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DI-DOMAINS AS A MODEL OF POLYMORPHISM
May 18, 1987
Thierry Coquand, Carl Gunter and Glynn Winskel
Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, England

1 Introduction.

The polymorphic A-calculus was discovered by Girard [5] and later rediscovered by Reynolds [13].
As was the case with the simple untyped A-calculus, the syntax of the calculus was, at first,
understood better than its semantics. A model for the polymorphic calculus was first presented
by McCracken [9] based on the cpo of closures over the algebraic lattice of subsets of the numbers.
A similar technique can be used [1] to build models for the polymorphic calculus using finitary
projection models such as the ones described by Scott [14] and Gunter [7]. More recently still
there has been progress in saying what a model of the polymorphic calculus is in general. As
with the simple untyped calculus, this can be done through the use of environment models {3] or
categorically [15]. |

In this paper we investigate a model construction recently described by Girard [6]. This
model differs from the models of McCracken, Scott, etc. in that the types are interpreted (quite
pleasingly) as domains rather than closures or finitary projections on a universal domain. The
construction is carried out over an interesting cartesian closed category of algebraic cpo’s called
qualitative domains which satisfy a very strong finiteness property. Our objective in this paper
is two-fold. First, we would like to generalize Girard’s construction to a larger category called
dI-domains which was introduced by Berry (2]. The dI-domains possess many of the virtues of the
qualitative domains. In addition, the dI-domains are closed under the separated sum and lifiing
operators from denotational semantics and this is not true of the qualitative domains. We intend
to demonstrate that our generalized construction can be used to do denotational semantics in
the ordinary way, but with the added feature of type polymorphism with the “types as domains”
interpretation. For example, we will be able to interpret data types such as trees (I' = T+ T)
and S-expressions (S = Atoms + (S x S)) in the way they are ordinarily interpreted in the
Scott-Strachey theory. Other useful types based on the lift operation (such as the solution to
the domain equation X = X, ) will also be available with our approach. As with the qualitative

domains we will also be able to obtain solutions for equations (such as L = Atoms+ L — L) with
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highet types. Our second objective is to show how Girard’s construction (and our generalization)
cah be done abstractly. An ultimate result might carry out these constructions for “qualitative
categories” and “dI-categories”. For the purposes of this paper, however, we will (usually) restrict
ourselves to posets. We also give a representational description of our own construction using the
notion of a prime event structure which was introduced by Nielsen, Plotkin and Winskel [10] and
Winskel [17].

The paper is divided into four sections. In the second section we describe background defi-
nitions for dI-domains, event structures, etc. and demonstrate some basic properties. The third
section gives the basic model constrﬁction in abstract and representational styles. In the fourth
section we discuss the calculus we seek to model which we call the polymorphic fizedpoint calculus.
Due to limitations of space we have been forced to omit many details in order to convey the spirit
of the construction as directly as possible.

We would like to accord significant credit to Jean-Yves Girard and Gérard Berry for the
ideas of this paper. In fact, the idea of developing a theory which includes a separated sum was
suggested by Girard in Annex B of [6] (although the specific choice of dI-domains is our own).
;Ne also received valuable assistance and encouragement from Martin Hyland, Eugenio Moggi and

Pino Rosolini.

2 dI-domains and event structures.

A poset (D, C) having a least element L is said to be complete (and we say that D is a cpo) if
every directed subset M C D has a least upper bound | |D. A monotone function f : D — E
between cpo’s D and E is continuous if f(|J M) = || f(M) for any directed M C D. A point = of
a cpo D is said to be tsolated if, for every directed collection M C D such that = C | | M, there is
a y € M such that z C y. Let Bp denote the collection of isolated elements of D. The cpo D is
algebraic if, for every x € D, the set M = {zo € Bp | ©o C z} is directed and z = || M. We will
just call algebraic cpo’s domains. A cpo D is bounded complete if every bounded subset of D has
a least upper bound. In particular, if a pair {z,y} is bounded then we will write zy. ¥ z Ty
then {z,y} has a least upper bound which we write as zLly. In a bounded complete cpo any pair
{z,y} has a greatest lower bound which we write as zMy. We will say that a point £ € D is very

finite if there are only finitely many points y C z.

Definition: A dI-domain is a bounded complete domain D which satisfies




e aziom d: for every z,y,2 € D, if yTzthen zM(yU2) = (zNy) L (z N 2) and

e aztom I: every isolated point is very finite. |

The dI-domains were introduced in Berry’s thesis [2], where he made the discovery that they
could be made into a cartesian closed category by choosing appropriate continuous functions as
morphisms. At first sight this is surprising because until then the only cartesian closed category
of domains known were those in which exponentiation was the Scott function space, consisting
of all continuous functions ordered pointwise, and this construction certainly leads to domains
failing axiom I. Trying to solve the full-abstraction problem for typed A-calculi, in order to capture
certain operational features in denotational semantics, Berry was led to the definition of stable
functions and the stable order between them. The stable order does not relate functions in a
solely pointwise fashion but also takes into account the manner in which functions compute. For
this reason stable functions on dI-domains possess a function space different from Scott’s, one

which obeys axiom I.

Definition: Let D, E be dl-domains. A function f : D — E is stable iff it is continuous and

satisfies

zly= flzNy)=f(z) 0 f(y)- 1

Definition: We define DI to be the category with objects the dI-domains and morphisms the

stable functions under the usual function composition. |

Theorem 1 The category DI ts cartesian closed; products are formed as cartesian products or-
de/red coordinatewise and the function space of dI-domains D and E consists of the set of stable
functions f : D — E ordered by the stable ordering i.e. for stable functions f,g : D — E we put
fEgiff

Vz € D. f(z) C g(z) and

Vz,y € D. z Cy= f(z) = f(y) Ng(z).

A great déal of the usual style of denotational semantics can be done in this category including
the solving of recursive domain equations involving for example product, sum and function space.
The solving of domain equations depends on a more restricted definition of embedding than is
usual; embeddings must be rigid in the sense of Kahn and Plotkin [8] so that dI-domains are

closed under direct limits.




Definition: Let D and E be domains. Let f : D — E be a continuous function. Say f is a
rigid embedding iff there is a continuous function g : B — D, called a rigid projection, such that

gof=1d and and fogC ¢d. }

The rigid embeddings in this definition correspond to embeddings in the sense of Smyth and
Plotkin [16]. We have added the modifier “rigid” to emphasize the fact that the condition fog L 1d
is being taken with respect to the stable ordering on functions. The following lemma should help

clarify the significance of this assumption.

Lemma 2 Let D and E be domains and f : D — E a continuous function. Then f is a rigid

embedding iff there is a continuous function g : E — D such that

go f(d) =d for dlldGD and
fog(e)Cecforallce E and
cC f(d) = fog(c)=c.1
Instead of showing directly that dI-domains have direct limits of rigid embeddings we shall
work with a representation of dI-domains by prime event structures. The represention shows
ciearly the link with Girard’s qualitative domains; prime event structures are like qualitative

domains but with an extra partial order structure.

Definition: Define a (prime) event structure to be a structure E = (E, Con, <) consisting of a set
E, which are partially ordered by <, and a predicate Con on finite subsets of E, the consistency
relation, which satisfy

{e' | ¢ < e} is finite,

{e} € Con,

YCXeCon=>Y €Con,

XeCom&IeX e<e=XU{e}cCon

for all e € E, and finite subsets X,Y of E.

Define its consistent left-closed subsets, L(E), to consist of those subsets z C E which are

e consistent: VX Cz. X € Con and

o left-closed: Ve,e'. e < e€xz =€ €.

In particular, define [¢] = {e' € E | ¢’ < e}. |




Remark: Event structures often appear as a basic model of parallel ‘pr'oce‘sseé when the set E is
thought of as a set of event occurrences, the partial order < as a relation of causal dependency, and
the consistency relation as expressing what events can occur together. Then the configurations,
the consistent left-closed sets of events, are thought of as states.

The configurations of an event structure form a dI-domain when ordered by inclusion. In
this domain the configurations [e], for an event e, are characterized as special kinds of isolated

elements, the complete primes.
Definition: Let D be a bounded complete cpo. A complete prime of D is an element p such that
pCHUX =>dze X pCx. |

Theorem 3 Let E be a event structure. Then (L(E),C) is a dI-domain. The domain (L(E),C)

has as complete primes those elements of the form [e] for e € E. |

Conversely, as we have indicated, any dI-domain is associated with an event structure in which

the events are its complete primes.

Definition: Let D be a dI-domain. Define Pr(D) = (P, Con, <), where P consists of the complete
primes of D,
p<p < pLCY,

for p,p’' € P, and
X € Con <= X is bounded

for a finite subset X of P. |}

Theorem 4 Let D be a dI-domain. Then Pt(D) is a event structure, with ¢ : D == (LPr(D), C)
giving an tsomorphism of partial orders where ¢(d) ={pL d|pis a complete prime} with inverse

0: LPr(D) — D given by 0(z) = U=. |

Rigid embeddings between dI-domains are represented by embeddings between event struc-
tures which reduce, in the case where the embeddings are inclusions, to a substructure relation

between event structures.

Definition: Let Ey = (Ey, Cong, <o) and E; = (Ey, Cony, <1) be event structures. An embedding
of Ey in Fy is a 1-1 total function f : Eq — FE; on events such that

X e COonpg <= f(X)€Cony

F([e]) = [£(e)],
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for anty X C Ej and e € Ey. When E, C By and the inclusion map ¢ : Ey «— E; is an embedding
we write Eg 4 Ey, and say Ey is a substructure of E;.

We shall use E for the category of event structures with embeddings. |
Proposition 5 Let f: Ey — E, be an embedding between event structures. Then the function
21 (L(8o), C) = (L(E1), ) |
given by fL(z) = f(z), is a rigid embedding with projection
| 2 (L(B), €) — (L(E), C)

given by fB(y) = f~1(y).
A rigid embedding h : D — E between dl-domains restricts to an embedding h' : Pr(D) —

Pr(E) between event structures, where h'(p) = h(p) for complete primes p of D. |

Using the event structure representation it is now easy to see two properties of dI-domains

which are crucial to development that follows.

Proposition 6 The category E of event structures with embeddings has direct limits and pull-
backs. The category DIY of dI-domains and rigid embeddings is equivalent to B and so has direct
limits and pullbacks.

Proof: It is sufficient to consider a family of event structures {E; | 7 € I'} indexed by some
directed set (I,<) so that ¢ < j = E; a4 E;. With the understanding that each E; has the
form (E;, Con;,<;), form the union E = (U;er Ei, Uier Coni, Uier <i). With the inclusion maps
E; — E, this forms a direct limit.

In showing the existence of pullbacks it suffices to consider embeddings which are inclusions.
Let f:Y 9 X and g : Z 9 X. The intersection W = (Y N Z,Cony N Congz,<y N <z) is an event
structure for which the inclusions f' : W 4 Z and ¢' : W 4 Y form a pullback of f and g. |

Following well-known lines (see e.g. [16] or [6]) we can make function space, product and
sum into functors on event structures with embeddings, or equivalently dI-domains with rigid
embeddings. These functors can then be shown to have the property that they preserve direct
limits and pullbacks, a property important in what follows. Moreover, this category satisfies

properties [16] sufficient for solving recursive domain equations.




3 Modelling polymorphism.

In this section we show how Girard’s results in [6], on types in the polymorphic A-calculus,
generalize to dI-domains. We show this in two ways. We first give an elementary proof using the
representation of dI-domains by the equivalent category of event structures. The proofs are then
straightforward generalizations of Girard’s in [6]; we need only take account of the extra partial
order structure present in event structures but absent in qualitative domains. Following this we
give a more abstract proof, less directly linked to Girard’s constructions, but informative and
useful, we hope, as a step in understanding polymorphism more abstractly.

Two central notions in [6] are that of variable type and objects of a variable type. Adopting the
idea for event structures, a variable type is a functor T' : B — E which preserves direct limits and
pullbacks. An object of T is defined to be a function ¢ on event structures such that tx € T'(X),
for all event structures X, and tx = f®(ty) for all embeddings f : X — Y of event structures.

Ordered pointwise, 1.e. taking
t Ct'iff tx C ¢t for all event structures X

these form a partial order. In fact this partial order can be represented as the configurations of
an event structure, and so forms a dI-domain, and this is the key to a treatment of universal
types in polymorphic A-calculus.

As in [6] we use the notion of a trace of such a functor.

Theorem 7 Let T : E — E be a functor on the category of event structures with embeddings
which preserves direct limists and pullbacks. Let X be a event structure and let e be an event
of T(X). Then there is a finite event structure Xo, an event eq of T(Xo) and an embedding
[+ Xo — X such that e = T'(f)(eo) and for any event structure X', an embedding f' : X' - X
and €' an event of T'(X') such that T(f')(e') = e there is a unique embedding h : Xy — X' such
that

e =T(h)(eo) and f = f'oh.

Proof: The proof is that given by Girard in [6] but in the wider context of event structures

rather than qualitative domains. |

Definition: Let T': E — E be a functor which preserves direct limits and pullbacks. A trace of

T is defined to be a set A of pairs (X, e) with X a finite event structure and e an event of T(X)




with the property that foi any event structure X! and event €' of T'(X") there is a unique (Xo, eo)
in A and an embedding h: Xo — X' such that e' = T'(h)(eo). I

By Theorem 7, we know that a trace as defined in above always exists. Choosing one particular
trace we can define an event structure associated with a functor 7' on event structures preserving

direct limits and pullbacks.b It is slightly simpler to first define when a subset of a trace is

inconsistent.

Definition: Let T : E — E be a functor which preserves direct limits and pullbacks. Let A be a
trace of T'. Say a subset of A is inconsistent when it includes a finite subset {(X;,e;) | ¢ € I} for

which there are embeddings f; : X; — X, for ¢ € I, into some event structure X, so that

{T(f:)(es) | i € I} & Conpxy,
where Conp(x) is the consistency predicate in T(X). Now, define £(T) = (E, Con,<) where
o E={(X,e) € A| {(X,¢€)} is not inconsistent},
e Con consists of those finite subsets {(X;,e;) | # € I} of E which are not inconsistent, and
e < is a binary relation on E given by
(X', ¢') < (X, e) iff T(f)(¢') <rx)e
for some embedding f : X' — X into the event structure X = (X,Conx,<x). |

Thus the structure £(T') is constructed out of the the “self-consistent” elements of a trace
of T, those elements (X,e) for which there are no two embeddings f1,fz : X — Y for which
{T(f1)(e), T(f2)(e)} is not consistent in T'(Y'). It is unique to within isomorphism by the properties

.

of a trace. It is an event structure, to verify which we shall use the following lemma.

Lemma 8 For embeddings f : X — Y and g : X — Z of event structures there 1s an event

structure W and embeddings f' : Z - W and ¢' : Y — W such that g' o f = f' o g.

Proof: Assume X = (X,Conyx,<x), Y = (Y,Cony,<y) and Z = (Z,Conz,<z). It suffices to
consider the case where f : X 4 Y and ¢g : X 4 Z, that is when the embeddings are inclusions,

and where we further assume that X = Y N Z. Then we define
W = (Y U Z,Cony UCongz,<y U <jz),

the union of Y and Z. Taking f' and ¢' to be the inclusions f': Z <W and ¢' : Y a4 W fulfils the

requirements of the lemma. |




Lemma 9 Let T : E — E be a functor which preserves direct limits and pullbacks. The structure

E(T) defined above 15 an event structure.
Proof: The only difficulty comes in showing that £ (T') satisfies the property
{(Xi,&) |1 € I} € Con & (X, €}) < (Xj,¢5), for j € I,= {(X;,e) | i€ I} U{(X],€;)} € Con.

Suppose otherwise, i.e. that {(Xi,&;) | i€ I} € Con & (Xj,¢}) < (Xj,¢e;), for j € I, while
{(Xi,e) | i€ I} u {(X]
X; — X and f} : X} — X into some event structure X so that {T(fi)(ex) | & € K} U{T(f})(e;)}

is not consistent in T'(X). Also there is an embedding g : X} — X; such that T'(g)(e}) <x-. e;.

,e;-)} is inconsistent. Then there is a subset K C I with embeddings f :

By lemma 8, there are embeddings ¢' : X — W and f; : X; — W, for some event structure W,
for which ¢' o fi = fj o g. However this yields embeddings gdofy: Xy o> W,fork € K, and
fi + X; — W for which {T(g' o fi)(ex) | k € K} U {T(f;)(e;)} ¢ Conrp). This contradicts the
consistency of {(X;,e;) | ¢ el }. Hence the property is proved. |

We now show how the event structure associated with a variable type T has a domain of

configurations isomorphic to the partial order of objects of type T'.

Theorem 10 Let T : E — E be a functor which preserves direct limits and pullbacks. Let
E(T) have the form (E,Con,<). There is an isomorphism between the domain of configura-
tions L(E(T)), ordered by inclusion, and the objects of T, ordered pointwise; the isomorphism is

determined as follows:

1. An object t of variable type T determines a configuration a of E(T') where
a={(X,e) e E| ectx}.
2. A configuration a of £(T') determines an object t of variable type T which acts so
tx = {T(f)(e) | 3Xo. (Xo,€) €Ea & f: Xo — X is an embedding}
for all event structures X.

Proof: Again the proof more or less follows Girard’s in [6]; the additional partial order structure

causes no real difficulties. |

Now we give the more abstract proof.




Definition: Let C be a category, we shall call C a finitary category if, and only if, C has the

following properties

1. C has pull backs

2. there exists a set S of objects of C such that every object of C is the direct limits of objects
inS. 1

The intuition is that all objects are approximable by objects which are finite in a very strong

sense. Note the following fundamental property:

Proposition 11 The category DIV is finitary. Furthermore, the product of two finitary categories

ts finitary. |

Definition: Let C be a category. Let F' be a functor from C to DIX. We say F is a variable type
(or sometimes a stable functor) when it stable. We say that a family (tx), such that tx € F(X)
for all objects X in C, is an object of variable type F (or sometimes a uniform family of F) if,
and only if, for every pair of objects X and Y in C, and every morphism f € C(X,Y), we have
F(f)®(ty) = tx. We shall write II(F) for the collection of all objects of variable type F. |

Note that the collection of uniform families of a given functor from C into DI* is in general
a class and not a set, if C is a large category. However, we shall see that this difficulty does

not really happen in the cases we consider. Note the following presentation of objects of variable

type.

Proposition 12 Let C be a category. Let F be a functor from C to DIX. Then a family (tx)
such that tx € F(X) for all objects X in C is a uniform family of F if, and only if, for every
pasr of objects X and Y in C, and every morphism f € C(X,Y), we have

Vp € Pr(F(X)). pC tx & F(f)*(p) C ty. }
We can now state Girard’s discovery in our framework:

Theorem 13 Let C be a finitary category, and F a functor from C to DIF which stable. Then

II(F) s a set, and it is a dI-domain for the pointwise ordering. |

Proof: That II(F) is a set comes directly from the fact that C is set-generated and that F

preserves directed limits. The verification of the fact that it is a bounded complete cpo uses
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directly our reformulation of what is a uniform family of F. As infs and éups ate computed
pointwise, the distributivity axiom is verified. Finally, the hard point is to find a basis with very
finite and isolated elements. We shall give only the construction. Let (tx) be a given object of
variable type F, and A an element of S. For each very finite element a T t4 of F(A), we shall
show how to build a very finite and isolated object (ux), such that u4 = a and (ux) is less than
or equal to (tx) for the pointwise ordering (which corresponds to the usual construction of step
functions).

Define first the relation (X, z) C (Y,y) if, and only if, X, Y are objects of C, and = € F(X),
y € F(Y), and there exists a morphism f € C(X,Y) such that F(f)"(z) C y. This is a transitive
relation. We note that, for every object Y, the following subset of F(Y)

{F(f)*(=) | (X,2) E (A,q) and f € C(X,Y)}
is bounded by ty. Since F(Y) is bounded complete, we can define
uy = | {F(f)¥(=) | (X,2) C (4,a) and f € C(X,Y)}.

Then, we can check that this family has all wanted properties. (Note: the fact that F preserves
pull-backs is needed to show that the family (ux) is, in fact, an object of variable type F.) I

The importance of this proof is that it gives an insight as to how this model can be extended
to a model of Fw. This is the remarkable closure property of dI-domains which will allow us
to interpret the abstraction relatively to types (types as parameters). The key point is the
Proposition 3. Note that in the case where the category C is the péset of natural numbers, then
the construction is the usual inverse limit construction! However, it is important to emphasize
that, in general, II(F) is not the limit of the functor F.

We will apply these constructions to provide a semantics for the calculus which is described
in the following section. For now we shall only give an outline of how to give an interpretation
of second-order calculus. This is already done in Girard’s paper [6]. Since dI-domains form a
cartesian closed category (with stable functions), it is well-known how to interpret the usual
application and abstraction. Closed types will be interpreted as dI-domains and, more génerally,
a type with n variables will be interpreted as a functor from (DI*)" to DI” which is stable.
Closed terms will be interpreted as elements of the domains and, more generally, a term which
depends on type variables will be interpreted as a uniform family of the functor associated to its

types. One interesting feature is that the interpretation is extensional.
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4 'The polymorphic fixedpoint calculus.

In this section we will describe the syntax of a calculus which we wish to interpret using the
constructions set out in the previous sections. It is a fragment of the langﬁage of McCracken (9]
and is closely related to Fairbairn’s programming language Ponder [11]. We call this language

the (pure) polymorphic fizedpoint calculus. Its types have the following abstract syntax:
o =0y —0; | | pa o | la o,
where a is a type variable, and it has the following terms:
M:u=z | Az:o. M | My(M;) | Aa. M | M{c} | intro** °(M) | elim** °(M) | pz:0. M

where z is a variable.

4.1 Typing and equational rules.

A closed term will be assigned a unique type by a system of typing rules. Typing sequents have
the form H -y M : o where H is a (possibly empty) list of hypotheses. of the form z : 0. We

assume that a list H has no repetitions of variables z. Axioms are given by the scheme:
Hy, z:00 Hylpz:0

where = does not appear in H; or Hy and X is a (possibly empty) set of type variables. There

are the following rules for introducing and eliminating function types:

H z:0.ty M: oy Hbts My :0y — 03 HlFs M;:04
HbFg Az:0,. M 0y — 0y H 5y My(M;) : 09
There are the following rules for introducting and eliminating IT:
Hbg o M:o Hbtyg M :1la. oy
Hly Aa. M :Tla. o H &y M{oy} : [02/ oy

where the first rule is subject to the condition that « is not free in the type of any free term
variable of M and [03/alo; is the expression that results from substituting oy for « in oy (where
bound variables in oy are renamed to avoid capturing free variables of 02). Recursion can occur

both at the level of types and at the level of terms. The rule for typing a recursive term is

 H,z:obtgM:o
HbFppr:0.M:0o

Introduction and elimination for recursive types use the operators intro and elim respectively.

Hby M:|[(po. o)/a)o Hby M:pa. o
H by intro** (M) : pa. o H by elim#™ °(M) : [(pa. 0)/a)o

12



There is a collection of equations which an interpretation of the polymorphic fixedpoint cal-
culus must satisfy. We assume throughout that all terms are type-sensible. First of all, there are

the basic equality rules:

_ Hl‘ngzMz H*’)}Ml:Mz H}‘zMzZMg
Hbz M=M Hlbg My = M, H s My = M;
and also rules for application:
HI‘"{)Ml:Mz HFEMIZMZ
H i“z Ml(Ms) = Mz(Ms) H }_E Ma(Ml) = Mg(Mz)

The calculus must also satisfy the §-rule:
H l‘z (}\:E O, M1)(M2) = [Mg/Z]Ml

and the ¢-rule , :
H, z:0ty M =M,
Hbsdz:o. My =Az:0. M,

Finally, we also require the 5-rule:

Az:o. M(z) =M
(where z does not appear free in M). For type application we have, of course, the following:

H *“g M1 - Mz
H by Mi{o} = My{0}

We also have the S-rule
H s (Ao M){o} = [0/o]M
the &-rule

Hbs o My =M,
H f‘z Ao M1 = Aa. Mz

and the g-rule
Ao M{a} =M
(where « does not appear free in M )- There are some basic rules for the recursive type operators:

Hlby My =M, H by My =M,
H Fy intro** 7(My) = intro** (M,) H by elim"® 7(My) = elim** 7 (M)

and a pair of equations asserting an isomorphism:

H, z:{(pa. 0)/a]o 5 introb* 7 (elim** °(z)) =

H, z:pa. o by elim™ ?(intro** ?(z)) = o

13



4.2 An extended calculus.

For the purposes of denotational semantics, it is useful to have the additional type constructors of
product X and sum +. We interpret the + operator as the usual separated sum of denotational
semantics. Given dI-domains Dy,..., Dy, the sum +(D;,...,D,) is defined to be the disjoint
sum of the domains D; together with a new element 1 which is taken to be the least element
of +(Dy,...,D,). We emphasize the point which we mentioned in the Introduction that this
construction is not possible over the category of qualitative domains. We therefore propose the an
extension of the pure language which will include sums. The extended language has the following

types:

g = 01X0y | o1+0y | oy =03 | a| po.o | Ta o
The.terms of the extended language are given as follows:

M = (M;,M,;) | proj;(M)
in7"*(M) | ing""*(M) | cases M of z1:0y. My, z3:03. My |
z | Azioo M | My(My) |
Aa. M | M{o} |
intro#* ?(M) | elim** ?(M) |
pr:io. M

Typing rules for the extended language are the same as those for the pure language together

with the rules for products:

H}“leiﬂl H}‘{;Mz:dz M:O'1X02
(M1, M) : X(01,03) proj;(M) : o;
and for sums:
M :o; Moy + oy H zy:00 s Mo H, z3:0,Fs My :0
in**(M) : 01 + oy cases M of zy:07. My, 23:03. My : 0

(r=1,2). There are also equations to be satisfied by the new constructs. For the product, there

are some basic equations

HI")]Mz'-:Mé H}—EMz:Mé H}‘EM:MI
H by (My, M) = (M}, M}) H by, proj;(M) = proj;(M")

(¢ =1,2) and equations

H -5 (proj, (M), proj,(M)) = M
H by proj;((My, Ms)) = M;
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(i = 1,2) which assert that the operator X is to be interpreted as a categorical product. For the

sum we also require some basic equations:

Hts M =M
Hly Proji(M) = Proji(M')

H, zy:01 s My = M] H, z3:0, by My, = M, HiFs M =M
H b5 cases M of 1 : 0. My, =5 : 02. My = cases M' of z1 : 01. M}, z2: 02. My

and a pair of equations

H, z;:0; 5 cases inj(z;) of z1: 09. My, 3 : 02. My = M;.
(¢ = 1,2). However, we do not have the following additional equations

H, z;:0; by in;(cases «; of z1 : 01. My, z3: 02. M) = M;

(¢ = 1,2) which would assert that + is a categorical coproduct. Surprisingly, this last equation is
satisfied only by a trivial interpretation of the calculus! Under our interpretation, however, these

equations are almost true, in the sense that they do hold when z; # L.

5 Semantics of the polymorphic lambda calculus

5.1 Some preliminary results

We now describe our model. We omit the semantics for the recursion and the extended language
and concentrate on the polymorphic lambda calculus. We give, by structural induction, the

denotations [ - o] and [H g M : o]. For this, we need first some general results.

Definition: Let F' be a continuous and stable functor from Dom to Dom. A continuous stable

family with respect to F' is a family (¢x) indexed over dI-domains X such that

o tx € F(X) for all X,
¢ if f € Dom(X,Y), then F(f)L(tx) Cty (ménotonicity),

¢ if f; € Dom(X;, X) is such that X is the directed colimit of the system (X;, f;), then tx is
the sup of the directed family F(f;)"(tx,),

o if u; € Dom(X3,X;) and uy € Dom(Xs, X;) define a pull-back of f; € Dom(X;, X) and
f2 € Dom(X;, X) and we write fs = fiouy = f; 0 uy, then F(f5)*(tx,) = F(fi)%(tx,) A
F(f2)E(tx,) (stability).
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Remark that the two last conditions express that (tx) commutes with directed colimits and
pull-backs. It is convenient for checking that these properties hold for a given family to use the
characterisation of directed colimit of [16]: if X is the directed colimit of the system (Xi, fi) then
fE o fR is the sup of the directed family (F(f;)*(tx.)), and the corresponding characterisation of
pull-backs: with the notation of the definition,we have f& o ff = ff o fEA ff o ff. I

To check the next proposition, the following lemma which is derived from a more general

theorem due to Eugenio Moggi, is convenient.

Lemma 14 Let F be a continuous and stable functor from Dom to Dom. An indexzed family

(tx) 1s continuous stable if, and only if, it is uniform. |

We will also call such a family a continuous stable section (6r just section) of the functor F'.

With this result, it is possible to generalize the definition of II(F).

Proposition 15 Let C be an arbitrary category, and F a continuous and stable functor from
C x Dom tc; Dom. Define II(F), functor from C to Dom, so that, for A object of C, II(F)(A)
is TI(F(A,2)) as defined above!, and if f € C(4, B), then II(f)%((tx)) = (F(f,1dx) (tx)), and
M(f)®((ux)) = (F(f,1idx)®(ux)). Then II(F) is then a continuous and stable functor. I

Indeed, it is straightforward to check, for instance, that (F(f,idx)%(tx)) is a continuous stable
family in X (and, from Moggi’s result, we deduce the somewhat surprising fact that this family
is also uniform). We will use the continuous and stable functors => and X, from Dom x Dom
to Dom. If F and G are two functors from the same category C to Dom, we write F' = G for

= o(F, @), and F X G for X o (F,G). The same method may be applied to prove the next result.

Proposition 16 Let F, G and H be three continuous and stable functors from the same category
C into Dom, and K a continuous stable functor from C x Dom to Dom. We can define the

operators app, App, curry and Curry on sections and continuous stable functors.

o ift = (tx) is a section for F => (G = H) and u = (ux) a section for F' = G, then app(t,u)
is the section (Az. tx(ux(x))) of the functor F = H, -

o ift = (tx) is a section for F x G = H, then curry(t) is the section (Az. Ay. tx(z,y)) of the
functor F = (G = H),

e ift = (tx) a section of the functor F = TI(K), then App(t,G) is the section of the functor
F = (K o (Id,G)) defined as the family (Az. (tx(z))ax)),

'Indeed, F'(4,.) is a continuous and stable functor from Dom to Dom.
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» ift = (tx) is a section of the functor K, then Curry(t) is the section of the functor TI(K),
from C to Dom, defined by Curry(t)x = (t(x,v))- 1

5.2 The model

As was said before, the meaning [E F o] and [H s M : o] is given by structural induction.
First, we define [X I o] of a type (we’ll write [o] whenever ¥ is clear enough). It is a a
continuous and stable functor from (Dom)¥ to Dom (in particular, if ¥ is empty, we see that

the semantic of a type is a dI-domain). The definition is by case on o
e 0 = o, then [X | o] is the o’th projection functor,
* 0 =01 = 03, then [o] is [o1] = [o02] as defined above,

¢ 0 =Ila. oy, then we have T, a I 0y, and [0;] is a functor from (Dom)® x Dom to Dom.

We take [o] = II([o1]) as defined above.

Next, we define the meaning of H bz M : o (we’ll write [M] if & and H are clear enough). For
this, we remark that if H =z, : 01,...,%, : 0p, then we have X |- 01,...,2 | 0,,. Furthermore, we
know that ¥ - 0. We thushave X I oy X -+« X 0, = 0. Hence, Jo1 X -+« X 0, = 0] is a continuous
and stable functor from (Dom)® to Dom. The denotation [M] is then a continuous and stable
section (or, equivalently, a uniform section) of the functor [o; X - -+ X 0,, = ¢]. The definition of

[M] is by cases on M.

¢ M = xz;, then o is 0; and [M] is the uniform family of i’th projections,

[M1(Mz)] = app([Mi], [Mz]),

[Az: 7. My] = curry([M]),

[Mi{r}] = App([M], [7]),

o [A(M)] = Curry([M]).

An alternative description of this kind of model, using the categorical presentation of Seely

[15], is given in [4].
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