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Temporal Abstraction of Digital Designs

John Herbert
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG

Abstract: Formal techniques have been used to verify the function
of reasonably large digital devices ([Hunt85], [Cohn87]), and also to
describe and reason about digital signal behaviour at a detailed timing
level [Hanna85] [Herbert86]. Different models are used: simple syn-
chronous models of components are the basis for verifying high-level
functional specifications; more detailed models which capture the be-
haviour of signals in real time are the basis for proofs about timing.
The procedure called temporal abstraction is a technique for formally
relating these two behavioral models.

The background to temporal abstraction is presented and the details
of its implementation in HOL. The HOL language ({Gordon85al) is
a computerised version of higher-order logic which has an associated
proof assistant also called HOL. In HOL one may specify behaviour
at both the functional and timing levels. This work describes how the
relationship between these levels may also be described in HOL and
reasoned about using the HOL system.

The formal transformation of descriptions of behaviour at the tim-
ing level to behaviour at the functional level involves generating and
verifying timing constraints. This process can be identified with the
conventional design activity of timing analysis. This work shows that
timing verification can be viewed, not as a separate phase of design,
but as part of a single verification process which encompasses func-
tional and timing verification. A single formal language, HOL, is used
to describe all aspects of the behaviour and a single verification sys-
tem provides all the proofs of correctness. The use of uniform, formal

techniques is shown to have a number of advantages.
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1 Introduction

All the formal specifications and proofs described in this article have been con-
structed using the HOL system. We will not describe the HOL language and
associated system; they have been presented in [Gordon85a], [Gordon85b].

In previous work we have reasoned in HOL about digital systems at two dis-
tinct behavioural levels. The HOL ECL chip proof, [Herbert88a], deals with
the synchronous behavioural level; each combinational device has zero delay, a
memory element acts as a unit delay. In the verification of basic memory de-
vices,|Herbert88b], we have reasoned about digital behaviour at the timing level;
each gate has propagation delay, each memory element has an explicit clock and
a number of timing parameters. We now relate the behaviour of the timing level
models to the corresponding synchronous level models.

The process of formally relating behaviour on different time scales is called tem-
poral abstraction. (Note, we sometimes refer to temporal abstraction as simply
abstraction.) In this work temporal abstraction is used to relate the timing level
to the synchronous level. We derive a formal relationship between timing level
models which capture closely the physical component behaviour, and synchronous
level models which provide a tractable means of verifying functional behaviour.
Related work on various abstraction mechanisms (including temporal abstraction)
is being done by Melham [Melham87].

Before presenting a formal treatment of temporal abstraction we describe some

of the ideas behind this process.

1.1 Informal Description of Abstraction

At the timing level, the clock signal is modelled just like any other signal. At
the synchronous level, the clock signal is hidden. However, we can consider the
time dimension at the synchronous behavioural level to be based on the times of
synchronising events of the hidden clock (e.g. the times of rising edges for positive-
edge triggered logic). This relationship provides the basis for relating the time
dimension of the two levels. We identify a signal at the synchronous level with a
sampled timing level signal. Successive synchronous signal values are the values
of the corresponding timing level signal, sampled on successive clocking events.
We have chosen to clarify the abstraction process by only sampling at the exact
time of the active clock event and by sampling all signals at the same time. An

identical process can be used when signals are sampled at some offset from clock




event times and when different signals are abstracted in different ways.

Figure 1 presents a timing diagram for signals of a positive-edge triggered flip-
flop. The value of data input d around the active edge is latched by the flip-flop
and appears on the q output some time after the active edge.

We sample the data input and output signals at the times of rising edges of the
clock. The sampled value of q at times t0 + 1 and t0 + 2 are the sampled value
of d at time t0 and tO + 1 respectively. For these waveforms, the flip-flop acts
as a unit delay between the sampled d and sampled q signals. This corresponds
to our synchronous level model of flip-flop behaviour. A rigorous proof of this
relationship will be given later.

Sampling the timing level signals is not sufficient to deduce that the synchronous
Jevel behaviour is exhibited. A number of timing conditions must be satisfied by
the timing level signals. For example, if a timing level flip-flop is to exhibit the
behaviour of a unit delay at the synchronous level, then its data and clock inputs
must fulfill setup, hold and minimum high and low constraints. Dealing eﬂicienﬂy
with timing conditions is an important part of the verification of digital designs
modelled at the timing level.

2 . Formalising Clock Properties

Certain concepts about clocks must be formalised for the temporal abstraction
process. Although our particular abstraction deals with regular periodic clocks,
many of the properties we formalise do not depend on periodicity. A similar set
of definitions and theorems deals with rising and falling edges. We just present

those for rising edges.

2.1 Rising Edges

We model a signal as a function from time to boolean. At each moment in time a
signal may have a value of T or F. A signal rise, which corresponds to the change
from value F to T, is thought of intuitively as occurring between two instants of
time. Formally, we define a signal as rising at time t if it is low at time t and high

at time t+1.
RISE (signal,t) = - (signal(t)) A signal(t+1)

The formal rise time can be brought within a given limit of the intuitive transition

time by choosing a sufficiently fine time scale. (This assumes that signals are
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Figure 1: Sampling of flip-flop signals




two-valued.)

A clock signal provides a succession of edges. We wish to introduce the concept
of the n'* rise of the clock. To do this we define a higher order function UP using
primitive recursion:

(Vck t.

(UP O ck t) = (RISE(ck,t) A (Y&i.(t1 < t) = - (RISE(ck,t1))))) A
(Vn ¢k t.

(UP (SUC n) ck t) =

(RISE(ck,t) A
Ati.(t1 < B) A

(V£0.((t1 < t0) A (80 < t)) => - (RISE(ck,t0))) A
(UP n ck t1))))

This definition can be paraphrased as:

the zero'™ UP of the clock is at time t if the clock rises at time t and
does not rise before then; the (n+1)** UP of the clock is at time t if
the clock rises at time t and there exists a time %1 less than t such
that the n*® rise of the clock is at time t1 and the clock does not rise

between t and t1.

2.2 Regular Signal Rises

We now introduce the idea of a rise cycle which consists of two successive rising
edges.
CLOCK_RISE_CYCLE(ck, t1, t2)

= ((t1 < t2) A RISE(ck,tl1) A RISE(ck,t2) A
(Vt.((t1 < t) A (t < t2)) => - (RISE(ck,t))))

Times t1 and t2 define a single rise cycle of the clock if t1 and t2 are successive
rise times.

A regular synchronous clock will include a periodic train of rising edges. A
further definition introduces the concept of a periodic rising edge.
CK_RISE_PERIODIC(ck,origin,p) =

(V n.CLOCK_RISE_CYCLE(ck, (n*p)+origin, ((n+1)*p)+origin)) A

(Vt.(t < origin) = - RISE(ck,t)) A
- (p=0)

The predicate CK_RISE_PERIODIC is true if the signal ck has a periodic train of

rising edges beginning at time origin and the period p is non-zero.




2.3 Time of n'* UP

We deduce that the n* UP of a clock ck, for which CK_RISE_PERIODIC(ck,origin,p)
holds, occurs when the time is (n*p)+origin. The theorem is:

CK_RISE_PERIODIC{ck,origin,p) =
(Vn t.UP n ck t = (t=(n*p)+origin))

(The n* rising edge of a clock with period p and start-up time origin occurs at
time (n#p)+origin.)

Although the result seems obvious we have proved it rather than just stated it
as an axiom. This arises from a philosophy of building from a reasonably small
conceptual basis. We have tried to restrict the number and complexity of the
definitions and axioms used. For example, the definition of the n'* rising edge did
not assume periodicity or anything about falling edges. Other than in the basic
definition of RISE, we have not referred to signals having the values T or F.

In a similar manner, the corresponding theorems for falling edges can be proved.
Higher-order functions FALL and DOWN are analogous to RISE and UP.

2.4 Periodic Rises and Falls

Based on the theorems already proved about sequences of rising and falling edges, ‘
we now formalise regular clock cycles where both rising and falling edges occur. A
single cycle of a clock is defined in terms of rising and falling signals. A predicate
ONE_CYCLE is defined as follows:
ONE_CYCLE(ck,t0,p_Llow,p_high) =

FALL(ck,£0) A

DURING(t0,t0+(p_low-1)) (At. = RISE(ck,t)) A

RISE(ck,t0+p_low) A

DURING(t0+p_low,t0+(p_low+(p_high-1)))(At. - FALL(ck,t)) A
FALL(ck,t0+(p_low+p_high))

The predicate ONE_CYCLE is true if a single cycle of clock ck, as described in terms
of rising and falling edges on the left-hand side of the definition, occurs. We might
expect that p_low and p_high correspond to the lengths of time when the clock is
low and high respectively. However the definition was just based on the concepts
of rises and falls and does not refer to the logic levels.

A periodic clock consists of a regular succession of cycles. We define a predicate
CLOCK_CYCLES(ck,origin,space,mark) as follows:

CLOCK_CYCLES(ck,origin,space,mark) =




(Vn. i
OIE_CYCLE (ck, (n*(space+mark) )+origin,space,mark) A
0 < space A
0 < mark A
(Vt. t < origin =—> -~ FALL(ck,t)) A
(Vt. t < (origintspace) => -1 RISE(ck,t)))

The predicate CLOCK_CYCLES describes what we expect to be true for a periodic
clock. The clock has regular cycles of rising and falling edges, non-zero intervals
between edges and no irregular edges before the regular cycles begin.

Although we have not referred to logic levels in the definitions, we do need to
deduce when the clock signal is high and low. We deduce the following theorem:

CLOCK_CYCLES(ck,origin,space,mark) —>
(DURING
((n*(space+mark))+origin,
(n*(space+mark))+(origin+space))
(At. - ck t) A
DURING
((n*(space+mark))+(origin+space), 2A
((n+1)*(space+mark))+origin)
(At. ck £)) A
DURING
(((n+1)*(space+mark))+origin,
(((n+1)*(space+mark) ) +origin) +space)
(At. - ck t)

Thus space and mark correspond to the lengths of time when the clock ck is low
and high respectively. The clock period is space + mark and the offset from the
origin is origin.

In later proofs, we need a particular form for the higher-order function which

relates the n*” rising edge to its time of occurrence. UP does not match this format.

To facilitate the later proofs we define a new function UP_0OF. This change of higher-
order function is essentially cosmetic.
UP_OF is defined as:

UP_OF clk = (An. UP n clk)
The predicate CLOCK_CYCLES describes regular cycles of rising and falling edges.

We can easily deduce the behaviour of the train of rising edges. We then use the

theorems proved earlier to deduce the times of rising clock edges:

CLOCK_CYCLES(ck,origin,space,mark) —>
(Vn t. UP_OF ck n t = (t=(n*(space+mark))+(origin+space)))




2.5 Stability With Respect To a Clock Signal

We require that some signals fulfill timing conditions with respect to:the clock
signal. Two higher-order functions which are used to describe these conditions are
STABLE_INTERVAL and STABLE_ABOUT_UP.

STABLE_INTERVAL is defined as follows:

STABLE_INTERVAL(tO,t1)event sig =
(1 data. DURING(event - tO,event + t1)(At. sig t = data)) A

0 < t0 A
t0 < event

STABLE_INTERVAL(tO0,t1)event sig states that the signal sig has some constant
value over the interval event - t0 to event + t1, and the conditions 0 < t0 and
t0 < event are met. The condition 0 < t0 means that sig must be defined at
time event and the interval is non-empty. The condition t0 < event means that
the length of the interval is always t0 + 1.

STABLE_ABOUT_UP is defined as:

STABLE_ABOUT_UP(clk,startcycle) (t0,t1)sig =
(Vn. STABLE_INTERVAL(tO,t1)(ct. UP_OF clk(n + startcycle)t)sig)

(¢ is the choice operator in HOL.

¢t.P t is a value of t chosen such that P t is true.)

STABLE_ABOUT_UP (c1k,startcycle) (t0,t1)sig states that for all n, the signal sig
is stable around a time chosen such that c1k has the n + startcycle rising edge
at that time.

This corresponds to stating that the signal is stable around all rising edges of the
clock after (and including) the startcycle rising edge.

3 Temporal Abstraction Basics

A synchronous level signal may be thought of as a sampled version of a correspond-
ing timing level signal. We consider the value of the synchronous level signal at
time n to be the n** sampled value of the timing level signal. A selection function

is used to determine whether a value at the timing value is sampled.

3.1 Definition of Abstraction Function

The function used to relate the timing level to the synchronous level is ABS.
ABS is defined by:




ABS select signal n = signal(et. select n t)

ABS select signal n (f.e. the value of signal, abstracted using the function select,
at synchronous time step n) is defined to be the value of signal at a time t chosen
such that select n t is true.

select n t is true if time t at the timing level corresponds to the synchronous time
n. The function select determines which values at the timing level are sampled
to get values at the synchronous level.

ABS select signal (which is a function from natural numbers to any type) is the
synchronous level signal corresponding to signal at the timing level.

Although we have explained the abstraction function in terms of abstraction from
the timing to the synchronous level, it can be used to relate any two description
levels which can be characterised in a similar way.

We have chosen to model signals at the timing level as functions of the natural
numbers, and a unit interval corresponds to some interval of real time. At the
synchronous level, signals are also modelled as functions of natural numbers. A
unit interval now corresponds to the intervals between synchronizing clock events.
In relating these two levels, the sampling times are the times of synchronizing
clock events. For example, the sample times will be times of rising clock edges for

positive-edge triggered logic.

3.2 Theorems of Abstraction

We call a theorem which states a relationship between timing level behaviour and
its counterpart synchronous behaviour a theorem of abstraction.

The essential part of such theorems is the statement of the relationship between
the two levels of abstraction. Certain timing conditions must be fulfilled if the
abstraction from the timing to the synchronous level is to hold. Some of these
timing conditions relate to the stability of input signals.° When composing two
devices, one may need to verify stability conditions on the interface signals. To
allow this verification, the stability of output signals is also deduced when the
abstraction of a device is performed.

The theorems of abstraction we deduce, follow this general format:
input stability conditions =—
clocking conditions =
timing level behaviour —

synchronous level behaviour A
output stability assertions

10
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This may be paraphrased as:

IF
the input stability conditions are satisfied, and
the clocking conditions are satisfied, and
the timing level behaviour holds,

THEN

the synchronous level behaviour holds, and
certain output stability assertions hold.

This form of abstraction theorem allows us to compose devices easily. When
composing, we can use the assertions of output stability of one device to eliminate

the corresponding input stability conditions of another device.

4 Abstraction of Component Models

In this section we describe how we formally relate timing level component models

to their synchronous level counterparts.

4.1 Components Modelled at the Synchronous and Timing
Levels

Three standard components are now described formally at both the synchronous

and timing behavioural levels.

4.1.1 Synchronous Level Component Models

The predicates describing the inverter, two-input NOR gate and simple flip-flop
at the synchronous level are INV_S, NOR2_S, DTYPEi2_S.
These are defined as:

INV_S(in,out) = (V4. out t = —in %)

NOR2_S(ini,in2,out)

(Vt. out t = = (in1 t V in2 t))

DTYPEi2_S(d,q,gbar) = (Vt. q(t + 1) =d t) A

(Vt. gbar(t + 1) = - q(t + 1))

11




The behaviour of these components is similar to that to that used in previous

work. A slight difference in the flip-flop definition is explained in [Herbert86].

4.1.2 Timing Level Component Models

The timing level behaviour of the inverter and two-input NOR gate are described
by predicates INV_t and NOR2_t.
These are defined as:

—-in t)

INV_t(in,d0,out) (Vt. out(t + dO)

NOR2_t(in0,in1,d0,out) = (Y t. out(t + d0) = - (in0 t V inl t))

We use the master-slave as the timing level flip-flop. The master-slave is de-
scribed as a structure of propagation delay inverters and NOR gates which fulfills
the appropriate internal conditions and whose external parameters can be related

. to the internal gate delays.
The definition of the predicate MASTER_SLAVE describing the flip-flop is:

MASTER_SLAVE(d,clk,q,qbar,setup,hold,mark,space,start finish) =
(3 dbar dO clkbar d3 a_0 b_0 d1 d2 qa gb db d6 a_i b_i d4 47 d8 d9.
(setup = (MAX(d1,d0 + d2)) + (46 + de)) A
(hold = 0) A
(space = setup) A
(mark = d8 + (d9 + ((MAX(d4,d7)) - (MIN(d7,d4))))) A
(start = (MAX(d4,d7)) + (d3 + (d8 + d9))) A
(finish = (MIN(d4,d7)) + d3) A
INV_t(d,d0,dbar) A
INV_t(clk,d3,clkbar) A
NOR2_t(d,clk,d1,a_0) A
NOR2_t(dbar,clk,d2,b_0) A
NOR2_t(a_0,qb,d5,qa) A
NOR2_t(b_0,qa,d6,qb) A
NOR2_t(qa,clkbar,d4,a_1) A
NOR2_t(qb,clkbar,d7,b_1) A
NOR2_t(a_1,qbar,d8,q) A
NOR2_t(b_1,q,d9,qbar) A
MS_INTERNAL_CONDS(d1,d2,d43,d5,d6,d8,d9)

The inverter, NOR gate and master-slave flip-flop are modelled exactly as in

previous work on timing [Herbert88b].

4.2 Abstraction of NOR Gate

A NOR gate is not a clocked device and so we can choose what clock events
define the synchronous behaviour. For the flip-flop example in this section, we

12




abstract timing level signals by sampling on the rising edges of a clock. We do the
abstraction of the NOR gate in the same manner.

A simple case of the abstraction of a NOR gate is when we assume that the
input signals are stable for one time unit greater than the propagation delay of
the gate.

We have proved the following theorem:

STABLE_ABOUT_UP(c1k,0) (t0 + del,t1)in0 A
STABLE_ABOUT_UP(c1k,0) (t0 + del,t1)ini —

NOR2_t(in0,ini,del,out) =

NOR2_S (ABS(UP_OF ¢1k)inO,ABS(UP_OF clk)ini,ABS(UP_OF clk)out) A
STABLE_ABOUT_UP (c1k,0) (£0,t1 + del)out

This can be paraphrased as follows,

IF
the inputs are stable from t0 + del before rising edges until some time t1
afterwards, and
the timing level NOR behaviour with delay del is satisfied,

THEN

the input and output signals abstracted on the clock rising edges satisfy the
synchronous level NOR behaviour and

the output signal is stable from t0 before rising edges until t1 + del after.

ABS(UP_OF c1k)in0O, ABS(UP_OF clk)ini and ABS(UP_OF clk)out are synchronous
level signals which are derived from the timing level signals in0, ini and out by
abstraction on rising edges of the clock c1k. The synchronous level NOR behaviour
(described by predicate NOR2_S) holds for these signals.

In Figure 2 we present some waveforms for a timing level NOR gate and the cor-
responding synchronous level signals obtained by temporal abstraction. Inspection
of the synchronous level values shows that the output at a synchronous time step
is the nor function of the inputs at that time step. This is the purely functional
relationship specified for a synchronous level NOR gate by predicate NOR2_S.

In Figure 3 we illustrate the part of the theorem of abstraction which relates to
signal stability. Signals are specified as being stable over certain intervals of time.
Given that the inputs are stable around each clock rising edge, we can deduce that

the output is stable over an interval about the same clock edge.

i3
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TIMING
LEVEL:
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Figure 2: Temporal abstraction of timing level NOR signals
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int:

10 + del 11

clk:
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0 | t1+del

Figure 3: Stability relationship for timing level NOR signals
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4.3 Abstraction of Synchronous Flip-flop

The master-slave flip-flop is a clocked device and requires that certain conditions
are fulfilled by a well-behaved clock and data signals.
We have deduced the following theorem for the abstraction of the master-slave.

STABLE_ABOUT_UP(c1k,0) (min_setup,min_hold)d —

CLOCK_CYCLES(clk,origin,space,mark) A
start < (space + mark) A

min_mark < mark A

min_space < space —»

MASTER_SLAVE
(d.clk.q.qbar.min_setup,min_hold,min_mark.min,space,start.iinish) ==

DTYPE12_S(ABS(UP_OF c1k)d,ABS(UP_OF clk)q,ABS(UP_OF clk)gbar) A

STABLE_ABOUT_UP(c1k,1) ((space + mark) - start,finish)q A
STABLE_ABOUT_UP(clk,1)((space + mark) - start,finish)gbar

This can be paraphrased as follows,
IF

the data input is stable from the setup time before rising edges until the hold

time afterwards, and

the clk is a regular periodic one with space and mark times which satisfy

certain conditions, and
the timing level behaviour of a master-slave implementation holds,
THEN

the abstracted input and output signals satisfy the synchronous level flip-flop
behaviour of DTYPE12_S, and

the output signals are stable from an interval around all rising clock edges
after the first one.

4.3.1 Restrictions on Inputs

The restriction on the data input, d, is that it must be stable from min_setup
before rising edges until min_hold after. The clock high and low times, mark and
space, must exceed the minimum high and low times for the flip-flop.

There is also a restriction: start < (space + mark). This condition requires
that the period of the clock be greater than the flip-flop timing parameter start.

16




The condition ensures that output changes caused by a clock event occur before
the succeeding clock event. This means that we get the correct value on the output
when we sample on the clock event times.

This condition was unexpected. A formal mathematical treatment often forces
us to re-examine some aspect of a problem. In this case, we had overlooked a
slightly obscure but necessary condition. A flip-flop which does not fulfill the
restriction can act quite well as a synchronous memory unit but cannot be related

by the above abstraction process to unit delay synchronous models.

4.3.2 Stability of Outputs

In the theorem of abstraction for the master-slave, we have deduced certain sta-
bility assertions for outputs q and gbar, s.e.

STABLE_ABOUT_UP(clk,i) ((space + mark) - start,finish)q A
STABLE_ABOUT_UP(clk,1) ((space + mark) - start,finish)gbar

The 1 in the above expressions means that q and gbar are stable about all clock
rises after the first one (cf. definition of STABLE_ABOUT_UP).

To deduce the synchronous behaviour of the flip-flop we assumed that the input
signal was stable about all clock rises. f.e.

STABLE_ABOUT_UP(c1k,0) (min_setup,min_hold)d

We need to deduce that flip-flop outputs are stable around all clock rises if the
output of one flip-flop is to provide the input for another flip-flop. To do this we
demand that all flip-flop outputs be stable over a certain interval around the first
rising clock edge.

The predicate START_STABLE is used to state this condition. This predicate is
defined as follows:

START_STABLE(t1,%2,clk,q,gbar) =

STABLE_INTERVAL(t1,t2)(et. UP_OF clk O t)q A
STABLE_INTERVAL(t1,t2)(et. UP_OF clk O t)gbar

START_STABLE(t1,t2,clk,q,qbar) states that signals q and gbar are stable from t1
before the first rising edge of ¢1k until t2 after. '

We use START_STABLE to define the extra restriction that we are placing on flip-
flop implementations. We demand that the flip-flop outputs are stable from time
(space + mark) - finish before the first rising edge until start after this edge.
This restriction is:
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START_STABLE((space + mark) - finish,start,clk,q,qbar)

By adding this restriction on the flip-flop implementation, we can now deduce
that q and gbar are stable around all rising edges i.e. :

STABLE_ABOUT_UP(clk,0) ((space + mark) - start,finish)q A
STABLE_ABOUT_UP(clk,0) ((space + mark) - start,finish)gbar

If all flip-flops fulfill the extra requirement of output stability then all flip-flops
satisfy a unit delay synchronous level behaviour such as that defined by DTYPE12_S.
This holds even when the flip-flop input signals are generated by another flip-flop.

5 Temporal Abstraction of a Digital Design

Temporal abstraction was used to deduce the synchronous level behaviour of a
gate ‘and flip-flop modelled at the timing level. We now consider structures of
components modelled at the timing level. An implementation which consists of
primitive components modelled at the timing level is called a téming level imple-
mentation. An implementation consisting of synchronous component models is
called a synchronous level implementation.

To verify designs modelled at the timing level we must do temporal abstraction
of many components. We have devised an efficient procedure to do this. The pro-
cedure is well-suited to a life-cycle of functional design and verification followed
by the introduction of timing level models. In a later section this procedure is
demonstrated by taking an example circuit through all stages of design and veri-
fication at the synchronous and timing levels. We firstly describe our perception
of the réle of synchronous and timing level models in the design life-cycle.

5.1 Synchronous and Timing Levels in Design

A design procedure of top-down specification and implementation, followed by
bottom-up verification is assumed. However all the ideas discussed apply equally
well to other design procedures.

In the initial design of a circuit issues like detailed timing are secondary to
achieving the correct functionality. Therefore the initial specification and verifi-
cation of a circuit can be based on simple synchronous level models. The design

can be specified and verified at all levels of the structural hierarchy. A high-level
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specification of a device like the ECL chip can be verified using these synchronous
level primitive components.

Having verified the function of the circuit at the synchronous level, a particu-
lar physical realisation can be chosen and the implementation is mapped onto a
structure of physical components. More detailed, timing level models are intro-
duced in order to capture the behaviour of the physical components. We assume
that the physical components can be modelled as propagation delay gates. The
functional specification is then verified with respect to the fiming level implemen-
tation. Following this process the high level specification is formally related to
an implementation in which the models capture closely the behaviour of physical

components.

5.2 Verification of Timing Level Implementation

We must verify that the implementation using components modelled at the timing
level achieves the same functional behaviour as the synchronous level implementa-
tion. In doing this we must also verify the timing properties of the implementation.
Figure 4 depicts the derivation of functional behaviour for a timing level imple-

mentation. There are two stages to this procedure.

5.2.1 Temporal abstraction

In the first stage we apply temporal abstraction to modules which consist of prim-
itive components. All these modules must correspond to modules in the syn-
chronous level implementation. The temporal abstraction process separates the
functional and timing parts of the behaviour. We deduce that, under certain tim-
ing constraints, a functional behaviour holds and some outpu$ timing assertions
are true,

The function we deduce for a module must satisfy the functional behaviour of
the corresponding module in the synchronous level implementation. This con-
dition means that the functional behaviour of all modules in the timing level
implementation has been related to the functional behaviour of all modules in the
synchronous level implementation. We want to demonstrate that the total timing
level implementation achieves the functional behaviour of the synchronous level
implementation. Verifying each sub-unit is not sufficient; we must compose the

results and verify the top-level of the design.
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5.2.2 Function-timing composition

The second stage of verification deals with the function and timing at all higher
levels of the design hierarchy. We call the process of deducing the function and
timing properties of a device from the function and timing of its components
function-timing composition. Function-timing composition is used to deduce the
behaviour at all higher levels in the structural hierarchy.

Function-timing composition involves:
1. Verifying the timing constraints on interface signals between components.

2. Deducing the timing constraints and timing assertions of the composite de-

vice.
3. Deducing the functional behaviour of the composite device.

The main effort in function-timing composition is in verifying timing. The
functional behaviour of each module in the timing level implémentation has al-
ready been related to the functional behaviour of a corresponding part of the
synchronous level impilementation. The composition of functional behaviour in
the synchronous level implementation has already been achieved. By matching
functional behaviours to those at the synchronous level we can use the result of

composition obtained in the synchronous level proof.

6 Circuit Design Example

We illustrate the use of temporal abstraction in the design life-cycle by taking part
of through all stages of design and verification. The circuit is part of the modulator
section of the the ECL chip chip ([Hopper86] and is used to detect a modulation
error. The circuit is specified, implemented and verified at a synchronous level. A
timing level implementation is then related to the previous synchronous implemen-
tation by temporal abstraction. We verify that the timing level implementation
of the device satisfies the top-level synchronous specification.

The circuit schematic with sub-blocks identified, is given in Figure 5.

The example follows a sequence of;

o Top-down synchronous design, involving specification and implementation.

¢ Bottom-up verification of synchronous design.
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Introduction of timing level models of components.

Temporal abstraction to separate timing properties and function.

Composition of timing and function throughout the hierarchy.

Verification of device specification for timing level implementation.

7 Synchronous Level Specification and Verifica-
tion

The example circuit is specified, implemented and then verified at the synchronous

level,

7.1 Top-down Synchronous Design

The circuit is part of an interface chip for the Cambridge Fast Ring [Hopper86].
The modulation system used in the Cambridge Fast Ring is based on delay mod-
ulation. In the basic schenie, data can be transmitted using two lines. Boolean
values (denoted by T and F) are encoded by the changes on the lines at successive
clock ticks. The value T corresponds to changes on both lines; F corresponds to
a change on one line. Neither line changing is an error, a modulation error. The

example circuit detects a modulation error.
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The predicates, CHANGED and DEMODULATE_ERR, used in this example are defined

as follows:

CHANGED ina t+ = - (ina t = ina(t - 1))
DEMODULATE_ERR(ina,inb)t = — CHANGED ina t A — CHANGED inb t

Top level specification and implementation

We give a specification for the top-level behaviour and then define a structure
of sub-blocks to implement this structure.

The specification of behaviour is defined as:

MODERR_SPEC(ina,inb,moderr) =
(Vt. moderr(t + 3) = DEMODULATE_ERR(ina,inb)(t + 1))

The output moderr indicates if a modulation error occurred on inputs ina and inb
two time units earlier. The device does not detect errors at time 0, hence the t+1
in the specification.

We choose to implement the circuit as a structure of three sub-blocks. The
implementation is defined as:

MODERR_TOT(ina,inb,moderr) =
(3 qa qgb.
MODERR_PART (ina,qa) A

MODERR_PART (inb,qb) A
MODERR_OUT(qa,qb,moderr))

Sub-block specification and implementation
The specifications of behaviour for the sub-blocks are:

MODERR_PART_SPEC(ina,q0) (Vt. q0(t + 2) = CHANGED ina(t + 1))

MODERR_OUT_SPEC(qa,qb,moderr) = (Vt. moderr(t + 1) = = qa t A -~ gb t)

The implementations of these sub-blocks are defined as:

MODERR_PART (ina,q0) =
(311 12 10 13 14.
INV_S(ina,10) A
DTIYPE12_5(10,11,12) A
NOR2_S(ina,11,13) A
NOR2_S(10,12,14) A
DTYPE21_S(13,14,q0))

MODERR_0OUT(qa,qb,moderr) =
(Imod_d.
NORZ_S(qa,qb,mod_d) A
DTYPE11_S(mod_d,moderr))
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All the components within the sub-blocks are primitive gates and flip-flops so
there is no further decomposition.

We have now constructed a hierarchy with specifications at each level above the
lowest primitive component level. We now verify that the structures do achieve

the specified behaviours.

7.2 Bottom-up Verification.

We firstly prove that the implementations of the lowest-level blocks satisfy their
specifications.
These theorems have been proved:

MODERR_PART (ina,q0) = MODERR_PART_SPEC(ina,q0)

MODERR_0UT(qa,qgb,moderr) => MODERR_OUT_SPEC(qa,qb,moderr)

The implementations consisting of synchronous level gates and flip-flops have
been proved correct with respect to the specifications of the blocks. We can now
use the specification for each block rather than the implementation when verifying
behaviour at the next level in the hierarchy.

The next level is the top level. We have proved that the top-level specification
is satisfied by the implementation:

MODERR_TOT(ina,inb,moderr) —> MODERR_SPEC(ina,inb,moderr)

This theorem states that the implementation, consisting of synchronous elements
at the lowest level, satisfies the specification of behaviour defined by predicate
MODERR_SPEC. The specification and verification of the device at the synchronous

level is now complete.

8 Timing Level Implementation

We now implement the example device using components modelled at the timing
level rather than at the synchronous level. We use actual values derived from
a gate-array data sheet (Appendix 1) for the propagation delays of gates. The
timing parameters for the master-slave flip-flops are derived from the delays of
its component gates. These delays are got from the same data sheet. Thus, the
timing level implementation corresponds directly to a structure of propagation

delay gates such as might comprise a gate array realisation.
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8.1 Implementation Structure

The structural hierarchy of the timing level implementation is exactly the same as
the synchronous level implementation. The primitive components are now mod-
elled differently.

We define the predicates MODERR_PART_t and MODERR_OUT_t to describe the struc-
tures at the timing level which correspond to the synchronous level implementa-
tions MODERR_PART and MODERR_OUT.

These are defined as follows:
MODERR_PART_t{(ina_t,clk,space,mark,qa_t) =
(310_t 11 _t 12_t 13_t 14_t qa_Ob_t.
INV_t(ina_t,73,10_%) A
MASTER_SLAVE(10_%t,¢lk,11_t,12_t,267,0,166,267,267,101) A
NOR2_t(ina_t,11_%t,63,13_t) A
NOR2_t(10_%,12_%,563,14_t) A
MASTER_SLAVE_2
(13_t,14_t,clk,qa_t,qa_0b_t,267,0,156,267,2567,101) A

START_STABLE((space + mark) - 267,101,clk,1i_%t,12_t) A
START_STABLE((space + mark) - 267,10i,clk,qa_t,qa_Ob_t))

and

MODERR_OUT_t(qa_t,qb_t,clk,space,mark,moderr_t) =
(d mod_d_t modbar_t.
NOR2_t(qa_t,qb_t,63,mod_d_t) A
MASTER_SLAVE
(mod_d_t,clk,moderr_t,modbar_t,257,0,166,257,257,101) A
START_STABLE((space + mark) - 267,101,clk,moderr_t,modbar_t))

All the timing level components are in a 1-to-1 correspondence with similar com-
ponents in the synchronous level implementations. This is not necessary; we just
require that the timing level components achieve the same functional behaviour
as the synchronous level implementation.

The non-component terms in the timing level implementation, involving the
predicate START_STABLE, state the requirements that flip-flop outputs must be sta-
ble before the first clocking edge. The use of these extra terms in the timing level

implementation has been explained in section 4.3.2.

9 Verification of Timing Level Implementation

We now verify that the implementation using components modelled at the timing
level achieves the same functional behaviour as the synchronous level implementa-

tion. In doing this we also verify the timing properties of the implementation. The
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derivation of functional behaviour for a timing level implementation is depicted

in Figure 4. There are two stages to this procedure: temporal abstraction and

function-timing composition.

9.1 Temporal Abstraction

The first stage of the verification process involves performing temporal abstraction
of structures of components modelled at the timing level.

These theorems follow the pattern of:
input stability conditions —
clocking conditions ==
timing level behaviour —

synchronous level behaviour A
output stability assertions

We have proved theorems of abstraction for the two timing level structures
MODERR_PART_t and MODERR_OUT_t.
The theorem of abstraction for MODERR_PART_t is:

STABLE_ABOUT_UP(c1k,0) (ina_t_t0,ina_t_ti)ina_t A
383 £ ina_t_t0 =—

CLOCK_CYCLES(clk,origin,space,mark) A
166 < mark A

267 < space A

6567 < (space + mark) =

MODERR_PART_t(ina_t,clk,space,mark,qa_t) —>

MODERR_PART(ABS(UP_OF clk)ina_t,ABS(UP_OF clk)qa_t) A
STABLE_ABOUT_UP(c1k,0) ((space + mark) - 257,101i)qa_t

The theorem of abstraction for MODERR_OUT_t is:

STABLE_ABOUT_UP(c1k,0) (qaO_t_t0,qa0_t_t1)qa_t A
STABLE_ABOUT_UP(c1k,0) (gbO_t_t0,qb0_t_ti)qb_t A
310 < qa0_t_t0 A

310 < gqbO_t_t0 =

CLOCK_CYCLES(clk,origin,space,mark) A
166 < mark A
267 < space —

MODERR_OUT_t(qa_t,qb_t,clk,space,mark,moderr_t) —>
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MODERR_OUT
(ABS(UP_OF clk)qa_t,ABS(UP_OF clk)qb_t,ABS(UP_OF clk)moderr_t) A
STABLE_ABOUT_UP(c1k,0) ((space + mark) - 257,101)moderr_t

We describe the theorem for MODERR_OUT_t.

Input signals ga_t and qb_t must be stable from 31ns before rising edges until
some (unconstrained) time afterwards. The clock signal must be a regular one with
high and low times greater than 15.6ns and 25.7ns respectively. These restrictions
on clock high and low times can be translated into a minimum clock period of
41.3ns and a mark-space ratio of approximately 3:5.

Given that the input and clocking constraints are satisfied, we can deduce that
the timing level implementation, MODERR_OUT_t, satisfies the synchronous level be-
haviour, MODERR_OUT for signals qa_t,qb_t and moderr_t abstracted on rising clock
edges.

We also deduce that the output moderr_t is stable around rising edges of the
clock for an interval determined by the clock period mark + space. If mark and
space fulfill the minimum clocking requirements, then moderr_t is stable from
15.6ns before edges until 10.1ns afterwards.

The temporal abstraction process has enabled us to separate timing and function.

We deduce for groups of components modelled at the timing level:
e Timing properties.

~ Timing constraints consisting of input stability conditions and clocking
conditions.

— Timing assertions stating when outputs are stable.

e Function i.e. the behaviour at the synchronous level.

The temporal abstraction of modules is tedious but not difficult. We have au-
tomated the process for the combinational parts of the design. If the timing level
models of components do not match the synchronous ones than some manipula-
tion will be necessary to prove that the timing level achieves the synchronous level
behaviour. We do not require equivalence, just that the timing level behaviour

implies the synchronous level.

9.2 Function-timing Composition

In the first stage of timing level verification the function and timing properties of

modules have been deduced. Function-timing composition is now used to verify
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all higher levels of the design hierarchy. Function-timing composition derives the
function and timing of a part of the design from the function and timing of its
components.

In function-timing composition the timing constraints on interface signals are
also verified. A theorem stating the function and timing of a module will usually
have stability constraints on inputs and will assert when outputs are stable. In
function-timing composition, the assertions of output stability for one module can
be used to verify the input stability constraints of another. If one fails to verify
these timing requirements, then redesign or adjustment of component delays may
be necessary.

The timing level implementation at the next level is described by predicate
MODERR_TOT_t. This is defined by:

MODERR_TOT_t(ina_t,inb_t,clk,space,mark,moderr_t) =
(dqa_t gb_t.
MODERR_PART_t (ina_t,clk,space,mark,qa_t) A

MODERR_PART_t (inb_t, clk, space ,mark,qb_t) A
MODERR_OUT_t(qa_t,gb_t,clk,space,mark,moderr_t))

The timing level implementation is a structure of sub-blocks, each of which
corresponds to a similar sub-block in the synchronous design. Above the level of
primitive components, there is a direct correspondence between all modules in the
timing and synchronous level implementations.

Deducing the function and timing properties of MODERR_TOT_t involves compo-
sition of the function and timing properties of its sub-blocks MODERR_PART_t and
MODERR_OUT_t. The conditions of stability for the inputs of MODERR_OUT_t are ver-
ified by the stability assertions on the outputs of both MODERR_PART_t modules.
Therefore in the theorem stating the behaviour of the composite device we just
have constraints on its external inputs.

The following theorem stating function and timing properties of MODERR_TOT_t has
been proved.

STABLE_ABOUT_UP(c1k,0) (inb_t_t0,inb_t_t1)inb_t A

383 < inb_t_t0 A

STABLE_ABOUT_UP(c1k,0) (ina_t_t0,ina_t_ti)ina_t A
383 < ina_t_t0 =

CLOCK_CYCLES(c¢lk,origin,space,mark) A
166 < mark A

267 < space A

567 < (space + mark) —>

MODERR_TOT_t(ina_t,inb_t,clk,space,mark,moderr_t} —>
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MODERR_TOT
(ABS(UP_OF clk)ina_t,ABS(UP_OF clk)inb_t,ABS(UP_OF clk)moderr_t) A
STABLE_ABOUT_UP(c1k,0) ((space + mark) - 257,101)moderr_t

The predicate MODERR_TOT describes the behaviour of the synchronous level im-
plementation of the example device. We have therefore proved that the timing
level implementation achieves the same functional behaviour as the synchronous

level implementation.

9.3 Statement of Correctness

We have already proved that the synchronous level implementation satisfies the

device specification:

MODERR_TOT(ina,inb,moderr) = MODERR_SPEC(ina,inb,moderr)

We have now deduced that the synchronous level behaviour holds for the ab-
stracted signals of the timing level implementation. We can therefore deduce,
using a single rule of inference, that the device specification holds for the ab-
stracted signals of the timing level implementation. This theorem is presented in
Figure 6.

STABLE_ABOUT_UP(clk,0) (inb_t_t0,inb_t_t1)inb_t A

383 < imb_t_t0 A

STABLE_ABOUT_UP(clk,0) (ina_t_t0,ina_t_ti)ina_t A
383 < ina_t_t0 =—>

CLOCK_CYCLES(clk,origin,space,mark) A
166 < mark A ‘

267 < space A _

667 < (space + mark) —>

MODERR_TOT_t(ina_t,inb_t,clk,space,mark,moderr_t) —

MODERR_SPEC
(ABS(UP_OF clk)ina_t,ABS(UP_OF clk)inb_t,ABS(UP_OF clk)moderr_t)

Figure 6: Correctness of timing level implementation

The inputs ina_t and inb_t must be stable from 38.3ns before rising edges
of the clock until some time afterwards. The clock must have a period greater
than 56.7ns and the minimum lengths it must remain high and low are 15.6ns
and 25.7ns respectively. If these constraints are satisfied then the timing level
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implementation ensures that signals ina_t, inb_t and moderr_t abstracted on the -

rising edges of the clock signal c1k satisfy the functional specification of the device.

This ends the verification of the example device. We have proved that an im-
plementation, using component models which capture closely the physical device
behaviour, satisfies a high-level functional specification. We have also deduced the
timing constraints on the input signals to the device and the minimum clock high
and low times.

Modelling closely the physical behaviour has a number of advantages. We can
feel more confident that the physical device will achieve the functional behaviour.
We know the timing constraints on the input signals and the maximum clock

frequency.

10 Discussion

10.1 Relationship to Timing Analysis

The process of generating and verifying the timing conditions of a circuit is called
timing analysts. Timing analysis is important at LSI and VLSI levels of integra-
tion. The physical device has a scarcity of probe points; timing problems can
be inadvertently introduced when sub-blocks of a large circuit are combined; the
layout contributes to timing problems.

In performing temporal abstraction we generate a number of timing conditions
which must hold if the timing level circuit is to achieve the synchronous level
behaviour. Given the actual signal timing parameters and circuit delays we can
deduce whether these conditions hold. Formally deducing and verifying these
timing conditions is a similar process to non-formal timing analysis.

Important activities in timing analysis are:

1. Determining whether paths in the design meet stated timing criteria.
For example, data signals must arrive at clocked elements in time for valid

sampling but not too early (i.e. set-up and hold times must be observed).
2. Calculating minimum clock period.

3. Identifying critical paths (i.e. paths whose delay is a limiting factor to the
minimum operating speed of the circuit).

The first two activities form part of formal timing verification. Constraints on

the stability of input signals are determined by timing requirements such as set-
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up and hold times, and the path delays. Deducing and verifying these timing
constraints corresponds to the first activity.

The second activity is part of formal timing verification. We deduce the min-
imum clock high and low times, and the minimum clock period. For example,
the modulation error device has a minimum clock period of 56.7ns and minimum
clock high and low times of 15.6ns and 25.7ns respectively. (Some devices may
only have clock high and low constraints; the minimum clock period is therefore
the sum of the minimum clock high and low times.)

Identifying critical paths has not formed part of temporal abstraction. However
the derived timing constraints could be analysed for this purpose.

10.2 Advantages of Formal Timing Verification

Formal verification of timing conditions allows us to deduce a more abstract, syn-
chronous level behaviour for a structure of components modelled at the timing
level. The synchronous level behaviour provides the basis for the more usual func-
tional verification of the implementation. We therefore explicitly relate the process
of timing verification to functional verification. Although we separate timing and
functional behaviour, both are based on unique timing level models of components.
Non-formal timing analysis is an independent part of the digital design process and
is not formally related to functional verification.

The formal verification is compositional and exploits the design hierarchy. The
timing properties of a device can be deduced from the timing properties of its
components. When modules are composed timing constraints on interface signals
must be verified or added to the constraints of the composite device. Enforcing
these constraints means that only valid compositions are achieved. Verification
of timing properties hierarchically indicates the source of timing errors and bot-
tlenecks. For example, the minimum clock period of modules MODERR_PART_t and
MODERR_OUT_t are 56.7ns and 41.3ns respectively. Thus, MODERR_PART_t limits the
speed of the composite device MODERR_TOT_t.

The formal verification of timing can be extended to include function. When
we separate timing and function we use the worst case timing behaviour, ignoring
~ function. The basic models of components describe both the timing and functional
behaviour and so we can include functional information without changing these
models. Taking function into account, the timing behaviour of a NOR gate might
state that a stable high on any input guarantees output stability. Different parts

of the design can be verified with or without functional information in a consistent
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fashion due to the unique underlying models of components. The use of functional
information is of practical importance because bogus timing problems are found

" when function is ignored.

10.3 Summary

We have devised a procedure of temporal abstraction followed by function-timing
composition to derive the behaviour of the timing level implementation. Effi-
ciency is achieved by separating timing and function, and relating the functional
behaviour of the timing level implementation to that of the synchronous level
design. The procedure is modular and hierarchical and therefore the sources of
timing errors and bottlenecks are clearly indicated.

The formal verification of timing fits into a design life-cycle of functional design
and verification, followed by timing level implementation and verification. Proofs
based on synchronous level models can be done independently of the timing level
models. When the timing level models of components are introduced, it is not
necessary to repeat any proofs of correctness of the functional behaviour.

Verifying the functional behaviour of a timing level implementation involves
generating and verifying various timing properties. We have identified this pro-
cess with non-formal timing analysis of circuits. In contrast to non-formal timing
analysis, the formal verification of timing conditions is explicitly related to the
verification of functional behaviour. As far as we know, the idea that timing anal-
ysis provides a link between detailed timing models and synchronous behavioural

models has not been noted or formalised previously.
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Appendix 1
Delay of Gates in Bipolar Gate Array

Typical gate delay in nanoseconds
as a function of fan-in and fan-out.

Fan-out

4.8 7.3 9.8 123 | 149 | 17.4

5.3 7.8 10.3 | 129 | 154 | 179

8.1 10.7 | 13.2 | 15.7 | 18.2 | 20.7

Fan-in 87 | 112 | 137 | 16.2 | 18.7 | 21.3

115 | 140 | 16,5 | 19.1 | 21.6 | 24.1

120 | 145 | 171 | 196 | 221 | 246

149 | 17.4 | 199 | 224 | 249 | 275

RVINIO | PhWIN] -

154 | 179 | 204 | 229 | 255 | 28.0




