigned to another signal. When this occurs the join of the two sxgnals 1sh

assigned to the resultmg sxgnal Thls can be descrlbed in lTL

((A _;B)_A'(cq B)> (4 U C_—»B))

This preperty of the join operator implies that the value of a node can alWa}'s be

changed by another sngnal contnbutmg to that node Eventually a node becomes -

hidden in a circuit descnptlon so the number of sngnals which contrlbute to that .

node is. llmlt.ed In essence, we are combining the Jom function with temporal
assignment. Others ([21] |10|) have used expllcn; join components in their circuit

representatlons. B

4 Usmg ITL to Reason about the Behavnor of
Circuits

In this section we show how ITL is used to model the 'behavior. of circ'nits and . _ﬁ

show w1th examples how these models are mampu]ated Flrst the models for the o

' behawor of circuit elements are dlscussed These include combmatlonal elements

15

transistors, memory elements and clocks. The models describe two types of in-
formatibn: the dependence of outputs on inputs (i. e. function and tirniﬁg), and
vcon‘straints on .the‘ inputs. Constraints specify the way tﬁe circuit model interacts
with its enviromhent. Constraints include such.timing information as set-up and
lnold times, and are described and reasoned about with the same logic as that
used for the timihg and funi:tional behavior of cirt_:uits. The implicit form of the

correctness statement for the behavior of a circuit is:

constraints on inputs A circuit structure O
“circuit behavior A constraints on outputs

Note that the term gate is used sometimes to refer to the-electrode of a transistor
and sometimes to refer to a combinational element. The term’s meaning should

be clear from context.
4.1 Modéling Combinational Elements

B Our ma.in: objective is‘to model timing as well as funcfional behavior of Circuit
elements. The timing behavior of all,cdmbinatioﬁal elements is mbdeled as delay.
Breuer and Friedman [2| present many hardware.delay models, and Moszkowski.
'[26] shows how several of these can be expressed in ITL. We use Breuer and
, Friedman’s tfanspOrt delay, which Moszkowski has defined in ITL. The definition
of dciay sfates that.'éignél VB is signél A delayed. by m units of time. len m is true

on any interval of length exactly m.

Adel™ B =4 DOlenm D (A — B)

k %k

¥ * * put Figure 5 near here.

16

Comblnatlonal elements w1th several mputs (A B ..) al‘nd one output (X)"hav'e

the general l'orm

f(A,B,...)deI™ X

Here f(A, B Jisa functlon of the mputs whxch contains no temporal operators

- For example, the 3-mput and gate shown in Flgure 5 is descnbed by

(AABACNWF

The delay is vrewed as being lumped at the output Note that m represents the

worst case’ delay from mputs to output for this gate.

When a cell has more tha.n on’e o_utput we use one'predica.te for _eech output and
vcompose these to produce the descrnptlon of the cell. For example, a cell with

outputs X,Y,...is descrlbed by

f(A,B,...) del™ X A
§(4,B,..)del" Y A .

ITL transport delay has several useful properties. For example, it is cumulative:
Adel® B A Bdel"C > Ade™"C

Here the output is the-delay of an input signal. The output may also receive a

delayed function of'tl‘le-inputs. Functional compoSition applies:
‘f(A) del™ B A g(B)del"C > g(f(A)) del™" C

This delay model is valid subject to the constraint that the inputs are well-behaved.
A signal is deﬁned as well-behaved if it do'es'not glitch. A glitCh is a pulse of
duration less than g, where g is a charactenstlc of the technology bemg used Thls |

_ property is also expressed in ITL where gisa global constant

17

well-behaved(A) 'VEde‘f"
O(tlADlen>g) A
" O(TADlen>g)

) H A and |1 A are ITL predlca.tes whlch are true of intervals which contain a rising

pulse and a fallmg pulse respectlvely
" _‘ ,. v_ll A Zdet ; skip ; : skip ; A
1 A,_ =def A skrp : A sk:p

H'ere‘temporal equality (=) is used to denote that a signal has a certain value over

‘ ’an mterval For example, A ~ {1, —}i is true of an mterval if signal A is equal to

5

: {l, —}in every state of that mterval

Fransport delay transfers this well- behaved property from its inputs to its output

‘5'wrth a time shlft

well-behaved(4) A Adel™ B > o™(well-behaved(B))

 Here O™ is an abbreviation for m O operators applied in sequence.

4.2 Modeling Transistors

Switch-level models [4] are used to descnbe ctrcurt pmnltwes n-type and p-type :

'transrstors Prevrously we deﬁned a bidirectional model w1thout delay for these

components From now on, we wrll only present models for n—type transrstors

- The model for the complementary p-type transistors are analogous

- The snmple swntch level model can be extended wrth timing mformatlon In order

to do this we must also specnfy dlrectronalnty Dlrectlons ol' transnstors are derlved

k :txslng the Prolog program descrrbed in [6] When the gate of the transnstor is on, |

18

the signal flows from sOurce to drain. Source and drain‘ nodes are not symnietrical
If the model is constramed such that the source is stable when the gate changes,

~ the delay, m, from source to drain can be expressed in ITL

“ntrans(G,S,D,m) S O(G={L,_}) Alenm> (S D)
The'_isa Prolog anonymous variable Since the ‘= operator only exammes theb
value field of the gate sngnal it does not matter what the strength ﬁeld is. ., ,
This model is subject to the constraints:

Sgﬁ beh{alve-d%G:; ot S)

4.3 | The CMOS Inverter Examphle Revisited

We will now reconsider the CMOS inverter preeen,ted at the,v'start of -this articie. '
Here delay and capacitive strength will be modeled. The_im:'erter behav_ior is

specified in ITL hy:'. L
invert(In,Out,m) =43¢ Olenm :)"((strengthen ~In) — Out)) (1)

Here strengthen speciﬁee that the outpnt of' the inverter isl always driven | 'lhls is
- true whether or not the‘input.;'is driiren ‘Note that Prolog varrables are used for

the node names. When thls behavnor is used as the deﬁmtlon of a component of :
: a cell, Prolog makes a copy of this formula and replaces the_se varlables bx the r._f .

names of the wires to which this particular instance of a gate is connected.

19

The_ irnplementation of the inverter is specified in ITL by:
' mvert-struct([n Out,m) =y

ntrans(In {o,1}, Out ,m) A ptrans([n,{l 1} Out, m)

Here {_0, 1} represents a connection to ground and {1,1} represents a connection

to- pdwer or Vyqa. For simplicity, we assume équiva.le_nt delay on the two transistors.

' W'evprocee_d by proying irwert-struct correctly implements invert. The outline of the _
derivation of behavior for the inverter is given below. First we derive the behavior

of the inverter, then we derive the constraints.
4.3.1 "Deriving" Behavior
The first step is to replace the parts ntrans and ptrans by their behavioral specifi- |

cations:

'{"{;":‘f”{ 0 i;’ ouem) "3"‘{?351‘"‘_’,{(‘),}3;)‘1“‘ =

A len m D(1 1}—»Out)
, Nexit, using the ihvers’e distributive property of O: (Ja) A-(0b) =0Oa A b:

O(In =.{l,>_}) "/\v len m D ({0, 1} —>:O'ut) A
(In: {0, _}) A lenm D ({l,l} - Out)

Usmg the assocnatlve property of A to rearrange the order of the len m and
In = X statements applymg the rule (@ A b D ¢) = (a B (b >e) tw1ce, and

'“applymg the rule (¢ Db) A (@2¢)=(a> (b A c)) ylelds

Dlenm) (In = {0,_} O ({1,1} — Out))
- ' (In = {1,_} > ({o, l} — Out))

7 The next step:is to use Case anajly‘si‘s on In. Since Inisa signa.lA it has four ‘ooss'i'ble L
~ values correspondmg to the cross product of the boolean value and st;rength ﬁelds |
.Only the boolean value field is exammed because of the deﬁmtlon of ‘f , SO these
four va.lues are covered by the cases: ({0, _},{l, -} Case 1: In = {0,_} We

- replace {0, _} = {0, ;} with true and {0, _}= {1, -} with false‘ snd.epplyv'tjhe._ -
rules (false DX)= true R (true D Y) Y and Z A true = Z, where X, Y andv.vv'f

'Z stand for arbltrary loglcel formulas Thls results in:
D In= {o, _} S (len m > ({11} Oou))
Th'rs is the case when In = {07 _}, so {1:, l}cen be reulaced with strer‘lg.tlll_eufln:* '
, Dfn ={0,_} > (le_n m D ((strengthen_ vﬁIrz) - Out))
Similarly for the case In = .{l, _}
v' o I‘nv’= {'1"—__} D.v(lert:rrr D ((strengtu_eu =In) — Out))
. Combiuing che coSes results iu the behcwiorai description: :
Dlen m D ((strengtheu ﬂ'Irz‘)‘ - Out)‘
AThis equation is the serue as the deﬁnicion'for behavior given in formula 1. 'Wev '
have shown that .the speciﬁed ‘be:havior' for the inverter can be deduced from its

structure and the behav:or of |ts components Note that we have verified both -

functlonal and tlmmg aspects of behavmr

4.3.2 Deriving Constraints |

‘, 'C‘onstraints are reasoned a.bout ina similar way to behavior. The constra.lnts for
', the mverter are derlved by composmg the constramts of the components In the_
case of the mvorter, the constraints whrch arise from the n-type and the p-type
o transrstors are srmply anded together (and the dupllcate predlcate well behaved is
i removed) | “ |
| 'Y_D Inz 0,* > stb 1,1}) A
- O(In =~ {1, -} D stb{0,1}) A
- well-behaved(7In)

~ The lormulas stb{l 1} and stb{O 1} are always true since constants are always i

~ stable. ThlS conjunction therefore reduces to the smgle constramt for the inverter:
“well-behaved(In) |
4.4 Pass Transistors and Transmission Gates

s The crrcmts that we are mterested in mclude steerlng elements as well as com-

hmatlonal elements. In steermg logrc, the steermg element is used as a swrtchﬂ

~to condmonally connect two nodeq together Steermg loglc is approprlate when

k' .the lOglC functron can be conceptuahzed as srgnals belng condltlonally steered B
-through a network bteermg elements mclude nMOS pa,ss transrstors and CMOS
vtransmrssron gates A pass transrstor has nelther channel node connected dlrectly '
' to power or ground In (,MOS a p-type and an nr-type transistor are connected

: wrth common source and dram ronnectrons to form a transmission gate as shown :

in Flgure 6.

* * * Put Figure 6 near here. * * *|

Whenever the n-type transistor of the transmlssxon gate is on, the p-type transnstor
is on as well Due to threshold drops the transmission of a loglcal ‘’is degraded

'.when passed through an n-type device, while the transmission of a Ioglcal ‘0’ lS‘

’ degraded when passed through a p—type devnce Both types of dewces are used ina .

transmnssxon gate so that both 0’s and 1 s can be transmltted wuthout degradatlon '
Our model for a transnstor does not represent threshold effects. In thxs model a-
transmission gate behaves equlvalently to an n-type pass transnstor and is treated |

as such The p-type transxstor in thls model is redundant The model used lS‘

' 'therefore the same as the n—type transistor model presented earher It is common Ce

" in switch-level models ([4], [32]) not to represent ‘threshold drops.
4.5 Modeling Charge Storage

' The transistor model used above does not sp.eci‘f)r thebehal)ior ol' the output node
when the translstor is off. Because of the capacitance in MOs cncmts, nodes
whlch become isolated as a result of transistors turning off retam their previous
~ driven value for as Iong as several mllllseconds This phenomenon is known asr
charge storage There are many sources ol' capacltance ina MOS circuit mcludmg

-capacltance due to interconnect and capacntance on the gate and channel nodes of

tranS|stors Charge storage is frequently explmted in MOS cnrcuxt deSIgn Clrcults o

» -"whlch make use of this phenomenon include the- CMOS dynamlc Iatch in Flgure 2.

The charge storage in ,thls c1rcu|t is largel_y due to the mput cap:acntance of th_e'

inverters. This is due in turn to the gate capacitance of the transistors which make

up the inverter.

Pass transistors and transmtssnon gates are modeled usmg the temporal loglc equa— S

tions’ presented in the prevnous sectlon We model charge storage by connectmg an

exp_hcnt_ ideal capacitance’ to_‘the drain node of the transistor as sho_wn in Figure 7.

23

* % Kk

* * * Put Figure 7 near here.

This capacitance is largely due to the gates of the transistors being driven. How-
ever, the effects we are interested in modeling only influence the circuit when a
node is isolated. This occurs only when a switch is open. Therefore, we model this

capacitance on the drain of a transistor. We assume the drain drives a capacitive

‘load. In fact, this load usually arises from the capacitance on the gates of the

transistors being driven.

The capacitor is described in ITL by:
cap(D) g Olen 1D (weaken D — D)

This ITL formula states that for any intervé.l of length 1, the signal D at the end of
the interval is a weakened version vof the signal D at the beginning of the interval.
The two versions of D have the same value. In other Wdrdé, a capacitor connected
to node D always retains its last logical‘ value, but weakens the strength of the

signal. The complete specification of an n-type transistor with capacitance is:

Do i_g{l(’vié}a)keﬁ o o) 5~ D))

This states that m time units after the transisi;b’r turns on, bnode D is driven. If
the transistor is on and S is a strong signal, then this overrides the memory due to
the (apacntor When the transistor is off, the memory due to the capacitor retains
the last driven value on the node. Note that the overriding effect is due to the

property of temporal assignment discussed in Section 3.

This capacitance is tdeal for two reasons. First, no capacitive value is assigned to
Two ideal capacitances on a node have the same effect as one capacitance on
the node:

24

B cap(D) V/\.‘c'ap(D)':z. cap(D)

Second ‘we assume that charge never leaks away. Thls assumptlon is valid provnded
| that the charge gets refreshed at least once every r umts of time, where r 1s a global i

-constant of the technology ThlS in turn occurs if the trans:stor connected to the

~node turns on at Ieast. once every r umts of tlme Expressmg that node G turns

~ on at Ieast once every r units of tlme in lTL
L O(l1 G) > (len < 1)

Note that we assume G falls and rises at least once.

A transistor with a capacitOr connected to its drain thus has two‘ constraints on
the sxgnal at its gate node: the constramt above, and the requlrement expressed by C
'_the well behaved predlcate These constramts are combmed in a smgle predlcate,

called control:

control(G) = well behaved()
' EI(H G) D (lcn < r)

In summary, the beha.vior of an n—-type trans'is.tor with gate source and d‘rainv .
‘.,nodes labeled G S and D respectlvely, wnth delay m from source to (lmm and N

w1th explmt capac1tance on t.he (lram node is spemﬁed:

(G={1,-} Alenm) D (S — D))
len 1D (weaken D — D)
" The constraints-on this behavior are: ‘,

- control|)
OG={l,_} Dsth S

25

This is the complete transistor model we will use.

From these constraints, it can be inferred th:;t the drain node is well-behaved.
Note that the Capacitanc;e is’ ﬁlodeled -on the drain node of every transi'sior'; The
examples prescnt.cd in thfs aft@cle have been simplified so only cépacitance which
is significant is considered. Fér example, the capacitance on the output node of

an inverter is not considered. because that node is always driven.
4.6 Clocking

In this scctioh wé cpnsider more complex clocked circuits. -Varioué ciockihg strate-
gies for CMOS circuits are discussed in Weste and Eshréghian [33]. The circuits
prvsuntmi hete employ a 2-phase clocking strategy with non-overlapping clocks.
This is referred to as pseudo 2-rphase clocking [33] because in reality four different
clock phases are used by tﬁe circuit. These phases (®4,®y, @3, 92) are shown in

Figure 8.

-t**p * ¥ %

ut Figure 8 near here.

&, and diz are non-overlapping; it is never the case that ®; and ®; are both high

at the same time. This is expressed in ITL by:

ﬂ«b.z 1,1} (b,
||‘b22: i,1} O ‘{b|

av
Y e
.“c‘c
s e

>

For simplicity we will assume that ®; is always equal to ~®,, and simifarly for ®,.

In the class of circuits considered, clocks are used to control transmission gates.

Thus &, and ®; must satisfy.the requirements of the control predicate:

26

control(®;) A control(®,)

These properties of clock sighals need to be established o‘nly ohée: Whenever a
transistor is encountered which is gated by a clock, it can: be assumed that the

control constraint on that translstor is automahcally met ln the restrlcted class

of circuits under consideration, pass transistors are gated 1e|th¢:__by clocks, or by

signals anded with clocks. »lh the latter case, the con'tro‘l.i'cons;;:ra_.i‘nt simplifies to

establishing that the signal is stable when the clock is t.nlx'e‘.‘i

4.7 Example 2: a Clocked 2-to-1 Mulhplexer

k & &

* * % put Figure 9 near here.

In this section we derive the behavior and constramts of the CMOS clockod 2-to-1
multiplexer shown in Figure 9. In the next sectlon the behavnor of the multiplexer
will be used to derive the behavior of the dynamic iatch The clocked multiplexer

behaves like a 2-to-1 muihplexer when the clock (®) is hlgh and retams its previous

value when the clock is low. This example makes use oi' charge storage and clocking

models discussed above.

4.7.4 Deriving Behavior

The behavior of the multiplexer is described in ITL as:

two-one-mux(G. A, B, X, ., m) =g4u
(O(® = {1,1}) A lenm D o
(i G = {1, _} then (A — X) else (B = X)) A
(Cilen 1 2 (weaken X-X) SRS

This behavior definition uses the conditional: -

ifathenbelsec =4t (aD b) A (~a > c)

| An 6utline of the derivation of behavior for the multiplexei follows. As usual, it

- begins with the description of the implementation of the circuit.

- two-one—mux-struct(G A,B,X,®,m) =4¢
trans-gate((G A 9),A4,X,m) A
cap(X) A
- trans-gate((—~G A <I>) A, X m) A
, cap(X)

Next, the components can be féplaced by their definitions. Note that the model

for a transmission gate is the same as the model for an n-i:ype transistor. One of

‘the capécitances is i'émoved'since cap'(‘X) A cap(X) = cap(X):
D{“G A ®)={1, l}) Alenm D(A— X)) A

-G A <I>)—{l 1}) A lenm 3(B—>X))/\
Olen1 D (weakch—»X)

Using straightforward manipulations of -logica.l formﬁlas, the first two conjuncts

are manipulated to the form:

(~{ll})/\lenm3 B
(G =1{1, 3> (A~ X)) A
(6 ={1,}) > (B~ X))

Using the definition of the conditional given above, and anding with the c.apacitAive i
‘behav‘ior, results in the behavior for the multipléxgr given at the start of this

section.

. 28

4.7.2 Derivihg Constraints

The constraints for the multiplexer are derived by composing the constraints of
the parts. The constraints of a transmission gate are the same as those for an

n-type transistor. The constraints of the parts are:

controI(G 3K

O((G A ?:)A z),_}) D sth A

control(—

O((-G A ®)~{1,_}) Dsth B

4:".‘*’!‘-’."‘

- These constraints simplify under the assumptions about. clocking. It is assumed
that any clock, ®, in the system meets the t;equirement control(®). The first and
third constraints can be simplified. In fact, We only need to show that the gate
signals are well-behaved, and that the output node X is driven often enough.
These réquirements are met by the stronger constraint O® > stb(G). This is

stronger since it can be shown that:

(O(® D stb G) A control(®)) DO
weli-behaved(G A &) A
well-behaved (-G A &)

This stronger consfraiﬁt states that if G is stable whenever ® is true, then the
resulting signal is well-behaved. We still need to show that X is driven often
enough. This is #lso a direct consequence 6f the stronger constraint since,_whén ¢
is true either G or -G is true. Thus, the output .is driven once every clock cycle.
The remaining two constraints, constraints 2 and 4 above, cannot be resolved vuntil

the component is used in a larger circuit. Thus the constraints for this device are:

two-one-mux-constraints(G, A, B, X, <I>) Sdef
(O® > sthG) A
((G A @)= {l,__}) D sth A) A
O((-G A &)~ {1,_}) Dstb B

29

5 V'Components whieh Use 2,-ph’a’se’Cl<')cking'

In the prevmus section, we discussed how clocking behanlor can be descrlbed
- in lTL and presented an example which uses one phase of a 2—phase clocking
scheme In thls section we dlscuss how components which are clocked on different
»_clock phases are cempesed.v Weete, and Esh_raghlan [31] descrlbe the operatlon of
di.fferent.memovry sfructures which employ pseudo 2-phase clocking. One Q)f th_ese

strn‘ctures is the dynamic lav.t".che which we discuss below.

* % ¥

* % % Put Figure 10 near here.

A genel;al.ized element nsing a 2;phase clocking seheme is shown in Figure 10.
f uncl(_A) is evaluated when @, is high, and stored r.by the ca.pacitorconnected to
noc‘ie B when ®, is '.low. "Si'mila‘rly, funCZ(B) is evaluated when 62' is high, and
‘ 'thevresult is available at node C when ®; is low. Remember t;hat the clock cycle
is a continuous cycle of ®, high end ®, low, followed by both clocks_lloﬂv, followed
by &, _lew end_§2 ‘high followed by beth cloc‘ks low. Thus,_ when func2(B)"is-
eveluated, B is storing the previousiy evaluated version of funcl(A)}.,“Al_so note
that,vin a correctly onerating circnit,-ld), and ®, are never‘bo.i_h' high at the same

time. This .behavior‘ is captured in ITL by the following r_ule:~

((((In ={1,1}) A (®; = {0 1}) D (len M D (funcl(A) B)))/\
((®y = {0,1}) A (®2={0,1}) D stbB) A ' ‘
(@1 ={0,1}) A (®2={1,1}) D (len N D (func2(B) - C)))) >

O((®2 = {1,1}) A lenN D func2(funel(latched(®,, A)) — C)

This rule means that if two elements are connected in series, with the first element
clocked by (I>1 and the second element clocked by @, and the node between them

is modeled with an ideal capactta.nce, then the behavnor of the comblned circuit

30

element is the composed functional behavior of the two elements. The “rulue of

the input is latched on ®,. This is specified by the function latched(®,, A)), which

 returns the value A had when @, was {1,1}. The delay is the delay from <I>2

charactenstlc of the second element.
5.1 Example 3: A Dynamic Latch
Next we will consider the behavior of the CMOS dynamic latch shown in Figure 2.

" This circ'uit is an instance of the generalized circuit element which employs 2-phase

clocking. We have already considered the structure of this circuit, and determined

the dlrectlon of signal flow through its transnstors, as shown in Figure 3. The ‘

operatlon of thls common CMOS structure is descrlbed in Weste and Eshraghian
[33].‘_When'.the latch signal L is high during ®,, a new value is stored in the latch.

‘Otherwise, the previous value is saved.

The temporal loglc descnptlon of the behavior of the latch is derlved from the

behavior of its parts. A sketch of the derlvatlon is given below. A more complete

p:es_entatnon of thls example is given in [22].
The structure of the latch is:

dlatch struct(L, D, Q,(I>l,<I>2,R) = et
-~ invert-mux(L, D, Q,®,,y,m) A
shlftstage(y, Q,®2,p)

The invert-mux is the composition of a 2-to-1 multiplexer described in the previbus

section and» a CMOS inverter. lts behavior, derived from the behaviors of its

components, is:

31

- invert-mux(A, B,C,®,D m) Zdef
o((® = {1 1}) Adlenm D
(zfA {1,_} then (strengthen ~B — D)
else (strengthen ~C — D))) A
(<I> = {0 1} O stbD))

The behavior of the.shift‘stage','derived from the behaviors of its components is:

B shiftstage(le,B’,@,M) -;—vdef |
: O®={1,1} D> (lenM D (strengthen ~1A — B))) A
(l_:l -(®~ {1,1}) - D (stbB)) :

There is one constraint on the .beh_a.vior of the shiftsta.ge:
(e (L) > (ba)

"To derive the behavior of the latch, we first expand the behaviors of the parts,
and then apply logical rules. One of the logical rules used is the 2-phase clocking

rule discussed in this section.

It is straightforWard, if t_edious, to show that the behaviors of the eomponents

~ imply the behavior of the latch, given in the following definition:

dlatch(L, D, Q, ®,,®2,R) =ae
(O if L={1,_} then
((®2 = {1,1}) A lenp D> strengthen Iatched(@l,D) - Q)
else((®, = {1,1}) A lenp D strengthen Iatched(<I>| Q) — Q) A
(@- (2 = {1,1}) D' sth Q) A
(R)

The constraints of the parts for the dynamic latch are:

1EIL/\<I)) { })Dsth
2. O((-L A {1,_})JstbQ
3. O(®, z{, ; Dsth L
4E]® ~ {1,

Dsthy

.32

The first three constra,mts are the constramts from the 2-to-1 mulhplexer of the
invert-mux component ‘and the fourth constramt is due to the shift stage. The :
constraints we wish to ha_.ve_for the dlatch state that the load signal L is st.a_ble
wﬁen ®d, is high,’and that ’thé.inplvut D is stable when it is Being loaded into} the

latch. These are expressed in ITL:

(L A &) ={1, g) :)sth)
Df 1z{,) D st L) o
These two constra.ints are identical to the first and third constraints abqve.‘ Con-
* straints 2 and 4 can be eliminated by manipulating the behavioral ei;ﬁations of the
| parts of the latch. Constraint 4 is true if the input to the shiftstage is stable during |
®,. This ih tﬁrn is true if the ,delaybthrou.gh the invert-mux is less than the length
of ®, plus the separation betweex_l $, and ®,. Constraint 3 is true if the _ouﬁput .
Q is stable during ®,. This in turn is trﬁe |f the separation bétween &, and ¥,
" is longer than the delay} throﬂghvthe inverter Which drives Q. These reqtli_remenis

put additional constraints on the relative timing of the different clock phases.:
"6 Discussion

Formal hardware 'v_ériﬁcat.ion has severél' advallt'ages over conventional methods
- such as simulation for verifying éircuits Wlth formal venﬁcatlon, sngnals are
: mampulated symbohcally Thus by provmg that an |mplementat|oﬁ meets its
specnﬁcatlon, the designer is sure that it has that behavior for all ca,ses.,,In simu-
.lvatidn the designer cah only‘ be sure of the ‘b'ehaviOr I'or'v_the cases tested. Another
advantage of vériﬁqation,is the ability té exploit modularity. A functional bloék. L
such as a lé.t‘ch need only be broved oﬁi:e no ma.ttér how many times it is used

in the circuit. In addition, a portion of the design can be proved to rmeet its

33

speciﬁcation before the rest of the desfgn is complete Thus errors can be caug.ht.‘
early in the design process Modulanty also allows small changes to a design to
Z:‘be handled easnly since only those portions of the: desngn which have been altered

need to be reverified.

These advantages do not lmply that formal verlﬁcatlon.wﬂl replace simulation.
Formal venﬁcatlon can be v:ewed as another tool in the designer’s tool box wh!ch
; gives added conﬁdence in the correctness of desngns Even though a c1rcu|t can
be proven to correctly implement lts behavioral spemﬁcatton the specnﬁcatlon
|tself could be wrong. It is therefore useful to simulate the specification to check
that it exhibits the reqmred behavnor A subset of ITL can be simulated with

: the execu_ta.ble programmmg _langnage Tempura [25|. “The Tempura interpreter

simulates this subset by finding values for the Tempura variables whfch result in
- the"temporal logic formulas being valid. Moszkowski shows hOw this app‘rOa.ch

can be used to simulate ITL descnptlons of c1rcmts Such snmulatlon is useful for
checklng that the speuﬁca.tlon does in fact describe the desired behavior of the

device.

A circuit is verified by showing thatvitsbehavior can be derived from the mathe-
maﬁcal models of the behavior of the compo_nents which make it up. If a mathe-
matical model does not capture some physical aspect_of the ci-rcuit? that physicall
aspect will not be cept.u'red in"the proof. For example, in a proof system' whose
.prir‘nitivesva're comhinetional elements which ignore delay, delay characteﬁsﬁcs of .
a' circuit cannot’ be derived'. Similarly, if char.ge-s.haring:is not r_nodel_ed, charge-
sharing bugs will not be detected. In these cases other tools such as timing ana-
lyzers_.a‘md design rule checkers are required. lt}.is important .to note that there will"
always be aspeets of behavior whieh are not captured in a model. This applies to

" models used in simulation as well as those used in formal methods. The user of a

34

\

" model should be aware of these shortcomihgs; '

- The research presented in this article provides a framework for investigating more
detailed models of tra_nsistbr behavior. There are several low level aspects of tran-
sistor behavior which our model does not capture. For example, the model cannot

express threshold drops. Thus, the need for p-type as well'as n-type transistors

in CMOS transmission gates is not apparent in this model. In addition, charge |

‘sharing bugs, races or hazards cannot be detected._ Note that thé examples have
been restricted i:o circuits ih.which races and hazards will not arise. These, as
well ‘as charge sharing, are important aspects of incorrect .MOS circuit behavior
V‘which will a.r4ise in a more general class of MOS circuits. Consideration vShovuld go
into incorporating them into the model. Weise [32] describes a verification s‘ystém

which identifies races and hazards.

We consider delays of circuit elements at the transistor level, but use a simple
model for composing these delays. Delays of elements connected in series are

added, aﬁd the maximum delay of elements _connected in pa.r#llel- is used. This

aspect of timing fnodeling should be improved. 'Ous'terh'o‘ut [29] presents several

~switch-level delay models which could be incorporated into our appro‘a.c_h.v'

.A simple improvement would result from taking into consideration resistive and ca-

pacitive effects on delay. For example, the deléiy’of a component could be modeled

by:
intrinsic delay + Rpoad X Cload

Here Rpoaq is a function of the output of the component being modeled and Cp 44

is the sum of the capacitances of the devices being driven. Further improvements |

could be gainéd by taking into consideration the waveform shape of the input wave- ’

S | 35

form whlch is dependent on the fan-out and drive capablhty of the precedmg stage

: of the circuit. Currently We assume that all waveform changes are lnstantaneous

'_ S_i'rrce “rires add an appreelahle’ amount of delay in MOS technologies these sho\jld ‘
 be modeled, and the capacitance of the materlal of ‘the wire should be considered.
Thls has not _yet‘ been done since »this information is highly dependent on the
~ actual lay0ut of a circuit. The_research presehted’ here tﬁorlldf beneﬁt'fro_m being ‘

incorporated into_a system which relates layout to cireuit implementation.

We have described how to'l’ormally derive low level timing and functio»nal behavior
from transistor level descriptiornsv_ of hardware components. This only _atldreSses
one aspect of the deslgn cycle. This approach should be ihcorporated lnto_a com- ‘
‘_puter aided design system whi'ch encourages designers to apply formal methods
from desngn conception to layout. An important advantage of formal methods is
the ablllty to relate dlﬂ'erent levels of descnptlon of a circuit. A system whlch
’mcorporates formal methods should allow many drﬂerent tools to work on dif-
ferent levels: of representatlon of a circuit, and should keep the various dlfferent
levels.consrstent. Subrahmanyam (31) describes an expert system for VLSI desrgn
 which incorporates formal methods as well as more. conventional tools. Milne [24]
describes a more revolutlonary approach which does not attempt to mcorporate
exnstmg tools where a system can be descrlbed at various dllferent levels from

specrﬁcatlon to layout and t_he dllferent levels can be formally related.

7 Related Work

" Other formalisms have been used for formal verification. These include first-order

logic, higher-order loglc_ and temporal logic.

Several approaches to formal hardware verification have been based on first-order.

36 x >

logic [1], [19]. These systems automate maﬁy aspects of the task of hardware
verification and have been used to verify complex h#rdware designs. Drawbacks
in the use of first-order logic inclvud‘e difﬁc-ulty in representing time directiy, and
difficulty in expressing‘ temporal and behavioral abstractions between different lev- ‘
~ els of description. Systems which use higher-order logic |15, [16], provide .several
advantages over first-order logic, including a more direct way of expressing ab-
str#ct.ion and a more elegant way of representing time with signals modeled as
 functions from time to values. Herbert (18] discusses modeliﬁg timing énd Func-
tion of digital"circuits using higher-order logic. Several Iafge examples from real
designs which have been verified at Ca.mbfidge using higher-order logic include the

ECL chip of the Fast.Ring [17] and the VIPER microprocessor [8|.

A third formalisni used for hardware verification is temporal logic. A major dif-
ference between using temporal logic and higher-order lbgic is the wéy time is
modeled. In temporal logic, time is implicit in the logical operators. In higher-
order logic, time is usually represented by‘aﬁ explicit time variable. For example,
the behavior of an inverter with input:I n and output Out and delay m is expressed

in higher-order logic by: B
inQeri(In,Out,m) Edf;. ‘Vt.Out(t 4,-_m) = ﬁln(t)
- fl‘he same inverter, described m ITL, héis the behavior:
invert(In,Out,m) =4 Olenm D (~In — Out)
Temporal logic has been used for srpecifyi.ngv software, hardware and communica-

tions protocols. Moszkowski uses Interval Témporal Logic to specify and reason

about digitallcircuits [27] The circuits he describes are clocked circuits which

Sy

' have delayless combmatlonal elements and memory elements as pnmltrves Sev-
eral other temporal logics have been used for hardware specrﬁcatron and verlﬁca.- .
tion. LTTL [13]| has been used to specrfy hardware at the »regrste‘r-transfer level :
and e.bOVe. ’l‘he logic programming language Tokio [12] can be used to execute
LTTL ‘speciﬁcations. The result is a simulation of a specification similar ‘.tov that
, provrded by Tempura Other uses of temporal logic in venﬁcatron mclude ‘using
Computatlon Tree Logrc to specnfy and verify the behavror of a.synchronous and
sequentnal circuits (3], [11]. Extend Temporal Logic [14] _has been used to describe.
and reason ahout VLSI circuits, including ardynamic latch similar to the one dis-
,cussed in this article. Here the behavior of a crrcurt is validated by verlfyrng that
"the speclﬁcatlon of the mput srgnals anded wrth the temporal logic descrlptronv
~ of the circuit 1mplles a specification of the output signals. Note that the user
‘must speeify the inputs and outputs, 50 the resu‘lt resembles simulation_more than

formal Verlﬁcation.-
8 Conclusions

We have presented an approach to hardware l/eri'ﬁce,tion which uses temporal logic
~ toreason about MOS VLSI circuits at the transistor level. '[;his aoproach has been
o de_monstra.ted by deriving the behavior of several examoles from the behavior of
~ their.components down to the transistor level. These examples included avdynamic
|etch which uses a 2-phase cloel(ing ‘scheme and 'exr)lo_its charge sharing. The
properties derived include the functionsl behavior of the Iatch 'con‘straints on
‘ when the inputs must be stable the time at whlch the outputs are available, and

- constraints on the lengths of the dlfferent clock phases

We have described the application of formal tools to one step in the design hier-
archy: from the transistor level to the gate level. The advantages of using formal

38

, methods inclu&e the advantages gained -by hierérchiéal and incremental ana‘lysis,‘

aﬁd by manipulating inputs .and outputs symbolica_lly.v In addition, formal meth-
6ds allow diﬂ'érent levei; of deécriptioh to be .rela.ted formally. Byb incorporatihg
many levels of description into a design system based von.for‘mal metho_d_s; errors
which occur When Vox»le level is translated into another will be detected. Such errors

“are not detected by current design tools. -

Ackﬁowledgements

Thanks to the members of the Hardware Verification Croup who have contributed
_ to.,this research. Spécial ‘thar_iks to John Herbert and Jeff Joyce for many. useful
discussions on timing and transistor modelingb. Théﬂks also to William IYCloc_ksir.l,
Rol.>ert.Co:o'per,' Mike Gordon, John Herbert a_.hd Jeff Joyce for reading and com-

“menting on earlier drafts of this paper.

39

References

(1] H. G. ‘Barrow. Proving the cOrrecthess of digital hardware designs. VLSI
Deszgn, 64— 77 July 1984.

[2] M A. Breuer and A. D Fnedman Dmgnosw & Reliable Destgn o[chltal '

Systcms Computer Science Press Inc., 1976

3] M. C Browne, E. M. Clarke, D. L. Dill, andB Mishra. Automatic. verlﬁcatlon
of sequentlal cn'cmts using temporal loglc IEEE Transactwns on Computcrs

C-35(12):1035- 1043, December 1986.

[4) R. E. Bryant. A Switch-Level Simulation Model For Integrated Logic Circuits.
PhDAthesibs, Laboratory foi' Computer Sciencé, Massachusetts Institute of -

. Technology, 1981.
5] W. F. Clocksin. Logic programming and digital circuit analysis. Journal of
. Logic Programming, 4:59-82, 1987.

[6] W. F. Clocksin and M. E. Leeser. Automatic determination of signal flow

through MOS transistor networks. Integration, 4:53—63, 1986.

[7] W. F. Clocksm and C. S. \/lelllsh Programmmg in Prolog Sprmger-Verlag,

second edition, 1984

~ [8] A. Cohn. A proof of correctness of the Viper microprocessor: the first level.
In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Speczﬁcatwn Ver-

tfication and Synthes:s, pages 27-71, Kluwer Academlc Publishers, 1988

[9] A. Despain, Y. Patt, V. Srini, et al_. Aquarius. Computer Architecture Ncws,

- 15(1):22-34, 1987.

40

-~ [10]

[11]

[12]

(13

14

[15]

I. S. Dhingra. Formél validation of an integrated circuit design style. In G.
Birtwistle and P. A. Subrahmanyam, edftors, VLSI Specification, Verification
and Synthesss, pages 2934321, Kluwer Academic Publishers, 1988.

D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits
usirig temporal logic. [EE Proécedings E: Computers and Digital Techniques,
133(5):276-282, September 1986. |

M. Fujita, S. Kono, H. Tanaka, and T. Moto-oka. Aid to hierarchical ‘and
structured logic design using temporal logic and Prolog. IEE Proceedings E:
Computers and Digital Techniques, 133(5):283—29.4,7September 1986.

M. Fujita, H. Tanaka, and T. Moto-oka. Verification with Prolog and tem-
poral logic. In T. Uehara and M. Ba.rbacci,ﬂ editors, Computer Hardware De-
’sc_riptioﬁ Languages and Their Applications, pages 103-114, North Holland,
1983. | |

A. Fusadka, H. Seki, and K. Takahashi. Description and reasoning .of VLSI

circuit in temporal logic. New Generation Computing, 2:79-90, 1984.

M. J. C. Gordon. Why higher-order logic is a good formalism for specifying

and verifying hardware. In G. J. Milne and P. A. Subrahmanyam, editors,

. Formal Aspécts of VLSI Design, North-Holland, 1986.

[16]

7]

F. K. Hanna and N. Daeche. Specification and verification of drigitva,l systems
using higher-order predicate logic. [EE Proceedings E: Computers and Digital
Techniques, 133(5):242—254, September 1986.

J. Herbert. The application of formal specification and verification to a hard-
ware design. In C. J. ‘Koomen and T. Moto—oka, editors, Computerl Hardware
Deseription Languages and Their Applicat»ions, pages 434-451, North Hol- -
land, 1985. ' | |

18]

* (19

J. M. J Herbert. 'Applt'cation of Fbrmal-Methods to Digital Syétem Design.

PhD thesis, Computer Laboratory, University of Cambridge, 1986.

W. A. Hunt Jr. FM8501: A Vcnﬁed M:croproccssor PhD thesns, Inshtute

' ,for Comput‘.mg Science, The Umversﬂ;y of Texas at Austin, 1986.

[20]
[21)

(22|

[23]
[24]

2]

[26]

21

[28]

N. P. Jouppi. TV: an nMOS timing analyzer.» In Proceedings of the 8rd

Caltech VLSI Conference, pages 71—-76, 1983.

J. J. Joyce. Hardware Verification of VLSI Regular Structures. Technical

| Report 109, Universi‘ty of Cambridge Computer Laboratory, July 1987.

M. E. Leeser. Rcasor,iing abot'zt. th.ev Function and Timing of Integrated Cir-
cuits with Prolog and Temporal Logic. . PhD thesis, Computer Laboratory,
Cambridge Umversnty, 1987. '

T-M Lin a,nd C. A. 'Mead. A hieraréhic;a.l'timing simula;ion model. IEEE
Transactions on Computer-Aided Design, CAD-5(1):188-197, January 1986.

R. Milne. Design transformation and chip planning. In G"'J Milne and

P. A. Subrahmanyam, editors, Formal Aspccts of VLSI Design, pages 23-43,

: North Holland 1986

B. C. Moszkowskl Executmg Tcmporal Log:c Programs Cambndge Umver- |

sity Press, 1986

B. C. Moszkaski. Reasoning about Digital Circuits. PhD thesis, D_epartmeht '

6f Computer Science, Stanford University, July 1983.

B. C. Moszkowski. A temporal logic for multilevel reasbning about hardware. -

Cbmputcr, 10-19, February 1985.)

J. K. Ousterhdut. Crystal: a timing analyzer for nMOS VLSI circuits. In’

Procéedings of the 3rd Caltech VLSI'Cbnference,‘ .pagés 57~69, 1983.

42

[29] J. K. Ousterhout.” Switch-level delay models for digital MOS VLSIL. In 21st
ACM/IEEE Design Automatioh,"Confcrc,n'cc, pages 542-—548, 1984.

[30] J. D. Pincus and A. M. Despain. Delay reductlon using simulated a.nnealmg

In 28rd ACM/IEEE Design Automatlon Conference, pages 690—695 1986

[31] P. A. Subrahmanyam. Synapse: an expert_ system for VLSI design. Computcr,
78-89, July 1986. | -

* [32] D. W. Weise. Formal Multilevel Hierarchical Venﬁcatwn o/ Synchronous‘
MOS VLS[Circuits. PhD thesis, Labora.tory for Computer Scnence, Mas-

sachuset.ts Institute of Technology, August 1986

[33] N. Weéte'and K. Eshra_ghian‘. Pn'ntiplcs of CMOS VLSI Design: A Systems

: Pcrspcctivc, chapter 5.4. Addison-Wesley Publishing Company, 1985.

43

A ITL Operators |

The ITL operators used in this article are defined in the table below. These

definitions are given either with the M function, as a definition in terms of other

ITL operators, or by listing its properties. The function M maps formulas and

intervals to truth values. For example, the definition of O w is given as:

My sn[Ow] =true iff n>1and M,, ,, [w] = true

This says that O w is true of an interval (s, 31, 32, 83) if and only if (iff) w is true

of the interval (s,, s, 83) which starts at the next instant of time.

Operator Name

always
next
chop -
fin
length
skip

temporal equality

temporal assignment

temporal stability

Formula

Ow

Wy we

finw
lenn
skip
Ax B

A— B

sth A

44

Interpretation/Definition

Muy. s [Dw] = true iff M, ,.[w] = true
foralli<n '

M, s.JOw] =true iff n>1and
M,, . s.[w] = true

Mog..sn [y wa] = true iff
M,,..s;,Jun] = true and
M,,. .o, [w2] forsomei 0 <i<n

Moy 0 [fin w] = true it M, [w] = true

Mao.snllen n] = true if m=n

‘slcip =4t lenl

A~ B =4 0O(A=B)

A—- B =gg Ve.((A &) D fin(B & ¢))
for ¢ static

sthbA =g Je.(A=c)
for ¢ static

Operator Name

delay

signal equivalence

weaken
strengthen

join'

Formula
Adel™ B

{Vls Sl} - {V21 Sz}

weaken{V, S}
strengthen{V, S}

ViuV,

Interpretation/Definition

Adel™ B Zqet Olen m D (A — B)

{V1,51} & {V2, S:} def
Vl = Vg A Sl = Sg

weaken {V,S} & {V,0}
strengthen {V,S} & {V,1}
{Vi,1} U {V,,0} & {V,1}

{Vz’O}U{Vlvl} \ad {Vhl}
AUA & A

Figure 1: A CMOS Inverter

e m i mim - mtmiacm et g

.

“LA

Figure 2: A CMOS Dynamic Latch

= (SLAY,

=LA

Figure 4: A Rising Bit Signal

‘del —— (AABACQ)

a) schématic

Figure. 6: ACMOS TransmiSsi,on Gate

—— D
s M1

Figure 8: 2-Phase Non-overlapping Clocks

GA

= (@GA

SGA

2 (~GA

Figure 9: A CMOS Clocked 2-to-1 Multiplexer

fur_l : | _L ' fun

- Figure 10: An Element'wh‘_i'ch Eniplbys?—phase Clocking

