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1 Form of the Problem

General methods are sought for avoiding two inefficiencies of backtracking which
are shown in solving the following distinct representatives problem. Given sets
Sl = {2,8},52 = {3,5},53 = {4,5},54 - {1,3}, 55 = {6,7}, and S(} = {1,3}, find
all sets with six elements of distinct {; € S;, where 1 <17 < 6. ‘ :

This problem can be solved with backtracking, which is often pictured as a
depth-first search of an associated search tree. The branches of a subtree of the
search tree are listed in figure 1 below. The set from which each element was
chosen has been indicated for clarity. A
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Figure 1: Subtree of the distinct representatives problem.

A bounding function [5] (or bounding property) used in solving this problem
is that the elements chosen are distinct. This search problem and the others
considered later have hereditary bounding properties: if the bounding property is
true for a set, it is true for every subset of that set.

The example illustrates thrashing, which is caused by the inefficiencies of blind
backtracking and recurring failures.

1. Blind Backtracking. The first subtree with root (us,6) does not contain
a branch leading to a solution, but searching the subtree with root (us,7),
predictably will also not contain any branches leading to a solution, because
the elements 1 and 3 are still in the branch.

2. Recurring Failures. The subtree with root (u3,3) does not contain a branch
leading to a solution, but this recurs with (uy,8).

Adaptive backtracking can speed-up finding solutions by efficiently pruning
these subtrees from the search tree.




The distinct representatives problem is a form of combinatorial search problem,
which we shall consider initially.

They consist of
1. a finite set U = {uy,...,un} of units

2. for each unit v € U, a finite set Du of labels, which is called the domain of
unit u, and

3. an hereditary bounding property
H : (uq x Duy) ¥ -+ x (up X Duy) — {true, false}.

We are interested in finding all solutions
{S|S € (uy X Duy) x -+ x (up x Dup) A H(S)}.

In the distinct representatives example, each unit is a variable u;,1 <1 <
6, for a representative. The sets Sy, S;, S3,S4, 55, and Sg are the domains, and
the hereditary bounding property is that the representatives are distinct. This
property is hereditary because if a set of selected representatives are distinct, then
so is every subset of that set. '

Another example of a combinatorial search problem is the eight queens prob-
lem. Here the units correspond to the columns of the chess board, the domain of
a unit is the set of rows of the chess board, and the hereditary bounding property
is that queens placed on the chess board do not attack each other.

The following logic program and goal can be used to find whether the formula

{zyVazVag AN{zsVar Vb A{zsVzaV s}
is satisfiable with just one true literal per clause.

:- c(X1, X3, X8), <(X3, X7, X4), c(X8, X2, X8).

c(1, 0, 0).
c(0, 1, 0).
c(0, 0, 1).

This is also a combinatorial search problem where the units are the atoms of
the goal ¢ (X1, X3, X8), c(X3, X7, X4), and c(X8, X2, X8); and the domain
for each unit consists of the clauses c(0, 0, 1), <(0, 1, 0), and <(1, 0, 0).
Unifiability is the hereditary bounding property. '

Following the distinct représentatives example, each node, except for the root,
of a search tree represents the assignment of a label | € Du to a unit v € U. No
branch in the search tree has two nodes representing assignments to the same unit.
The children of a node in the search tree are the assignments (u,e(),...,(u, en),
where u € U, and Du = {e1,...,€n}.




A branch is written from the root of a search tree, as an ordered set

{(ui, ),y (un, ln) )

The ordering is root < (uy,ly) < -+ < (un,l,). In particular, the maximum of
the empty set is root. A consistent set of assignments is one which satisfies the
hereditary bounding property. ‘

The paper is organised as follows. Modifications to ordinary backtracking are
described in the next sections. Then we discuss backtracking after a solution has
been found. The adaptive backtrack algorithm is then presented with a discussion
of practical experience,

The method is a dynamic refinement of ordinary backtracking which finds an
early point to backtrack to after a failure, which can prevent thrashing without
pruning solutions. The worst case time complexity for finding this backtrack point
is O(nf(n)) if the bounding property can be tested in time O(f(n)), and the worst
case space complexity is O(n?).

Apart from its application to the solution of all combinatorial search problems
which use hereditary bounding properties, adaptive backtracking can be gener-
alised [11] for searches that occur in theorem proving, the execution of logic pro-
grams, database retrieval, reason maintenance systems, planning, graph theory,
and combinatorics.

Dependency-directed backtracking [9,4] is a previous dynamic refinement of
backtracking. At a contradiction a tracing function is used to find a backtrack
point which can be chosen arbitrarily from a “nogood” set of such points, although
this can prune solutions. The nogood sets are recorded permanently and used
during the search to prevent regenerating subtrees of the search tree.

Intelligent backtracking was also developed specifically for linear resolution |3},
and the execution of logic programs [1,8]. Versions of this approach rely on mod-
ifications to the unification algorithms used for those systems. The development
of intelligent backtracking for linear resolution prunes search trees using the max-
imal unifiable subsets at a failure [7]. I showed [10] that in general this approach
is not feasible because of the potential exponential growth in the number of these
subsets. Considerable memory overheads have been observed in practice 7].

The modifications to backtracking for logic programming seem to use one min-
imal nonunifiable subset at a failed branch, and no information about previous
failures is retained to prevent their recurrence [1]. |

In contrast to dependency-directed backtracking and intelligent backtracking,
we prove that adaptive backtracking retains completeness. It applies uniformly to
backtracking after direct and indirect failures, and backtracking after a solution
has been found. We define the search problems which can be solved by this method.
Sets of backtrack points are not recotded permanently because in general, their
storage and use can create exponential overheads. Instead, choices which are
not part of any solution are found and deleted. The polynomial space and time
overheads of the algorithm are analysed.




2 The Cause Set

A direct failure is a consistent branch {(uy,!1),..., (¥n-1,0n-1)} which cannot be
extended consistently by any assignment for u,.
Formally, the branch {(u1,01),..., (4n-1,ln-1)} is a direct failure if

H({(ur, 1), (noto 1) }) A (1)
(VI € Dug)=H({(uv1,l1), .-, (tn,ln)})

Adaptive backtracking reduces thrashing by backtracking to an assignment,
called the backtrack point, which could be further back than the previous assign-
ment in the branch. The subtree beneath the backtrack point is searched less than
with ordinary backtracking.

In the distinct representatives example, the branch

{(u1,2), (u3,3), (u3,4), (w4, 1), (us,6)}

is a direct failure because the labels in Dug = {1, 3} already appear in the branch.
The backtrack point is (u4,1).

A direct failure with the eight queens problem occurs when the queens in the
first five columns are in rows {(uy,1), (us,3), (us,5), (v4,2),(us,4)}. There is no
row in the sixth column where a non-attacking queen can be placed. No further
solutions can be found by moving the queen in the fifth column. The backtrack
point is (u4,2).

The definition of the backtrack point at a direct failure uses one minimal in-
consistent subset of the inconsistent set {(uy,01),...,(un,lx)}, called the cause set,
which is denoted by C = cause{(u1,!1),..., (¢, .)}. The cause set by definition is
the lexicographically least minimal inconsistent subset: it has the property that for
each assignment (u,!) of C, all inconsistent subsets which contain all assignments
in C greater than (u,l) contain an assignment greater or equal to (u,!).

The cause set of the inconsistent set

{(u1,2), (uz,3), (us,4), (ua, 1), (us,6), (us, 1)}

from the distinct representatives problem, is the minimal inconsistent subset

C = {(u4,1),(us, 1)}

No solution contains (ug,1) until backtracking returns to (uy4,1).
A direct failure in the Prolog execution of the following goal and logic program
occurs when all but the last atom in the goal have been matched.

- p(X1), (XL, X2), t(X1, X2), t(X2, X3), t(X2, X3), r(x3).
p(0).

(Y, Y).
r(1).




The direct failure is contained in the inconsistent set

{(p(x1), p(0)), (&(X1, X2), t(Y¥t, Y1i). (t(X1, X2), t(¥2, Y2)),
(t(X2, X3), 6(¥3, ¥3)), (t(X2, X3), t(¥4, Y4)), (r(X3), r(1))}.

The cause set of this set is the minimal inconsistent subset
{(p(X1), p(0)), (L£(X1,X2), t(¥Y1,Y1)), (£(X2,X3), t(¥3,Y3)), (r(x3), r(1))}

No solution can be found with (r(X3), r(1)) until backtracking returns at
least as far as (t(X2, X3), +t(Y¥3,Y3)).
The other minimal inconsistent subsets are

{(p(x1), p(0)), ((X1,X2), t(Y1,Y1)), (£(X2,X3), t(Y4,Y4)), (r(X3), r(1))}
{(p(x1), p(0)), (£(X1,X2), t(¥2,Y2)), (£(X2,X3), t(¥3,Y3)), (r(x3), r(1))}
{(p(x1), p(0)), (£(X1,X2), t(Y2,Y2)), (£(X2,X3), t(¥4,Y4)), (r(x3), r(1))}

My earlier results [10| show that to find the backtrack point it is not feasible
in general to produce all minimal inconsistent subsets, or a minimal inconsistent
subset whose size exceeds a certain bound, because there are search problems for
which these problems are either intractable or NP-hard. For example, the number
of minimal inconsistent subsets using the previous logic program can be made to
increase exponentially with the size of the goal.

However, we shall show that the algorithm 2.1 given below can efficiently com-
pute one minimal inconsistent subset, the cause set, of a failed set

{"(ul’ ll)y vy (unsln)}-
Algorithm 2.1
precondition:  —H({(v1,0),..., (e, 00)}) A H({(u1,01),. .., (n-t,0n-1)})
M = {{un,ln)};

loop invariant:  —H({(u1,01),...,(wi, )} UM) AM C {(®ir1,lis1)ye s (@ny ln) JA
(YN © MYH({(u, ), .., (ui, 1)} UN) \

for i := n—1 downto 1 do ‘
if H({<(u1,l1),...,(u,--l,l,-_l)}U]W) then
M = MU {(ui,l,-)}

postcondition: —~H(M)AN(YN C M)H(N) AM Z {(ur,l1), ...\ (%nyl0)}

(@2}




In the worst case, the running time of the algorithm occurs when the whole
failed set is a minimally inconsistent set with respect to H. The number of as-
signments in the set tested will be n — 1 at each test, so that if testing H has time
complexity O(f(n)), the algorithm has time complexity O(n f(n)).

We now prove that the algorithm computes the cause set.

Theorem 2.1 Let {(uy,li),...,(tn,ln)} be an inconsistent set at a direct failure.
Algorithm 2.1 computes the cause set.

Proof Just before the assignment (u;,/;) is included in M in the algorithm,
we have from the program assertion

~1f{({(ul,ll),. . .,(U,,',[,')} U M) A H({(ul,ll), .. .,(U,"_l,l,'_l)} U M)

This implies that there is no inconsistent subset N of {(u1,l1),..., (un,!s)} with
respect to H, such that M C N and max(N — M) < (u;,!{;). Otherwise we would
have that N C {(ul,ll), caey (‘U,,'_l,l,'._l)} UM, and "H({(ul,ll), B ,(u,-_l,l,-_l)} U
M), which is a contradiction. Therefore by definition, M is the cause set when
algorithm 2.1 terminates. {7

3 Blind Backtracking at Direct Failures

Blind backtracking means returning to an earlier node which has unsearched
branches which predictably do not lead to solutions. The number of these branches
can increase exponentially because each domain can contain two or more labels.
Substantial reductions in search times are possible if a modified algorithm can
determine accurately and efficiently the earliest node which could lead to further
solutions.

The backtrack point for a direct failure is now defined as the maximum assign-
ment of the set

L= |J cause{(u1,l1),.. ., (tnsln)} — {(un,ln)} (2)

ln€Duy

As the following theorem shows, adaptive backtracking prevents blind back-
tracking at direct failures.

Theorem 3.1 At a direct failure, the backtrack point is the earliest assignment to
which backtracking can return without loss of solutions.

Proof If L = ) then every cause set at a direct failure is a singleton, and
the search problem has no solution since there is no consistent label for the most
recently selected unit independently of all other assignments. In this case, the
backtrack point is the root of the search tree, as required.

Otherwise, each of the branches at the direct failure whose cause sets are
not singletons contain an inconsistent subset. There are no further solutions if
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backtracking does not return at least as far as the backtrack point. This follows
by the definition of cause set, and equation 2. ]

A modified backtrack algorithm could now be written which prevents blind
backtracking after direct failures. The computation of the backtrack point simi-
larly has worst case time complexity of O(nf(n)) because the domains are finite.

If this were the only form of blind backtracking, the computation of the back-
track point could be optimised by modifying the earlier algorithin so that it never
finds more than two elements of a cause set. However, blind backtracking can also
occur after indirect failures.

4 Blind Backtracking at Indirect Failures

An indirect failure occurs when each assignment for the most recently selected unit
either cannot be used to extend consistently a branch in the search tree, or it has
been a backtrack point because the subtree beneath it has already been searched
without ﬁndfng any solutions.

The computation of the backtrack point for an indirect failure uses the sets
L (equation 2), which are generated at direct failures. A set L is recorded as a
rejection set R(u,l) = L—{(u,!)}, where (u,l) = max L so that it can be retrieved
for this computation. The main property of a rejection set is that the search tree
below a branch is failed and contains no solutions if the rejection set is a subset
of the branch. Initially, all rejection sets are undefined (L) and are not subsets of
any branch.

The branch {(us,l1),...,(¥n-1,ln-1)} is an indirect fatlure if there exists D C
Du,, such that

(W € D)=H({(u1,11), -+ (tn, 1)) A
(Vs € Dty — D)R(tn, 1) € {(u1,11), - 5 (tns lur) }-

The backtrack point for indirect failures is defined in a similar way to that for
direct failures as the maximum assignment of the set

L= U (cause{(wi,l1), .- s (Unsln)} — {{(un,ln)}) U U R(ﬂn,ln) (3)

lheD lh€Du,—-D

This set L is now recorded as a rejection set R(u,!) so that it can be used in
the computation of the backtrack point for other indirect failures. Cause sets and
rejection sets at a failure are used to find another rejection set and backtrack point.
We shall prove that this computation preserves the main properties of rejection
sets and backtrack points. '

In solving the earlier distinct representatives problem (Figure 1) there is an
indirect failure of the branch

{(11,1.2), (u2’ 3)) ('U,g,‘l)},

7




and R(u4; 1) = {(us,3)} was produced at the first direct failure

{(v1,2), (u2,3), (us,4), (v, 1), (u5,6)}.

From the backtrack point definition, D = {3}, Duy = {1,3}, and

L = Lg}(cause{(ul&z)’(u213)a(u3’4)a(u4’l4)} “{(u‘isl‘l)}) U{(u‘lag)}

({(u2,3), (v4,3)} — {(was3)}) U {(u3,3)}
= {(u2,3)}

and R(uz,3) becomes 0, and the next partial branch is {(u1,2), (u2,5)}.

Instead of this, ordinary backtracking will fruitlessly search the subtree under
(u3,5). Adaptive backtracking skips this searching because the rejection set and
computed cause set show that branches will be inconsistent for every label in Duy
independently of every assignment to us.

The worst case time for retrieving and using a rejection set is O(n), so that
computing another backtrack point also has worst case time of O(nf(n)). We now
prove that adaptive backtracking is accurate after all failures and that the main
property of rejection sets is maintained.

Theorem 4.1 At a failure, backtracking can return to the backtrack point without
loss of solutions.

Proof Direct failures have been considered in Theorem 3.1. This is the basis
for the following inductive proof.
Let (4m,!n) be the backtrack point of an indirect failure,

{(ul’ll)a vy (un—laln—l)}

where 1 < m < n. Suppose that

R(un,ln) (__:_ {(ul,ll),.. cay (un—laln—l)}

implies that there is no solution containing {{u,{1),..., (wm,lm)} U{(¢n,{s)}. For
all labels I, in D, we have =H({(v1,01)s. s (m, lm)} U {(2n,!n)}) since

cavse({{u1,01)y .-y (un,ln)}) € {(u1,l1), . s (Umo ) } U {{un, 10)}-

Therefore there is no solution containing {(u1,1),..., (¥m,lm)} since there is
no solution with unit u,, and backtracking can return to the backtrack point
(Um,lm) without loss of solutions. Furthermore, if ever the computed rejection
set R(um,lm) is a subset of the branch {(v1,/1),...,(¥m-1,lm-1)} there can be no
further solutions, so that the main property of rejection sets is also preserved. In
the case that I is the empty set, there cannot be any further solution since there
is no previous assignment which if changed would allow further solutions to be
found. O




5 Preventing Recurring Failures

Adaptive backtracking prevents recurring failures by deleting labels from domains
which are not part of any further solution, so that failed subtrees which otherwise
would have been generated are pruned.

The rejection sets are used to detect which assignments do not occur in any
further solution. From the previous discussion, if ever a cause or rejection set is
a singleton {(u,!)}, there is no earlier assignment in the branch which if changed
would enable a further solution to be found with (u,!), and so [ can be deleted
from Du without subsequently pruning any solutions.

The algorithm can be said to learn about recurring failures, and this is a
complementary aspect to the computation of the backtrack point. A singleton
rejection set is not recorded in R because it would have no effect in computing
backtrack points.

Label deletion is only used when a rejection set is a singleton, not when a cause
set is a singleton, for this does not reduce recurring failures, and it can readily
be attained in a similar way to a node consistency preprocessor [6]. The label
deletion used partially produces higher levels of consistency.

It is possible to record permanently all rejection sets produced during a search
and prune a branch when one of the previously generated rejection sets is a subset
of it. This is a more general means of preventing recurring failures, but the storage
requirements for the rejection sets can increase exponentially with the number of
units, and the overhead in checking the subset relation is prohibitive.

6 Backtracking After a Solution

If at least one branch extending from the most recently selected unit u,, is a solution
branch, and all assignments for u, have been tested, then backtracking should
return to (¥,—1,ln—1) just as in ordinary backtracking, because further solutions
may exist. The same method of computing the backtrack point for failures is also
used when backtracking after a solution. It is easy to verify that algorithm 2.1
returns all assignments in a consistent branch. This means that the backtrack
point for backtracking after a solution is always the assignment to the most recent
previously selected unit, as required. It is necessary to identify backtracking after
a solution during execution so that labels of u; are not deleted unnecessarily.

An implementation of adaptive backtracking need not compute rejection sets
after a solution. One way to do this is to a associate a Boolean flag with each
unit. Whenever unit u is selected, its flag is set to true. The flag is only set to
false when the unit is one of the assignments in a solution. The computation of
the backtrack point should only occur when the flag of the most recently selected
unit is true. Otherwise, backtracking should return to the assignment to the most
recent previously selected unit.

Even without this optimisation, the worst case storage requirement for rejection



sets of adaptive backtracking is O(n?) in the number of units in the search problem.
This upper bound occurs if all rejection sets are of maximum size: |R(un,ln)| =
n— 1.

7 The Adaptive Backtrack Algorithm

We now present the adaptive backtrack algorithm for search problems. A partial
branch is represented by the assignments in set A. It is extended by selecting an
unassigned unit from a list B and finding, if possible, a consistent label from its
domain. The remaining untested labels of a domain Du; are stored in a set Fu;.
If every unit has been selected from B, the assignments in A represent a solution
to the search problem.

The backtrack point is not computed using rejection sets when backtracking
after a solution. A flag F; is set to false only when (u;,[;) is part of a solution.

Algorithm 2.1 is used to find the cause set:

function findcause(n: integer): set of assignments;

begin
= {(uns )}
for z' = n—1 downto 1 do
if H({(ul,l ) ,(u,_l, 1_]_)}UM) then
M = MU {(u;,li)};
findcause := M
end;

The following function backtrackpoint computes the backtrack point when
backtracking after a failure or a solution. The function also updates rejection sets
and deletes labels from domains. Function findcause is called if a cause set has
to be computed when backtracking after a failure.

function backtrackpoint(i: integer): integer;
begin
if F; then begin (% Backtracking after a failure %)
L = 0;
for each I; € Du; do
if R(u;,l;) = L then begin
L := LU (findcause(d) — {{u:,;)})
end else
L := LUR(uilli);

m = max{k | (uslx) € L}

if |L| > 1 then ,
R(umyln) = L~ {(tm,ln)} (+ Update rejection set =)

else if [L| =1 then (%.Delete label )

10



Duy, = Dy~ {lm}:

end else m := ¢ —1; (% Backtracking after a solution #)
backtrackpoint := m;
end;

The main part of the algorithm follows. The algorithm would behave in the
same way as ordinary backtracking if each call to backtrackpoint (i) always re-
sulted in the value ¢ — 1. '

Algorithm 7.1

A :=0;

1 =1

B = {ug,...,u.};
Fy := true;

Fu, := Duy;

while 7 >0 do
if Eu; #0 then begin
[; := a label in Fu;;
Eu; := Eu; — {l;};

if H(AU {(u;,;)}) then begin
A = AU {(ui,l;)} (% Advance *)
if B=0 then begin ”
print(A); (% Solution #%)
for i := 1 to / do F; := false;
A = A—{(u;,l,')}
end else begin (% Select next unit #)

1 =1+ 1;
B := B —{u};
for all l,-EDu,' do R(U,,‘,l,‘) = _L;
EU,' = DU,,';
F; := true
end
end

end else begin (+ No more labels - Backtracking #)

m := backtrackpoint(s); (* Resume forward searching +)
A = A—{(tmlm),. - s(6i-1,li-1)}; (+ Prune the search tree =)
B = BU{ux|m+1<k<i};
T = m
end

1t



8 More General Search Problems

Until now we have been considering finding all solutions to finite search problems.
However, backtracking is also used in problems where the assignment of a label
to a unit can introduce new units for which consistent assignments must also be
found. For example, the proof of a theorem corresponding to a unit may involve
proving further theorems which have been introduced by the application of a rule
of inference from a finite set of such rules. In logic programming, the introduced
units correspond to the introduced atoms of a subgoal.

Adaptive backtracking also applies to these more general search problems. The
ordering of units is extended so that introduced units are greater than their intro-
duction point. The root of the search tree can be considered as the introduction
point of the initial units of the problem.

The effect of this definition is that if ever a set L (equation 3) is the empty
set, then backtracking should return to the introduction point of the most recently
selected unit. The search ends if the introduction point is the root of the search
tree, otherwise if the introduction point is (u,!) then ! should be deleted from Du
and the search resumed from this point.

9 An Example

The next example illustrates adaptive backtracking in the more general case. Con-
sider the following Prolog program and the goal :- g(Xi, Yi).

g(X, zZ) :- £1(X, Y), huge computation(X), £3(Y, Z).
g(X, Z) :- £1(X, Y)., £3(Y, 2).
fi(a, b).

f1(b, c).

huge computation(Y) :- .

£3(R, L) :- h(R, T), r(T, L).
£3(c, g).

h(b, ¢).

h(c, d).

r(c2, e).

r(d, e).

At the first direct failure using the first clause for g, no consistent label can be
found for r(T, L) and the set L computed is the singleton

{(h(R,T),h(b,c))}

so that the label h(b, ¢) is deleted.
An indirect failure now occurs because the label h(c, d) gives a failed set.
The L set computed for this failure is

12



{(£1(X, Y), f1(a, b)), (£3(Y, Z), £3(R, L)), (h(R, T), h(c, d))}.

The backtrack point is (£3(Y, Z), £3(R, L)), and the rejection set computed
is R(£3(Y, Z), £3(R, L)) = {(£f1(X, Y), f1(a, b))}.

A second indirect failure occurs because the label £3(c, g) gives a failed set.
The L set computed is the union of the rejection set R(£3(Y, 2), £3(R, L)) and
the cause set {(f1(X, Y), fi(a, b)), (£3(Y, Z), £3(c. g))}. The backtrack
point is (£1(X, Y), fi(a, b)) and the computed rejection set is a singleton, so
that the label £1(a, b) is deleted. Ordinary backtracking would have backtracked
to an assignment in the subtree for huge .computation(X) and repeated the failure.

The other label for £1(X, Y) yields a solution. Backtracking after this solution
is the same as ordinary backtracking until the subgoals for the second clause for
g(X, Z) are executed. If there were only one label for £1(X, Y) initially, then
adaptive backtracking would have returned to the introduction point and tried
this second clause after the second indirect failure.

10 Practical Results

Adaptive backtracking and ordinary backtracking have been implemented in Pas-
cal for the distinct representatives problem and for the n queens problem. The
adaptive backtrack programs are about two hundred lines long.

For the n queens problem, 6 < n < 10, the adaptive program was slower than
ordinary backtracking and this lag increased with n to 1.3 times for the 10 queens
problem. However, the number of failure nodes visited by adaptive backtracking
was between 1.5 to 2.3 times fewer than those visited by ordinary backtracking.

In contrast, adaptive backtracking was between 1.4 to 41 times faster than
ordinary backtracking for the four distinct representatives problems tested, and the
number of failure nodes visited by adaptive backtracking was up to one thousand
times fewer. The high figures occurred because adaptive backtracking can detect
‘that a problem has no further solutions when all labels have been deleted from a
domain. ,

The speed of adaptive backtracking compared with ordinary backtracking de-
pends on the nature of the problem being solved; it can be much faster for problems
which have early backtrack points and many recurring failures. It was slower for
the n queens problem because the computed backtrack point is usually the same
as that found by ordinary backtracking without the overhead of computing and
using rejection sets, and there were no recurring failures. Adaptive backtrack-
ing was faster than ordinary backtracking for the distinct representatives problem
because one of the computed backtrack points was eleven units earlier than the
last unit in a direct failure, and there were several recurring failures. One of the
distinct representatives problems used is listed below. Adaptive backtracking was
1.4 times faster than ordinary backtracking for this problem.

Duy = {2,8,7}, Duy = {1,8}, Dusz = {4,8}, Duy = {9, 8}.
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Dus = {5,8}, Dug = {12,8}, Duy = {14,8}, Dug = {16,8},
Dug e {19,8},Du10 = {18,8},D1L11 = {1},Dlt12 p {2},D’LL13 = {8}

11 Conclusion

Adaptive backtracking applies to all search problems which use hereditary bound-
ing properties. This group of problems identified here includes those in theorem
proving, logic programming, reason maintenance systems, planning, pattern recog-
nition and a wide range of other problems in areas such as combinatorics, and
graph theory. ’

Thrashing caused by blind backtracking and recurring failures in the backtrack
solution of these problems is reduced by adaptive backtracking. We have proved
that the algorithm finds a backtrack point without losing solutions, and that it
can delete labels which do not occur in any solution.

Backtrack points after failures are computed using cause sets and rejection sets.
The worst case computational overhead of using these sets is O(n f(n)) in time and
O(n?) in space. These features prevent fruitless searches of failed subtrees, and
they can result in exponential speed-ups.

Adaptive backtracking has been implemented and compared to ordinary back-
tracking. Four distinct representatives problems whose solution involves signifi-
cant thrashing were tested, and speed-ups of up to 41 times occurred in accordance
with the expected exponential speed-ups. The practical results suggest that a full-
scale implementation could provide speed-ups for typical problems whose ordinary
backtrack solution would involve significant thrashing.
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