Technical Report R

Number 119

Computer Laboratory

Pilgrim: a debugger
for distributed systems

Robert Cooper

July 1987

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1987 Robert Cooper

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Pilgrim: A Debugger for Distributed Systems*

Robert Cooper
Cambridge University Computer Laboratory
Corn Exchange St., Cambridge, CB2 3QG, England
31July 1987

Pilgrim is a source-level debugger for Concurrent CLU programs which
execute in a distributed environment. It integrates conventional debugging
facilities with features for debugging remote procedure calls and critical
region based process interactions. Pilgrim is unusual in that it functions on
programs in the target environment under conditions of actual use. This has .
caused a trade-off between providing rich and detailed information to the
programmer and avoiding any unwanted alteration to the computation being
debugged. Another complication is debugging one client of a network server
while avoiding interference with the server's other clients. A successful

methodology for this case requires assistance from the server itself.

I am designing and implementing a debugger in order to investigate the debugging of concurrent
and distributed programs. The kinds of programs [-wish to debug are written in a high level
laxj.guage with type-checked facilities for process interaction and remote operations. They will
exécute on the nodes of a local computer network and interact with the other programs and

services which exist on such a network.

I begin by presenting the important ideas behind the debugger and describing the environment in
which it is to operate. After describing the debugger in outline, I present a more detailed analysis
of the aspects of debugging concerned with concurrency and distribution and how they are handled

by the debugger.

1. Motivation.

There are three themes motivating the design of the debugger. The first is the employment of a
high level language. While the hardware technology of distributed computing has existed for a

decade, the software technology has been much slower to develop. The rise of language level

*Presented at the 7th International Conference on Distributed Computing Systems, Berlin, 21-25 September 1987.

remote procedure call (RPC) was the first important step. The next ought to be source level
debugging of distributed programs. By this I mean that all components of the program's state
should be accessible, and where appropriate modifiable, in source language terms. Besides the
obvious convenience of debugging at the source level, many of the techniques for concurrent and
distributed debugging described in this paper would be impossible without information about the

types of variables and objects in the program.

The second theme is that of debugging distributed programs in their target environment under
real conditions. Despite the best efforts during program design and development, many bugs will
remain even after significant and systematic testing in a debugging environment. Hence the need
for debugging tools which operate on programs under conditions of actual use, and perhaps after
those programs have gone into service. This is especially so with distributed programming where
the surrounding environment may be large, complex and (regrettably) not fully specified and thus
impossible to simulate in all its detail. Consequently a program should not have to be recompiled,
refinked or restarted in some special “debug mode” in order to debug it. The debugger must be
able to operate on the normal code generated by the compiler and any debugging support included
inthe object program must not adversely affect the program's performance when it is not under
control of the debugger. It is the generally unacceptable performance of debugging support which

enc&uragés programmers to leave out that support once “all the bugs are out”.

The third theme is the maintenance of time consistency while debugging. The programmer wishes
to slow down or interrupt the execution of the program to examine its workings more closely. But
if as a result the program itself perceives time progressing faster or different processes execute at
different rates, a faithful execution of the program will not occur. The correctness of a concurrent
program should rarely depend on its rate of execution but faulty programs can be expected to
contain timing errors of just this kind. The debugger in concert with other elements in the
distributed environment must maintain a consistent and preferably unaltered time écale for the
user program. Otherwise the symptoms of the bug under study may disappear or another bug may

reveal itself and confuse matters.

The ideas of this section are embodied in the design of the Pilgrim debugger. Implementation of

Pilgrim is nearly complete. Its use will test the efficacy of this approach to debugging.

2. The Mayflower environment and Concurrent CLU.

Pilgrim is a debugger for Concurrent CLU programs. CLU [Liskov 81} is a sequential language
which provides very good support for user defined abstract data types and modular programming.
It has been extended at Cambridge with light-weight processes and RPC to produce Concurrent
CLU. (Concurrent CLU should not be confused with the Afgus language, developed at MIT and

based on CLU, which supports user defined, atomic, distributed objects.) In Concurrent CLU the
processes at one node of a distributed program share membry. Process interactions are mediated
by monitors, critical regions [Cooper 85], and semaphores, although the language does not enforce

mutually exclusive access to memory.

Communication between nodes takes place via RPC. The RPC mechanism [Hamilton 84] is fully
type-checked and permits arbitrarily complex objects of user defined type to be transmitted
between nodes. Two RPC protocols are supported: the exactly-once protocol provides reliable
communication in the absence of node failures while the faster, less reliable maybe protocol allows
the programmer to handle both transient errors and failures with retry strategies appropriate to

the application at hand.

Each node of a Concurrent CLU program runs on a single processor 8MHz MC68000 system
connected to a Cambridge Ring, and executes under the Mayflower supervisor, a small operating
system which supports multiple light-weight processes. Mayflower makes use of many of the

servers which comprise the Cambridge Distributed Computing System [Needham 82].

3. Overview of debugger structure.

Pilgrim is itself a distributed program. Every node of a user program has a piece of debugging
sui)port code, called the agent, included in it by the linker. The agents remain dormant until the
debugger proper, running on another node, connects to the user program to begin é debugging
session. A debugger can be connected to a node at any time to investigate a suspected bug. At the
end of a debugging session the debugger may be disconnected and the node continue executing.
This is usually unwise if changes have been made to the contents of variables etc. because

correctness of the node's operation is easily compromised.

To fulfill the goals described in Section 1 the agent code must be small and impose little or no
overhead on the program when not connected to the debugger. This is one of the factors in deciding
whether to implement some function in the agent or the debugger itself. For instance all activities
involving the user interface, type-checking, and access to the source-to-object mapping

information produced by the compiler and linker are performed in the debugger proper.

" Some functions are logically required in the agent. These include memory access and the lowest
level h;xndling of hardware traps which are necessary in any debugging mechanism. In Pilgrim
the agent must also handle the initial connection to the debugger and recover from failures of the
connection or of the debugger itself. A session identifier (a unique but guessable number) is
generated at the beginning of a debugging session and must be supplied upon all interactions

between debugger and agent. The agent uses no timeouts when communicating with the

debugger. Instead it is possible for a second debugger to forcibly connect to the agent - a process

which results in the original session being abandoned and all breakpoints etc. cleared.

The functions provided by the agent would constitute a large security hole in any system.
Authentication of the debugger and encryption of debugger-agent communication have been
ignored in Pilgrim but should be addressed in any debugging system'in a non-research

environment.

Some functions while not necessary in the agent, would involve much more effort to implement in
the debugger and would be very inefficient. For instance breakpoints could be achieved with many
invocations of a low-level memory access primitive and some means of freezing all the processes on
a node. Instead three less primitive operations are defined, one to set a breakpoint at a machine
address, one to clear a breakpoint, and one to step a process over a breakpoint it has encountered.
Similarly another agent function will invoke a procedure in the user program and return pointers
to any results it returns. The dominant cost in most of the functions provided by the agent is the
round-trip delay in communicating with the debugger. Expressing each logical request from the

debugger as a single network interaction improves the overall performance.

A less obvious function provided by the agent is the display of objects in the user program. CLU
encourages programmers to write print operations for their user defined types. The built-in types
such as int and record also have print operations. These print operations are what the debugger
uses to display the contents of variables ete. Since the print operations will be different for -
different programs the print operations must reside in the user program and be invoked by the
agent. In Pilgrim the agent's procedure invocation mechanism is used, combined with a special

output stream implementation which redirects output strings to the debugger.

Support for RPC and concurrent processes are two important parts of the agent. These are covered
in the following sections which look at debugging issues specific to distribution and concurrency.
4. Debugging Remote Procedure Calls.

This section focuses on the facilities for debugging remote procedure calls, and how they are
implemented in Pilgrim.

4.1 Debugging requirements of RPC,

One aim of the RPC support is to preserve the impression of RPCs as very similar to local
procedure calls. This is achieved by providing stack backtraces which cross node boundaries, and
avoiding any "mode-switches” when the user accesses code or data on multiple nodes. RPC is

different from local procedure call because failures and retries may be visible to the programmer.

When using the debugger the programmer may wish to know why one RPC failed, or how many
retries have been made while performing another. The failure of a call performed with the maybe
RPC protocol could be due to either the call or reply packet being lost. The debugger ought to allow -

the programmer to find out which is the case.

The requirements of distributed debugging, as just described, are relatively straightforward; the
main difficulty lies in the implementation. The debugger requires information about in-progress
and recently completed RPCs. A lot of mechanism is needed to provide this and the

implementation must not compromise the speed of RPC when the debugging support is not being

used.

4.2 A first attempt at RPC support.

I was keen to decouple as much as possible the agent code from the rest of the Concurrent CLU
runtime library to make it less susceptible to changes in the library. One way to achieve this, for
the RPC support, was to monitor all RPC packets through a hook in the network device driver. A
state machine would be maintained for each in-progress RPC and this would provide the
in]fo;mation needed by the debugger. Since the RPC protocol itself is quite stable, and less likely to
change than the library code which implements it, this approach looked promising. It hecame
clear however that the work performed in the RPC debugging support would be of the same order
as that in the RPC implementation itself, Thus RPCs might take twice as long when under control

of the debugger. This was unacceptable.

4.3 The final Pilgrim implementation.

I decided instead to modify the RPC system directly. In the Mayflower RPC implementation most
of the information needed by the debugger is already collected in the data structures maintained
by the RPC runtime system. For instance the call identifiers (which uniquely name a particular
invocation of a remote procedure) and the client process issuing the call are associated by a table in
the client RPC mechanism. A similar table in the server associates the server process handling the
call with the call identifier.

Some necessary information can be found only in local variables of a procedure stack frame of the
RPC mechanism. This frame will either be at the top of the client process's stack, or at the bottom
of the server process's stack (see Figure 1). [added an extra variable to these procedures in a
known position in the stack frame. This variable points to an information block containing the
process identifier, the remote procedure name, the call identifier, and an enumeration giving the

current state of the protocol.

4 \ - N
....... RPC | —
R runtime i _ Node B
debugging _" frame | other
nfo frames
...... L other
— frames — RPC e, 5
runtime S
Node A - - ~ frame : deblui;gmg :
1o
RPC client RPC server et :

& process) & process)

Figure 1. Finding RPC debugging information.

The data described so far concerns only in-progress calls. To aid in the debugging of recently
completed or failed calls I added a ten-slot cyelic buffer describing the outcome of ten most recent
RPCs. The only information maintained is the call identifier and whether the call failed or

succeeded.

The effect of these changes to the RPC mechanism is to increase the time for an RPC by 400yus. For
a null RPC (calling a remote procedure which has no arguments or results) this represents a slow-

down by 2.5%. On more typical RPCs the slow-down is much less.

Similar techniques to those used here will be applicable to other RPC systems such as the Birrell-
Nelson RPC system for Cedar [Birrell 84], and indeed should be easier to realize. In general the
more failure recovery and orphan detection provided by an RPC system, the more information
useful for debugging will be maintained by the RPC implementation and the less extra work will
be necessary by the debugger. The main difficulty for Pilgrim was to find information about

maybe RPCs for which the RPC mechanism maintains little state information.

5. Debugging concurrent processes.

This section examines the debugging of multiple concurrent processes. The most important issue
here is the maintenance of time consistency between those processes when a breakpoint occurs. In
addition, this section describes how the concurrent environment complicates the implementation
of many conventional debugger features. The presence of other concurrent users in a distributed

system is addressed in the next section.

r A 4 2

Process P Process Q

L—‘——“ RPCs node B —"——+ y NOde B

signal(s) wait(s, 10)

Node A

-

. ey, _

Figure 2. Breakpointing with remote processes.

_/

5.1 Breakpointing a concurrent program.

- A fundamental operation in most sequential debuggers is the breakpointing of the program to
allow its state to be examined. Here I discuss what the appropriate counterpart of this operation is
for concurrent and distributed programs. In the following I refer to breakpointing, but the same
arguments apply any time the programmer wishes to interrupt the execution of the program to

examine its state such as after an execution error.

Ideally the programmer wishes to instantaneously suspend all of the processes in the program. A
number of problems may arise if some processes continue executing when a breakpoint oceurs.
Firstly the still running processes may alter the state which is being observed. Secondly, the
running processes, and the breakpointed ones after they are resumed, may carry out a different
computation to the one that would have occurred had the breakpoint not happened. Thirdly, if the
programmer wishes to alter the state of the program or cause a different computation to occur, he

or she may be unable to do so if some processes are still running.

Consider the example in Figure 2. Process @ on node B is waiting on the semaphore s with a
timeout of 10 seconds. Also on node B is the body of a remote procedure which signals s. Process P
on node A calls this remote procedure. If a breakpoint occurs and the processes on node A are
halted before those on node B then th.ere is a chance that @ will "see” that P has halted. That is, its
semaphore wait may timeout whereas if the breakpoint hadn't occurred it may have been
signalled by P first.

Strictly speaking a process need not be halted at the instant a breakpoint occurs. Rather it can
continue executing until it either notices that some processes are halted, or alters some state

accessible to them.

The arguments in Lamport's paper on distributed time consistency [Lamport 78] are relevant
here. The communications between processes and the events internal to each process together

impose a partial order on the events in the entire system and the implementor of a distributed

system is free to choose any total order which is consistent with that partial order, When a
breakpoint occurs, any process may continue running only so long as it does not upset the partial
ordering of events which would have occurred had the breakpoint not happened. This will be

referred to as transparently halting a process.

In practice, transparent halting of multiple distributed processes is difficult to achieve. Where it is
impossible a weaker requirement should still be met, namely that a “typical computation” occurs
following a breakpoint. A typical computation is one that could reasonably have occurred in the
absence of the debugger. The execution of a distributed program is subject to the nondeterminism
of processor scheduling, network delay and packet loss. As long as the effects of the debugger on
the ordering and timing of program events are similar to those caused by these other sources of
nondeterminism we can say a typical computation has occurred. If a debugger causes atypical
computations bugs which occur in the normal execution of a program might never be able to be

reproduced while under control of the debugger.

It is useful to review the ways in which processes that are still running can observe or affect halted
processes. Processes on the same node of a computer network can communicate through common
memory. This may take place via data objects designed for inter-process sharing such as
semaphores, monitor locks, or critical regions. These objects may in turn protect access to
sequential data objects like arrays and records. Interaction may occur through undisciplined or
unsafe concurrent access to data. It is important to consider this possibility since the programs
which the debugger must cope with probably contain bugs of this kind. Processes on different
nodes may communicate by sending and receiving messages. Processes may interact by not
sending a message or not updating memory before some time limit has expired. (The action of
reading a clock, or timing out from a semaphore or message wait can be modelled as a message
exchange with some clock process.) Another kind of interaction which is often overlooked is

communication via third parties such as network servers or long term shared memory such as
files.

5.2 Distributed breakpointing in Pilgrim.

Pilgrim maintains a logical clock at each node of the program. When a breakpoint occurs the
processes and clocks on each node are halted. The processes executing on the node which
encountered the breakpoint are halted immediately. Those executing on other nodes are halted as
soon as possible subject to communication delays. A significant feature of the technique is that
programs under control of the debugger do not execute more slowly because of this breakpointing

mechanism.

The clock delta.

The logical clock is implemented by computing the difference, or delta, from the real time clock
value maintained by the Mayflower supervisor. The real time clocks at each node are assumed to
be synchronized correctly. The delta is subtracted from all date and time values read by the user
program. When the program is executing normally, a copy of the delta is held in each node. While

the program is halted at a breakpoint the delta is found by:
current time — time of breakpoint + previous time delta .

At the end of a debugging session the logical clock is reset to real time. The effects of this may be
unpredictable thus adding to the arguments against letting the program continue executing after

the debugger has been disconnected.

Halting processes on a single processor,

It is relatively easy to transparently halt processes which are time sliced on a single processor. A
primitive was added to the Mayflower supervisor allowing one process to place other selected

© processes on a special wait queue. Any processes in this queue which were waiting on semaphores
have their timeouts temporarily frozen. The agent code uses this primitive not only when a
breakpoint is hit but upon hardware exceptions and user program failures as well. It could also be
used during any long debugging actions which might upset the user program's timing. (No such

actions exist yet.)

There are processes which must not be halted upon debugging. These include some processes in
the runtime support library and the agent code itself. A bit was added for this purpose to the
supervisor's process data structure specifying whether or not the process it describes should be
halted.

Halting distributed processes.

To halt remote processes, messages are sent by the agent on the node which encountered the -
breakpoint to the agents on other nodes that are under control of the debugger, On receiving this

message each agent will halt the processes on its node.

To achieve transparent halting it would be necessary to guarantee to send messages to every
affected node in less time than it would take a single RPC to reach any of them. This is to ensure
each node is halted before any of its processes can timeout because of non-receipt of a message from

another haltéd node. Something approaching this can be achieved on a single broadcast network

such as Ethernet. On a Cambridge Ring a number of messages must be sent serially because
although the ring uses a broadcast medium it does not provide a broadcast facility at the data-link
layer. Even on an Ethernet the requirement for a reliable broadcast is not met by a single

broadecast or multicast packet,

A number of protocols are available which do achieve the necessary reliability [Mockapetris 83].
The particular protocol used in Pilgrim is closest to a negative acknowledgement.scheme. A
sequence of messages is sent, one to each node under control of the debugger. On a Cambridge
Ring the transmitting hardware is informed if the packet just sent was not received by the
destination network interface. This information can be obtained by the agent and will cause a
retransmission. This guarantees all the destinations receive the message into their network
buffers. It is assumed that either the agent software in those nodes is functioning correctly and

will process the message, or the entire node has crashed.

Effects on program execution of the halting of distributed processes.

Under this broadcasting scheme a breakpoint and the subsequent halting of processes may affect
the following computation if some nodes are unable to be contacted soon enough. Under the
Mayflower system nodes communicate by RPCs, the minimum latency time for which is about 8
ms. Unfortunately, because of the efficiency and light-weight semantics of the Mayflower RPC
system, this is close to the 3.5 ms required for a small Basic Block message (which is the lowest
level protocol generally available). Thus we could be confident of contacting only two nodes in the

time available for halting remote processes.

In such cases the strict requirements of transparent halting may not always be fulfilled, although
a typical computation will still occur. “Well-behaved” programs, which use timeouts appropriate
to the reliability and delay of the network, will be handled correctly by the debdgger. But highly

timing-sensitive faults in programs comprising more than three nodes may be difficult to debug.
5.3 Other approaches to breakpointing.

A number of more elaborate schemes for breakpointing were seriously considered but rejected as

unsuitable for target environment debugging.

One scheme would be to ensure no other nodes had halted before allowing a process to receive a
message, resume from a semaphore wait, or claim a monitor lock. Thus there would be no
possibility of processes running on after a breakpoint and altering the future of the computation.
Unfortunately determining if other nodes had halted requires a network interaction so the
program would now execute at considerably reduced speed. Even the claiming of a monitor lock,

which occurs very frequently and experiences little contention, would probably result in network

10

traffic. Such poor performance is not suitable for a target environment debugger. Further, unsafe

process communication via shared variables could not be handled by this scheme.

Reversible or replayable execution.

An approach taken in some debugging proposals [Jefferson 85, Di Maio 85] is to avoid interrupting
the execution of the program at all when debugging. Instead a modified version of the program is
generated which saves transcripts of all inter-node communication and records process states (by
checkpointing or by maintaining history lists of variable contents). This highly instrumented
program is then run to completion or failure. The impression of reversible execution is achieved by
restarting a node from a particular checkpoint and then replaying the external communication it
received. Unless subtle effects such as the exact timing of process time slicing can be
deterministically reproduced this impression will fail to be convincing. The checkpointing and
transcripting operations will take time and distort the original computation if care is not taken. A
lot of space is needed for the retained information and the overheads will be severe unless most of
this information is already being maintained for other reasons, as is the case with Chiu's proposal

for debugging atomic actions [Chiu 84].

5.4 Accessing and modifying process information in Pilgrim.

Besides maintaining time consistency, the debugger should allow access to and where possible
modification of all the concurrency constructs in the language. Thus the execution states of
processes (running, waiting on a semaphore, waiting on a monitor lock, ete.) should be visible, and
it should be possible to transfer a process between these states from the debugger. The procedure
call stacks of all processes should be visible, and their variables and the objects they refer to

modifiable.

The implementation of process management in Mayflower is split between the supervisor and the
Concurrent CLU runtime library. For debugging purposes a new supervisor primitive was added
to obtain those components of a process's state which are known only by the supervisor, These are:
whether the process is runnable or waiting; if runnable, the register set; if waiting, th’e semaphore

or monitor queue it is waiting on; and the process priority.

Changes to the runtime library modules were mainly restricted to hooks in the process creation
and deletion code to call procedures in the agent. The agent must know of the existence of every
process and maintain information which assists in mapping the supervisor's view of process state

to the Concurrent CLU language view. A process must be able to determine its process identifier

11

for many debugging activities. Although a function existed to do this, it was extremely slow and

had to be re-implemented.

5.5 Implementation difficulties in a concurrent environment.

In a concurrent execution environment some of the implementation details of conventional
debugger features become difficult. Mayflower uses a time slicing scheduler and the possibility of

a process switch at any moment underlies many of the difficulties described below.

Interpreting the top of stack.

Pilgrim allows procedure call stacks to be examined at any time, not just when the process that
owns the stack has hit a breakpoint. This complicates the task of interpreting the words at the
very top of the stack. The stack may be left, temporarily, in an unusual state during some
assembly language procedures in the runtime library and during procedure entry and exit
sequences. This is compounded in Concurrent CLU's case by the multiplicity of code sequences
used which depend on the number of arguments and results of the procedure. Very similar

problems are reported by the designers of the Blit debugger [Cargill 85].

The two pieces of information required from the top of stack are a pointer to an object code location
and a pointer to a stack frame for the highest well formed frame on the stack. The compiler and
assembler were modified to generate tables describing, for a given program counter value, where
these values could be found (e.g. in a register, or at a fixed offset from the top of stack pointer).
Assembly language code had to abide by some extra conventions for this scheme to function, and

the few assembly routines which didn't were modified.

Critical library routines.

Some pieces of important library code must not be interrupted at all. Most important is the heap
allocator which is implemented as a critical region. Since the agent allocates objects off the heap,

any process which is interrupted within the allocator must be allowed to exit before halting.

Setting and clearing breakpoints.

Pilgrim sets a breakpoint by the familiar technique of replacing the object code at the desired
location by a trap instruction which causes an internal interrupt. A process is stepped over a
breakpoint by replacing the original code and executing that process in trace mode for one
instruction, before replacing the trap. Trace mode is a 68000 debugging feature which generates

an internal interrupt after every instruction. Care must be taken since the object code is shared by

12

multiple processes. While the breakpoint is thus temporarily removed, other processes must be

halted to prevent them from executing through the breakpointed location without trapping.

6. Debugging in the presence of shared services.

Until now it has been assumed that the user program existed in isolation on a distributed system.
But a characteristic of distributed programs is that they use public servers shared with other users
and programs on the system. When a program is breakpointed the programmer might wish
processes on any servers it is using to halt, in addition to processes in the program itself. Processes
which remain running on the servers can affect the state of the halted program. A server may
notice lack of response in a client and cancel the client's session or abort the transaction currently
in progress. A server may grant a resource to a client to be reclaimed after a predetermined time
period, or a client and server may exchange date/time values as data. In all cases the client's and

server's different views of time while the client is being debugged will cause problems.

The processes on the file servers, name servers, print servers and so on cannot be halted since
other users would be denied service for unreasonable periods. Equally it is not always convenient
to use private copies qf these services because of the expense and the difficulty of entirely
reconstructing the state in each duplicated service. The dynamics of load provided by other

concurrent users of a distributed system is especially hard to reproduce.

It is not possible, in general, for the debugger to insulate the server from the effects of client
processes halting, or to insulate the halted processes from the actions the server might take. The
debugger could send periodic messages to a server to maintain a deadman's handle or an idle (
handshake for well-known protocols but quite complex application level protocols can be built on
top of RPC and the debugger could not be expected to understand all of these. If the client is
breakpointed while holding locks on important shafed resources, it may be wrong to deny service

to other clients by refreshing those locks.

Therefore it seems important for servers to handle the possibility of their clients being
breakpointed while they themselves continue running and take appropriate action. If debugging
is considered in the design of shared services from the outset a number of advantages may result.
If a client is breakpointed, the server may schedule work for that client in the background, or

release some of the resources held by that client (as long as they can be regained later).

It is also useful for some local processes, on the client nodes, to remain running. For instance it
may be easier for the process in the client which handles all communication with the file server to

remain running than to complicate the code of the file servers themselves so that they can handle

13

debugging. The term “server” is used in the following but the facilities provided and the examples

given also apply to local processes which continue running.

6.1 Support for debugging clients of shared servers.

The debugging system must give support to servers to enable them to maintain some degree of
time consistency for a client that is being debugged. Pilgrim provides two procedures for this
purpose, one implemented by the agents on all nodes of a program being debugged, the other by
the debugger itself.

The agent provides the procedure:
get_debuggee_status = proc () returns (network_address, date)

The first result is the network address of the debugger to which this node is connected. A special
value signifies that the node is not currently under control of a debugger. The second result is the
value of the node's logical clock. The logical times at each node of a program being debugged
should be almost the same and the time reported for a node which is not being debugged should

equal real time — within the tolerance of the distributed clock synchronization algorithm used.

The debugger maintains a log of the brea‘kpoints which have occurred and for each how long the
program's execution was interrupted. The sum of these values will be almost the same as the
logical time deltas at all nodes of the program. This breakpoint log is used to implement the

procedure:
convert_debuggee_time = proc(date) returns (date)

which takes a date/time value for some point in the past and returns the equivalent client logical
date/time. Date/time values maintained by the server referring to past events can be converted
into the client's time scale by calling the convert_debuggee_time procedure. The network address

provided by the agent gives the correct destination for the call.

6.2 Examples of use.

To understand how the above support is useful some examples follow. The servers used in the

examples are taken from the Cambridge Distributed Computing System.

14

Ignoring long timeouts.

The simplest way a server can use this debugging information is to determine if the client is under
control of a debugger. If so the server can extend indefinitely any timeouts relating to the client.
For instance the Resource Manager allocates machines to users and programs. These resources are
reclaimed by the manager after long timeouts (typically three hours) have expired. Extending the
timeouts on a client's resources, at least until the end of the debugging session, will satisfy almost

all situations.

Even if there is some client code which handles the expiration of these timeouts, this is unlikely to
be debugged by waiting three hours for a timeout to actually expire. Rather the programmer will

build a small test harness which allows particular timeout situations to be created.

Precisely extending time intervals.

With more sophisticated use of the debugging information a server can extend timeouts by

- precisely the amount necessary to match the client's logical time scale.

For instance the authentication manager, AOTMan, issues temporary unique identifiers or TUIDs
which are capability-like objects describing rights of access or service. TUIDs must be continually
refreshed before their timeouts, typically two to five minutes long, exp}re. Findingabugina
client, such as accidentally omitting to refresh a TUID, would be much easier if AOTMan

extended timeouts by the correct amount when the elient was under control of the debugger.

With the mechanisms above there are two ways for a server to correctly extend a timeout. An
algorithm for the first method is shown in Figure 3. The server obtains the client's logical time just
before the timeout begins. If the timeout expires the time is obtained again from the client. If the
client has not been breakpointed in the interim the difference between these two times should
equal the length of the timeout in real time. If a breakpoint has occurred the period remaining in
the timeout can be calculated and used as the new timeout value as another iteration Qf the loop is

performed.

This scheme has the disadvantage that an invocation of get_debuggee_status on the client is
required at the start of every timeout, even when that client is not being debugged, and even when
the timeout will not in fact expire. The second method, shown in Figure 4, avoids this work unless
the timeout does expire. However it then involves a call to both get_debuggee status and

convert_debuggee_time.

15

timeout: = original timeout

client: = network address of client

client_start, debugger_address: = call get_debuggee_status () at client
% This is a remote procedure call.

keep_waiting: = true
while keep_waiting do
keep_waiting: = false

semaphore_wait (sem, timeout)
except when timed_out: _
client_now, debugger_address: = call get_debuggee_status () at client

if now() > client_now + clock_tolerance then
% Client logical time is slow: client may have been breakpointed
% during timeout.

% Compute how much of the timeaut remains.
time_left: = timeout - (client_now - client_start)
if time_left > clock_tolerance then
timeout: = time left
client_start: = client_now
keep_waiting: = true
end
end
end
end

Figure 3. Extending timeouts using only get_debuggee_status.

timeout: = original timeout
client: = network address of client

keep waiting: = true
while keep_waiting do
keep_waiting: = false

semaphore_wait {sem, timeout)

except when timed_out:
client_now, debugger: = call get_debuggee_status () at client
real_now: = now()

if real_now > client_now + clock_tolerance then
% Clientlogical time is slow: client may have been breakpointed
% during timeout.

% Compute how much of the timeout remains.
client_start: = call convert_debuggee_time (real_now - timeout) at debugger

time_left: = timeout - (client_now - client_start)

if time_left > clock_tolerance then
timeout: = time_left
keep_waiting: = true

end

end
end
end

Figure 4. Extending timeouts using get_debuggee_status and convert_debuggee_time.

16

Resource contention with other users.

The methods just described are applicable to a server which manages some set of shared resources
for which many clients contend. When a resource is allocated to a client a timeout on the allocation
is usually imposed. However extending that timeout when debugging may be wrong if the

resource is very scarce and other clients require it. A decision must be made between delaying

~ these other clients or reclaiming the resource (and thus upsetting a client's debugging session).

The server could provide some administrative commands by which the scarcity of a resource and
the importance of some debugging session could be indicated. This might be unwieldy to

implement or use.

" Asimpler approach has the server extending a timeout on some resource allocation until a client,
not under control of the same debugger, requests the resource. At that point the resource is

reclaimed and reallocated.

Converting date/time data.

A client that is being debugged may notice inconsistent timing if it receives explicit date/time
values from a server, for instance as the date of last modification of a file. A server can convert this
time data using the éonvert_debu ggee_timerrocedure. However this may not be enough to
preserve complete time consistency without also reproducing the contents of the file at an
appropriate time in the past. It is important to recognize limits to how much network servers can
do to maintain time consistency, since their main purpose is still to provide reliable and efficient

service to all of their clients.

There are many aspects of time consistency which servers cannot achieve with the support
described. The time of future events cannot be converted correctly and elients cannot time real
world events over a breakpoint. However time consistency is maintained about events within the
program being debugged even when time data about such events is communicafed through other
parties such as servers ’

The two debugging support procedures constitute a security problem which has not been addressed
in the design of Pilgrim. A malicious program could provide implementations of these procedures
allowing it more favoured treatment from servers. Thus some kind of authentication is needed so

servers can detect misuse.

17

- 6.3 A strategy for debugging clients of shared services.

The facilities described in the previous section do not insulate the program being debugged from
all outside influence and do not prevent that program from potentially affecting other users of a
distributed system. A strategy for debugging clients of shared services is required which considers

the needs of both the programmer using the debugger and other users in the system.

In the early stages of debugging a client, the servers it uses can usually be shared with other users
but the data objects operated on should be private copies (e.g. private files rather than public
shared ones). It is wise to do this, not only to avoid delaying other clients while debugging, but also
because the possibly faulty client may earry out erroneous operations on the object or even destroy
it.

In the final stages of debugging and tuning and after the program goes into service, the client will
be operating on “live data”. It will still be possible to examine the program under the debugger,
but.primary consideration should be given to other users of the distributed system. Use of the
debugger in this situation should probably be restricted to examining the program state.
Extensive debugging would require a return to one of the private or semi-private environments

used earlier.

7. Conclusion.

This work has emphasized target environment, source language debugging. Debugging in the
target environment is important because the most troublesome bugs often appear after the
program has been transferred to an environment in which there is no support for debugging.
Debugging at the source language level is important so that the concepts and constructs which are
helpful through the design and development of a program need not be abandoned for the
debugging stage.

Although Pilgrim was designed for Concurrent CLU, the techniques described here are relevant to
debuggers for other similar languages such as Ada or Modula-2+ . In addition the distributed
breakpointing mechanism and the techniques for debugging clients of shared servers are

applicable to languages which use message passing rather than RPC for remote communication.

Acknowledgements.

I wish to thank Roger Needham and Jean Bacon for their comments and suggestions on this paper.

18

References.

A. D. Birrell and B. J. Nelson “Implementing Remote Procedure Calls.” ACM Transactzons on
Computer Systems, 2 (1), February 1984, p. 39.

T. A. Cargill “Implementation of the BLIT Debugger.” Software — Practice and Experience, 15 (2),
February 1985, p. 153.

- S.Y. Chiu Debugging Distributed Computations in a Nested Atomic Transaction System. PhD.
Dissertation, Technical Report MIT/LCS/TR-327, Laboratory for Computer Science, MIT,
December 1985.

R.C.B. Cooper and K. G. Hamilton “Preserving Abstraction in Concurrent Programming.” IEEE
Transactions on Software Engineering (to appear). (Also available as Technical Report 76,
Computer Laboratory, University of Cambridge, August 1985).

-A. Di Maio, S. Ceri, S. Crespi Reghizzi “Execution Monitoring and Debugging Tool for Ada Using
Relational Algebra.” Ada in Use, Proc. Ada International Conference, Paris, (Ada Letters, 5
(2)), September 1985, p. 109.

K. G. Hamilton A Remote Procedure Call System. PhD. Dissertation, Technical Report 70,
Computer Laboratory, University of Cambridge, December 1984.

D.R. Jefferson “Virtual Time.” ACM Transactions on Programming Languages and Systems,
7(3), July 1985, p. 404,

L. Lamport “Time, Clocks and the Ordering of Events in a Distributed System.” Communications
of the ACM, 21 (1), July 1978, p. 548.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheifler, A. Snyder CLU Reference
Manual, Vol. 114, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.

P.V. Mockapetris “Analysis of Reliable Multicast Algorithms for Local Networks.” Proc. Eighth
Data Commaunications Symposium, ACM, October 1983, p. 150.

R. M Needham and A. J. Herbert The Cambridge Dzstrtbuted Computing System. Addison-
Wesley, London, 1982,

19

