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Abstract

Modern data centre (DC) operators cannot tune and secure what they cannot see. How-
ever, application identification from network traces is held back by two obstacles: public
packet captures are scarce because commercial workloads and user data are confidential;
the few datasets that exist do not focus on DC specific workloads, and do not allow oth-
ers to reproduce the experiments. This dissertation tackles both these issues. I designed
and implemented an end-to-end framework that can systematically capture traffic with
nanosecond timestamps, demultiplex flows, and compute a set of 203 features. Each flow
is coupled with extensive metadata detailing the exact setup that generated the traffic,
allowing any researcher to reproduce the experiments under identical conditions. Using
this workflow, I created the first public DC-focused dataset, unencumbered with personal
or confidential information, that spans three representative workloads. Machine learning
classification techniques demonstrate the utility of the data: traditional feature-based
models achieve perfect accuracy when identifying the three workloads. A core novelty
is that besides strict identification, the collected data includes significant metadata. To
demonstrate this, I tackled performance estimation as well for one of the workloads. A
1D CNN can distinguish between flows corresponding to different performance metrics
with an accuracy of 95%.
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Chapter 1

Introduction

Modern data centres are the backbone of the most used digital services, processing and
storing large quantities of information. Within data centres at any point there are a
vast number of applications running. These are interconnected, and the data exchanges
between them generate complex and high-volume network traffic. Effectively managing
and optimising data centre operations necessitates a deep understanding of this traffic.
The first component of this understanding is the ability to identify the running applica-
tions accurately. This dissertation explores this task of application identification for data
centre specific workloads, using a traffic-driven approach. It presents a novel framework
for creating comprehensive datasets that capture the different behaviours, and evaluates
machine learning techniques for flow level traffic classification.

1.1 Motivation

Figure 1.1: Example uses of application classification based on the classification target.

Application classification is an important problem in today’s computing landscape, par-
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ticularly in data centres. The targets of classifications may vary depending on the desired
usage. Figure 1.1 presents a few different targets and common uses for them.

In data centres, by leveraging classification, operators can perform critical tasks such as
intrusion detection, capacity planning, and QoS assurance [1, 2, 3]. Given the diverse
nature of workloads in data centres and their specific requirements, application level clas-
sification is especially crucial for maintaining predictable performance. It can enable
advanced performance diagnosis by correlating traffic patterns with varying load (e.g.
different measured queries-per-second), guiding targeted optimisations [4]. Moreover, de-
tailed traffic characteristics can serve as signals for workload placement and resource
allocation in cluster scheduling [4, 5, 6]. Accurate classification of workloads, based on
their resource usage, can also lead to lower carbon footprints for data centres [7].

1.2 Research Gap

This project is concerned with traffic classification within the scope of data centre net-
works. Upon inspection of existing literature (detailed in Chapter 3), two significant gaps
appear.

Firstly, despite the unique characteristics of data centre networks, there is no existing
literature dedicated to classifying application traffic within this environment.

Secondly, the limited research existing on data centre network characteristics is reliant
on closed proprietary datasets. This lack of public data acts as a significant impediment
to reproducible research and comparative analysis of network traffic classification tech-
niques. Furthermore, the reasons for the lack of public network traces are user privacy
and confidentiality concerns. Multiple approaches have been proposed to facilitate the
sharing of network traces [8, 9, 10], but so far, it remains a major drawback in network
research.

Therefore, a clear research gap exists in the development of network traffic classification
techniques specifically designed and evaluated on realistic data centre application work-
loads for which the data is public and the experiments are reproducible. Furthermore,
there is an unmet need for more granular classification that moves beyond the simple
identification of applications. Network traffic classification can be used to understand the
operational state of DC workloads (e.g. performance). The main current issue that blocks
the progress is the labelling techniques used in existing datasets [11]. This project aims to
cover this gap by introducing a framework enabling reproducible data centre application
classification and dataset creation with integral comprehensive labelling.

1.3 Summary of Contributions

The main contributions of this project are:

• The creation of a tool-chain that can reliably run workloads on a set of distributed
machines and capture their network traffic with nanosecond timestamps. This is
an extensible framework that allows the collection of more than just the network
traffic associated with the running workload, but instead captures the entire system
configuration along with other metadata1.

1Source code for all used tools can be found at https://gitlab.developers.cam.ac.uk/msp57/dc_
workload_classify. To access it, contact my supervisor Andrew Moore.
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Figure 1.2: Overview of the project’s components, the capture infrastructure, data pro-
cessing pipeline, and the ML classifiers.

• The creation of a workflow that processes network traffic captures and creates
feature-based datasets of approximately 200 features. A core novelty is that the
labelling is not static, each dataset can be tagged on-the-fly using extracted infor-
mation from any of the metadata associated with a workload run. This enables
analyses that reach well beyond application identification.

• A comprehensive dataset built using the above tool-chains describing the network
traffic of three data centre specific workloads.

• An evaluation of network traffic classification techniques using machine learning on
the created dataset. Besides application identification, I also evaluated the ability
to estimate a performance metric, such as queries-per-second, (QPS) for one of the
selected workloads.

The components are summarised in Figure 1.2. The figure shows the designed system
flow.
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Chapter 2

Background

2.1 Data Centre Networks

The focus of this project is on network traffic in data centres. Modern data centres (DCs)
have to accommodate unique traffic patterns of demanding workloads. Network architec-
tures of DCs are derived from the Clos network topology [12, 13, 14], the most common
being the fat tree [15] architecture. Servers are placed in racks and are connected to a
Top-of-Rack (ToR) switch. Then, ToR switches are connected to multiple levels of spine
switches, allowing for multiple paths between any two servers. This is because modern
DCs are dominated by serve-to-server (East-West) traffic which is orders of magnitude
higher than client-to-server (North-South) traffic [16]. A fat tree topology is shown in
Figure 2.1.

Figure 2.1: A data centre fat tree topology. Dark blue squares are servers and light
blue squares are switches. The labelled edge switches are the ToR switches, core and
aggregator are the spine switches. Figure taken from [4].

One key characteristic of data centre networks (DCNs) is the high bisection bandwidth1,
which is constantly increasing and has reached multi-petabit per second [17]. Another
crucial characteristic is the low latency, as many common services require low tail la-
tency [18]. In large DCNs, end-to-end latency is in the range of tens of microseconds [19],
as increased latency may considerably decrease performance as shown by Zilberman et
al. [20].

1Minimum aggregate bandwidth across a cut that divides the network into two equal halves.
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2.2 Classifying Workloads

The way workloads are classified depends on the scope and on the target of the classifi-
cation. The choice of data and classifying unit2 is related to what the expected outcome
is. Example targets for classification are application names, service types, performance
regimes, and resource usage. This information can be used for better resource utilisation
predictability and estimation, as explained in Section 1.1.

Identifying a particular application may be straightforward, especially in data centres
where workload types are vastly different (Section 3.2). Learning more about them, such
as how they perform and how they use the different resources, may be a more complex
task. In both industry and research, tracing is used extensively to reveal information
about a workload. This may be used in debugging, accounting, auditing, or verification.
Many tracing tools have appeared in both academic and industry settings. Some examples
are KUTrace [21], Dapper [22], and Magpie [23]. An important issue is that in distributed
systems, tracing individual requests is difficult [24]. Furthermore, all these tracing systems
are intrusive: they require changes at either system or application level, which may impact
the performance of the traced workloads.

In this landscape, classification using network observations alone can be a valid alternative.
Collecting the network traffic is non-intrusive and does not affect performance in any way.
So the idea of analysing network traces to answer the same questions as system traces is
a promising, yet unexplored one. Network traces could reveal even more information if
used together with simple system traces.

2.2.1 Network Traffic Classification

This project is mainly concerned with TCP communication using Ethernet as the Data
Link Layer and optical fibre as the physical transmission media. The packet size represents
the size of the Ethernet frame excluding the preamble bytes and the mandatory IPG
(inter packet gap) bytes. The inter-arrival time (IAT) between two packets represents the
distance in time between the starts of two consecutive packets. The inter-packet gap (IPG)
represents the distance between two consecutive Ethernet frames and is approximately
equal to the IAT minus the time on wire. These concepts are shown in Figure 2.2.

IPG
12 Bytes

Preamble
8 Bytes

Ethernet Frame Content

Packet Size

IPG
12 Bytes

Preamble
8 Bytes

Ethernet Frame Content

Inter-Packet Gap

Inter-Arrival Time

Figure 2.2: Basic definitions for Ethernet traffic. Based on a figure from [25].

When classification is considered, the first question to answer is what will be the input?
In the case of network traces, the unit of classification is a part of the trace. Depending
on the scope, different granularity may be needed when the trace is split. Different scopes
that are relevant in a data centre environment are shown in Figure 2.3.

2The input to the classification model.
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Figure 2.3: Simplified view of a computer network with three machines running distributed
applications. Each shape represents a different application. In order to extract informa-
tion about a particular application, we have to look at traffic originating and targeting
only that application, in this case different TCP flows. If we are interested in a particular
machine, we ignore the different TCP flows, and we have to look at individual IP flows,
which are identified only by the machines’ IP addresses. If we want to get information
about the cluster as a whole, we may need to aggregate all information in the network,
regardless of the target IP or network port.

From Figure 2.3, we can see that depending on the scope, the classification unit may
be different, and the traffic may split at different granularities. In case the focus is on
individual applications, the sensible choice is a flow defined as the 5-tuple (protocol, src ip,
src port, dst ip, dst port). If the focus is on individual machines, the 3-tuple definition
(protocol, src ip, dst ip) is enough. For an image of the whole cluster, the classification
unit may not even be a flow but the whole trace over a period of time. These definitions
are of course not fixed, and they depend on the individual use case and on the other
information we may have about the network topology and application deployment.

2.3 Network Traffic Capture

In order to analyse the network traffic between multiple machines, this traffic has to be
somehow “saved”. For this, traffic capture tools are used. The simplest capture tools are
software based, such as tshark 3. These may have timestamping resolutions in the order of
microseconds, which for low bandwidth networks is not an issue. Other capture tools use
specialised hardware. One such example is the Endace DAG card [26] that has a much
better resolution of 4ns. Another example of hardware is the Exablaze ExaNIC card [27]
which has a 250ps resolution.

3https://www.wireshark.org/
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In a 10Gbit/s network, packets arrive at short intervals, so the timestamping resolution
has to be low enough. Otherwise multiple packets will correspond to the same timestamp4.
Time on wire for packets of various sizes in a 10Gbit/s network are shown in Table 2.1.
So to capture a 64 byte packet, requires a maximum resolution of less than 50ns. Out
of the mentioned tools, only the specialised hardware tools are suitable for capturing a
10Gbit/s network.

Packet Size (Bytes) Time on Wire (ns)

64 51.2

512 409.6

1024 819.2

1512 1209.6

Table 2.1: Time on wire for packets of different sizes, assuming 10Gbit/s connection.

Capturing traffic is a task that puts pressure on the disks and on the operating system,
as each packet has to be written to disk and an interrupt is raised every few packets.
Hence, collecting traces on the same machine that generates the traffic may perturb the
execution of the workload. To avoid this issue when using optical fibre, traffic can be
captured externally provided that it does not interfere with the system being observed.

An approach that can achieve this is the use of optical taps. These are passive devices
that work by splitting a portion of the light signal from the main fibre link and diverting
it to a monitor port on another machine.

Another approach is port mirroring on switches that offer this capability. This is a more
sophisticated process. An example of such a switch is the Exablaze ExaLINK Fusion [28],
which has layer 1 switching capabilities, meaning it can replicate traffic from any port to
any other port with very low latency introduced. This device is essentially a patch panel.

The standard file format for capture files is the pcap format [29]. This is a simple format
that captures the bytes that make each packet and add timestamps to each packet. Pcap
files can be parsed using CLI or GUI tools like tshark/wireshark or libraries like dpkt5 or
pyshark 6.

2.4 Machine Learning Classification

Classification is a fundamental problem that machine learning (ML) can efficiently solve.
Methods range from feature-based classification to deep learning methods using complex
neural networks.

Feature-based classification is a cornerstone of “traditional” machine learning. The
goal of the classification algorithm is to learn a function f : X → Y where X is a vector of
values called “features” and Y is a discrete set of class labels. This type of classification

4This is what happens with the TSval option in TCP. The resolution is 1ms so multiple packets end up
having the same TSval. For the created datasets (see Section 4.4.2 and Appendix C) I chose to count how
many packets have consecutive equal TSval’s, assuming that that can be correlated with the burstiness
of the traffic.

5https://dpkt.readthedocs.io/en/latest/
6https://pypi.org/project/pyshark/
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relies on a crucial step: feature engineering. In this step, domain specific knowledge is
used to extract relevant characteristics from raw data. These are chosen in a way that
can capture the underlying patterns of the target classes. In network classification of
flows, examples of features are packet length statistics or TCP flags. Examples of ML
algorithms are decision trees, support vector machines, or naive Bayes.

Deep learning is a subfield of ML that is based on neural networks with multiple layers.
Deep learning (DL) methods can learn hierarchical feature representations directly from
raw data, skipping the feature engineering step. A typical architecture in DL used for
tasks that involve 2 dimensional data (images) or 1 dimensional data (time series or
sequence data) is a convolutional neural network (CNN). In the case of network traffic
classification the CNN can take as input the raw captured bytes.
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Chapter 3

Related work

3.1 Network Traffic Classification

Network traffic classification could initially be solved easily by looking at the used port
numbers and mapping them to the corresponding protocols. However, as applications
became more complex, and developers wanted to obfuscate their activity more, dynamic
ports started to be used, or applications started “tunnelling” their traffic through standard
ports (e.g. 80 for HTTP). Moore and Papagiannaki [30] identified in 2005 that using
port-based identification could not provide an accuracy of more than 70%, confirmed by
Madhukar et al. [31] on a separate dataset.

Deep Packet Inspection (DPI) appeared as a response to the evolution of the used port
numbers. DPI classifies the payload of network traffic by computing specific signatures
that can then be matched against known signatures of applications. This method achieved
high accuracy for known applications as shown by Moore et al. [30], Fernandes et al. [32]
and Hubballi et al. [33]. As encrypted traffic became the norm, DPI became harder, and
decreased in efficiency.

Feature-based machine learning (ML) methods started being used to classify network
flows, leveraging statistical features extracted at packet or flow level. Moore and Zuev [34]
introduced classification using Bayesian techniques which achieved an accuracy of up to
96%. Williams et al. [35] evaluated multiple supervised ML algorithms on network clas-
sification that achieved up to 99% accuracy. These methods have been used successfully
for different target classes and different types of traffic [36, 37, 38, 39].

Deep learning methods have also been used to classify network traffic. Wang [40] was
among the first to use neural networks for traffic classification, showing how the method
can be used to classify each TCP flow into different protocols by using the first 10001 bytes
of TCP payload. Wang et al. [41, 42] used convolutional neural networks (2-dimensional
and 1-dimensional) to classify malware traffic as well as VPN traffic. They used the first
784 bytes of each flow, both of all traffic layers and only of layer 7 (application) separately.
Lopez et al. [43] improved the model by integrating spatial and temporal characteristics
as well, using LSTM, a specific Recurrent Neural Network (RNN).

So far the objectives of network traffic classification have been partially limited by the
availability of datasets and their scope. The most widely used public datasets and their
classification targets are listed below in Table 3.1.

1This threshold of approximately 1000 bytes was introduced in [30].

17



Dataset Name Year Scope

Moore [34] 2005 End-User Applications
(web, BitTorrent, SMTP etc.)

ISCX [44] 2016 End-User Applications
(Facebook, Chrome, Skype) / VPN-nonVPN

MAWI [45] 2000 - ongoing Data collected at an ISP, of various applications,
labelled as malware or not.

UNSW [46] 2017 Traffic coming from different IoT devices

Mirage [47] 2019 Android applications

MobileGT [48] 2018 Mobile applications

UNIBS-2009 [49] 2009 End-User Applications
(web, BitTorrent, Skype etc.)

CTU-13 [50] 2014 Botnet traffic

Table 3.1: Public datasets used in network classification research and their scope.

Other existing research uses private datasets that are still scoped mostly to consumer
applications or malware classification. Voice over IP (VoIP) identification is well stud-
ied [51, 52, 37, 53]. Detecting VPN traffic is another wide spread use of network traffic
classification [54, 42, 55].

3.2 Data Centre Workload Characteristics

The workloads used in data centres have distinct resource usage patterns and are clas-
sified based on their communication type, latency sensitivity, and bandwidth intensity.
Commonly studied workloads in literature are presented in Table 3.2.

TCP remains the most common transport layer protocol in data centres. The character-
istics of TCP traffic have been a hot topic in network research given that understanding
them is essential for optimising performance, diagnosing issues, and designing better pro-
tocols. Benson et al. [60] and Alizadeh et al. [56] showed the bimodal distribution of flow
sizes: above 90% of traffic is represented by mice flows, which are short flows carrying
less than 10% of bytes. The rest of the flows are elephant flows, which carry more than
90% of bytes.

The burstiness of TCP traffic is another well known property of DCNs. Multiple studies
showed an ON/OFF pattern: periods of intensity are followed by idle periods. Benson et
al. [60] showed that packet inter-arrivals in DCNs follow a heavy tailed distribution.
Kapoor et al. [64] also showed that packets often arrive in “trains” at sub-RTT intervals.
Woodruff et al. [65] showed how burst patterns differ between applications. Burstiness is
an important characteristic because intense bursts could overflow buffers and cause losses
even if the average utilisation is low.

An obstacle in data centre research is the limited availability of public traffic datasets.
Operators are reluctant to share actual traces due to privacy concerns. Typically, re-
searchers will only publish aggregated statistics or graphs. Facebook [14], Google [66]
and Alibaba [67] have published traces of resource usage for some of their clusters, but
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Workload
Type

Examples Patterns and
Requirements

Reference Studies

Web Services
(online queries)

Web
Front-Ends,
Google Search

Latency sensitive, short
flows, High fan-out

Google’s cluster
traces [56],
DCBench [57], Ersoz et
al. [58]

Batch
Analytics and
Big Data

MapReduce,
Spark

Large flows sending
GB of data, causes
bursts when nodes
synchronise,
throughput intensive,
burst prone

Facebook traces [14],
Microsoft reports [59]

Distributed
Storage and
Key-Value
Stores

NoSQL DBs,
memcached,
Redis

Mixed patterns: small
control messages, but
also bulk data
transfers.

Benson et al. [60],
YCSB [61]

High-
Performance
Computing

Simulations,
Modelling (e.g.
financial)

Compute intensive, low
network activity,
bandwidth needed for
IPC

Jia et al. [57],

Machine
Learning

Distributed
training, large
model inference

Bandwidth intensive
(updates have to be
moved quickly),
latency sensitive at
synchronisation points,
burst prone

MLPerf suite [62],
Zerwas et al. [63]

Table 3.2: Common data centre workload types, examples and their network character-
istics. “Latency sensitive” workloads generate short flows and require low latency, while
“throughput intensive” workloads generate large flows and emphasize aggregate band-
width.

none include network packet traces. Because of this data scarcity, researchers have created
tools and benchmarks, such as SWIM [68] and YCSB [61], which have been used before
to mimic web services. Other publications use simulations to generate traffic (using ns-2
for example), citing prior measurements for validity.

3.3 Data Handling and Privacy Challenges

It is evident that a significant challenge of network traffic classification is the scarcity of
public datasets. This is a consequence of existing regulations and of privacy concerns. The
lack of public data hinders the reproducibility and comparison of existing studies. Training
on private data may also affect the generalisability of methodologies and introduce bias.
For specialised targets, like data centres, this is an ongoing issue, as identified by Roy et
al. [14]. At the time of that publication, the whole research community was relying on
data published by Microsoft [59], which did not generalise to data observed by Facebook.
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Researchers who have access to real data cannot share the raw traffic captures due to
regulations such as GDPR. Anonymising the data is challenging and may degrade data
quality. Companies are reluctant to share data due to the possibility of losing their
competitive advantage. Even when they share traces [67, 66], they only focus on particular
clusters that already use open technologies.

Regardless of its many beneficial and legitimate uses, network traffic classification has a
“dark side” that may raise ethical and privacy concerns. Research in this field can be
used for surveillance and monitoring of individuals by ISPs or governments. These actors
may have indirect access to personal data, such as browser activity, applications usages,
and communication patterns. These can be used for user profiling with objectives, such
as targeted advertisements or manipulation.

This project addresses these concerns. The resulting dataset is fully open and repro-
ducible. The systematic approach taken for data collection is ethical as all of the trace
generation is controlled by myself. The scope of the project is on intra-data centre work-
loads. The performed analysis is, in my opinion, harder to misuse by malicious actors, as
DCs already have multiple layers of security, and getting access to internal traffic may be
caused by bigger security issues.
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Chapter 4

System Design and Methodology

This chapter will describe the experimental setup I used to run selected the workloads
and capture their network traffic at 10Gbit/s. All experiments were run in a controlled
test-bed that resembled a data centre (DC) environment, as presented in Section 4.1.
Following the description of the used hardware and software, I will introduce the selected
workloads that will be the subject of the executed experiments. The workloads represent
different application classes that appear in data centre networks (DCNs). These are
introduced and motivated in Section 4.2.

To make experiments reproducible and less prone to errors, I have developed an ad-hoc
orchestration system that can trigger experimental runs and traffic collection. This is
presented in Section 4.3.

The main deliverable of the experiments is the resulting dataset that describes the cap-
tured traffic for each application. Section 4.4 will present how raw captured traffic is
processed to obtain a feature-based dataset that parametrises each TCP flow of an appli-
cation.

4.1 Experimental Setup

4.1.1 Experimental Test-bed

My project’s objective is to analyse and collect data from data centre level applications.
To make the data I collect relevant, the experimental setup has to be similar to what
is found in DCNs. As presented in Section 2.1, modern DCs can have highly complex
network architectures, but generally they are characterised by high bandwidth and low-
latency connections. Since I aim to look at applications’ behaviour in their “purest” form
with no interference, my test-bed is relatively simple in order to minimise influences of
hardware.

For transparency and reproducibility, the exact hardware setup used is presented in Ap-
pendix A.

The test-bed is represented one rack with multiple identical servers, all connected directly
to one network switch using optical fibre. Throughout this report I will refer to this set
of machines as the test-bed machines.

Each test-bed machine has three network connections:
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• An Ethernet connection that connects the machine to the internet, used also for
SSH-ing into the machines.

• An Ethernet connection that connects the machine to a control infrastructure, used
for the sys-admin.

• An optical fibre connection to a switch.

The optical fibre connection is a 10Gbit/s connection. The NIC used is an Intel Corpora-
tion Ethernet 10G 2P X520 Adapter. The other two connections are irrelevant for these
experiments, as all workloads use only the optical fibre connection.

All machines are connected to the same switch, making it equivalent to a “leaf” switch
in a DCN architecture. Consequently, the available bisection bandwidth is 10Gbit/s.
I have measured the latency and bandwidth of the connections, results are presented
in Table 4.1. These are rough measurements and should be taken as estimates of the
orders of magnitude. They do highlight the high bandwidth and low-latency properties.
Interestingly, the measured bandwidth is not the full line rate of 10GBit/s. I suspect
that iperf 1 does not consider the mandatory inter-packet gap and the preamble bytes (see
Section 2.2.1 for definitions) when computing the measured bandwidth.

Property Value

Bandwidth 9.40Gbit/s

Latency (RTT) ≈ 50µs

Table 4.1: Network Characteristics

4.1.2 Network Capture Infrastructure

To characterise the network traffic of an application, the said traffic has to be captured
and stored in order to be analysed later. Section 2.3 enumerated available tools that can
capture network traffic highlighting their strengths and weaknesses. In order to obtain
an accurate and reliable dataset, I have chosen to use specialised hardware for the traffic
captures. I used the ExaNIC X10 [27] for captures, which is an ultra low-latency 10Gbit/s
network device used in domains such as high frequency trading (HFT). Each of the two
ports on the ExaNIC can capture at line rate, 10Gbit/s. To capture traffic in both
directions in a connection, both ports have to be used.

ExaNIC X10’s are installed on a separate set of machines. These machines will be referred
to as the capture machines. As mentioned in the section above, the test-bed machines
are connected only to each other through the switch, so to capture the traffic on another
machine, it has to be mirrored somehow. One option as suggested in Section 2.3 would
be optical taps. But these suffer from potential losses of signal strength. The chosen
method for traffic mirroring is the use of a high performance network switch, the ExaLINK
Fusion [28].

The ExaLINK Fusion is a layer 1 switch tailored for low-latency applications. The delay
introduced is around 5ns. As a layer 1 switch it can be used for patching, tapping or
replication. In my setup, this switch sits between the test-bed machines and the leaf
switch. All connections are passed to the leaf switch, but are also tapped. The outputs
of the taps are connected using optical fibre to the ExaNIC’s. Essentially, each ExaNIC

1https://iperf.fr/
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captures traffic to and from a particular test-bed machine. All fibre connections in the
setup are of similar lengths, so connections are symmetric from this point of view.

An overall image of the capture system can be seen in Figure 4.1.

Figure 4.1: Simplified view of the experimental setup including the capture system. Red
arrows represent traffic going from testbed-108 to testbed-107 and blue arrows represent
traffic going the reverse way.

Above I mentioned that the important setup detail of the capture machines is their storage
capability. This is because the ExaNIC’s buffer writes to handle large bursts, but they
may still end up dropping packets if the disk writes are not fast enough. The ExaNIC can
capture at a rate of 10Gbit/s on both ports, for a total maximum data generation rate of
20Gbit/s. But in practice this rate is bounded by the storage system. The write speeds
of the disks used on each capture machine can be seen in Table A.3. We see that the
disks may be a bottleneck, as at most they can write at 3Gbit/s which would correspond
to about the same maximum capture rate.

The ExaNIC may not be able to capture at full line rate on both ports due to limitations
in the disk properties, but this is not a problem for the experiments I ran, as I will show
in Section 4.2. All experiments “generate” traffic at rates lower than 3Gbit/s.

Another important aspect of the capture system is the timestamping capability, as ex-
plained in Section 2.3. The timestamps for the captured packets are applied in hardware
on the ExaNIC’s. The card provides a resolution of 250ps, but the actual resolution used
in the capture files is nanosecond resolution, which is sufficient to precisely preserve the
true ordering of the packets in the low-latency captured system.

Previous work [25, 69] evaluated the used hardware, showing that timestamping is precise
when capturing on both ports, with maximum deviations of 750ps and mean deviation of
125ps. The mean deviation is thus less than a clock cycle while the maximum deviation
is 4 clock cycles on the capture machine. This makes it suitable for my experiments.

Multiple ExaNIC’s can have their clocks synchronised using different methods: synchro-
nising with their hosts (provided the hosts are synchronised with each other), PTP syn-
chronisation or PPS synchronisation. This way, two ExaNIC’s can be used to capture
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Listing 4.1: Summary of a capture using ExaNIC

SW Received: 24611 packets ( 0.000 MP/s ) 25 MB ( 0.001 Gb/s )

SW Wrote: 24611 packets ( 0.000 MP/s ) 25 MB ( 0.001 Gb/s )

Lost RX/WR: 0 packets ( 0.000 MP/s ) 0 MB ( 0.000 Gb/s )

Dropped: 0 packets ( 0.000 MP/s )

SW Overflows: 0 times ( 0.000 /s )

traffic from the same connection (one captures one direction, the other one the other
direction). This could be used to mitigate the issue coming from the disk write speeds.
In my setup I chose to use a GPS-derived PPS signal, that is connected to all ExaNICs
ensuring their synchronisation.

Capturing traffic using the ExaNIC’s is straightforward using the tool-chain open-sourced
by Exablaze [70]. Configuration of the NICs is done only once when the machines are
turned on for the first time. A capture is started using a simple command, exact-capture,
which uses a given number of CPUs that are kept busy during the run. The capture ends
when the process is killed and at the end a summary is printed, as shown in Listing 4.1.
Using this output I estimated the data production rate of running workloads that are
captured. Given that the rate of dropped packets is outputted as well, I was able to
empirically verify if the disks on the capture machines can handle the workloads.

The ExaNIC’s store the captures in a novel format called expcap. This is an extension to
the pcap format presented in Section 2.3. The structure of a captured packet is presented
in Figure 4.2. The major addition of expcap is the possibility of storing picosecond times-
tamps. Besides that, the file also contains metadata related to the capture hardware,
which in this case is not needed. Since current libraries and programs used for parsing of
traffic captures do not support the expcap format, I converted all captures to pcap files
with nanosecond resolution, using the software provided by Exablaze.

Figure 4.2: Comparison of the expcap and pcap file formats. Figure taken from [69].
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4.2 Workload Selection

In order to validate my analysis as being relevant for data centres, the workloads that are
the subject of the experiments were selected accordingly. As presented in Section 3.2, some
workloads that keep appearing in papers focusing on high performance networking, specific
to DCs, are web servers, caching servers, databases, distributed AI training, MapReduce,
etc.

DCPerf [71] is a benchmark suite outsourced by Meta designed to represent real-world
hyper-scale cloud-applications in DCs. Meta uses this suite to test hardware or to conduct
performance projections. The suite contains 6 benchmarks:

• TaoBench: a workload stressing an in-memory key-value store. Probably relevant
to Meta’s TAO (The Associations and Objects) system used in their social graph
infrastructure [72].

• MediaWiki: a web serving workload, using HHVM, which is representative for
their deployment of Facebook.

• FeedSim: an object aggregation and page ranking application.

• SparkBench: a data analytics workload using Apache Spark.

• DjangoBench: a web serving workload using Cassandra and Django, which is
representative for their deployment of Instagram.

• VideoTranscodeBenchmark: a video processing workload using ffmpeg.

Out of these benchmarks, VideoTranscodeBenchmark was not suitable for my project as
it has no network component. SparkBench was also unsuitable as it required a targeted
hardware setup using multiple SSDs on multiple nodes.

With these observations made, I decided to choose DjangoBench, FeedSim, and TaoBench.
I chose these workloads as they represent distinct classes of data centre applications. While
their heterogeneous nature is expected to result in high classification separability, this
will serve as validation for my framework’s ability to capture and process fundamentally
different traffic patterns. A description of each of these three is given below. Since all
benchmarks involve network communication between at least two machines, each machine
in the setup plays a different “role”. The detailed list of parameters for each of the chosen
benchmarks is present in Appendix B.

All three of the chosen benchmarks have been slightly modified to accommodate my setup.
This is because the benchmarks target very high-performance machines with hundreds of
cores and networks that can handle more than 10Gbit/s. The sections below present the
changed benchmarks. Most changes are related to the parameters of the chosen workloads.

For each workload I also provide a number of empirical observations of their behaviours.
The most important observation is the “data production” rate, i.e. how much traffic is
generated per second. This is done in order to confirm the choice of the capture machine
hardware.
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4.2.1 TaoBench

TaoBench is a client-server benchmark designed to stress an in-memory key-value cache
system. The server is based onmemcached2 and the client is based onmemtier benchmark 3.
Both are patched in order to closely resemble real-world traffic. In order to mimic real
scenarios, the item sizes are pulled from a predefined distribution and the items can also
be compressed.

The benchmark measures the number of queries-per-second (QPS) and the cache hit ratio.
It has two phases: a long warm up phase (at least 20 minutes) which should fill up the
cache, and a test phase which does the measurements. By default, the server uses all
available CPUs, and a server instance is spawned for each NUMA node.

TaoBench requires at least two machines: a client and a server. The main parameters for
the workload are the runtime and the number of workers.

I have empirically observed that a run of this benchmark with one client produces network
traffic at an average rate of 0.3GB/s, which is below the write speed of the disks used
on the capture machines (see Section 4.1.2). Other observations I made are that the
command running on the client machine spawns the set number of threads as separate
processes. Then each thread spawns the set number of clients and each client opens a
connection with the server. The connection stays open throughout the whole phase of the
benchmark, meaning that each TCP flow lasts for as long as the benchmark does. The
source port for the connection is randomly assigned to the clients. The CPU utilisation
on the server machine is always near 100% during the whole benchmark run.

For all my benchmark runs with this application I have set the server to use 16GB of
memory. Only one server instance is spawned each run. I used one client machine with
six client threads and 100 connections per thread.

4.2.2 DjangoBench

DjangoBench is a benchmark that measures the performance of a web application using
the Django Python framework4. It sets up a multi-tiered environment and uses a load-
generation tool to simulate traffic. The application itself emulates a social media platform
(based on Instagram).

For the web application it uses the Django framework and uWSGI5. The server machine
uses memcached for caching, while as a database it uses Apache Cassandra6, a NoSQL
data base (DB). The load generator used is siege7, which is a well-known HTTP load
generator that can simulate multiple users accessing one or more URLs.

The database contains a list of users, a list of feeds, and a list of notifications. At the
beginning of the workload, the web server populates the database with mock entries that
simulate a realistic dataset. The web application exposes several APIs that simulate a
common social media design, such as fetching a user’s feed or marking some comment as
seen.

2https://www.memcached.org/
3https://github.com/RedisLabs/memtier_benchmark
4https://www.djangoproject.com/
5https://uwsgi-docs.readthedocs.io/en/latest/
6https://cassandra.apache.org/_/index.html
7https://github.com/JoeDog/siege
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The client is given a predefined weighted list of URLs. Meaning the accessed URLs
are uniformly accessed. The clients simulate real world scenarios in terms of the access
patterns (e.g. most common action is fetching a feed). Siege can also simulate a “client
think time”. Meaning that after receiving a response it waits a bit before it sends another
request.

DjangoBench requires at least three machines that have one of three roles: client, server or
database. The important parameters are the runtime of the benchmark and the number
of client and server workers, which influences how many queries are be done (each client
can do multiple queries).

During all tests I ran the three components (DB, server, client) on separate machines.
Only the traffic of the server is captured. This is feasible because I empirically observed
that the workload generates traffic data at a rate of about 1.5MB/s. This is low, so the
disks on the capture machines are not a bottleneck. My other observation was that siege
opens separate connections for all requests, each from a different ephemeral port. This
means that each TCP flow contains precisely only one HTTP request. Another important
thing is that the web server opens several connections to the DB, only some being used
for data transfers. Others are used to send heartbeat messages. All the connections are
open throughout the whole workload run.

In the experimental runs I varied the benchmark duration. Early runs alternated the
inclusion of the client “think-time” parameter, but it turned out to be irrelevant, given
that each “client” issues only a single request before closing the connection.

4.2.3 Feedsim

Feedsim is a benchmark designed to simulate aggregation and ranking workloads used in
recommendation systems. It is a client-server benchmark that can be extended to more
complex architectures. The application is entirely written in C++.

The base of Feedsim is OLDIsim [73], a framework open-sourced by Google that supports
benchmarks that emulate Online Data-Intensive workloads. Generally OLDI workloads
are “user-facing workloads that mine massive data sets across many servers”, and include
web searching and social networking, as well as page ranking. OLDIsim simulates real-
world behaviours, such as I/O waiting, large memory accesses, and cache trashing (both
ICache and DCache).

Feedsim requests and responses are serialised using Thrift [74] and compressed using
ZSTD [75]. Feedsim is more synthetic compared to the other benchmarks. Clients send
random data in large chunks in order to stress the server during decompression and
deserialisation. Responses are structured and contain list of objects that mimic a real-
world ranked feed. However, the responses contain pseudo-random data. Upon receiving
them, the clients essentially ignore the contents.

The main objective of this benchmark is to find the maximum QPS that the server
can support given an upper limit on the latency. It does this by using a binary-search
like approach. But the client can also be run using a fixed number of QPS. Similar to
TaoBench, it has a warm up phase and a test phase.

Feedsim requires at least two machines: one server and at least one client. The only
parameter accepted by the server is the number of instances it spawns. The intended
design is to run one instance per NUMA node, so in my case I always ran one instance.
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Given the design of this benchmark, it is a highly CPU intensive workload. I observed
this by tracking the amount of traffic data generated, which is less than a MB per second.
Similar to TaoBench, each client opens a connection, and keeps it open throughout the
whole benchmark run. This results in a low number of TCP flows with long durations
(as long as the benchmark).

During the experimental runs I altered the requested number of QPS. The maximum QPS
feedsim can achieve with my setup is 10, which was obtained by running the benchmark
in search mode. For comparison, an example run from DCPerf’s documentation shows
an achieved QPS for a machine with 380 cores and 2TB of memory. Besides this I also
altered the duration of the benchmark.

4.3 Orchestration

4.3.1 Design Objectives

One of the main objectives of my project is the repeatable creation of datasets that
represent the properties of the chosen data centre applications. This consists a core
novelty as no other such workflow has been published.

Extracting the traffic data is straightforward: a capture is started on the capture ma-
chine, a benchmark is run on the test-bed machines, and the capture is stopped when the
benchmark ends. Labelling this data is the challenge and one of the key contributions
that I bring over state-of-the-art. Existing datasets that focus on network traffic classifi-
cation label the data with their intended goals in mind: a dataset created for a malware
classification has malware/no malware labels, a dataset created for mobile application
classification is labelled with the application names, and so on. I developed a process
that associates network traffic with more than just the application name. My main ob-
jective was to be able to associate the capture data with any other data available about
the workload: application name, version of libraries, system specifications, performance
metrics, parameters used, etc.

Capturing network traffic can be manually done by coordinating the capture commands
on all machines. This is tedious and does not scale, especially if a workload has multiple
phases that have to be captured separately.

The advantages of having experiment runs fully automated, as well as collecting all the
data about the systems being tested, is that the whole process can be repeated easily and
results can be replicated (proven in Section 5.1). This is an important aspect of computer
systems research [76], as publishing artefacts that can be used to replicate the results is
encouraged by institutions such as ACM [77].

Given the above description, I summarised my objectives for this section that describe
how the orchestration infrastructure was built. This includes running the workloads and
capturing the network traffic, as well as capturing all the other data that may be needed.
The objectives are as follows:

1. Build a scalable infrastructure that can reliably run all chosen workloads and collect
their network traffic.

2. Ensure experimental runs can be repeated (shown in Section 5.1) and reproduced.

3. Collect multiple sets of metadata about each workload run.
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4. Ensure that collected metadata can be associated with the captured traffic.

5. Keep the design extensible: think for the future, allow more workloads that can
run on different machines with different parameters, allow for more metadata to be
collected if needed.

To ensure that the design is extensible, in the following sections I will not directly refer to
the chosen benchmarks, in order to maintain the generality of the system. Examples of
the experimental runs and their associated configs are given from my used experimental
scenarios.

4.3.2 Multi-Machine Task Automation

Before diving into how each component of the benchmarks is run and how data is collected,
I will first present how I automated the runs of these commands on the set of machines.
For the purpose of this section, the specific programs that are running on the test-bed
machines are irrelevant.

I assume the following static model (this information does not change between runs) for
a series of test-bed machines a1, a2, . . . an, where a1 . . . an are host names:

1. Each machine ai can be associated with a capture machine ci. Machine ci has an
ExaNIC that receives the mirrored traffic going to and from machine ai.

2. Each capture machine ci has two capture interfaces (one for Tx traffic, one for Rx
traffic), and a capture location (a path on the capture machine where the data is
stored).

3. Each machine ai has an associated IP address in the test-bed network.

4. Each machine ai and each machine cj have an associated user that can SSH without
a password and can run sudo commands passwordless.

5. There is a predefined set of workloads that can be run.

6. Each workload has a set of predefined roles that machines should take.

7. Each role of a workload has a set of predefined parameters that it can accept.
Furthermore, it is known if each role can have one or more instances (for example,
you can have multiple client machines but only one server).

8. Each workload component provides a “start command” generator. This is an exe-
cutable that takes a dictionary of arguments as input and outputs a command that
starts the component on the test-bed machine.

9. Each workload also has a predefined set of phases, each phase completion is signalled
in a log file8. Phases can be captured or not.

All of this information is stored in a set of config files in JSON format. Below, two sample
entries are shown:

Listing 4.2: Example configuration for a test-bed machine

1

2 "caelum -108. cl.cam.ac.uk": {
3 "ip": "10.0.0.2",

8If a phase does not have an explicit completion signal, the capture for that phase stops when workload
stops
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4 "user": "abc123",

5 "capture_machine": "nf-server13.nf.cl.cam.ac.uk"

6 }

Listing 4.3: Example configuration for a capture machine

1 "nf -server13.nf.cl.cam.ac.uk": {
2 "user": "abc123",

3 "capture_directory": "/local/scratch2/collection_runs",

4 "capture_interface1": "eth2",

5 "capture_interface2": "eth3"

6 }

Listing 4.4: Example configuration for a workload

1 "django": {
2 "roles": [

3 {
4 "name": "db",

5 "arguments": ["bind_ip", "duration", "grace_period"],

6 "unique": True,

7 "command_generator_location": "./ scripts/django/

generate_db_cmd.sh"

8 },
9 {

10 "name": "server",

11 "arguments": ["db_addr", "server_workers", "duration"

, "grace_period"],

12 "unique": True,

13 "command_generator_location":

14 "./ scripts/django/generate_server_cmd.sh"

15 },
16 {
17 "name": "client",

18 "arguments": ["server_ip", "client_think", "

client_workers",

19 "duration"],

20 "unique": False,

21 "command_generator_location":

22 "./ scripts/django/generate_client_cmd.sh"

23 }
24 ],

25 "phases": [

26 {
27 "name": "warm -up",

28 "completion -signal": "Warmup Done",

29 "capture": True

30 },
31 {
32 "name": "benchperiod",

33 "completion -signal": None,

34 "capture": True

35 }
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36 ]

37 }

With this in mind, an experimental run can be defined by the following information:

1. Each run uses a named workload.

2. Each role of the workload has an associated machine that runs it.

3. Each role has the list of arguments that should be passed to the command that
starts it.

4. For each role it can be mentioned if its traffic should be captured or not.

5. The different programs corresponding to the different roles are started in the order
in which they appear in the config files. Each role can have a defined event that has
to happen before the next component starts. This can be either a string appearing
in a log file or a defined time period.

An example configuration for an experimental run can be seen below:

Listing 4.5: Example configuration for an experimental run

1 {
2 "workload_name": "django",

3 "roles": [

4 "db": {
5 "machine": "caelum -108. cl.cam.ac.uk",

6 "arguments": {
7 "bind_ip": "10.0.0.9",

8 "duration": "420",

9 "grace_period": "300"

10 },
11 "start_after": "10",

12 "capture": False

13 },
14 "server": {
15 "machine": "caelum -403. cl.cam.ac.uk",

16 "arguments": {
17 "db_addr": "10.0.0.9",

18 "duration": "420",

19 "grace_period": "300"

20 },
21 "ready_signal": "Server setup done",

22 "capture": True

23 },
24 "client": {
25 "machine": "caelum -404. cl.cam.ac.uk",

26 "arguments": {
27 "server_ip": "10.0.0.5",

28 "client_tink": "1"

29 }
30 }
31 ],

32 }
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The tooling I built begins by reading the main experiment config, and when required also
parses configuration files for the test-bed and capture machines to extract their connection
details. Taken together, these files give a clear step-by-step blueprint for everything that
needs to happen during an experimental run:

1. Captures start on all machines that have to capture data.

2. The different roles of the workload start in the predefined order, waiting for the
declared periods or signals.

3. When the current workload phase finishes, the capture stops, and a new capture is
started.

For each role, the tool-chain generates the command that is run on the machine to start
the component. It copies that command to the target machine and it executes it. The
output is captured in a log file that is queried for the potential “signals” that signify the
end of a phase or the end of the setup for the said component. It is the responsibility
of the benchmark to leave some buffering times between phases so the new captures can
start.

At the end of an experimental run, the tool-chain converts the expcap files to pcap files,
it archives, and compresses them. Then the files are sent to a new directory in a shared
location. Besides the pcap files, the tool-chain also copies the resulting files from the
benchmarking software (from the test-bed machines) and the configuration of the run, in
order to associate the resulting capture files with the particular experiment.

From an implementation perspective, I opted for a lean architecture. All machines are
accessed via SSH, and Python along with Bash scripts handle configuration parsing and
command execution. This approach yields a minimalist, yet robust system without com-
plexity and overhead of heavyweight orchestration platforms such as Kubernetes9.

What the tool-chain currently does not automate is the generation of the config files.
These have to be set manually. The tools do check the “correctness” of the provided
configs, meaning that a missing or undefined field gets flagged. The installation of the
benchmarks is not automated either, but this can be extended by adding other fields in
the workload configuration that define the installation process (commands to run, files to
copy, etc.).

4.3.3 Integrated Local Workload Execution and Data Collection

In the previous section I talked about the infrastructure that can run the distributed
workloads and capture their network traffic. The way workloads are run and metadata is
collected on the test-bed machines has been ignored. This section will briefly present the
local tool-chain on the test-bed machines that is able to run the chosen workloads and
collect system data about them. The local tool-chain can be generalised and used to run
other workloads as well.

As mentioned in Section 4.2, all my chosen workloads come from an open-source bench-
mark suite, DCPerf. All three workloads I chose are fairly “heterogeneous”, each require
different applications and different setup. Even within the same workload, different setup
may be needed for each role. To facilitate the different benchmarks that can be run or
added, DCPerf comes with a wrapper tool, benchpress. This tool essentially provides a

9https://kubernetes.io/docs/home/
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command line interface that can install and run benchmarks. The CLI of benchpress is
detailed in Appendix B.

Before running a workload, benchpress collects a comprehensive description of the current
system. The collected information and the tools used to collect this information are
presented in Table 4.2.

Information Class Examples Tools used to extract the
information

CPU Information CPU model, CPU flags, cache
sizes, CPU frequency

‘lscpu‘

OS Information OS Name, OS Version, Kernel
Version, System Type, kernel
command line

‘uname -a‘, ‘/etc/os-release‘,
‘/proc/cmdline‘

Hardware Information Information about all hard-
ware components (manufac-
turer, model, available slots,
what hardware is using the
slots etc.)

‘dmidecode‘ and ‘lshw‘

Memory Information Total Memory, Free Memory,
Huge Page info

‘/proc/meminfo‘

System Packages A list of all installed packages
and their versions

‘dpkg-query‘

Kernel Parameters All kernel parameters includ-
ing system tuning and config-
urations

‘sysctl -a‘

Table 4.2: Information collected by benchpress.

All the information presented above is then stored in a JSON file that has the following
high-level format shown in Listing 4.6. This resulting JSON file is generated for each
workload and saved locally. A JSON file summarising the workload run is also saved. I
can associate both of these files with the captured traffic using the tool-chain presented
in Section 4.3.

Listing 4.6: Structure of the system-specs file generated by benchpress

1 {
2 "cpu_topology": { ... },
3 "os_kernel": { ... },
4 "kernel_cmdline": [ ... ],

5 "dmidecode": { ... },
6 "sys_packages": [ ... ],

7 "kernel_params": { ... },
8 "memory": { ... },
9 "hardware": { ... },

10 "os-release": { ... }
11 }
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4.4 Data Processing Pipeline

The previous section presented the automation infrastructure that orchestrates the work-
loads and collects their produced network traffic and associated metadata. Using the
above tool-chain, one experimental run results in a directory containing the compressed
pcap files and the summaries of each component. The next step in the constructed pipeline
is to process the pcap files in a way that results in a dataset that can ultimately be fed
into a machine learning model.

I wanted the resulting datasets to be extensive, in order to support multiple processing
methods and use cases. As mentioned, my intention for the resulting datasets is to not
have only one label, but rather to have flexibility in the classification tasks. Hence, the
tools presented in this section can create different datasets with different sets of labels
based on a given configuration.

As mentioned in Sections 2.2.1 and 3.1, existing research in network classification of
applications uses bidirectional flows as the units that have to be classified, so I followed
that convention with my datasets. Other network classification methods use deep learning
to classify raw traffic samples, so to facilitate those tasks I also created PyTorch datasets
containing raw traffic.

The objectives of this section can be summarised as follows:

1. Split resulting pcap files in individual flows.

2. Process the flows in order to extract a comprehensive set of features and raw data.

3. Allow the flexible creation of datasets depending on the intended classification task.

4.4.1 Demultiplexing TCP Traffic

The scope of this project is application classification, as discussed in Section 2.2.1, the ap-
propriate classification unit is the network flow defined as the 5-tuple (protocol, source ip,
source port, destination ip, destination port). A correct split of a pcap file must result in
individual pcap files that contain only traffic between the (src ip, src port) and (dst ip,
dst port). A straightforward solution is to parse the pcap file several times, isolating the
packets for a single flow on each pass. This can be implemented easily with a tool like
tshark. The issue is that this results in N reads of the file if the file contains N flows,
which is slow for large pcap files.

A better solution is to parse the pcap file only once. As packets are encountered, flows
identifications are collected. If a flow with that identification is open, the new packet is
added to that flow, otherwise a new flow is opened. Flows are be closed when there is
a TCP connection tear-down, or after a certain time out period. This solution is faster,
but requires more memory to hold all current open flows.

The above approach is taken by the tool demuxer developed for a previous project [78].
An overview of the way demuxer works is shown in Figure 4.3 I chose to use this tool as
part of my data processing pipeline. My main contribution for demuxer is adding support
for nanosecond pcap files. A run of this tool on an existing pcap file results in multiple
pcap files that correspond to separate flows.
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Figure 4.3: The operation performed by demuxer. Each small rectangle represents a
network packet and each colour represents a separate flow.

4.4.2 A Comprehensive Feature Set For TCP Flows

In order to allow for complex analysis on the captured traffic, it is necessary to extract
as much information as possible. Extracting a set of data features makes the information
comprehensible for both humans and ML classifiers. I decided to create a set of tools
that parses the pcap files, computes a set of features, and store them in CSV format. My
implementation uses the Python library dpkt10.

I computed a set of approximately 200 features. Many of them were based on the feature
set published by Moore et al. [34]. Before diving into the computed features I present the
following definitions that are used in the feature definitions:

Idle Period : A period of at least 2 seconds with no traffic in either direction.

Interactive Period : Non-idle periods.

Bulk Transfer : A period within interactive periods with at least 3 consecutive packets
containing data in one direction and no packets containing data from the other
direction.

Microburst Period : A period of at least 4 packets in one direction with an inter-
packet-gap of at most 1241ns (Based on the definition of Woodruff et al. [69, 65]).

Large Transfer : A data transfer that spans multiple consecutive packets. Identified
by at least 3 consecutive packets carrying data in one direction, with all except the
last one carrying the maximum IP payload size.

Most features are computed in three variations:

1. All packets regardless of direction are considered.

2. Only packets sent in client→server direction are considered.

3. Only packets sent in server→client direction are considered.

10https://dpkt.readthedocs.io/en/latest/
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The full list of features and their definition can be found in Appendix C. Below is the list
of feature categories:

1. Basic Packet Statistics: Statistics related to the packet sizes (wire size, IP size).

2. Transfer Mode Statistics: Statistics related to the transfer modes present in the
flow (idle, bulk, interactive).

3. Timing Statistics: Statistics related to inter arrival time of packets.

4. Segment Statistics: Statistics related to segment sizes.

5. TCP Flags Statistics: Counts of various TCP flags.

6. TCP Handshake Statistics: Whether the TCP handshake was captured or not
and its direction.

7. Ordering Statistics: Statistics related to the ordering of packets (out-of-order
packets) and retransmissions.

8. TCP Window Statistics: Statistics related to the TCP window sizes advertised
during the connection.

9. Timestamp Statistics: Statistics related to the measured RTT between the two
machines.

10. Microburst Statistics: Statistics related to the observed microburst periods.

11. Large Transfer Statistics: Statistics related to captured large transfers between
the two machines.

As mentioned in the previous section, besides this feature set, my tool-chain also extracts
raw traffic from the parsed flows. Based on existing research in deep learning for network
traffic classification [42, 40, 43], I decided to extract the first 800 bytes of a flow in the
following variations:

1. First 800 bytes of traffic including all traffic layers.

2. First 800 bytes of traffic including only application layer (TCP payload).

3. First 800 bytes of all layers traffic, excluding the TCP handshake.

4. First 800 bytes of application layer, excluding TCP handshake.

The features are stored in CSV format, while the raw traffic samples are stored in npy

format, a binary format used by the NumPy11 library.

4.4.3 Creating Datasets

Running the tool described in the previous section on a set of pcap flows representing
individual flows, results in a CSV file containing the list of flows and corresponding fea-
tures. To create a dataset that can be used for classification, multiple of these CSV files
corresponding to different classes have to be concatenated.

To facilitate the dynamic creation of datasets where different flows can have different labels
depending of the application, I built a program that takes a configuration specifying a
list of CSV files and the labels that should be applied to the flows in each CSV file. The
tool creates a new column for all data points called “label” and applies the corresponding

11https://numpy.org/doc/stable/
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label. The result is a larger CSV file that can then be used in a ML classifier. The npy

files containing raw traffic samples are combined into a PyTorch12 dataset that can be
used for deep learning applications.

I also decided to convert the dataset to Parquet format used by Apache Spark13. This
is a format often used in large scale data processing. The whole data processing pipeline
starting from the original pcap file and ending with the resulting dataset can be seen in
Figure 4.4.

12https://docs.pytorch.org/docs/stable/index.html
13https://spark.apache.org/
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Figure 4.4: Overview of the data processing pipeline.
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Chapter 5

Evaluation

This chapter starts by assessing the repeatability capabilities of the developed framework.
Then it will present the evaluation of existing traffic classification methods on the datasets
created using the methodology presented in Chapter 4. Two datasets are used in the
evaluation: an application-identification dataset that labels flows with the application
that produced them, and a performance-estimation dataset for one of the workloads that
labels flows with the achieved QPS during the run.

Developing new classification methods is beyond the scope of the projects. Hence why
this chapter focuses on the insights that the existing classification methods can provide
for the collected data. The presented results should be treated as a “proof-of-concept”
for what can be done with network data. The chosen methods for classification are taken
from existing work as presented in Section 3.1.

5.1 Assessing Repeatability

As mentioned in Section 4.3.1, a main objective when developing the orchestration frame-
work was to ensure repeatability and reproducibility of all experiments and measurements.
The ACM [77] defines repeatability as the capability to obtain the same measurement us-
ing the same equipment, by the same team. Essentially, the measurements are constant
between different runs. Reproducibility is achieved if a different team can obtain the same
measurements using the same equipment. Reproducibility cannot be assessed, as a second
team would need to be involved. In this section I prove, using a simple example, that my
framework produces repeatable measurements.

To isolate the effects of my framework, I chose a simple test to run. I decided to do 5 runs
of a group of 10 measurements of round trip time (RTT) using ping1. I wanted to show
that the 5 runs are equivalent, and there is no unexpected statistical difference between
them. For each measurement I report the minimum, maximum, average and standard
deviation for the RTT.

The distributions of each metric for each run is shown in Figure 5.1.

From the figure it can already be seen that for all statistics the distributions overlap.
There is no visible difference between them. To formally assess this though, I am using

1This also implied “extending” my framework to run a different workload, which in a way proves the
extensibility.
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Figure 5.1: Boxplots showing the distributions of each RTT statistic between the 5 runs.
Each run has 10 measurements, each box represents the distribution of that statistic over
the 10 measurements.

the ANOVA F-test2. This test answers the question: “Are the observed differences in
average RTT (or the other statistics) between the 5 runs meaningful or are they just
noise?”. The null hypothesis is that the means of each statistic for all 5 groups are equal.
Using the F-test, I calculated the p-values. If the p-value is greater than 0.05, the null
hypothesis cannot be rejected. The p-values for each statistic are found in Table 5.1.
Given that the null hypothesis cannot be rejected for any of the measured statistics, I
conclude that there is no statistical difference between the 5 runs.

It is important to understand that all measurements have variability [20]. The graph
shows some variation between different measurements but this is due to ping ’s intrinsic
behaviour; it is not introduced by my orchestration framework. ping is well-studied [20,
79], and in this case it does not exhibit any unexpected variance. I can conclude that
my framework does not produce any statistically significant differences between multiple
runs.

5.2 Summary of Datasets

The datasets used were produced by running each of the selected workloads a number of
times with different parameters. The selected workload for the performance-estimation

2https://en.wikipedia.org/wiki/F-test
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Statistic p-value

Minimum RTT 0.25

Maximum RTT 0.59

Average RTT 0.78

Standard Deviation 0.96

Table 5.1: p-values computed using ANOVA F-test for each measured statistic. A p-value
greater than 0.05 means that there is no significant statistical difference between the 5
runs.

dataset is feedsim. The application-identification dataset is presented in Table 5.2 and
the performance-estimation dataset is presented in Table 5.3. For each of them the target
classes are presented with the number of samples and the number of times the workload
was run to produce the samples.

The feedsim workload can achieve a maximum of 10 QPS running on the test-bed system,
as mentioned in Section 4.2.3, hence the chosen targets for the performance-estimation
dataset. The three QPS values were fixed before the run. In the application-identification
dataset, django client contains the flows that represent the client-server communication,
while django db represents the DB-server communication.

Class Name Number of Samples Number of Runs

django client 9822388 16

django db 1217 16

feedsim 2187 57

tao 7201 12

Table 5.2: Overview of the application-identification dataset.

Class Name Number of Samples Number of Runs

feedsim 5qps 675 14

feedim 8qps 669 14

feedsim 10qps 845 29

Table 5.3: Overview of the performance-estimation dataset.

A noticeable property of the first dataset is how unbalanced it is. The django workload
generates a considerably larger number of flows compared to the other two. This is
expected given its behaviour described in Section 4.2.2. Each HTTP request constitutes
a separate TCP flow. Besides, the observed pattern is similar to what the literature
describes in terms of proportion of different workload types (see Section 2.1). In data
centres more than 90% of the flows are short, generated by web service applications,
while the rest of the flows are long flows generated by batch workloads (in this case
feedsim) and key-value store workloads (in this case django db and tao).
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5.3 Feature-Based Classification

The first classification method I focused on is feature-based classification. This relies on
the dataset containing approximately 200 features for each flow. I used a set of supervised
learning algorithms: logistic regression, support vector machines (SVM) and random
forests. I am using the scikit-learn3 framework for this task.

As explained above, the application-identification dataset is heavily unbalanced. To
counter that, I have randomly sampled a subset of django client flows (83628, which
represent 90% of the total dataset). Due to a low number of samples, I ignored the
django db class. Upon closer examination only about 2-3 flows per run are relevant, the
others are either heartbeats or TCP handshakes followed immediately by a TCP tear
down.

For the classification tasks I used a train-test split of 80-20. Each algorithm was run 5
times with different random seeds.

5.3.1 Feature Importance Analysis

Given the relatively high number of features, one of the questions I aimed to answer
was: “Are all features needed?”. Showing that only a subset of features can be used for
accurate classification is a valuable insight that can influence the design of future systems.
To check what features are “important” I used proven statistical methods. My choice was
to use correlation-based feature selection [80]. The idea behind this method is that a good
feature subset contains features highly correlated with the target classes, but uncorrelated
with each other.

To find the correlation between pairs of features I used the Pearson correlation coefficient4.
To select discriminating features I used the mutual information (MI) measure5.

The correlation matrices for each of the two datasets can be seen in Figures 5.2 and 5.3.
The list of all features and their explanations can be found in Appendix C.

3https://scikit-learn.org/stable/index.html
4https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
5https://en.wikipedia.org/wiki/Mutual_information
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Figure 5.2: Correlation matrix showing the top 20 most inter-correlated features for the
application-identification dataset. Feature A is the first quartile value for the observed
IP packet sizes, feature B is minimum observed IP packet size and feature C is the q1
value for the observed packet sizes (including all layers). We see that A has a strong
negative correlation with B which means that when A grows, B goes down. In contrast,
A has a strong positive correlation with C. These make sense when we think of the actual
meaning of features: it is normal that the q1 values for IP packet sizes and total wire
sizes are correlated, given that the difference between the IP packet size and total packet
size is constant (except a few rare packets). In this case, we don’t need all of these three
features for the classification, as essentially A, B and C measure the same thing.
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Figure 5.3: Correlation matrix showing the top 20 most inter-correlated features for
the performance-estimation dataset. It should be noted the different scale compared to
previous figure. Before the scale was -1 to 1, now it is 0.96-1, meaning that features of
this dataset are more correlated that the previous one. This is expected, as all features in
this figure are related to packet sizes in some way (IP size, full packet size), and feedsim
is expected to send the same queries and responses regardless of the target QPS, the only
difference should be how often they are sent.
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In Figures 5.2 and 5.3 we can see that for both datasets that most of the top inter-
correlated features are size related. This is expected since if packet size increases, all other
size related features will follow. Other strongly correlated groups are features related to
throughput, features related to timing, and features related to flow duration.

For all features I computed the mutual information (MI) score to see how “discriminating”
they are. In Figures 5.4 and 5.5 I plotted the top 10 and bottom 10 features by mutual
information scores for the two datasets. A high mutual information score signifies that
knowing that feature reduces the uncertainty about the target class.

Figure 5.4: Top 10 and bottom 10 features by mutual information score for the application-
identification dataset. The reason why the top 10 features are those is unclear at this
point. The bottom ones are more obvious: most of them have constant or near constant
values between all classes (e.g. out of order packets which is constantly 0), so knowing
their value does not reveal anything about the target of the classification.

Looking at the top 10 features by mutual information score for the application-identification
dataset we see that most of them are also strongly inter-correlated (see Figure 5.2). For
example q1 value for IP packet size (q1 ip size all) is among the top with q1 value for
total packet size (q1 wire size all). These two are perfectly correlated, so using the
correlation-based feature selection methodology, only one of them should be kept.

The correlation matrix of the final set of features can be seen in Figures 5.6 and 5.7. The
features in these two matrices are the ones used for classification.
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Figure 5.5: Top 10 and bottom 10 features by mutual information score for the
performance-identification dataset. Compared to previous figure, now it is more clear
why the top 10 features are timing related and microburst related. As mentioned in Fig-
ure 5.3, between the different the runs of feedsim are timing related. Essentially, higher
QPS means burstier traffic.
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Figure 5.6: Correlation matrix for the chosen features. This set is less correlated and
all features in the set have high mutual information scores. We see for example that
q1 ip size all is present, q1 wire size all is not, which was also predicted by the
previous informal analysis. The chosen features are more “diverse”: there are features
related to packet sizes (q1 ip size all), timing (rtt max ab which is the maximum
RTT measured on the server), transfer rates (thrpt ba, which is the overall throughput
measured for data transferred by the client) and more.
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Figure 5.7: Correlation matrix for a subset of chosen features, for the performance-
estimation dataset. As with the previous dataset, they are more diverse compared to
the ones that showed up as the top ones by mutual information score.
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5.3.2 Supervised Classification

Using the selected features I trained the supervised learning algorithms (random forests,
SVM and logistic regression). The results can be seen in Table 5.4.

Classification Algorithm Application-
Identification Average
Accuracy

Feedsim Performance-
Estimation Average
Accuracy

Random Forests 100% 83%

SVM 100% 58%

Logistic Regression 100% 52%

Table 5.4: Classification accuracy using the supervised learning.

For the application-identification datasets, all three models achieve 100% accuracy on all
runs. For the performance-estimation dataset, I plotted the average accuracy over the 5
runs in Figure 5.8.

Figure 5.8: Average accuracy for the three tested ML classifiers on the performance-
estimation dataset over 5 runs. Error bars are plotted as well.

We see that for the application-identification dataset, all algorithms are able to perfectly
learn the patterns of each application. For the performance-estimation data however, only
random forests has a good accuracy. It is strange that even logistic regression which is
a simplistic algorithm is able to identify all flows. To understand, I also looked at the
distributions of values within each class for the selected features.

The distributions show that some features are nearly perfect discriminants. Meaning
that a particular range of values indicates one class with a high certitude. I plotted the
distributions of two of these features below in figures 5.9 and 5.10. For contrast, I also
plotted the distribution of a “bad” feature, that has a very low mutual information score
in Figure 5.11.
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Figure 5.9: Distribution of the median inter-arrival time feature. The distributions for tao
and django client overlap almost perfectly while the distribution for feedsim is completely
different. This means that this feature can perfectly separate feedsim from the other two
workloads.

Figure 5.10: Distribution of the q1 (first-quartile) IP packet size. django client and tao
overlap briefly, but feedsim is clearly different and separated.

Figure 5.11: Distribution of number of packets with SACK blocks attached. This is an
unhelpful feature, as we see all three workloads do not send any SACK blocks. Only
tao sends SACK blocks, but that happens rarely, and it might be due to other factors
unrelated to the application itself, as SACK is used to recover lost packets.

Looking at the distributions of the two “good” features, we can see that they are com-
pletely different for the three classes. Even if we only consider these two features, the
classification can be done with high accuracy. So the explanation for the achieved ac-
curacy is that the workloads are very heterogeneous and generate very specific traffic
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patterns.

5.4 Deep Learning Classification

One of the issues with feature-based classification, as presented in the previous section, is
that it can only classify completed flows. To have the full picture needed for classification,
flows have to have been completed to compute all features. This is not practical for some
scenarios where the classification has to be done in real-time. An alternative is to use
deep learning (DL) classification that only needs the raw packet contents as inputs. With
this method, flows can be classified as soon as the target number of bytes is captured.

To serve as the input, I collected the first 800 bytes of each flow (based on results from
Wei et al. [41]) with the following constraints:

• All TCP layers.

• All TCP layers without the TCP handshake.

• Only application layer (TCP payload).

• Only application layer without the TCP handshake.

For the neural network architecture I used a one-dimensional convolutional neural network
(1D-CNN). The exact architecture was chosen empirically. This can be seen below in
Figure 5.12.

The CNN was trained for 30 epochs without fine tuning hyper-parameters. All training
was done using my laptop’s GPU. The results of the classification task for each dataset
can be seen in Table 5.5. I ran the model 5 times with different random seeds.

Captured Traffic Application-
Identification

Feedsim
Performance-
Estimation

All layers 99.92% 33%

All layers ignoring TCP handshake 100% 95%

Application Layer 99.9% 81%

Application Layer ignoring TCP handshake 100% 85%

Table 5.5: Classification accuracy using the 1D-CNN.

As before, for the application-identification dataset, there is no variance between the
different runs. For the performance-estimation dataset I plotted the average accuracy
and standard deviation in Figure 5.13.

We observe that the classifier perfectly identifies the individual applications regardless of
the criteria used. I conjecture that because each application uses a different transport
level protocol, the neural network is able to learn the pattern specific to each protocol.
For the performance-estimation dataset, we observe that to get high accuracy, the TCP
handshake has to be ignored. My hypothesis is that this happens because the TCP
handshake is the same regardless of the number of QPS for the runs. Taking all layers
into account the model is able to identify the performance metric with 95% accuracy.
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Figure 5.12: Overview of used CNN architecture. There are 4 1-dimensional convolutional
layers, each followed by a ReLU activation and max-pooling operation. The result is
flattened and passed through 3 fully connected layers that use ReLU and drop out for
regularisation.

A drawback of deep learning classification is that it is harder to understand how the
classification works. In previous section we’ve seen that with feature based classification
we can precisely understand which features are discriminating between our classes. With
the deep learning approach we can at most identify which subset of bytes in the input
contribute to the decision.

5.5 Discussion

This section evaluated existing machine learning traffic classification methods on the
created datasets using the methodology from Chapter 4. The evaluated algorithms, both
supervised ML and deep learning, can achieve 100% accuracy when it comes to identifying
the applications. This may seem surprising but at a closer inspection, we see that some
features are essentially “fingerprints” of the workloads, meaning that the distributions of
the feature values do not overlap between the target classes. This was an expected result
as mentioned in Section 4.2.

Indeed, looking at the meaning of features, the differences are clear. For example, one of
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Figure 5.13: Average accuracy for each scenario on the performance-estimation dataset.
Error bars are plotted.

the most discriminative features is the number of bytes sent from the client to the server.
From the description of the workloads, it was evident that there might be limited overlap
between the three. Same goes for flow duration, and all features that are correlated with
flow duration.

For the performance-estimation dataset, the situation is slightly different. The classical
machine learning algorithms failed to achieve good accuracies. The issue here is that
probably the chosen set of features are targeted more towards identification of different
workloads, not towards discriminating between different runs of the same workload. The
discriminating features between different performance regimes are mostly related to tim-
ings (e.g. inter packet arrival times). However, the deep learning method proved efficient
in this case achieving an accuracy of 95%. As mentioned, given the nature of DL meth-
ods, it is difficult to understand what is the underlying reason for the good classification
accuracy.

The shortcoming of this analysis is potentially the lack of “interesting” data. Given that
the workloads are so different, was it even necessary to train an ML model to classify
them? I believe this issue comes from the chosen workloads, as initially their differences
were not obvious. The data is reflective of their observed behaviours, so the methodology
was not wrong in neither the data collection nor the data analysis stages. The root cause
was the chosen setup in terms of workloads and their parameters. However, it should be
mentioned that the analysis in this chapter clearly showed how different the workloads
are, so even though the results may not seem exciting, they are correct and the evaluation
achieves its goal: it correctly identifies running applications based on their network traffic
characteristics.
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5.6 Project Summary

This project’s objective was the development of a network traffic capture and analysis
framework that allows for repeatable dataset creation. I believe this was achieved and
the developed framework can reliably run selected workloads, extract information from
their network traffic, and perform an analysis of their network activity. The framework is
readily extensible to new workloads, opening numerous avenues for continuations of the
project. The ability to repeat the same tests multiple times is demonstrated in Section 5.1.

The collected traffic is processed to obtain comprehensive datasets. A novel approach to
the dataset creation is that the labelling is not static. During every workload run, the
tool-chain captures more than just network traffic: it records comprehensive hardware
and system level metrics as well. Consequently, traffic captures can be linked to infor-
mation that goes well beyond a simple application label. We can see what the kernel
parameters were, or what hardware was used. Thus, all experiments can be reproduced,
and furthermore this allows for deeper analysis on the captured traffic. All this collected
metadata can ultimately be used both for labelling, and as features for classification or
analysis.

One of the identified research gaps was the lack of a data centre targeted network traffic
dataset. This project addressed this gap by creating the dataset using three data centre
specific workloads. A major benefit of the presented methodology is that all datasets
can be released openly: since the experiments are conducted in a DC-style test-bed, no
confidential information is at stake. Besides being the first DC centric dataset, it is also
one of the only public datasets including all capture traces.

The created dataset is used to train ML classifiers that can accurately identify the different
applications, as seen in Sections 5.3 and 5.4. While identifying the application itself was
straightforward, the breakthrough was the novel approach of classifying an application’s
performance solely through its network traffic. This is an unexplored avenue for network
traffic classification which could be used for critical applications in data centres. Knowing
how an application performs can tell us about how the hardware is doing (a hot CPU
throttles, reducing performance), or how loaded a certain cluster is. This information can
help scheduling in data centres, which in turn can help reduce the energy consumption.
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Chapter 6

Conclusion

Modern data centre operators struggle to tune, secure, and ultimately understand their
networks because they lack clear visibility into the traffic their applications generate. Pub-
lic packet-capture datasets are rare, due to confidentiality and privacy concerns, and the
few that exist neither reflect DC-specific workloads nor provide enough context to repro-
duce the original experiments. This gap leaves researchers without a reliable foundation
on which to build or test classification tools based on network traffic.

I believe the presented work addresses this gap, firstly because it offers a rigorous and
repeatable methodology for creating network traffic datasets. Secondly, it produces the
first reproducible open dataset that includes full packet captures of data centre work-
loads. Thirdly, it explores a novel capability of network traffic classification: performance-
estimation of the running workloads. These outcomes also fulfil the success criteria of the
project as defined in Chapter 1.

The results reveal that separating the broad classes of DC applications, introduced in
Section 3.2, is remarkably straightforward: their traffic signatures are so distinct that even
simple classifiers can tell them apart. The magnitude of these differences was unforeseen
when the workloads were selected. A welcome surprise was the classifiers’ ability to
separate runs of the same workloads with measured performance as the sole difference.
This result underlines that network traffic analysis is still an open topic: future efforts
should broaden the scope beyond application identification.

Traffic classification in data centres should reach beyond application identification. My
proof-of-concept shows that, using nothing more than raw network traces, we can infer
key performance metrics. Because operators already possess rich, fine-grained telemetry,
this broader view is feasible. Leveraging the full spectrum of available data opens the
door to foundation models trained to understand, optimise, and ultimately run the data
centres.

6.1 Future Work

The main extension to the work would be the additional analysis of more homogeneous
workloads (e.g. can we distinguish two web servers using different frameworks?). This is
feasible given the extensibility of the network capture and data processing framework.

I think it is important to extend this research beyond the use of network traffic. All
available data and metadata should be accounted for. The presented framework can be
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extended to collect more data about workloads. This is an exciting direction which can
lead to more optimised data centres. For example, considering resource usages can lead
to better scheduling from the utilisation point-of-view (POV). This in turn leads to lower
energy usages, which results in lower pollution levels.

A deep analysis of DC workloads may also lead to better DCN topologies. Currently
DCNs use mostly Clos, but certain applications may not need that kind of design. So a
good understanding of workloads and the ability to predict their behaviour can result in
specialised topologies in specific clusters.

Besides performance optimisations, another direction can be intrusion detection in DCs.
With so many tenants in a DC that have dynamic behaviours, it is hard for operators
to detect if a user is misbehaving. Network traffic classification has already been used to
detect malware running on end-user applications. But this should be extended to DCs
where we may have bot farms, cryptocurrency miners, or even malicious actors targeting
the DC itself.

All of the above look at the problem from the DC operator POV. However, it is important
to also understand what “threats” might appear. If the operator can identify the DCN
topology, what stops a tenant with access to multiple servers from detecting the topology
based on the networking behaviour? When creating new DC models, we must anticipate
and guard against the ways malicious actors might misuse the available information.

Putting all of these suggested use-cases together, I believe that in the future we can have
foundation models that operate and design data centres. These foundation models can
then perform all the maintenance and accounting for a DC. They can decide how to
schedule workloads, what energy sources to use, they can detect intrusions in the system,
and they could even suggest hardware improvements. Foundation models are built on
large amounts of data. Given that data centres are isolated environments, all the data
can be collected and traced to its origins. The potential use cases of such large amounts
of data are unlimited.
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Appendix A

Experimental Setup Used

This appendix contains the details of the hardware setup used in the experiments.

Component Specification

Operating System Ubuntu 24.04.1 LTS

Linux Kernel Version 6.8.0-52-generic

CPU Intel(R) Xeon(R) CPU E5-2430L v2 @ 2.40GHz 12 Cores

RAM 64 GB DDR3 1600MHz

Storage
Micron P400m-MTF 100GB SSD
Seagate ST1000NM0033-9ZM 1TB HDD

Network Cards
Broadcom NetXtreme BCM5720 Gigabit Ethernet PCIe 1Gbit/s
Intel Corporation Ethernet 10G 2P X520 Adapter 10Gbit/s

Table A.1: Test-bed Machines Specifications

Model Arista Networks DCS-7050Q-16 switch

Latency 800-850ns

Ports 16 ports of 40GbE

Maximum Frame Size 9236 bytes (allows Jumbo Frames)

Table A.2: Leaf Switch Specifications
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Component Specification

Operating System Ubuntu 16.04.5 LTS

Linux Kernel Version 4.4.0-31-generic

CPU Intel(R) Xeon(R) CPU E5-2658 v4 @ 2.30GHz 27 Cores

RAM 256 GB DDR3 1600MHz

Storage
Kingston SSDNow UV400 Write speeds of 1Gbit/s
Kingston SA400S3 SSD Write speeds of 3Gbit/s

Table A.3: Capture Machines Specifications
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Appendix B

Configuration Parameters for
Workloads

The detailed parameters of the chosen workloads are detailed in this section. Further
down the CLI of benchpress is detailed.

Parameter Explanation Default Value

–memsize Specifies the cache memory size in GB. Required
–port-number The port number the server will listen on. 11211
–num-servers Number of servers to spawn. Number of cores / 72
–pin-threads Pin server to specific CPUs. No pinning
–interface-name Name of the network interface to configure,

the one the server will bind to.
eth0

–smart-nanosleep Enable a randomised nanosleep with expo-
nential back-off for thread yielding.

False

–warmup-time Duration of warm up phase in seconds. 1200
–test-time Duration of test phase in seconds. 360
–timeout-buffer Extra time between the two phases. 120

Table B.1: Server Parameters for TaoBench Workload

Parameter Explanation Default Value

–server-hostname Hostname or IP address of the server. Required
–server-port-number Port number to which the client should

connect.
Required

–server-memsize The memory size of the server. Required
–num-threads Number of client threads. Number of cores - 6
–clients-per-thread Number of client connections per thread. 380
–warmup-time Duration of warm up phase in seconds. 1200
–test-time Duration of test phase in seconds. 360
–wait-after-warmup Extra time in between the two phases. 120

Table B.2: Client Parameters for TaoBench Workload
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Parameter Explanation Default Value

–db-addr Address of the database. Required
–server-workers The number of uWGSI workers. Number of cores
–duration Duration of the benchmark. 5 minutes

Table B.3: Server Parameters for DjangoBench workload

Parameter Explanation Default Value

–server-ip IP address of the server. Required
–duration Duration of the benchmark. 5 minutes
–client-workers Number of Client Workers Number of Cores
–repetitions How many times the benchmark should be re-

peated
1

–client-think Simulate client think time or not. False

Table B.4: Client Parameters for DjangoBench Workload

Parameter Explanation Default Value

–server-ip IP address of the server. Required
–server-port Port used by the server. 19212
–client-workers Number of Client Workers 4
–client-threads Number of Threads per Client Worker 4
–queries Number of QPS used. 0 (search mode)
–warmup-duration Warm up duration in seconds. 60
–test-duration Test phase duration in seconds. 120

Table B.5: Client Parameters for Feedsim Workload

Command Explanation Additional Info

list Lists all installed benchmarks.

report Reports all benchmark results. The tool was intended to run
all benchmarks at once to get
a feel of the systems perfor-
mance, hence why it reports
results for everything.

run <benchmark> Run a certain benchmark Accepts parameters that cna
be passed to the actual run
scripts.

install <benchmark> Will install a benchmark with
all its dependencies.

All installations are done in a
local directory.

clean <benchmark> Removes all dependencies for a
given benchmark.

info <benchmark> Provides a quick reference for
the given benchmark.

Table B.6: Summary of the functionality provided by benchpress
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Appendix C

List of Computed Features for
Network Flows

Table C.1: Complete List of Features and Descriptions

Index Feature Name Description

Packet-Size Statistics (all directions)

1 min wire size all Minimum packet size
2 q1 wire size all First quartile packet size
3 med wire size all Median packet size
4 mean wire size all Mean packet size
5 q3 wire size all Third quartile packet size
6 max wire size all Maximum packet size
7 var wire size all Variance of packet sizes
8 min ip size all Minimum IP packet size
9 q1 ip size all First quartile IP packet size
10 med ip size all Median IP packet size
11 mean ip size all Mean IP packet size
12 q3 ip size all Third quartile IP packet size
13 max ip size all Maximum IP packet size
14 var ip size all Variance of IP packet sizes
15 min ctrl size all Minimum control overhead size
16 q1 ctrl size all First quartile control overhead size
17 med ctrl size all Median control overhead size
18 mean ctrl size all Mean control overhead size
19 q3 ctrl size all Third quartile control overhead size
20 max ctrl size all Maximum control overhead size
21 var ctrl size all Variance of control overhead sizes

Packet-Size Statistics (server→client)

22 min wire size ab Minimum packet size server→client
23 q1 wire size ab First quartile packet size server→client
24 med wire size ab Median packet size server→client
25 mean wire size ab Mean packet size server→client
26 q3 wire size ab Third quartile packet size server→client

Continued on next page
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Table C.1 – continued from previous page

Index Feature Name Description

27 max wire size ab Maximum packet size server→client
28 var wire size ab Variance of packet sizes server→client
29 min ip size ab Minimum IP packet size server→client
30 q1 ip size ab First quartile IP packet size server→client
31 med ip size ab Median IP packet size server→client
32 mean ip size ab Mean IP packet size server→client
33 q3 ip size ab Third quartile IP packet size server→client
34 max ip size ab Maximum IP packet size server→client
35 var ip size ab Variance of IP packet sizes server→client
36 min ctrl size ab Minimum control overhead size server→client
37 q1 ctrl size ab First quartile control overhead size server→client
38 med ctrl size ab Median control overhead size server→client
39 mean ctrl size ab Mean control overhead size server→client
40 q3 ctrl size ab Third quartile control overhead size server→client
41 max ctrl size ab Maximum control overhead size server→client
42 var ctrl size ab Variance of control overhead sizes server→client

Packet-Size Statistics (client→server)

43 min wire size ba Minimum packet size client→server
44 q1 wire size ba First quartile packet size client→server
45 med wire size ba Median packet size client→server
46 mean wire size ba Mean packet size client→server
47 q3 wire size ba Third quartile packet size client→server
48 max wire size ba Maximum packet size client→server
49 var wire size ba Variance of packet sizes client→server
50 min ip size ba Minimum IP packet size client→server
51 q1 ip size ba First quartile IP packet size client→server
52 med ip size ba Median IP packet size client→server
53 mean ip size ba Mean IP packet size client→server
54 q3 ip size ba Third quartile IP packet size client→server
55 max ip size ba Maximum IP packet size client→server
56 var ip size ba Variance of IP packet sizes client→server
57 min ctrl size ba Minimum control overhead size client→server
58 q1 ctrl size ba First quartile control overhead size client→server
59 med ctrl size ba Median control overhead size client→server
60 mean ctrl size ba Mean control overhead size client→server
61 q3 ctrl size ba Third quartile control overhead size client→server
62 max ctrl size ba Maximum control overhead size client→server
63 var ctrl size ba Variance of control overhead sizes client→server

Transfer Mode Statistics

64 num bulk periods Number of bulk transfer periods
65 bulk duration Total duration of bulk transfers
66 flow duration Total flow duration
67 pct bulk Percentage of time in bulk transfer
68 idle duration Total idle time (gaps ¿ 2 seconds)
69 pct idle Percentage of time idle

Continued on next page
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Table C.1 – continued from previous page

Index Feature Name Description

70 interactive duration Total interactive time (gaps ¡ 2 seconds)
71 pct interactive Percentage of time in interactive mode

Inter-Packet Timing Statistics

72 min iat all Minimum inter-packet time
73 q1 iat all First quartile inter-packet time
74 med iat all Median inter-packet time
75 mean iat all Mean inter-packet time
76 q3 iat all Third quartile inter-packet time
77 max iat all Maximum inter-packet time
78 var iat all Variance of inter-packet times
79 min iat ab Minimum inter-packet time server→client
80 q1 iat ab First quartile inter-packet time server→client
81 med iat ab Median inter-packet time server→client
82 mean iat ab Mean inter-packet time server→client
83 q3 iat ab Third quartile inter-packet time server→client
84 max iat ab Maximum inter-packet time server→client
85 var iat ab Variance of inter-packet times server→client
86 min iat ba Minimum inter-packet time client→server
87 q1 iat ba First quartile inter-packet time client→server
88 med iat ba Median inter-packet time client→server
89 mean iat ba Mean inter-packet time client→server
90 q3 iat ba Third quartile inter-packet time client→server
91 max iat ba Maximum inter-packet time client→server
92 var iat ba Variance of inter-packet times client→server

Segment Size Statistics

93 mss ab MSS value requested by A in SYN packet
server→client

94 mss ba MSS value requested by B in SYN packet
client→server

95 max seg ab Maximum segment size observed server→client
96 max seg ba Maximum segment size observed client→server
97 min seg ab Minimum segment size observed server→client
98 min seg ba Minimum segment size observed client→server
99 avg seg ab Average segment size server→client
100 avg seg ba Average segment size client→server
101 max seg all Maximum segment size observed in either direction
102 min seg all Minimum segment size observed in either direction
103 avg seg all Average segment size across both directions

Packet and Byte Counts

104 pkts ab Number of packets server→client
105 bytes ab Number of bytes server→client
106 thrpt ab Throughput server→client (bytes/sec)
107 pkts ba Number of packets client→server
108 bytes ba Number of bytes client→server
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109 thrpt ba Throughput client→server (bytes/sec)

TCP Flags Statistics

110 syn ab Number of SYN packets server→client
111 syn ba Number of SYN packets client→server
112 fin ab Number of FIN packets server→client
113 fin ba Number of FIN packets client→server
114 ack ab Number of ACK packets server→client
115 ack ba Number of ACK packets client→server
116 pure ack ab Number of pure ACK packets server→client (ACK

only, no data)
117 pure ack ba Number of pure ACK packets client→server (ACK

only, no data)
118 urg ab Number of URG packets server→client
119 urg ba Number of URG packets client→server
120 urg bytes ab Total bytes of urgent data server→client
121 urg bytes ba Total bytes of urgent data client→server
122 push ab Number of PUSH packets server→client
123 push ba Number of PUSH packets client→server
124 sack ab Number of packets with SACK blocks server→client
125 sack ba Number of packets with SACK blocks client→server
126 dsack ab Number of packets with D-SACK blocks

server→client
127 dsack ba Number of packets with D-SACK blocks

client→server
128 max sack blks ab Maximum number of SACK blocks in any packet

server→client
129 max sack blks ba Maximum number of SACK blocks in any packet

client→server
130 data ab Number of data packets server→client
131 data ba Number of data packets client→server
132 data bytes ab Total bytes of data packets server→client
133 data bytes ba Total bytes of data packets client→server

TCP Handshake Statistics

134 tcp handshake Whether TCP handshake is present
135 tcp handshake direction ab Whether handshake is from server→client
136 tcp handshake direction ba Whether handshake is from client→server
137 tcp handshake end Index of first packet after handshake

Ordering Statistics

138 oo ab Number of out-of-order packets server→client
139 oo ba Number of out-of-order packets client→server
140 oo bytes ab Total bytes of out-of-order packets server→client
141 oo bytes ba Total bytes of out-of-order packets client→server
142 retrans ab Number of retransmitted packets server→client
143 retrans ba Number of retransmitted packets client→server
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144 retrans bytes ab Total bytes of retransmitted packets server→client
145 retrans bytes ba Total bytes of retransmitted packets client→server
146 unique bytes ab Total bytes of unique packets server→client
147 unique bytes ba Total bytes of unique packets client→server

Theoretical Stream Length Statistics

162 theoretical stream length ab TSL for server→client direction
163 theoretical stream length ba TSL for client→server direction
164 missed data ab Bytes missed in server→client direction
165 missed data ba Bytes missed in client→server direction

Timestamp Statistics

166 rtt min ab Minimum RTT for server→client→server
167 rtt max ab Maximum RTT for server→client→server
168 rtt avg ab Average RTT for server→client→server
169 rtt std ab Standard deviation of RTT for server→client→server
170 rtt min ba Minimum RTT for client→server→client
171 rtt max ba Maximum RTT for client→server→client
172 rtt avg ba Average RTT for client→server→client
173 rtt std ba Standard deviation of RTT for client→server→client
174 min equal tsval ab Minimum length of consecutive packets with same

TSval server→client
175 max equal tsval ab Maximum length of consecutive packets with same

TSval server→client
176 min equal tsval ba Minimum length of consecutive packets with same

TSval client→server
177 max equal tsval ba Maximum length of consecutive packets with same

TSval client→server

Large-Transfer Statistics

178 num large transfers ab Number of large transfers in server→client direction
179 num large transfers ba Number of large transfers in client→server direction
180 max large transfer ab Maximum number of packets in a large transfer in

server→client direction
181 max large transfer ba Maximum number of packets in a large transfer in

client→server direction
182 avg large transfer ab Average number of packets in a large transfer in

server→client direction
183 avg large transfer ba Average number of packets in a large transfer in

client→server direction
184 std large transfer ab Standard deviation of the number of packets in a large

transfer in server→client direction
185 std large transfer ba Standard deviation of the number of packets in a large

transfer in client→server direction

Microburst Statistics

186 num microburst ab Number of microburst periods server→client direction
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187 microburst max ab length Maximum length of a microburst (in packets) in
server→client direction

188 microburst min length ab Minimum length of a microburst server→client direc-
tion

189 microburst avg length ab Average length of all microbursts server→client direc-
tion

190 microburst std length ab Standard deviation of microbursts lengths
server→client direction

191 max duration microburst abMaximum duration of a microburst in seconds
server→client direction

192 min duration microburst ab Minimum duration of a microburst in seconds
server→client direction

193 avg duration microburst ab Average duration of a microburst in seconds
server→client direction

194 std duration microburst ab Standard deviation of microburst durations
server→client direction

195 num microburst ba Number of microburst periods in client→server direc-
tion

196 microburst max ba length Maximum length of a microburst (in packets) in
client→server direction

197 microburst min length ba Minimum length of a microburst client→server direc-
tion

198 microburst avg length ba Average length of all microbursts client→server direc-
tion

199 microburst std length ba Standard deviation of microbursts lengths
client→server direction

200 max duration microburst baMaximum duration of a microburst in seconds
client→server direction

201 min duration microburst ba Minimum duration of a microburst in seconds
client→server direction

202 avg duration microburst ba Average duration of a microburst in seconds
client→server direction

203 std duration microburst ba Standard deviation of microburst durations
client→server direction
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