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Summary

The thesis describes the design, implementation and testing of a
ratural language analysis system capable of performing the task of
generating paraphrases in a highly ambiguous environment. The
emphasis is on incorporating strong semantic judgement in an augmented
transition network grammar: the system provides a framework for
examining the relationship between syntax and semantics in the
process of text analysis, especially while treating the related
phenomena of lexical and structural ambiguity. Word-sense selection
is based on global analysis of context within a semantically well-
formed unit, with primary emphasis on the verb choice. In building
Sstructures representing text meaning, the analyser relies not on
screening through many alternative structures - intermediate
syntactic, or partial semantic - but on dynamically constructing only
the valid ones. The two tasks of sense selection and structure
building are procedurally 1linked by the application of semantic
routines derived from Y.Wilks' preference semantics, which are invoked
at certain well chosen points of the syntactic constituent analysis -
this delimits the scope of their action and provides context for a
particular disambiguation technique. The hierarchical process of
sentence analysis is reflected in the hierarchical organisation of
application of these semantic routines - this allows the efficient
coordination of various disambiguation techniques, and the reduction
of syntactic backtracking, non-determinism in the grammar, and
semantic parallelism, The final result of the analysis process is a
dependency structure providing a meaning representation of the input
text with labelled components centered on the main verb element, each
characterised in terms of semantic primitives and expressing both the
meaning of a constituent and its function in the overall textual unit.
The representation serves as an input to the generator, organised
around the same underlying principle as the analyser - the verb is
central to the clause. Currently the generator works in paraphrase
mode, but 1is specially designed so that with minimum effort and
virtually no change in the program control structure and code it could
be switched over to perform translation.

The thesis discusses the rationale for the approach adopted,
comparing it with others, describes the system and its machine
implementation, and presents experimental results.



Preface

I would like to thank my supervisor, Dr. Karen Sparck Jones, for
her invaluable assistance and unfailing support throughout the course
of this research and for her remarks, suggestions, criticisms and
continuous guidance during the last three and a half years which kept
me on the right track. Her endurance and patience in going through
draft versions of this manuscript cannot be overemphasised, and her
help is greatly appreciated. ,

The programming would have been impossible without the expert
advice of Dr. A.C.Norman who kept the LISP system up and going, and
spent a considerable amount of time and effort helping me get the best
out of it.

I am grateful to the many people with whom I have had interesting
and stimulating discussions. Especially, I would 1like to thank
A.Cater, with whom I shared the Jjoys of research, both for his
constructive remarks and suggestions and for his permission to
incorporate some of his routines into my system.

I am grateful to Prof. M,V.Wilkes and the Cambridge University
Computer Laboratory for providing me with a friendly environment and
facilities without which it would be impossible to carry out this
work. I am also grateful to Trinity College, Cambridge, for providing
financial support while I was a research student.

And finally, I would like to thank all my friends who were always
there when I needed them.

Except where otherwise stated in the text, this dissertation 1is
the result of my own work and is not the outcome of any work done in
collaboration.

No part of this dissertation has been submitted for any other
degree or diploma at any other university.



Contents.

(0.) General Introduction.

(0.1) What This Work Hopes To Achieve
(0.1.1) Overview
(0.1.2) Cognitive Studies
(0.1.3) The System Implementation

(0.2) Some Basic Terminology

(0.3) Syntax And Semantics In A Natural Language Processing
System

(1.) The Nature Of The Problem.
(1.1) Ambiguity Or The Problem Of Multiple Choice
(1.2) Prepositions And Prepositional Phrases

(2.) The Basis Of This Work.
(2.1) Augmented Transition Networks
(2.1.1) The Basic Model (Woods)
(2.2.2) Semantic ATNs (Simmons)
(2.2) Semantically Guided Parsing
(2.2.1) Semantic Pattern Matching (Wilks)
(2.2.2) Semantic Expectations (Riesbeck)

(3.) Background To The Analyser Design.

(3.1) Choice Of Semantic Theory
(3.1.1) Semantic Formulas

(3.2) Choice Of A Mechanism For Parsing

(3.3) Purely Semantic Networks

(3.4) Nondeterminism (And Backtracking)

(3.5) The Problem Of Structural Ambiguity

(3.6) Lexical i.e. Word-sense Ambiguity

(3.7) Grammar Properties And Parsing Strategy

(3.8) The Verb Is Central To The Clause

(3.9) Contextual Verb Frames

(3.10) Default Treatment Of Prepositional Phrases And Other
(Optional) Postmodifiers

(3.11) Semantic Representation

(4.) How The Analyser Works.
(4.1) Control Structure
(4.2) Syntactic Recognition (Grammar)
(4.3) Semantic Routines And Semantic Processing
(4.4) Techniques And Principles For Disambiguation
(4.5) The Process Of Sentence Analysis

(5.) The Generator.

(5.1) A Background For Paraphrase

(5.2) What The Generator Does

(5.3) Choice Of Words
(5.3.1) Background
(5.3.2) Mechanism

(5.4) Definition Of The Target Language Syntactico-Semantic
Relationships
(5.4.1) How Will This Help
(5.4.2) What Is An Environment Network
(5.4.3) Construction Of The Environment Network



(5.5) Outputing The Generated Sentence
(5.6) The Structure (And Organisation) Of The Generator

(6.) Review, Perspectives And Conclusions.
(6.1) System Review
(6.2) My System In Relation To Others
(6.3) The System In Perspective
(6.3.1) Current State
(6.3.2) Limitations Of The System
(6.3.3) Future Developments
(6.4) Conclusions

Appendix (i) The Program

Appendix (ii) The Dictionary

Appendix (iii) The Augmented Transition Network Grammar
Appendix (iv) Examples

Bibliography



chapter 0.
General Introduction.
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0.1. What This Work Hopes To Achieve.

0.1.1, Overview.

The work reported in this thesis can be viewed as an attempt to
achieve several goals which, although corresponding to different
levels of generality within the framework of the task of analysing
natural language, are closely related.

At the outermost level, the aim is to design and implement a
Natural Language (NL) Processing System capable of performing the task
of translation/ paraphrase. The original objective was machine
translation; "/paraphrase" indicates the way this project evolved.
The reasons for the switch are explained in chapter 5; however, for
the purposes of analysis, and throughout this work, except where
explicitly stated, I shall regard translation/ paraphrase as a single
task. Thus in general terms the work has been concerned with the
analysis of input text sentences, the construction of a meaning
representation of these sentences, and the generation from the
representation of output paraphrase sentences. The production of
acceptable paraphrases is taken as a test of effective analysis and
representation.

The overall objective in particular provides a framework within
which it is possible to examine the relation between syntactic and
semantic processes of sentence analysis, its 1implications for
automatic text processing, and specifically for the possible ways in
which semantics can be integrated into an augmented transition network
(ATN) analysis mechanism (see 2.1). It is argued that a purely
semantic network is difficult, if not impossible to design. Closer
examination of both the reasons for this, and the possible ways of
overcoming the problems involved, viewed in the light of the overall
objective, 1leads to the conclusion that even though the primary
preoccupation of a natural language analysis system should be the
semantic analysis of the incoming text, some conventional syntactic
information must be exploited during processing. The analyser
therefore seeks to incorporate strong semantic judgement within the
framework supplied by syntactically driven parsing. The relation
between syntax and semantics is thus made manifest in the use of a
transition network processor combining syntactic constituent analysis
With the basic ideas of Wilks' theory of preference semantiecs.

Next, there are the immediate practical problems facing the
parser. These are determined both by the overall objective and the
strategy adopted, as stated above. One of the most important tasks
facing the semantic component of the analyser is the resolution of
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- word-sense ambiguity, with no particular restriction on the types of
items which can be interpreted in more than one way: these can be
verbs, or nouns, or adjectives. A mechanism has been developed, based
or semantic pattern matching of constituents, which makes it possible
for the system to perform in an environment of highly polysemic
dictionary entries, without making the entries themselves, or the
grammar, unnecessarily complicated. On the other hand, the desire to
make use of the augmented transition network mechanism highlighted
another problem for the design of an analyser along these lines: the
resolution of structural ambiguities, It turned out that these two
problems are not entirely unconnected, and a unified approach is
needed.

Efficiency in the operation of the analyser is sought as well. To
achieve this, it was necessary to modify an existing model of an ATN
grammar in order to minimise the unwanted proliferation of alternative
syntactie paths (caused mostly by unnecessary embedding). Judicious
application of semantic specialist routines, applied when Jjust enough
information has been accumulated for them to work on, eliminates (to a
large extent) the element of blind search and avoids premature (and
possibly wrong) decision-making about the course of the analysis and
the semantic structures to be built to represent sentence meaning.

The work of the analyser is thus focussed on the related problems
of resolution of 1lexical and structural ambiguities. The final
product of the analysis process is an unambiguous dependency structure
eqQuivalent (in some sense) to the meaning of the input text. This is
a hierarchically organised verb-centered semantic unit made up of
individual components characterised in terms of semantic primitives
and 1linked by case relationships - thus providing a meaning
representation of the input text in which both component interpreta-
tion and component function (participant role) are made explicit. The
hierarchical structure of the representation reflects the manner in
which it is built up by the the parser, namely by hierarchical
application of the semantic routines, without going through extensive
intermediate syntactic representations. It should be emphasised that
this structure does not necessarily simply reflect the surface struc-
ture of the input sentence.

The nature of the representation structure to be built was a
matter of concern in its own right; but since the structure is also
taken as input by the paraphrase generation program, the study of its
content and format in relation to this use was another aspect of the
work. Indeed the production of paraphrases can be regarded as a more
useful way of evaluating delivered structures than mere study of their
appearance.

The generator is thus designed to interpret the dependency struc-
ture back into natural 1language, and specifically into English.
However, it should be emphasised that the choice of ‘paraphrase rather
than translation for output is essentially one of convenience, as is
argued in chapter 5; for certain classes of paraphrases, the
manipulations involved in the generation process are conceptually the
same as for translation from English to another language, thus making
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it possible to refer to translation/ paraphrase as the overall task of
the system; and to design the generator for this overall task.

0.1.2. Cognitive Studies.

The work intended in this thesis is not presented as a model of
language, or language comprehension, hence no claims are made as to
its relevance to, or implications for, cognitive studies in general.
Needless to say, use of language is a typically human activity, and in
the course of communicating with each other, people do employ
(subconsciously) processes of language interpretation and utterance
generation. Although the system implemented is aimed at performing
similar tasks, the ultimate aim of the project is to simulate rather
than to model certain types of activities essential to the task of
automatic translation/ paraphrase.

Clearly, the system can be regarded, on an abstract level, as a
performance model. However, any references made to some (intuitive)
processes possibly going on in the human mind, concern very general
issues such as the relationship and interaction of syntax and
semantics throughout the analysis process, and the implications
thereof for the organisation and implementation of a computer based
system for natural language processing. No psychological justifica-
tion is offered for the specific devices, mechanisms and principles
utilised by this project, though psychological claims have been made
for ATN mechanisms [Kaplan72], for semantic primitives as the basis of
a representational system [Wilks77], for the "wait-and-see" principle
controlling analysis [Marcus75], ete., or could possibly be found for
different features of the system.

In the process of developing the system, language, and especially
syntax, characterisations taken from linguistics have been exploited.
Some description of language features was necessary, and the most
natural and convenient way of providing this was to use (relatively)
well established categorisations and terms. Thus no claims are made
for any specifically 1linguistic contributions, though the project
perhaps pushes the application of some existing ideas further than
other projects. Examples are the use of a modified set of recognition
rules, an extended system of deep semantic cases, etc. (see below).
The reasons for their application can be best understood in the light
of a unified approach to the task of automated language analysis, and
Wwill be discussed in detail in due course.

0.1.3. The System Implementation.

The general principles of system design and organisation and the
proposed mechanisms as discussed below have been utilised for the
machine implementation of the proposed NL analysis system. This is a
LISP program [McCarthy62], running offline on the Cambridge University
Computing Service IBM 370/165. The program occupies about 110 Kbytes
in its compiled version (representing about 15000 1lines of source
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code) with separate analyser and generator components.

The analyser program performs the transformation from the input
text to a LISP data structure with a fixed, well-defined format, and
equivalent to an unambiguous meaning representation. It combines the
work of a front end, low-level syntactic preprocessor, running on top
of an ATN interpreter, with semantic specialist routines which handle
the constituents recognised by the syntactic component and incorporate
their semantic interpretations into larger semantic units. The
grammar rules controlling the work of the interpreter are kept in a
separate data structure, the ATN grammar. Most of the information
needed by the semantic routines 1is supplied by the dictionary.
Between themselves, the grammar and the dictionary contain most of the
knowledge base of the analysis component; the rest 1is distributed
procedurally among the functions of the analyser. The hierarchically
organised process of recursive application of the specialist routines
defines the construction of an intermediate meaning representation,
one for each distinct reading of the sentence. The results of the
analysis phase are taken as input by the paraphrase generation
program, which defines an inverse transformation generating English
paraphrases. The generation 1is essentially a two stage process,
Context sensitive synonyms selection underlies the conversion of the
input semantic representation into an intermediate data structure
called an environment network. This network simultaneously specifies
the target language syntactico-semantic relationships and a set of
function calls which procedurally define the actual process of
paraphrase generation.

The system runs in 500 Kbytes and a typical processing cycle
"sentence analysis => paraphrase generation" can take anywhere between
0.5 and 2 seconds, depending on the syntactic complexity of the
sentence and the population of alternative readings (see the problem
of multiple choice for a blind language processor: 0.3, 1.1, 1.2).

Below is an illustrative sample* of some of the types of senten-
tial constructs and multiple choice problems that the system can
handle. The emphasis is clearly on resolving potential ambiguities in
the input: selecting the correct word-sense where the dictionary
entry contains more than one definition of a 1lexical item ("™ask",
"call", "afraid", "elub", "erook",...), and/or carrying out a correct
structural interpretation. Note that in the case of a genuinely
ambiguous input there are more than one paraphrase reflecting the
multiple readingst®.

The following several pages are an output from a typical run of
the program with all the debugging switches off. The timing figures
mean 'effective processing + time spent garbage collecting' i.e. only
the first figure is actually relevant.

* for more examples see Appendix (iv).
*+ the analyser works on isolated sentences, and genuine ambiguity has
to be accounted for.
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CAMBRIDGE LISP SYSTEM ENTERED IN ABOUT 500 KBYTES PARM='V'
CORE IMAGE WAS MADE AT 15.27.13 ON 16 JUN T9
LISP VERSION - VER1 LEV2 IMAGE SIZE = 109468 BYTES

STARTED AT 21.47.59 ON 25 JUL 79 - 59.5% STORE USED

End of initialising process after 14157+1644 msecs

Sentence : JOHN ASKED MARY ABOUT THE BOOK.
ERRKERRERR

End of analysis after 452+911 msecs
319434 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: * John questioned Mary about the book.
% 3 36 3 3 % % % % ® %

Sentence : JOHN ASKED MARY FOR THE BOOK.
ERERERRERE

End of analysis after 41940 msecs
210+0 msecs generating the environment net
7 msecs generating the sentence

Paraphrase: * John requested the book from Mary.
HRERERRRRRNR

Sentence : JOHN ASKED MARY A FAVOUR.
EERERRKRRR

End of analysis after 429+666 msecs
230+0 msecs generating the environment net
3 msecs generating the sentence

Paraphrase: * John begged Mary for a favour.
RERERERRERRR

Sentence : JOHN ASKED THE POLICEMAN TO INTERROGATE THE CROOK.
RREXEERLER

End of analysis after 469+13 msecs
193+679 msecs generating the environment net
7 msecs gernerating the sentence

Paraphrase: * John begged the policeman to question the artful

dodger.
RERERRRENNNR

Sentence : JOHN IS AFRAID OF THE CROOK.
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MMM NEKRNR

End of analysis after 349+0 msecs
692+0 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: ¥* John fears the artful dodger.
%33 3 %3 KKK

Sentence : JOHN IS AFRAID THAT BILL LOVES MARY.
(223223123

End of analysis after 552+662 msecs
566+0 msecs generating the environment net
13 msecs generating the sentence

Paraphrase: * John suspects that Bill is irn love with Mary.
223 IIII T

Sentence : JOHN IS AFRAID TO TELL THE GIRL THAT HE LOVES THE

TRUTH.
23T

End of analysis after 1701+2087 msecs
622+835 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: * John doesn't want to tell the girl that he
admires the truth.
ERRRERRKER R
602+775 msecs generating the environment net
10 msecs generating the sentence

Paraphrase: #* John doesn't want to tell the truth to the girl

with whom he is in love.
HERRERNRNRRNR

Sentence : JOHN IS AFRAID OF CALLING ON MARY.
232323231

End of analysis after 1135+1378 msecs
533+6 msecs generating the environment net-
3 msecs generating the sentence

Paraphrase: * John doesn't want to visit Mary.
3 3636 % % % % % %% N ¥

Sentence : JOHN CALLED MARY TO FLY TO PARIS.
FREXRRESERR
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End of analysis after 1028+779 msecs
2434772 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: * John summoned Mary to fly to Paris.
I YTITITITY

Sentence : IT WAS RUMOURED THAT THE PROPOSALS CALLED FORTH

HOSTILE CRITICISM.
ERRKERRKNRX

End of analysis after 1547+1481 msecs
239+0 msecs generating the environment net
10 msecs generating the sentence

Paraphrase: * someone spread rumours that the proposals

provoked hostile criticism.
39 % 3 9 0 3 %R

Sentence : THE CIRCUMSTANCES CALL FOR AN APOLOGY.
REREXRREXR

End of analysis after 469+775 msecs
173+0 msecs generating the environment net
7 msecs generating the sentence

Paraphrase: ¥ the circumstances demand an apology.
ERRRRNERENRR

Sentence : THE WORKERS CALLED OFF THE STRIKE AT THE LAST

MOMENT.
ERERRREENR

End of analysis after 144U4+756 msecs
229+16 msecs generating the environment net
10 msecs generating the sentence

Paraphrase: ¥ the workers cancelled the strike at the last

moment.
36 % % 3 3 % % % % %N

Sentence : JOHN CALLED BILL A FOOL.
2223223237

End of analysis after 486+703 msecs
456+0 msecs generating the environment net
10 msecs generating the sentence

Paraphrase: * John thought that Bill is a fool.
I I Y IITIIIT
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Sentence : JOHN CALLED BILL A TAXI.
ERRRRRRARR

End of analysis after 629+732 msecs
186+33 msecs generating the environment net
7 msecs generating the sentence

Paraphrase: ¥* John ordered a taxi for Bill.
333N RN

Sentence : JOHN STOPPED CALLING AT THE CLUB.
REXREXERRR

End of analysis after 573+699 msecs
153+0 msecs generating the environment net
3 msecs generating the sentence

Paraphrase: ¥ John ceased to visit the meeting place.
REEERRRRRENS

Sentence : JOHN STOPPED TO CALL AT THE CLUB.
REXERRERRR

End of analysis after 669+759 msecs
139+0 msecs generating the environment net
7 msecs generating the sentence

Paraphrase: * John stopped in order to visit the meeting

place.
FERRRRRREERRR

Sentence : JOHN KILLED BILL STRIKING HIM WITH THE CLUB.
FREARRERES '

End of analysis after 699+712 msecs
223+699 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: * John hit Bill with the missile weapon and killed
him.
RERLERRERRAR

Sentence : KISSING AUNTS CAN BE BORING.
RERERRERRR

End of analysis after 909+1474 msecs
718+742 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: # the aunts who kiss someone can be dull.
HERBRRERRNREN
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672+716 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: #* (the act of) kissing the aunts can be not

particularly exciting.
EREXEREEERRR

Sentence : SHOOTING ELEPHANTS CAN BE DANGEROUS.
RRXRERKRRR

End of analysis after 955+1457 msecs
655+7U46 msecs generating the environment net
10 msecs generating the sentence

Paraphrase: #* (the act of) shooting the elephants can be

hazardous.
36 36 36 3 3 W XX XXX

Sentence : CALLING ON MARY, JOHN DECIDED TO ASK FOR THE BOOK.
i Z233 T T L]

End of analysis after 802+1404 msecs
237+0 msecs generating the environment net
7 msecs generating the sentence

Paraphrase: ¥ John made a decision to request the book while

John was visiting Mary.
KEXRRRRRRHNRS

Sentence : JOHN IS EAGER.
¥3IXIIi11 ’

End of analysis after 200+682 msecs
593+17 msecs generating the environment net
3 msecs generating the sentence

Paraphrase: * John is impatient.
336 3 3 % ® 3 M I % ® %

Sentence : JOHN IS EAGER TO PLEASE,
231233223

End of analysis after 316+0 msecs
486+769 msecs generating the environment net
3 msecs generating the sentence

Paraphrase: #* John wants very much to make someone happy.
2T ITYY

Sentence : JOHN IS EASY,.
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i XX XXX 2]

End of analysis after 163+656 msecs
49340 msecs generating the environment net
4 msecs generating the sentence

Paraphrase: * John feels relaxed.
FRREXRRERRRRR

Sentence : JOHN IS EASY TO PLEASE,
RERREREENRE

End of analysis after 250+0 msecs

25040 msecs generating the environment net
4 msecs generating the sentence

Paraphrase: #* it is not difficult for someone to make John

happy.
3 3 3% 3% 3 3% % % % % % %

Sentence : I SAW THE MAN IN THE PARK WITH THE TELESCOPE.
3 36 % 3% 3% % % % % %

End of analysis after 499+786 msecs
163+0 msecs generating the environment net
7T msecs generating the sentence

Paraphrase: * with the telescope , and in the park , I saw

the man.
FERRRERERRER

1234679 msecs generating the environment net
3 msecs generating the sentence
Paraphrase: * in the park which had the telescope , I saw the

man.
% 36 2 3 % 3 3% 3 % % % *

120+0 msecs generating the environment net
6 msecs generating the sentence

Paraphrase: * with the telescope , I saw the man who was in

the park.
BRERERRNRERN

117+0 msecs generating the environment nret
6 msecs generating the sentence

Paraphrase: * I saw the man who had the telescope , and who

was in the park.
HREERRRERNNN

113+0 msecs generating the environment net
4 msecs generating the sentence

Paraphrase: * I saw the man who was in the park which had the
telescope.
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In order to give the reader some idea of the intermediate stages
of processing (see above), the dependency structures and environment
networks produced by the analyser and generator respectively for two
of the example sentences are displayed below.

The exact format of these intermediate data structures, the rules
for constructing the representations of the individual constituents
based on semantic primitives, the rules for the procedural interpreta-
tion of the environment network, and other related issues will be
discussed in detail in the following chapters.

For the time being it is sufficient to point out that semantic
primitives are the basic elements of the meaning representation. The
few basic elements not of this kind are embedded clause headers, and
some markers with a quite obvious function: tns, type, etc. It is
apparent that traces of the input words are carried over into the
dependency structure: "John", "call2", "stop3", "stopi". These are
however merely a shorthand for the semantic definitions of these words
(see 3.1), the definitions themselves following immediately after,
thus "stop3" and "stop4" simply stand for different senses of the
(surface) lexical item "STOP" (for detailed discussion see 3.11).

The dependency structure for the first sentence, "John stopped
calling at the club", for example, can loosely be interpreted in the
following way. A potent subject/ agent (John) does not do an act any
more, and the act itself is that of John moving hlmself to a location
(point) in space which (possibly) has other people in it (i.e. the
club). A1l in all, a rather 1long winded way of saying that "John
ceased to visit the club" ("meeting place" denotes one of the readings
of "CLUB", as opposed to "missile weapon"). The other structure can
be interpreted similarly.

The format and content of the environment network (see chapter 5)
is intuitively and generally clear; I shall not discuss it here.
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Sentence : JOHN STOPPED CALLING AT THE CLUB.
RRERERRRRR

Structurel

(clause
(type del)
(tns past)
(v
(stop3
((*pot subj) ((act obje) notdo))
(6@ agent (John (mal (indiv man))))
(ee
act
(clause
(v
(call2
((man subj)
((self obje)
(((where point) to) move)))
(@@
agent
(John (mal (indiv man))))
(ae
location
(club?2
(({(this man) obje) wrap)
spread))))))))))

End of arnalysis after 622+802 msecs

263+23 msecs generating the environment net

7 msecs generating the sentence

Map of environment net
ERRERRRHRERERRRERRINE2H¥

The top node is: syntax-nodel

syntax-nodel: ((agent . syntax-node2)
(tense . past)
(form)
(lexverb . cease)
(tocompl . syntax-node5))
syntax-node?2: ((lexnoun . syntax-node3))
syntax-node3: ((english . syntax-nodel))
syntax-nodel: (John)
syntax-node5: ((dummy-agent . syntax-nodeb)
(tense)
(form . to)
(lexverb . visit)
(object . syntax-node7))
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syntax-nodeb: ((lexnoun . syntax-node3))

syntax-node7: ((lexnoun . syntax-node8))
syntax-node8: ((english . syntax-node9))
syntax-node9: (meeting place)

Paraphrase: * John ceased to visit the meeting place.
T2 TTITITYY]

Sentence : JOHN STOPPED TO CALL AT THE CLUB.
232223223

Structure

(clause
(type del)
(tns past)
(v
(stopl
((*hum subj) ((((act obje) do) goal) notmove))
(@@ agent (John (mal (indiv man))))
(@@
goal
(clause
(tns present)
(v
(call2
((man subj)
((self obje)
(((where point) to) move)))
(ee
agent
(John (mal (indiv man))))
(@@
location
(club2
((((this man) obje) wrap)
spread))))))))))

End of analysis after 662+0 msecs

164+0 msecs generating the environment net

3 msecs generating the sentence

Map of environment net
HEXRRRERRRRRRERARRERRRRES

The top node is: syntax-nodel

syntax-node1l: ((agent . syntax-node2)
(tense . past)
(form)
(lexverb . stop)
(goal . syntax-node5))
syntax-node?2: ((lexnoun . syntax-node3))
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syntax-node3: ((english . syntax-nodel))
syntax-nodel: (John)
syntax-node5: ((dummy-agent . syntax-nodeb)
(tense)
(form . to)
(lexverb . visit)
(object . syntax-node7))

syntax-nodeb: ((lexnoun . syntax-node3))
syntax-nodeT: ((lexnoun . syntax-node8))
syntax-node8: ((english . syntax-node9))
syntax-node9: (meeting place)

Paraphrase: ¥* John stopped in order to visit the meeting place
HEXERRERRENRXHR
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0.2. Some Basic Terminology.

This section introduces some terms which are extensively used in
the rest of the thesis. The definitions are informal and the precise
meaning of the expressions should become clear from their use.

In the traditional theoretical linguistics framework [Lyons68] two
basic terms are used to define two complementary aspects of language
description: "the form of ... words and the manner of their combina-
tion in phrases, clauses, and sentences [are described] by grammar;
and the meaning, or content, of the words (or of the units composed of
them) by semantiecs". In this framework syntax is taken to be that
part of grammar which accounts for the ways in which words can combine
to form sentences.

However, a computer based Natural Language Analysis System is not
a descriptive model of 1language. For the purposes of this work, a
natural language processor will be defined as a system which accepts
natural language text as input, uses syntactic and semantic processes
to transform it into an internal representation, and applies deductive
and/or inductive procedures to the representation ¢to drive the
performance mechanism. This definition clearly presents syntax and
semantics in a different 1light: they are not to be treated only as
descriptive devices they are now collections of active rules and
principles, basic to the whole process of analysis, The overall
process is carried out by the already mentioned NL processor, which
may be referred to as the analyser or parser.

As specified in the theory of formal languages [Aho72], parsing
implies at 1least two things: recognition of well-formed surface
strings, conforming to a certain defined surface grammar; and
assigning structural interpretations to them. The recognition
process, which just answers "yes" or "no" to the question about the
well-formedness of a given string, 1is guided strongly by a set of
recognition rules, which represents one type of knowledge that a NL
processor should have access to. These recognition rules define what
I shall refer to in the context of this presentation as {(low level)

syntax.

As a consequence of such a pragmatic definition of syntax, the
term grammar now denotes the actual embodiment of the recognition
rules in a machine understandable form, together with another type of
data needed by a NL analyser: instructions as to how to proceed with
the process of syntactic recognition. The grammar also specifies (it
is irrelevant at this point whether explicitly or implicitly) the
mapping from surface text to an equivalent corresponding structural
representation of it. In view of the background of this project,
'grammar' will specifically mean (except where explicitly stated
otherwise) the machine interpretable form of an augmented transition
network grammar (see 2.1) which performs all the functions specified
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above.

Once a well-formed syntactic constituent (one of the "phrases,
clauses, or sentences" as mentioned above) has been recognised, its
meaning has to be represented in a certain manner. Without going into
any details as to what meaning is, or might be, in the 1light of a
particular system objective, we note that a semantic theory is needed:
first, to specify a set of judgemental criteria, allowing or
disallowing the acceptance of a certain piece of text (well-formed
constituent) as meaningful, or meaningless; then to define a formalism
for expressing the meaning of a word or a constituent from the
meanings of their component parts (if such exist, or can be
specified); and, finally, to posit a set of principles related to the
way in which those criteria should be applied. The term semantics
alone will be used below in a restricted sense, applying only to the
judgemental criteria and the principles behind their application.
Clearly, all this necessitates yet another type of knowledge which a
NL analysis system should utilise.

As the definition of a NL processor given above implies, the final
result of the analysis process is an internal representation of the
meaning of the input text which is used to drive the performance
mechanism. It naturally has to be predominantly semantiec in nature,
since semantics, as defined above, makes the meaning relations part of
its domain. Hence, a semantic theory also provides the basis for a
semantic representation of a constituent recognised by the syntactic
recognition rules. For the rest of this presentation, 'internal
representation' and 'semantic representation' will be considered to be
synonymous.
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0.3. Syntax And Semantics In a Natural Language Processing System.

The previous section defined a NL processor as a system which
converts natural language input into an internal representation. What
the definition is not at all specific about is the form of this
internal representation, as well as any particular details of the
syntactic and semantic processes that carry out the conversion.

Early research in computational linguistiecs was strongly
influenced by Chomsky's categorisation of grammars and in particular
by his transformational theory of natural language (TG) [Chomsky57],
and by formal 1language theory and compiler writing: elements of
language are formally defined objects in a well-defined syntactic
structure [Aho72]. Both lines of work emphasised syntactic processing
and more and more powerful syntactic analysers were developed, based
on different 1linguistic theories, but nevertheless marking an
increased acceptance of the distinction between surface and deep
syntactic structures of 1language: the Scientific String Parser of
Sager [Sager73], Kaplan's General Syntactic Processor [Kaplan73], the
Chart Parser of Kay [Kay73], Woods' ATN parser [WoodsT701].
Considerable, but much more unorganised and unstructured effort was
invested into gaining insight into what exactly is meant and expected
from the 'semantic analysis' component of a natural language system.
It is generally accepted that this is the 'understanding' ingredient
of such a system: thus it 1is responsible for extracting and
representing the meaning of a piece of text.

One of the problems here is the relationship between the syntactiec
and semantic processes that take place in the course of text
understanding; what is their relative weight and importance; and how
can, and should, they be integrated in a complete natural 1language
analysis system? Linguistic theories do not help much in this respect
because views differ radically. At the one end of the spectrum there
is the view that syntactic and semantic processing are decoupled and
can be performed serially (deep interpretive semantics). At the other
end, the generative semanticists relate a 'deep semantic representa-
tion' to a surface form - without going through an intermediate
syntactic structure. And even though research in automatic natural
language analysis tends to be more pragmatic, the implications of
linguists' views are too important to be dismissed easily. As it is,
there are many different approaches and strategies for designing
natural language analysis systems (see chapter 2). The problem is
further complicated by the fact that each of these systems has very
specific objectives, and these objectives differ substantially. Thus
the various approaches can only be evaluated in an insufficiently
informative, or rather non-uniform, environment. Furthermore,
preoccupation with semantic processing resulted in the devaluation of
syntactic analysis even when performed by a powerful mechanism. while
sufficiently detailed semantic analysis programs suffer from
incomplete coverage of English forms. Also, it is not very clear in
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general, how to generalise any particular semantic approach to deal
with a wider spectrum of 1language phenomena. Thus, exploring the
position of conventional syntax in a generalised semantics Dbased
system, as well as the possibility of embodying semantic evaluation
Wwithin an existing syntactic analysis framework, became one of the
incentives for this research.

The other problem with the semantic analysis component of a
natural language system is directly related to the mapping 'surface
text => formal internal representation'. As Woods notes, "semantics
has both a judgemental and a structural aspect" [Woods75]. In other
words, apart from constructing a semantic representation of the
meaning of an input sentence, semantics should be responsible for
rejecting anomalous or ill-formed structures. However, my feeling is
that most researchers in the field of natural language processing have
made the structural aspect their main study. The very nature of their
approach emphasises that: it starts with defining the syntax and
semantics of the internal representation, and proceeds to attack the
question of how the mapping into it should be performed. On a general
level this is all right, but such an approach does not place enough
emphasis on the equally important judgemental aspect of semanties. It
may be argued that the mere definition of a format for the internal
representation, together with a specified procedure for carrying out
the conversion, prohibits the building of ill-formed structures. On
the other hand, noone argues the fact that natural language 1is
inherently ambiguous. What follows from ¢this 1is that a natural
language analysis program 1is essentially a 'blind' processor which
faces the problem of multiple choice (see 1.1, 1.2) all the time, and
must, therefore, have all its information and decision processes
complete and explicit. Still, how many systems actually attempt to
solve the problem in its generality? (see chapter 2). The only major
project which starts with the judgemental aspect of semantics is
Wilks' approach to machine translation (see below). He openly
acknowledges the polysemy of the words and designs his semantic theory
round it. However, in such an approach, the internal representation
might suffer if one is not careful enough, as indeed Wilks' does (see
2.2, 3.11). In the attempt to keep the structure simple and uniform,
it is not defined rigorously enough, so that it is not clear whether
it can provide for a wider variety of surface texts, or how well it
can serve as a basis for driving the performance mechanism (the
translation generator).

The situation clearly requires achieving the right balance: one's
premises have to be carefully defined. In the light of the remarks
made above, I decided to concentrate on the problems associated with
the judgemental aspect of semantics: resolution of 1linguistic
(lexical and structural) ambiguities; and to take the analysis
process to its logical conclusion by constructing and delivering an
unambiguous internal representation. In such a framework it will be
pessible to deal with the problems both of discrimination and
representation [Sparck Jones65], which are the cornerstone of a
computationally feasible semantic theory.
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chapter 1.
The Nature Of The Problem.




1.17. Ambiguity Or The Problem 2f Multiple Choice.

The Concise Oxford Dictionary offers a definite view as to what
should be considered to be an ambiguous sentence: "an expression

capable of more than one meaning". From the point of view of a
human trying to extract some meaning from a piece of text this is
adequate and intuitively true. He will normally assign more than

one interpretation to
John asked Mary where the club is, or
He shot the man with the gun, or
He took her grapes,
while judging that
John shot the man with the club, and
John admitted Bill to the club
have only one meaning, and hence are unambiguous, according to the

definition.

However, from the point of view of a NL processor, both
cases require making of a decision of some sort. Neither when or
how the decision 1is made, nor 1its outcome, 1is relevarnt at the
moment . What 1is relevant is the fact that the program faces the
problem of multiple choice. Assuming that the data file(s) accessible
to it contain (at least) two separate entries, reflecting (somehow)

the "weapon"™ and "place"™ <connotations of "club", the analyser
will have to perform a rational choice every time it comes across the
lexical item "club" - even when no such choice-making, or a

similar process, seems to take place in reality. Also, in the last
two examples above the program will have to decide or who has the club
- John, or the man, as well as on the meaning of "admit".

Throughout this work, I shall use the term 'ambiguity', rather
than 'multiple choice', as exemplified above. Hence 'disambiguation'
will involve finding the correct reading(s) of a word or/and the
correct structural interpretation of a semantic unit (the exact
meaning of the term will become clear in due course). In the case
of more than one plausible choice, the analyser will deliver them
all, as 1if presenting them to a higher level deductive component
which will try to examine, for example, the first of the sentences
above in the context of John planning an assault, or John
intending to go somewhere. The design of such a component is
outside the scope of this project.

What follows 1s an attempt to analyse the causes for ambiguity,

and recognise the situations in which the system under discussion
Will be faced with the problem of multiple choice.
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Very broadly speaking, a computer based NL analysis system

faces three main types of ambiguity:

(1) word-sense (lexical) ambiguity,

(2) structural ambiguity,

(3) referential ambiguity.
These are discussed in more detail below. (The discussion does not
eclaim to be an extensive linguistic treatment of ambiguity: it is
intended only to convey the reality and form of the problem for a
'blind' automatic analyser - see 0.3.)

1.1.1., Word-sense ambiguity

The roots of this phenomenon (also known as 1lexical
ambiguity) are multiple definitions of items in the lexicon.
This presentation will ignore the 1important theoretical issue of
drawing the 1line between polysemy (roughly "a lexical item having
more than one senses") and homonymy ("two or more items having the
same pronunciation, and more important, spelling") [Lyons77]. The
issue is irrelevant from the point of view of a computer - a
choice mechanism application is clearly called for 1in both cases.
What 1is more important is the appreciation of the situations
which necessarily trigger the choice making mechanism.

These can be classified as:

(A.) conceptually similar words¥* (close in meaning)
functioning in different syntactic roles (lexical categories):

Children usually fear the dark.
Children usually experience fear of the dark.
(B.) conceptually different words functioning in different
syntactic roles:

He 1left his father's home to search for the family
treasure.

"The Left Hand Of Darkness" is a highly acclaimed SF
novel.
(C.) conceptually different words functioning in the same
syntactic roles:
John ran to school.
John ran a school.

A flower bed ranr along the front of the school.

In the context of the cases and examples thus cited, several
general points emerge. Firstly, it appears that all other things
being equal, the situation defined by (C.) above is the most difficult

* here, and throughout this work, the term 'word' is used informally,
and despite discussions of linguists, as equivalent to 'lexical item'.
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to deal with. Assuming that the analyser can anchor itself to
some low level syntax, then in cases like (A.) and (B.) some advantage
can be taken of the fact that apart from exhibiting some meaning
(which the system tries to select), the 1lexical item wunder ques-
tion performs certain well known syntactic function. This, however,
does not solve all our problems, because, as will be discussed
shortly, the possibility of a word functioning in different lexical
categories 1is one of the causes giving rise to the further
phenomenon of structural ambiguity. Still, this will (presumably) be
dealt with by another mechanism, and as far as the problem of lexical
ambiguity remains at issue, it is clear that the bulk of the effort
must go into resolving situations 1like C. above.

No more will be said now about this, except to point out
that no matter what the actual disambiguation mechanism is,
it will necessarily involve closer examination of the context
Within a unit of meaning. Which brings us to the second point:
without going into details about what should be considered a 'unit
of meaning', it is important to point out that ‘'context' does not
necessarily imply a context of a paragraph (with which the system
is not extended to deal), or even the context of a sentence:
consider the second example in (B.) above, where the relevant context
is supplied by the noun group. As a consequence, We should nrot
expect a complete disambiguation to occur immediately within the
unit of meaning recognised and analysed, but on the other hand, a
hierarchically organised process (see below on the organisation of
semantic routines) of lexical disambiguation (which is
implieitly and informally suggested by this brief discussion of
'context!'!) might help in delimiting the scope of indeterminacy,
and cutting down alternatives Dbefore the combinatorial explosion
becomes unmanageable. I shall return to this 1in more detail later,
in chapter 3.

The final point I wish to make concerns the decision as to when to
introduce a new dictionary definition, i.e. recognise another
meaning for a lexical entry. Why should I decide to have a single
definition for "independent™ and two alternative ones for "short" or
"sweet", even though

Is Brazil as independent as the continuum hypothesis?

(example from [McCawley68]) sounds definitely odd, while the

implication of "short stick" vs. "short pause"; or "sweet candy"
vs. "sweet voice™ 1is that "short" and "sweet" need two distinct
definitions. To pursue the point further; if three meanings for
"ask", roughly corresponding to "Johr asked for the book",
"John asked about the book", "John asked to see the book", are
realised (by the generator at the paraphrase end - see chapter 5) by

no less than five different verbs, does not this indicate that there
are five, rather than three, separate meanings? These are obviously
important decisions to be made even before the detailed design of
the NL system 1is attempted. Here they are simply listed: they will
be discussed in more detail later.



1.17.2. Structural ambiguity

The term as I shall use it in this work encompasses the
phenomena of both grammatical (i.e. syntactic) ambiguity and
transformational ambiguity [Lyons68]. These will be relevant here
only so far as they help to establish the causes for, and hence
the situations in which, the computer system is again faced with the
problem of multiple choice - this time in the process of building the
structural representation of a piece of text.

The reason for this multiple choice is the existence of
more than one way in which immediate constituents (made available
by some recognition process) can be combined into a syntactic
structural unit. This clearly indicates +that the phenomenon 1is
related to the existence and interpretation of the two kinds of
rules normally present in a NL analysis system: recognition rules and
structure building rules. In practice these are combined 1in - a
single applicative form, because normally analysers are written in
such a way as to make sure that whenever constituents are
recognised, there are consumers for them: almost all systems
(apart from Wilks' - see below) have embodied somewhere in them the
fundamental idea of expectation or prediction. The important point
about structural ambiguity which follows from this 1is: 1its existence
and form depend on the particular grammar model that the designer
has chosen as the backbone of a particular NL system. So: 1is it
possible to develop a deterministiec grammar which altogether avoids
the problem of structural ambiguity? Is it possible to develop a
grammar in such a way that the nondeterminacy is decreased -
i.e. the problem of structural multiple choice is encountered less
often.

The view presented in this work is that an affirmative answer can
be given to the second question. The properties that a grammar will
need to satisfy such a constraint clearly depend on two factors: the
particular grammar constituent(s) requiring a certain type of
computer response which 1is externally manifested as facing the
problem of multiple choice; and the possible ways of eliminating or
minimising the situations in which such a response is needed. These,
however, and the general issues raised above, wWill be discussed in
more detail in chapter 3.

Broadly speaking, structural ambiguity can be a function of either
the distributional classification of the immediate components of a
structure, or of more than one possible way in which these components
can be assembled, or of "deeper connections between them" [Lyons68],
or of any combination of these. What follows is a closer examina-
tion of situations 1in which multiple choice arises.

(A.) More than one possible way of assembling the immediate
components of a structure.

Possibly the most common situation in which this happens 1is the
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problem of establishing the correct structural component being
postmodified by a prepositional phrase. Woods refers to the
problem as that of 'Selective Modifier Placement' [Woods73] and
quotes the classical example of

I saw the man 1in the park with the telescope.
Even in more subdued contexts, the problem 1is still there:
Fred returned the book with the pictures.

Fred returned the book with speed.

Prepositional phrases are not the only kind of postmodifiers
giving rise to this particular type of structural ambiguity - it
is present whenever a certain construct can be attached (no matter
how, or when) to more than one potential head. Consider, for example

John admitted to the policeman that he killed Mary by
Strangling her.

John informed the landlord that he wanted to leave by writing
a formal letter,.

The difference (in structural terms) between "kill by strangling”" in
the first sentence and "inform by writing" in the second is obvious.

In situations like these the problem of multiple choice arises
when a modifying constituent has been recognised and it can be wused
either in the same way by quite separate structure-building rules,
or in different ways, for modifying different potential heads, by a
single rule. The constituents in question do not have to Dbe
postmodifying only - for example consider "arithmetic exprassion
evaluation" vs. M"efficient expression evaluation".

Situation similar to the modifier placement problem can
sometimes occur in connection with conjunctions. For example,
a conjunction can be followed by a constituent which could either be
attached to more than one preceding potential head, or which could
accept as a premodifier the premodifier of a constituent
preceding the conjunction: situations some of which are expressed
by the following schemata: NP1 prep NP2 "and" NP3; S "that" S
"because" S; adj noun "and" NP:

John ordered spaghetti with meat sauce and wine,
[Winograd72]

...dangling constituents and prepositional phrases,

John bought the car which Bill was selling because he needed
the money,

John bought the car which Bill was selling because he
needed a means of transport.

This system does not deal with the problem of conjunctions at
all; they were felt to be too large a problem to be tackled along
with all the others.



(B.) Distributional classification of the terminal (and/or
non-terminal) elements of a structure.

The situation arises as a result of 1lexical 1items Dbeing
classified as Dbelonging to more than one distributional class
(lexical category). The occurrence of such lexical items on the
borderline of potential well-formed constituents sometimes results in
them being accepted as a valid part of either constituent, giving rise
to nondeterminacy. Whether we feel it, as in

They can fish, [Lyons68]

John took her grapes,

Bill admitted to the girl that he loves the truth,
or not, as in

Bill admitted to the policeman that he killed Mary,

the problem of multiple choice exists.
(C.) Transformational ambiguity.

As already mentioned, this is a function of the 'deeper connec-
tions! between structure components. Without going into
transformational grammar theory, I want to point out that a computer
based NL processing system faces the problems of recovering these
deep connections, and inferring certain 'deleted' constituents
or ones absent from the surface text. constituents,

This project has been mostly concerned with the ambiguity of
"-ing" participle phrases. For a more detailed account of the
phenomenon, and the causes for it, the reader is referred to
[Lyons68] and [Quirk72]. Briefly, the situation arises due to the
fact that sometimes more than one different proposition generates
identical surface strings under nominalisation and/or adjectivalisa-
tion, This is the origin of such examples as

Kissing aunts can be boring,
The shooting of the hunters was terrible.

Clearly, the mechanism for dealing with these and similar
constructions will be facing the problem of multiple choice - both
in the situations quoted above, and in the case of

Shooting elephants can be dangerous,
The stinging of the bee hurt.

Consider also (numbers in brackets indicate possible readings; some
of the examples are from [QuirkT72]):

I watched Bob teaching Mary (1)
watched the man teaching Mary (2)

I

I saw the man teaching Mary (2)

I talked to the man teaching Mary (1)
I

listened to the man teaching Mary (1)
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I dislike Brown painting his daughter (1)
I dislike the man painting his daughter (2) .

Some other examples of the necessity of multiple choice due to
transformations are: ambiguity through ellipsis:

He loves playing tennis more than his wife,
or in the situation of
John is easy to please,

John is eager to please.

To make the problem even more complicated, structural
ambiguity can result from the combination of some (or perhaps all)
of the factors discussed above:

I heard an earthquake singing in the shower, [Wilks75b]
I heard Mary singing in the shower,
I saw the man sitting in the corner,

...Some more convinecing evidence [Lyons68].

What 1s worse, there is nothing in the discussion so far to
forbid the manifestation of lexical and structural ambiguity within
the same sentence. This gives rise to examples like

Time flies like an arrow, [Kuno62]
I heard her cry. I[Lyons77]

Max left Sue to wash the dishes.
[T.Moore - personal communication]

As already emphasised, I am using the term 'ambiguity' to refer to
the problem of multiple choice, not to ambiguity as linguistically
defined. What this implies is that a computer based NL analysis
system must incorporate a mechanism for recognising and dealing with
the multiple choice situation. It alsc implies that 1linguistic
definitions may not be particularly relevant or helpful. The examples
given above make it clear that most often than not the decision will
have to be made on semantic grounds (for certain exceptions see
chapter 3, section 3.6) The exact strategy of when and how much
Ssemantic judgement to invoke, as well as the methodology, will be
discussed later.
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1.1.3. Referential ambiguity.

This project has not been involved with this type of ambiguity at
all; the reasons being both lack of time, and the belief that apart
from being a research topic on its own right, the problem requires a
different approach involving the design and implementation of a higher
level deductive component operating on the partial or complete
semantic representation delivered by the analyser and performing more
general and goal-oriented manipulations than the comparatively limited
application of semantic routines. Even though a single sentence
environment can be specified, the task will still require inference
making processes and mechanisms:

The soldiers fired at the women and I saw several of them
fall. [Wilks73]

The city council refused the women a permit because they
feared violence.

The c¢ity council refused the women a permit because they
advocated violence. [Winograd72]

Actually, the implemented system at its present state does not
attempt evenrn any pronoun resolution (not to speak of cases where
ambiguity of reference of noun phrases in extended discourse has to
be resolved), and as a result phrases as "his monkey" or "their
project"™ invariably get ‘'paraphrased' 1into "someone's monkey", or
"someone's project".

The fact that referential ambiguity is generally considered to be
non-linguistic in nature does not imply that since my system does
nothing about it, it is a basically linguistic system. As will be
shown later, it makes extensive use of common world knowledge, and so
could be extended to attack the problem of this third general type of
ambiguity; at present referential ambiguity is ignored because it
was not of primary interest at the beginning of the project, and there
was no time left at the end to pursue it.
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1.2. Prepositions And Prepositional Phrases.

Perhaps the most often encountered cause of structural ambiguity
is trailing prepositional phrases acting as postmodifiers. The
phenomenon is a function of two factors. First, there is the much
discussed ambiguity of the prepositions themselves. Ambiguity here is
a particularly complex matter. In my view this is because almost all
English prepositions, (if not all of them) are devoid of meaning on
their own; basically because there is a great number of varied
constructions a preposition can participate in, and it is these that
define its 'meaning' in every particular case. To make things more
complicated, this ‘'meaning' as just defined, is expressed in the
specific relationship between the main element of a constituent being
modified (i.e, its head) and the prepositional phrase itself. This is
where the second factor comes: a prepositional phrase can equally
well modify the main verb of a clause, and/or any of the heads
appearing between the verb and itself. As a result, the number of
ways in which a linear sequence of constituents can be interpreted,
increases uncomfortably.

Let wus suppose that the program has somehow 1identified the
following constituents of a sentence:

V NP1 prep NP2 prep NP3

Generally, there are 4!=z24 permutations between the main elements; the
assumption that the verb is always the leading one cuts down this
number to 3!=6 possible ways of interdependent postmodification.
Exploring the English syntactic constraint that forbids a 'crossover'
modification (the equivalent of a situation where NP2 modifies V, and
NP3 modifies NP1) reduces the number of interpretations to 5.
Pursuing the same line of thought in an attempt to generalise the
points above, it is possible to show that with 5 constituents under
consideration, the number of possible structural interpretations goes
up to f(5)=14; and in general this number grows exponentially with the
syntactic complexity of the piece of text being analysed: 1, 1, 2, 5,
14, 42, 132,... Clearly, it 1is not desirable to generate all
syntactically valid structures and then attempt to account for them on
semantic grounds. This is especially the case where, for example, NP1
cannot be modified by NP2; and consequently all (V (NP1 (NP2 NP3))),
(V (NP1 (NP2 (NP3)))) and (V (NP1 (NP2)) NP3) need not be considered
at all. On the other hand, any one, or more than one, or indeed all,
structural interpretations could also be semantically plausible, and
obviously a computer-based NL system must be able to account for them.
(My program, for instance, is capable of producing all five (expected)
readings of the well Xnown "I saw the man in the park with the
telescope": see 0.1)

The discussion above makes it clear that some intelligent and
efficient method is required for dealing with prepositional phrases,
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as compared with the undesirable blind syntactic nondeterminism. For
this, it will be necessary to

a.) adopt some specific parsing strategy;

b.) design an algorithm for efficiently determining the
correct level of modification at which a prepositional phrase func-
tions, and attaching it with the relevant relational tie; and possibly

c.) define heuristics for choosing between more than one
alternative interpretation (or at least choosing the most probable
one)., All of this will be discussed in chapter 3.

The problem of proper treatment of prepositions and prepositional
phrases is further complicated by the fact that ir normal (real world)
text, prepositions are sometimes used (semi)-idiomatically, and thus
introduce the additional side effect of "shift of meaning": when used
Wwith a particular verb different prepositions impose different
meanings on the verb, or, alternatively, express a finer distinction
of meaning. Consider M"aim at" vs. "aim for"; "immune against™ vs.
"immune to" vs. "immune from". (This is not to be confused with
particled/ phrasal verb constructions 1like: "call off", "give in",
"drink up", "catch on"...) And while this situation clearly has to be
dealt with by a natural language analysis system, it leads us to the
most important fact about prepositions from a computational point of
view,

There exist two modes in which prepositions can be used. This

however does not imply two disjoint sets of prepositions - just two
different modes, to which I shall refer as obligatory or, for reasons
explained Dbelow, verb dependent, and optional. These perform

different functions with respect to the overall understanding of a
sentence.

The obligatory use of a particular preposition is imposed by the
idiosyncratic requirements of the verb sense intended in the context
of the clause. In other words, the preposition, together with the
nominal it introduces, makes an important contribution to the verb
meaning. In terms of Fillmore's case grammar framework [Fillmore681],
the preposition introduces the verb related role that the nominal
(i.e. the verb's argument) plays. And the preposition is obligatory,
because the deep semantic role performed by the nominal argument is
essential for conveying the verb's message. Generally speaking, one
cannot just "look"™ - he is either "looking for", or "looking at", or
"looking after"™ something; if the "defeat" sense of '"beat" is
intended, usually "beat at" is used; and so on. This, however, is not
to be confused with the situation where the preposition introduces an
expected, but not an obligatory, slot filler for a specific case
frame. "With" traditionally introduces the instrumental case for a
verb like "strike", but even if it 1is missing, "strike" in "John
struck Mary" still means much the same as "strike" in "John struck
Mary with a ball/ hammer/ feather" as much as essentially the same
meaning is conveyed in both cases; the only difference being that in
the former the instrument is not explicitly specified, although the
person to whom the information is communicated knows (or infers) that
some such instrument must have been used. On the other hand, in "John
struck Mary as a fool" a specific, and different meaning of "strike"
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is intended, and in order to get it across, the use of "as" is cru-
cial, and in that sense, obligatory.

It is the optional use of prepositions which could loosely be
associated with the vague notion of the meaning of a preposition.
According to circumstances, some prepositional phrases specify certain
things about an event - time, place, duration, instrument,... - that
are not as central as the essential deep cases; and, further, could be
specified similarly for many other events. These are not integral
part of the meaning of the verb (or adjective, or noun, for that
matter) being modified; but they extend its meaning: thus "in the
~garden” tells us more than just "the garden". Because of this, even
though the preposition still remains one of the most ambiguous parts
of speech, certain ranges of its applications can be delimited with
some degree of preciseness (i.e. "it can be used in a situation A, but
not in situation B"), and generality ("situation", as used above ,is
definable in terms of classes and properties of entities that can
function as the coordinate arguments of the relation implied in each
particular case by the use of the preposition). For example, to quote
but a few instances of the varied and general optional uses of "with"
[Wood671:

1. being accompanied by, in the presence of,

2. association or identification on the level of ideas, beliefs,
ete.,

3. having, as a possession or as a characteristic,

4, denote an instrument,

5. denote cause or reason,

6. suggest coincidence of time and circumstances; etec.

Thus the use of "with" in
I would like to go to the theatre with you,

I believe with Emerson that a foolish consistency 1is the
hobgoblin of little minds,

...a person with a large fortune,

I managed to beat the dog off with a stick,
The small child trembled with fear,

We rose with the sun,

is optional, because it does not satisfy the intuitive criteria for
the obligatory verb-dependent use of a preposition.

These criteria for obligatory use of a preposition can be phrased
in a relatively formal way as follows [Ritchie771]:

1. The prepositional phrase will fill an obligatory role in the
verb/ adjective meaning,

2. The syntactic properties of the particular verb sense predict
that a particular (verb dependent) preposition will be used to
indicate the filler for that role,

3. The prepositional phrase occurs after the main verb that
creates the prediction.
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Ritchie also poses another constraint, which we are not ready to
formulate precisely yet: the preposition should cause no change in the
semantic structure of the noun-phrase involved.

Once the distinction between the two modes of prepositional use
has been made, it becomes clear that a computer-based NL analysis
system must be able to distinguish between them and react accordingly.
(Unfortunately, as will be discussed later, existing systems account
for the first, obligatory, mode only - Riesbeck, Simmons, Ritchie; or
the second, optional, mode only - Wilks, Woods).

Two types of distinct mechanisms are required, and it is obvious
what and why. At this point I shall only try to establish apprapriate
frames of reference for these and so define the terms

A. First order (obligatory) prepositional phrases analysis,
B. Default (optional) prepositional phrases analysis.

The final point I want to make here, again to establish a frame of
reference, 1is about the strategy adopted for dealing with the
different cases. Two basic approaches are open: I shall refer to them
as active and passive. The difference between these can procedurally
be exemplified as follows. An analyser, wupon encountering and
identifying the main verb of a clause, has two courses open. It can
consult the dictionary entry for +the verb, find out whether it
requires any obligatory prepositions, and then actively seek them (and
the noun group following) in the rest of the text. Or, alternatively,
the analyser can scan the text further, recognise a prepositional
phrase, and then globally analyse all relevant factors in order to
determine the compatibility and the relation between it and the main
verb (or some other preceding constituent).

Pros and cons regarding the two methods; the way this system has
decided to treat the problem; as well as its attitude towards the two
mechanisms for dealing with the different types of prepositional
phrases, will be discussed in more detail later.
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chapter 2.
The Basis Of This Work.

- 2.1



2.1. Augmented Transition Networks.

2.1.1. The Basic Model (Woods).

The name of Woods is connected with several quite different issues
relating to the computer analysis of written text. These are all
embodied in the design and implementation of the LSNLIS (LUNAR)
project [WoodsT72]. In particular, Woods developed the augmented
transition network (ATN) grammar as a device for the analysis of
natural language, and defined a formalism (language) for representing
any ATN grammar in a form interpretable by a separate language
processor (interpreter, parser). It is this aspect of Woods' work
that I shall discuss most fully here, since the ATN model is in the
basis of the work described in this thesis. However, it is important
to realise that Woods has separately developed an extensive transition
network grammar of English (written in the ATN formalism), a
generalised ATN interpreter, the transition network parser, and an
integrated NL processing system as a front end to a geological data
base (DB).

The augmented transition network model is a development of the
basic transition network grammar: a finite state transition diagram
Wwith named states connected by arcs, the arcs themselves labelled with
terminal symbols, or state names - i.e. a recursion (push-down)
mechanism is part of the model. A successful parse is associated
with a complete path through the network, starting at the initial
state, and terminating at one of the final states of the grammar. The
"augmentation™ comes from adding to the arcs an open-ended set of
structure-building and register-setting actions, as well as test
conditions. Thus, named cells (registers) can be assigned arbitrary
structures - the results of partial computations - and can, at any
later stage of the analysis, be interrogated, thereby determining the
further course of analysis, and can also be modified. In the grammar
developed by Woods, the structures built were (parts of)
transformational grammar (TG) tree structures [Chomsky65], and the
tests were, in most cases, conditions on input words. There 1is
nothing in the model, however, to place any restrictions on the nature
of tests and operations to be performed during the process of sentence
analysis, or on the structures delivered at the end of it. This alone
is sufficient to make the model extremely attractive. Together with
the efficiency of representation, clarity of expression and simplicity
of operation, the ATN model can be a powerful tool for text analysis.
These features result partly from the fact that the model is equiva-
lent in power to a Turing machine, and partly from the convenient
language defined in which an ATN <can be formally represented
[WoodsT70].
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The grammar is represented as a set of states, together with the
associated names and sets of outgoing arcs. There are several
distinct types of arcs, the most important of which are CAT, WRD, PUSH
and POP, The first two match terminal symbols in the grammar (by
testing for membership of a certain (syntactic) category, or for
textual/ literal equivalence); PUSH activates the recursion mechanism
and initiates a new (lower) level computation, and POP both specifies
a final state in the network, and terminates a computation at a given
level - i.e. it must be bracketed with a PUSH: each subnetwork must
terminate with at least one POP arc. Clearly, it is the PUSH ares in
the grammar which handle embedded constituents, and if one has been
recognised, its structural representation is (usually) returned - by
the POP arc - as the result of the embedded computation. All arecs
have the same general format:

(<arcname> <arclabel> <test> <action>¥),

where 'arcname' is one of the above set, 'arclabel' depends on the
type of arc, and is self-explanatory:

(CAT <cat. name> ...) => (CAT NOUN ...)
(PUSH <st. name> ...) => (PUSH NP/ ...), etec.

The actions ('*' means that an arbitrary number of actions can be
specified on an arc) mainly manipulate registers; setting them (by
SETR), or initialising them at levels different from the current one
(SENDR for example, initialises registers for arn embedded, lower level
computation, before control is actually transferred to the appropriate
subnetwork.)

Thus, it is possible to imagine the following directive (arc)
being a part of a sentence level network - it expresses an obvious
grammar rule:

(S/v
(PUSH NP/
(AND (FEATURE TRANS v) (GETR subj))
(SETR obj *)
(TO S/0BJ))

cieeeend)

('*®' here stands for a special register which always holds the current
item - terminal symbol, or result of an embedded processing - which
has permitted the arc transition.)

Orn this basis, Woods has developed the LUNAR system as a front end
to a database, enabling a geologist user to ask questions, compute
averages and ratios, make 1listings of selected subsets of data,
compare concentrations of elements in different samples, etc., all in
natural English. For this purpose an extensive syntactic recognition
grammar has been developed, wWhich delivers, as already noted, deep
structures based on the TG theory.

This is where questions start to arise, concerning both Woods'
approach in general, and the ATN formalism in particular. The ATN
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model is highly nor-determiristic in rature, and especially where an
extensive grammar is concerned, the problem of structural multiple
choice becomes the norm, rather tharn ar exception. Woods goes to
great 1lengths in designing a complex and flexible parser, in which
various switches allow for various strategies in trying the arcs
leaving a state, thus "attempting to find the computation of the
abstract machire that corresponds to the 'most likely' parsing in some
context" [Woods73]. There are additional features for selecting "most
likely" analyses: a mecharism for computing and assigning "likelihood
weight" to an analysis path; and a selective modifier placement
facility which is 1intended to solve the problem of parsing
postmodifiers. What is not entirely clear, however, is the precise
basis on which decisions about the "likelihood" of a parse are taken
and how they work in situations corresponding to various types of
structural ambiguity (see 1.1). Also, this is the extent to which the
problem of ambiguity in general 1is considered: "a sentence 1is
ambiguous if there is more than one possible accepting path for that
sentence". The problem of lexical ambiguity does not exist in LUNAR:
"give" always means "get from the data base and print out"; "contain"
always triggers a check of some relatiorship between a sample and its
componrents.,

The representation of meaning following parsing is in terms of
specialised categories and procedures appropriate to the geological
data base with queries interpreted as expressions in an extended
predicate calculus. It is not obvious how such data-specific semantic
interpretive rules could solve the multiple choice problem in general.
On the other hand, it 1is clear that the representation semantics
cannot be extended beyond the tasks associated with the LUNAR system,.

Another characteristiec of Woods' approcach to NL analysis is the
serial organisation of his system. LUNAR is a typical example of a
system where semantics works in a separate module, called after the
completior of syntactic anralysis. Woods claims that "it looks as if
it takes longer to do the parsing and semantic interpretation ... if
the interpretation is done during parsing” [Woods73], and I have
strong objections to this (see chapter 3). Apart from the discussion
as to which takes 1longer, the very nature of the problems we are
trying to solve here, for the general 1language case, naturally
suggests a heterarchical organisation of the syntactic recognition and
semantic interpretation routines (this is also Winograd's approach
[Winograd721]). Woods' strategy is to find all syntactically wvalid
parsings, pass the first one on to the semantic interpreter, and the
syntactic alternatives are left untried unless the interpreter does
not like the first onre. However, this relies implicitly, and to a
greater extenrt than is justifiable, or the order of the arcs leaving a
state*, and much of the time spent in syntactic recognrition is devoted
to constructing parse trees that will never be used.

Furthermore, the ATN model is essentially an expectation/ predic-
tion device: it expects a certain type of constituent at a certain

¥ if it was possible to specify a certain ordering of the arcs, it
would be possible to write a grammar for which an interpreter with,a
deterministic control structure would suffice - which is not the
case - see below (chapter 3).

- 2.4 -



position of the input string. It is only nratural to attempt to extend
this idea, and on the basis of some generalised analysis of context,
to predict not only a certain type of syntactic constituent, but a
constituent with a certain semantic content, or, at least, certain
semantic properties. Clearly, this again suggests that semantics
should work in closer coordination with the syntactic recognition.
Unfortunately, the original ATN model offers no explicit provision
for this; it has been designed primarily as a syntactic recogrition
and structure building device. Part of my research, therefore, has
been concerned with the questionr of how semantic judgemert could be
ircorporated within the traditioral ATN framework.

2.1.2. Semantic ATNs (Simmons).

An explicit attempt to combirnre the ATN model with some semantic

processing has been made by Simmons [Simmons73]. A specially
developed ATN grammar is used to build directly a "semantic retwork"
durirg the analyser's scan through the sentence. Verbs have

associated with them "paradigmatic ordering rules" and these are
consulted by the structure-building actions or the arcs to determine
the "deep semanrtic cases" of surface nominal structures. However,
there are certain problems with Simmonrs' approach. The networks are
somewhat unorganised, in that all sorts of heterogenous information is
stored at a node, in the hope that sometime later it might be useful;
and they are nevertheless not really "semantic" in content. The only
semantic operation that Simmons' parser performs 1is done by the
ARGEVAL functionrn which decides which of +the possible arguments
(surface nomiral structures) to fit into a particular slot. It is not
made very clear how ARGEVAL selects the relevant paradigmatic ordering
rule, especially irn an ambiguous envirorment (the rule must be
attached to a verb sense, rather than to the surface verb - see below:
3.9, 4.2) - in fact, possibly this is the reasor for Simmons' extreme
view on lexical ambiguity: "varied sense meanings of a verb can be
accounted for as varied implications of a given word class". I shall
discuss this in detail 1later (3.6), but such a view is clearly
inadequate for our purposes. No explicit treatment is offered for
structural ambiguity as well: ARGEVRL expects all possible
prepositional phrases (or other obligatory postmodifiers) to be
mentioned explicitly ir the paradigmatic rules, thus requiring them to
specify in advance the correct order, syntactic envirorment and
semantic details of the expected "deep semantic classes", Default
treatment of optional modifiers is not considered, nreither are other
cases of structural ambiguity (see 1.1). Possibly part of the problem
with Simmons' approach comes from the fact that his semantic structure
building process is not set in a sound framework: the structures are
being gradually built on the arcs of the grammar, and this (as will be
discussed later in more detail: 3.3, 4.2, 4.3; see also [Ritchie781)
is quite difficult. In any case, Simmons' attempt to construct a
semantic ATN just scratches the surface of the problem.

Before going on to discuss my approach to a semantically based ATN
processor, I shall outline two other natural language analysis
projects, predominanrtly semantic in nature, which have influenced this
work to a large extent: the semantic parsers of Wilks and Riesbeck.
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2.2. Semantically Guided Parsing.

This idea lies behind Winograd's SHRDLU system [Winograd72] which
is significantly more intelligent when it comes to dealing with (some
kinds of) structural ambiguity than the systems considered so far.
When faced with the problem of multiple choice, a semantic specialist
is called, with control eventually handed over to a deductive compo-
nent which applies semantic and environmental krnowledge relating to
the system's world model (a closed world of multicoloured blocks,
boxes, and pyramids) and thus chooses the —correct structural
interpretation. There is nothing wrong with this in principle, but to
a large extent the system is only able to work in this way, because
SHRDLU is essentially a theorem proving program which works on top of
fixed and rigid axiomatic knowledge base. There are certain problems
of understanding that SHRDLU never attempts to tackle; worse - it
offers no clues how they could be solved within the proposed
framework: 1lexical ambiguity is one of then. I shall not discuss
Winograd's system any further. Instead, I shall concentrate on some
attempts to build general text analysers, where the parsing process is
guided to a large extent by some sort of semantic judgement.

2.2.1. Semantic Pattern Matching (Wilks).

Wilks' complete system, as implemented at Stanford, and described
in [Wilks73b]}, [Wilks75b] is aimed at machine translation, though I
shall not discuss the generation component here. The whole approach
is quite distinctive and unique: Wilks makes an explicit attempt to
deal with the problem of multiple choice in general as it faces a
'blind' natural language processor; the analysis process is entirely
semantics based, in that no (explicit) syntactic recognition is
performed at all; the foundation of the system is the concept of
'preference semantics'. This is an underlying principle, rather than
a single applicative rule embodied somewhere in the implementation.
Apart from being the driving force behind the various disambiguation
techniques, the notion of 'preference', as opposed to 'striet require-
ment', allows Wilks to extend the range of constructs handled by his
system to include metaphors and other instances of extended use of
language.

Semantic knowledge in Wilks' system is distributed among several
types of structures. At the 1lowest level there are some 80 to 100
atomic semantic primitives; these are the basic building units for
semantiec formulas, one formula for each word-sense, which are
constructed and interpreted subject to a rigorously defined syntax
(see 3.1). Next up irn the hierarchy of semantic structures come the
bare templates. According to Wilks, there exists "a list of messages
that people want to convey at some fairly high level of
generality...The bare templates are an attempt to explicate a notion
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of non-atomistic linguistic pattern". It is the task of the program
to find the underlying message for a piece of text and elaborate it by
substituting the generalised semantic markers in the ACTOR, ACTION and
OBJECT positions of the matching bare template with the semantic

formulae of the corresponding words. The task of delimiting the
template boundaries lies with the fragmentation routine (FRAGMENT)
which breaks the original sentence into smaller chunks of text. The

actual template matching (PICKUP), as well as the establishing of
further dependencies between the main components of a template and the
remaining words in a fragment (EXTEND), are very flexible processes
which rely extensively on the notion of preference. The fragments of
surface text are expanded into (tentative) semantic structures (full
templates), their number depending on the possible combinations
between the word-senses semantic formulas corresponding to the surface

words., Links are established between the main elements of the
template ("John drinks water"), as well as between them and possible
dependents ("sly fox", "jumps quickly",...) by consulting both the
individual semantic formulas: "drink" expects, preferably, *ani
subject and (flow stuff) object*; "sly" can qualify *¥*ani entities.
etc., and the list of bare templates: [¥pot cause ¥*ent] is a valid

bare template onto which "John drinks water" is matched. Both the
number of links thus established and their connectedness define the
'semantic density' of an interpretation of a fragment. An applicative
rule such as "densest match wins" selects, or prefers, the most
plausible interpretation. Since the full template contains semantic
formulas corresponding to individual word-senses, possible disambigua-
tion results from this procedure: consider Wilks' example

The policeman interrogated the crook.

where two possible templates (corresponding to man force man and man
force thing) can match onto the bare template ¥pot force ¥ent; and it
is the preference restrictions on the formula for "interrogate" that
finally establish the winning link:

({man subj) ({(man obje) (tell force))).

It is important to realise that "preference is always between
alternatives; if the only structure derivable does not satisfy a
declared preference, then it is accepted anyway" [Wilks72bl. This is
the basis for metaphor handling, and to my knowledge, is so far the
only attempt to incorporate in a NL analysis system the ability to
deal with instances of extended language use,.

The same semantic principle underlies the next stage of processing
(TIE): the integration of the individual representations of different
fragments into the final form of Wilks' interlingual representation (a
semantic block), which is then handed over to the generation routines
(after possibly being processed by 'common sense inference rules' -
directed basically at pronoun resolution). To aid this process,
another type of semantic structure is wutilised: the paraplate.
Paraplates are stored in the dictionary under the keywords which aid
+ expressed in terms of Wilks' primitives, or classes of these: ¥ani
(animate) = [man, beast, folk], *pot (potential actor), ¥ent
(entity), etec.
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the fragmentation process, mainly prepositions, and specify predicate
functions over skeleton templates - governor and dependent. In case
two templates in the fragment satisfy the predicates thus specified
they are 1linked by a case 1link which is also suggested by the
paraplate. All possible links between combinations of template pairs
are established, and then the resulting semantic structures are
examined by the same density techniques as were applied one level
down, within the individual fragments.

Wilks never really makes clear what the population of alternative
template fragments for the texts is that his system handles: but, for
the preference semantics density checks to work, a choice between
alternatives must be offered. The question is what 1is the point
beyond which the handling of alternatives becomes uncomfortable and
the choice procedure starts to choke? Possibly the breaking of the
parsing process into a series of passes over the text: fragmentation,
template match, expansion, paraplate match, is intended to solve the
problem to a certain extent. This, however, raises some further
issues. The communication between the consecutive passes is via a
representation which is a collection of templates; indeed, every
language construct is reduced to one or more templates. For Wilks
this is justified by the fact that the template is the basic building
block of the interlingual representation. But, in practical terms
this means that the bare templates are expected to perform too many
functions: they are a parsing device, they carry the basic semantic
content of a fragment of surface text, they are a disambiguation
device, they are a skeleton semantic structure, a blueprint for the
final semantic representation. Under these circumstances the
templates become too general and inevitably lose in resolution power
(see below: 3.6, 3.9). This is made up for to a certain extent by the
consecutive stages of ©processing, at the cost of introducing
unnecessary parallelism, as already noted. Furthermore, the require-
ment that the template in its strict form of an ordered triple with a
simple actor-action-object relational structure should be the only
semantic pattern, imposes restrictions on the organisation of the
semantic density checks - as it is, these do not necessarily operate
within the natural limits of a linguistic unit.

Clearly, the problem could be solved by introducing some low level
syntax - but then the justification for the fragmentation process
comes into question: Wilks claims that no syntactic preprocessing is
performed, but FRAGMENT is essentially a syntactic recognition box,
its operation guided by syntactic features. Even then, it is not
entirely clear what the exact nature of the processes is which will,
in particular, fragment texts like the following: 1

I heard an earthquake | singing | in the shower,

T heard | an earthquake sing | in the shower [Wilks75b1,
and, in general, will deal with the extended situations of structural
ambiguity (types B. and C. - see 1,1).

What is clear, is that Wilks' system has got nothing to lose from
the introduction of some explicit syntactic recognition mechanism; we
might as well admit the fact and make good use of it. This is another
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of the basic ideas behind this project, and it will be elaborated in
detail, in chapters 3 and 4. It remains to be said here that although
the work of Wilks has greatly influenced my own research (see 3.1),
there are some substantial differences between the two respective
approaches, which will become clear in due course. The aspects of
Wilks' approach to natural language analysis which have been adopted
here are the general strategy of semantic pattern matching, the
underlying concept of preference semantics, and the set of semantic
primitives, together with the formalism for constructing semantic
formulas over wide range of meanings for surface words. Consequently,
this work does not make all the claims explicitly or impliecitly made
for Wilks' system. "Understanding without proofs", T"preferential,
pattern-seeking semantics for natural 1language inference", "making
preferences more active" are issues which are not discussed in this
paper at all - the emphasis is on the analysis of NL text and the
problem of multiple choice in particular, viewed in the light of
establishing the proper interaction between syntactic and semantic
processing; however, the system is designed in such a way as to allow
for further extensions.

2.2.2. Semantic Expectations (Riesbeck).

Riesbeck's parser [Riesbeck74] was originally developed as an
integral part of Schank's MARGIE system (Memory, Analysis, Response
Generation and Inference on English) [Schank75], and is, in essence, a
program which maps English sentences into Conceptual Dependency (CD)
structures - a primitives based, language independent, general purpose
representation of meaning as developed by Schank. Schank's theory has
the ambitious aim of serving as a model of human language
understanding; consequently the view presented by Riesbeck is that the
parser should make predictions as to what is left of the (expected)
conceptual image to be delivered by the message, and actively seek
this information in the incoming text - Jjust as people do. In doing
so, the program concentrates on manipulating conceptualisations, which
are essentially semantic objects; "other tasks, such as discovering
syntactic relationships, are performed only when essential to deci-
sions about meaning" [Riesbeck74]. Riesbeck rejects pattern-matching
as a parsing mechanism; the basic device in his system is the expecta-
tion. Situations that might happen later in the course of parsing are
anticipated. The main activities during the process of analysis are
the building of partial (skeleton) structures, filling gaps in these
as more information becomes available, and integrating them into
larger conceptualisations. The process itself is guided by requests -
test-action pairs attached to each word; the actions are performed
only if the current state of analysis fulfils the conditions
associated with the anticipated situation. The program maintains a
list of active requests which are constantly checked and rechecked,
and the way in which conditions become satisfied as new words of the
text are scanned determines the overall flow of control.

Although requests are attached to each word in the dictionary,
most of the work is done by the pieces of program associated with the
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verbs. Therefore, the identification of the main verb is crucial to

the whole process - it provides the skeleton conceptualisation
corresponding to the clausal unit and sets up the overall contextual
expectations. This is a very sound approach in principle (see 3.8),

but a closer examination of the nature of the requests reveals that
they are, in essence, questions whose objects are syntactic entities.
A test such as "is the current NP an action?" implies a command
conceptually equivalent to (PUSH NP/ ...), or (PARSE NP). In other
words, each verb entry has to specify its expected syntactic environ-

ment . This 1is both difficult, because an exhaustive syntactic
environment corresponding to the different uses of the verb is
difficult to provide, and inefficient, because similar surface

syntactic patterns have to be specified separately for different verbs
(in contrast to the ATN's capacity to merge such patterns into common
paths through the network).

However Riesbeck cannot have a packet of requests, one for each
verb-sense, because this implies that as soon as a verb is
encountered, its intended sense must be identified so that the
appropriate request packet can be activated; and Riesbeck's philosophy
is that pending alternatives is not allowed. Instead Riesbeck
distinguishes what he calls 'sense' from what he calls 'meaning'. For
him the 'sense' of a verb is characterised by the whole packet of data
and program associated with the verb; the different 'meanings' are
separated by local context tests within the packet: is the object of
"break" a physical object or an obligation ("break a chair" as opposed
to "break a promise"). This is in effect applying Katzian selectional
restriction rules [Katz64], and is, in general, as far as Riesbeck's
implementation goes towards solving what T have called the problem of
lexical ambiguity (1.1) (for Riesbeck's word 'meanings' are my word
'senses'). As for structural ambiguity, obligatorily used
postmodifiers are dealt with by the individual requests; Schank
[Schank73] hints at a general strategy for dealing with optionally
used prepositional phrases, which, however, is open to criticism (see
3.10 below, also I[WilksT76]). Satisfactory uniform approach towards
dealing with structural (or, as Shank refers to 1it, syntactic)
ambiguity is difficult to sustain in the face of such assertions as:
the parser should be deterministic because thus it will model most
faithfully the process of human comprehension of texts, and, no
syntactic processing should be done beyond the bare minimum; for these
assertions may imply inappropriate forced choices. All these issues
are discussed in greater detail later in this work; it is only in
connection with the last point that some further questions are raised
here.

These concern the place of syntax in the overall system structure.
Riesbeck's claim that syntactic relationships are sought only when
they provide pointers to conceptual information seems rather vacuous
because syntactic processing in his system is used more than he cares
to admit. It is true that "a decision about meaning" can be made
after the semantic content of noun, prepositional, or any other,
phrase is analysed within the global context, but before that the
phrase itself has to be recognised - which is clearly a syntactiec
operation, triggered by syntactic prediction.
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There are not so many common elements between Riesbeck's approach
to natural language analysis and mine, and what there is in common, is
on a very general methodological 1level: the verb is central to the
clause, analysis should be performed with regard to the overall
context of a textual unit, and so on. The CD parser has been outlined
here because it is the most widely known representative of the active
parsing strategy (as opposed, for example, to Wilks' passive parsing),
and as such, establishes a frame of reference for further more
detailed discussion.

-2.11 =



chapter 3.
Background To The Analyser Design.
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3.1. Choice of Semantic Theory

This project is strongly influenced by the work of Wilks (Stanford
Artificial Intelligence Project: [Wilks73bl, [Wilks75b]) which placed
primary emphasis on semantic processing in language analysis. Apart
from acknowledging the fact that his approach is one of the most
distinctive (and promising) in the field of NL analysis, I was
particularly attracted by his theory of "preference semantics". It
seemed in the beginning of this research work, and was confirmed by
the overall system performance towards its final stages, that the
theory 1is

a. flexible enough to withstand adaptation -~ i.e. to be
embodied (with possibly not major modifications - the reason for these
can be found in the general comments on Wilks' system in chapter 2;
and will be discussed in detail in the following sections) in a
framework methodologically different from his own, and

b. general enough to still retain its semantic judgement and
resolution power.

Some features of Wilks' approach are especially attractive and
potentially useful: the set of semantic primitives, and the formalism
for assigning a 'meaning' for each sense of a word by constructing a
semantic formula subject to strictly defined rules, which is obviously
a necessary prerequisite for any system attempting the task of lexical
disambiguation. Provided these features could be embodied in a
general framework capable of imposing a more rigorous structure than
Wilks' templates and semantic blocks on the result(s) of the analysis,
it would be possible both to attempt the resolution of structural
ambiguities, and to concentrate on the content and format of the
intermediate semantic representation and its subsequent use, in this
case for generation.

The nucleus of Wilks' semantic theory, the construction of
semantic formulas which correspond to the different meanings of a
word, using a basic inventory of around 100 primitive semantic ele-
ments, can be briefly outlined as follows. The outline is intended
only as a guide sufficient to support my own application of these
ideas; for more details the reader is referred to [Wilks73bl],
[Wilks75b] and especially in [Wilks771].

3.1.1. Semantic Formulas.

In op. cit. Wilks defines a process for formalisation of the
meaning(s) of a lexical item, resulting in a list of semantic formulas
- one to each distinguishable (see below) sense. For example, the
dictionary might contain two definitions for the verb "grasp":

graspl ("grasp the block"):
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((*ani subj)
((*physob obje)
(((this (man part)) inst) (touch sense))))

grasp2 ("grasp the idea"):
((*hum subj) ((sign obje) (true think)))

and two definitions for the noun "crook":

crook1:
((((notgood act) obje) do) (subj man))

cerook?2:
((((((this beast) obje) force) (subj man))
poss) (line thing))

It is clear that a (semantic) formula like any of the ones above
is more or less naturally interpretable in English: "graspli" is an ac-
tion of tactile feeling, preferably done by an animate agent to a
physical object, using a (body) part of the agent. Similarly, one of
the meanings for "crook" is "a man who does bad acts".

However, it is important to stress that the semantic expressions
are
a. language independent,
b. subject to rigorously defined syntax.

The latter property transcends the boundary of the simple
discrimination and categorisation of a lexical item and acts as the
basis for (developing) an unambiguous semantic representation [Sparck
Jones65]. Viewed in the light of the former property (point a.) such
a representation is the basis for the claim made in the second half of
this work, namely that the generator developed can be used equally
well both for translation and paraphrase (see chapter 5).

The formulas in the dictionary are trees of 1left to right
dependencies relating individual elements or whole subformulas, where
a subformula is a left-right pair whose two members are either a
primitive or another subformula. There are seven distinct types of
these subformulas: assertion (full clause), transitive action, ac-
tion, case, nominal (substantive), qualifier (adjectival), and
adverbial subformulas. Each of these is associated with groups of
semantic elements which can be used to construct the left and right
elements of the pair, and a set of rules as to how the dependency
between the elements of a pair should be interpreted depending on the
type of the subformula and the groups categorising the participating
semantic primitives.

These groups of primitives are:
action elements: feel, give, make, tell,...
substantive (nominal) elements:
man, act, thing, part,...
nominal classes: *hum, ¥*physob, ¥*inan, ¥*pla,...
case elements: subj, inst, goal, poss,...
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qualifier* elements: true, well, same, when,...
It must be noted here, that for Wilks, the semantic primitives are
useful classificatory notions, not necessarily absolute; the (best)
justification for their introduction and use is the fact that they
work.

In addition, there are certain standard subformulas: (flow stuff)
denotes liquids, (thru part) aperture, (get sign) any monetary unit,
etc: these function more or less as if they were primitives.

Generally speaking, a semantic formula is a collection of binary
bracketed, but hierarchically interpreted case subformulas. These can
specify the preference restrictions (see chapter 2) on other items of
the lexical item being defined (which are not to be confused with the
selectional restrictions of Katz and Fodor [Katz64], [Wilks72bl). The
rightmost element in the semantic formula is called its 'head' and
serves to give a first approximation to a general semantic
characterisation of the lexical item. Case dependents can alterna-
tively be other propositions (full assertion or action subformulas),
which within the context of the whole formula further express and
define the meaning of the word sense to which they are attached. It
is clear that in theory there is no limit on the depth of the semantic
formula - and this is an advantage of Wilks' system of semantic
coding. It is also clear that the actual depth of detail will be
determined by the chosen level of representation which depends on the
required system performance and overall objective (this is discussed
in more detail in 3.11). As Wilks puts it, the process of encoding a
word sense into a semantic formula "assumes a common sense distinction
between explaining the meaning of a word, and knowing facts about the
thing the word indicates. The formulas are intended only to express
the former, and to express what we might find in a reasonable
dictionary though in a formal manner"™ [Wilks73b]. Needless to say,
this "common sense distinection" implies that a complete natural
language analysis system will need mechanism(s) for providing,
accessing, and utilising another type of knowledge: facts about the
world. This is the function of Wilks' inference rules [Wilks75], and,
more recently, pseudotexts [Wilks78]. My particular system does not
go so far in the processing of text as to need such information since
it concentrates, insofar as this can be done with no or little real
world knowledge, on the syntactic and semantic processes involved in
constructing an unambiguous internal representation, and their
interaction. Still, it is important to acknowledge the fact that any
(non-trivial) further extension of the system will need to have such
knowledge incorporated in it. It is also important to design the
system in a way which makes sure that it is possible to extend it in
this direction, and there is no reason to suppose that Wilks' type of
formula cannot be used in this way.

Two further points related to Wilks' semantic primitives and
coding formalism are relevant (and important) to my project. No

+ these can qualify: actions (true, well, ...), specific actions
(hear, see, touch, ... sense), substantives (many, same, notsame), or
some specific substantives (when, where,... point).

- 3.4 -




restrictions are imposed on the dependents of the semantic primitives,
as are imposed by Schank for example. This is in contrast to the view
that after surface verbs are related to the underlying primitive ac-
tions, all the participants in their case frames should be obligatory
[Schank73]. As noted by Wilks [Wilks76] a relaxation of this require-
ment makes the formulas very flexible, and in particular, leads to
increase in their expressive and resolving power, thus avoiding the
failure to discriminate between some (quite different) verbs. In
addition to this, Wilks is (to my knowledge) the only researcher in
the field who has developed a theory which allows semantic representa-
tion on a more detailed level not only of verbs/ actions, but of
nominals/ objects and adjectives/ qualifiers: Schank's approach, for
example, is quite inadequate here. Wilks provides for both concrete
and abstract nouns (such as "father", "gun", "decision", "proposal")
and goes beyond the (relatively) simpler process of attaching features
to nouns (human, inanimate, liquid,...) or classifying adjectives on a
STATE (VALUE) scale as Schank, for example, does.

The formalism for encoding word senses into semantic formulas,
together with the basic principles of 'preference semantics'
("preference is always between alternatives; if the only structure
derivable does not satisfy a declared preference, then it is accepted
anyway": [Wilks72b]) are the only aspects of Wilks' NL processing
system I have taken over without major changes. Their application in
parsing differs substantially from Wilks' fragmentation and template
matching. As indicated earlier, and will be discussed in more detail
below, my system is based on syntactically driven text analysis and
semantic routines organised around verb contextual frames (see 3.9).
Semantic formulas and the intermediate products of the semantic
processing are incorporated into an unambiguous internal representa-
tion in the form of a hierarchically organised dependency structure
which is only a distant relative of Wilks' semantic blocks.

The specific ways in which this project departs from the approach

presented in [Wilks73bl, as well as the reasons for these, are
described below.
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3.2. Choice of a Mechanism For Parsing

The choice of the augmented transition network (ATN) formalism as
a parsing mechanism was motivated both by pragmatic considerations and
by the history of my project.

The work in which I was initially interested was an attempt to
develop and implement an efficient purely syntactic ATN parser and to
test its recognition and structure-building power for certain classes
of syntactic structures. The power and potential of ATN parsing were
very attractive, but Woods' original purely syntactic application of
the idea appeared very 1limited from the point of view of language
processing as a whole. The ATN model imposes a specific
representational form on a natural language recognition grammar - the
equivalent of a finite machine with a high degree of branching - with
the result that parsing is highly non-deterministic, especially when
it is confined to syntactic processing without reference to any
semantic or pragmatic factors. This wasteful and unintegrated
processing is both practically and theoretically unsatisfactory, and
the question of how to incorporate semantic judgement within the
framework of an ATN parser became one of the central issues of this
research.

Now as the ATN formalism has the full power of a Turing machine,
it is computationally equivalent to many other formalisms. It is
impliecitly equivalent to, say, Wilks' fragmentation routine, or
Riesbeck's parser. This latter is, in effect, a disguised ATN, with
the current 'situation' (see [Riesbeck74]) formally equivalent to a
state in the network; the transitions between states are determined by
the expectational devices of 'requests' which specify the tests and
actions required to set up new situations. As was noted in 2.2,
Wilks' and Riesbeck's parsers are predominantly semantic ones; thus it
could be argued that some (admittedly implicit) integration between
semantic judgement and ATN parsing has been achieved. Nevertheless,
it was still an open question how easily semantics could be openly
handled by such an extremely powerful but very general formalism,
which, even though seeming appropriate to the task of computational
analysis of natural language, had been extensively used for developing
predominantly syntactically based natural language programs.

On a completely different level, the ATN mechanism as originally
proposed by Woods, has features which seemed particularly useful in
relation to the linguistic phenomena on which this project focusses,
as well as generally helping for the design of a versatile and
efficient analyser.

The most important of these features is the ability to assign par-
tial analyses or the results of the recognition process to registers
and later interrogate these. The effect of this is twofold. Deci-
sions can be delayed and so can the process of structure building,
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until enough information 1is accumulated to make it feasible ¢to
attempt disambiguation. In this situation the registers provide the
global context which is crucial to the lexical disambiguation; they
also collect and hold the immediate components of a constituent until
enough (at least the bare minimum) are available to guide the struc-
ture building decisions resulting in the semantic representation of
the currently analysed constituent. This can be regarded as a
semantic extension of the wait-and-see approach [Marcus75] i.e.passive
analysis based on semantic pattern matching, as opposed to the
predict-and-possibly-go-wrong active alternative. Clearly the wait-
and-see approach implies a bias towards a particular parsing strategy,
which will be discussed in more details below (3.7).

One of the major problems inherent in a more conventional dynamic
pattern matching approach to parsing is the presence of certain fea-
tures, as well as the semantic content of the constituents, that the
pattern-matcher (analyser) should be sensitive to, rather than the
surface ordering. Clearly, in this situation, the ATN registers,
which allow one to wait and see, can be of great value.

As noted, Woods' original ATN application was to an extensive
grammar of English covering a wide range of syntactic constructions.
The grammar itself is irrelevant to the purposes of this discussion,
but its existence and successful use in the LUNAR project [Woods72]
show that the ATN formalism can conveniently capture the regularities
of a non-trivial subset of (English) natural language. Thus we can be
sure that the choice of ATN as a parsing mechanism will not be an
obstacle to the designing of a versatile analyser insofar as the
analyser invokes conventional syntax. It has been suggested that the
ATN model, while very good at noun phrase level, is not adequate
enough for dealing with clauses. My view is that this judgement
relates basically to the process of syntactic structure building,
rather than to the actual recognition; and it is not an objection to
my approach since my analyser does not attempt to construct purely
syntactic intermediate structures.

A final advantage of the ATN formalism is that it encourages
efficiency in the recognition process, since it allows a combination
of the two parsing strategies: top-down - by means of the
PUSH/ CAT/ WRD arecs; and bottom~up - by means of the tests on the
arcs. The efficiency comes from being able, without much fuss, to
look for the right constituent in the right place.

The discussion so far makes clear the reasons behind the choice of
parsing mechanism. The next section begins to answer the question
raised above: how much semantics can be incorporated within the
traditional ATN framework.
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3.3. Purely Semantic Networks

On the basis of the choices outlined in the last two sections, the
extreme approach was attempted initially: designing a purely
semantically driven ATN which should be able to handle Wilksian
"preference semantics" structures. This seemed feasible because on
an abstract level the ATN formalism is simply a device for specifying
a set of recognition (and structure building) rules, and is indepen-
dent of the ATN interpreter; and a primarily semantic rather than
syntactic method of analysis seemed a plausible approach to natural
language processing.

Two approaches were tried before enough evidence against their
feasibility was accumulated. These will be discussed in some detail
below as they proved to be useful experience in their own right, and
influenced the further development of the system: it will be noted
later that the general strategy adopted here represents a salient
difference to a purely semantic approach.

The first of these was directed towards elaboration of the
"template" i.e.message form idea of Wilks, leading to a paraphrase of
his fragmentation - template matching procedure as an ATN operation:
look for an entity in ACTOR position, look for an entity in ACTION
position (plus possible modifiers and optional constituents), and so
on. Bearing in mind the possibility of various qualifiers on semantic
referents, and embedded clauses and clause adjuncts, an extended
network at top level (the basic message triple) will, necessarily,
initiate "subroutine calls" to auxiliary subnetworks. The
"prediction" arcs of the ATN - CAT and PUSH - should be governed by
the primitive semantic elements of Wilks, rather than by syntactic
categories.

There are some immediate problems the foremost of which
concerning the "entity" referred to above -~ what is it; and what is
the common denominator justifying the labelling of the underlined
phrases as ACTOR in

(*) The man killed last night was identified by ...

(*##%) To disregard common sense rules is to beg for trouble?

Is it just that Dboth appear in the SUBJECT position of the sentence
and can be referred to as noun phrases (in some general sense)? Next
comes the issue of recognising and 1labelling them - (¥) can be
referred to as a "man", and (**) as an "act". Different labels (which
are necessary for the template matching procedure) suggest different
subnetworks; on the other hand there 1is no justification for
introducing separate "man" and "thing" procedures to account for "the
man killed last night" and "the car stolen last night" - they are both
noun phrases. This has been pointed out by Ritchie in [Ritchie78] who
suggests that semantic generalisation in this sort of approach comes

"'308-



naturally after an initial recognition step, which as the discussion
implies, is syntactic in character.

On the other hand, even assuming that some sort of semantic
prediction could be embodied in this sort of approach (though it is
not very clear how this should be done, because predictions are
normally set up by the verbs, and thus naturally belong to the
dictionary, rather than the grammar), there is still the problem of
low level recognition. Consider for example "predict", and for the
sake of argument let us assume that it expects an "event" class. This
will be true in both cases:

He predicted the general election,
He predicted that there would be a. general election.

thus posing the question of specification of how these different
surface constructs are to be specified in terms of semantic primitives
only.

Similarly, predictions can be used for specifying instructions
like (PUSH LOCATION/ ...), (PUSH DURATION/ ...), etc., but in the
light of the obligatory use of prepositions (see 1.2), some of these
instructions will have to be decoupled from the grammar, and placed on
the individual verb entries in the dictionary. This has the
unpleasant effect of splitting the grammar, without helping much.

Adding to these difficulties there are some other minor, but still
subtle problems, such as "do"-support, special uses of "have" and
"be", questions and passives, existential "there". All this suggests
that the desire for a set of recognition rules oriented towards

realistic texts will require some syntax - possibly disguised in one
form or another: we may call a verb an ACTION, an adverb a HOW, and
an embedded clause an ACT or EVENT - but we are nonetheless using

conventional syntax.

In the other approach an attempt was made to rewrite Wilks'
inventory of bare templates as an ATN i.e. to incorporate the
templates into the ATN rather than simply look for ACTORS, ACTS and
OBJECTS. Arcs will again be governed by primitive semantic elements
(or classes of these); the set of basic semantic messages will be
mapped on sequences of arcs: in a generalised ATN notation (omitting
the tests on the arcs and the register setting and manipulation) the
subset

®ani feel *mar
#ani think *mar
*pot tell *mar
#pot force *ent
#pot want ¥ent
%pot give ¥ent
%pot strik ‘¥*physob
#all please *ani
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will be specified as

(TEMPLATE

(PUSH #*ani (TO AGENT1))

(PUSH ¥*pot (TO AGENT2))

(PUSH #a3l1l1 (TO AGENT3)))
(AGENT1

(CAT feel (TO O0BJ1))

(CAT think (TO 0BJ1)))
(AGENT?2

(CAT tell (TO OBJ1))

(CAT force (TO 0BJ2))

(CAT want (TO 0BJ2))

(CAT give (TO 0BJ2))

(CAT strik (TO OBJ3)))
(AGENTS3

(CAT please (TO OBJ4)))
(OBJ1 (PUSH *mar (TO END)))
(OBJ2 (PUSH *ent (TO END)))
(0BJ3 (PUSH *physob (TO END)))
(OBJU4 (PUSH *ani (TO END)))

At first sight this seems to be fine, but a closer investigation
of the PUSH concept poses certain problems. The desire to design the
"¥pot" subnetwork in such a way as to be able to recognise both (¥)
and (**) above, will reduce it to something which looks suspiciously
similar to the traditional NP network (with the additional constraint

¢of rejecting certain referents: "point" cannot belong to the class of
*¥pot; "act", "thing", etc. are not *hum, and so on). This is exactly
the problem we had with the previous approach, and must be bypassed if
Wwe insist on keeping the ATN purely semantic. The alternative is to
break down the *pot class into its components: "man", "thing",
"stuff", M"act", etec. Forgetting for the moment the issue of
justification for introducing separate subnetworks for each of these
("father", "car", "water", "play"), we are faced with the problem of
categorisation of a lexical item into overlapping semantic classes:
where does "boy" belong - to ¥pot or ¥ani? The answer is clearly
both:

The boy wanted ice-cream;

The boy felt pain.

(because these will match onto different templates - see the 1list
above).

In theory this should not be frightening: by analogy, in the
traditional syntactic version of network grammar, "call" can be a noun
or a verb. The ATN formalism is non-deterministic by nature and a bit
more should not hurt. But the point is that due to the fuzziness of
classes of semantic primitives and the degree to which they overlap,
as well as to the general polysemy of words, a very highly non-
deterministic environment is created, with the unwelcome effect of a
proliferation of alternative templates, to an extent which (almost)
defeats the purpose of the whole exercise. As a side effect there is
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the problem of establishing preferences in such a highly non-
deterministic enviromment, and consequently that of the presence of
common analyser subpaths requiring separate treatment because they
belong to different alternative templates. The non-determinism is
further increased by the fact that similar surface phenomena can be
associated with more than one physically detached state in the ATN:
imagine extending the network to handle indirect object constructions
which are associated with the primitive actions "give", "tell", "get";
or copula constructions - associated with "be", "feel", "cause"...; or
the most general case of postverbal modifiers. The network equivalent
of a paraplate match, no matter whether implemented in a passive or
active form (generalised PUSH to a PP subnetwork with all paraplate
tests spelt out in a highly branch&ng structure, or explicit search
for certain postverbal constructs keyed on the particular action or
surface verb) will introduce further non-determinism due to the
already mentioned fuzziness of semantic classes, and thus make the
problem of structural., disambiguation very difficult indeed. The
lexical ambiguity of words does not help either - what is "crook" -
"thing" or "man"?

In such a highly non-deterministic environment relatively simpler
issues become problems on their own: there are difficulties 1in
isolating the template components and template boundaries. Also, it
is not very clear how to handle relationships between the templates
constituting the input sentence as a whole.

Some of these difficulties could be slightly reduced if the main
action element is known, but in a sequential scan of the text it is
usually some time before it is known.

A major remaining problem, however, for the attempt to build a
purely semantically driven ATN is the embodiment of the applicative
interpretation of preference semantics basic principle: prefer the
normal, but accept the unexpected, if no alternatives are available.
It is difficult to imagine what would be the network equivalent of a
dynamic creation of a new template - ™my car drinks gasoline" for
example.

Ritchie, in [Ritchie78] argues that due to the hidden ambiguity of
the PUSH concept - it specifies both a "goal" and "means" to achieve
it - the proposal that the ATN formalism could be adapted for purely
semantic processing does not seem viable. This is only one of the
problems. The discussion above, related to a particular environment
(3.1 and 3.2) clearly shows that the idea collapses even before
getting that far, since an ATN based on preference semantics alone
would be extremely clumsy and inefficient, offering no gains
whatsoever.

Speaking with some degree of generality, a semantic network
implies writing a parser based on semantic expectations¥*; thus
Riesbeck's parser is organised along these lines in certain respects.

* because the ATN is essentially an expectation/ prediction device:
see chapter 2.
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This raises the 1issues related to active and passive parsing
approaches in this particular context: semantic expectations vs.
semantic pattern matching. With the same degree of generality, two
major drawbacks can be associated with an expectations based system:

1. It is too inefficient, because expectations are attached
to individual lexical items, rather than expressing generally occuring
situations. This makes it difficult to make generalisations, 1in
contrast to to the efficiency of representation of- the ATN model due
to the ability to merge common parts (of more than one context-free
rules).

2. It fails too easily when an unpredicted situation is
encountered; what is worse, no natural and efficient mechanism for
dealing with the unexpected can be incorporated.

The alternative, strongly suggested by the discussion so far, is a
system based on the semantic pattern matching of constituents,
recognised by a syntactic component. This will overcome the
difficulties which a purely syntactic pattern matching based analysis
system faces (see [Riesbeck74] for criticisms on these) and equally
well these of a wholly semantic approach. In addition the introduc-
tion of some conventional low-level syntax will effect a number of
gains: among other things, the painless identification of
constituents, i.e. slot fillers in semantic structure which may or may
not be Wilksian templates; greater efficiency in identifying the main
verb element of a clause; less proliferation of alternative semantic
structures and no or few blind preference tests, because decisions can
be delayed; a natural way of putting structural constraints on the
invocation of the semantic judgement routines; and a framework 1in
which it is easier and more natural to incorporate a default option
for fallback in case no primary match is found. All of these are
clearly very desirable.

An analyser incorporating these features is described in the next
sections.
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3.4, Nondeterminism (and Backtracking).

Before any attempt is made to write a computational grammar for
English and to decide on a particular control structure and parsing
strategy, an important issue must be considered, that of non-
determinism in a natural language program. Basically, the phenomenon
is a consequence of situations in which possibly more than one deci-
sions can be made at a certain stage of the computation. In the
framework of the ATN model, it is manifested in the availability of
more than one arc (analysis path) that can be followed from a given
state.

It can be safely accepted that in general the issues of non-
determinism and structural ambiguity are connected. If we were
dealing with the problem of lexical ambiguity only, this would not
necessarily imply a non-deterministic control structure, A
deterministic parser does not, however, allow for structural multiple
choice (see 1.2) - instead some structures will be wrongly perceived:
for example, the prepositional phrase will be attached to the same
constituent (verb or noun, depending on the particular ATN
interpreter) in both

(*) Max returned the book with speed, and
(**) Max returned the book with the pjictures,

while some (other structures) will represént only one of at least two
different, but nevertheless valid, structural interpretations:
consider the structural ambiguity of

)

Kissing aunts can be boring.

On the other hand, a genuinely structurally ambiguous text will be
parsed into multiple representations if and only if it is handled by a
parser which allows some sort of backup (or equivalently,
parallelism), i.e. is non-deterministiec.

The actual strategy adopted by the parser in following up
branching options (depth-first vs. breadth-first) is irrelevant. The
fact remains that in a non-deterministic parser wrong decisions are
sometimes taken and blind alleys followed until a dead-end is reached.
The unpleasant effect of non-deterministim 1is that a mistaken course
may be pursued for an arbitrarily 1long time - which 1is clearly
inefficient - and when it becomes clear that a wrong decision has been
made somewhere along the line, it is impossible, in general, to deduce
from the mere fact that it is wrong, how and where the analyser has
gone wrong. So, whatever strategies for backup have been offered,
they rely on an unintelligent, exhaustive search among the decision
points. The inefficiency may be further increased by the phenomenon
of a constituent being recognised over and over again in the course of
the backtracking - on different analysis paths.
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It is hardly surprising that it has been argued (e.g. by Riesbeck
[Riesbeck741) that a natural language analyser can be deterministic¥,
specifically by not being purely syntactic. After all, an analyser
which "grasps" the intended meaning - 1lexically and structurally -
straightaway; which is foolproof and reliable, because by design it is
not supposed to make mistakes, is close to everybody's dream. The
question is: are these suggestions justified, and by what?

Riesbeck takes a rather extreme approach: "there is no backing up
to decision points... a decision point mechanism (implicitly claims)
that when people make decisions, they expect them to go wrong...
problems that cause backup are not expected - they are surprises"
{RiesbeckTi4]. Wilks, however, has demonstrated [Wilks76b] that
Riesbeck's parser (still) fails on sentences which are not necessarily
"tricky or bizarre" and suggests that "simple unfettered expectation
is not enough unless one can be sure one has got one's criteria right,
or one has some breadth-first way of considering alternatives, or one
has complex backup".

Situations like the ones which make Riesbeck's parser stumble are
better handled by Marcus' system [Marcus75], who also takes the rather
strong approach that Dbackup should be rejected as the standard
mechanism for parsing ("no backtracking can take place unless the
sentence is consciously perceived as a 'garden path'"). In an attempt
to avoid blind, non-productive searching, Marcus has designed his
parser so that it will "only build a grammatical structure it is sure
it can use".

Before making any comments on such an approach, let us examine the
situations which have to be accounted for in any attempt to design and
build a deterministic parser. These are closely linked (not
surprisingly) with the different types of structural ambiguity as
discussed in 1.2.

(A.) The possibilty of recognising the same constituent at
different 1levels of analysis. This ties up with type (A.) of
structural ambiguity, and is implied by the fact that "the parser
should be capable of recognising a prepositional phrase as (possibly)
modifying any of the preceding heads" (contrast to (*) and (*¥)
above).

(B.) When looking for a constituent of a certain type (noun
group, or verb group, for example), different portions of the input
string can match against the recognition rules because of different
distributional classifications of the elements of a structure: this is
function of type (B.) structural ambiguity¥,

(C.) The same surface string can Dbe recognised, and
'consumed', by different recognition rules - thus being interpreted as
representing more than one constituent. This accounts for the
phenomenon of transformational ambiguity.

¥ this is not to be confused with the deliberate strategy of designing
a parser capable of backtracking, but which takes the first successful
parse (analysis path through the text) to be the correct one.

¥ sometimes this is referred to as "end of constituent problem"
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Woods, in [Woods70] argues that any ATN can be converted to an
equivalent "deterministic" one, with the exception of the pushdown
operations. This does not really help much, because these are the
causes for the situations enumerated above: types (A.) and (B.) result
from the existence of more than one positions in the text string from
which a POP may occur; (C.) happens when predictions clash: more than
one PUSH initiated (or more than one CAT arc followed).

In the early stages of this project, an attempt was made to
develop, or at least see how far one could proceed with, a purely
depth-first parser. This was based on combination of certain features
of the ATN formalism, which allowed the use of registers to hold (par-
tial) substructures, delayed structure building decisions, and arcs
(leaving a state) ordered in such a way that the first one to be
followed was the correct one under the circumstances - i.e. the parser
always made the right choices. The experience was very valuable,
because it gave rise to a method for reducing non-determinism in the
traditional ATN model - which is explored in resolving the ambiguity
of prepositional phrases, as described 1later. It also prompted
certain conclusions regarding Marcus' approach.

Central to Marcus' system are the complementary processes of
recognising a situation (the situation in which the parser is), and,
if it sets up more than one working hypothesis, applying "differential
diagnosis" to decide betwgen them, A conceptually similar idea
underlay my first depth-first parser. This was directed at dealing,
deterministically, with situations of type (A.), and consisted,
basically, of recognising postmodifying constituents in isolation,
only once - in such a way several syntactically valid structures were
implicitly covered by a single analysis path, at the end of which the
correct and semantically valid one is dynamically constructed, thereby
avoiding much of the backtracking (or equivalently, parallelism).
This, however, does not completely cover the case when Marcus' parser
only builds a structure it is sure it can use. Consider, for example,

John admitted to the girl that he loves the truth,

Wwith the text pointer after "to", and the current situation actively
seeking a noun phrase. What is it to be: "the girl", or "the girl
that he 1loves"? Clearly, this is type (B.) situation, in which
POP-ing or the equivalent constituent structure building process can
occur equally well in two different places. Similar problems arise on
closer examination of Marcus' expectations - sometimes there is not
enough data available (imagine the beginning of a sentence), and
sometimes no differential diagnosis will help to decide on which
hypothesis to pursue, as with

Kissing aunts can be boring.

Admittedly, these are genuinely ambiguous examples, but they are
perfectly natural ones, and demonstrate clearly that it seems
unlikely that a purely deterministic parser will be able to account
satisfactorily for situations of type (B.) and (C.).

The conclusion to be drawn from all this is that in dealing with
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realistic texts and a (syntactic) grammar of average size, the desire
to account for a wide range of 1linguistic phenomena does not leave
much choice for the parsing strategy - nondeterminism is unavoidable.
In which case there are certain other matters to be attended to:

a. the actual low level strategy - is parsing implemented as
backtracking or parallelism; depth-first or breadth-first,

b. (possible) ways of reducing the non-determinism -
representing more than one syntactically valid structure by a single
analysis path; blocking potential dead ends as early in the analysis
process as possible,

¢. making necessary backtracking more efficient - by a well
formed substring table (WFST).

An interest in psychological modelling may be a justification for
rejecting backup; but without other knowledge that we do not
currently know how to supply, no backtracking is not a practical
proposition.

X
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3.5. The Problem Of Structural Ambiguity.

It will be clear by now that what is being proposed is a NL
analysis system starting with a syntactically driven, non-
deterministiec ATN parsing. In such a context, the problem of
structural ambiguity becomes a major one. It is also clear that even
though the problem is associated with syntax, syntax alone cannot do
enough about it.

Ambiguity has to be dealt with by introducing the principle of
semantic judgement, i.e. semantic judgement is applied to the struc-
tures delivered, or to be delivered (see below) by the syntactic
processor; before any structural representation of the textual unit is
assembled, and labelled for further reference, the parser must

a. check its consistency as a whole,
b. check its compatibility with respect to the overall
environment and global context,
both essentially semantic operations.

In a way this is the demarkation 1line between syntactic and
semantic processing, and the way the line is drawn gives an overall

characterisation of the system: the system 1is ©based on a
syntactically driven ATN processor incorporating strong semantic
judgement. There 1is of course the question of organising the

interface between the two different classes of processes - recognition
and .pructure building - which will be discussed in chapter 4.

b \

This section is primari&y concerned with the issues arising from
the principle stated -~ even though it may seem so simple
conceptually. Before the obvious (and comparatively 1lower level)
question of how to perform these important checks can be answered,
there is the fundamental concept of 'structure' as referred to above
to be considered - together with all its implications. Basically, it
all comes down to: how to define 'structure' for the purposes of
checking; or, alternatively, - at what level to perform the checking.

The options for the unit which will delimit the scope of the
semantic routines are: word, group, clause, sentence. Clearly,
semantic checking at word level is of no use at all - it creates no
-structural, but plenty of lexical problems, and there is no context to
help. The other extreme, semantic checking of the structural
representation(s) of the whole sentence, is exactly the approach I
wished to avoid: for one thing, there is too much disjoint information
floating about, i.e. information will be supplied for one part of the
sentence which is irrelevant when another part is being validated.
Further, checking the whole sentence implies the possibility, (if not
the necessity), of the traditional approach adopted by Woods for
example - complete syntactic recognition 1is followed by semantic
analysis which is unsatisfactory as was shown in chapter 2. This is
not to say that no checking at all is to be done at sentence level;
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after all, the construction of a semantic representation for the
whole sentence is the ultimate goal of the analysis process and this
representation has to be checked like that for any other constituent.
The question is how to do this in a sufficiently compact, efficient,
and intelligent manner, having got rid of some of the effort with
lower level constituents.

Clearly, the bulk of the semantic work has to be done by routines
operating at group and clause level. It is actually difficult to make
a clear cut between checking for consistency, and checking for
compatibility (see a. and b. above), because the semantic routines
operate hierarchically, - so at level N+1 a (tentative) structure will
be analysed for consistency - does it make sense; 1i.e. are the
constituents from which it must be assembled contextually compatible.
A positive outcome will result in the structure being assembled,
labelled appropriately, and handed one level up, where at level N it
will be analysed within the context of the encompassing structural
unit, i.e. for compatibility. The hierarchical organisation of the
semantic routines is a result of their operation both at group and
clause level - more or less following the hierarchical recognition
procedure carried out by the pushdown mechanism of the syntactic ATN
preprocessor: while processing a noun group, an embedded clause might
have to be analysed; in order to build up a structural representation
of a clause, its constituents - noun groups, prepositional groups,
embedded clauses - must be already processed. The semantic checks
operate basically at clause and noun group level, whenever these units
are found. Prepositional groups are never analysed on their own since
a prepositional phrase means very little on its own (see 1.2). There
is a certain conceptual likeness between the semantic specialists for
the various constituents: the verb is central to the clause (see 3.8)
and so the clause specialist is organised around the verb. Similarly,
the noun group specialist starts with the head noun.

The questions asked at this point of analysis thus are: what
structure can be assembled out of the constituents available at the
current level, and will it be a semantically valid one. Note that
this implies that the internal computational representation of a
structure before the semantic routines are applied is not an explicit
syntactic tree. Even though the very low level (front end) of the
parser is a syntactic recognition box, recognition is Jjust all it
does. The register mechanism of the ATN model means that the step of
syntactic tree building can be completely omitted as it turns out to
be unnecessary. This also implies that a ‘'structure', as a
generalised entity to which a semantic routine can be applied, is
equivalent to a syntactically well formed constituent, whose recogni-
tion has been carried out in a more or less traditional way by the ATN
grammar.

It must be stressed that the approach described does not
necessarily mean the explicit construction of a representation for all
syntactically valid constituents. As far as the when and how of
applying the semantic routines is concerned, some general points have
to be made. In the environment of a non-deterministic parser there is
a better approach than simply building a syntactic structure blindly
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and then checking it for semantic consistency. It is more rewarding
to attempt a modified bottom-up strategy, that is an extension, along
semantic 1lines, of Markus' "wait-and-see" principle as follows:
recognise, pick up, and store component constituents; only when
enough (at least the bare minimum) are available, try to assemble them
directly into a structure which makes sense, and which does not have
to be an intermediate syntactic one. This clearly demands more of the
semantic routines - they are now actively, dynamically constructing a
semantic representation of the textual unit, rather than Jjust pas-
sively confirming (or rejecting) a hypothesised syntactic configura-
tion.

Systematic application of this principle will make sure that all
structures, at all levels of the analysis, are well formed; it will
also rule out (potentially) ill-formed ones, before they are built up.
Further, the strategy described means that it is not necessary to
follow all syntactically valid paths through the network - these will
be blocked half way through, thus achieving increased efficiency and
reduced backtracking.

The strategy also provides a Dbackground for developing, as an
extension, a special mechanism for dealing with the most often
encountered type of structural ambiguity - the problem of determining
the scope or level of a prepositional phrase modifier and its case
function. This is based on the idea of 'intelligent' extension of a
basic semantic structure by adding further pieces of information to it
only in such a way that it remains a valid and interpretable struc-
ture. Again the overall effect is that the degree of non-determinism
of the parser as a whole is reduced. The specific properties of the
grammar required, as well as the operations involved, will be
discussed in later sections.

The general strategy as outlined in the preceding paragraphs thus
provides the basic mechanism for dealing with structural ambiguity:
potentially nonsensical structures are not constructed at all so the
corresponding analysis paths are aborted. This means, for example,
that in the analysis of

(*) Kissing aunts can be boring, vs.

(*¥*) Singing songs can be pleasant

the underlined phrases will be recognised in a similar manner by two
different subnetworks. But whereas in the case of (%) the semantic
routines will construct two representations corresponding to

¥, 1 (the act of) someone kissing aunts,
# 2 aunts (who) kiss someone

in the case of (**), an interpretation similar to ¥.2 - "songs (which)
sing something/ someone" - is rejected even before being constructed,
thus completely aborting the alternative analysis path.

It is important to realise, though, that the building routines

which are the subject of this section are not solely concerned with
the problem of structural disambiguation. I have not made explicit
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so far what exactly is involved in a "semantic check for consistency”,
for example the exact mechanism which would hypothesise, and confirm
(%% 1) above, while rejecting (¥¥,2), But it is c¢lear that such
mechanism will require knowledge about the components of a structure
in semantic terms. Specifically, at a certain point in the hierarchy
of checks it becomes necessary to know the semantic formulae of the
individual surface words. Then, given dictionary entries with
multiple word-sense definitions it 1is clear that the problenm of
structural ambiguity is not an independent one (as was noted in sec-
tion 1.1). The two processes of structural and word-sense disambigua-
tion cannot be viewed and carried out separately. The same routines
that perform, extensionally, the structural analysis of a constituent
will, intensionally, perform word-sense disambiguation. A semantic
consistency check implies the resolution of 1lexical ambiguities;
alternatively, unambiguous semantic representations for words or
substructures are used to construct a well formed higher level struc-
tures. There is no separation of processes for the two purposes; and
in the program individual functions 1like NPBUILD (build a noun
phrase), or SBUILD, both test and construct.

Word-sense disambiguation is considered in more detail in the next
section. It should however be noted here that due to the dual func-
tion of the semantic routines it is not feasible to introduce separate
specialists, one for each (possibly) structurally ambiguous construct:
thus there is no separate "-ing" phrase specialist, or "-to" comple-
ment specialist. General semantic routines are defined and
introduced, which operate at clause and (noun) group levels. Low
level syntax is used to tailor the various syntactic constructs to a
standard form, after which the appropriate specialist can be applied:
"_jing" phrases, "~-to" complements, relative clauses, and the like, are
handled by the clause group specialist; possessor structures, deleted
nominals (to be passed down to relatives), etc., by the noun group
specialist. Thus considerable effort is saved, in the same time
designing a general and powerful specialist and keeping the system
compact and tidy.
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3.6. Lexical i.e. Word-sense Ambiguity.

This section presents an approach to the treatment of word-sense
ambiguity*, which is later used to provide a framework for designing
algorithms and parts of the analyser intended to deal with lexical
ambiguity.

Generally speaking, the process of disambiguation is not
necessarily choosing from a set of well defined, pre-set meanings,
which somehow represent (the) different interpretations of a word. It
is not even clear if such a set can be specified for all the lexical
items in a person's (system's) vocabulary. In considering word-sense
ambiguity and specifically noun ambiguity in the context of its treat-
ment by a language processing program Hayes [Hayes77] points out that
"given two usages of 'head' there is no definitive answer to the ques-
tion whether those usages constitute different senses of 'head'. Much
less is there a definitive list of the senses of 'head'". In other
words rather than having a number of distinct word senses, one is
faced with a more or less continuous spectrum of interpretations. A
word-sense can be regarded as a segment of this spectrum with loosely
defined, and possibly overlapping boundaries.

A difference in meaning does not necessarily imply multiple
dietionary definitions. Context and conceptual images play important
role in the interpretation of the particular use of a word. This
point is made, for example, by McCawley [McCawley68]:

Is Brazil as independent as the continuum hypothesis?
and Lyons [LyonsT771]:
John likes brunettes

John likes marshmallows;

It is not very clear whether this emphasis on context helps,
because with no fixed boundaries between meanings of a word commonly
accepted as different, the task of a rnatural language analysis system
becomes very hard indeed. Taken to the extreme, this view is bound to
encourage attitudes 1like the one taken by Simmons [Simmons73]:
"varied sense meanings of a verb can be accounted for as varied
implications of a given event-class that the verb designates, under
the differing circumstances signified by different choices of semantic
classes of arguments... For example, the verb "run"™ is taken to
designate one event c¢lass - that of rapid motion - in all of the
following environments:

John ran to school,

* as was noted earlier (chapter 1), and will be discussed again in
this section, what is considered here is word-sense ambiguity over the
whole range of syntactic categories.
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John ran a machine,

The machine ran."

I see no justification for such a view, because in most cases it
is difficult to find a single "event-class" general enough to cover
all the verb meanings: consider

John ran a school,
A flower bed ran along the school;

on the other hand, it creates a feeling of false security; thus
Simmons' system does not engage in an explicit disambiguation process,
but in no way demonstrates a capacity to relate context to word in a
manner which reproduces the felt differences of text meaning.

The problem is further complicated by the fact that ambiguous
lexical items can represent events/ actions, objects, characteristics,
relational markers (i.e. verbs, nouns, adjectives, prepositions).
Hayes argues that the task of finding the correct interpretation for
an ambiguous word as an object i.e. for a noun is equivalent to
finding the piece of pre-stored world knowledge which represents that
interpretation. On the other hand, characteristics (adjectives) 1like
"green" or "independent" can hardly refer to any specific pre-stored
piece of data, even if nouns can; without the objects they qualify,
they are typically impossible to interpret uniquely. Similarly,
Hayes' argument is doubtfully applicable to ambiguous wWords
representing events (verbs). A word sense here is more geared to
contributing to the interpretation of the text as a whole, rather than
of the word on its own - consider "give" in

John gave Mary a beating,

John gave Mary a beating stick,

John gave Mary a beating heart,
(admittedly, the last sentence is a metaphor). This is the view taken
by Riesbeck in [RiesbeckT74].

Two points emerge so far:

1. A specific view on the ambiguity of 1lexical 1items 1is
necessary, depending on the overall system objective. A translation
system, for example, might allow (depending on the target language, of
course)

independent1 = independent?2
likel = like2:
i ((*hum subj) ((*ent obje) (please feel)))

On the other hand, a paraphrase system might require that these be
treated as a separate word-senses:
¢
likel:
((*hum subj)
((*ani obje)
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(((same *ani) for) (please feel))))

likeZ2:
((*hum subj)
((*inan obje)
((((please feel) cause) goal) want)))

Once this fact is acknowledged, two assumptions can be made for
the practical purposes of a translation/ paraphrase system:
i 1. 1lexically ambiguous item <=>
multiple dictionary definitions.
2. lexical disambiguation <=> (the process of) choosing the
correct dictionary definition.

In other words, the view on ambiguity adopted here is that each
ambiguous lexical item corresponds to a list of pieces of syntactic
and semantic data, each piece related to a different formulaic
interpretation of this particular item. The justification for such an
attitude comes from the necesSsity for separate surface treatment (in
the target 1language) for the differently interpreted items, where
these different interpretations come from the semantic representation
of the analysed text containing the underlying different semantic
formula(s) {(see chapter 5).

2. A realistic NL system should not concern itself with only one
type of lexical ambiguity: objects (Hayes), events (Riesbeck),... - a
wide dictionary sample including fairly sized vocabulary with multiple
definitions of verbs, nouns, adjectives, prepositions is a necessary
prerequisite. To my knowledge, Wilks' system 1is the only one
attempting a general solution to the problem, though not testing it
very far.

However, Wilks' approach is not adequate in certain respects.
Closer analysis of Wilks' dictionary sample (dated 1972, from the
Stanford Artificial Intelligence Project) taken in conjunction with
his approach¥* in general, reveals that for Wilks lexical disambigua-
tion is concerned either with deciding whether a particular word was
used in its verb or noun, or verb or adjective, or noun or adjective
meaning ("father", "box", "block", "colour", "left"); or, alterna-

tively, with choosing between different noun meanings ("crook", "bar",
"lock"). The primary mechanism wutilised in the former case is the
template matching procedure; in the latter - preference (selectional)

restrictions on the 'verb definitions; in extreme cases paraplate
matching is exploited. There were very few occurences of polysemous
verbs - in fact the only one in this particular sample was "grasp".
Presumably the basic disambiguation tool ir this case would be
template matching, but there is no evidence that the analyser in
general cannot deal properly with, say, more than one sense of "call"
or "ask". This is not simply because multiple word definitions are
absent from the dictionary - three different formulas for "ask" and
six for "ecall" can easily be constructed. The important point is that

* as implemented and tested at Stanford, and subsequently discussed in
his papers.
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Wilks' template matching procedure does not possess enough resolution
power for serious word-sense selection.

Consider, for example
(1) John asked Mary | a question.
(2) John asked Mary | to come with him.
(3) John asked Mary | for the book.

(strokes denote the points where fragmentation occurs.) On the
template level, for each of these sentences the system will have to
choose from
‘ (%) man ask man
(%%) man want man
in order to select the correct meaning of "ask" for each case:

ask1 (inquire):
((man subj) ((*ani obje) ask))

(ask2 (want):
((man subj)
((act obje)
((((man (please feel)) cause) goal) ask)))

(ask3 (request):
((man subj)
((*ent) obje) ((*hum from) want)))

Obviously, templates (*) and (¥¥*) are not going to be very helpful in
this case. There is the further complication that in the case of (3),
(**)  which is evidently the wanted template, does not reflect the
correct "underlying message"; this is more likely to be
man want thing.

It can be argued that "ask for" and '"ask about" could,
conceivably, be accounted for by the paraplate matching mechanism, but
this introduces another unwelcome point - which is in the same time a
major theoretical issue. This is discussed in detail in the later
sections on frames and default PP analysis; here it is sufficient to
note that attempting to resolve ambiguity via paraplates means
introducing very specific paraplate(s), in this example geared either
to match the word "ask", or the whole (or a substantial part) of the
semantic formula - in which case the Jjustification for these
paraplates (and their generality) is at issue.

Thus at best the analyser will wait for the paraplate routines in
the hope of making a more definite decision in case any extra clues,
i.e. extra templates, are available. At worst it will not know what
to do. In both cases there is the additional effort (and cost) of
carrying parallel structures through to the next phase of analysis.

The reason why Wilks' templates fail, is because of two
conflicting characteristics they are supposed to have: they have to be
general enough to justify the "gist <=> basic message" idea and carry
out some sort of parsing from the surface text directly into an

- 3.24 -



interlingual semantic representation; in the same time they must be
quite specific in order to perform word-sense disambiguation. This is
why they can select between "a father™ and "to father" in

Small men sometimes father big sons.

but not between "ask1", "ask2", and "ask3" above.

In a network based system such as the one which is the subject of
this work, which incorporates (some) low level syntactic recognition,
we might expect to find something equivalent to the following produc-
tion rules:

S =

= NP (adv) verb (NP)
NP =

>
> (det) (adj) noun.

Thus "father" above will automatically be recognised as a verb because
this is the natural syntactic function expected from a lexical item at
its place: the ATN model is quite good at syntactic prediction. The
ATN framework thus provides a natural solution to the problem of word-
sense ambiguity manifested in lexical items functioning in different
syntactic categories (see 1.1). The more difficult situation, however
- that of ambiguous words functioning in same syntactic roles -
requires more powerful selection mechanism(s) based on an
organisational approach and strategy different from mere template-
paraplate matching.

The device responsible for the lexical disambiguation will be the
semantic routines discussed in the preceding section. Because there
are separate specialists, functioning at different levels of analysis,
the resolution power and the amount of (useful) work done by them will
be different. The clause being the main unit which conveys a (more or
less) complete piece of information, it is richer in context and thus
allows decision-taking with a higher degree of certainty. In an
environment where "green" can mean three different things, and "crook"
two, the phrase "the green crook" cannot be processed by the noun
group specialist any further than cutting down the number of possible
interpretations from six (2%¥3=6) to two. Clearly, some care must be
taken in distributing the work to be done by the semantic specialists
between them, and in organising the interaction of various disambigua-
tion techniques available in a natural and efficient way. All these
issues will be discussed in detail later in this and next chapters
(4.3, 4.4).

An advantage of the semantic analysis strategy outlined in this
and preceding sections is that since a specialised semantic function
naturally has limited the scope for its action, it is possible to work
in a naturally ambiguous environment without having to explicitly
build alternative structures corresponding to all the combinations
between the possible word meanings.

A final point to be made here concerns the relative weight of
syntactic and semantic information in the processes of disambiguation,
both lexical and structural. The last two sections made it clear that
the driving force behind these are the semantic routines. It 1is
important to realise, though, that sometimes syntax plays more than
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just a secondary part in the process of sentence analysis. In most
cases of sentences with similar surface syntactic patterns being
interpreted in different ways, semantic judgement has been the
deciding factor. Occasionally, however, this can (and has to) be done
on syntactic grounds alone. Surface syntax constraints force a single
meaning to be assigned to '

Fred gave her book,
which is different from the one derived from
Fred gave her a book.
(Contrast this with
Fred gave her money.)
Consider also
Kissing aunts can be boring,
Kissing aunts is boring,

Kissing aunts are boring.

Similar observations are aplicable to the process of 1lexical
disambiguation. Thus the determiner in "a/the bill" makes the
"person" meaning of "BILL"™ wunlikely. Words wused in different
syntactic positions sometimes mean different things:

Bobby feels great.
Bobby is a great chess player.

Words used in different syntactiec environments can have different
meanings:

John stopped to help Mary,
John stopped helping Mary.

Of course, I am not implying that lexical disambiguation can be
performed on syntactic grounds alone; situations where syntax is the
only clue to the meaning are rare (although they have to be accounted
for). Still, in a wide range of cases, syntax can be useful, and save
a lot of trouble. Consider

John called Mary,
John called Mary a fool.

The fact that a use of "call" involves two objects as opposed to one
helps immediately; although, of course, it does not offer a hundred
percent certain solution: thus compare

John called Mary a taxi.

Similarly, in the analysis of
John admitted Mary to the house, vs.
John admitted to killing Mary.

the specific syntactic construct in the second example gives a clue
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right away: the intended meaning 1is obvious: "communicate, with
possible feeling of guilt".

Examples like these above show that sometimes reliance on syntax
is necessary and unavoidable, and in some other situations it may be
quite useful. Furthermore, it should be easy to incorporate some sort
of a mechanism making use of this fact because the syntactic
recogniser is intended to work at a very low level within the parser
as a whole.

Predominantly semantic systems (insofar as they have tackled
disambiguation in practice) tend to ignore this fact, or at least not
explore it systematically: some effort in the cases of ambiguous verbs
is invested by Riesbeck [Riesbeck74]; on the other hand, Wilks' system
completely ignores the value of surface syntax for disambiguation.

A mechanism which incorporates these observations is discussed in
3.9: "contextual verb frames".
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3.7. Grammar Properties and Parsing Strategy.

The discussion in sections 3.2 and 3.3 suggest a traditional
transition network grammar for English. Woods [Woods72] has developed
a syntactic preprocessor demonstrating convincingly that the ATN
mechanism is capable of capturing (syntactic) regularities of natural
language and that it is possible to extend the existing set of grammar
rules to make them hospitable to even wider range of language
constructs. The grammar i.e. set of syntactic recognition rules
viewed within the context of the particular parsing strategy used in
this project is a distant relative (although it keeps its overall
structure and layout) of the one developed by Woods.

It is only a distant relative because it takes into account the
fact that the system as a whole is aimed at very ordinary rather than
technical texts, so some of the special care directed at dealing with
certain constructs would not be justified at this stage of the work;
also in many cases it is not possible to make the simplifying assump-
tions that Woods makes (the use of (syntactic) features on verbs for
example: see chapter 4).

Also, certain properties and features are incorporated to allow
the implementation of the ideas put forward in the preceding sections.
These are to do with those aspects of Woods' grammar and parsing
strategy which are incompatible with my principles and objectives.

Assuming that a Woods-type ATN parser will operate in a mode of
pursuing all alternative paths (see 3.4), one source of increased non-
determinism and unnecessary effort is the fact that - due to semantic
analysis being applied to the syntactic tree of the whole sentence -
the only way to terminate an analysis path is by reaching a syntactic
dead-end. This has the consequence that well-formed but nonsensical
strings are sometimes recognised over and over again, and, further,
allow the analysis to proceed beyond them. By applying semantic
routines at well chosen points of the analysis process, potential
dead-end paths can be blocked as soon as a semantically unacceptable
structure 1is recognised. This will reduce the amount of non-
deterministic processing that has to be done as a whole, and
considerably minimise the element of blind syntactic search. The
"well chosen" points in the analysis clearly have to do with a well-
formed syntactic constituents, however, they have to be carefully
selected so that they do not force premature decisions making, which
might have to be reversed later (see "semantic wait-and-see™: 3.2,
3.5). The semantic routines applied at these points rely heavily on
the ATN registers mechanism since the constituents recognised so far
are kept in registers. There are no structure building actions for
building partial structures on the arcs of the grammar itself. The
semantic structure building is done after a complete syntactic unit
has been recognised. For example, given (NP V NP PP) as a surface
constituent sequence, the grammar does not attempt to POP a partial
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(subj (v obj)) (or agent-action-object, or whatever is the equivalent
to the basic predicate, or underlying template structure) before the
following PP is recognised. The basic structure building actions, as
provided by the ATN formalism, are embedded in more complex programs,
semantic specialists, which undertake conditional constituent assembly
depending on the outcome of semantic tests applied to the semantic
properties of the items held in registers.

As a parenthetical remark, it is worth mentioning that the desire
to avoid premature decisions and blind guesses, taken to the extreme,
will lead to a strategy similar to lattice parsing [Woods75]. This is
not a very good strategy, however, for several reasons. It implies a
predominantly bottom-up approach - irvolving in one way or another a
number of scans over the lattice components, each of which results in
collapsing a sequence of constituents into a larger structure. A
major disadvantage of such an approach is that the boundaries of a
clause unit are not directly recognised, which, among other things,
prohibits the introduction of a clause level semantic specialist (see
3.5, 3.6), makes the hierarchical organisation of semantic routines
application difficult (see 3.5), and implies an active rather than
passive parsing approach® (see 3.3). As a side effect, semantically
invalid partial (sub)structures recognised half way through the
sentence do not have the desired effect of aborting the analysis path
(see above). Another disadvantage of lattice parsing is that it is
difficult to embody context sensitive rules in the recognition compo-
rnent.

On the other hand, the parsing process as implemented in this
project, is (strongly) guided by complex context sensitive rules on
the arcs of the grammar (see below, 4.2). These function as bottom-up
devices which, within the traditional predominantly top-down ATN
framework, help to further minimise the unnecesary and unwanted
proliferation of alternative syntactic paths.

As already noted, the parsing process guided by an ATN grammar
like Woods' original one suffers from the disadvantage that it is
highly non-deterministic, which follows from one of the most important
features of the ATN model, namely the recursion mechanism. This 1is
not to suggest that recursion should, or indeed could, be elimirated.
But closer examination of some situations which may arise during
parsing shows that the grammar can be modified so that the non-
determinism is substantially reduced. In particular, much more nearly
deterministic parsing can be achieved for the most common type of
structural ambiguity - type A. (see 1.1 and 3.4), concerned with
determining the scope of postmodifying prepositional phrases and
certain other constituents like optional (post)modifiers. Briefly,
the situation occurs because there is no pre-set limit to the nesting
of subordinating endocentric constructions [Lyons77]: "the book on
the table in the bedroom on the second floor... in the house", and
because a PP can potentially modify any 'head' preceding it. In terms
of formal grammar specification this results in mutually recursive

* passive approach works better if the boundaries of a textual unit
are known
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networks, equivalent to the following production rules:

S ===> NP V (NP) (PP)
NP ==> DET N (PP)
PP ==> PREP NP,

It was noted in 1.2 that the surface string (V NP PP PP) parses in
five explicitly different ways by the rules above. On the other hand,
if the mutual recursion is eliminated, by removing the PP option in
the second rule, only a single analysis path will be found. This
nevertheless identifies a set of constructs which allows the semantics
to construct those of the five possible structures which are valid for
the text.

It does not however follow that nouns cannot be postmodified by
prepositional phrases. Prepositional postmodifiers are recognised at
top (clause) level only, and are pended in a register - thus syntax
makes no guesses as to which is the head, and which is the modifier.
Only after the 'end of clause' signal is broadcast by the scanner, is
semantic judgement (the clause specialist, aided by a prepositional
phrases analyser) called to determine the proper head-modifiers(s)
relationship and dynamically construct the corresponding semantic
structure (or structures, if more than one interpretations are
available, as for "man in the park with the telescope").

Woods <claims that semantic judgement called during syntactic
analysis does not make the whole process more efficient [Woods73].
Possibly one reason for this is the fact that his grammar has to
produce all the five syntactic readings. Whereas for

Bill returned the book with pictures by post.

my system will construct only one structure directly, with the
alternative syntactically valid bracketings implicitly represented by
a single analysis path.

The partial elimination of mutual recursion is thus the basis of
the mechanism for reducing the non-determinism in the parsing process.
The situation does not apply to postmodifying prepositional phrases
only. For example consider:

I heard an earthquake singing in the shower [WilksT75b]

I heard Fred singing in the shower;

Bill admitted to Mary that he loves Janet,
Bill admitted the fact that he loves Janet.
and also (see 1.1):

John admitted to the policeman that he killed Mary by
strangling her,

John informed the landlord that he wanted to leave by writing
a formal letter.

Instead of specifyinrg in the grammar that an "-ing" phrase, a
"_that" complement, ete. can modify both verbs (at clause level) and
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nouns (at noun group level), it is better to recognise such items
constituents only once, and, when the time is ripe, analyse them in
con junction with the overall contextual environment to establish their
proper function. Clearly this requires that the corresponding
semantic specialist knows, not only what can modify what, but also how
this modification works: i.e. what is the relationship between the
head and the modifier.

Finally, within the general framework of this principle, it is
possible, and useful, to explore certain natural constraints. For
example, although both "the man on the top of the bus in the park..."
and "the dog that worried the cat that killed the rat ... in the house
that Jack built" involve embedding [Lyons77], the extensive and care-
ful treatment necessary for the first type of structure is not needed
. for the second. (Although beware of

... the punishment of the workers who were responsible for
the strike,

... the punishment of the workers which will serve them right

ceeneees)
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3.8. The Verb Is Central To The Clause.

The addiction to the clause level specialist designed to operate
on a semantic "wait-and-see" delayed decision principle, displayed in
the preceding sections, is not an accidental or random one. It is an
extension of the fact noted in 3.3 that one of the major difficulties
in writing a semantically driven ATN is the need to suspend all the
"interesting" work of the network processor (that is the work going on
on top of the low level string processing) until the verb element is
identified and isolated.

It is hardly an illuminating discovery to state that the verb is
the main and central component of the clause; and this section 1is not
intended to prove it. The fact has been recognised both in
linguistics and AI research. I shall only mention here, among others,
Chomsky's subcategorisation rules [Chomsky65], Fillmore's case grammar
framework [Fillmore681]:

Sentence ===> Proposition + Modality
Proposition ==> Verb + Casel + ... + CaseN,

Wilks' inventory of bare templates - organised, stored, and indexed by
their action elements, the semantic networks of Simmons [SimmonsT73],
the bulk of Riesbeck's request packets, as well as the control struc-
ture of Goldman's generation program [Goldman75], Woods' semantic
templates... the list can be continued.

My feeling, however, is nevertheless that not enough emphasis has
been placed on this fact in building analysers; and this section
tries to analyse fully its relevance to and implications for the
analysis phase in processing. Basically, two points emerge. Firstly,
in a natural language analysis system which accepts the polysemy of
words, and verbs in particular, it is crucial to isolate the correct
intended verb meaning as soon as possible. No further text
interpretation work can be done without this. But then, on the other
hand, the centrality of the verb can also be used to our advantage.
For one thing, with the main verb identified, further semantie
interpretation can, with a certain degree of confidence, be guided
along some specific lines. At the same time, since a "verb meaning"
is identified only by its context, this very context could be used for
Sseleceting and/or preferring the particular, specific verb sense. In a
way, this is the old "push-pull" (feedback) principle, with certain
emphasis (as will be shown later) on the role of the verb in it.

The importance of the verb is responsible for the verb-oriented
content of the dictionary, which was, as it happens, one of the
starting points of this project. It also further highlights the weak-
ness of the template matching mechanism mentioned in 3.6. Thus
template matching as a device for disambiguating verbs becomes less

important. There 1is certain rationale behind this, which will be
discussed in the next section. Note that it does not, however, imply

- 3.32 -



that templates idea can be rejected altogether, only that they, and
implicitly "preference semantics" as a whole require a more concrete
basis.

In order to provide this firm foundation for analysis, more
detailed information concerning verbs, verb meanings, their use, and
relevant environment and context is necessary; and it has to go in the
dictionary in some form. And, of course, when the semantic routines
at clause level are activated, they (will) have to rely on some
sufficiently powerful mechanism to make full use of that information.

Both these issues are discussed in the next section.
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3.9. Contextual Verb Frames.

The fact that the verb element is the key to the meaning of the
clause underlies in a very important way the design of the analyser.
This section attempts to put together most of the considerations
discussed so far by outlining the mechanism intended to perform global
pattern matching based (3.3) analysis of the constituents at clause
level (3.5, 3.6),possibly extending beyond the underlying template
(actor-action-object) boundary (3.6); to concentrate on selection of
the meaning of the verb (3.8) by examining the clause context; and
possibly to use syntactic clues to help in the process (3.6), if not
as a deciding factor, then at least as natural constraints. ‘

Let us consider again the examples (1)-(3) in (3.6):
John asked Mary (a question) (about the book),

John asked Mary to come with him,

John asked Mary for the book.

The analyser faces several problems related to sentence interpretation
and the construction of a representation (dependency) structure, the
most immediate of them being verb disambiguation.

Assuming that there is access to the semantic formulas:
corresponding to the surface words, let us suppose that these are
examined not only at the level of underlying templates (see 3.6), but
in conjunction with a set of rules which for the time being and
clarity of argument can be considered to be exhaustive with respect to
specifying the possible syntactic environments, 1i.e. sentential
constructs in which the verb "ask"™ can appear, and which can be
sketched as follows:

framel:
*num ASK (*hum) (@sign) (ABOUT #*ent)

frame?2:
*hum ASK *hum TO *do (@act)

frame3:
*hum ASK (*hum) FOR ¥*ent.

In these rules words in capital letters identify words as they appear
ir the surface text. '€' and '*' indicate respectively semantic ele-
ments and classes of these; brackets denote optionality.

Let us examine these formulae in more detail.

(1.) The suggested rules are presented in terms of semantic
primitives, rather than surface words. This allows for generality and
better expressive power; a wider range of contexts can be specified in
a neat and compact manner.

(2.) The only words that come directly from the surface text
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(apart from the entry verb itself) are certain keywords - 1like
complementisers and prepositions. But whereas in Wilks' fragmentation
routines these keywords only signal the breaking of text into frag-
ments, here they participate in the rule frame on the same basis as
the other elements; in a way they are even more central because they
trigger a search for an entity of a particular type.

(3.) A frame is an underlying pattern, and not a direct
transcript of the order in which the items should appear in the
surface text. Both

Mary asked a question last night about the book, and
John asked Mary with impatience

will map onto the same frame, framel.

It is argued [Riesbeck74] that certain features of pattern
matching, namely lack of communication between the different patterns
resulting in 1lost effort when a pattern fails, ordering demands,
inflexibility because a pattern matcher is based wupon statie
classification, rewriting, delimit its possible applications in NL
analysis systems. This is true, if pattern matching is the only
mechanism employed, i.e. the system is a "pure" pattern matcher. In
the approach presented here the frame is applied not directly to the
surface text, but to the content of certain registers, holding the
semantic information for units obtained by the syntactic
preprocessing, which has itself been done in a relatively efficient
and effort saving way (see 3.4, 3.7). The frame itself is not a
rewriting rule, but a context match aimed at lexical disambiguation.

(4,) The frame is a static rather than a dynamic device. It
does not require any specific expectation-cued syntactic operation
from the front-end recognition device. This makes it possible to keep
the syntactic recognition part of the grammar small and manageable in
size, while still being able to capture quite a few of the regular
surface syntax constructions of the English language.

If the frame was implemented as a dynamic device, this would
introduce certain problems (also see 3.3):

(*) quite a lot of syntactic information would have to be
organised around a particular verb entry. Apart from making the
entries heavy and cumbersome, this would reduce the descriptive
generality of the recognition component. For example, instead of
specifying acceptable patterns that can match the surface 'V NP'
construct, one would have to associate a noun phrase request with
every (transitive) verb, and then put constraints on its semantic con-
tent: "ask" requests NP(*hum); "admit" requests NP(¥*mar) (sign, mark-
like entity), etec.

(*) at least some of the recogniser's control structure
would have to be organised around the verb definition, which would
introduce unwanted decentralisation in the master driver routine.

(*) the designer would have either to make unnatural
predictions regarding optional constituents (see 1.2) which may or may
not appear and do not contribute to context evaluation as far as the
verb disambiguation is concerned; or to incorporate (with difficulty)
a mechanism for recognising and dealing with these optional
constituents (see below: 3.10). Frames, on the other hand, as will be
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discussed in the next section, provide a more natural solution to the
problem.

(5.) A frame can be regarded, in a way, as an extended ver-
sion of a template: thus the Wilksian actor-action-object triple is a
part of it. However one notices that while the pure template matching
mechanism lacks resolution power (the underlying pattern in all the
three examples above is the same: "*hum ASK ¥hum"), the frame can do
all that a template does, and more: i.e. it usually provides a single
pointer to a more or less complete contextual environment, which need
only be mapped onto the representational system.

It may be argued that by repeated processing through template
segmentation and paraplate matching (i.e. PICKUP and TIE), Wilks could
end up with a similar structure, but this would require, apart from
too much processing effort, very specific tests under the paraplate
entries; so specific that they would not be justified. In any case
such tests refer not to a general situation which could be classified
and stored under "about" and "for", but to a specific one which should
be stored under "ask".

Notwithstanding the similarity between templates and frames, they
cannot be completely mapped onto one another. There is no 1list of
frames, as there is an inventory of "bare" templates. The reason lies
deep in the basic difference between the two concepts: bare templates
are organised around action element primitives, while frames are
organised around surface verbs and their meaning in context. When not
enough context is supplied, then the frame reduces to a template. (It
does not follow, however, that the frames are not general enough - see
1. above.)

(6.) The reason why frames are surface verb oriented lies in
their intended function. They are a disambiguation device, which also
provides a blueprint for building a structural representation for the
text (see below). All the three frames above are bound together by
the common element "ask". Hence

FRAME; <=> ASKj
thus achieving complete disambiguation of "ask".

In connection with this, there are some further points to be made.
6.1 All environments of a particular verb have to be
specified for the frame mechanism to be effective.
6.2 There is always the problem of the simplest case:
"John asked Mary" - which necessitates a default selection strategy of
some sort.
6.3 It is not necessary to have the same number of frames
and verb meanings. Consider "admit" for example. Assuming that
admit1 = confess
admit2 = allow to enter
it is possible to specify
@man ADMIT1 €@sign TO @man
@man ADMIT2 ¥*ani TO #¥place
@man ADMIT2 ¥*ani TO ¥*org
@man ADMIT1 (TO @man) THAT @act
@man ADMIT1 TO ¥*do-ING @act
6.4 Although predominantly verb centered, a frame can
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help with the lexical disambiguation of any contextually dependent
constituent: assuming

clubt weapon

club2 place/ society,

John admitted Bill to the club

will match onto the third frame above, i.e. "club™ will be resolved.

6.5 Without going into details about the actual organisa-
tion and implementation of a dictionary frame entry¥, it is possible
to specify important relationships between the frame components:

John hit Bill on the back
The truck hit Bill on the highway

will be interpreted in different ways (structurally) given a frame
*ent1 HIT *ent2 ON (physob (part-of ¥ent2))

In addition, the possible ambiguity of "back" will be resolved, much
in the same way as in

John recognised Bill as the crook.
due to
@man RECOGNISE *ent AS (same ¥ent)

In other words, apart from specifying relationships between the
verb and its arguments - much in the way a template, or a formula,
specifies selectional or preference restrictions - a frame can specify
a relation that holds between the arguments of a verb¥.

(7.) If no complete disambiguation is achieved after applying
the available frames, two courses of action are open. In the case
where no further information is available within the current scope of
semantic routines apply a default plausible interpretation selection
mechanism. Alternatively, we can proceed to the next stage of
analysis which will (attempt to) deal with any optional constituents
lying around; this involves further disambiguation within the current
(clause) level and addition(s) to the partially built structure (see
below: 3.10, 4.4, and 4.5),.

(8.) The frame has a dual function: it 1is primarily a
mechanism for verb sense disambiguation, but it also serves as a
background providing information for semantic consistency checks (see
3.5) to be made by the semantic routines; it further serves as a
blueprint when the semantic structure reflecting the context of the
selected frame is built. Thus the frame is the practical application
of the assertion that the verb is central to the clause (see 3.8), and
is the major device used to guide the analysis process.

(9.) A frame must specify the relation between the verb and
each one of the constituents (frame slot-fillers) around it: in

¥ for example, see Appendix (ii).

* this last point has been also made by Hayes [Hayes77] who calls it a
VDIR (verb directed association) but does not pursue the issue any
further, as he is interested primarily 1in association Dbased
disambiguation of words as physical objects.
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@man ASK @man ABOUT *ent,
@man ADMIT @man IN ¥place

the semantic roles of @man, %*ent, %*place must be made explicit as
recipient, subj-matter, location... A label 1like "subj-matter"
appears crude, but 1is acceptable as 1long as the analyser (and
generator) interpret it correctly. For more detailed discussion of
this issue see 3.11.

(10.) The notion of a verb frame can be extended to apply to
nouns - mostly cases where the head noun is followed by some clausal
construct (but not a relative clause), for example

...the fact that John loves Mary.
...the idea of running away.
...the necessity for a student to work.

and also to predicate adjectives; thus one sense of "afraid" would
have the frame form

¥ani BE AFRAID OF ¥ent,

and "angry that", "angry with", "easy to", "eager to", etc. would be
similarly handled.

As a trailer to a more detailed discussion (in chapter 4) this, in
con junction with the basic idea of a verb frame, makes it easy and
natural to select the points at which the frames mechanism should be
invoked. It is, as pointed out in 8. above, the backbone of the
semantic checking, and so the natural place to invoke the semantic
routines is at the structure building actions at clause and noun group
level. The frame thus becomes not only a lexical, but a structure
disambiguation device as well (see 3.5; also below: 3.10).

With the proviso that the frames notion is extensible to nouns and
adjectives, I shall continue to refer to them as "contextual verb
frames™".

(11.) Frames make it relatively easy to handle idioms. It is
sometimes assumed that an idiom must have a separate, spelt-out
dictionary entry; but the detailed organisation of an idiom handling
mechanism on this basis is far from simple. With frames, idiom
handling is Jjust another form of pattern matching, with more tight
constraints.

From the discussion so far, the general definition of a contextual
verb frame emerges: a frame is a static pattern which defines a more
complete and detailed syntactico-semantic (contextual) environment for
the verb (sense). Its function is to trigger a preference test
coupled with pattern matching of constituent slot-fillers on a more
global scale than the one provided by the simple template. The
implication is that the suggested frame mechanism is more powerful
than Wilks' template matching, embodying all its strong features,
namely semantic generalisation and succint meaning characterisation,
but overcoming its lack of resolution power.

The immediate effect of frame application is to speed up and
facilitate the verb choice procedure; the overall effect 1is to
provide solid background for the semantic procedures; both make the
parser more efficient.
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3.10. Default Treatment Of Prepositional Phrases And Other (Optional)
Postmodifiers.

The analysis of prepositional phrases and other postmodifying
constituents is a major problem in any computer based NL system. It
was pointed out in 1.2 that the two different modes of prepositional
use, obligatory and optional, express not Jjust a notational
difference, but are associated with the genuinely different conceptual
roles that a prepositional phrase can play as it contributes to the
meaning of a sentence.

The problem of prepositional postmodification - 1its scope and
function (see 1.2) - is open to two approaches: active (i.e. expecta-
tion based) and passive (i.e. pattern matching). Using, for example,
the parsers developed by Riesbeck and Wilks respectively it is
possible to discuss these in more details.

The major advantage of active prepositional handling 1is the
possibility of developing an efficient and elegant parser, which might
save considerable amount of time and effort. There is no need at all
to build any intermediate syntactic structures, and an effect of
"intelligent text perception" is simulated; this is the support for
Riesbeck's claim that his system "could also serve as a theory of
human comprehension of natural language" [RiesbeckT741].

There are, however, certain drawbacks in this approach. Each
verb entry has to be separately written, which makes the dictionary
bulky; and there is no way to capture generalisations or similar
patterns of behaviour (which Woods' merging of ATN arcs or Wilks'
semantic template patterns both achieve). Moreover, there is still no
hundred percent guarantee that correct analysis will be obtained, as
Wilks points out in relation to "John gave Mary to the Imam of Oudh"
and "John gave his city his stamp collection" [WilksT76b].
Furthermore, a system based on specific entries relies on the assump-
tion that "verb entry" <=z> "verb sense", and the problem of selecting
the correct verb sense has then to be dealt with, a question which
Riesbeck does not discuss sufficiently fully (see 2.2). If semantic
expectations or requests attached to the verb act as an active verb
disambiguation device by 1looking for constituents with a certain
semantic content and, upon finding them, preferring a particular verb
reading, sense selection is achieved but at a high cost because of the
extensive semantic parallelism inherent to the parsing process.

However a satisfactory mechanism for dealing with optional
modifiers within the active framework is difficult, although not
impossible, to implement. Since optional postmodification is essen-
tially incompatible with the expectation basis of the active approach,
the control structure of the parser has to be decentralised, with
control distributed ©between the expectational data structures
associated with the verb entries, and some sort of preposition-indexed
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stacks representing the different possible conceptual realisations of
optionally used prepositional phrases. These stacks cannot be avoided
since they are the only mechanism capable of dealing with postnominal
prepositional phrases modifiers in the general case; thus, apart from
the distributed control, an active parsing system starts to exhibit
properties inherent to a passive one.

This alternative passive approach has a number of important
advantages where prepositional phrases are concerned. It allows for a
simple form of the surface syntax rules, and a compact recognition
grammar. Both first order prepositional phrase analysis and default
(optional) PP analysis can be naturally incorporated within a unified
control structure and dealt with by a general mechanism, which can be
easily extended to account for postnominal modification. In such an
environment, the analyser stands a much better chance of correctly
'understanding' an unexpected and unpredictable postmodifier. It can
be argued that such a system faces the problem of multiple choice at
its very worst, since no attempt is made to "understand each word as
soon as it is read, to decide what it means and how it relates to the
rest of the text" [Riesbeck74]. Similarly, at first sight it is not
very clear where and when forward scanning of text should be
interrupted, and it looks as if intermediate syntactic structures have
to be built and later examined to see if they make sense. It is
however possible, as noted in 3.4, 3.5 and 3.6, to avoid excessive
syntactic non-determinism and semantic parallelism by delaying
decision-making until enough context is available. Clearly the pas-
sive parsing approach is ideal for providing the global context of a
textual (semantic) unit - it thus avoids a frontal attack on the
multiple choice problem and instead allows a more 'intelligent', and
also more efficient, resolution of word-sense and structural
ambiguities.

It is clear that any realistic NL analysis system should be
capable of providing equally good treatment for both obligatorily and
optionally used prepositional phrases, and postmodifiers 1in general.
In passive parsing approach the various techniques required to account
for the different situations can all be handled by the pattern
matching (see below); furthermore, these techniques can easily be
accommodated within the same organisational framework. 1In contrast,
in the active parsing approach the expectation/ request mechanism is
not powerful enough to act as an organising principle in system
design. This is yet another reason why the analyser described here
relies on a generalised pattern matching of constituents within a
certain context. It is also the rationale behind Wilks' paraplate
stacks and TIE routines, which "establish dependencies between the
representations of different fragments" [WilksT73b] (see also
[Wilks761).

The pattern matching idea must, hdwever, be approached rather
carefully. Wilks [Wilks76] goes further than Schank, who suggests
that there is a short general 1list of functions of prepositions
[Schank73]; for Wilks the fact that a preposition relates to the
interdependency between modifier and modified (see 1.2) is reflected
in his paraplate stacks, which are organised under a dictionary entry
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for a preposition, but are functions of primitive actions as well, so
that they are further organised as stacked (partially ordered)
sublists, arranged under primitive action elements.

This approach does not, however, deal with some important
linguistic facts. Firstly, nouns can be postmodified as well as, and
independently of, the verb. This means that new types of entries will
have to be added to the paraplate stacks - sublists, indexed by
nominal elements or nominal classes. Neither the function nor the
organisation and format of the paraplates will change, but the stacks
Will probably become more complex. This is a minor point, which
nevertheless has to be made.

More important is the fact that some situations of prepositional
postmodification are more a function of the idiosyncratic behaviour of
the surface verb, rather than of the underlying primitive action ele-
ment - a point already made in connection with the distinction between
the optional and obligatory use of prepositions. Paraplate stacks are
not the right place for this sort of information. The role of the
surface verb also suggests that paraplates are not a suitable general
device for first order (see 1.2) prepositional treatment. It can be
argued that the' paraplate mechanism as such has sufficient power to
parse constructions with obligatory prepositions 1like "ask for the
book" and "look for Mary". The problem is that this would require
very specifié¢ -tests within a particular paraplate which are not
compatible with- the rather general information stored there.
Furthermore,the tests would have to be so narrow, as either to quote
the surface 'verb, "look" in this case, though this information about
postmodification by YAT" prepositional phrases should surely be
supplied under the verb entry rather than under "AT"; or somehow
specify a particular "looking" act, which would unfortunately make it
very difficult to avoid assigning the wrong interpretation to

I saw John at Mary yesterday.

for example.

Two points emerge from the discussion so far. Firstly, contextual
verb frames are 1ideally suited as a device for dealing with
obligatorily used prepositions, hardly surprisingly, since this was
one of the reasons for their introduction. Secondly, paraplate stacks
extended to accommodate information about possible noun modifications
will suffice as a default mechanism for parsing optionally used
prepositional phrases. I shall refer to these as preplates.

Preplates are conceptually similar (if not equivalent) to Wilks'
paraplates -~ in that both are structures whose function is to provide
information about possible constituent postmodification (typically by
a prepositional phrase). They are again partially ordered stacks of
sublists specifying possible relationships between certain types of
constituent, and providing the structure building routines with
functionally labelled skeleton structures (or just functional 1labels
defining the relationship). Normal preference semantic principles
still apply; thus Wilks' examples "put the key in the lock" and "threw
the key in the 1lock"™ [Wilks73b]l] are correctly interpreted. The
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difference between the preplates and Wilks' paraplates is in their
content and order of application.

Due to the fact that all of the specific information related to
the obligatory use of prepositions 1is made explicit in the verb
contextual frames, the preplates themselves can be expressed in a more
compact and general form, than Wilks' paraplates. As far as the order
in which paraplate tests are applied is concerned, Wilks does not make
clear the exact sequence in which the possible relationships between
constituent templates are tested. The implicit assumption, suggested
by the general principles of preference semantics, 1is that all
possible combinations (five in the case of

John picked up the glass of milk from the table after lunch)

are made explicit (the order does not matter here), after which the
semantically densest is preferred. As was noted in 3.4 such semantic
parallelism is both unwanted and unnecessary. In contrast to this
approach, my system takes into account certain natural constraints,
for example that no crossover modification is allowed in English; a
prepositional phrase 1is most 1likely to modify the constituent
immediately preceding it, and then the one preceding that, and so on.
A failed test can, in certain situations, preclude further attempts to
establish a preplate match (see 1.2) and instead invoke an algorithm
specially designed to cut down the proliferation of alternatives and
avoid the explicit building of all the possible structures. The
algorithm achieves the effect, without the effort, of paraplate
matches being applied to all the possible constituent pairs. The
algorithm itself will be described in the next chapter (4.5), but the
idea has already been discussed in connection with the special
properties of the grammar; thus the algorithm is the reason for
prepositional phrases (and other postmodifiers) being held on a linear
list, and possible relations in the semantic unit being dynamically
hypothesised and tested.

Preplate tests could be applied either as soon as a prepositional
phrase 1is recognised by the syntactic component, or after all
prepositional phrases in the (current) semantic unit are available.
Which of these two strategies has been chosen is discussed in the next
chapter. One final point, however, is worth emphasising here, namely
that both contextual frames and preplates are parsing devices based on
semantic pattern matching; thus they can be conveniently handled by
the same control structure, making the analyser more efficient, and
the grammar more compact.

The general discussion of this section does not refer only to the
prepositional phrases. Similar problems, although on a smaller scale,
are associated with some other post-modifiers. This was mentioned in
1.2 in connection with

* John admitted that he killed Mary by strangling her,

®¥%* John informed the 1landlord that he wanted to leave by
writing a formal letter.

Consider also
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Fred made a gun to kill Jill,
Fred made an effort to kill Jill;

Max told Sue that he wanted to go home,
Max told Sue what she wanted to make her happy.

In general, the preplates mechanism can be extended to deal with
such situations. However, it is the noun frames for nouns like
"fact", "effort", M"opportunity" which suggest an alternative more
convenient treatment for certain types of clause postmodifier. Again,
a general preplate exists, specifying a "*do BY *act" pattern, which
reflects the fact that a "by ...ing" phrase introduces (usually) a
@émanner definition. However, in most cases it is more useful to have
a special mechanism, as a part of a more general semantic routine
which examines more closely the hypothesised relationship between the
postmodifier in question and its potential heads. For example, it is
specific knowledge about "causing to die" by "preventing from living",
and about the impossibility of '"moving" by "writing", as well as
general semantic constraints on stative verbs (such as "want", "love",
etc. as opposed to the dynamic "kill", "inform": see [Quirk72]) which
reject a "by ...ing" phrase as a postmodifier, that together enable
the system to parse (*) and (**) above as "(kill (@@manner
!strangle))" and "(inform (@@manner !write))". Similarly, the
analyser knows that a "to-" or "that-" complement, when it is to be
interpreted at clause level, is attached to the main verb and plays
one of a restricted set of roles: @6goal, @6act, @@mobject (mental
object), €€reason,...; and it 1is both surface syntax, and the
analysis of the semantic content of the constituents involved, that
defines the role of the complement.

It is important to realise that such specific mechanisms do not
violate the general principles of the parser: constituent slot-
fillers are recognised independently (with no attempt to build
intermediate syntactic structure(s)), and what follows is again a
generalised pattern match: for example the complement analyser
embodies rules such as

@man *do *inan TO <clause> => @@goal
@man *communicate (TO €@man) TO|THAT <clause> => @€mobject,

where the 1labels @6goal, ©@€mobject,... etc., specify the functional
link between the verb and the embedded clause. Clearly these can be
considered as very special preplates (or very general verb, or action,
frames), and are embodied in a particular (sub)specialist only in
order to make the design of the parser more natural, increasing its
efficiency, and improving its performance. Conceptually, the applica-
tion of these specialists is no different from the application of a
set of preplates or frame rules.

- 30’"’3 -



3.11. Semantic Representation.

The results of the analysis process are recorded in the semantic
structure which is constructed by the parser and provides a meaning
representation of the input text. Since any subsequent manipulation -
program - the generator in this case - has access only to this
intermediate form of data, the source surface text being lost by now,
it is cruecial to make sure that the structures delivered by the
analyser

a. are unambiguous,

b. clearly identify and represent the components of meaning of a
sentence,

c. make explicit the relation between these as well as the func-
tion they perform in the overall textual unit.

These criteria together define the level of understanding of the
system. Whether they are met or not depends on the design of the
semantic routines. It is clear that the representation of a sentence
will reflect the hierarchical application and operation of semantic
judgement rules: it 1is constructed gradually, step by step, in a
bottom-up manner, so that each (semantically) complete constituent is
represented by a (self contained) piece of semantic structure. A
semantic component is thus assembled from its subcomponents, which
obviously implies that the semantic formulas of the surface words
always appear in the final representation. It is on the choice of
these from the sets of word meanings associated with lexical items in
the dictionary, as well as on the decisions related to the
hierarchical structure assembly, and the 1labelling of partial
substructures, that the whole analysis process is focussed.

On the other hand, it must be emphasised that a semantic structure
as such is not a goal in itself, but an essential intermediate product
which is going to be used for subsequent manipulation, It is this
fact which defines the level of representation.

The overall objective of this work makes it clear that the final
phase of the system's operation will require a generation component.
The essential question connected with this is, what will be the source
of the target language (English) words? There are apparently  two
courses open:

(1) if the dependency structure carries with it some memory of
the surface words of the input text, this could be utilised for the
generation; or alternatively,

(2) we start with no knowledge of the target words, but deduce
them by examination of the dependency structure.

It seems to me that both extremes are unsatisfactory. A hundred
percent use of the surface words carried through will, at the best,
result in a generated sentence textually identical to the input, which
will hardly prove any point (apart from the obvious fact that this
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does not work for translation). Alternatively, if nothing at all is
Known in advance about the specific output words, the system's opera-
tion as a whole becomes time consuming and lacking in expressive power
(see below). The approach adopted here aims at a compromise: the
semantic representation of the input contains, together with the full
formula for particular meaning of words, its "shorthand" notation as
specified by the dictionary (see 3.9):

...(ask3 ((man subj) ((*ent obje) want))...

This means that the problem of output word (in this case, verb)
selection is reduced: not only is the set of possible words at any
point of the sentence (before the word selection component of the
generator - see below - has been activated) not open ended any more,
because the word "ask"™ can be mapped onto "question", "inquire",
"beg", "request", "want"; it is further restricted because the word
"ask" with sense "ask1"™ can only be mapped onto "question" and
"inquire",. The compromise is thus more biased towards the first
strategy as outlined above, rather than the second; however,
differentiation of word senses and subtle relations between synonyms
mean that the eventual identification of specific synonymic output is
not a trivial task (see 5.2).

It must be emphasised at this point that thus if the semantic
formulas for the different senses of "ask" are different, then clearly
we could just by analysing them decide on which "ask" has been
intended on input, and respectively where to look for the correct
synonym to output, without carrying forward the trace of "ask".
However, it is always possible that more than one input word may have
senses defined with the same semantic formula (indeed this is likely
as the semantic primitive formulas are not very specific). Sometimes,
this will not matter (e.g. with senses of ‘'"say" and "tell");
sometimes, however, there will be a difference between the words not
captured by having distinect formulas (as with senses of "say" and
"admit"). And it is going to be very difficult in both cases for the
generator to decide on which one has been meant originally, and thus
organise the generator process correctly. This is what "expressive
power" refers to: obviously "John said that he loves Mary" is more
neutral than "John admitted that he 1loves Mary", but will the
generator be able to detect the subtle nuance in meaning, and reflect
it in the generated sentence?

The index on entries like "telll1" or "admit2" is thus designred,
when taken together with the semantic formula itself, to provide
enough information to put the generator on the right track, defining
the overall sentential context and also saving considerable effort and
trouble. It may be arguable, in this case, whether the semantic
formulas, or the representation of the sentence, or both, are adequate
enough to represent meaning, if there still remains something outside.
I do not think this is the case, however, because this "something
outside" is the overall paragraph or story context, which although
(undoubtedly) relevant to the task of NL analysis in general, 1is
outside the scope of this project.

The overall translation/ paraphrase objective introduces yet



another point: it does not imply extensive manipulation of the
internal representation. In a system like Schank's MARGIE [Schank75]
it is essential that the inference component is handed a surface-
language free representation. The generation component has no way of
knowing how the CD structure being handled has been derived. It
cannot rely on making any assumptions; so it has no choice left but to
try to work out the output words on the basis of analysing its
representation input for its defining characteristics. In contrast,
the proposed system does not lose anything by allowing the shorthand
sense notation to participate explicitly in the semantic representa-
tion; it actually gains something more than mere efficiency: fluency
and preciseness; in a word "expressive power".

The representation scheme used for this project is loosely based
on Wilks' semantic ©blocks, which are intended to act as an
interlingual representation of the meaning of a piece of text. There
are, however, some non-trivial differences between Wilks' and my forms
of representation. Dealing with the need to choose between different
possible ways of combining text meaning constituents requires a more
rigorously defined and organised representation structure than the
mere collection of templates that a semantic block is. The system
should parse

The crook hit the girl with the bat with vengeance

into something like (simplified¥*):

(hit
(8@ agent: crook!man)
(@8 recipient: girl)
(8@ instrument: bat!racket)
(@€ manner: vengeance))

Wilks' semantic block for the sentence would consist much more
simply of three barely linked templates - one main, and two dummies.
Dummy templates stand for prepositional phrases ([dummy pbe cesl,
[dummy pdo ...]) or certain other constructs with deleted (implicit)
components ("...to go home...", "...painting his daughter...", etec).
Their introduction is necessitated because the template is the basic
semantic pattern matched onto the text and the only parsing device in
a system which (attempts to) shortcut explicit syntactic recognition.
However, once a low level syntactic preprocessor is integrated in the
implementation, it is not necessary to insist on keeping templates
* the notation is a shorthand for the actual semantic representation
(see 0.1, 4.5 for detailed examples) as delivered by the analysis
component of the system, and should be interpreted as follows: the
"man" sense of "crook" (crook!man stands for

...(crook1 ((((notgood act) obje) do) (subj man))) ...)

is linked to the main clause verb ("hit" with its corresponding verb-
sense) by the dependency tie 'agent'. Similarly, the dependency link
between the "racket" sense of "bat" and "hit"™ is ‘'instrument';
"vengeance" depends on (modifies) the verb as the 'manner' of the
hitting, etc.
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explicit in the internal representation. On the other hand, since a
template in its pure form is an ACTOR ACTION OBJECT triple, no matter
what the representation is, it will always be present, at least
implicitly, in it, thus making it possible to still carry out all the
preference based matches and manipulations associated with the use of
templates. This makes the explicit dummy template concept
" unnecessary, and, indeed, eliminates the template as the primary
formal unit used in the process of building of semantic representa-
tion.

With the explicit fragmentation into templates gone, it 1is
possible to go beyond the predominantly linear structure of semantic
blocks. The general shape of a frame, together with the fact that
the structure building process is organised procedurally around the
semantic judgement rules, and notationally around the main element of
the current semantic unit (event, state or entity representation),
suggests a certain hierarchical structure organised around the main
verb element, with the other constituents within the semantic unit
(see above) clustered around, and attached to the verb by explicit
dependency ties labelling the relations involved.

Each verb has an associated set of roles defined by the verbd
frame, which are filled by the constituents (hence "slot-fillers")
around it. Although the possible roles in the verb environment are
not restricted to only five (as with Fillmore), it is clear that the
notational system adopted here is an extension of the idea behind a
system based on deep semantic cases. I shall not argue here whether
relations 1like @mobject, @similarity, @attribute ete. ("...say
that...", ",,.feel like...", "...park with the telescope") are proper
cases or not; they are at least plausible ones. The point is that
each relation between a component and its direct governor is
explicitly labelled by what I shall refer to as "a dependency tie";
and that such a tie exists between a governor and all its dependents
within any subportion of the hierarchical structure. Neither am I
arguing for the completeness of the set of cases used. Basically all
of them are general enough and have sufficient amount of semantic con-
tent to justify their being included in the system inventory; more
importantly, given the pragmatic approach being adopted here, they
seem to work. Some appear to be more arbitrary than others:
fneutral, @act, @essence, @subj-matter, but these are invariably part
of the expected semantic content of a verb (noun) meaning, i.e. they
participate actively in a contextual frame. Which is to say that it
is not really the name that counts, but the relationship which will be
present if this particular meaning has been intended; the generator
Wwill be expecting a certain constituent in this particular slot and
will know what to do with it. It can be argued that no general
inference rules can be posited about these more specific case rela-
tions, but then this could be expected since they are related to the
surface verb, rather than to the underlying primitive action; their
purpose generally is not to stimulate inference processes but to aid
target language text generation.

A1l the relationships are made explicit, so no guesses have to be
made by subsequent processes about deleted constituents, in contrast
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to Wilks' simple fragmentation of text, which leaves the generator of
French to puzzle out the implicit participants in a semantic unit -
like inferring the missing subject in "...urged the women to leave",
" _.the girl that Bill asked to...", etc. [Herskovits73].

Regarding the verb as the main element of a clause (3.8) implies a
certain importance attached to the clause unit itself. The clause
boundaries delimit the scope of validity, and dependency of the
functional ties. A clause marker is therefore needed, to serve as a
demarkation line - this is equivalent, in a way, to Schank's STATE or
EVENT headers. Also, it is important to make explicit the relation-
ships between the main and any embedded clauses within the Ssentence.
Hence labels like @mobject, €goal, @manner, etc. Not surprisingly,
this requirement fits naturally within the frameworks both of
contextual verb frames:

@man ADMIT (TO @man) THAT €mobject,
and dependency structure as discussed above:

(admit
(6@ agent: ...)
(8@ recipient: ...)
(8@ mobject (kill John Mary))) .
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chapter 4.
How The Analyser Works.
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4,1, Control Structure.

The overall control structure of the system described here is that
of an ATN parser. A LISP program - the ATN interpreter - 1is
responsible for maintaining the process of analysis during a strictly
left-to-right sentential scan. The discussion in the last chapter
has made it clear that the effort of system development was directed
towards organising the recognition grammar, semantic routines, control
(service) functions of the interpreter, and the interface between
these in such a way that the semantic dependency structure for a
sentence is built during a single pass through the sentence. This is
achieved by invoking semantic processing at certain well chosen points
(see below) at each level of the computation. The processing does not

‘require explicitly built syntactic structures; in faect, no syntactice
structures are built at all., The semantic routines, however, whenever
active, construct portions of the final semantic structure, which are
subsequently put together in a higher level semantic unit. All
intermediate results of the recognition, or partial analyses, are kept
in registers, rather than assembled in temporary structures, thus
avoiding the need for blind structure building and potentially wrong
decision-making. Thus the hierarchical format of the final dependency
structure reflects the hierarchical manner of operation of the
semantic routines; which in its turn reflects the process of syntactic
recognition of the input text.

This sort of parser organisation and control structure (and also
parsing strategy) developed as a consequence of the desire to avoid
exhaustive searching techniques and reduce the chance of making wrong
decisions now and having to unpick them later.

Given that a non-deterministic parser, as opposed to a
deterministic one, is required (3.4), the question of search strategy
needs consideration. Without going into details about depth-first vs.
breadth-first techniques, it should be noted that non-determinism
implies more than one search path through the network. Effort must be
therefore directed towards terminating potential dead-ends as early as
possible.

With this in mind let us consider the notion of a failure that
terminates a search-path. The intuitive understanding of the term
applies to situations in which an input word does not meet the condi-
tions specified at a certain point of the analysis. In a purely
syntactic parser these are basically syntactic category tests.
However, since it is the transitions from state to state in an ATIN
that count in the end, it is apparent that these are controlled either
by the success or failure in recognising

(*) words of specific categories (i.e. terminal symbols: is the
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current word a noun?),
or
(*#%*) syntactic constituents of specific meta-categories (i.e.
non-terminal symbols: is the constituent a noun phrase?).

Failure at (*) is a category mismatch (or some other violation of low-
level syntactic expectations). Failure at (*¥*) is a meta-category
mismatch, caused either by syntactic 1ill-formedness, which is
reducible to the (*) situation (imagine for example an effort to
recognise a "that-" complement in subject position in "That boy is
very naughty"); or by semantic ill-formedness (trying to assess a
possible skeleton clause structure "John admit Mary" during the
analysis of

John admitted to the policeman that he killed Mary.)

This analysis allows us to extend the notion of recognition failure,
which leads to earlier termination of dead-end search paths. Not only
are syntactic constituents (made up of more than one lexical items)
recognised, but their semantic coherence is assessed as well. Only in
the case of a positive outcome of a series of semantic tests, 1is
analysis permitted to continue - whereas in the traditional ATN
grammar model (Woods' LUNAR) a recognition of a lower level syntactiec
unit (NP, COMPL, ...) would just pop a syntactic structure, a guess
would be made as to how it could be integrated in the higher level
syntactic phrase, and the analysis would continue.

It has already been mentioned that a transition is allowed by a
condition specified at a certain point of the grammar. The ATN
formalism makes it clear that "a condition™ here is the conjunction of
syntactic recognition and satisfying some test (specified on the arc).
What this means is that the ATN mechanism allows for an efficient
interaction between what is traditionally known as top-down and
bottom-up parsing. This is not an entirely new idea (see [Ritchie77]
on bottom-up devices). However, 1its implications have not been
analysed in enough detail. Thus although it is another potential
source of parsing efficiency, certain points have to be clarified
first.

(1) Is it possible to have semantic tests in a (syntactic)
recognition grammar? Where 1is their place? For example, Ritchie
argues that no semantic tests (for semantic categories) can be
specified on the arcs of the grammar [Ritchie781]. It is however
suggested below that semantic tests can be placed on the actions.

(2) What sort of syntactic features are to be used during the
analysis process? This question is connected with the previous one,
and will also be discussed in due course.

I shall close this section with a brief summary of the basic
instruction loop which embodies the principle underlying and
representing the eventual operation of the parser: look for a
complete syntactic constituent (of a type that could be expected at
this particular position in the text string and this particular point
of analysis, or one that is keyed by some specific syntactic clue:
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preposition, complementiser, wh-word, untensed verb, ete.); then, as
in its analysis and the building of an appropriate (semantic)
representation semantic judgement becomes necessary, call the
appropriate semantic routine; finally, construct the representation
and hand it over for the next level up, where it will be stored in a
register, ready for use when the structure building process for the
new level is activated.

T



4,2. Syntactic Recognition (Grammar).

This project is not primarily concerned with developing a new, or
different, grammar (of English), so I have not started from scratch in
grammar building; the syntactic recognition rules used are of a
conventional kind, and more particularly have been influenced by those
of Woods' LUNAR grammar. Woods has convincingly demonstrated that
sufficiently complex syntactic structures can be accommodated within
the ATN formalism; my major interest has been in embedding semantic
judgement within the network, and hence in the grammar modifications
needed to allow this (though some modifications have been prompted by
a desire for parsing efficiency). The issues of grammar modification,
and possible ways of doing it have already been discussed (3.7). This
section concentrates on some other issues.

The first of these is the question: can we have semantic tests on
the arcs of the syntactic network? Unfortunately, even though this is
a tempting idea, the answer seems to be "no".

A low level syntactic feature can depend on, or identify related
syntactic constructs in immediate context, but it cannot be predicted
by a general semantic feature. This is no contradiction of my earlier
claim (3.6) that low level syntax can help in the process of semantic
resolution: in the case of

John called Bill a fool,
John called Bill a taxi,

both syntax and semantics play important parts in establishing that
"eglli1" 1is different from "call2"; and further, in establishing
exactly which of the six dictionary definitions for "call" has been
used. If at the point of syntactic recognition of the verb "call" it
was immediately clear which "call" was intended (say, "call2", as used
in the second sentence above), the following piece of network could be
devised. Using the notation (ATN formalism) as defined by Woods
[Woods70], and presented in (2.1),

=>(8S/V) =====>(VP/NP) =====>....

can be expressed and elaborated as

(VP/NP ...
(PUSH NP/
(AND
(FEATURE CTRANS v)
(ANIMATE (GETR o0bj1)))
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(COND
((NULL (ANIMATE ¥))
(SETR obj2 ¥*))
(T (ABORT))).eevennadens)

The symbol "¥" refers to the most recently recognised constituent
(resulting from the next lower level computation), and CTRANS is a
feature to categorise verbs which have the following surface
behaviour:
(Verb) (NP-ani) (NP-inan)

(I shall not attempt here to Jjustify the introduction of this
particular feature; syntactic features will be discussed in detail
later).

This illustrative network demonstrates that although this is (one)
compact way of putting constraints on the semantic content of
constituents recognised by the grammar, it is not a practical one,
because at recognition time there is no knowledge available to the
analyser about the intended meaning of "call". All the analyser has
at this point is a lexical item: i.e. a pointer to a multidefinitional
dictionary entry. My whole idea is to work the other way round: only
after NP1 and NP2 have been recognised and put into registers, can
the knowledge that

a. "call" is wused in a particular syntactic construct -
followed by two noun phrases, and
b. there is a relation between the semantic properties of the
two objects and the different intended meanings,
provide the basis for choosing the correct meaning of "call".

This does not, however, mean that semantic tests cannot be
included in the actions on the arcs i.e. effectively decoupled from
the transition: the tests decide which registers to pass down to an
embedded computation (before the transition), or to which registers to
assign a result of a computation (after it), and so on. For example,
based on the diagram above, it is possible to write

(S/V oivennn
(PUSH NP/ <test>
(SETR obj ¥) ... (TO VP/NP)) ...)

(VP/NP ........
(PUSH NP/ <test>
(COND
((AND
(ANIMATE (GETR obj))
(NOT (ANIMATE ¥)))
(ADD mods (BUILDQ (PP 'to obj)))
(SETR obj *))
((AND (ANIMATE (GETR obj)) (ANIMATE ¥))
(SETR obj2 *))
(T (ABORT)))

cereened)end)
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This piece of network will parse the similar syntactic patterns
Mary made John a cake,
Mary made John a cuckold.

realising that the former can be interpreted as "Mary made a cake
to/for John", but deferring the interpretation of the latter until
enough contextual information is collected, after which the clause
level semantic specialist will have to select the proper meaning of
"make":

((*pot subj)
((*ent obje)
((((same ¥*ent) subj) (((own state) obje) change))
cause)))

This selection is, however, a bit tricky. Thus imagine that "obj"
contains an ambiguous lexical item:

John made Bill a crook.

The problem in parsing this sentence with the net given is that in
effect the rules specified above define a single conditional action
and thus a single path through the network. Nevertheless, a potential
fork is created, but no backup will be initiated automatically by the
interpreter control structure, unless this is explicitly prompted by
some further test. The other alternative is to artificially create
two states which are identical in substance, but split the test apart.
The point being made here is not about how this particular case should
be resolved. As the example shows, syntactic and semantic constraints
have to be examined carefully before integrating ever more specific
semantic tests in the grammar, and the possible dangers should be
borne in mind; subject to these constraints good use can be made of
network apparatus like this. For example, noticing that the net above
is activated on an animate entity being held in "obj" register
(sentences 1like

The Master gave the College his book collection

being recognised and analysed somewhere else); we notice that direct
disambiguation can be triggered: a new function can be defined, which
instead of passively testing (ANIMATE (GETR obj)), will actively pull
out the contextually compatible (direct) object meaning: (GET-ANI-
DEFN (GETR obj)):

Fagin made/gave the crook some dinner.

If no such direct and neat solution is possible, we can either
multiply the meanings in different registers and do whatever can be
done at recognition time, which is not much, 1letting the semantic
routines worry about the rest at word-resolve, structure-building
time; or, alternatively, we should not try to be too clever.
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As all this shows, it is impossible to include semantic tests at
word-recognition level, and rather difficult at syntactic constituent
recognition level; and some care should be taken in the attempt to
increase the bottom-up parsing power of the analyser by trying to
elaborate the tests on the arcs beyond a reasonable limit.

Which takes us to the next type of arc tests: syntactic features.
How many, and what sort of syntactic features should be introduced,
and interrogated by the grammar?

In the context of a realistically minded syntactic ATN (the LUNAR
grammar, for example), it has been found (as the final LUNAR report
[Woods72] implies) that parsing efficiency can be somewhat improved
attaching certain (predominantly syrntactic) features on the lexical
entries (predominantly for verbs). These are the domain of another
class of possible tests that can exist on the ares of the grammar.
Possible examples are the traditional TRANS,INTRANS,INDOBJ,PASSIVE
(marking the verb as one that can be passivized or not), or more
exotic ones like TOCOMP, TRANSCOMP, SUBJLOW, etc. (see below). Also,
there are groups of verbs marked COPULA, VPARTICLE, VTRANS (allowing a
question as a direct object: "I know who won the race"). However, the
concept of syntactic features has to be approached carefully. The
whole idea works well as long as lexical items (verbs) are assumed to
have single meaning. Then the correspondence between the item and an
associated feature is one to one, and no problems arise. It is
multiple dictionary definitions that make things difficult. The fea-
tures now have to be attached not to the lexical item itself, but to
its subentries. Syntactic features are associated with word senses.
Consider for example the features PASSIVE attached to "weigh":

John weighed the letter.
The truck weighed two tons.

(examples from [Chomsky65]). Clearly, only the first of the examples
above can be passivized. Similarly, TRANS cannot be associated with
all the meanings of "call":

John called Mary,
John called on Mary.

Notice again that if we look at the phenomenon from a different
angle, this very fact that a verb meaning exhibits certain surface
syntactic behaviour can be used to disambiguate, as was already
mentioned in connection with the definition of the contextual frames.

In principle there is nothing wrong with attaching features to the
verb meaning itself, but this would require the subdefinition to be
written in such a way that it could control the parsing - which brings
us back to the idea of active parsing devices like Riesbeck's expecta-
tions: with all its objectionable consequences (chapter 3).

The situation with the more exotic features is slightly different
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from that just discussed for straightforward ones, but nonetheless
requires more attention than was originally given to it by Woods. The
features are basically designed to allow the parser to operate
"intelligently" when it has to deal with embedded clauses with deleted
constituents (mostly "to-" complements after the direct object).
Woods accepts that for most of these the subject of the complement is
the object of the top-level (embedding) clause. The escape clause for
exceptions ("promise" for example) is explicitly provided by a feature
SUBJLOW which indicates that the subject of the main sentence has to
be passed down. In addition, for TRANSCOMP verbs the object passed
down to be subject remains as top level object ("persuade"), but this
is not always true ("expect"). Thus a piece of network

(PUSH TO/COMPL ...
(SENDR subj
(COND
((FEATURE SUBJLOW v) (GETR subj))
(T (GETR obj))))
(COND
((NOT (FEATURE TRANSCOMP v))
(SETR obj NIL)))

cereeees)

which will parse, for example,
John wants Mary to go home,
John promised Mary to go home,
John expected Mary to go home,
John persuaded Mary to go home,

correctly: (John want (Mary go home)), (John promise Mary (John go
home)), (John expect (Mary go home)), (John persuade Mary (Mary go
home) ). Unfortunately, an interpretation similar to the first one
above will also be assigned to

John wants a car to go home,
which is clearly not what we are after.

The problem is not with different meanings of "want" (as it was
above), but with the fact that the same verb (sense) is functioning in
different contextual environments; and the task of working out the
correct relation between the slot-fillers at different levels is more

appropriately and easily done by semantic judgement routines than by
introducing syntactic features.

On the other hand, there is nothing wrong with tagging a verb,
"grow" for example, COPULA, although it may appear in other constructs
(with other meanings) as well:

John grew,

John grew a beard,
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John grew unhappy.
(Although, clearly, it should not be marked TRANS or INTRANS).

The examples above show that syntactic features to control the
recognition (and parsing) can be very useful. They can be used as
bottom-up devices; are potentially useful for the disambiguation
process; and allow a concise definition of the surface syntax rules
(patterns) without worrying about idiosyncratic behaviour of
individual verb meanings (for constructs recognised by the grammar see
Appendix {(iii)). However, their use will be justified only as long as
they

(*) either refer to the surface behaviour of a lexical itenm,
rather than individual sense,

(%%) or, when referring to different senses, do not specify
mutually incompatible features (TRANS/INTRANS, INTRANS/INDOBJ,
PASSIVE, ...).

In the latter case, the surface syntactic behaviour of the verb
should be recorded somehow and used later by the disambiguation
process. Which brings us to the next point about grammar design:
flags.

Under closer analysis, and bearing in mind what has been said so
far in this section, it becomes clear that the tests (conditions) on
the arcs are effectively intended either to interrogate syntactic fea-
tures of lexical items, or the context of the current textual unit.
This last activity involves two different processes: checking the
availability and/or setting of certain named registers, or determining
certain semantic characteristics associated with the registers (their
semantic content); then there 1is the analysis of the surface
syntactic pattern within the boundaries of a well formed syntactic
constituent.

In order to be able to do this, it is necessary to distinguish
between two types of registers; or, alternatively - two modes of
register use: for structure holding (with pointers either to
dictionary entries, or to partial substructures) and flagging. The
use of registers as flags is important because it allows the same
recognition (and analysis) network to be used for two (or more)
similar surface constructs; in addition it allows a surface syntactic
pattern to be recorded in a compact manner. While the first of modes
of use, structure holding, is a common one (see e.g. [Woods70]), the
second, flagging, has not been regarded as important. But it is a key
feature of the design of the present system, because it embodies the
low~-level interface between syntax and semanties. As has Dbeen
emphasised, syntax and syntactic constraints are important for
subsequent semantic processing: the mechanism of flags and the
syntactic information (clues) they represent makes it possible to
exploit the syntactic constraints.

This brings us to the semantic routines.
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4.3, Semantic Routines And Semantic Processing.

The discussion in the previous section on tests, and on including
semantic tests and features within the framework of a syntactically
driven parser more or less suggests the natural location for the
semantic routines. They are incorporated on the POP arcs of the

grammar.

As discussed in the opening sections of the thesis (judgemental
vs. structural aspects of semantics) the function of the semantic
routines is to disambiguate (surface) lexical items and to construct a
semantic representation of the syntactic constituent at the current
level of computation (or, alternatively, to pronounce it ill-formed
semantically and thus block a syntactic analysis path). Thus the fact
that the full semantic operation of the parser is delayed until a
complete syntactic unit has been recognised is simply a semantic ver-
sion of the "wait-and-see" principle [Marcus75]. There is no semantic
backtracking, though there is semantic parallelism since, given word
polysemy, and possible structural ambiguity, we have to acknowledge
the need to choose between, and possibly carry over (to the next level
of computation) more than one semantic structure.

Thus the semantic routines operate within the boundaries of a
syntactically well-formed constituent. The data on which they operate
(apart from information provided by the dictionary¥*, 1i.e. semantic
formulae, contextual (verb) frames, preplates 1lists, ete.), is
basically of two distinct types.

The data may consist just of a set of syntactic markers
(delimiters): named registers essentially containing entry points to
the dictionary which provides the corresponding semantic information.
These markers project onto a set of surface words which could, if
semantically confirmed, be regarded and represented as a single
semantic unit, to be treated as one single (semantic) entity in
subsequent, upper level, semantic routines. For example "every single
one of the students who passed their exams in their first year ..."
will be recognised by the NP network a a valid noun phrase, with the
head noun "student" , and hence, as a valid slot filler with head ele-
ment @man. (Note that "student" is a surface text word, whereas @man
is a semantic primitive - in other words there are different levels of
interpretation of an entity).

The other type of data for the semantic routines is the semantic
entity just mentioned - the semantic representation of a syntactic
constituent. This is already separated from the surface text; English
words appear only in conjunction with the semantic definition for
their recognised meaning (3.11), syntactic 1labels such as "adj",
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"noun", ... are abandoned, and there is an overall structural
constraint associated with the entity, namely that it must be
handleable as a single semantic unit.

Actually the distinction between these two types of data reflects
the different phases of analysis that a (linguistic) constituent goes
through. Initially its components are picked up through the ATN
grammar; in the process of syntactic recognition the constituent
being represented in the program working space by a set of registers
which hold parts of the input text together with corresponding
syntactic labels., When there are enough of these constituents lying
around, i.e. enough to make it worth attempting some semantic resolu-
tion, the attempt is made to assemble them into a semantic entity,
calling the semantic specialist routines which utilise the information
in the dictionary entries of the words picked up by the syntactic
recognition component.

The directive which has initiated the 1low level computation
(PUSH NP/, PUSH S/, PUSH REL/ ,...) determines the semantic specialist
involved. Basically there are three major semantic specialists:

clause specialist - it is known to the program as a function,
SBUILD, and is invoked on the POP-s from sentence, relative
clause, complements ("to-", "that-", "for-to", ...), "-ing"

phrases, and related constructs;

noun phrase specialist - this is the function NPBUILD and as the
name suggests, it lives on the POP arc of the NP network;

prepositional phrase specialist - known to the program as MODIFY.
It is known to, and summoned to help, both SBUILD and
NPBUILD, and is responsible for the analysis and structural
distribution of the postnominal/ postverbal prepositional
phrases (and extensible to deal with other postmodifiers)

These specialists are both functions in the implementation which
organise the semantic tests, and structure building actions on the pop
arcs of the grammar.

The NPBUILD specialist is the lowest level one - mainly because a
noun phrase sometimes has no defined meaning (i.e. has more than one
meaning) outside context (for example, what does "the club"™ mean?),
but also because the hierarchical structuring of the syntactic
recognition rules makes the noun phrase the constituent which is
recognised first - at the lowest level - and there is then very little
extra information to work on. So the NPBUILD does some not
particularly exciting things: testing for compatibility between
determiners ("the john"), ordinals ("three johns"), adjectives ("green
crook"), and other prenominal modifiers and the head noun; analysing
the possible postnominal modifier structure - which can be a comple-
ment ("an effort to..."), a relative clause ("the girl whom John
loved"), possible prepositional phrases (which cannot be postverbal
modifiers as well); polling all the registers at NP 1level, and
constructing the semantic structure corresponding to the nominal
group. In case of semantic ambiguity - the compatibility constraints
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(see above) are examined; if some selection can be effected, it is
carried out; alternatively, parallel structures are carried up to the
next level in the analysis.

The SBUILD specialist is obviously the master semantic routine.
It is organised around the verb (3.8), and the basic data on which it
operates, apart from the slot fillers already 1isolated by the
recogniser, and kept in registers to which it has access, are
(*) semantic formulas of the lexical item (3.1)
(*) 1list of bare templates [WilksT73bl
(*) the contextual verb frames indexed by the verbs known to the
system (3.9)
(#) the syntactic clues which might be relevant to the process
of semantic analysis (3.5, 3.6, 4.2)
(*) certain specific semantic knowledge (3.10)

This is the level at which most of the work of both lexical and
structural disambiguation takes place,.

The prepositional phrase specialist MODIFY can be accessed from
both the SBUILD and NPBUILD functions. Its goal is to put the
information about the modifiers picked up by the recogniser together
with what it knows about the possible way a constituent slot-filler
having a certain semantic content (most often this is a verb or a
nominal group) can be modified. This information is provided by lists
of "prepositional meanings" - preplates - indexed by the preposition
itself. It was pointed out earlier that these are conceptually
similar to Wilks' paraplates, but because certain (obligatorily used)
prepositions and prepositional groups which are more strongly linked
to the verb receive special treatment (3.9, 3.10), the preplate lists
are more compact, more general, and thus correspond more fully to the
notion "meaning of a preposition™ than Wilks' paraplate stacks. (On
organisation of preplate stacks see 4.5).

No matter what the particular semantic specialist involved is and
what specifiec operations it must perform, there is a common principle
underlying the design of all the semantic routines: namely that they
should be capable of interpreting the current environment correctly
(contextual environment, that is) and responding to it in a proper
manner (this will be referred to as the principle of using up all the
information available at a given decision point). The required
information (as much as may be necessary) is represented by the names
of the registers, and in the flags set up during the process of
syntactic recognition. The semantic functions are sensitive to the
registers and flags, and must make sure, before they terminate that
all the information available at this decision point has been used.
This is the only way in which we can be certain that there is some
point in applying the semantic "wait-and-see" principle (see above).
(Note that the semantic routines must be programmed in such a way,
that control is passed over to the ATN interpreter only after all
registers - both structure holding, and flags - have contributed to
the context evaluation and to the content and format of the (final)
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semantic structure - see 4.5.)

All in all, the design of the semantic specialists just discussed
has the advantages of

(*) 1isolating the relevant pieces of information related to
the semantic content of the currently processed constituent,

(*) 1localising the semantic wunits participating in a
preference test (this was one of the biggest pitfalls of the purely
semantic network of 3.3),

(*) reducing the number of such tests to be performed,

(*) allowing global pattern matching of constituents against
the contextual (verb) frames of the dictionary, thus utilising to the
maximum the information collected by the individual constituent
analyses.

These features of the specialists make it possible to concentrate

on the main objective of this work: resolution of 1lexical and
structural ambiguities.
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4,4, Techniques And Principles For Disambiguation.

As already reiterated, the task of resolving an instance of
lexical or structural ambiguity falls wholly on the semantic routines.
Although the two types of ambiguity are interrelated and can not
properly be treated independently (1.1, 3.5), I shall discuss them
separately, starting with structural disambiguation.

This is effected by two strategies: active and passive, which can
be summarised as follows.

Active: given a basic skeleton structure, and a list of additional
items which must go along with it (constituents which are optional,
according to the grammar rules, but which have been recognised by the
front end scanner), attempt, dynamically, to identify those struc-
tures which are allowed by the skeleton context. This process 1is
being guided by the semantic content of the optional constituents, and
in essence represents an attempt to add them where they would make
most sense.

Most often these optional constituents are prepositional phrase
modifiers in postnominal or postverbal position. The situations in
which this method is applied are those illustrated by such examples as

I saw the man in the park with the telescope,
John hit the girl with the red dress,

John hit the girl with disgust,

John admitted the girl in the house,

John saw the girl in the house.

Note that following the original specification for the project, the
analyser works on isolated sentences, and must therefore account for
instances of real multiple readings. Whenever such a situation
occurs, the output of the analysis phase explicitly gives all the
sensible readings. The actual choice obviously depends on the global
context, and this remains in the domain of a higher level resolution
apparatus, whose design and implementation is not the task of this
project. So, for the examples quoted above, the analyser will produce
(abbreviating the actual dependency structure - see 3,11):

(1)
(see
(8@ agent: myself)
(@@ recipient: man)
(8@ location: park)
(@@ instrument: telescope))
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(see
(68 agent: myself)
(8@ recipient: (man (@@ location park)))
(88 instrument: telescope))

(see
(€68 agent: myself)
(8@ recipient:
(man
(88 location: park)
(@@ attribute: telescope))))

(see
(8@ agent: myself)
(8@ recipient: man)
(8@ location: (park (€@ attribute: telescope))))

(see
(@@ agent: myself)
(€@ recipient:
(man
(@@ location:
(park
(8@ attribute: telescope))))))

(2)
(hit
(6@ agent: John)
(@@ recipient:
(girl
(8@ attribute: (dress (€@ state: red))))))

(3)
(hit
(@@ agent: John)
(8@ recipient: girl)
(@8 manner: disgust))
@)

(admit
(8@ agent: John)
(@@ recipient: girl)
(88 location: house))

(5)
(see
(@@ agent: John)
(86 recipient: (girl (@@ location: house))))

The apparatus involved in these processes is distributed between the
MODIFY specialist and the collection of routines applying the idea of
the contextual verb frames. Thus (1) to (3), and (5) above have gone
through MODIFY, whereas (4) was derived entirely through the
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DISAMBIGUATE-VERBS procedure (see 4.5).

The passive method is based on the instruction: given a possible
skeleton structure, confirm (or reject) its semantic coherence. It is
clear that this approach requires a closer interface with the
syntactic recognition front end of the analyser. It relies on the
non-deterministic control structure which automatically considers
possible ways in which the surface text can be segmented. These are
not necessarily all the possible ways because semantic rejection of a
structure in the early stage of recognition blocks out the complete
analysis path (3.5). In the case of semantic confirmation, the
routines still have to construct the meaning representation, but this
is a passive process because no further additions to this basic struc-
ture are involved.

This is the mechanism which will reject the second reading of (1)
as opposed to (2.2) below:

(1) John admitted to the policeman that he killed Mary,
(2) John admitted to the girl that he loves the truth.

The various readings are represented by

(1
(1.1) (admit
(@@ agent: John)
(€@ recipient: policeman)
(80 mobject: (kill John Mary)))

(2)
(2.1) (admit
(@@ agent: John)
(€@ recipient: girl)
(@@ mobject: (love John truth)))

(2.2) (admit
(@@ agent: John)
(@@ recipient: girl [in] (love John girl))
(@@ mobject: truth))

In the case of (1) the SBUILD specialist has been offered for
consideration, among others, the proposition "John admits Mary".
Considering the information about the possible contextual environ-
ment(s) of "admit" supplied in the verb frames and the preference
restrictions specified in the semantic formulas for the acceptable
meanings of the verb, SBUILD rejects the reading, and as a result,
aborts the whole alternative analysis path which in the case of (2)
derives the second reading (2.2).

The same passive mechanism 1is responsible for deriving, and
confirming, the two readings of

Kissing aunts can be boring,
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as opposed to the single interpretation of
Singing songs can be boring.

Note, however, that there is no strong semantic judgement involved in
the derivation of a single reading of

Kissing aunts is boring, or
Kissing aunts are boring.

Here termination occurs comparatively early in the recognition phase,
due to syntactic inconsistencies.

In the discussion so far it has been implicitly assumed that the
semantic data on which the structure building process is based - i.e.
the semantiec word-sense definitions - 1is readily available when
needed. In other words, the process of lexical disambiguation has
already taken place. This is not exactly so, because as already
pointed out, a word takes a concrete meaning only in context; while on
the other hand it is clear that the best way to assess and evaluate
the contextual effects is by examining the final semantic representa-
tion which, in its turn, needs the meanings of the individual words
(3.5), thus initiating a potential vicious circle. In the program,
the two processes run in parallel, rather than being organised in a
linear or hierarchical fashion. For example, during active structure
building (see above), the semantic coherence of possible different
structures is examined and evaluated, bearing in mind all the possible
meanings of each lexical item. Only (semantically) well-formed par-
tial structures, remaining consistent under further structural
augmentation, are considered; finally the acceptance of semantically
coherent structure(s) establishes the correct and intended meanings of
the participating lexical items - since this is a way in which a
reading can be accepted, then these must be the intended use(s) of the
words. (For more details see the specification of MODIFY in 4.5.)

It is clear that this particular approach to lexical disambigua-
tion is very closely, indeed inseparably, related to the problem of
structural disambiguation. I shall refer to it as the principle of
maximum semantic coherence. There are, however, certain other
techniques for lexical disambiguation, which may be applied at an
earlier stage.

This earlier stage is the process of building the skeleton nominal
or sentential structure - the basic action of NPBUILD or SBUILD (see
the next section). The disambiguation techniques are based on

(*,1) selectional restrictions,

(*.2) preference expectations, as specified in the semantic
formulas (but see 3.1),

(*.3) 1list of bare templates [WilksT73bl,

(*.4) 1ists of contextual verb frames,

(*,5) constraints on possessive structures.

These were all discussed or referred to earlier (with exception of
(*,5) for which the reader is referred to 4.5). Some of the
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techniques operate at sentence level, some of them at NP level. Thus
for instance (*,1), (¥,2), (*,3) and (¥*.4) above are employed by
SBUILD, and (*.1), (¥.2) and (*¥.5) by NPBUILD. All of them, working
together, should be able to (eventually) deliver the correct readings
of the ambiguous items. However, there is the important problem of
the organisation of their procedural application. s

Ideally, and if we were attempting to simulate in parsing the
processes going on in the human mind, there should be a global
parallel assessment of a word applying all the relevant criteria and
using the context of as much as is available of the whole sentence.
However, it is difficult to implement such a scheme; partly because
the system discussed here 1is organised around the hierarchical
application of semantic routines; partly because no computer based NL
processing system can process globally the text presented to its input
- this is the nature of the text processing by machine and we simply
have got to live with it. On the other hand, the "one word at a time"
approach to disambiguation is characterised by inefficiency, waste of
processing time, and combinatorial explosion. This is another area in
which a pattern matching-based analysis system (viz. Wilks) is
superior to an expectations-based one (viz. Riesbeck). Since the
system discussed here is based on Wilks', but extends it to a more
global pattern matching, it will be clear what sort of general
strategy the program uses. In a way, this is the ultimate justifica-
tion for introducing the notion of a contextual verb frame: it
provides a way of carrying out at least some of the 1lexical
disambiguation processes in parallel. However, this is a compromise
between the two extremes, and the prospect of combinatorial explosion
is still present. As a partial solution to the problem my parser
applies the very important principle of semantic screening (not to be
confused with Woods' screening in [Woods75]) which imposes an ordering
on the disambiguation techniques employed. In order to keep the
number of possibilities to a minimum and to avoid the risk of
combinatorial explosion, the most discriminating disambiguation
technique should be applied first, then the next one down, and so on.

This not only requires that the verb frames are applied before the
bare templates; but also explains why bare templates have weak resolu-
tion power (3.6, 3.8) and so have low status as a disambiguation
device, Experience with the current system has shown that a bare
template can rarely achieve a complete disambiguation in a highly
ambiguous environment: it can confirm a meaning, rather than select
it from competing candidates. This same screening principle also
requires that the semantic coherence of possessive structures 1is
checked before applying any selectional restrictions: consider "John's
big green crook" (where both "green" and "crook" have alternative, and
obvious, meanings.)

With all this in mind, it is easy to imagine the overall process
of disambiguation as the application of a series of filters each of
Wwhich attempts parallel interpretation of some features of the raw
information supplied, and tries to do as much of the work as possible.
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When there is nothing else the current sieve can filter out, the par-
tially screened information is passed on to the next one (for more
specific details see 4.5).

The implementation of these principles and techniques, as well as

their operation within the framework of the complete system is the
subject of the next section.
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4,5. The Process Of Sentence Analysis.

The principles and mechanisms discussed in the last two chapters
are embodied in a computer implementation - an analysis program, often
referred to as 'the parser'¥, "Analysis" does not necessarily mean
syntactic or semantic analysis only; as already emphasised more than
once, these two are closely related, and the term is thus used as a
common name for the whole transformation process - from surface text
to an underlying meaning representation (dependency structure).

The parsing strategy adopted in (3.2, 3.7) suggests that an ATN
interpreter will be required; indeed, this is implemented as the
kernel of the program, which gives shape to the overall control struc-
ture of the parser. The analysis process is guided by the tests and
actions on the arcs of the grammar. The grammar is itself a separate
data structure, organised so that a series of operations is defined,
which aim to perform the analysis during a strictly left-to-right scan
through the text. The emphasis is on the semantic processing, with
syntactic constituent recognition taking place in the background and
providing the basic raw data for the semantic routines. These are not
invoked until enough contextual information has been made readily
available as a result of previous processing and conveniently
accessible via the registers mechanism. The analyser starts off by
pursuing purely syntactic predictions: the initial instruction
carried out by the processor is (PUSH S/ ...) which on its own part
initiates embedded searches for constituents - possible sentence
openers: noun phrases ("John", "John's green crook"), certain types of
complements ("To make stupid mistakes"), nominalised ("-ing") clauses
("Shooting elephants"), etc. (see Appendix (iii)). The fact that this
may in itself result in initiating an embedded (PUSH S/ ...) computa-
tion is irrelevant at this point. What is important is that it is not
until the end of the syntactically well formed unit that the
appropriate semantic specialist will be called. :

As already noted (4.3) there are two major independent semantic
routines: NPBUILD and SBUILD. They both check the semantic coherence
and well-formedness of a complete syntactic constituent, and deliver
the corresponding meaning representation. The points in the analysis
process when these could be invoked are suggested by the procedural
organisation of the grammar. For example, apart from the obvious
grammar fragment

(some-state
(PUSH NP/ <=z initiate search for NP

ceenenes)

* occasionally 'the system' is used as well, but this is not entirely
precise, as the whole system in reality comprises an analyser and a
generator.
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ceeenaes)

(NP/ ..vnees) <== beginning of NP network

(NP/POP
(POP (NPBUILD) T)) <=z= end of NP network

which means "build a semantic representation (if possible) for a noun
phrase recognised by the syntactic preprocessor", NPBUILD is to be
found in places like

(NP/HEAD
(CAT POSS (GETR n)
(SETR possessor (NPBUILD))
(TO NP/DET))

cereenes)

or

(NP/HEAD
(PUSH REL/
(OR
(WRD (WHO WHOM WHOSE WHICH THAT))
(AND
(CAT PREP)
(WRD (WHICH WHOM WHOSE) NEXTWORD)))
(SENDR type 'relative)
(SENDR rel-nominal (NPBUILD))
(SETR rel-clause ¥)
(TO NP/POP))

cereeend)

The first of the fragments above constructs the possessor struc-
ture in phrases 1like "the 1lazy dog's wagging tail"; the second
initialises a register for an embedded computation providing a
representation for the deleted nominal in the relative clause: "the
lazy dog over which the sly fox jumped".

However, no matter at which point of the analysis the NPBUILD
specialist is called, it follows a phase of preliminary syntactic
recognition, upon completion of which a set of named registers hold
pointers to the definitions (semantic formulas) of the surface lexical
items whiech fall within the boundaries of the noun phrase. The task
of NPBUILD is to <construct the semantic representation of the
recognised constituent.

On the one hand, it is clear that in an ambiguous environment
which gives rise to alternative readings for the input (i.e. a situa-
tion of multiple choice) building the representation is, in general, a
non-trivial task. On the other hand, the routine applies the
principle of wusing up all information (see 4.3) available at that
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decision point (and at the current level of computation). Normally, a
complex noun phrase cannot be disambiguated until top-level clause/
sentence constraints are considered and evaluated. Still, blind
carrying over (to the next stage of analysis) of all the possible
readings is a bit excessive and unintelligent. In other words,
NPBUILD will not necessarily hand over a single structure, but at the
same time it will deliver only semantically coherent interpretations
within the context of the current 1level (see 4.3 for semantic
parallelism). Only the structures corresponding to these coherent
interpretations are constructed dynamically while the routine polls
all the registers at noun-phrase level.

The process can be illustrated, for example, by tracing the
analysis of "the green crook". At the time when NPBUILD is activated,
the syntactic recognition process initiated by (PUSH NP/ ...) is over,
and the list of register contents (¥REGLIST) contains

((det . THE) (adjmods GREEN) (n . CROOK)).

On entry to the function, several variables are initialised.
*HEAD-NOUN-DEFS holds the information provided by the dictionary
indicating the possible semantic content of "CROOK":

(  (erooki
((((notgood act) obje) do) (subj man)) )
(erook?
((((((this beast) obje) force) (subj man)) poss)
(line thing)) ) )

®¥ADJ-MODS is set to the 1list holding the prenominal adjectival
modifiers, in this case (GREEN), and ADJ-MOD-DEFS is successively (see
below) set to the semantic formulas corresponding to the adjective
(premodifier) which is currently the focus of NPBUILD's attention:

( (greeni %C as for colour
((*inan poss)
({(man subj) (see sense)) (obje kind))) )
(green2 %C inexperienced
((man poss)
(((*mar obje) (notmuch (true think)))
(subj kind))) )
(green3 %C as in "green with envy"
((man poss)
((much (notplease feel)) (subj kind))) ) )

A basic loop is then set up around the contents of ¥ADJ-MODS
(imagine for example the phrase "the big heavy green crook"). The
function of the loop is to try and match the available meanings of the
loop 'variable' (or, rather, evaluate them) against the formulas in
*HEAD-NOUN-DEFS. An auxiliary function (ADJ-NOMINAL-MATCH) assesses
the compatibility between all possible combinations of adjective and
noun meanings. Thus within the "GREEN" binding, all the six variants
will be analysed:

greenl vs. crookl
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greenl vs. crook?2

green3 vs. crook2.

Closer analysis of the semantic definitions reveals that, for
example, "greeni" is a characteristic of inanimate objects, to the
class of which "crook2", but not "crooki1", belong. Thus the following
'connectivity table' will be set up on the property 1lists of the
candidate meaning elements definitions:

gfeen1 green2 green3
crook1 * *

crook? *

This table is then used for replacing the existing ¥*HEAD-NOUN-DEFS
with partially built structures, each containing a noun definition and
further augmented with the possible adjective premodifiers:

( (crookil
((((notgood act) obje) do) (subj man))
(@@ state
(green?2
((man poss)
(((mar obje) {(notmuch (true think)))
(subj kind)))) ) )
(crook?2 (<defn>) (@@ state (green?tl (<defn>)))) )

In order to get this far, a dynamically created 1list of possible
adj-noun pairs is maintained (and dynamically updated) in the program
space, of the form

( (erookl1 (mod2 mod3)) (ecrook2 (mod1)) ),

to the elements-pairings of which preference criteria are applied
next: since "green3" is part of an adjective frame "BE GREEN WITH
¥mar" (as for "green with envy"), which obviously does not match the
current context, it is unpreferred; hence "crooki1" can be modified
only by "green2" (see above).

After %HEAD-NOUN-DEFS is updated, the cycle is repeated again for
the next adjectival premodifier ("heavy" for example). Upon comple-
tion of the selection of adjective definition(s), it is the partial
nominal structures contained in ¥*HEAD-NOUN-DEFS that are passed over
to the subsequent processing.

Note that such a technique allows an efficient way of searching
through the space of all possible modifiers-noun combinations, without
actually explicitly constructing all of them. If the next premodifier
was "wooden" for example, it would prefer that partial structure in
¥*HEAD-NOUN-DEFS which 1is organised around the thing definition of
"erook". If the noun phrase in question was "John's green crook", the
principle of semantic screening (see 4.4) will require the examination
of the constraints on possessive structures (4.4) to be performed
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before the whole ANALYSE-ADJ-DEFS cycle as described above is
initiated - and for obvious reasons, on entry to it ¥*HEAD-NOUN-DEFS
will be initialised to "crook2" only. Similarly, an embedded call to
SBUILD (see below), needed to process a relative clause, might perform
a complete disambiguation of the head noun, and indeed, of the whole
noun phrase, thus enabling NPBUILD to return a single structure to the
upper level computation. Of course, complete semantic resolution at
noun phrase level cannot always be performed, in which case NPBUILD
returns the alternative readings, whose further disambiguation will be
performed at the next level up, where more contextual information is
available.

What has to be emphasised again at this point, is that the NPBUILD

specialist is designed in such a way that

(1.) it makes sure that all the data provided by the syntactic
preprocessor and the dictionary at the current stage of the analysis
is fully utilised (the principle of using up all information - see
above); and

(2.) it is very sensitive to the current contextual environ-
ment and form of the input surface syntax, and is capable of
responding to these in a flexible manner by organising its internal
flow of control in a way which reflects the principle of semantic
screening (4.4).

The same principles underlie the design of the clause level
semantic specialist SBUILD. Although it is not explicitly called from
many different places in the grammar, it is the final instruction
terminating different analysis paths through the network. The basic
clause unit, all types of complements, relative clauses, "-ing"
participle phrases,...; all have associated subnetworks, which at
some point or other, after performing the necessary preprocessing and
initialising certain registers, transfer control to and merge with the
basic clause (S/) network, thus inevitably coming to an instruction

(S/POP/S
(JUMP S/POP/S ..veeens
(SETR s-pop-val (SBUILD)))
(POP (GETR s-pop-val) (GETR s-pop-val)})

Note that interpreted strictly according to Woods' definition of the
ATN formalism [Woods70], a NULL result of the SBUILD specialist, which
corresponds to rejection of a hypothesised clause unit, will block the
POP arc, and terminate the analysis path through the network which
initiated the search for an embedded clause. This is the practical
embodiment of the passive approach to structural disambiguation (see
4.4), and is the reason behind the rather long-winded way of saying

(S/POP/S

(POP (SBUILD) T))

I must point out here that in the actual grammar (see Appendix (iii))
the termination of the NP/ network is organised according to the same

- 4,25 -



principle - so that the first of the grammar fragments quoted in this
section (see above) in reality terminates in the following way:

(NP/POP
(JUMP NP/POP
(AND (NULLR np-pop-val) (NULLR np-built))
(SETR np-built T)
(SETR np-pop-val (NPBUILD)))
(POP (GETR np-pop-val) (GETR np-pop-val)))

This is why during the analysis of
Shooting elephants can be dangerous,

the following sequence of operations takes place:
(PUSH 5/...),
(PUSH NP/...),
recognise "shooting elephants",
call NPBUILD,
try to build a structure for "elephants who shoot",
NPBUILD resorts to SBUILD to process the relative,
SBUILD returns NIL,
NPBUILD returns NIL,
the test on the POP arc on NP/POP yields FALSE,
the POP arc is blocked,
(PUSH NP/...) fails,
this particular analysis path of (PUSH S/...) is terminated.

Alternatively, following the same sequence for
Kissing aunts can be boring,

the (PUSH NP/...) returns

((trace (clause v agent))
(clause

(type relative)

(tns present)

(v

(kiss1
((man subj) ((*hum obje)
(((please feel) goal) (touch sense))))

(@@ agent (aunt (fem man)) (@@ number many))
(8@ recipient (someone (man)))))))

(where the clause structure is assembled by the SBUILD specialist, and
NPBUILD just tidies this up and provides a pointer - via the trace
mechanism - to the head noun of the noun group), and the processing at
top (S/) level continues.

The SBUILD specialist starts off by polling all the structure
holding registers (see U4.2) and initialising certain variables to the
semantic content of the major clause components: #*SUBJECTS, ¥VERBS,
¥MODS, etec. Normally, these are 1lists containing more than one
semantic formula (structure), and the routine will have to select the
ones compatible within the current context, and assemble them in a
coherent semantic unit. The skeleton of the clause structure is set
up next, with marked nodes in it, which will be replaced later by the
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relevant semantic representations of the clause constituents. This is
the background preparation for both active and passive structural
disambiguation (4.4).

SBUILD is sensitive to the various flags set up during the process
of syntactic recognition - some of these record the overall surface
syntactic pattern of the clause. The types of sentence (clause)
structure distinguished here are as defined in [Quirk72], and serve
both as an indicator as to which branch of the program (SBUILD) to
follow, and as a pointer to the category and properties of the verb
(stative/ dynamic, intensive/ extensive, transitive (mono- and
ditransitive), intransitive or complex-transitive). This accounts for
the switch in the function definition:

(COND

((FIND-ON~REGLIST 'adj/pred)
(STRUCTURE-WITH-PRED-ADJECTIVE))

((OR
(FIND-ON-REGLIST 'adj-comp)
(FIND-ON-REGLIST 'compl-trans-flag))
(COMPLEX-TRANSITIVE-STRUCTURE))

(T
(STRUCTURE-BASIC)))

This is the point at which the disambiguation between "call" in
John called Bill,
John called Bill a fool,
John called Bill a taxi,

effectively starts: the mono-transitive use of the verb stands out,
separated from those meanings used in the second and third examples.

The mechanism of contextual verb frame application is central to
the design and implementation of SBUILD. It 1is distributed
procedurally between the two equally important functions DISAMBIGUATE-
VERBS and FILTER-NOMINALS, which are accessible from all the different
Structure building auxiliaries of SBUILD (see above). These are
handed 1lists of suggested verb meanings or nominal structures,
possible combinations of which are evaluated; the process, however,
is not a blind search, but is strongly guided both by the information
contained in the verb frames, and by the principle of 'semantic
screening'. A 'preference-weight', and 'connectivity pointers', are
associated with every meaning candidate and updated, as indicated by
the results of semantic tests, in the process of 'screening' through
the series of semantic filters (see 4.4),

Imagine the sentence

John asked the girl for the club

is to be analysed. At this point of the analysis the main
constituents of the <clause are conveniently accessible via the
registers mechanism: 'subj', 'obj', 'mods' hold results of embedded
computations (PUSH NP/...) or (PUSH PP/...); 'v' holds a pointer to
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the dictionary entry for '"ask". The questions that SBUILD has to
answer are which meanings of "ask™ and "club"™ are to be incorporated
in the final dependency structure, and what is the functional relation
of the phrase "for the club". The contextual verb frames for "ask"
(see 3.9) are supplied by the dictionary, and this is what ¥*VERBS is
set to:

(ask1
((man subj) ((*ani obje) ask))
(cues INDOBJ)
(preps (ABOUT #¥*ent subj-matter)))
(ask?2 '
((man subj)
((act obje)
((((man (please feel)) cause) goal) ask)))
(cues TOCOMP))
(ask3
((man subj) ((*ent obje) want))
(compulsory (FOR ¥*ent object)))

After the embedded call to NPBUILD from within the (PUSH PP/...)
directive, ¥*MODS now holds the possible semantic interpretations of
"elub":

(club1
((¢((((notsame man) obje)
((notplease feel) cause))
(subj man))
poss)
(line thing)))
(elub?2
(((this man) obje) wrap) spread))

The following program fragment (the essential part of
DISAMBIGUATE-VERBS) can be used to illustrate the process of frame
application (MAPC is a LISP system function which applies the function
specified as its second argument to every element of the 1list supplied
as the first argument of MAPC):

(MAPC *VERBS (FUNCTION FORCED-CHOICE-PREP))

(MAPC *VERBS (FUNCTION DELETE-SPECIAL-VERBS))

(MAPC *VERBS (FUNCTION ANALYSE-CUES))

(MAPC ¥*VERBS (FUNCTION FORCED-CHOICE-COMPL))

(MAPC *VERBS (FUNCTION MATCH-CASE-PREFERENCES))

(MAPC *VERBS (FUNCTION MATCH-TEMPLATE-REQUIREMENTS))
(SETQ *VERBS (ITEMS-WITH-HIGHEST-PREFERENCE-FROM *VERBS))

The function DELETE-SPECIAL-VERBS 'unprefers' those verb meanings
Wwhich are obviously incompatible with the current syntactic environ-
ment: for example during the analysis of the 1last two example
sentences with "call" above, it will 'delete' all meanings of the verb
which cannot be followed by two objects; in an environment where
'pred/adj' flag is unset, it will 'delete' the meaning of "grow" which
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is tagged COPULA, etc. It should be sufficiently clear what the other
functions do. A1l of them embody certain tests which inspect the
semantic content of the items. The application of these tests is
determined by the specific interest of the function currently active;
the results of the tests control the setting and resetting of the
'preference weight' of each item. ITEMS-WITH-HIGHEST-PREFERENCE-FROM
is another function accessible from many places within the SBUILD
specialist, which embodies the principle of maximum semantic
coherence: "densest match wins" (see U4.4),

For the example above, FORCED-CHOICE-PREP senses the requirement
of the third frame for an obligatorily used "FOR" prepositional
phrase, and since such a phrase has been identified by the ATN
preprocessor, a check is made to see whether its semantic content is
compatible with the contextual requirements of "ask3". The preference
weight of the semantic items (formulas for "ask1", "ask2", "ask3",
"elub1" and "club2") are reset accordingly, and the final result of
the (disambiguation) process is

(*) selection of the verb meaning:

ask3
((man subj) ((*ent obje) want))

(*) selection of the noun meaning:

club1
(veeeeee. (line thing))

(because thing is an entity, and spread is not), and
(*#) specification of the functional tie (dependency 1link)
between "ask" and "club": object.

Further analysis of the semantic content of the available
constituents, carried out within the context of the already
established verb meaning (see 3.8) suggests that "John" is the agent,
and "the girl" - the recipient of the asking. The result of SBUILD is

(clause
(type del)
(tns past)
(v
(ask3
((man subj) ((*ent obje) want))
(6@ agent (John (mal (indiv man))))
(@@ recipient (girl (fem man)))
(6@ object (clubl (........ (line thing)))))))

Note that in the process of semantic analysis no attempt was made
to attach "for the club" to the immediately preceding item, "the
girl", even though on purely syntactic grounds this would be a well
formed noun phrase. Nor was there an explicit enumeration of all the
possible pairs 'ASK;i' and 'CLUBj'. The routine was able to carry out
its structural and judgemental decisions with minimum effort and blind
search. If the input was
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John asked the girl a question,

it would be the function ANALYSE-CUES which would connect a candidate
meaning ("ask1"), as specified in its contextual verb frame

*hum ASK1 (*hum) (@sign) ...,

with the surface syntactic pattern form - (cues INDOBJ) will match the
'indobjflag"' set by the syntactic preprocessor. Further, on
establishing a complete match between the @sign specified in the frame
and the semantic formula (head) for "question" (tell sign), it will
prefer strongly this particular meaning of ™"ask". Similarly, in the
case of

John asked the girl to give him the the book,

it will be FORCED-CHOICE-COMPLement which will be woken up by the
presence of 'tocompl' register. It will increase the preference
weight of "ask2", and will suggest mobject (mental object) as the
dependency 1link between the verb and the embedded clause, thus
yielding

(v
(ask?2
(@@ agent: John)
(8@ recipient: girl)
(@@ mobject (girl give John book)))).

(Note that at this level of analysis, 'tocompl' register will hold a
complete semantic representation of the embedded clause, which will be
handleable as a single semantic unit: this has been constructed by an
embedded call to SBUILD at some earlier stage (lower 1level) of
processing. The deleted subject ("girl") of the embedded clause is
passed down at recognition time after consulting the features 1list on
the verb definition - "ask"™ is marked both TOCOMP and TRANSCOMP - see
h.2.)

It was noted earlier (3.9, 3.10) that the frames mechanism takes
care of obligatorily used prepositional phrases and other
postmodifiers. Optionally used prepositional phrases are parsed by
MODIFY which is the third major semantic specialist employed by this
system. It is not an independent one, because it runs after SBUILD or
NPBUILD have completed most of the ground work (i.e. set up the basic
skeleton structure of the semantic unit being analysed) and can only
be called from within one of these. MODIFY is the device which
carries out (most of) the active structural disambiguation (4.4).

The information about optionally used prepositional phrases is
distributed: some of it can be found in the verb frames:
*hum ASK1 (*hum) (@sign) (about ¥ent);

and some in the preplate stacks (see 3.10 and below). The MODIFY
specialist therefore consists of two auxiliary programs which run one
after another. The actual definition of the function is
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(DE MODIFY (PARTIAL-STRUCTURES)
(EXTRACT-FIT-MODIFICATIONS
(CONC-TOGETHER
(MAPCAR

(INITIAL-PREPLATE-TIES PARTIAL-STRUCTURES)

(LAMBDA (STR/MODS)

(COMBINE

(CAR STR/MODS) (CDR STR/MODS))))))).

Without going into specific details (EXTRACT-FIT-MODIFICATIONS and
CONC-TOGETHER are auxiliary functions which perform some post-
processing on the result of the modification process; and MAPCAR is
another standard LISP function, similar to MAPC, but returning as a
result a list of the results of the individual function applications),
the important parts of the definition above are INITIAL-PREPLATE-TIES
and COMBINE.

The task is: given a list of partial skeleton structures, try to
further augment each one of them with the postmodifiers from the
'mods' register (*MODS). Suppose the sentence to be analysed is

John asked the girl about the book.
PARTIAL-STRUCTURES will then contain

( (ask1
((man subj) ((*ani obje) ask))
(8@ agent (John (mal (indiv man))))
(@@ recipient (girl (fem man))))
(ask?2
(<defn>)
(8@ agent (John (....)))
(6@ recipient (girl (....)))) ).

"Ask3" is missing because the frame requirements have not been met
(see the principle of applying a more discriminating disambiguation
technique first). INITIAL-PREPLATE-TIES then examines for each
prepositional phrase in *MODS its compatibility with each context as
specified in PARTIAL-STRUCTURES, and in the frame for the
corresponding leading verb. In the case of a match, for example for
"about the book" - "book" being an entity, and 'ABOUT ¥*ent' being
specified in the verb frame for "aski1"™ - the partial structure is
promptly augmented with

(8@ subj-matter
(book
((((line sign) obje) wrap) (subj thing)))).

The preference weight of the partial structure 1in question |is
correspondingly increased, leading to the eventual prefering of "ask1"
as the intended meaning of "ask" in the input sentence, The modifier
"about the book" (or, rather, the semantic structure corresponding to
it) is deleted from #*MODS, which at any given moment of time should
hold only unused postmodifying prepositional phrases.
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After INITIAL-PREPLATE-TIES has completed its work, the results
are kept in a list of pairs (these are indicated by STR/MODS in the
function definition). Each of these contains in its CAR a (possibly
augmented) partial skeleton structure, and 1in its CDR those
prepositional phrases in ¥*MODS which are still unused. In some cases
no clues to postmodification will have been found in the verb frames,
So no augmentation of partial structures will have occured; in other
cases complete analysis of the modifiers will have been achieved
through the frames application mechanism, and the CDR of the pair will
contain NIL. Any intermediate situation is possible as well.

Every pair on the list returned by INITIAL-PREPLATE-TIES is passed
to COMBINE: this is the function which embodies the general preplate
matching mechanism.

The problem is: given a partial semantic structure and a linear
list of postmodifying prepositional phrases (see 3.7, 3.10), construct
those structures which are semantically valid from the point of view
of the 1level and scope of the modification. The basis of the
algorithm is the well established fact that in English a postmodifier
has a tendency to be dependent on the constituent that is closest to
it (and preceding it). It is expected that a fair number of the
exceptions will be specified by the frames and ¢trapped by the
mechanism for frames application, so this is a conveniently general
assumption. The algorithm consults the preplate stacks, which are
indexed by the prepositions, extensively; the stacks are in fact the
dictionary entries for the prepositions:

(BY
(move @inst (move thing)) fly by plane
(*do @timerel (when point)) return by the evening
(¥do @manner act) inform by writing
(*ent @loc/static *inan) the man by the wall
cesesaas)

(FOR
(make @recipient *hum) make dress for Mary
cereanes)

(TO
(*utter @recipient ¥*hum) talk to the crook
(move @loc/dynamic ¥*pla) go to the club
D |

(WITH
(*do @manner *mar) talk with enthusiasm
(*ent @attribute ¥*ent) man with a telescope
(*assault @inst *inst) force with a knife

ceeaneas)

The examples above should make the general format of the preplates
clear.

The algorithm itself, as carried out by COMBINE, is a procedural
embodiment of the following basic loop:
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WHILE the list of unused modifiers is non-empty
DO $( take the next modifier on the list;
TEST its compatibility with the constituent
immediately preceding it,
THEN 1link the two with the corresponding
dependency tie;
REPEAT
ELSE TEST its compatibilty with the constituent
one level up,
THEN 1link; REPEAT
ELSE ..cceeee
$)

Provision is made, however, for situations when a modifier can equally
well modify more than one preceding constituents. These might
generate genuinely ambiguous structural interpretations, and according
to the rules of the game (see chapter 0) must be accounted for.

It is clear that this approach embodies the active strategy for
structural disambiguation (4.4): only semantically valid and coherent
structures are dynamically constructed; a failed preplate test
precludes any structure building, and in addition completely blocks
the application of whole series of subsequent preplate tests. In
principle, the algorithm above could be modified to apply the
preplate tests as soon as a prepositional phrase is recognised by the
front end scanner; there are two reasons why this is not done. First,
this approach clashes with the general underlying strategy of pattern
matching; second, the procedure relies on augmenting, but not ini-

tially constructing, a partial semantic structure - which cannot be
made available until SBUILD (NPBUILD) has been invoked; and this, as
already noted, does not happen until ‘'end of clause/ noun phrase' is

broadcast by the scanner,

Note that the algorithm does not attempt to modify verbs or nouns
only - it augments partial semantic structures by examining their con-
tent, rather than by worrying about their syntactic category member-
ship. The preplate stacks provide information about both verb and
noun postmodification (3.10). A single call to MODIFY at clause level
Wwill suffice to account for all the possible relationships between the
verb and all the nominal groups following it. Thus the only time when
MODIFY will have to be called from NPBUILD will be when constructing a
semantic representation of a noun phrase in subject position, with
prepositional phrases having been recognised before the main verb is
reached ("the man in the park with the telescope saw me").

It is important to realise that the whole process of preplate tie
application is carried out on alternative partial semantic structures.
As the attempt is made to integrate more and more information into an
already constructed, and hence coherent, semantic unit, there is a
greater chance that an incompatible reading of a lexical item will
clash with some already processed data and thus block a path being
pursued by the semantic analysis processor.

As already noted (4.4) the processes of 1lexical and structural
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disambiguation run in parallel. The principle of maximum semantic
coherence is the one mostly responsible for the reasonably efficient
parsing of

John struck the girl on the bank on the head with a club.

Considering that the dictionary contains 3 definitions of "strike" and
"bank", and 2 for "head" and club", it is clearly going to be
disastrous to attempt evaluation of

(3%3%2%2)%¥ (14 structural interpretations)=504

alternative readings. The frames mechanism almost immediately rules
out a meaning of "strike" - as in "it strikes me that ...", or "the
idea/ decision/ solution strikes me as ...", and in addition strongly
prefers a meaning

((*ent subj)
((man obje)
((*inst inst)
((((notplease feel) cause) goal) strik))))

because it is a part of a frame
*ent STRIKE1 @man (ON (body part)) (WITH ¥inst),

which is suggested by "on the head". Of course, the process of frame
application also disambiguates "head"™ as (body part) as opposed to
¥place, and establishes the functional link between "hit" and "head".
Further, INITIAL-PREPLATE-TIES will match "with the club" onto the
same frame, thus confirming all the decisions made up to that point
(and recording this by increasing the preference weight on the
corresponding semantic readings); it will also disambiguate "club" as
a thing (which is a member of %*ent), as opposed to "club" as a place.
At this point control is passed over to the more general preplate tie
mechanism (COMBINE), which has only to decide on the meaning and func-
tion of "on the Dbank". The preplate stack wunder "ON" will be
consulted, where the following entries will be found (among others):

(*ent @loc/static (where point))

o e 0o 00000

(*#do @loc/static (where point))

This will rule out the meaning of "bank" as an organisation (grain),
or "bank" as a place (spread) where money (get sign) is kept, leaving
us with the "river bank" meaning, and the corresponding functional
ties (@loc/static in both cases). The corresponding dependency struc-
tures will be

(1) eeeeennn
(v
(strike1l
((*ent subj) ((man obje) .v.ee... Strik))
(88 agent (John (....)))
(8@ recipient (girl (....)))
(860 loc/static (bank?1 (.... spread)))
(@@ loc/dynamic (headl (.... (body part))))
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(8@ inst (clubl (....(line thing))))))

and

(2)  cieiennn
(v
(strike1
((*ent subj) ((man obje) ........ strik))
(€@ agent (John (....)))
(6@ recipient
(girl
(....man)
(8@ loc/static (bank1l (....spread)))))
(@@ loc/dynamic (headl (.... (body part))))
(€@ inst (eclubtl (.... (line thing))))))

In situations 1like the one above, it is desirable to have some
criteria on which a choice of a 'most likely' interpretation could be
based. The actual choice mechanism has not been implemented yet; this
is why the results of the analysis process, if more than one, come out
in an unspecified order. However, it is possible to define heuristics
which could be applied in situations like these. They will rely on
the fact already mentioned above: a postmodifier tends to depend on
the constituent that is closest to it. In the process of dynamically
constructing the semantic representation of the clause or noun group
by augmenting it with the items on *MODS 1list, each optionally wused
modifier will be tagged with a number, a 'jump-over factor', which can
be greater than or equal to zero. This factor will show whether the
constituent it tags modifies the one immediately preceding it (jump
factor = 0), or the one preceding that (jump factor = 1), and so on.
These factors will be used in generating a 'modification measure' of
the whole structure: a vector M(Dq,Dp,...,Dp) in which Dj denotes the
number of constituents that are separated from their governor by J
intermediate items. The two structures generated above will have
measures M1(1,1,1,1) and M2(1,1,1,0). Thus, on the basis of a
suitably defined metric, the details of which need not concern us
here, reflecting the obvious desire for a semantically tight struc-
ture, the preferred interpretation will be (2), where "the girl on the
bank" is a single semantic unit. The algorithm should analyse the
tightness of optionally used modifiers only, and can further be made
sensitive to the density of a match between a head and its dependent
as specified by the outcome of a semantic test.

The MODIFY specialist in its current version deals only with
prepositional phrases. In principle it could be extended to account
for other optional postmodifiers as well, but for programming ease and
convenience, a separate function has been introduced: CONVERT-
COMPLEMENT-TO-CASE. This is handed a complete dependency structure -
a representation of the embedded clause present in any type of comple-
ment, an "-ing" phrase construct, etc. The function tries to
integrate this representation within the skeleton structure currently
being worked on: the proper place for its attachment has to be found,
and the dependency link established.
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As already shown, some of the instances of postmodification
involving embedded clauses will be trapped by the frames mechanism:

John stopped calling on Mary,

John made Bill strike Jill,

John admitted to killing Janet,

John made an effort to work in the garden.
It is the more general cases like

Bill decided that he wants to kill Fred,

Bill made a gun to kill Fred,

Bill killed Fred firing a gun,

I watched the man teaching Mary,

that have to be analysed here,. Note that in the case of the last
example the ambiguity does not arise at this point of the analysis,
but is due to the different paths through the grammar:

(NP/HEAD

(PUSH ING/RELATIVE (CAT VERB)
(SENDR subj (NPBUILD))

D R

will parsev"the man teaching Mary" as a noun phrase, whereas

(S/POP/S

(PUSH ING/PHRASE (CAT VERB)
(SENDR subj (GETR subj))

D R

will parse "teaching Mary" as a postmodifying ING-phrase.

The decision-taking process(es) of CONVERT-COMPLEMENT-TO-CASE rely
on analysing the surface syntactic pattern, which points to general
rules (part of the semantic knowledge embodied in the specialist):

*hum *do(stative) @act *do-ing €act ==> @while
*hum *do(dynamic) @act *do-ing €act ==> @manner,
in conjunction with the semantic content of the verb involved (see

3.10). As a result, the following structures are derived:

(kill
(8@ agent: Bill)
(8@ recipient: Fred)
(8@ manner: (Bill fire gun)))

and
(watch

(@@ agent: myself)
(@@ recipient: man)
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(6@ while: (I teach Mary)))

(together, of course, with

(watch
(@88 agent: myself)
(@@ recipient: man (who teaches Mary)));

see above.)

As this strategy was discussed in more detail
examples will not be elaborated further here.
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chapter 5.
The Generator.
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5.1. A Background For Paraphrase.

The natural language analysis system implemented and discussed
here comprises a generator as a back end, performing postprocessing of
the semantic dependency structure delivered by the analyser. Although
the primary emphasis of the research has been on the process of
sentence analysis, the generation phase is nonetheless important for
two reasons. Firstly, within the framework defined by the overall
objective of (machine) translation, it is necessary to demonstrate
that the parser produces an internal representation of the input text
which is

(*) correct from the point of view of sentence interpretation,

(*) adequately coherent as a semantic representation unit,
and thus handleable by a separate and independent information
processing program like the text generator,

(*) sufficiently distant from the input sentence not to impose
unnecessary restrictions on the generator by the surface ordering of
the input words,

(*) informative enough in meaning and functional labelling to
allow for the smooth operation and performance of the generator.

Secondly, a text generation program not only eliminates the
tedious job of manually examining the results of the analysis process:
it allows much more reliable evaluation of the analyser output.
Wildly different underlying meaning representations can look equally
plausible; it is at any rate not easy to decide whether one is better
than another. It is somewhat easier to decide whether a derived
natural language representation 1is acceptable. Sentence generation
from the dependency structure, in fact, automatically 'deciphers' the
structure, reflecting in a naturally comprehensible form all the
points of interest for text understanding, i.e. those features of the
input providing challenges for the analyser.

It is clear that in the general framework of "design and implement
a language processor capable .of performing analysis of text of
'average' complexity*", a program working in "translate" mode can
demonstrate the system's understanding capabilities, as well as
providing an environment for the analyser design. The parser has been
developed with this translation objective in mind: the front end of
the system is geared towards solving the problems relevant to the task
of translation - word disambiguation, alternative structure elimina-
tion, pronoun resolution*, and the generation of unambiguous internal
representations. To prove that these problems are solved correctly,
the system could generate either Bulgarian, or English (my knowledge
of other languages being virtually zero). Considering the
unacceptability of Bulgarian as a generally accessible test target
language, the system actually performs as an English paraphraser.
* see appendix (iii) for the range of constructs handled
+ not implemented; not even considered in detail
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The decision to use English rather than Bulgarian as the target,
did not, however, influence the design of the analyser. The system
'translates' English into English and this, as will be discussed 1in
more detail below, is a process which is conceptually no different
from translating English into Bulgarian, or any other language for
that matter. Thus in order to generate Bulgarian as opposed to
English output, for example, the only need would be for specific
Bulgarian 1linguistic data. There would be no need to change the
control structure and mechanisms of the generator, which would operate
on the same intermediate semantic representation as for English.

What is important here is that as the system actually performs in
'paraphrase' mode transforming the analysed dependency structure back
into English, three specific questions have to be considered:.

(1) What types of paraphrases to handle: i.e. how should the
range of paraphrases delivered by the system be delimited.

(2) How to define a good paraphrase.

(3) How to get more interesting paraphrases - what mechanisms
will be needed.

Analogous questions of course apply to translation, but the ques-
tions about paraphrase are sharper: a boring translation is still a
translation, but paraphrasing a sentence by itself, however genuine
the processing involved, is not very convincing.

It is clear that the basic purpose of the paraphrases in the
stated environment is to show that the analyser has been right in its
disambiguation decisions, for example in treating the word "make" in
the following examples in different ways:

John made a gun to kill Mary.
John made an effort to kill Mary.
John made Bill kill Mary.
Thus paraphrasing could show this by delivering, for example
John produced a gun in order to ...
John performed an effort ...
John forced/ persuaded Bill to ...

Such paraphrases may not be stylistically optimal, but are all that
are needed to prove that in a translation environment the desired
effects can be achieved.

The following criteria for 'successful' paraphrase might thus be
specified:
(i) a paraphrase should be a grammatically correct sentence;
(ii) a paraphrase should express the correct reading if there
is only one;
(iii) in cases of genuine ambiguity, a set of disjoint (not
alternative) paraphrases should reflect the competing
dependency structures, one for each reading.

Closer analysis of (i) and (ii) brings us back to the first ques-
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tion stated above: what sort of paraphrases to produce? The
possibilities range from simple single word replacement (lexical item
substitution):

John struck Mary => John hit Mary,

to message reformulation of a much more extensive kirnd, perhaps
involving explicit inference or summarising:

The President declared that he could not commit himself to
endorsing ... =>

The President refused to endorse ...

Clearly the question 1is where to draw the line between the
'trivial' paraphrase and the 'glossing' paraphrase. As noted above,
the purpose of the paraphrases is to demonstrate the adequacy of the
dependency structures delivered by the analyser, and thus prove the
correctness of the analysis. In practical terms this implies that the
paraphrases must at least demonstrate

(1) that the analyser has selected the correct word senses
(Wwhenever lexical ambiguity is present in the source text); thus the
generator has to be synonym driven i.e. it has to be supplied through
a dictionary with at least one and preferably several synonyms for
each (input) English word sense;

(2) that the analyser has established a proper structural
analysis by determining the scope of modifiers and their level of
modification:

John searched the room carefully =>

different sentences reflecting the fact that "carefully" can
appear after any of "John", "searched", and "the room".

Similarly,
John saw Mary in the street at 5 o'elock =>
John saw Mary at 5 o'clock in the street.
but not
John saw Mary in the street with the two hotels =>
John saw Mary with the two hotels in the street.

Thus, after the analyser has identified the constituent units, the
generator must be able to reshuffle them to clearly display the
identified constituent relationships. The generator must therefore be
able to manipulate whole constituents, which will demonstrate the
correct understanding of the text by the parser, and the ability of
the output routine to handle, and be organised around, connected
pieces of meaning;

(3) that the output routine can generate correct English, and
does this by manipulating not the input text itself, but the structure
into which it has been parsed. This will also prove that the program
is potentially able to generate (comparatively easily) some other
language than English;

(4) that the generator can select synonyms appropriate to the
particular sentence context from any set of synonyms supplied for an
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input word sense:
John asked Mary => John questioned Mary,
John asked about ... => John inquired about ...,

John asked Mary about ... => John inquired about ... from
Mary,

John asked to go home => John wanted to go home,
John asked Mary to go home => John begged Mary to go home.

Thus the generator has to be context driven as well.

These points above make it clear that what we need are synonym
based, context-sensitive, grammatically correct (and meaningful)
underlying representation transformations. It is further clear that
paraphrases with the properties indicated can only be produced by a
quite sophisticated generator capable of, for example, clever
constituent manipulation. However, paraphrases like

Johr killed Mary => Mary was killed by John,
It was yesterday that he came => He came yesterday,

while they may exhibit some or all of those properties just discussed
are clearly just not radical enough. It would be desirable to have
generation of a more dynamic character allowing paraphrases of an
extensive, rather than 1limited, kind. Thus the sentences in pairs
like

John strikes me as pompous => I regard John as pompous,

I liked the play => The play pleased me,

John bought the book from Bill => Bill sold the book to John,
Fred struck Max => Max received a blow at the hands of Fred

(examples from [Chomsky651), are clearly sufficiently strongly related
in meaning to be accepted as paraphrases, though they have 1little
surface structure or vocabulary in common: they can be described,
informally, as interesting rather than boring paraphrases because they
involve both semantic and syntactic variations of the original. An
attempt to produce paraphrases of this more interesting kind would be
a quite strong test for the language processor as a whole; because in
order to produce the right hand side members of the pairs quoted
above, the analyser must, before anything else, 'understand' properly
their counterparts on the left.

We must therefore aim, in the range of paraphrases generated, for
more extended treatment of

(a) context sensitive word variance and synonym substitution,

(b) constituent restructuring ("... be afraid to ..." =>
", .. not want to ...™)

(¢) constituent manipulation and reshuffling,

(d) variance at the level of whole components: "strike" (in a
particular sense) can be replaced with "receive a blow at
the hands of", "prefer" - with "would rather", etc.
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The generator developed here does not attempt anything in the most
exotic end of the spectrum like providing summaries or spelling out
inferences. However, it is not confined to mere syntactic rephrasing
or single word substitution.

The intermediate at which the generator operates can Dbe
illustrated by the case of clause transposition in complex sentences.
This does in fact represent constituent manipulation, but it
introduces some essentially new points. Clearly, there is nothing
interesting in

By walking fast, he got there on time =>
He got there on time by walking fast.

On the other hand, intensive complementation, or modification by
"_ing" phrases, or certain other constructions, require more atten-
tion. Consider, for example,

ibored |
I was |furious | to hear about it =>
{indignant |
Ibored me i
To hear about it |infuriated me To==>
] ibored i
imade me |furious ||
' lindignant}|
| ibored P H
i1infuriated| me 1
It | ibored i1 to hear about it
imade me |furious ||
i lindignant} |

(example from [QuirkT72]). It is clear that an essential part of the
paraphrase operation generating any of these alternatives is dictated
by the properties of the predicate adjectives involved; but much of
it is represented by syntactic changes. In other words, the syntactic
changes are entirely dependent on the adjective/ verb sense, and the
identification of the adjective/ verb sense involved is 1largely a
semantic process. This selection is indeed one of the main tasks of
the analyser.

I have included such clause transformation paraphrases in the list
of transformations to be carried out by the system, which may
therefore produce output 1like

John 1is easy to please'=> It is easy (for someone) to make
John happy,

John is eager to please => John wants very much to make
somebody happy.

This brings us to the last of the three questions set in the
beginning of this section: how to produce these more interesting i.e.
more dynamic paraphrases.
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There are so many factors determining the nature of the
paraphrase. There are things like the format of the dependency struc-
ture delivered by the analyser, and its content. There is also the
whole apparatus of the output routine, i.e. the generator machinery,
plus the 1linguistic knowledge which, together with the input
dependency structure(s), drives the generator¥.

The format of the dependency structures has already been discussed
in detail (3.11): As to their content, it is arguable how much of,
and how, it should be utilised in the generation process. The argu-
ment can be put in the form of the contrast between the approaches
adopted by Simmons and Slocum [Simmons72] and by Goldman [GoldmanT751].
Simmons and Slocum preserve traces of the input text in the internal
representation and utilise these in generation. Goldman sets out to
eliminate traces of the input text since he maintains that internal
representations must be freed from their text manifestations. Some of
the points relevant to this argument, regarding the semantic content
of the structures and the traces of surface text in them, have already
been discussed in 3.11; the others are considered below. Overall,
the case for manipulating the dependency structure not by individual
components but by constituents, should be clear by now.

It is clear that the major factors determining the nature of the
paraphrase are the generator control structure and mechanism(s),
together with the 1linguistic data with which it 1is supplied. In
general, the scheme

dependency
structure
____________ \
\
! GENERATOR ! ==> paraphrase
linguistic Y
knowledge /
——————————— /

defines a quite rigid process. In order to be able to produce the
more dynamic paraphrases as discussed above, this rigidity has to be
broken, or at least relaxed. Two variables can be manipulated to
bring that effect: we can either make the generator more flexible, or
make the linguistic knowledge more versatile. As a matter of fact,
these two factors are interdependent, for it 1is obvious that
flexibility in the program's performance is impossible without rich
data; and on the other hand, extensive linguistic knowledge cannot be
correctly interpreted and fully utilised by a rigid non-imaginative
progranm. However, for the time being I shall consider them
separately.

* the reader is reminded that the system does not attempt the kind of
inferences needed for

John strangled Mary => John caused Mary's death by
preventing her to inhale air,... [Rieger75].
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The extensions to the generator structure are largely a
computational problem, rather than a conceptual one. Nonetheless, the
organisation of the control structure does require certain heuristies.
The 1issues involved are mainly concerned with the problems of
organising and structuring the output sentence:

(*) how to organise the information in the dependency struc-

ture into constituents - a constituent (in the target sentence to be
generated) being a self-sustained conceptual unit (although this is a
recursive definition: "the man in the park with the magnolias
which...™),

(*) how to realise this information in the target language
(surface text): i.e. which of the following to say

John's delivering of a speech at the Union amazed me,
I was amazed that John delivered a speech at the Union,
That John delivered a speech at the Union amazed me.

(*) how to structure the constituent components into a larger
unit - mainly a problem of ordering:

The train had arrived (quietly) (at the station) (during our
conversation).

Similarly, the linguistic knowledge available to the generator has
to be enriched. This can be achieved mainly in two ways. Firstly, by
developing and introducing some relevant heuristics in the control
structure of the output routine (see above). Secondly - by designing
the dictionary (a separate one for the generation phase) in such a way
that the individual dictionary entry is quite informative, and in the
same time very flexible. Take, for example, a verb entry. As
discussed in chapter 3, every verb defines one or more verb frames.
Each of these has certain syntactic requirements when it comes to
alternative i.e. synonymous expression of the same 'message'. The
entry for that frame should, therefore, state this rigid and
compulsory syntax, but in the same time should, somehow, make provi-
sions for the optional constituents (see 1.2, 3.10) which might, or
might not, be present, and even if present, could be manipulated more
freely. In other words, most of this problem is reduced to defining a
format for a more dynamic dictionary entry.

Thus, the general framework for the design of the generator
program is defined by
(A) introduce context-sensitive, surface syntax oriented
linguistic knowledge in the dictionary, and
(B) make provisions for its correct utilisation in the process
of re-expressing the meaning of the dependency structure in English.
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5.2. What The Generator Dges.

This section attempts to discuss in general terms the basic
generator design considerations and decisions in the light of the task
"sentence paraphrasing". A program to generate natural language from
an internal meaning representation structure is, on a more abstract
level, just a device for carrying out a representational change.
(Which is hardly surprising, considering that generative grammarians
[Lakoff72] suggest exactly this for generating natural language
sentences (in this abstract sense of generation): start with a deep
(semantic) structure and apply an ordered sequence of transformations
until a surface string of words (phonemes, graphemes) 1is derived.)
These discussions have not, however, provided much usable detail on
what information, and in particular semantic information, the internal
representation should contain, and how it should be utilised by the
generation process. In computational linguistic research, too little
attention has been paid to language generation. (The reasons for this
vary: from "the primary interest in 1language processing lies 1in
understanding, and this puts the emphasis on the analysis phase", to
"many natural language analysis systems require 1little or no genera-
tion at all - LUNAR is probably the best example in this respect";
e.f. Goldman in [Goldman75]). The fact, however, remains that not
many generation programs have been developed, and probably the one
with the highest level of performance (or apparently highest level of
performance) is MARGIE's BABEL [Goldman75]. This program incorporates
some very unorthodox concepts, compared to the other efforts in the
same direction like Klein, Winograd and Simmons [Klein651,
[Winograd72], [SimmonsT72]:

(1) BABEL starts without a conventional syntactic representa-
tion of the sentence to be generated,

(2) BABEL starts without knowledge of the words to be used in
the surface sentence,.

In the 1light of the overall design objective of MARGIE -
conceptual information processing - this is presumably the correct
approach. That is, if Schank and his colleagues really want to prove
the point that there is a conceptual base into which utterances in
natural language are mapped during understanding, the input to the
generator has to be ‘'language free'. However the design of my
generator has been influenced by the rather different goal of my
system, namely analyser testing.

The tasks performed during sentence analysis are
(1) resolution of lexical ambiguities,

(2) resolution of structural ambiguities,

(3) formation of a dependency structure.

As already explained, the dependency structure contains informa-

tion about the meaning of each constituent and its function in the
overall textual unit, and hence about the meaning of the whole
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sentence. The basic principle of BABEL is that "it is the meaning of
the generated sentence which must be specified and utilised to guide
generation" [Goldman75]. It appears that the dependency structure, as
it is, (see 3.11) can serve both as a result of the analysis, and a
source for generation. This in itself is an extremely useful and
important fact, but a close investigation of the nature of a
dependency structure makes it clear that in order to generate natural
language from it, a program is needed which accepts a meaning
specification without a conventional syntactic specification. The
dependency structure has no place for conventional syntactic concepts
like 'indirect object', 'prepositional phrase', or 'complement'. If
it had, the generator (among other things) would be restricted in its
manipulation and ordering of the structure constituents, would possess
very low resolution power, and would probably be very clumsy in design
in order to compensate for the need to allow overt syntactic
transformations. As it is, the generator must have ways of deciding
on the correct syntactic representation of the dependency structure
case relations like the 'recipient' or 'manner' relationship between
the action element and a semantic sub-unit in the dependency struc-
ture.

Further analysis of the parser objectives (1-3 above) highlights a
point discussed in the previous section: generation should serve as a
test for the correctness of the dependency structure. Thus it should
first show that the (word) disambiguation process has been success-
fully completed. It is very important to realise this because it has
direct implications for the operation of the generator. Imagine the
input consisting of

(*) John asked Mary about the book,
(%¥%) John asked Mary for the book,

and assume that the analyser has correctly distinguished between the
two different meanings of "ask":

(ask1 ((man subj) ((*ani obj) ask)))
(ask3 ((man subj) ((*ent obje) ((*hum from) want)))).

This distinction should be reflected in the generator's output. And
while the effect will be automatically achieved in 'translate' mode,
the program's flow of control in 'paraphrase' mode must be driven by a
mechanism of 'synonym selection'. In other words the generator must
seek, and find, "inquire" and "request", for example, in order to
emphasise the difference between "ask1" and "ask3" in (%) and (¥*¥*)
respectively.

This was mentioned in the previous section, but is emphasised
again here, because it is the initial point for the generator design:
start with the dependency structure and produce a paraphrase of the
input sentence, centered around the relevant synonyms of the words
originally used.

There are several major problems to be dealt with in achieving
this:

(1) Choice of synonyms/words to be used in the generated

sentence. Obviously, the program should be able to make intelligent
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use of the words it knows about in order to ensure that the generated
sentence does not depart from the meaning of the dependency structure,
and hence from the input sentence. of course, the notion
'paraphrase', as it stands, is somewhat vague, and unfortunately there
is no strict definition of what should be accepted as good paraphrase
of a sentence, especially an 1isolated, single one. One man's
paraphrase is another man's corruption of meaning, so I shall rely on
the reader's intuition and common sense.

(2) Definition of the target language (English) syntactico-
semantic relationships which tie the words chosen under (1) together.
The syntactic relationship of the words in a textual unit sets up the
rules for their combination and interaction in the output; the
semantic relationship between conceptual units defines their ordering
within a coherent whole; both provide the information needed to drive
the

(3) Actual output of the generated target language sentence.

The alert reader will notice that this approach to generation is
somewhat like that of Goldman's BABEL. This similarity is due to the
fact that Goldman's program is an advanced one, and hence has some
important points to make about the process of automatic sentence
generation, However, on a more practical 1level, there are some
considerable differences, which will be clarified later. The list of
problems just given indicates both the relative importance of these
points for the smooth performance of the generator, and the order in
which their solution is attempted, following the program's flow of
control. The next sections analyse and discuss these separately.
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5.3. Choice Of Words.

5.3.1. Background

The process is mainly concerned with the selection of the verb
around which the generated sentence will be organised. There are
several good reasons behind this approach. Some can be found in the
way in which the parser is structured and designed, others follow from
the specific requirements of the generator.

The whole analysis process is organised under the fact that "the
central element of the clause is the verb" (3.8). This is reflected
first, in the structure and contents of the test dictionary, which is
intended to provide an adequate, i.e. real dictionary sample, and as a
result, is predominantly verb oriented; second, in the flow of
control throughout execution; third, in the algorithm(s) for building
the dependency structure, as well as in its format; and fourth in the
introduction and use of the notion of a verb contextual frame as a
device for speeding up and facilitating parsing. In fact, the whole
initial phase of the system, and in particular the semantic routines,
which are the backbone of the analyser, are verb driven. This clearly
suggests an attempt to organise the generator along the same lines.

However, there is a stronger and more immediate reason for
deciding on the verb selection as the first and foremost step in the
generation process. It is closely connected to the next problem
waiting in line - the definition of the syntactico-semantic relation-
ships to be present in the output sentence - and, in fact, could be
justified with the same arguments as those used for the introduction
and definition of the verb contextual frames used to guide the
analysis.

'Context' is the key word. In the process of analysis the
semantic routines examine the syntactic environment of the main clause
verb, the environment triggering the relevant preference test. The
outcome of this test determines the correct verb sense selection and
sets up the backbone of the dependency structure. The generator
employs similar tactiecs, but in reverse: the dependency structure 1is
regarded as specifying a certain context (with regard to the meaning
it conveys), and it is the verb (a distinct verb sense, to be more
precise) which carries 1large amount of that into the generated
sentence. Once the verb has been selected to fit to the dependency
structure, we can be sure that (at least some of) the 'message' will
come through, and more than that, that this (target) verb will, in its
own right, specify a definite and distinct syntactic environment,
required by the target language grammar rules. All the generator has
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‘to do from this moment on is to extract relevant bits and pieces from
the dependency structure with which to fill in the empty slots around
the selected verb, thus giving weight and content to the context and
satisfying the environment requirements. It is for these two reasons:
context definition, plus environment specification, (collectively
referred to as the "information content"™ of the verb [GoldmanT751]),
that its selection is of primary importance for the operation of the
generator.,

Let us go back to the examples in 5.2. In the case of (*) suppose
the generator came up with "inquire" as the proper synonym. It
certainly is a good choice, as far as the meaning of "ask" in (¥) is
concerned: introduces the correct context, and immediately sets up a
certain pattern associated with it: "somebody inquires about something
from somebody else™, or

(*) *hum
INQUIRE
ABOUT *ent
FROM *hum .

Similarly, the other example will yield something of the kind:

(%%) ¥pum
REQUEST
*ent
FROM ¥*hum .

It does not require a long explanation why this environmental pattern
is referred to as 'syntactico-semantic'. Obviously it specifies the
syntactic ordering of constituents which must satisfy certain semantic
criteria and are inseparably part of the meaning and context
introduced by the central verb.

At this point I could go one step further and after rewriting (%)
as

(¥') @agent
INQUIRE
ABOUT @subj-matter
FROM @recipient ,

observe that such a specification allows the generator to immediately
identify the relevant subportions of the dependency structure, and to
access them in order to extract the wanted slot-fillers. This,
however, raises certain questions:

(1) How to make the information about the syntactico-semantic
environment available to the generator?

(2) Which mode of formal specification - (¥) or (¥') - is more
convenient?
(3) How can we be sure that things 1like '@agent' or

'@subj-matter' will be present in the dependency structure?
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However, this is looking a bit ahead, and in order to provide
answers to all these questions, I shall initially consider the
immediately important problem: how to select the verb synonym to be
used in the generated sentence; and how to utilise information in the
dependency structure in the process of doing so?

In an abstract and approximate way, a cross-section of the whole
system along the line 'verb treatment' will produce something 1like
fig.1. Each verb used in the input is subject to a 'mushroom explo-
sion' of synonym equivalents for each of its senses and it is the
generator's job to reduce the number of possible output verb synonyms
for the sense selected by the analyser to just one.

/=> VERB => [relevant =>
i SENSE contexts] =>
]
i
INPUT ==%==> VERB => [relevant => OQUTPUT
VERB ! SENSE contexts] => VERBS
1
E
\ => VERB => I[relevant =>
SENSE contexts] =>
/\ /\
i i i
analysis generation
ASK

ask1 ((man subj) ((*ani obje) ask))
QUESTION, INQUIRE

ask2 ((man subj) (((please feel) goal)
((((notsame man) subj)
((act obje) do)) ask))
BEG, WANT

ask3 ((man subj) ((¥*¥ent obje) want))
REQUEST

fig.1

The issues to be discussed here are concerned mainly with

(*) how difficult (or, alternatively how trivial) is the
selection job;

(*) what information must be used to do it properly; and

(*) how is it to be used.

This brings us to the most essential question - the source of the
actual target (English) verb. The decision to keep shorthand markers
in the dependency structure (3.11) was based on the desire to keep
this particular operation as easy as possible; the reader is referred
to chapter 3 for more details.
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5.3.2. Mechanism

I shall now concentrate on the actual mechanism of the verb selec-
tion. Since the dependency structure itself already points to, for
example, "ask1", all that is needed to set the generator on the right
track is to decide which of the possible synonyms for the particular
sense of "ask", coded by "askl1", 1is appropriate for the specific
sentence being analysed: "inquire" or T'"question™ in this case.
Although to a large extent these synonyms are mutually
interchangeable, some discrimination, and therefore, critical judge-
ment, 1s called for.

Let us examine the reasons for this. Going back to the examples
from (5.3.1), it is possible to notice certain regularities in the
pattern introduced by the contextual environment of the suggested
synonyms. For example, "question" requires a human as a direct
object; and this human is actually the recipient in the input
sentence. If no human recipient has been found in the text, or,
rather, the corresponding dependency structure, then "inquire" must
be used. On the other hand, if it is not known what the conceptual
object of "ask" is (in other words - what is the thing about which all
the asking is being done), the use of "question" is preferred.

Similarly "ask2" (see the definition: fig.1) introduces another
two synonyms: "beg" and "want", and the choice between them depends
largely on considerations of the same kind: what is the agent asking
for - an abstract entity (favour, advice, etc.), or a specific action
- to do something?; who is the beneficiary of the action 'ask'?, etc.

It is obvious that the decision process must be guided by a care-
ful examination of the dependency structure in the light of

a) what sort of semantic constituents are present, and

b) what conditions regarding the meaning (semantic content)
of these constituents are fulfilled, or, alternatively,
violated.

Point a) means examining the contextual framework of ‘the
dependency structure; point b) means analysing the contextual content.
Again, I want to emphasise that (see 3.11) it would be possible to
analyse the dependency structure without any explicit knowledge of
"ask1" being the intended sense of "ask", and still arrive at the same
conclusion - because even with the deletion of the "ask1" marker in
the structure, the contextual content, and hence the overall meaning,
is unique. But, as already pointed out (3.11), ™"ask1"™ in this case
serves simply as a shortcut entry point to a predetermined part of
some linguistic knowledge database, which knows all about the possible
syntactico-semantic environments of a verb-sense ("ask1"), and
provides the information necessary to drive the decision mechanism of
the verb selection routines.

Going back (to the beginning of this section) to the analysis of
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the contextual constraints imposed by the candidate synonyms, it is
possible to define the process of verb selection as a process of
generalised matching of the component slot-fillers of the dependency
structure against the contextual requirements of the 1list of
candidates, using some sort of rule as 'densest match wins' to select
the most appropriate one.

It must be emphasised, however, that the generator does not seek
to map a dependency structure onto a specific matching verb, but that
it tries to find a synonym contextually compatible with the verb under
whose meaning the dependency structure has been derived. This is one
of the substantial differences between my design policy and BABEL's.
It also allows for the limited, not uniquely defined, choice of verbs
for the output. For example, if all the conditions regarding
"inquire" and "question" (as specified above) are satisfied, given

John asked Mary about the book,

either synonym seems appropriate then:
John questioned Mary about the book,
John inquired about the book from Mary.

There is nothing wrong with having a range of alternative output
possibilities, as long as the fact is recognised, and some selection
in such cases is actually made.

The foregoing more or 1less solves the problem of verb-synonyms
selection. I have not devoted so much attention to the choice of the
other words to be used in the target sentence. The reason for this is
mainly in the ultimate objective of the generator, namely
demonstrating the correctness of the (word) disambiguation activities
of the analyser. Thus, nouns in the input often generate the same
nouns in the output: "John" => "John", "book" => "book", simply
because they happen not to have been coded for more than one sense in
the test lexicon. If the noun itself is ambiguous, a choice is made:
for example "crook" may turn into "long thing" or "artful dodger",
depending on the content of the dependency structure. Prepositions
are generated according to the syntactic requirements of the specifie
context, and have absolutely nothing in common with any prepositions
used in the source text, which get completely lost in the analysis.
Predicate adjectives are treated much the same as verbs, following the
policy underlying the parser: their analysis is carried out by adjec-
tive frames (see 3.9). Adverbs probably require more special atten-
tion, but at the present state of the program I chose to give them a
rather superficial treatment.

Given this overview of the processes involved in choosing the
words to be used in producing a sentence to express a dependency
structure; we can now concentrate on the next step in the generation
process.
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5.4, Definition of The Target Language Syntactico-Semantic
Relationships.

5.4.1., How Will This Help?

Effectively the problem is: given a set of words chosen during the
generator's first phase: ["inquire", "John", "Mary", "book"], how to
produce the syntactically correct English sentence "John inquired
about the book from Mary". The words themselves mean nothing to the
program, as a NL system is not supposed to rely on words, but on
underlying meanings. Suppose then that we possess further Kknowledge
to the effect that in the case of this particular sentence John is the
agent, Mary is the recipient of the action ("inquire"), and the book
is the object being inquired about (i.e. the subject-matter). The
semantic roles of the words, thus defined in the dependency structure,
supply the information for a definite syntactic ordering of the output
words. Let us imagine that somehow, certain syntactic knowledge is
made available to the program; and that it knows, in particular, that

a) normally the agent appears before the verb and plays the
role of the subject in the sentence,

b) the recipient is either the direct object, or a part of a
prepositional phrase; and comes after the verb in the sentence,

¢) this specific verb ("inquire") requires a subject-matter,
which is the object of the sentence, immediately following the main
verb; and is preceded by the preposition "about",

d) the recipient for this verb is optional; hence it is the
last to appear in the sentence; and if it does, it 1is preceded by
"from".

Guided by all this information, the generator will easily produce
the intended sentence (see above). The problem 1is reduced to
organising and utilising this knowledge.

5.4.2. What Is An Environment Network?
|
The example above clearly shows that there are two types of
information to be considered: the semantic roles of the words, and the
narrowly syntactic character or function they have in the sentence,
which, among other things, determine their ordering.

There is clearly some relationship between those two distinct
types of information. In most cases it 1is possible to make an
educated guess as to what the surface syntactic role played by a
semantic constituent, and its position in the sentence, will be: this
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was suggested in the example discussed above. Very often the agent is
the syntactic subject; the recipient of an action is either a direct
object, or is introduced by a preposition which in most cases is "to"
(or "for"); a 'location' denoting constituent is keyed by a preposi-
tion from a finite set of prepositions ("in", "at", "on", ...) and is
determined by the syntactic requirements of the context defined by
the main verb:

John admitted Mary to the house, but
John let Mary into the house.

A  'manner' constituent will be expressed either as a "with"
prepositional phrase: "with enthusiasm", as an adverb:
"enthusiastically", or as an "-ing" phrase: "by doing something", and
will follow the direct syntactic object (if it is present). A
"mobject' (mental object) or 'goal' labelled node in the dependency
structure is readily expressed as an embedded clause: a "to-" or
"that-" complement to the main verb:

John admitted to Bill that he loves Mary,
John made a gun to kill Mary.

The knowledge of these and other related facts, coupled with the
specific syntactic framework defined by the main verb around which the
sentence generation is organised, implies that in order to produce

John begged Bill to hit Jack with the crook,
a data structure of the following type may help:

(agent . N2)
(recipient . N3)
(mobject . N&)

N2: (noun . "John")

N3: (noun . "Bill")

N4: (action . "hit")
(agent . N3)
(recipient . N5)
(instrument . N6)

N5: (noun . "Jack")

N6: (prep-phrase . NT)

N7: (preposition . "with")
(noun . "long thing")

The interpretation of the structure is straightforward; so is its
general format. This is a collection of nodes (concepts) each of
which holds a set of relation-concept pairs. The idea is to represent
in compact form certain relations (primarily semantic ones) - deep
case relations and other relational meanings - that conjoin concepts.
This makes it possible to map the relation part of the pair onto
syntactic relations and other relational words in the surface string,
treating the concept part of the pair - another structure node, a
lexical entry pointer, or one of a set of terminal grammar elements -
as the value of this relation. All relevant information is extracted
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from the structure to define, in accordance with the target language
grammar rules, the surface string reflecting the relational ordering
of the concept in the data structure, thus conveying its meaning in
English (or any other particular language).

To make things more clear, the example sentence already discussed:
John inquired about the book from Mary

Wwill effectively be generated from the following data structure:

(*) N1: (agent . N2)
(tense . past)
(form . NIL)
(lexverb . "inquire")
(subj-matter . N5)
(recipient . N8)

N2: (lexnoun . N3)

N3: (English . N4)

N4: ("John")

N5: (prep . "about")
(lexnoun . N6)

N6: (English . NT)

N7: ("book")

N8: (prep . "from")
(lexnoun . N9)

N9: (English . N10)

N10:("Mary")

There are several important points about this structure:

1) it makes the actual output generation of the target
sentence a relatively easy and well-defined task. This is because the
required surface words are explicitly available in the structure,
accompanied by specific syntactie information (lexical category,
tense, form, voice, ete.) facilitating the correct construction of
English expressions. Furthermore, a closer look at (*) shows that the
order of the pairs in each node defines the left-to-right order of
components of noun and verb phrases and embedded clauses in the
generated language string. Thus, provided the structure has been
ordered according to some criteria (to be discussed later), a simple
sequential, recursive scan will suffice to determine the order in
which the generator will output the words of the sentence.

2) It can be observed that (at least at the clause node level
- N1 for example) the data structure somewhat resembles the dependency
structure presented as the input to the generator, suggesting that its
construction might not be a difficult process. More important, the
process is well defined.

3) The structures thus produced are closely related to
Fillmore's proposals for case grammar (this is why they are related to
the dependency structures as well). More important, they are
conceptually identical with Simmons' semantic networks [Simmons73] and
[SimmonsT72]. It has already been demonstrated (by Simmons and by
Goldman) that such a network can be handed over to some sort of a
grammar control component which will transform the network into a
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semantically equivalent linear string of target language (English)
words. The generated sequence will carry much of the meaning of the
dependency structure, and hence, the original sentence.

4) The pairs-into-node organisation of the structure and its
components provides a convenient way of accessing and manipulating the
phrase to be generated as a whole, or some of its parts only. This is
very important, because it allows the generation to treat a phrase as
a unit; to reshuffle its parts in order to achieve a more natural
output phrasing, while maintaining its relative position 1in the
sentence; or to do some preprocessing of the component nodes (before
the actual output of the sentence) in accordance with the target
language grammar rules (for example the deletion of nominals in
embedded relative clauses, pronoun substitution, suppressing the
subject in embedded "to-" complements, etc.: see 5.5 for outline of
the functions to output a sentence).

I have called this data structure, mediating the process of
sentence generation, an environment network. It is the conceptual
counterpart to what Goldman defines as a 'syntax net' in the gross
structure of BABEL, but it contains not only syntactic information,
but semantie information, relevant to the contextual environment of
the main verb. Hence the proposed name.

The general strategy followed in generating is therefore:

dependency environment English
structure =====> network z======z=> sentence
(i) (ii)
fig.2

The two processes (i) and (ii) can be regarded as transformations
mapping one form onto another, preserving the meaning of the data
structure they manipulate, and thus carrying the information initially
present in the dependency structure through to its expression in
grammatically correct English.

5.4.3. Construction Of The Environment Network.

The fact that the environment network resembles the dependency
structure supplies some clues towards its production. At this point
the reader 1is advised to go back and review all the arguments
presented in defence of the statement that the generation must start
with the choice of the main verb of the clause. As already
emphasised, 'context' is the basic notion underlying the design of the
generator, and in (5.3.1) it was pointed out that the main verb, even
when regarded in isolation, introduces a certain context, setting up a
definite syntactico-semantic pattern associated with the verb. Or, as
Goldman says, "once a verb has been chosen, an entire semantic
framework becomes known": "inquire", for example, suggests

(*) *hum1
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INQUIRE
ABOUT #*ent
FROM ¥*hum?2

(see 5.3.1). Going back to the first example (¥*) in 5.2, it was noted
in 5.3 that given the dependency structure built round "ask1", the
verb choice procedure will select "inquire" as the synonym round which
the whole generation process will be organised. This selection
process is strongly influenced by the presence in the dependency
structure of such constituents as human recipient and entity-type
subject-matter. In which case it is clear where we should look for
the entities which will fill up the (¥*) framework and give content to
the context. There is no doubt that these constituents will be
available in the dependency structure, because, after 'all, it is
mainly because of them that this particular verb has been chosen. To
refer to Goldman again, "once a verb has been chosen, the form of the
environment network can be predicted"; and furthermore, mappings
between parts of the network and subportions of the dependency struc-
ture can be predicted as well. "The creation of the remainder of the
net is a very strongly guided process, not a large search".

This is quite natural, and could be expected: in the analysis,
the syntactic environment of the verb is extensively used to pick up
its meaning and decide on what to do with the dependent constituents
and what representation to build; the generator will employ the
reverse process - examine the context and select the main verb, which
will immediately set up the syntactic environment.

Three distinct types of information must be made expliecit in the
environment network:

1. What are the surface words that will be used in the
sentence, and how to build syntactically coherent units out of them -
this is the information contained in a node of the environment network
(and its descendants):

N5: (prep . "about")

(lexnoun . N6)
N6: (English . NT)
N7: ("book")

The syntactic equivalent to this network fragment generated will be
"about the book".

2. What is the semantic role played by the constituent thus
identified:

N1: ceeeenen
(subj-matter . N5)

3. What is the position of this constituent in the overall
phrase structure -~ the subject-matter in the sentence, or the noun in
the noun phrase. In other words, what 1s the syntactically valid
left-to-right ordering of the phrase components:

N1: (agent . N2)
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(lexverb . "inquire")
(subj-matter . N5)
(recipient . N8)

Also, there is additional, purely syntactic, information contained
in some nodes (tense: past, form: NIL, English: $Node$, etc.) which I~
shall ignore until later.

The construction of the network begins with picking up the verb -
"inquire" in this case. Examination of its contextual environment
tells the program that it requires entities to fill up the 'agent',
'recipient’', and 'subj-matter' slots. The corresponding constituent
nodes are extracted from the dependency structure and the surface
language (English) words to express them are chosen: "John", "Mary",
"book", respectively. The syntactic framework is consulted again, and
the generator realises that the semantic relationship ‘'action' <->
'recipient', and ‘'action' <-> 'subj-matter' (for this particular
verb) are realised syntactically by means of the prepositions "from"
and "about". This allows the construction of nodes N5 and N8 (see the
environment network in 5.4.2). The program also knows that 'agent' in
active sentences does not require a preposition, thus N2 is
constructed. The construction of nodes is a process which puts
together all sorts of factual, linguistie, and syntactic information
and incorporates this into the node or its dependents. This may
involve such activities as deciding on determiners or pronouns,
attaching adjectives or modifiers, or recursively building another
environment network corresponding to an embedded clause (relative or
complement, for example), a possessive structure, etc.

A point that must be made here is that there appears to be a
certain inconsistency in the type of relations specified in the
environment network: these can be semantic or syntactic., Intuitively
one feels that a structure with uniform content might be better.
However, let us consider the two possible situations:

(A.) Purely semantic network. This will in fact be
inadequate, since sentence generation (unlike sentence representation)
just cannot be done without explicit and detailed knowledge of
syntactic features and relationships.

(B.) Purely syntactic network. This would certainly be help-
ful, and could be provided. However, it would require that a lot of
information about any syntactic equivalent of a semantic component be
put explicitly into the environment framework of the verb, and that
the mapping transformation from semantic relation to syntactic func-
tion (which has to be done anyway), will have to be shifted in time,
and become conceptually a part of process (i) in fig.2, and not of
(ii) as I propose to have it. The structure would be uniform, but the
flow of processing would be broken (syntactic manipulations would have
to be done in the middle of processing of the contextual information).
And the contextual environment itself, introduced by the verb, is
better expressed in terms of semantic units, than with syntactic
labels only. Apart from all this, the environment network, as it is
now, bears much closer resemblance to the dependency structure, making
its construction an easier and more straighforward task. As I pointed
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out earlier, the transformation from semantic relation to syntactic
function will have to be performed during the actual output of the
generated sentence, but this generation is then accomplished by
associating with each semantic relation, the transformation which
forms it and its concepts into a syntactic constituent of a sentence.

Thus it is clear that the heterogenous nature of the environment
network as proposed here need not deter us, and indeed seems more
satisfactory from the point of view of consistent operation of the
generator.,

All that is 1left now 1is to specify the ordering of the
constituents. This is quite important since natural text, unlike a
generalised semantiec structure (net), is a 1linear string of words.
Things are made easy, however, by the fact that the rules of ordering
are specified not in terms of individual words, but of coherent
entities - syntactic units, complete with their logical position and
(semantic) function in the sentence. There exists a pool of general
linguistic knowledge, combining rules about the order in which facts
are arranged in the conceptual unit (sentence, phrase, etc.), and
presented to the recipient of any text expressing them. These rules
are intuitively known and widely used, all the time. The problem is
to present them concisely in an ordered list, which attempts to say,
in the most compact form, things like: whatever the subject is (i.e.
the semantic agent), it must come before the main verb, which is
closely followed by the direct object; this may be followed by an
indireect object, or recipient, or 1location, if any of these are
present, and "to-", "that-", or "-ing" complements; the head noun of
a noun phrase must come after the modifying adjective, and so on.

The actual list used for the program contains, among others, items
like

fronted-ing
agent
dummy-agent
poss
quantifier
ad j~mod
lexnoun
relative
tense

form
lexverb
object
recipient
pred-adj
location
mob ject

The list is by no means complete, but is quite rich in information
content, thus allowing for the production of relatively dynamic
paraphrases (see 5.1). The names of the possible functional 1labels,
as well as their positions in the list (and hence their relative order
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in the embedding textual unit) 'are self-explanatory, and the rationale
for organising them in the way suggested is that we are seeking a
formal expression of the relationship between a structural unit, its
content and message, and its position in the sentence.

A possible problem here is how well the ordering of phrase compo-
nents could be specified if these components have labels of mixed
kinds - semantic and syntactic. An ordering defined in terms of
syntactic 1labels only 1is well defined [Cater79]. An ordering
specified in terms of labels of the two kinds above does not provide
an easy answer to the question. Still, bearing in mind the mapping
transformation from semantic relation to syntactic function (see
above) an ordering could be specified.

This will contain information about the correct sequence in which
components of a phrase (any phrase - sentence, noun phrase,
prepositional phrase, etc.) must appear. So whenever the node of the
environment network representing the concise handle to this phrase is
constructed, the pairs in it - or in other words the handles to its
component parts - are ordered by matching their relation fields
against the order in which these relations must appear in the ultimate
surface string representing the phrase in question. Provided the 1list
(see above) is adequate, this guarantees that some technique for
outputting words in the order defined by a recursive scan of the nodes
in the environment network, will in fact output them in a way which
forms a grammatically correct sentence.

This technique is the subject of the next section.
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5.5. Outputting The Generated Sentence.

It has already been noted that once the environment network is
complete, it should, given the mechanism of its construction, contain
the linguistic information necessary and sufficient to produce
coherent English. Another point of importance to realise is that the
network is a linearly ordered, hierarchically organised, language
dependent data structure, whose top node is the handle to the whole
clause, organised around the main verb, and whose every node serves
the dual purpose of identifying the phrase components and providing
easy access to them. In which case, a recursive, left-to-right scan
of the network structure, starting with the top node, and going all
the way through to the terminal points, will get the surface sentence
words into the correct order and in the process of doing so, will
assemble the syntactic data required to know precisely how to output
then.

This data is available implicitly in the relation field of any
node - simply because whatever the (syntactic or semantic) relation,
the target language grammar provides a way for representing it as a
part of the string. Or, better still, any relation, which can be
present in the environment structure, can also be expressed as a
linear string of words which conforms to certain syntactic and
lexicographic standards. Thus 'prep' means output a preposition which
will be given as the value of the 'prep' relation; 'recipient' means
generate a nominal structure, organised as a noun-phrase or a
prepositional phrase, and based on the nominal phrase node found as
the concept dependent on the 'recipient' relation; 'tocompl' or
'thatcompl' mean generate an embedded clause structure realised as a
"to-" or "that-" complement. When the generator starts to work on the
node, representing, say, 'thatcompl' embedded clause structure, it
Wwill (recursively) find a sequence of nodes, embodying the imperative
"first output the agent, then the verb, then the direct object, then a
'location' expressing prepositional phrase, and so on". The informa-
tion used to guide each minor generation process can be

a. all available in the node itself: (prep . "about") means
Jjust to output "about".

b. picked up and stored while processing previous nodes or
pieces of the network: (lexverb . '"inquire") will output, for
example, "inquires", depending on the form, tense, agreement required
Wwith the agent already output and whose gender has been noted, etec.

c. available implicitly in the knowledge of the type of
syntactic unit being generated: (agent .NODEl) means organise the
information in the specified node as a noun phrase.

The information assembled during the scan of the network, plus the
information made available by the relation type of a specific pair, is
thus all that is needed to process the dependent in the pair with
regard to doing something sensible to the output string, and
eventually getting all of it.
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All this, as Cater notices, [Cater79], allows the treatment of a
pair part of a node as a function-argument couplet; a node, with its
sequence of pairs, as a small subroutine whose ultimate effect is to
augment the output string with the phrase identified by that node.
Moreover the whole environment network is treated as a complete and
independent program to generate the sentence equivalent to the
intermediate network, and thus, equivalent in meaning to the original
dependency structure.

Thus the environment network serves the dual purpose specifying an
intermediate structure constructed and utilised by the generation
process in order to represent in compact form all and only the
information relevant to the output of English, and of being the data
taken by another set of functions as a precise formal specification of
the order and type of the operations necessary to produce the target
text. In which case process (ii) in fig.2 is dynamically defined by
the environment network produced as the result of (i). All that is
needed to carry it out is to define a set of functions whose domain
will be the words to be used in the output string, plus some
additional syntactic and lexical information, and whose effect will be
the augmentation of the generated text word by word. Each function
Wwill be identified with a certain relation which can be found in a
network node, and will perform specific manipulations directed at
expressing the desired syntactic binding of the argument of the func-
tion to the portions of text already produced or to be produced.

These functions will embody the specific target language syntactic
rules and requirements, and thus define a procedural generation

grammar.

This is another area in which the generator discussed here differs
from the more traditional approach (Goldman, Simmons and Slocum),
where the transition from an intermediate data structure ("what to
say", represented by Goldman's syntax net, or by my environment
network) to the surface text ("how to say it") 1is achieved by
employing a connected body of grammar rules, most often a single ATN
generation grammar. My generator, in contrast, relies on grammatical
information about the target 1language surface rules which |is
distributed among individual specialists. These specialists are
powerful enough to express a particular construct in a particular
context, but their modularity makes it very easy to define them, as
well as giving the designer a free hand in organising the overall
production of fluent output text.

The independent definition of many individual output specialists
allows for an easy specification and flexible organisation of certain
purely surface oriented processes: changes of form 1in embedded
clauses; deletion of the head nominal from an associated relative
clause; suppression of the output of certain constituents in certain
circumstances; ete. Imagine, for example, that the higher level
routines of the generator have decided that a certain constituent of
the dependency structure can be expressed as an embedded "-ing"
phrase. Under the approach adopted, it is possible to use the general
mechanism for constructing a piece of +the environment network
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corresponding to (the content of) the embedded clause. Then, on the
basis of the knowledge that it has to be expressed as an "oing"
phrase, specific information is incorporated in the relevant positions
of the data record associated with the network node, to the effect
that form has to be changed to progressive, and (on certain occasions)
the output of the agent of the embedded clause can be suppressed.
Thus the piece of program which is responsible for actually outputting
the associated part of the sentence can easily be specified as

(DF ing-compl ¥*node
(CHANGE-VALUE-OF 'form *node 'progressive)
(CHANGE-FUNCTION-OF 'agent *node 'dummy-agent)
(TRAVERSE-CLAUSE-NODE *node))

The actual details of LISP programming need not concern us here;
it is sufficient to say that *node points to the subnetwork
corresponding to the embedded clause and TRAVERSE-CLAUSE-NODE is a
generalised routine responsible for the output of the clause
associated with *node, which clearly, among other things, is capable
of correctly interpreting and using information like "perform
morphology on the verb", and "do not output the subject".

If, under different circumstances, it becomes necessary to change
the target language: 1i.e. switch from paraphrase to translation - all
that is needed to adapt this part of the generator to the new environ-
ment, would be a revision of the order of phrase components (see
5.4.3) and redefinition of the set of environment network functions
reflecting grammar relations.

A review of the format of the environment network nodes shows that
these functions can have three distinect types of arguments:

1. another structure node:
(agent . N2),

2. a lexical entry pointer:
(lexverb . "inquire"),

3. a terminal grammar element:
(tense . present).

This correspondingly defines three distinct types of functions. There
are those that transfer the processing to the node that is in argument
position. This specifies a 'subroutine call' after which the control
is passed to whatever piece of program is specified to output, say, an
'agent'. After the constituent in 'agent' position has been generated
(which might, in its own right, involve other 'subroutine calls'), the
next function on the current level is activated (i.e. the next piece
of the current phrase is dealt with). "Next ... on the current level”
means left-to-right recursive scan.

Then there are those functions that add words directly to the
generated sentence: output a preposition or an adjective, or output a
verb (after performing the necessary morphological operations). These
are the functions that have visible effect, but they rely heavily on
the third group of functions,
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These are the 'behind the scenes' coordinators of the overall

process. Their major concern is setting up global variables (useful
information) used to pass important data to other functions on the
same 'subroutine level' - i.e. those concerned with processing of the

same constituent. These are responsible for the setting of the tense
and form, of the number of the head noun and the gender of the noun
phrase, as well as its case and other important attributes (*human,
¥place, etc.)

All three sorts of functions are heavily interdependent, and
provide the basis of a procedural generator, whose main strength lies
in the fact that it is highly modularised in design and operation,
and easy to reorganise when translation to another language 1is
required: all that will have to be done is basically rewrite the
network functions to accommodate the new grammar rules, and change
some of the data files.

Apart from the set of relation functions just discussed, it will
be possible to confine all resulting changes to changes in data files:

* the information used to trigger verb/ word selection,

¥ the actual target language words 1i.,e. the generator
dictionary,

* the contextual environment specified by the verb,

* the phrase components ordering list.
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5.6. The Structure (And Organisation) Of The Generator.

As already emphasised, a major principle during the development of
this program (and indeed, the whole system) has been keeping the data
separate from the program. On the one hand this is good programming
practice: it is then easier to devote independent effort to the
development of the program or to that of the data, while hopefully
maintaining an efficient interface between the different processes
involved. More important, such an approach makes it easier to see
what sort of knowledge is required to perform a certain task, and how
best to organise it and present it to the corresponding routine.

Much more important, however, and more relevant from the point of
view of the objectives of this particular NL system, is the desire to
be able to use the same sort of program mechanisms to produce
'paraphrases' in different target languages. Then the linguistic data
needed has to be changed, but the mechanism, in the optimal case, will
not be changed at all, or at any rate, not much. Further, having a
(general) interpreter separate from the data file(s), which are
themselves under no constraint except for being written in a suitable
notation, and specifically are independent of the control structure
and thus can be changed without overhead, is one of the most attrac-
tive features of the approach adopted.

This section traces the processes which underlie the generation of
a sentence, thus revealing the structure of the generator program, and
simultaneously pointing out what sort of specialised linguistic
knowledge is required, and made available, during the various stages
of the conversion of the dependency structure into an (equivalent)
English sentence. As specified in 5.2, three main steps are
distinguished:

1. Selection of the main verb, and the rest of the target
language words,

2. Definition of the syntactico-semantic relationships,

3. Actual output of the generated sentence.

The following pattern can be observed:

(*) main verb selection:
requires detailed knowledge of the contextual requirements of the
separate verb senses that the program knows about. This 1is the
mechanism of 'fanning-out' (see fig.1), which will effectively decide
whieh synonym of "ask1" to use: "inquire"™, "question", "examine",
"review", "scrutinise", etec. (the synonyms are taken from Roget's
Thesaurus).

(¥) environment network production:
this makes use of two distinct types of data:
a.) general linguistic knowledge - examples of this were
given in 5.4.1: semantic 'agent' is the syntactic subject; semantic
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‘recipient' is either a direct object, or a "to" prepositional phrase;
the verb comes after the agent and before the prepositional phrase
specifying location; a 'mobject' (mental object) 1is most often
expressed as a "to" or "that" complement phrase; etc.

b.) specification of the syntactic framework of the target
main verb, which will have to be consulted in order to resolve poten-
tial syntactic ambiguities (in the output: is this going to be a
direct object or a prepositional phrase), and thus guarantee that the
surface syntactic rules and the contextual restrictions are not
violated.

(*) sentence output:
this phase makes extensive use of the target language lexicon and
grammar rules (agreement, morphology, pronoun substitution, etc.), and
makes sure that the generated sentence is (at least) a syntactically
well-formed string of words.

In the light of these data requirements, the use of the data as
outlined above, and the processes which access and utilise it (see
also fig.2), the general structure of the generator takes the shape of
fig.3. For more specific details of the program implementation the
reader is referred to Appendix (i).

dependency
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1
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chapter 6.
Review, Perspectives and Conclusions.
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6.1. System Review.

The discussions in the preceding chapters clearly attempt to
provide answers to more than one question, quite different
conceptually, but related within the overall objective of this work.
Some of the points discussed were general principles underlying the
design of the system. Some of them were the justifications for these
principles and hence for the approach adopted. On this basis some
specific mechanisms were proposed as devices for applying the
principles. These mechanisms were developed within an overall
framework for automated computer-based text processing, to obtain a
natural language processing system capable of the task of translation/
paraphrase.

There are thus several aspects to this study. There 1is the
general problem of organising any natural language processing system.
Then there is the problem of identifying an adequate approach to the
task of text analysis. The focus of the investigation has been on the
place of semantics in a computer-oriented framework for language
processing, and particular interest has been paid to the issues
involved in the judgemental aspect of semantics: the resolution of
linguistic (lexical and structural) ambiguities is the primary objec-
tive of the system, followed by the construction of an unambiguous
meaning representation. The object of the program is therefore
semantic analysis, and the claim made by the work is that the gap
between surface text and internal semantic representation should (and,
indeed can only) be bridged by the Jjoint efforts of a syntactic
processor and semantic judgement specialist routine(s). The method is
by combining the syntactic recognition of a constituent with semantic
evaluation of its coherence as a unit and its compatibility with other
units, based on global analysis of the contextual environment. This
procedure is applied recursively, in a framework of preference
semantic theory incorporated in an ATN syntactic processor. The
underlying strategy in the semantic analysis is that of semantic
pattern matching as opposed to semantic expectations, thus showing a
bias towards passive rather than active semantic parsing. 1In order to
support this strategy, the notions of contextual verb frames and
preplate stacks have been developed, in addition to the bare templates
and semantic formulas taken over from Wilks. These are static data
structures embodying some of the semantic knowledge of the parser.
The rest of this knowledge is distributed procedurally in the program
implementation: various techniques and principles for disambiguation
are employed. These control the application of semantic tests which
are guided both by the static knowledge of the analyser and by the
semantic content of the component constituents. The tests evaluate
contextual requirements within the constituent being analysed and
construct a meaning representation for the constituent. The effect is
the dynamic construction of only those semantic structures which are
valid within the current context. The evaluation of the final
dependency structure corresponding to the meaning of the input
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sentence is accomplished by subjecting it to an inverse transforma-
tion, aimed at re-expressing its meaning in English. Thus automatic
paraphrasing is effected. This is carried out by a generation program
which is carefully designed to segment the process into two largely
independent phases (environment network construction and sentence
output) thus making it possible to utilise the same program control
structure and most of the code for translation instead of paraphrase.
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6.2. My System In Relation To Others.

It has already been noted that the system described here is a
hybrid descendant of Woods' and Wilks' work in the field of text
processing. Clearly, my attempt has been to circumvent certain
disadvantages in these two projects and to amalgamate their respective
approaches to language anhalysis within a methodologically sound
framework serving as the basis for a parser which is flexible and
capable of accepting rather complex syntactic structures;
sophisticated and intelligent to treat various types of ambiguous text
properly; open-ended, i.e. easy to extend both to handle new types of
constructs and to accommodate further developments and/or changes
needed to gear it towards performing other tasks in the domain of
natural language processing; and efficient in terms of performance
features and figures.

There are naturally similarities between my approach and those of
Woods and Wilks. However, Woods has contributed only on the level of
supplying the mechanism for parsing - the concept of an ATN grammar
and interpreter; his treatment of language analysis as a two stage
process (syntactic recognition followed by semantic interpretation)
going through explicit intermediate syntactic (TG based) structures,
is considered quite inadequate and inappropriate for dealing with real
life texts, and for solving the problems with which this project is
concerned. On the other hand, Wilks' influence on this project is
much more significant. Several points of methodological interest are
extracted from his system: the general strategy of semantic pattern
matching, the representational scheme based on semantic primitives and
allowing for a flexible system of semantic categorisation and
representation of a word-sense meaning, the preference semantics
principle for choosing between alternative interpretations. All these
underlie in a very important way the design of my parser.

Substantial differences between my system and its predecessors are
easily spotted. Woods' strategy for text analysis has been rejected
altogether, so has been  his theory of procedural semantics; the ATN
grammar used by my system is similar to, but not the same as the LUNAR
grammar, the difference being not only in the range and types of
constructs handled, but in the parsing strategy adopted as a necessary
prerequisite for efficient analysis of postmodifying constituents; the
ATN interpreter has been developed and implemented with this strategy
in mind, and is designed to provide an efficient interface between the
syntactic recognition and the semantic judgement routines. This ATN-
guided syntactic preprocessing of the text replaces Wilks' initial
fragmentation. As a result, his bare templates do not now have to
account, among other things, for surface patterns, and can be matched
more freely onto the semantic content of the constituent slot-fillers.
The logical extension of this idea is the notion of a verb contextual
frame. The strategy of generalised, global, context-sensitive
semantic pattern matching allows me to eliminate Wilks' consecutive

- 6.4 -



passes over the same piece of text. Indeed, great care has been taken
to avoid both unwanted syntactic backtracking and unnecessary semantic
parallelism in the processing, by designing versatile semantic
specialists and establishing the points in the analysis process where
they can be invoked and be of greatest use. The various causes for,
and types of, lexical and structural ambiguity have been studied and
specifiec mechanisms for dealing with each have been designed and
implemented, all of which lie within the general strategy adopted.

Throughout this thesis, references have been made to related work
in the field of natural language processing. Usually the reference
was made in the context of discussing a specific point. I shall now,
therefore, outline very briefly what the position of my system as a
whole is in relation to other recent and current projects.

Considering the original ATN model, some effort has been invested
by Woods 1in generalising the model and improving +the parsing
strategies (see bidirectional "island parsing" which can start at any
point of the sentence [Woods76]). This is a theoretical development
of the model which has been to a large extent motivated by the desire
to develop an ATN parser as a front end to a speech understanding
system., As far as semantic processing with ATNs is concerned, apart
from Simmons' semantic networks (where "semantic" is a bit of a
misnomer, as was already discussed in chapter 2), the most substantial
effort is, to my knowledge, that of Ritchie [Ritchie77]. His aim is
to develop a model of language "which allows linguistic description of
English in processing terms". The ATN formalism thus comes in very
handy as a notation, and the ATN grammar as a concept on which an
analyser is based. Ritchie is however more interested in the details
of the processing mechanisms, than in general questions of semantic
processing, or the relation between syntax and semantics in a natural
language analysis system. He has implemented a grammar rather than a
parser whose purpose is to clarify the ideas involved in his model.
Another possible extension of the ATN model application has been
proposed by Steedman (Mark Steedman at a lecture at Essex University,
1977), who suggested that instead of being represented by one network,
the grammar could be decentralised by associating small ATNs with the
definition of each verb to drive the analysis process. The problem
with this approach is exactly that associated with Riesbeck's approach
to active parsing based on semantic expectations/ predictions, which
has been discussed at length in the preceding chapters.

None of these approaches offers a definitive answer to the ques-
tion: how to conduct the analysis process in a highly ambiguous and
non-deterministic environment. The judgemental aspect of semantics,
as noted in chapter 0, tends to be ignored. Even Schank, who
discusses issues 1like "syntactic" and "semantic" ambiguity in the
context of conceptual analysis [Schank73], does not offer a general
framework within which the problem of their resolution could be
solved. It is not clear whether the CD parser can actually handle
Wwide range of instances of multiple choice; on the other hand, it 1is
clear that Riesbeck's treatment of "sense vs. meaning" (see 2.2), as
well as Simmons' extreme view on lexical ambiguity (2.1) are adopted
more in order to circumvent the problem than to solve it in a general
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way.

Apart from Wilks, who openly acknowledges the problem of word-
sense ambiguity, the only project which makes an explicit attempt to
solve it, is that of Hayes [Hayes77]. His work is concerned with
defining a process of finding the correct interpretation for ambiguous
words as objects (i.e. ambiguous nouns), based on associations
triggered within the environment of data structures conceptually
similar to Minsky's frames [Minsky75] (not to be confused with my
contextual verb frames). The work has a definite merit of presenting
a unified systematic approach to the problem. It is not very clear,
however, exactly how the approach can be extended to deal with the
other parts of speech: ambiguous verbs, adjectives, etc. Little
attention is devoted to studying the role of syntax in the disambigua-
tion process. Incidentally, Hayes uses an ATN grammar to parse his
example sentences, but since the problem of structural ambiguity is
ignored in his framework, the grammar is very simple (for example the
noun phrase network forbids postnominal modification) and in effect
the parsing can be carried out deterministically. This is the other
problem with Hayes' work - it does not offer any clues for
incorporating  his technique for lexical disambiguation in a
generalised, versatile parser intended to deal with more complex
texts; nor does it suggest how a complementary approach aimed at
solving the problem of structural multiple choice could be
incorporated in his framework.

As far as the -latter problem is concerned, there is one project
which seems to offer a solution to it - this is Marcus' deterministic
parser, which applies "wait-and-see" strategies in order to avoid
making wrong decisions and then having to back up to the decision
peints. The idea is to exploit enough grammatical knowledge 1in
parsing to ensure that a constituent is used only when and where it
makes sense in the current context, thus avoiding blind syntactic
nondeterminism., Clearly this is very close to the principle adopted
in this work, and referred to as "semantic wait-and-see": decisions
about the structure(s) to be built are delayed until enough contextual
information is available. However, I do not go as far as Marcus in
saying that a deterministic parser is a feasible proposition; in fact,
as it has already been discussed, when one faces the problem of
structural multiple choice, one faces the fact of nondeterminism as
well, especially if one is concerned (primarily) with syntactic
recognition, as Marcus' theory is. Hence the label '"semantic"
attached to my approach, signifying that the structure building
process in my system is guided by the semantic content of all of the
constituents available, rather than by syntactic features of the top
few constituents in the input buffer. Again, the problems with
Marcus' system are that his grammar seems to cover a not very wide
range of language constructs, and it is not very clear how well his
matching rules can be extended while maintaining his current level of
system performance; in addition, he offers no treatment of lexically
ambiguous items.

A not insignificant number of ideas, principles and mechanisms
developed for natural language processing have lately been utilised in
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developing front ends for data base systems [Harris77], [Hendrix781],
[Mylopoulos76], [Waltz78]. This is one of the few situations at
present in which a NL system has to stand up to real life texts, thus
demonstrating how good and useful a particular approach is; however,
such systems have to be judged carefully. Firstly, in these systems
the natural language front end is tied to the very restricted universe
of discourse represented by the data base, so it is not always clear
how easy it would be to generalise any particular approach or device,
or exactly how a particular framework could be extended for less
specific situations. In addition, simplifying assumptions justified
by the limited universe with which the data base deals, are quite
often made, which allow the designer of the front end system to cut
corners, but which are totally unrealistic, and hence unacceptable,
for a general natural language analyser.

As an example, consider the PLANES system (Programming LANguage-
based Enquiry System) which manages a database of aircraft maintenance
and flight data [Waltz78]. The analysis of a natural language query
involves syntactic recognition of phrases with a specific interpreta-
tion relative to the data base. The phrase patterns are stored and
represented as ATN subnetworks - one for each different semantic
object in the PLANES world. The phrase matching is followed by
semantic pattern matching at query (sentence) level using concept case
frames - patterns of questions understood by the system. At first
sight these can be considered to be similar to my contextual verbD
frames, but this is so only on a very general conceptual level. While
my frames are general devices aimed primarily at context evaluation,
disambiguation and structure building, Waltz's concept case frames are
data-base specifie, and, along with the patterns, embody a semantic
grammar for the restricted planes world: here no real problems of
matching a set of constituent concepts are encountered, particularly
with the simplifying assumptions Waltz makes, such as the lack of
lexical ambiguity, and simplicity of the question forms. In my system
the question of what the case links between the verb and its argument
concepts are is asked only after a frame match has selected the verb
meaning; in PLANES, in contrast, the aim is to fill in a
predetermined set of slots.

Similar remarks can be made of the process of query analysis in
TORUS [Mylopoulos76], where again noun (phrase) nodes are tested for a
fit in a case frame for the verb. Thus no real parallels can be drawn
between my system and current front end natural language analysers for
data bases.



6.3. The System In Perspective.

6.3.1. Current State.

The system has been tested on a non-trivial set of syntactic
constructs, the development being essentially a three step process:
making sure that a new construct can be recognised by the grammar;
making sure that semantic analysis can be incorporated in the process,
or that higher level semantic routines can be made aware of the
construct; and finally making sure that the generator can handle the
intermediate representation of the construct. Thus the grammar grew
gradually, and so did the program. Of course, one of the central
questions throughout this research was how easy it 1is to extend an
existing system in order to make it hospitable to a new construct.

Necessarily, this involved a study of how a proposed extension
would affect the present coverage of language constructs, and how it
would interact with the existing grammar framework. In most cases it
turned out that the changes or extensions to the grammar that were
needed were not many, and the real difficulty was interfacing the
context of the new construct with the parsing environment in which the
recognition has to be carried out, i.e. in which the construct has to
be analysed. What this means is that the setting of the registers
local to the parsing environment, as well as the communication of data
(registers) between different stages in the processing (i.e. levels of
computation) had to be planned carefully. I found that once the basic
grammar framework was set up, extensions to it were relatively easy to
make. The basic grammar with which this project started was very
simple: an NP V NP nucleus with possible prepositional phrases or
complements optionally appearing at the end. However, it was very
useful in setting up the underlying structure of the analyser and
establishing the basic form of the semantic routines.

Once the grammar started growing, and more constructs were added
to it, some of the ideas concerning the organisation of the semantic
routines, as well as the possible ways of incorporating semantic
judgement in the grammar, had to be thought over and restructured; the
process without doubt contributed substantially to the clarification
of my basic ideas. After the grammar was extended to cover a quite
wide range of language construects, it was possible to make useful
generalisations about the organisation of the semantic specialists and
the position of semantic judgement in the overall process of sentence
analysis. It was also possible to acquire a more structured view of
the principles determining the application of the semantic judgement
routines. For example it was about a year before the concept of a
contextual verb frame, together with 1its organisation and the
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principles for its use, were developed and crystallised, and the
necessary mechanisms incorporated in the system implementation in a
Wwell-organised way. But it was then only a matter of weeks to extend
the system to deal with some "-ing" phrases in subject and object
position.

The development of the generator followed similar 1lines. The
questions asked were: can this construct, or rather a dependency
structure containing a representation of this construct, be handled by
the existing generator framework? If not, what extensions are
necessary to do so? Once the general strategy of a two stage genera-
tion process going through an intermediate environment network was
adopted, and the skeleton structure and organisation of the routines
generating nodes for clauses and nominal groups were relatively clear
and stable, it was easy to extend the generator apparatus to handle
nominal pre- and post-modifiers, relative clauses, "-ing", "to-",
"that-" phrases, etc. The process of extending the generator,
however, has two aspects: is the mechanism to handle a construct
available in the implementation, and does the generator possess enough
linguistic knowledge to express a dependency structure it is given?
It is reasonable to claim now that as far as versatility in terms of
semantic structures that can be expressed, as well as in terms of ways
of saying things in English is concerned, the program 1is quite
flexible. This was necessary in order to meet the requirement for
"dynamic paraphrases" that was set out in chapter 5. - However, since
work on the generator started after the analyser had made substantial
progress, it was felt that an effort to develop ‘a flexible and
versatile output program would be more Jjustified than an effort to
extend the generator vocabulary. As a result there 1is certain
disparity between the sets of concepts that the analyser and the
generator know about.

The dictionary used by the analyser contains about H400 entries;
around 64 of these are verb definitions, and most of them have more
than one meaning. The reader can get some idea about the content and
organisation of a dictionary entry from Appendix (ii). The dictionary
used by the generator is considerably smaller; as a result even though
the analyser has been tested on a wide range of input sentences, not
all of the resulting dependency structures can, at the time of
writing, be expressed back into English. It is for this reason that
the example sentences tend to have rather simple subjects and objects:
very often it is John who does things, and Bill or Mary that things
happen to. It is important to realise that this is so not because of
simplicity of the analyser, but because of the currently 1limited
generator vocabulary. The system can handle examples of real 1life
texts, as can be seen from Appendix (iv).

The range and form of syntactic constructs acceptable can be seen
from Appendix (iii).
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6.3.2. Limitations Of The System.

Every natural language analysis system has limits on the range of
linguistic phenomena it can handle; so does mine. These, however,
fall into different classes as far as their position in the overall
analysis process is concerned. At the 1lowest 1level there are the
syntactic constructs the system cannot recognise (see Appendix
(iii)). Extending the program to accept, for example, existential
"there" or comparative and superlative adjective structures is not
really important at this stage because it would not contribute to the
development of the project as far as its primary objectives are
concerned. The system does not analyse questions, but again, it is
felt that no major reorganisation of the analysis process would be
necessary, and they could easily be accommodated in the existing
framework of the SBUILD semantic specialist (the grammar extensions to
recognise questions would not be too difficult to formulate).

Then there are phenomena occupying an intermediate position. For
example, the system in its present state cannot handle conjunctions.
It was already noted (1.1) that these constitute one of the causes of
structural ambiguity. Consequently, the system should offer some
treatment for them. It is my feeling that it would be possible to
design a separate semantic specialist for conjunctions, to Dbe
activated whenever necessary, which falls within the general framework
of semantic pattern matching applied at well chosen points of the
analysis. Unfortunately, the recognition (or more precisely the lack
of such) of structures with conjunctions is a deficiency of the basic
ATN model, and even though some suggestions to overcome it are made by
Woods [WoodsT31, the problem requires more thought. A generalised
treatment will probably require some sort of demon mechanism (see
[Winograd72]) which will have to be interfaced to the overall control
structure of the ATN interpreter. However, the problem was felt to be
too 1large to tackle along with all the others being studied; a
justification for ignoring conjunctions at this stage may be the fact
that, as shown in (1.1), the other types of structural and 1lexical
ambiguity provide enough material for setting up a (hopefully) general
framework for language analysis.

One level up are problems connected with the more immediate objec-
tives of this system. I do not claim to offer a complete solution to
the multiple choice problem. Semantic pattern matching alone is no
panacea, and clearly wider world knowledge is required to interpret

At some time of his life every man is a bachelor

properly. Examples like this are too easy to find and deserve more
than superficial treatment which they can be given in one thesis
subsection. The issues concerning the exact kind of knowledge needed
to deal with them, and the principles and mechanisms for its utilisa-
tion, have been left out of this discussion; however it needs to be
said here that no language analysis system can be complete without
offering a solution to them.
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A possible partial, if not complete, solution could be to provide
the system with an inference mechanism through which alternative,
semantically plausible readings would be fed; the general principle
of preference semantics would then be applied to the outputs of these
inference process(es). The lack of such a mechanism accounts for the
program's ignorance when it comes to the problem of pronoun resolution
in particular, and the problem of referential ambiguity in general.
The reasons why no attempts have been made to deal with these problems
Wwere explained in (1.1) and I shall not repeat them here. The only
point that should be made here is that in order to provide the higher
level deductive component of a future system with all the information
it will need, some aspects of language which the system currently
ignores, because they are too far away from the general problem of
multiple choice, will have to receive more careful treatment: no
sophisticated inference module would tolerate a superficial treatment
of qualification, tense, complex determiner structures, etec.

6.3.3. Future Developments.

Following the remarks already made in this section, it is clear
that the system can be extended in more than one way. An immediate
course of action is to "connect" the dictionaries used for analysis
and generation, i.e. make the generator know as much as the analyser
does (see 6.3.1). Of course this should not preclude the
straightforward extension both of the dictionary and of the grammar,
thus enlarging the scope of the system as a whole.

Then there are certain issues of theoretical interest in my
approach to text analysis. The most important of these has its roots
in the nature of the ATN model. It was already shown that a transi-
tion network based analysis of sentences proceeds as a sequence of
embedded computations. The model formalism developed by Woods allows
communication between 1levels (via the SENDR and LIFTR primitives).
The facility is, however, used only for initialising registers (before
commencing an embedded computation) or resetting them (before resuming
an upper level one). No study has been made on how to use facts known
about upper 1levels (say, which are true within the range of the
embedding clause unit) when processing a lower level. At present it
would be so easy to trip the system by saying

John claims that his pet elephant can shoot.

On the one hand this is a general theoretical problem encountered
under different guises in many areas of AI research. On the other
hand it 1is a practical problem for a language analysis system.
Finally, it 1is connected in an important way to the problems of
analysing metaphors at the level of embedded clauses. Currently, the
semantic inconsistency of a hypothesised embedded clause unit triggers
the rejection mechanism, and backup 1is initiated following the
blocking of the syntactic path currently being followed. This means
that a sentence like

Ships proudly ploughing the sea are a magnificent sight
will not be parsed at all. One solution to the problem might be a
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different treatment of the notion of "failure" (in the case of meta-
category mismatch - see 4.1). A structure might be not rejected
altogether, but constructed and strongly 'depreferred' by assigning it
a very low 'preference weight' (see 4.,5), Such an approach will fit
easily into the preference semantics framework, but the cost will be
high: greatly increased syntactic nondeterminism (even though it will
not be as bad as explicitly following all the syntactic recognition
paths through the network grammar.

In connection with this, it would be interesting to see how much
of the later ideas of Wilks, and especially "making preferences more
active" [Wilks78] could be incorporated in my system.

Clearly all the issues outlined above are important, and require
careful consideration.

Next come system developments that have to be carried out before a
claim can be made for a relatively ‘'complete' natural language
analysis system. The first of these 1is a mechanism for pronoun
resolution, which as already noted requires some sort of inference
mechanism. It is sometimes maintained (e.g. by Minsky and Charniak)
that some initial "parsing" can effectively be decoupled from the
application of the inference mechanism. However, as Wilks notes, this
is not so because "many of the later inferences would actually have to
be done already, in order to have achieved the initial parsing"
[WilksT6ec].

It is reasonable to believe that a mechanism conceptually similar
to Wilks' common sense inference rules ([Wilks75] could easily be
accommodated in the proposed framework: thus the semantic patterns
that guide his CSI application procedure are present, though not in
the immediately obvious form of an ordered triple, in my dependency
structure.

A more 'complete' system will most certainly have to deal with
connected texts, rather than isolated sentences - something that my
system does not do. This naturally introduces the problems of multi
sentence analysis, i.e. computing the semantiec consistency and
coherence of a structure in relation to larger chunks of knowledge,
and, in the context of resolution of word-sense ambiguities, the
connected issue of disambiguation by association.

Finally, there is the question of using the system. Currently I
can envisage two possible applications. The first one is implementing
the originally conceived translation system for automatic translation
from English to Bulgarian. Secondly, having in mind the current
interest in providing natural language access to structured data bases
(see 6.2), an attempt could be made to extend the system to serve as a
general purpose front end for data base access i.e. as a portable
natural language query analyser applicable to the different contents
of queries addressed to distinct data bases.
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6.4, Conclusions.

Even though development of the natural language processing system
described in this thesis is still continuing, I believe that the
project as a whole has achieved its initial objectives. The system is
capable of handling texts of average complexity, while performing in a
highly ambiguous environment, both syntactically and semantically.
The dictionary currently used by the parser 1is not very big, but
certainly is not small either, and expanding it is trivial. A
complete processing cycle is performed, over a range of sentences,
which starts with text analysis, with emphasis on the ever-present
problem of multiple choice, goes through an intermediate unambiguous
meaning representation of the input, and then expresses that in
English, thus offering a natural way of validating the results of the
analysis process. The system performs creditably over a range of
sentences, and resolves word-sense and structural ambiguities in the
input correctly and efficiently, as both performance statistics and
analysis tracings show. The system performance does not become
dramatically worse when real life texts have to be handled. Closer
examination of the processes involved in the cycle described above
demonstrates that the external manifestation of the program work is
not merely a result of clever surface pattern matching, but reflects
the systematic application of a set of principles derived within a
general framework for text analysis in a highly ambiguous environment.

Evaluating the system in the light of the overall objectives of
this project, it is possible to draw certain conclusions.

(1.) It 1is feasible to design a natural 1language analysis
processor based on the judgemental aspect of semantics. Furthermore,
any approach to language analysis has to acknowledge the fact that the
problem of multiple choice needs a solution, and this has to 1lie
within a general framework rather than rely on applying randomly
designed and/or ad hoc rules.

(2.) In a highly ambiguous environment, an overall strategy of
global, context-sensitive, semantic pattern matching is more effective
than active parsing based on semantic expectations/ predictions. The
strategy is embodied in the "semantic wait-and-see" principle which is
the underlying and guiding principle for the design of the parser.

(3.) The utilisation of syntactic information during the analysis
process 1is not only useful, but necessary for the computer
'understanding' of text. Furthermore, semantic Jjudgement can be
incorporated in the process of syntactic recognition, thus allowing
the syntactic and semantic processes to be carried out virtually
concurrently.

(4.) Such an approach is the basis for a considerable improvement
in the performance of the parser: the close interface between
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syntactic preprocessing and semantic valuation of a constituent, when
organised properly, can be extremely efficient.

(5.) The dependency structure delivered as a result of the
analysis is clearly unambiguous, sufficiently removed from the surface
text, and informative enough to be handled conveniently by a separate
and independent generation program.

(6.) The generator can be designed to be flexible, versatile, and
well-structured so that minimal effort, and almost no changes in the
program control structure and code, will be needed in order to adjust
it to generate another 1language than English from the (largely)
language independent semantic representation.

The framework defined by (1)-(6) above allows a systematic and

general approach to text processing, possibly also applicable to tasks
other than translation/ paraphrase.
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Appendix (i)

The Program.



appendix (i)7 1

What follows is a brief specification, on a structural rather
than on a functional description basis, of the implemented natural
language analysis system. The program is written entirely in LISP,
the language being an obvious choice for a number of reasons:

(a.) it is very convenient for symbol manipulation; it is still the
most widely used language in the field of natural language
processing, and is the only apprpriate language available on
the Cambridge IBM 370/165;

(b.) the programmer is allowed to blur the distinction between code
and data, which enables him to organise the control structure
of the program in an extremely flexible and efficient way. In
an environment where managing 15000 lines of source code is a
perpetual task, this is an invaluable asset;

(c.) the ATN formalism, which is in the basis of this project, 1is
defined in such a way that the grammar can be naturally
represented as a LISP data structure (see Appendix (iii));
furthermore, the tests and actions on the arcs may be
arbitrary functions in a functional specification language,
whieh LISP is. If the ATN interpreter itself is written in
LISP, it will have the simplest possible interface to the
grammar, as well as a convenient mechanism (the EVAL concept)
of transferring control directly to the arcs of the grammar
(see b. above).

The system consists of two largely independent parts: the analyser
and the generator. The only way of communication between the two is
via the dependency structure, which is the output from the first, and
the input to the second phase of the sentence processing cycle. The
two programs are divided into a number of modules, each containing
functions relevant to a particular aspect of the overall text analysis .
(or generation) process.

The Parser.

The following modules are invoked during the process of sentence
analysis:

BCKTRACK
COMMON
COMPL
CONTROL
CTRANS
FUNCDEFS
GENERAL
GERUND
INIT
MAINLGOP
MODIFY
MORPH
NPBUILD
ORG
PICKADJ

the program
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PICKNOUN
PICKVERB
PPHANDLE
READDICT
SBUILD
SORTER
SORTPACK
SUMMARY
VBHANDLE.

The entry point to the program is in "MAINLOOP"¥* where the basic
sentence processing cycle (ANALYSE) is defined, and after a call to
INITIALISE, activated. INITIALISE is defined in "INIT", together with
READSENTENCE (the program runs offline, non-interactively, due to the
large computer resources required) and READGRAMMAR; READDICT, which is
also called from INITIALISE, is defined in a separate module of the
same name, containing functions which scan the master dictionary,
construct a subdictionary of the words which will be used during the
run, and set the property lists of the lexical items in question to
the values of their various attributes (see Appendix (ii)). In the
process of doing so various auxiliary functions may be called to
perform morphology on the lexical item ("MORPH" is based on Winograd's
treatment of the subject), or just to initialise properties and
perform bookkeeping ("SORTER") and general sorting ("SORTPACK"). The
true analysis process starts by executing the instruction (Parse S/)
which activates a (PUSH S/...) and transfers control to the function
'Parse' in "CONTROL"™,

Below is a top-down organised description of the parser modules
and the functions contained in thenmn.

CONTROL: responsible, through the function 'Parse', for maintaining
the major loop of the ATN interpreter: the arcs leaving a state
are tested one by one and the first possible transition is carried
out. In case a dead end is reached, or a POP arec encountered, the
process of backtracking is activated.

GENERAL: the two most important functions here are FOLLOW which
determines whether an arc currently being investigated can be
followed. If so, PERFORM is invoked which starts executing the
actions on the arec. In a not entirely obvious way, i.e. by
calling EVAL on each action as specified in the grammar, this
function passes control to

FUNCDEFS: this contains the definitions of the actions to be found in
the grammar specification (such as SETR, SENDR, GETF, etec.). Note
that due to the lack of distinction between program and data
exhibited by LISP (see b. above), it is possible to have general
LISP system functions on the arcs, as well as ATN specific ones.
This allows for an extremely flexible and powerful grammar defini-
tion.

¥ the following convention 1is adopted: identifiers in wupper case

surrounded by double quotes are names of modules, otherwise they refer

to function names.
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BCKTRACK: contains the functions which perform the book-keeping work
related to saving the current state of the analysis and later,
when need be (see CONTROL), restoring it.

At certain points of the analysis process, semantic routines are
called from the arcs of the grammar. These are either the sentence/
clause specialist, or the noun group specialist.

NPBUILD: contains the major functions which at one point or another
participate in the process of constructing the semantic
representation of the noun phrase. The pilot routine is NPBUILD,
which, depending on context, might refer to (MAKE-TRACE-IN REL-
CLAUSE) and a whole host of auxiliary functions, or transfer
control to another module, "PICKADJ" (see below), to process
adjectival premodifiers.

SBUILD: the master function SBUILD is defined here. It only sets up
the basic skeleton semantic structure of the clause unit, and
tests the context to determine which specialist structure building
routine to activate. The module also contains the definitions of
STRUCTURE-BASIC (see 4.5), and FINAL-TOUCHES-TO-THE-STRUCTURE (see
below).

PICKADJ: this is where the sister function to STRUCTURE-BASIC is
defined: STRUCTURE-WITH-PRED-ADJECTIVE. It also contains funec-
tions 1like ADJ-NOMINAL-MATCH and ADJ-MODS-MATCH, together with
their auxiliaries, which are the procedural embodiment of the
mechanism for adjective frames matching. ADJ-NOMINA1-MATCH can in
addition be accessed from NPBUILD.

CTRANS: this defines another specialist structure-building function,
COMPLEX-TRANSITIVE-STRUCTURE. The main function is just a switch;
the actual work-horse routines are STRUCTURE-WITH-COMPL-OBJECT
("They made him president") and STRUCTURE-WITH-COMPL-ADJECTIVE.
("They made him happy").

Next come the modules which can be accessed from any of the struec-
ture building specialists above. These contain functions which embody
the mechanisms for contextual verb frames application, templates and
preplates matching, handling of postmodifying complement constructs,
and so on.

PICKVERB: the module organises and supervises the process of
contextual verb frames application. The master routine is
DISAMBIGUATE-VERBS which is accessible from STRUCTURE-BASIC in
"SBUILD™". A1l the auxiliary functions for the process: FORCED-
CHOICE-PREP, FORCED-CHOICE-COMPL, ANALYSE-CUES, etc. (see 4.5) are
defined here as well; so are MATCH-TEMPLATE~REQUIREMENTS and
MATCH-CASE-PREFERENCES. Another important function here which is
accessible from all the semantic analysis routines is ITEM-BEST-
PREFERRED-FROM which applies the selective principles of
preference semantics theory.

PICKNOUN: this is the module which uses the information supplied by
the dictionary and attempts disambiguation between noun meanings.
The functions that do most of the work are MATCH-SUBJECTS-AGAINST,
MATCH-OBJECTS-AGAINST and FILTER-NOMINALS. These are accessed
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from all specialist structure building functions in "SBUILD",
"PICKADJ" and "CTRANS" (see above).

PPHANDLE:this 1is another part of the general frames application
mechanism: the parsing of optionally used prepositional phrases
specified in the verb frames. This is accomplished by INITIAL-
PREPLATE-TIES which makes heavy use of PP-MATCH for the actual
matching process, and NOUN-DEFS-FITTING-IN-PP which carries out
the disambiguation of modifying nominals ("hit Mary with the
club"). This module also contains the definiton of the general
preplate matching specialist MODIFY (see 4.5), to which INITIAL-
PREPLATE-TIES is Jjust a subsidiary. Thus the module is closely
interfaced to

MODIFY: this is where all the functions relevant to the algorithm for
preplate ties application are defined (4.5). This is done by
COMBINE which takes a partial structure and a modifying
prepositional phrase and tries to integrate them into one. 1In the
process of doing so, the semantic tests are applied by COMPATIBLE
which queries the compatibility between the top level item (poten-
tial head) and the currently analysed modifier, and MATCH which
provides the interface between the general test application
mechanism (as defined in the module) and the preplate stacks as
supplied by the dictionary.

The MODIFY specialist can be invoked from all specialised struc-
ture building functions (see above). Thus "PPHANDLE" is accessible to
"SBUILD", "PICKADJ", "CTRANS" and "NPBUILD",

After the application of frames, templates and preplates has been
completed, control is passed back to "SBUILD"™ by calling FINAL-
TOUCHES-TO-THE-STRUCTURE. The function, apart from tidying up the
semantic structure built so far, checks for any other postmodifying
constituents: to- or that- complements, -ing phrases, etec. The module
that gets activated then is

COMPL: this is where the mechanism for dealing with postmodification
by clause constructs 1is defined and specialist semantic and
linguistic knowledge relevant to the process embodied (see 3.10,
4.5). The work 1is done by CONVERT-COMPLEMENT-TO-CASE which
decides on the proper functional relation between the currently
available (semantic) structure and the postmodifying complement.
After the decision has been made, INSERT-COMPLEMENT-CASE
incorporates the complement in the structure.

Control is then passed back to SBUILD, where the semantic
representation is given its final form and returned as the result of
the SBUILD function. The ATN interpreter then resumes the network
traversing loop.

The modules and functions described above make extensive use of
some auxiliary functions which do most of the low level, behind the
scenes, Wwork.

VBHANDLE : This module contains definitions of functions which
manipulate the semantic representations of the constituent slot-
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fillers and integrate them into the gradually expanding semantic
structure. The structure stats from the semantic formula of the
main verb of the clause (see 3.8); it is organised, and
consequently constructed, around it.

ORG: the functions in this module are in heavy use by all semantic

T specialists: they know the syntax and semantics of the semantic
formulas as well as of the dependency structure. They know how to
take a formula apart and extract specific semantic information
required by the higher level, more general semantic tests. Names
like FORMULA-OF-NPHEAD, LOCATE-CASE, GET-CASE-HEAD, etec. should
be self-explanatory. The module also contains some functions
subsidiary to keeping the ATN interpreter going: NEXTWORD, FIND-
DICT-DEF, etc.

COMMON: the functions defined here are conceptually no different from
the ones in "ORG": BELONGS tests for semantic class membership,
GET-ITEM always returns the formula for the head-noun in any noun-
phrase structure, LOCATEHEAD does the obvious thing suggested by
its name. The reason why they are in a separate module is because
the same functions are employed by the generator. Hence the name
of the module.

Finally, there is the module "SUMMARY" which is a very useful and
helpful debugging device. The main function in it is DISPLAY-PARSE-
MAP, which is automatically called if the analysis process fails in
some way. As a result of the <c¢all, a ¢tree 1is printed out,
representing in a conveniently formatted graphical form a complete
history of the parsing process, with all its steps, transitions, and
decision points clearly displayed. The program contains a switch
whereby the user can call the function himself and trace the analysis
process.
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The Generator.

The generator functions are grouped in modules as follows:

AUX
COMMON
DEEPCASE
INITGEN
MASTER
MORPHGEN
NETFUNCS
RELATIVE
SELECT
SYNNET
SYNONYMS.

The process of paraphrase generation clearly requires some
initialisation to take place, and the relevant functions are defined
in WINITGEN": INITIALISE-LEXICON, INITIALISE-NOUN-PROPERTIES,
INITIALISE-SYNTACTIC-ORDERING. The module also defines the function
which effectively interfaces the analyser and the generator: it is
called from ANALYSE in "MAINLOOP" (see above), and activates GENERATE:

(DE GENERATE~-PARAPHRASES (DEP-STRUCTURES)
(MAPC DEP-STRUCTURES (FUNCTION GENERATE)))

Thus control is passed over to

MASTER: the overall structure of the generator 1is defined Dby
PARAPHRASE which reflects the two stages of the generation process
as discussed in chapter5. This starts with calling BUILD-SYNTAX-
NET-FOR with the dependency structure delivered by the analyser as
its argument. The result is an environment network, later handed
over to TRAVERSE-SYNTAX-NET which is directly responsible for
generating the sentence. BUILD-SYNTAX-NET-FOR, also defined in
the module, can be called recursively to construct a node in the
environment network corresponding to an embedded clause in the
dependency structure. A verb synonym is selected, and then handed
over to USE (also defined here) which carries out all the essen-
tial manipulations resulting in the construction of the environ-
ment network. The process is one of successive analyses of the
constituents dependent on the verb in the dependency structure,
and is strongly guided by the syntactico-semantic environment
specified by the selected synonymn.

SELECT:

SYNONYMS: the major function responsible for the process of synonyms
selection, SELECT-MATCHING-SYNONYM, together with the auxiliary
ones it needs, are defined here. The interface between these two
modules and "MASTER" is not very obvious because of the way a
dictionary entry used by the generator 1is organised. Such an
entry attempts to supply information both about a contextual
environment required for the selection of a synonym, and about the
way in which the components of this environment should be utilised
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for the generation of a paraphrase. The general format of a
dictionary entry is

(verb-sense

(synonym
(SYN-FN1 (CS-TEST1 @constituent-label1))
(SYN-FN2 (CS-TEST2 @constituent-label2))

ceeeeens)

ceeneens)

CS-TESTi are names of context sensitive tests, themselves
defined in "SELECT". The tests' function 1is to evaluate the
global context of the clause (top-level or embedded) as
represented by the dependency structure. The functions 1in
"SYNONYMS" can be divided into two classes. Some organise and
provide easy access to the dictionary entry. Then there are those
that analyse both the dictionary entry and the clause representa-
tion and dynamically construct a LISP data structure which
represents a call to a specific context sensitive test with its
arguments extracted from the dependency structure. This, via
ANALYSE-CONTEXT and EXAMINE-CONSTITUENT, is handed over to the
LISP EVAL mechanism, thus transferring control back to "SELECT".
After all the context sensitive tests in all the synonyms
suggested for the verb sense in the dictionary have been
performed, SELECT-MATCHING-SYNONYM, which has been accumulating
the results of the context evaluation against the requirements of
each synonym, returns the result of (MOST-USEFUL-IN SYNONYMS-
LIST).

After the synonym verb has been selected, the construction of the
environment network begins. Control is back in "MASTER" where a call
to (USE #*synonym) is in progress. Apart from incorporating into the
network information about the form, tense, aspect, negation of the
sentence to be generated, the function contains a statement

(GENERATE-NODES~-FOR *constituents)
Thus control is passed, via GENERATE-NODE-FOR, to

DEEPCASE: this is the module which generates nodes in the network
corresponding either to nominal groups linked to the verb in the
dependency structure, or to states corresponding to predicate
adjectives in the input (embedded clauses are handled by recursive
calls to BUILD-SYNTAX-NET-FOR). Consequently, the two entry
points to the module are NODE-FOR-NOUN-PHRASE and NODE-FOR-STATE.
NODE-FOR-NOUN-PHRASE analyses all the information in the
constituents, decides on how to output it ("the man in the park"
or "the man who was in the park"), and sorts it into slots:
'possessors', 'ad j-premodifiers!', 'quantifiers?', 'relatives!',
'postnominal modifiers'; and then organises the process of node
construction so that all this information is incorporated in the
node. In case a relative has to be output, PROCESS-RELATIVE-
CLAUSE is activated, and control transferred to
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RELATIVE: the two important functions here are AUGMENT-NET-WITH-
RELATIVE, which clearly involves a recursive call to BUILD-SYNTAX-
NET, and RESHUFFLE-RELATIVE-NODE which does postprocessing on the
newly created node (for the embedded relative clause) in order to
get the data in the two clauses (top-level and embedded) in phase.
For example, if it is the 'agent' in the embedded network that is
relativised, its output should be suppressed, but the node for
'agent' cannot be deleted altogether because then the morphology
on the vrb (see below) will run into problems. So 'agent' is
replaced with 'dummy-agent'.

After a complete node for a verb argument - verb dependent
constituent in the meaning representation - has been constructed,
control is back in USE in "MASTER". This now activates another
important function:

(ADD-TO *clause-node <node just constructed>)
which activates the packet of functions in

SYNNET: the module contains two classes of functions. At the lower
level come the specialist routines that construct and manilpulate
the environment network as a data structure with well defined
fixed format: CREATE-SYNTAX-NODE, ADD-TO, etc. Then there are
the definitions of the various functions specifying the syntactic
environment of the selected synonyms. Referring back to the
format of a dictionary entry (see above), SYN-FNi specifies in a
compact way what will be the syntactic function of a constituent
in the generated paraphrase, if that particular synonym 1is
selected. A dynamically constructed call to such a function might
yield something like

(MKOBJ €@recipient),
(MKINGCOMPL by ing-compl @manner) etec.

Again a call to EVAL is initiated, via the function CONSULT (also
defined here) and the information provided by the statements above
is incorporated in the environment network: the node for the
recipient in the dependency structure 1is tagged 'object' and
attached to the clause node; The node for the @manner specifying
embedded clause in the dependency structure is prefixed by the
preposition "by", tagged with 'ing-clause' to denote that it will
appear as a postverbal modifier, rather than in a subject position
for example, and also added to the clause node. Finally, "SYNNET"
defines the function SORTNODE which is called every time a node in
the environment network is constructed. Its purpose is to sort
the components in the node in an order specifying the order in
which they should appear in the generated sentence.

After every constituent in the dependency structure has been
analysed and a node for it constructed and linked to its governor, the
whole environment network is complete. This terminates the call to
BUILD-SYNTAX-NET-FOR in PARAPHRASE, and TRAVERSE-SYNTAX-NET then

begins the second phase of the generation process.

NETFUNCS: Each of the nodes in the environment network is treated as
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a collection of relation-concept pairs (5.4). Thus the node for a
constituent is a small program which specifies how to phrase it.
The environment network is a complete program for outputting the
whole sentence. The module specifies all the relations that can
appear in the network as functions whose effect is to augment the
output string. The module also specifies <coordinating and
auxiliary functions: for example, all of 'agent', 'recipient’',
'poss', 'object', etc. depend on a call to OUTPUT-NP. This in its
own right uses SELECT-DETERMINER, RESTRICTIVELY-MODIFIED, NUMBER-
OF, USE-PRONOUN-FOR, etec. Similarly, 'lexverb', which outputs the
verb group, calls EXPANSION with arguments ¥*verb, ¥tense, ¥form,
*modality, *¥pncode (person number code), *¥negation, thus
activating the module "MORPHGEN" which performs morphology on the
verb. The entry point to "NETFUNCS" is TRAVERSE-SYNTAX-NET, which
is effectively defined as

(DE TRAVERSE-SYNTAX-NET (*node)
(COND
((NULL *node) NIL)
(T
(EVAL (CAR #*node))
(TRAVERSE-SYNTAX-NET (CDR *node)))))

Clearly this might be called recursively from functions such as
'thatcompl', 'ing-compl', etec.

Finally, there are the two modules "COMMON", which was discussed
above (see "The Parser"), and "AUX", which clearly contains the
definitions of some low level functions used by the more specialised
generator routines.
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This appendix shows a representative sample of the dictionary used
for the experiments. Altogether the dictionary contains some 400
words, at least half of which have more than one sense.

The program keeps a list of the words that it will need for the
current run, with all their relevant attributes - syntactic category,
features, verb, noun or adjective definitions, etc. - on the property
list of the root form of the surface lexical item.

The actual dictionary organisation of a verb contextual frame has

already been shown in 4.5, The preferences for the semantic class
membership of the subject (and surface object) of the verb are
specified in 1its semantic formula. Optional modification by a

prepositional phrase is indicated by a

(preps (PList F(se¢) DLink))

construct, where 'PList'! is a list of those prepositions that can
introduce a candidate prepositional phrase for inspection, the head
noun of the PP must satisfy the semantic test specified by the func-
tion F over a certain semantic class (most often this is a simple test
for membership), and 'DLink' is the dependency 1link that will be
established between the modifier and the verb 1in case the test
succeeds. Similarly, obligatory postmodification is introduced by

(compulsory (PList F(sc) DLink))
The header 'cues' is used for two different purposes. It can specify
constructs like

eeeseese THAT <clause>, or

ceseee.. TO *do @Qact:
by stating

(cues THATCOMP) or (cues TOCOMP),

i.e. the 1lexical item, if wused in that particular sense, can be
considered as tagged with THATCOMP or TOCOMP feature. Or, alterna-
tively, it suggests a surface syntactic pattern which may give clues
to the particular meaning of the lexical item used. Thus (cues TRANS)
vs. (cues INTRANS) may help in interpreting

John grew a beard, vs.
John grew.

Similarly, both (cues INDOBJ) and (cues COMPL-TRANS) specify a surface
syntactic pattern '... V NP NP', and will be activated on encountering

John called Bill a taxi/ John called Bill a fool.
The dictionary also specifies frames for nouns (where applicable) and
predicate adjectives.

Particled verbs are accessed through an indirection via the
'particles' mechanism. The grammar is suitably designed so that
" . .call off the strike" is not parsed as "... call (off the strike)".
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(ADMIT
(cat VERB)
(features PASSIVE TRANS INTRANS THATCOMP)

((man subj)
((*hum obje) )
(O« (same *hum) poss) state) obje)
change)
cause
goal)
want)))
(compulsory ((TO IN) *pla location)))
(admit?2
((*ani sub& ((51gn obje) (true tell)))
(cues THATCOMP))
(admit3 ((*ani subj) ((state obje) (true feel))))
(admit}y
(({*ani subj z
(same ani) subj) ((act obje) do))
(true tell)))
(compulsory (TO *act @act)))

))

(ADVISE
(cat VERB)
(features TRANS INTRANS THATCOMP)
(vdef
(advise1
((*hum subj)
((*animar obje)
(((((man subj) ((act obje) do)) cause)
goal
tell)))
(cues TOCOMP TRANS))
(advise?
((*hum subJ)
hum obﬁ e) s sign) obje) tell)))
(cues THATCO I )
(adg%se3

((*hum obje)
((((((same *hum) subj) ((act obje) notdo))
cause)
goal)
tell)))
(comgulsor
. ( GAINS¥ *mar object))))

(AFRAID
(cat ADJ)
(features THATCOMP TOCOMP LOWSUBJ)
(adedef

um poss)
((*ent reason) (notplease feel)) kind))

8F ¥ent reason)))
goss) ((((*act obje) do) notwant) kind))
TOCOMP))

3
um poss
s

) ((((*mar obje) (true be)) think) kind))
THATCOMP))
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(ASK
(cat VERB)
(features
( dT¥ANS PASSIVE INTRANS TOCOMP TRANSCOMP INDOBJ)
vde
(ask1
((man subj) ((*ani obje) ask))
(preps (ABOUT *ent subj-matter))
(cues INDOBJ))
(ask?2
((man subj)
(act obje)
((((man (please feel)) cause) goal) ask)))
(cues TOCOMP))

(ask
(?man subj) ((¥*ent obje) ((*hum from) want)))
(compulsory (FOR *inan neutral)))

))

(CALL
(cat VERB)
(features TRANS PASSIVE INTRANS COMPL-TRANS)
gpar%icles OFF CALLOFF FORTH CALLFORTH OUT CALLOUT)
vde
(call1
((man subj)
(*animar obje)
((((much ghear sense)) cause) %g?l)

tell)

(call3 .

((man subj)

((*hum obje)
(((((act obje) do) cause) goal) ask)))

(cues TOCOMP))
(call2

((man subj)

((self obje) (((where point) to) move)))
(pregs
(ON *hum recipient)
(AT ¥*pla location)))
(calll

((*hum subj)

((*ani obje)
(((same *ani) ((sign obje) have)) think)))
(cues COMPL-TRANS))

(callb

((*ent subﬂ) ((*ent obje) want))

(cues INTRANS)

(compulsory (FOR #*ent objective)))

(callb

((*ent subj) ((act obje) want))

(cues INTRANS)

(compulsory (FOR act objective)))

(call?
((man subg) ((*inan obje) want))
(cues INDOBJ))
(call?
((man subj) ((*inan obje) ((man for) want)))
(compulsory (FOR man recipient)))

))

(CALLOFF
(cat VERB)
gfeatures TRANS)
vdef
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(calloff
((*org subj) ((*ac obje) notdo)))))

(CALLOUT

Ecat VERB)

features TRANS INTRANS)

(vdef

(callout
((man _subj) )
*mar obje)
((((much (hear sense)g)gause) goal) tell)))

(CALLFORTH
écat VERB)
features TRANS)
(vdef
(callforth
((*pot subj) ((*ent obje) want)))))

(EFFORT
(cat NOUN)
(features TOCOMP)
(ndef
(effort
(((*hum subj
(((((thi
obje ac

G
~r 2

( evnt) hapn) cause) goal) do))
( e )
(STOP
(cat VERB)
(features TRANS INTRANS TOCOMP)
(vdef

(stop1

((*org subj) ((*inan obje) (notmove cause)))

(pregs
(FROM *act avoidance))
(cues TRANS))
(stop2
(%*pot subj) notmove)
(cues INTRANS)
(preps
((IN AT ON) #%*pla destination)))
(sto

(?épot subj) ((act obge) notdo))
(cues ING/PHRASE TRANS))
(stopl
E(*hum sub%) ((((act obje) do) goal) notmove))
cues TOCOMP))))
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What follows is an annotated listing of the Augmented Transition
Network Grammar used by this system at the time of writing. As will
become clear from the examples in this appendix and in Appendix (iv),
the grammar offers coverage of a substantial non-trivial subset of
English language constructs; in any case large enough to provide a
solid basis for testing the ideas presented in this thesis. Among the
phenomena not accounted for are: complex determiner structures,
quantification, existential "there", complex adjectival (comparative
and superlative) structures, questions, conjunctions, etec. It has
been demonstrated by Woods [Woods72] that these can be accommodated in
the ATN framework and a syntactic recogniser which can handle these
and other constructs has been tested in action. In the course of this
research it was felt to be more important to concentrate on the essen-
tial objectives of this work, rather than to develop an extensive
grammar of English - an effort which would not be Jjustified at this
stage because it would not necessarily contribute substantially to the
understanding of the semantic processes taking place during sentence
analysis.
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The grammar starts (by 1looking for the possible

sentence
openers:
noun-phrases:
she asked questions with great interest;:
"to-" infinitive nominal clauses (with or without a subject):

for a research student to work at night is normal,
to tell lies is wrong,

to call on Mary, John called a taxi;

"that-" complements:

that John ran away became known soon;

nominal "-ing" clauses:

telling lies is wrong;

"-ing" participle phrases (with or without a subject):
calling on Mary,

John decided to ask for the book,

her aunt having left the room, I declared my passionate
Iove for Celia;

extraposed subject complement - leading "it":
lE is clear that Bill loves Janet,
it is important to tell the truth;
prepositional phrases:

in the morning he runs in the park.

(s/

(PUSH
COMPL/
(OR (WRD TO) (AND (WRD TO NEXTWORD) (CAT NEG)))
(SENDR feflag 'T)
€SENDR in-compl-subj T)
SETR type 'subj—comgl)
(SETR fronted-compl ¥*)
(TO S/))

(JUMP
S/NP
(AND (CAT VERB) (GETR fronted-compl))
(SETR subj (CADDR (GETR fronted-compl)))
(SETR type 'subj—comﬁl)
éSETR fronted—com?l IL)

RPLACD (LOOKFOR 'type (GETR subj)) (LIST 'for-to))
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)

(PUSH ING/PHRASE (CAT VERB)
(SENDR subj '((someone (man))))
(SENDR in-compl-subj
(SETR compl *g
(SETR fronted-ing T)

(SETR the 'subj-compl)
(TO S/DCL))

(PUSH ING/PHRASE/SUBJ T

(SETR after #*
(TO S/DCL))
(JUMP S/DCL T (SETR type 'del)))

(S/DCL
(PUSH NP/ (NPSTART)
(SENDR subjNP 'T)
(SETR subj ¥*)
(COND
((OR
(CONTAINS-ANYWHERE (GETR subj) 'IT)
(CONTAINS—-ANYWHERE (GETR subj) 'it))
(SETR it-subject T)))
(COND

((GETR fronted—inE)

(SETR while (GETR compl))

(SETR compl NIL)

(RPLACD
(LOOKFOR 'agent (GETR while))
(GETR subj))))

(COND
((GETR fronted-comgl)

(SETR compl (GETR fronted-compl))

(SETR fronted-compl NIL)

(RPLACD
(LOOKFOR 'agent (GETR compl))
(GETR subj))))

(TO S/NP))

(PUSH COMPL/ (WRD (FOR THAT))
(SENDR in-compl-subj T)
(SETR subj
(SETR subj (CADDR (GETR subj)))
$SETR t¥§§ "subj-compl)

L 3
~r

TO S/N

(WRD !, T (TO S/DCL))
(PU%E PP/

ND
(CAT PREP)
(NOT (WRD OF))
(NULLR fronted-ing)
(NULLR fronted-compl)
{NULLR after))
(ADD mods ¥
(TO S/DCL))
(JUMP S/NP (GETR fronted-ing)
(SETR subj (CADDR (GETR compl)))
(SETR compl NIL)))

The grammar then proceeds to identify the verb of the clause.
The item picked up at S/NP may be a modal, or an auxiliary, hence
the loop on VP/V: it recognises possible perfect-progressive-pas-
sive constructs. Alternatively, a different path through the

network may be followed, on identifying an adjective after a
COPULA verb.

the grammar
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OND
((MODAL) (SETR modal *))
(T (SETR v ¥)))
((AND (GETR wh (NOR (MODAL) (WRD (HAVE BE))))
éSETR subj (GETR whq))
SETR whq NIL)))
(SETR tns (GETF TNS))

)

GE
L)
S)
(TO S/AUX))

(S/7AUX

T
(COND
((GETF pastpart)
(COND
((WRD BE v)
éSETR obj (GETR subj))
SETR subj NIL)
(SETR agflag 'T)
(ADD asEect 'passive))
((AND (NUL R aspect) (!?? HAVE v))

ect 'perfec
(1 {ABORTSSSS
((GETF Brespart)
(CON

g(WRD BE v) (ADD aspect 'progressive))

(SETR aborted-ing T)
(ABORT))))

((OR (NOT (GETF UNTENSED)) (GETR v)) (ABORT)))
(SETR v *)
(TO VP/V))
(CAT ADJ (RFEAT COPULA v)
(SETR adﬁ red *)
(TO VP/A Jg
(WRD LIKE T
SETR VE like T)
(TO VP/LIKE))
(JUMP VP/HEAD T))

The predicate adjective network allows the adjective to be
followed by various complement phrases:

John is easy to please,

the grammar
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John is eager to please,
it is important not to panie,

John is afraid that Bill loves Mary;

or prepositional phrases:

the crook is afraid of the policeman,

they were angry about the inflation;

or nothing:

Bill grew sad.

(VP/ADJ
(PUSH COMPL/
(AND
(WRD THAT)
EggEAT THATCOMP adj/pred)

(GETR it-subject)
(IS-A-HUMAN %CAR (GETR subj)))))
(SETR adj-compl *

(COND
((GETR it-subject)
(SETR
subg
(LIST
(COND
((LOOKFOR 'clause (GETR adj—comgl)))
((LOOKFOR 'S (GETR adj-compl)))))))

(SETR compl ¥)))
(TO S/POP/S))
(PUSH FOR/NP
(AND
OR

(WRD TO)
(AND (CAT NEG) (WRD TO NEXTWORD)))

(NOT
(CONTAINS-ANYWHERE (GETR subj) 'it))

NOT
(CONTAINS-ANYWHERE (GETR subj) 'IT))

(x (RFEAT TOCOMP adj/pred))

COND
((RFEAT LOWOBJ adj/pred)
(SENDR in—adg-compl )
(SENDR obj (GETR subj))
(SENDR subj
(QUOTE %(someone (man))))))

R

(RFEAT LOWSUBJ adj/pred)

(NOT (RFEAT LOWOBJ adj/pred)))
(SENDR in-adj-compl T)

(SENDR subj EGETR subj))

(SENDR might-need-an-object T))))
ad j-compl ¥)

RFEAT LOWOBJ adj/pred)
(SETR

(0

the grammar
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((LOOKFOR 'clause (GETR adj-compl)))
((LOOKFOR 'S (GETR adj=-compl)))))))

T
(SETR compl ¥)))
(TO S/POP/3))
(PUSH FOR/NP
(AND

(WRD TO)

(GETR it- subgect))
(SENDR subj_ (QUOTE ((someone (man)))))
(SETR subj
(TO S/POP/S))

(PUSH PP/ (CAT PREP)
(SENDR subg (GETR subj))
SADD mod s g
TO VP/ADJ)

(JUMP S/POP/S T))

P/ T
((NULLR *) (ABQRT)))

TR similarit
VP/PRED/NOM)))

(VP/PRED/NOM
(PUSH PP/ (CAT PREP)
EADD mods ¥)
TO VP/PRED/NOM))
(JUMP S/POP/S T))

At VP/HEAD, apart from picking up the direct object, the
grammar tries to recognise some of the possible postmodifiers:
particles:

the workers called off the strike at the last moment;

sentencial complements:

he wants to study in the university,

he hopes for his son to study in the university,

he expects that he will study in the university;

Also, when parsing relative clauses (see below), this is where the
direct object is picked up:
I heard the story that John told Mary.

(VP/HEAD
(CAT PREP (SETQ temp (VPARTICLE v))
éSETR temp
T rticle (CURRENTWORD))

R);ubj) (JUMP S/POP/S))

the grammar
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COMPL/
(AND

OR

(WRD (FOR TO THAT))

(AND (CAT NEG) (WRD TO NEXTWORD)))
(NULLR obj)
(NULLR in-rel-clause))

(COND
((OR (WRD TO) (CAT NEG))
(SENDR subj (GETR subj)))))
(SETR compl *)
( S/POP/S))
(PUSH
NP/
(AND

(RFEAT INDOBJ v)
(GETR in-rel-clause)
(GETR deleted-NP)
ﬁgPSTART))

((IS-A-HUMAN (CAR (GETR deleted-NP)))
(SETR obj *
(ADD
mods
( (BUILDQ (PP (prep TO) +) deleted-NP)))
T

(SETR obj (GETR deleted-NP))
(ADD mods (BUILDQ (PP (prep TO) #*)))))
gSETR deleted-NP NIL)
SETR indobjflag 'T)
S%JUMP VP/NP%)

HELD-REL-NOMINAL

(AND (GETR in-rel-clause) (GETR deleted-NP))
(SETR obj (GETR deleted-NP))

(SETR deleted-NP NIL)

(SETR transflag 'T)
UégUMP VP/NP))

NP/
(AN

(T

(P

D
(RFEAT TRANS v)
(OR

(NULLR in-rel-clause)
(AND
(GETR in-rel-clause)
(NULLR deleted-NP)))
(NPSTART))
(SENDR subj (GETR subj))
ESENDR v (GETR v))
SETR obj *)
(COND
( (AND
(GETR in-adj-compl) )
(GETR might-need-an-object))
(SETR might-need-an-object NIL)))
(SETR transflag 'T)
(TO VP/NP))
(PUSH PP/
(AND (CAT PREP) (WRD TO))
(SENDR subg (GETR subj))
(SETR odd-PP T)
EADD mods ¥)
TO VP/HEAD))
(TS%AAgJ-COMPL—NEEDS—AN-OBJECT
N
(GETR in-adj~compl)
(NULLR obg)
(GETR might-need-an-object)
(RFEAT TRANS V)Z
(SETR obj (QUOTE ((someone (man)))))
(SETR might-need-an-ob ject NIL)

the grammar



(JUMP S/POP/S))
(JU?P VP/NP

ed-NP)
NTRANS v) (GETR obj)))))

At VP/NP the object of the verb has been
possible complex-transitive or ditransitive
recognised:

the news made him happy,

they made him a president,

Mary made Bill a cake.

The object can be followed by a complement:
Bill expected Mary to go home,
Bill told Mary that she must go home.

appendix (iii)/ 8

identified. Here

structures are

Prepositional phrases acting as verb or object postmodifiers are

recognised here as well:

I saw the man in the park with the telescope.

(VP/NP
(CAT ADJ (RFEAT ADJCOMP v)
(SETR adﬂ/com
(TO S/POP/S))
(PUSH COMPL/
(AND (WRD THAT) (GETR it-subject))
(SETR compl ¥)

(COND
((AND (GETR aﬁflag) (GETR it-subject))
(SETR obj NIL)
- SETR subj '((someone (man)))))

(PRINTC "%*%* apparently an unex §?

(MAPC *REGLIST (FUNCTION SUPERP E
(TO S/POP/S))
(PUSH
?OMPL/

ND
(WRD THAT)
(OR
(AND (RFEAT INDOBJ v) (GETR obj))
(AND (NULLR obj) (GETR odd- PP)g
ETR compl ¥)
OND
((GETR obj)
(ADD mods (BU
(SETR obj NIL
(
T

(@1]

GETR odd-PP)

;
SETR odd-PP NIL)))
ndobgflag 'T)

)

gase'")

%?Q (PP (prep TO) +) obj))

the grammar
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(WRD TO)
(CHECKF VERB UNTENSED)
(AND (WRD TO NEXTWORD) (CAT NEG)))
(OR (GETR obj) (GETR mods)))
(SENDR topsubj (GETR subg))
(SENDR topobj (GETR obj)
éSENDR intocompl 'T)
SETR compl *)
(COND
((AND
(RFEAT INDOBJ v)
(GETR obj))
(ADD mods (BUILDQ (PP (prep TO) +) obj))
(SETR obj NIL))
((GETR mod s
SETR goal (GETR compl))
SETR compl NIL)))
(COND

((RFEAT DELTOPOBJ v)
(SETR obj NIL)))
(T S/POP/S))
(PUS
NP/
(AND
(NULLR in-rel-clause)
(NPSTART)
E éGETR obﬁ) (GETR od ))
RFEAT INDOBJ v) (R COMPL-TRANS v)))
T esult ¥)
%

’\Uw

TR odd-PP)

SETR obj *)

SETR odd-PP NIL))
(

(

RFEAT INDOBJ v)

(RFEAT COMPL-TRANS v)
(SINGLE (GET-NOUN-DEFS (GETR result)))
(NOT (IS-A-HUMAN (CAR (GETR result}))))))
(ADD mod s (BUILDQ (PP (prep TO) +) obj))
(SETR 1ndob3fla%
(SETR result NIL)
(T (SETR obj ¥)
(SETR comgl/trans/flag 'T)
(SETR
(TO S/POP/S))
(PUSH PP/
(AND
(CAT PREP)
ENOT (WRD OF))
(GETR *Bartlc
(AND (NULLR #¥*particle) (NOT (VPARTICLE v)))))
éSENDR sub; (GETR subj))
ADD mods

(TO VP/NP))
(JUMP S/POP/S T))

S/POP/S is the final state of the sentence/ clause network.
Jump to S/POP/REL if a relative clause has been processed, where a
pointer to the deleted nominal (the head of the embedding noun
phrase) 1is incorporated in the final structure - it will be used
later by NPBUILD. Similarly, jump to S/POP/TOCOMP if a to-comple-

ment has been recognised, and in the process of doing so set up

the grammar
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the deleted subject of the embedded <clause. S/POP/S itself
provides directives for finding the subject of a passivised
sentence:

John was beaten by Bill,

or nominal "-ing" clauses as direct objects or postmodifiers:

John loves running in the park,

John killed Bill firing a gun.

Finally, a semantic representation for the recognised clause 1is

constructed (by SBUILD) and popped.

(S/POP/S
(JUMP S/POP/REL (GETR in-rel-clause))
(JUMP
S/POP/TOCOMP
EégD (GETR intocompl) (NULLR odd-PP) (NULLR subj))
( (AND
(GETR tog
(IS-A AN (CAR (GETR topobj))))

ESETR type 'for-to)
SETR su J (GETR topobJ)))

(SETR type 'in-order-t
(SETR subj (GETR to sub IDDRD
(WRD BY (NULLR SUbﬂ) (TO VP/ GT)g
(JUMP S/POP/S (NUL R subj)
(SETR subj '((someone (man)))))
(PUSH ING/PHRASE

(AND
(CAT VERB)
(NOT (EQ 'BE (GETR wv)))
(NULLR aborted—in%)
(NOR (RFEAT INDOBJ v) (RFEAT COMPL-~TRANS v)))
(SENDR subj (GETR subj))
(SETR compl
(TO S/POP/S))
(PUSH PP/ (AND (CAT PREP) (GETR indobjflag))
(SENDR subi (GETR subj))
(ADD mods
(TO S/POP/S))
(JUMP S/POP/S
(AND
(NULLR s-pop-val)
ENULLR s-built)
GETR subj)
(OR

(NOT (CAT VERB))
(AND (CAT VERB) (GETR in-compl-subj)))
(NULLR odd- PP)
(NULLR in-rel-clause)
(NULLR might-need-an-object)
(NULLR intocompl))
SETR s-built T)
SETR s-pop-val (SBUILD)))
(GETR s-pop-val)
(GETR s-pop-val)))

(PO

the grammar
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(S/POP/REL

(POP
(COND
((GETR poss-rel)
(BUILDQ
(@8poss (@Ragent . +) )
overnor
BUILDQ (rel (path +) ) path (SBUILD))))
)(T (BUILDQ (rel (path +) ) path (SBUILD))))

(S/POP/TOCOMP
(JUMP S/POP/TOCOMP
(AND

(NULLR s-tocomp-val)

(NULLR tocomp-built))
(SETR tocomp-built T)
éS%TR s-tocomp-val (SBUIL

D))
GETR s-tocomp-val) (GETR

)
(PO s-tocomp=-val)))

(VP/AGT
(PUSH NP/ T
(COND

((NULLR *) (ABORT)))
(SETR subj *)
(To VP7NBY))

The noun phrase network recognises constructs of the following

classes:
pronouns;
proper names;
the basic noun group:
(det) (quant) (adj)* noun:

the five big green monsters;

nouns preceded by possessors:
John's crook,

the lazy dog's wagging tail;

"of-" genitives:

the wagging tail of the lazy dog;

nouns premodified by present participles:

kissing aunts;

nouns postmodified by complements:

an opportunity to study in the university,

the fact that kissing aunts can be boring;

the

grammar
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relative clauses (via the REL/ or ING/RELATIVE networks):
the man who fell to earth,

the friend with whom I saw the film,

the friend whose book I am reading,

the man teaching Mary;

postmodifying prepositional phrases in noun phrases in subject
position:

the man in the street...

(NP/
(CAT DET T
(SETR det (BUILDQ (det ¥)))
(TO NP/DET))
(CAT QUANT T
SETR quant *)
SETR quant (FORMULA (GETR quant) 'NOUN))
(TO NP/DET))
(CAT PRO T
(SETR n (BUILDQ (pro ¥)))
(SETR inhibit-rel T)
(SETR nu (GETF number))
(TO NP/HEAD))
(JUMP NP/DET T))

(NP/DET
(CAT NOUN T (SETR n (BUILDQ (n *)))
(SETR nu (GETF number)) (TO NP/HEAD))
(CAT ADJ T
(ADD adgmods *)
(TO NP/DET))
(CAT VERB (GETF prespart)
ESETR v-ing ¥
TO NP/DET%)
(CAT POSS T
(SETR possessor ¥*)
(SETR possessor (FORMULA (GETR possessor) 'P0SS))
(TO NP/DET)) .
(CAT NPR (NULLR det)
(SETR n (BUILDQ (npr ¥*)))
(SETR inhibit-rel
(SETR nu 'SG) (TO NP/HEAD))
(JUMP NP/HEAD T))

(NP/HEAD
(CAT POSS (GETR n)
(SETR possessor (NPBUILD))
(SETR inhibit-rel NIL)
(TO NP/DET))

PUSH
FOR/NP
(AND
(OR (WRD TO) (AND (WRD TO NEXTWORD) (CAT NEG)))
(RFEAT TOCOMP n))
ﬁSENDR subj (GETR subj))
SENDR intocompl 'T)

the grammar
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(SETR ncompl *)
(TO NP/POP))
(PUSH COMPL/
EAND (WRD THAT) (RFEAT THATCOMP n))
SETR ncompl #)
égo NP/POP?)

(PU
REL/
(AND
(GETR n)
(NULLR inhibit-rel)
(OR
(AND
(WRD (WHO WHOM WHOSE))
(ANBSETR *animates (HUMANS-IN (GETR n))))
(WRD WHICH)
( (SETR *inanimates (NON-HUMANS-IN (GETR n))))
OR
(WRD THAT)
(AND
(WRD (WHICH WHOM WHOSE) NEXTWORD)
(% (CAT PREP)))))
(COND

((GETR *animates)
(SENDR type 'relative)
(SENDR in-rel-clause 'T)
(SENDR
rel-nominal .
(CUT-DOWN (NPBUILD) (GETR *animates))))
((GETR *inanimates)
(SENDR type 'relative)
(SENDR in-rel-clause 'T)
(SENDR
rel-nominal .
(CUT-DOWN (NPBUILD) (GETR #*inanimates))))

%SENDR type 'relative)
SENDR in-rel-clause 'T)
(SENDR rel-nominal (NPBUILD)))))
(SETR rel-clause ¥)
(TO NP/POP))
(PUSH ING/RELATIVE (CAT VERB)
(SENDR type 'relative)
(SENDR in-rel-clause T)
(SENDR subj (NPBUILD))
(SETR rel-clause ¥)
(TO NP/POP))
(PUSH PP/ (WRD OF)
(SETR possessor ¥)
§SETR possessor (CADDR (GETR possessor)))
TO NP/HEAD))
(PUSH PP/
(AND
(CAT PREP)
(NOT (WRD OF))
(GETR sungP)
(NULLR inPP))
éADD nmods ¥)
TO NP/HEAD))
(JUMP NP/POP (GETR n)))

Finally, the subnetworks for recognising relative clauses (all
the states prefixed with REL/), "-ing" phrases (ING/) and comple-
ments (COMPL/ and FOR/) allow parsing all of the constructs used

in the examples above.

the grammar



(ING/RELATIVE
(CA%SVERB (G%TF prespart))
(SETR path (GETR subj))
(TO VP/V)))

(ING/PHRASE/SUBJ
(PUSH NP/ (NPSTART)
(SENDR subJNP T)
(SETR ﬁ
(TO ING/P RASE/AUX)))

PHRASE/VERB)))

(ING/PHRASE/VERB
(CAT VERB (GETF pastpart)
(SETR vger *)
(SETR tns K
(TO ING/PHR SE/OBJ)))

(ING/PHRASE
(CAT VERB (G Eres part) (SETR vger #*)
(TO ING/PHRASE/OBJ)))

(ING/PHRASE/OBJ
(PUSH
¥P/HEAD

(SENDR
subj
(COND

((GETR subj))
(T '"((someone (man))))))

ENDR v (GETR_vger))

ENDR in- compl subj (GETR in-compl-subj))

gTR in

(5
R AT

Q (compl ING/TYPE +) ing/pop) T))

P

MP NP/POP

(AND (NULLR np- gop-val) (NULLR np-built))
(SETR np-built

(SETR np-pop-val (NPBUILD)))

(POP (GETR np-pop-val) (GETR np-pop-val)))

(COMPL/
(WRD FOR T (TO FOR/FOR))

(WRD THAT T (SETR ntype 'THAT) (TO COMPL/NTYPE
(WRD THAN T (SETR ntype 'THAN) (TO COMPL/NTYPE

appendix (iii)/ 14

))
))
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(JUMP
FOR/NP
T

(Coﬁ?NULLR bj)
(SETR subj (QUOTE ((someone (man)))))))))

(COMPL/NTYPE
(PUSH S/ T _ _
%SENDR in-compl-subj (GETR in-compl-subj))
SETR s ¥)
(TO COMPL/S)))

(FOR/FOR
(PUSH NP/ T
éSETR subg *)
TO FOR/NP)))

(FOR/NP
(WRD TO T (TO FOR/TO))
ECAT NEG T (SETR neé 'neg) (TO FOR/NP))
JUMP FOR/TO (CHECKF VERB UNTENSED)))

(FOR/TO
(PUSH

S/NP
(CHECKF VERB UNTENSED)
(SENDR topsubj (GETR topsubj))
(SENDR topobj (GETR topobj)
(SENDR intocompl (GETR intocompl))
éggﬁgﬁ in-ad j-compl (GETR in-adj-compl))

might -need-an-ob ject
(GETR might-need-an-objec
ENDR feflag (GETR fcfla%))
ENDR in—comgl—subj (GETR i
ENDR subj (GETR sub;))
ENDR obj (GETR obj)
ENDR neg (GETR neg))
gNDR tns (GETR tns))
E
E
0

t))
n-compl-subj))

ND
((GETR fcflag) (SENDR type 'in-order-to)))
TR nt¥ e 'NOM)
TR s
COMPL/S)))

(COMPL/S (POP (BUILDQ (compl + +) ntype s) T))

(PP/
HRPSER brep ' (prep T0))
re re
(SETR gregn Q((gome (((man obje) wrap) spread))))
(TO PP/PO )g
(CAT PREP T (SETR prep (BUILDQ (prep *)))
(TO PP/PREP)))

(PP/PREP
(PUSH NP/ T
(SENDR subj (GETR subj))

the grammar



(SENDR inPP 'T

(TO PP/PO )g
(PUSH ING/PHRAS

(SENDR subj
gSENDR inP
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AT VERB)

E
s R subj))

SETR tempres
SETR prepnp
(SETR tem

T)
*)
(
GE
T)
*
(C
res N
(TO PP/POE)))

C
T
)
% DR (GETR tempres)))

??ILDQ (e + +) (GENSYM1 'PP) prep prepnp)

(REL/

(MEM (WHICH THAT WHO) T (TO REL/WH))

(WRD WHOM T (SETR deleted-NP (GETR rel-nominal))
(SETR path (GETR rel-nominal))

(SETR rel-nominal NIL)

(TO REL/WH))
(WRD WHOSE T (TO REL/POSS))

(CAT PREP T (SETR prep ¥) (TO REL/PREP)))

(REL/WH
Egg%g PP/ (CAT PREP) (ADD mods ¥) (TO REL/WH))

Eégg (NOT (CAT VERB)) (NPSTART))
((GETR rel-nominal)
EEETR deleted-NP (GETR rel-nominal))
((NULLR poss-rel

)

(SETR path (GETR rel-nominal))))
(SETR gel—nomlnal NIL)))

u

~Ne~~N SN
QLN uSn
v

E
0
N
ND (GETR rel-nominal) (CAT VERB))
gTR subj (GETR rel-nominal))

((N%LLR poss-rel)

SETR path (GETR rel-nominal))))
(SETR rel-nominal NIL)))

(REL/PREP
(MEM

%WHICH WHOM)

(ADD
mod s

(BUILDQ (PP (prep +) +) prep rel-nominal))
%SETR path (GETR rel-nominal)

SETR rel-nominal NIL)
TO REL/WH))

(WRD WHOSE T (TO REL/PREP/P0SS)))

(REL/POSS
(PUSH NP/ T

(SETR poss-rel 'T)
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(SETR governor (GETR rel-nominal))
(SETR rel-nominal *

(SETR Eath (GETR rel-nominal))

(TO REL/WH)))

(REL/PREP/POSS
(PUSH NP/ T

SETR poss-rel 'T)

SETR governor (GETR rel-nominal))

ADD mods (BUILDQ (PP (prep +) ¥*) prep))

SETR path (GETR rel-nominal))

SETR rel-nominal NIL)

TO REL/WH)))

~es s~~~
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JOHN ASKED A QUESTION.
John questioned.

JOHN ASKED MARY A QUESTION.
John questioned Mary.

JOHN ASKED MARY A QUESTION ABOUT THE BOOK.
John questioned Mary about the book.

JOHN ASKED ABOUT THE BOOK.
John inquired about the book.

JOHN ASKED FOR THE BOOK.
John requested the book.

JOHN ASKED MARY A FAVOUR.
John begged Mary for a favour.

JOHN ASKED A FAVOUR OF MARY.
John begged Mary for a favour.

JOHN ASKED MARY TO GO HOME.
John begged Mary to go home.

JOHN ASKED TO GO HOME.
John desired to go home.

JOHN LOVES CHESS.
John enjoys chess.

JOHN LOVES TO BEAT BILL AT CHESS.
John enjoys defeating Bill at chess.

JOHN LOVES MARY.
John is in love with Mary.

JOHN LOVES RUNNING.
John likes to run.

JOHN LOVES RUNNING IN THE PARK.
John likes to run in the park.

JOHN ADMITTED THE TRUTH TO BILL.
John told Bill the truth.

JOHN ADMITTED DEFEAT.
John accepted defeat.

JOHN WAS ADMITTED TO THE HOUSE.
Someone let John into the house.

examples
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JOHN ADMITTED TO BILL THAT HE LOVES MARY.
John confessed to Bill that he is in love with Mary.

THE POLICEMAN WHO INTERROGATED THE CROOK ASKED MARY ABOUT

THE BOOK.
The policeman who questioned the artful dodger questioned Mary

about the book.

THE CROOK WHOM THE POLICEMAN INTERROGATED ADMITTED THE TRUTH.
The artful dodger whom the policeman questioned told the truth.

JOHN IS ANGRY.
John is cross.

JOHN IS ANGRY WITH HIS SON.
John is annoyed with his son.

JOHN IS ANGRY AT THE DECISION THAT BILL MADE.
The decision which Bill made makes John flush with anger.

JOHN IS ANGRY THAT BILL KILLED MARY'S MONKEY.
John is annoyed with Bill killing Mary's monkey.

JOHN IS ANGRY THAT BILL KILLED HIS MONKEY.
John is annoyed with Bill killing someone's monkey.

JOHN IS ANGRY THAT BILL'S SISTER'S MONKEY ATE THE BANANAS,
John is annoyed with the monkey of Bill's sister devouring the
bananas. ’

BILL'S SISTER'S BOOK IS GREEN.
The colour of the book of Bill's sister is green.

THE CROOK IS GREEN.
The colour of the long thing is green.
The artful dodger is a novice.

THE BOY IS GREEN.
The boy is a novice.

MARY IS GREEN WITH ENVY.
Mary is envious.

THE BOY GREW.
The boy became bigger.

THE BOY GREW FLOWERS IN THE GARDEN.
The boy cultivated flowers in the garden.

THE BOY GREW SAD BECAUSE OF MARY.
Mary made the boy feel depressed.

JOHN IS EASY.
John feels relaxed.

examples
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JOHN IS EASY TO PLEASE.
It is not difficult for someone to make John happy.

JOHN IS EAGER.
John is impatient.

JOHN IS EAGER TO PLEASE.
John wants very much to make someone happy.

JOHN'S BIG FRIEND WHO HURT MARY IS AFRAID OF THE POLICEMAN.
The big firiend of John who injured Mary fears the policeman.

JOHN'S BIG FRIEND WHO HURT MARY IS AFRAID OF BILL WHO LOVES HER.
The big friend of John who injured Mary fears Bill who is in love
with her.

JOHN IS AFRAID TO TELL THE GIRL THAT HE LOVES THE TRUTH.
John doesn't want to tell the girl that he admires the truth.
John doesn't want to admit the truth to the girl with whom he is in
love.

JOHN IS AFRAID THAT BILL LOVES MARY.
John suspects that Bill is in love with Mary.

JOHN IS AFRAID OF CALLING ON MARY,
John doesn't want to visit Mary.

JOHN CALLED MARY.
John shouted at Mary.

JOHN CALLED MARY TO FLY TO PARIS.
John summoned Mary to fly to Paris.

JOHN CALLED ON MARY TO ASK FOR THE BOOK.
John visited Mary in order to request the book.

JOHN CALLED AT THE CLUB.
John visited the meeting place.

JOHN CALLED BILL A FOOL.
John thought that Bill is a fool.

JOHN CALLED BILL A MONKEY.
John thought that Bill is a monkey.

JOHN CALLED BILL A TAXI.
John ordered a taxi for Bill.

JOHN DECIDED TO STOP CALLING ON MARY.
John made a decision to cease to visit Mary.

JOHN STOPPED TO CALL ON MARY.
John stopped in order to visit Mary.

examples
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JOHN STOPPED CALLING ON MARY.
John ceased to visit Mary.

TO CALL ON MARY, JOHN CALLED A TAXI.
John ordered a taxi in order to visit Mary.

THAT JOHN CALLED ON MARY WAS BAD.
It was not very good that John visited Mary.

JOHN HAVING ASKED FOR THE BOOK, I DECIDED TO CALL ON MARY.
After John requested the book, I made a decision to visit Mary.

CALLING ON MARY, JOHN DECIDED TO ASK FOR THE BOOK.
John made a decision to request the book while John was visiting
Mary.

JOHN KILLED MARY, STRIKING HER WITH THE CLUB.
John hit Mary with the missile weapon and killed her.

KISSING AUNTS CAN BE BORING.
The aunts who kiss someone can be dull.

(The act of) kissing the aunts can be not particularly exciting.

SHOOTING ELEPHANTS CAN BE DANGEROUS.
(The act of) shooting the elephants can be hazardous.

THE WORKERS CALLED OFF THE STRIKE AT THE LAST MOMENT.
The workers cancelled the strike at the last moment.

THE CIRCUMSTANCES CALL FOR AN APOLOGY.
The circumstances demand an apology.

IBM CALLED OFF THEIR PROJECT FOR A NEW BIG COMPUTER.
IBM cancelled their project for a big new computer.

THE POLICEMAN INTERROGATED THE GREEN CROOK.
The policeman questioned the novice artful dodger.

IT WAS RUMOURED THAT THE PROPOSALS CALLED FORTH HOSTILE CRITICISM.
Someone spread rumours that the proposals provoked unfriendly
criticism.

THE PORTERS WERE CALLING OUT THE NAMES OF THE STATIONS AT WHICH

THE TRAIN STOPS.
The porters were shouting loudly the names of the stations where
the train stops.

ONE BIG NEWSPAPER CALLED FOR THE PUNISHMENT OF THE WORKERS WHO
WERE RESPONSIBLE FOR THE STRIKE.

y

One big newspaper demanded punishment of the workers who caused the

strike.

I SAW THE MAN IN THE PARK WITH THE TELESCOPE.
With the telescope, and in the park, I saw the man.

examples
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In the park which had the telescope, I saw the man.
With the telescope, I saw the man who was in the park.
I saw the man who had the telescope, and who was in the park.

I saw the man who was in the park which had the telescope.
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