Technical Report R

Number 100

Computer Laboratory

Proving a computer correct
in higher order logic

Jett Joyce, Graham Birtwistle, Mike Gordon

December 1986

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1986 Jeff Joyce, Graham Birtwistle, Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitps:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Proving a Computer Correct
in Higher Order Logic

Jeff Joyce
Graham Birtwistle
Mike Gordon

Abstract

Technical Report No. 42, ‘Proving a Computer Correct using the
LCF LSM Hardware Verification System’, describes the specification
and verification of a register-transfer level implementation of a simple
general purpose computer. The computer has a microcoded control
unit implementing eight user level instructions. We have subsequently
redone this example in higher order logic using the HOL hardware
verification system.

This report presents the specification and verification of Gordon’s
computer as an example of hardware specification and verification in
higher order logic. The report describes how the structure and be-
haviour of digital circuits may be specified using the formalism of
higher order logic. The proof of correctness also shows how digital
behaviour at different granularities of time may be related by means
of a temporal abstraction.

This report should be read with Technical Report No. 68, ‘HOL, A
Machine Oriented Formulation of Higher Order Logic’, which describes
the logic underlying the HOL hardware verification system.

Proving a Computer Correct
in Higher Order Logic

Jeff Joyce
Graham Birtwistle 2
Mike Gordon

1 Introduction

Mike Gordon has described the specification and verification of a register-transfer
level implementation of a simple general purpose computer using the LCF_LSM
hardware verification system [1] [2]. We have subsequently redone this example
in higher order logic using the HOL system [3]. In this paper we present the
specification and verification of Gordon’s computer as an example of hardware
specification and verification in higher order logic.

2 Informal Description of Gordon’s Computer

Gordon’s computer is a simple general-purpose computer invented for this exam-
ple of hardware specification and verification. Nevertheless the register-transfer
implementation of this machine is sufficiently realistic to serve as an interesting
and illustrative example.

Target Level

At the target level, the computer has a memory and two registers. The memory
has a 13-bit address space of 16-bit words. The two registers are the 13-bit program
counter PC and the 16-bit accumulator ACC.

The front panel of the computer is shown in Figure 1. There are three sets of
lights: thirteen PC display lights which show the contents of the program counter;
sixteen ACC display lights which show the contents of the accumulator, and the
idle light which is on when the computer is idling (ie. not executing a program).
There are also sixteen two-position switches which are used for inputing data. 3

!This report originally appeared as ‘Research Report 85/208/21, Department of Computer
Science, University of Calgary, Canada, August 1985’. .
2Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary,
Alberta, Canada T2N 1N4
3This description of the computer is based on the description in ‘Proving a Computer Cor-
rect using the LCF_LSM Hardware Verification System’, Technical Report No. 42, University of
Cambridge, 1983.

1003800884 008244 O
. Switches a button
2 load ACC c0oc0o0co00000000| 1 O .
3 store » PC dsplay lights ready

’ ¢ ran .
ooooooooooooooaa @)
14
AcC display ghts 1

Figure 1: Front Panel of Gordon’s Computer

Pushing the button on the front panel of the computer when the computer is
running (ie. executing a program) interrupts the execution of the program and
the computer idles. The effect of pushing the button on the front panel when the
computer is idling is determined by the position of the knob. We shall refer to
the four positions of the knob as 0, 1, 2 and 3. When the knob is in position
0, the effect of pushing the button is that the word determined by the state of
the thirteen rightmost switches is loaded into the program counter. Pushing the
button when the knob is in position 1 loads the word determined by the sixteen
switches into the accumulator. When the knob is in position 2, the contents of the
accumulator is stored in the memory at the location held in the program counter.
Finally, knob position 3 is used to start the execution of the program stored in
memory beginning at the location in the program counter. :

knob =0 load PC

knob =1 load ACC

knob = 2 store ACC at PC
knob = 3 start execution at PC

When execution of a program begins, the idle light goes off and stays off until
execution stops. Execution can only stop if a HALT instruction is encountered or

an interrupt is generated by pushing the button.
The computer has eight machine instructions: HALT JMP, J ZR ADD, SUB

2

LOAD, STORE, and SKIP. Each instruction consists of a 3-bit opcode and a
thirteen bit address. The format is: '

000—address— HALT Stops execution

001—address— JMP L Jump to address

010—address— JZR L Jump to address if ACC =0
011—address— ADD L Add contents of address to ACC
100—address— SUB L Subtract contents of address from ACC
101—address— LD L Load contents of address into ACC
110—address— ST L Store contents of ACC in address
111—address— SKIP Skip to next instruction

This completes the target level description of the computer. A description such
as this is typically what an assembler language programmer would need to write
programs. Importantly, the description completely captures the relevant behaviour
of computer and hides implementation details which are generally of little interest
to the assembler language programmer. We assume that a description of the
computer from the point of view of an assembler language programmer is the
most appropriate for a target level description.

Implementation Level

The register-transfer level implementation of Gordon’s computer is shown in Figure
2. The implementation has a number of registers in addition to the program
counter and accumulator of the target machine. The instruction currently under
execution is held in the instruction register IR; addresses of memory locations to
be read or written to are held in the memory address register MAR; arguments to
the arithmetic and logic unit ALU are held in the ARG register, and the results
of the ALU are held in the buffer register BUF. The implementation also uses five

gate devices GO, G1, G2, G3 and G4 to control the reading of data onto the 16-bit

bus, BUS.

The fetch-decode-execute cycle is driven by a microcoded control unit. The
microcode is stored in a read-only memory ROM which can hold 32 microcode
instructions, each 30 bits wide. On every clock cycle, the microcode instruction
" addressed by the microcode program counter MPC is read from ROM and decoded
by the decode unit DECODE. Output from the decode unit consists of signals
which control the operation of the data part of the implementation. These signals
correspond to control lines which are labelled in Figure 2 as rsw, wmar, memcntl,
wpc, rpc, wacc, racc, wir, rir, warg, alucntl and rbuf. For instance, when the boolean
signal rpc has the value T (or true), the low 13 bits of the bus are read into the
program counter register PC. All of the control signals are boolean signals except
for memcntl and alucntl which are both signals with values of type :word2. The
decode unit also produces the address of the next microcode instruction which is
loaded in the microcode program counter.

3

8witches knob button

]

L

ace

ir

e Y

H | S—

—

>' Control Unit

Figure 2: Register-Transfer Level Implementation of Gordon’s Computer

_ | nl
rew wmar mementl rpe wace race vir rr alucentl rbuf |
MAR MEM PC I. c1 1 63
I BUS
Y v - \L
pe ace ready tdle

Location

CO CO DO DD B DS B DO DD DD B B Bt bt b et b o et ek e b
- O ®©®®IO0 A WNEOO©O®D-ITNDU A WN MO

© 0 ~TO U AW = O

Control Signals

ready idle
ISW wpc
rsw wacce
rpc wimar
ready

rpc wmar
racc write
read wir
rir wpc
racc warg
racc warg
rir wmar
rir wmar
rpc inc
rbuf wpc
rir wmar
read add
rbuf wacc
rir wmar
read sub
read wacc
racc write

Next Location

test_button (1,0)
jump knob 1
jump O

jump O

jump 7
test_button (0,6)
jump 8

jump O

jump 9
jump_opcode 10
jump 0

jump 5
test_acc (11,17)
jump 19

jump 22

jump 24

jump 25

jump 18

jump 5

jump 20

jump 21

jump 17

jump 23

jump 21

jump 17

jump 17

jump 0

jump O

jump O

jump O

jump 0

jump O

Explanation

begin idling cycle

decode knob position

switches — PC

switches — ACC

PC —- MAR

begin instruction execution

PC — MAR ‘
ACC — MEM (MAR) |
MEM (MAR) — IR |
decode instruction |
HALT
JMP, IR — PC |
JZR 1
ADD, ACC — ARG

SUB, ACC — ARG

LD, IR - MAR

ST, IR - MAR

SKIP, PC + 1 — BUF

BUF — PC

IR — MAR ‘

ARG + MEM (MAR) — BUF

BUF — ACC

IR - MAR

ARG - MEM (MAR) — BUF

MEM (MAR) — ACC

ACC — MEM (MAR)

unused -

unused

unused

unused

unused

unused

Figure 3: Microcode Program Pseudo-Code

The microcode is fully horizontal which means that each bit or group of bits
has a unique function. For instance, bit 23 of each microcode instruction word
uniquely controls the rpc signal. The microcode program we use in the specification
is shown in Figure 3. The first column of each row indicates the address of the
microcode instruction in the microcode store. The rest of the row specifies which
bits are set in this microcode instruction. Columns 2 and 3 specify the settings
of bits 28 to 13 in terms of which control signals should be generated. Bits 12

" to 0 are used by the decode unit to determine the location of the next microcode

instruction. These 13 bits consist of two 5-bit address fields and a 3-bit test field
which indicates how the next location is to be obtained from the two address fields.
The setting of bits 12 to 0 is indicated in column 4 of Figure 3.

This completes our informal description of Gordon’s computer and its register-
transfer level implementation. ‘

3 Hardware Specification in Higher Order Logic

The starting point in a discussion of hardware specification in higher order logic
is a discussion of ‘signals’. '

A signal is a mapping from discrete points in time to primitive values. * In
higher order logic, we treat a signal as a function of type :num— <primitive type>.
In the computer example, the following are used as'primitive types: :bool, :word?2,
:word$, :word5, :wordl1$, :word16, :tri_word16, :word30, :mem13_16 and :mem5_30.
For example, the signal corresponding to the output of the the PC register is of
type :num—word18. That is, this signal maps discrete points in time, which we
regard as numbers, to 13-bit values. Note that a value of type :word1$, for example,
is not the same as a value of type :num although we have a means of obtaining
the numerical value normally associated with a 13-bit word.

We describe a signal in higher order logic as a equation which gives the value of
a signal at a point in time in terms of constants and values of this signal or other
signals at that point or an earlier point in time. For example, we can describe the
output signal of a 16-bit register with the equation shown below. °

't:num. output (t+1) = ((load t) => (input t) | (output t))

Building upon this model of a signal, we view hardware devices as collections
of input and output signals. We describe devices in higher order logic as simply a

“In this paper, we limit our discussion of signals to discrete time scales. Below the register-
transfer level, one might choose to consider signals as mappings from a continuous time scale to
primitive values. ‘

5¢17 and *?’ are the symbols for universal and existential quantification, respectively, in the HOL
system. A conditional expression has the form, A => B [C.

conjunction of equations for each output signal. The register only has one output
signal and so the above equation serves as a specification of a register device.

- It useful to associate the conjunction of equations describing a device with a
constant. Moreover, since we often require more than one instance of a device in
an implementation, we use formal parameters to name signals in the behaviour
equations. The specification of a 16-bit register in higher order logic is shown
below.

|- REG16 (input,load,output) =

't:num. output (t+1) = ((load t) => (input t) | (outputv t))

At this point we can begin the formal specification of Gordon’s computer in
higher order logic using the HOL system.

4 Formal Specification of Gordon’s Computer

We begin by remarking that the HOL system has a number of built-in theories
which provide such things as simple arithmetic. HOL also provides facilities which
directly support the specification and verification of hardware in higher order logic.
This includes types for words and memories of any dimension. At the present
time, some of these facilities are not completely developed. For instance, a fully
developed theory about values of type :word<n> would include the theorem that
a value of type :word2, for example, has only four possible values, #00, #01, #10
and #11. ¢ Currently, one must supply such facts as required in the form of
axioms. However, we ignore such details in the rest of our discussion.

The specification of Gordon’s computer begins with the definition of some
constants which name operations used in both the target level spec1ﬁcatlon and
the specification of the implementation.

v,'si k

INC16 :word16—word16 -
ADD16 :wordl16—word16-—wordl16
SUBI16 :word16—»wqrd16—>word16

It is unnecessary to specify details of the operation named by INC16, ADD16
and SUB16 because the verification of the computer implementation does not
require any information about these operations except for their types. The op-
erations named by INC16, ADD16 and SUB16 are taken as primitive operations
in the specification of the arithmetic and logic unit ALU. INC16, ADD16 and
SUBI16 then reappear in the target level specification. We never have to synthesis
the ADD16 operation from other operations nor do ever need to know any details

6A word<n> constant is a term starting with ‘#’ followed by n 0’s and 1’s.

7

of the ADD16 operation to synthesis another operation. It is sufficient to only
know that ADD16 names an operation which takes two 16-bit words and results
in a 16-bit word. Similarly, only type specifications are required for INC16 and
SUB16. | B

However, we do need to supply details of several other operations which are also
common to the target and implementation levels of specification. These operations
are named by the following constants. '

PAD13_16 :word13—wordl16
CUT16.13 :word16—word13
INC13 :word13—word13

A fully developed theory about values of type :word<n> would include pad
and cut operations. Currently, we must supply these operations. When a 13-
bit address is transferred along the 16-bit bus in the implementation, it must
be padded with 3 extra bits. When the 13-bit address arrives at its destination
as a 16-bit word, it is normally truncated back to. a 13-bit word. Padding and
subsequently truncating a 13-bit word results in the original 13-bit word. This is
reflected in the following axiom.

|- 'w:wordi13. CUT16_13 (PAD13_16 w) = w

We also specify axiomatically that the INC13 operation is the result of padding
a 13-bit word, applying the INC16 operation and then truncating the result back
to a 13-bit word.

|- tw:word13. CUT16_13(INC16(PAD13_16 w)) = INC13 w

Finally, OPCODE names the operation which extracts the 3-bit opcode field
of an target level instruction. Like INC16, ADD16 and SUBIS6, it is unnecessary
to specify any details for this operation except for its type.

OPCODE :wordl16—word3

Implementation Level

Following a hierarchical design methodology, we divide the register-transfer imple-

mentation of the computer into two parts, the data path and the control unit.
We first consider the specification of the data path of the implementation

beginning with the registers. We have already seen the specification of a 16-bit

8

register. ACC, IR and ARG are 16-bit registers which we specify as instances of
REG16. We also require a 13-bit register which takes a 16-bit input but only uses
the lower thirteen bits. The specification of REG13 uses the constant CUT16_13
to name the operation which truncates a 16-bit word to 13-bit word. MAR and
PC are instances of REG13.

|- REG13 (input,load,output) =
't :num.
output (t+1) = ((load t) => (CUT16_13 (input t)) | (output t))

Both REG16 and REG13 specify registeré which are selectively loadable. A
_third type of register, BUF is a 16-bit register that is not selectively loadable.
BUF loads from its input line every clock cycle.

|- BUF (input,output) = !t:num. output (t+1) = input t

So far we have only considered primitive values which are bi-stable, that is,
values which, for each bit position, are either 0 or 1. We also need to consider tri-
state values which, in addition to 0 and 1, have a high impedance or floating state.
When we connect devices to the bus in the register-transfer level implementation,
we need to consider the result of merging several signals. Merging bi-stable signals
is not acceptable because merging 0 with 1 corresponds to connecting power to
ground which is obviously undesirable from an electrical point of view. A third
state of high impedance or floating represents a value on a wire which is electrically
isolated from power or ground. Merging a floating value with another floating value
results in the floating value, but merging a floating with 0 results in 0. Similarly
merging a floating value with 1 results in 1.

The HOL system provides the type :tri_word<n> to model tri-state values. The
floating value for the type :tri_word<n> is named by the constant FLOAT<n>.
The constants MK_TRI<n> and DEST_TRI<n> are also provided to convert
from bi-state to tri-state values and vice versa. Another constant, U<n>, names
an infix function which represents the value which results when two tri-state values
are merged. The functions satisfy the built-in axioms:

|- !w:word<n>. DEST_TRI<n> (MK_TRI<n> w) = w

|- 'w:tri_state<n>. (FLOAT<n> U<n> w = w) /\ (w U<n> FLOAT<n> = w)

With this explanation of tri-state values, we can consider devices which gate
values onto the bus. Five of the six devices which gate values onto the bus are
called ‘gates’. These devices receive bi-stable outputs from registers and the set
of switches. If the control line of the gate is high, the input value is gated onto
the bus otherwise the tri-state value FLOAT16 is produced. The definition of a
GATE16 is shown below. GO, G2, G3 and G4 are instances of GATE16. G1 is an
~ instance of GATE13 which is identical to GATE16 except that it receives a 13-bit
value from the PC register and produces a 16-bit value by padding the 13-bit input
‘with an unspecified value. :

|- GATE16 (input,control,output) =
!t :num. ‘ _ :
output t = (control t => MK_TRI16 (input t) | FLOAT16)

|- GATE13 (input,control,output) =
't:num.
output ¢t =
(control t => MK_TRI16 (PAD13_16 (input t)) | FLOAT16)

The remaining components of the data path of the computer are the memory,
the arithmetic and logic unit, and the bus. . .
Our specification of the memory treats the actual storage function as a signal,
memory, and the memory device as simply a device which regulates access to this
signal. The operation of the memory device is control by the 2-bit memory control
signal, memcntl. When the memory control line signal is #00 or #11, the device is
effectively inoperative. The tri-state floating value FLOAT16 is read onto the bus
~and the memory is left unchanged. However, when the value of the control signal
is #01, the memory signal is left unchanged but the 16-bit word addressed by the
value of mar is read onto the bus. Notice that the memory is only other device
besides gates which reads values onto the bus. When the value of the control signal
is #10, the memory device updates the memory signal using the built-in constant
STORE13 to name the operation which stores values in the memory. We can see
from the specification of the device that the value of the signal mar is the address
at which the value of bus is stored in the memory.

|- MEM (memory,mar,bus,memcntl,memout) =
't :num. ”
(memout t =
((VAL2 (memcntl t) = 1) =>
MK_TRI16 (FETCH13 (memory t) (mar t)) | FLOAT16)) /\
(memory(t+1) =

10

((VAL2 (memcntl t) = 2) =>
STORE13 (mar t) (bus t) (memory t) | memory t))

S

The arithmetic and logic unit, ALU, is a combinational device with the func-
tions: no operation, increment, addition and subtraction. The function is selected
by the 2-bit alu control signal, alucntl. e

C e

|- ALU (arg,bus,alucntl,alu) =
't :num.
(alu t =
((VAL2 (alucntl t) ‘
(VAL2 (alucntl t) = 1) => INC16 (bus t) |
(VAL2 (alucntl t) = 2) => ADD16 (arg t) (bus t) |
SUB16 (arg t) (bus t)))

0) => bus t |

The final component in the data path of the register-transfer implementation of
the computer is the 16-bit bus. This bus is used for the transfer of both 16-bit data
words and 13-bit addresses. We model the bus as a signal of type :num— word16,
that is, a signal which produces a bi-state 16-bit value from six tri-state input
signals, memout. g0, gl. g2. g3 and g4. We have already mentioned that a non-
floating value merged with a floating value produces the non-floating value. Our
register-transfer level implementation of the computer will guarantee that at most
one non-floating value will ever be read onto the bus.

|- BUS(memout,g0,gl,g2,.g3.g4,bus) =
't :num.
bus t = DEST_TRI16
(memout t U16 g0 t U16 gl t U16 g2 t U16 g3 t U16 g4 t)

~ Having provided specifications of all the components in the data path of the
computer, we can now precede in a ‘bottom-up’ fashion by specifying the data
path in terms of these primitive components. As we have said, a device is speci-
fied as the conjunction of equations describing the behaviour of the output signals
of the device. In the specification of primitive component, we must provide these
equations explicitedly. However, we specify a composite device as a conjunction
of the specifications for each instance of a component used to implement the de-
vice. Furthermore, signals must be named to replace the formal parameters in the
specifications of components in the device. For example, in the specification of the
data path, the signals bus. wpc and pc replace the formal parameters input. load

11

and output in the specification of PC. We can then ‘expand’ the specification of a
composite device to produce a conjunction of equations for each output signal.

The specification of the data path of the computer, DATA, in terms of the
register-transfer devices, for which we have provided formal spec'iﬁc’ations, is shown
below. The existential quantification of the signals g0, g1. g2, g3. g4. memout, alu
and bus has the effect of ‘hiding’ these signals within the specification of the data
path. We are able to hide these signals within the specification of the data path
because the signals are isolated from the rest of the computer implementation.
Hiding these signals is very desirable because it hides details of the implementation
of the data path which are not required when we view the data path as a individual
component in the implementation of the computer.

|- DATA

(memory,mar,pc,acc,ir,arg,buf,switches,rsw,wnar,memcntl,
wpc,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf) =
?7g0 gl g2 g3 g4 memout alu bus.
MEM(memory,mar,bus ,memcntl,memout) /\
MAR(bus,wmar,mar) /\

PC(bus,wpc,pc) /\

ACC(bus,wacc,acc) /\

IR(bus,wir,ir) /\

ARG(bus,warg,arg) /\

BUF (alu,buf) /\

GO(switches,rsw,g0) /\

Gi(pc,rpc.gl) /\

G2(acc,racc,g2) /\

G3(ir,rir.g3) /\

G4 (buf,rbuf,g4) /\

ALU(arg,bus,alucntl,alu) /\
BUS(memout,g0,gi.g2,g3,g4,bus)

We now turn to a specification of the control unit of the computer. The con-

* trol unit consists of three components: the read-only microcode store ROM, the

microcode program counter MPC and the decode unit DECODE. We must also
supply the microcode program to complete the specification of the control unit.

ROM is a constant for the specification of a read-only device which, given
a particular configuration of a 5-bit address space of 30-bit words of memory,
outputs the word stored at the location addressed by the value of the input signal.
FETCHS is the built-in constant which names the operation of fetching a word
from the memory.

- 12

|- ROM microcode (mpc,rom) =
't:num. rom t = FETCHS microcode (mpc t)

The specification of the microcode program counter MPC is straightforward.
This device is simply a 5-bit register that loads every clock cycle.

|- MPC (nextaddress,mpc) = !t:num. mpc (t+1) = nextaddress t

Before we can specify the decode unit, we need to define several operations
for extracting fields of a microcode instruction word. CNTL_BIT is an operation
which selects a single bit in the microcode instruction word. CNTL_FIELD selects
‘a 2-bit field from the microcode instruction. The two 5-bit address fields, bits 3 to
7 and 8 to 12, are extracted by BADDR and A_ADDR. Finally, TEST extracts
the test field, bits 0 to 2, which determines how the two address fields are used to
construct the next microcode program address. Note that EL, V, SEG, BITS30
are built-in operations in the HOL system (see Appendix A).

|- CNTL_BIT n w = EL n (BITS30 w)

|- CNTL_FIELD (m,n) w = WORD2 (V (SEG (m,n) (BITS30 w)))
|- B_ADDR w = WORDE (V (SEG(3,7) (BITS30 w)))

|- A_ADDR w = WORDE (V (SEG (8,12) (BITS30 w)))

|- TEST w = V (SEG(0,2) (BITS30 w))

The specification of the decode unit is considerably longer than the specifi-
- cation of any other primitive component in our implementation. Actually this
specification is not as complex as it first appears. Moreover, it is reasonable to
treat the decode unit as a primitive in our implementation because it is just a large
combinational circuit that could be implemented almost automatically. The out-
put equation for the signal nextaddress specifies how the next microcode program
address is obtained from the two address fields and the test field in the microcode
instruction word. The remaining equations identify individual bits or pairs of bits
with signals that control the operation of the data path.

|- DECODE
(rom,knob,button,acc,ir ,nextaddress,rsw,wnar,memcntl,
wpc,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf,ready,idle) =
't:num. ‘ '
(nextaddress t = .
(C(TEST(rom t) = 1) /\ (button t)) =>

13

B_ADDR(rom t) |
((TEST(rom t) = 2) /\ (VAL16(acc t) = 0)) =>
B_ADDR(rom t) |

(TEST(rom t) = 3) =>

WORD5 (VAL2(knob t) + VAL5(A_ADDR(rom t))) |

(TEST(rom t) = 4) =>

WORD5(VAL3(OPCODE(ir t)) + VALS(A_ADDR(rom t))) |
A_ADDR(rom t))) /\
t = CNTL_BIT 28 (rom t)) /\

(wmar t = CNTL_BIT 27 (rom t)) /\

(memcntl t = CNTL_FIELD (25,26) (rom t)) /\
(wpc t = CNTL_BIT 24 (rom t)) /\

t = CNTL_BIT 23 (rom t)) /\

(wacc t = CNTL_BIT 22 (rom t)) /\

(racc t = CNTL_BIT 21 (rom t)) /\

(wir ¢t = CNTL_BIT 20 (rom t)) /\

t = CNTL_BIT 19 (rom %)) /\

(warg t = CNTL_BIT 18 (rom t)) /\

(aluentl t = CNTL_FIELD (16,17) (rom t)) /\
(rbuf t = CNTL_BIT 15 (rom t)) /\

(ready t = CNTL_BIT 14 (rom t)) /\

(idle t = CNTL_BIT 13 (rom t))

(rsw

(rpc

(rir

To complete the bottom level specification of the control unit, we need to
specify the microcode program which we have already informally described. We
specify the microcode program as a particular configuration of memory named by
the constant MICROCODE. The specification consists of a set of 32 axioms, one

axioms for each word in the microcode store.

|- FETCHB
|- FETCH5
|- FETCH5
|- FETCH5

- |- FETCH5

|- FETCHB

|- FETCHS

|- FETCHS
|- FETCH5
|- FETCH5
|- FETCH5
|- FETCHS
|- FETCH5

MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE
MICROCODE

#00000
#00001

#00010

#00011

#00100 =
= #000000000000000100011000000001
#00110 =
= #000100001000000000000000000000

#00101

#00111

#01000 =
= #000000000000000000101000000100

#01001
#01010
#01011

#01100 =

= #000000000000000110000000001001
= #000000000000000000001000000011

#010001000000000000000000000000
#010000010000000000000000000000
#00100010000000000001 1100000000

#001000100000000000100000000000
#000010000100000000100100000000
#000000000000000000000000000000

#000001000010000000010100000000
#000000000000000001000101011010

14

|- FETCH6 MICROCODE #01101 = #000000001001000001001 100000000
|- FETCHS MICROCODE #01110 = #00000000100100000101 1000000000
|- FETCH5 MICROCODE #01111 = #001000000010000001 100000000000
|- FETCH5 MICROCODE #10000 = #001000000010000001100100000000
|- FETCH5 MICROCODE #10001 #000000100000010001001000000000
|- FETCH5 MICROCODE #10010 = #000001000000001000010100000000
|- FETCH5 MICROCODE #100i1 = #001000000010000001010000000000
|- FETCHS6 MICROCODE #10100 = #000010000000100001010100000000
|- FETCH6 MICROCODE #10101 = #000000010000001001000100000000
|- FETCH6 MICROCODE #10110 = #00100000001000000101 1100000000
|- FETCH5 MICROCODE #10111 #000010000000110001010100000000
|- FETCH5 MICROCODE #11000 = #000010010000000001000100000000
|- FETCH6 MICROCODE #11001 = #000100001000000001000100000000
|- FETCH5 MICROCODE #11010 = #000000000000000000000000000000
|- FETCH6 MICROCODE #11011 = #000000000000000000000000000000
|- FETCH5 MICROCODE #11100 = #000000000000000000000000000000
|- FETCH6 MICROCODE #11101 = #000000000000000000000000000000
|- FETCH6 MICROCODE #11110 = #000000000000000000000000000000
|- FETCH5 MICROCODE #11111 = #000000000000000000000000000000

We can now specify the control part as a top-level component of the computer
implementation. Notice that the signals rom and nextaddress are hidden because
they are completely internal to the control unit.

|- CONTROL
microcode
(mpc ,knob,button;acc,ir,raw,wmar,memcntl,
wpc,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf,ready,idle) =
?rom nextaddress.
ROM microcode (mpc,rom) /\
MPC (nextaddress,mpc) /\
DECODE
(rom,knob,button,acc,ir,nextaddress,rsw,wmar,memcntl,
wpc,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf,ready,idle)

The final step in the formal specification of the register-transfer implementation
of Gordon’s computer is the overall specification of the implementation as the
composition of the data path and the control unit. Connecting the control unit
with the data path allows us to hide the control signals generated by the control
unit which govern the operation of the data path.

15

|- COMPUTER_IMP

(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready) =
7rsw wmar memcntl wpc rpc wacc racc wir rir warg alucntl rbuf.
CONTROL |

MICROCODE

(mpc,knob,button,acc,ir,rsw,wmar,memcntl,

~ wpc,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf,ready,idle) /\
DATA : '

(memory ,mar,pc,acc,ir,arg,buf ,switches,rsw,wmar,memcntl,

wpc ,rpc,wacc,racc,wir,rir,warg,alucntl,rbuf)

This completes the formal specification in'higher order logic of the implemen-
tation of Gordon’s computer. We now consider the target-level specification of the
computer.

Target Level

For readability, we split the target level specification of the computer into two
definitions. The first defines a constant EXECUTE which describes the execution
of a single target level instruction. Hence, EXECUTE gives the semantics of the
instruction set. The second definition defines a constant COMPUTER which is
the overall specification of Gordon’s computer including its behaviour when it is
idling as well as when it is running. Notice that COMPUTER is defined in terms
of EXECUTE.

The definition of EXECUTE evaluates to the next state of the computer which
results from the execution of a single target level instruction. The next state is
given as a 4-tuple consisting of the memory state, the values of the program
counter and accumulator, and the run/idle status. The next state is obtained
from the current memory state and the current values of the program counter and
accumulator. '

|- EXECUTE (memory_val,pc_val,acc_val) =
let op = VAL3(OPCODE(FETCH13 memory_val pc_val)) in
let addr = CUT16_13(FETCH13 memory_val pc_val) in
((op=0) => (memory_val, pc_val, acc_val, T) |
(op=1) => (memory_val, addr, acc_val, F) |
(op=2) => ’
((VAL16 acc_val = 0) =>
(memory_val, addr, acc_val, F) |
(memory_val, INC13 pc_val, acc_val, F)) |
(op=3) =>

16

|

|

|

‘
(memory_val, INC13 pc_val, ‘ i
ADD16 acc_val (FETCH13 memory_val addr), F) | |
(op=4) => : |
(memory_val, INCi3 pc_val,
SUB16 acc_val (FETCH13 memory_val addr), F) | |
(op=5) => | | }
\

\

|

|

|

|

|

\

(memory_val, INC13 pc_val, FETCH13 memoi'y_val addr, F) |
(op=6) =>

(STORE13 addr acc_val memory_val, INC13 pc_val, acc_val, F) |
(memory_val, INC13 pc_val, acc_val, F))

The definition of COMPUTER is expressed in terms of an relationship between
_the value of the signals memory. knob, button, switches, pc, acc and idle from a
time t1 to a time t2. We will see shortly that the choice of t1 and t2 is restricted
in such a way that this relationship is at least a partial specification of the target
level computer.

|- COMPUTER | 1
(t1,t2) (memory,knob,button,switches,pc,acc,idle) = ' |
(memory t2,pc t2,acc t2,idle t2) =
(idle t1 =>
(button t1 =>
((VAL2(knob t1) = 0) => _
(memory t1, CUT16_13(switches t1), acc t1, T) |
(VAL2(knob t1) = 1) =>
(memory t1, pc t1, switches t1i, T) | |
(VAL2(knob t1) = 2) => | |
(STORE13(pc t1)(acc t1)(memory t1), pc t1, acc t1, T) |
(memory t1, pc ti, acc ti, F)) | |
(memory t1, pc ti, acc t1, T)) |
(button t1 =>
(memory t1, pc t1, acc t1, T) |
EXECUTE(memory t1, pc t1, acc t1)))

Later on, we introduce another definition COMPUTER._abs which will ulti-
mately serve as our target level specification of Gordon’s computer. Nevertheless,
the above definition of COMPUTER is the basis of an important step in the veri-
fication of the computer implementation. For the present, we accept the definition
of COMPUTER as the target level specification with the understanding that cer-
tain assumptions such as the restriction on t1 and t2 are needed to make this
definition useful as a target level specification. '

17

5 Statement of Correctnesvs

The implementation and target level specifications of Gordon’s computer which
we developed in the previous section only become interesting when they are used
within a statement of correctness.

The first step in verifying Gordon’s computer is to prove the correctness state-
ment shown below. Correctness is expressed by the assertion that if the signals
mpc. mar, ir. arg, buf, memory, knob, button, switches, pc, acc, idle and ready are
in the relationship expressed by the predicate COMPUTER_IMP, then the values
of the signals memory, knob, button, switches, pc. acc and idle at time t2 will be
related to the values of the signals at time t1 in a relationship expressed by the
predicate COMPUTER. Recall that COMPUTER_IMP and COMPUTER are the
implementation and target specifications of the computer, respectively. The choice
of the times t1 and t2 are restricted as follows. The boolean signal ready must
be true at time t1 and furthermore, t2 must be the first time that ready is true
after t1. This relationship between t1, t2 and ready is expressed by the predicate
NEXT. There are also some extra assumptions about the stability of the signals
knob and switches over the period of time from t1 to t2. The formal definitions of
NEXT and STABLE are also shown below.

|- STABLE (t1,t2) sig =
1. ((t1 < &) /\ (& < £2)) ==> (((sig t):*) = ((sig £1) %))

|- NEXT (t1,t2) sig =
(61 < £2) /\ (sig £2) /\ ('t. (t1 < &) /\ (& < £2) ==> “sig t)

[- 1t1 t2.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf) :
(memory,knob,button,switches,pc,acc,idle,ready) /\

STABLE (t1,t2) switches /\

STABLE (t1,%t2) knob /\

NEXT (t1,t2) ready /\

ready t1 ==>

COMPUTER (t1,t2) (memory,knob,button,switches,pc,acc,idle)

Examining the microcode program, we can see that the signal ready is only
true when the microcode program counter is 0 or 5. Location O in the microcode
program is the start of the idle cycle and location 5 is the start of the cycle
which fetches, decodes and executes a target level instruction. This explains the
restriction on t1 and t2 in terms of ready. We use ready to identify precisely the
intervals described by the predicate COMPUTER.

18

6 Formal Veriﬁcation - Part 1

The formal verification of Gordon’s computer is divided into two major parts.
The first part involves proving the correctness statement presented in the previ-
ous section. Having proved this statement, we introduce a better statement of
correctness which is based on a temporal abstraction between the miecrocode time
scale and the instruction set time scale. We elaborate on the difference between
these two time scales later in this paper. The proof of this improved statement
of correctness is based upon the proof of the statement of correctness presently
under consideration.

We begin by stating several preliminary lemmas about the relationship ex-
pressed by the predicate NEXT. These lemmas may be proved without difficulty
from the definition of NEXT.

NEXT_INC_LEMMA = ,
|- 1sig t1. sig (t1 + 1) ==> NEXT (t1,t1 + 1) sig

NEXT_IDENTITY_LEMMA =
|- tsig t1 €2 t2°.
NEXT (t1,t2) sig /\ NEXT (t1,t2°) sig ==> (t2 = t2')

NEXT_INC_INTERVAL_LEMMA =
|- tsig t1 2.
~sig (t1 + 1) /\ NEXT (t1 + 1,t2) sig ==> NEXT(t1,t2) sig

A number of simple arithmetic lemmas are also required suchas 4 + 10 = 14.
These lemmas are easily proved in the HOL system. -

The first step in the verification of the computer implementation is to fully
‘expand’ the definition of COMPUTER_IMP. Recall that COMPUTER_IMP is
defined in terms of CONTROL and DATA which defined in terms of primitive
components. We begin by expanding CONTROL and DATA. We then use the
result of expanding CONTROL and DATA to expand COMPUTER_IMP.

Expanding the specification of a composite device involves three steps. First,
we replace constants such as PC with the specifications of the components they
name. For example, the term PC (bus,wpc,pc) in the specification of DATA is
replaced with the following:

tt:num. pc (t+1) = ((wpc t) => (CUT16_13 (bus t)) | (pc t))

The second step is to ‘unwind’ the equations for all of the output signals.
The result of unwinding these equations is that left-hand sides of equations are

19

eliminated as much as possible in favor of right-hand sides in the right-hand sides
of all the equations. The final step in expanding a composite specification is to
‘prune away’ equations for hidden signals, Recall that signals are ‘hidden’ by
existential quantification. If the name of a hidden signal still appears in the right-
hand side of an equation for a unhidden signal, this final step will fail. This is
because the only signals which should appear on the right-hand sides of equations
after unwinding are signals which serve as input to the composite device, that is,
signals which are not internal.

We note that the expansion of a composite specxﬁcatlon is a purely logical pro-
cedure. Fortunately, the HOL system provides a ML routine which automatically
expands a composite specification in the manner we have described. This ML
routine, EXPANDF, manipulates the composite specxﬁcatlon in a strictly logical
manner using the usual inference rules.

The result of fully expanding COMPUTER_IMP is a theorem with a conclusion
several pages in length (see Appendix B). The conclusion is a term consisting of
equations for each of the output signals of the computer implementation, namely,
the signals mpc, mar, ir, arg. buf, memory, pc, acc, idle and ready. For example, the
equation for the mpc signal is shown below. The theorem captures the complete
behaviour of the register-transfer level implementation of the computer and is used
as the unique source of information about the implementation for the rest of the
proof of correctness. ‘

(1t.
mpc(t + 1) =
(((V(SEG(0,2) (BITS30(FETCHS 'MICROCODE(mpc £)))) = 1) /\
button t) =>
WORDS (V(SEG(3,7) (BITS30(FETCHS MICROCODE(mpc t))))) |
(((V(SEG(0,2) (BITS30(FETCH5 MICROCODE(mpc t)))) = 2) /\
(VAL16(acc t) = 0)) =>
WORD5 (V(SEG(3,7) (BITS30(FETCHE MICROCODE(mpc t))))) |
((V(SEG(0,2) (BITS30(FETCH5 MICROCODE(mpc t)))) = 3) =>
WORD5 '
((VAL2(knob t)) +
(VALS
(WORD5
(V(SEG(8,12) (BITS30(FETCH6 MICROCODE(mpc %)))))))) |
((V(SEG(0,2) (BITS30(FETCH5 MICROCODE(mpc t)))) = 4) =>
WORDS
((VAL3(OPCODE(ir t))) +
. (VALS
(WORDS
(V(SEG(8,12) (BITS30(FETCHS MICROCODE(mpc t)))))))) |
WORDS (V(SEG(8,12) (BITS30(FETCH5 MICROCODE(mpc t))))))))))

20

It is important to understand how the the theorem in Appendix B can be used
to determine the behaviour of the computer implementation under a certain set
of assumptions. Suppose, for example that we assume the microcode program
counter has the value #00000 at time t1. Furthermore, suppose that the button is
not pressed at time t1. Using higher order logic, we can investigate the behaviour
of the computer implementation under these assumptions. For instance, we can
determine the value of the microcode program counter at the time (t1 + 1) by
evaluating the equation for the output signal mpc under our assumptions about
the value of mpc and button at t1.

First we instantiate the universally quantified variable ‘t’ in the equation for
mpc to t1. We then rewrite the equation with our assumptions which are formally
expressed as mpc t1 = #00000 and button t1 = F to obtain the following.

. COMPUTER_IMP
s (mpe,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
mpc ti = #00000, '
button t1 = F |
|- mpc(tl + 1) =
(((V(SEG(0,2) (BITS30(FETCHE MICROCODE #00000))) = 1) /\ F) =>
WORD5 (V(SEG(3,7) (BITS30(FETCHS MICROCODE #00000)))) |
(((V(SEG(0,2) (BITS30(FETCH5 MICROCODE #00000))) = 2) /\
(VAL16(acc t1) = 0)) =>
WORD5 (V(SEG(3,7) (BITS30(FETCHE MICROCODE #00000)))) |
((V(SEG(0,2) (BITS30(FETCHS6 MICROCODE #00000))) = 3) =>
WORD5 :
((VAL2(knob t1)) +
(VALS
(WORDS
(V(SEG(8,12) (BITS30(FETCH5 MICROCODE #00000))))))) |
((V(SEG(0,2) (BITS30(FETCHS MICROCODE #00000))) = 4) =>
WORD5
((VAL3(OPCODE(ir t1))) +
(VALB
(WORD5
(V(SEG(8,12) (BITS30(FETCHS MICROCODE #00000))))))) |
WORDS (V(SEG(8,12) (BITS30(FETCHS MICROCODE #00000))))))))

Note that there are three hypotheses before the theoremho_od symbol, ‘|-’.
These are the two assumptions we have just introduced along with the overall

21

hypothesis that the signals mpc, mar. ir, arg, buf. memory, knob, button. switches,
pc. acc, idle and ready are in the relationship expressed by COMPUTER_IMP.

The next step in the evaluation is to use our specification of the microcode
program to replace the term FETCH5 MICROCODE #00000 with the appropriate 30-
bit word. In particular, we use the axiom for location O to rewrite the above
partially evaluated theorem.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob.button,switches.pc.acc.idle.ready).
mpc t1 = #00000,
button t1 = F
|- mpc(tl + 1) =
(((V(SEG(0,2)
(BITS30 #000000000000000110000000001001)) = 1) /\ F) =>
WORD5 (V(SEG(3,7) (BITS30 #000000000000000110000000001001))) |
(((V(SEG(0,2)
(BITS30 #000000000000000110000000001001)) = 2) /\
(VAL16(acc t1) = 0)) =>
WORD5 (V(SEG(3,7) (BITS30 #000000000000000110000000001001))) |
((V(SEG(0,2) (BITS30 #000000000000000110000000001001)) = 3) =>
WORDE ((VAL2(knob ti)) +
(VALS
(WORDB ‘
(V(SEG(8,12) (BITS30 #000000000000000110000000001001)))))) |
((V(SEG(0,2) (BITS30 #000000000000000110000000001001)) = 4) =>
WORD5 ((VAL3(OPCODE(ir t1))) +
(VALS
'(WORDS
(V(SEG(8,12) (BITS30 #000000000000000110000000001001)))))) |
WORD5 :
(V(SEG(8, 12)(BITS3O #000000000000000110000000001001)))))))

We now use some special purpose rules in HOL which evaluate terms contain-
ing the built-in constants V, SEG, BITS30 and WORDS5 (see Appendix A). The
result of BITS_RULE followed by successive applications of SEG_RULE, V_RULE,
WORD _RULE and VAL_RULE is shown below.

COMPUTER_IMP
(mpe ,mar,ir,arg,buf)
(memory . knob,button,switches,pc,acc,idle, ready)

22

(mpc t1 = #00000),
(button t1 = F)
|- mpc(tl + 1) =
(((1 = 1) /\ F) => #00001 | |
(C((1 = 2) /\ (VAL16(acc t1) = 0)) => #00001 |
((1 = 3) => WORD5((VAL2(knob t1)) + 0) |
((1 = 4) => WORDE((VAL3(OPCODE(ir t1))) + 0) | #00000))))

We complete the evaluation by using EQ_RULE which replaces the numerical
inequalities with F, bool_ RULE which simplifies boolean expressions, and finally
COND_RULE which simplifies conditional expressions. The final result is the
following theorem.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
mpc t1 = #00000,
button t1 = F
|- mpc(tl + 1) = #00000

The above theorem shows that, under our assumptions that the value of the
microcode program counter is #00000 at time t1 and the button is not pressed,
~ the value of the microcode program counter will be #00000 at time (t1 + 1) which
is exactly what we would expect.

This simple example demonstrates the evaluation of output equations under a
set of assumptions about initial values. We have shown how the value of the signal
mpc at (t1 + 1) can be obtained on the basis of its value at t1 and the value of
the signal button at t1.

Suppose that the button had been pressed at t1 and that the knob is in position
3. By a similar evaluation process, we would obtain the following.

COMPUTER_IMP
(mpc .mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
mpc t1 = #00000, '
button t1 = T,
VAL2 (knob(t1l + 1)) = 3
|- mpe(t1 + 1) = #00001

23

So far we have just seen how to determine the value of mpc at time (t1 + 1)
from assumptions about the values of signals at time t1. We now show that this
method can be extended to determine the value of mpc at time (t1 + n) for any

‘1.

Suppose that we wish to determine the value of mpc at time ((t1 + 1) + 1)

-using the above result, mpc (t1i + 1) = #00001. We would begin by instantiating

the universally quantified variable ‘t’ to (t1 + 1) and then rewrite the equation
with the above result that mpc (ti1 + 1) = #00001.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory ,knob,button,switches,pc,acc,idle,ready),
mpc t1 = #00000,
button t1 = T,
VAL2 (knob(t1i + 1)) =
- mpe((t1 + 1) + 1) =
((CV(SEG(0,2) (BITS30(FETCH5 MICROCODE #00001))) = 1) /\
button(ti + 1)) =>
WORDS (V(SEG(3,7) (BITS30(FETCH6 MICROCODE #00001)))) |
(((V(SEG(0,2) (BITS30(FETCH5 MICROCODE #00001))) = 2) /\
(VAL16(acc(t1 + 1)) = 0)) =>
WORDB(V(SEG(S,?)(BITSSQ(FETCHB MICROCODE #00001)))) |
((V(SEG(0,2) (BITS30(FETCH5 MICROCODE #00001))) = 3) =>
WORDS
(3 +
(VALS
(WORDS
(V(SEG(8,12) (BITS30(FETCH6 MICROCODE #00001))))))) |
((V(SEG(0,2) (BITS30(FETCH6 MICROCODE #00001))) = 4) =>
WORDS
((VAL3(OPCODE(ir(t1 + 1)))) +
(VALS
(WORDS
(V(SEG(8,12) (BITS30(FETCH6 MICROCODE #00001))))))) |
WORD5 (V(SEG(8,12) (BITS30(FETCH6 MICROCODE #00001))))))))

Then by the usual evaluation procedure we would obtain the following.

COMPUTER_IMP _
(mpc.mar,ir,arg,buf) |
(memory ,knob,button,switches,pc,acc,idle,ready),

24

mpc t1 = #00000,

button t1 =T,

VAL2 (knob(tl + 1)) =3
- mpc((t1 + 1) + 1) = #00101

Not only can we investigate the behaviour of the signal mpc in this manner,
but the value of any other signals can be determine by a similar evaluation pro-
cedure. For example, we can derive the following theorem about the value of the
accumulator at time (((t1 + 1) + 1) + 1) under the initial assumptionsmpc t1 =
#00000, button t1 = T and VAL2 (knob (t1 + 1)) = 1. As we would expect,
the value of the switches is loaded into the accumulator.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
mpc t1 = #00000,
button t1 = T,
VAL2 (knob(t1 + 1)) =1
|- ace(((t1 + 1) + 1) + 1) = switches((t1 + 1) + 1)

In general, it is possible to derive a theorem about a future value of any one
of the output signals in the computer implementation. With the necessary as-
sumptions about previous values of signals, for example, the initial value of the
microcode program counter, the future value of a particular signal will be sim-
plified to a primitive value such as #00000. We have offered several examples of
the evaluation procedure which produces these theorems. Note that this proce-
dure is a strictly logical derivation in higher order logic. Even the special purpose
rules, BITS RULE, SEG_RULE, V.RULE, WORD RULE and VAL_RULE are re-
ally built-in inference patterns which use derived inference rules originating from
. theories about bits, words and lists. ' :

Now that we have seen how to obtain results about the values of output signals
we can continue with the verification of the register-transfer implementation of the
computer,

We now prove several simple theorems which are intuitively obvious from ex-
amination of the microcode program. We can be see from examining the microcode
program that the only microcode instruction which enables both the ready and idle
signals is in location 0. Hence, if both of these signals are true at time t1, then the
microcode program counter must hold the value #00000. Similarly, when ready
is true but idle is false, then the value of the microcode program counter must
be #00101. These observations can be formally proved by a simple evaluation of
the equations for the ready and idle signals for every possible value of the signal

25

mpc. Note that since the microcode program counter is a 5-bit register, there are
exactly 32 cases to consider.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memofy.knob.button.switches.pciacc.idle.ready).
ready ti1,
idle ti
|- mpc t1 = #00000 °

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory ,knob,button,switches,pc,acc, idle ready) .
ready ti,
“idle t1
|- mpc ti = #00101

Next we observe that the ready will be true infinitely often. Starting at any
location we can see that the microcode program counter must always return to
either location 0 or 5. When the computer is operating normally, we know that
it will always return to start of either the idle loop or the instruction execution
cycle which begin at locations 0 and 5, respectively. However, we must also con-
sider what could happen when the computer powers up. 7 Upon power up, the
microcode program counter could take any 5-bit value including those locations,
26 - 31, which are in the ‘unused’ section of the microcode store. 8 We must
exhaustively demonstrate that from any possible location in the microcode store,
the control will return to either location 0 or 5. By repeated evaluation of the
equation for mpc, we can show that mpc must eventually have the value 0 or 5 for
every possible initial value of mpc. By a simple evaluation of ready for mpc equal
to #00000 or. #00101, we can then prove that ready will be true infinitely often.
This result is expressed by the theorem below.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle, ready)

"In fact, verification fa.iled to expose a design error concerning power up which was later dis-
covered when the design was implemented. See the discussion in the ‘Epilogue’ section.

8Gordon’s original specification of the microcode program ignored the contents of the ‘unused’
section of the microcode store. Without a complete specification of the microcode program, it would
have been impossible to prove the above three theorems. Moreover, one could easily construct a case
for which the implementation fails to power up ‘correctly’ if the unused section of the microcode
store is left unspecified.

26

- (1t1. 762. t1 < t2 /\ ready t2)

The next step in the verification of Gordon’s computer is the cornerstone of
the proof. Recall the restriction placed on t1 and t2 in the correctness statement
where the signal ready must be true at time t1 and next true at time t2. We have
already said that this interval corresponds to a single iteration of the idle loop
beginning with the microcode instruction in location 0 or the execution of a single
target level instruction beginning at location 5. Examination of the microcode
program shows that there are exactly fifteen different possible execution paths
where an execution path is a sequence of microcode instruction from t1 to t2. In
particular, there are five different possible execution paths which begin at location
0 and ten different possible execution paths beginning at location 5. The next step

in the proof is to examine the behaviour of the computer implementation for each

one these fifteen different possible execution paths.

Using the evaluation procedure described above, we can determine the stepwise
behaviour of the entire implementation in what resembles a simulation of the
machine. The most important difference between the simulation we proposed to do
here and what is usually meant by a ‘simulation’ is that instead of actual ‘values’,
the state of the machine in the simulation will be represented by a collection of
theorems. These theorems will describe the current value of each output signal in
terms of the prior values of input and output signals.

As an example of how we propose to simulate the behaviour of the computer, we
consider the simulation of one of the fifteen possible execution paths, in particular,
the path which carries out the execution of the target level instruction ADD.

We can obtain the first state in the simulation with the following a.ssurnptlons
which determine the particular execution path under consideration.

mpc t1 = #00101
button ti = F
VAL3 (OPCODE (FETCH13 (memory t1) (pc t1))) = 3

By evaluating the equations for each of the output signals with ‘¢’ instantiated
to t1, we obtain the first state in simulation at time (t1 + 1). Notice that the state
at time (t1 + 1) is described in terms of the state at time t1. The ‘...." stand for
the four hypothesis in each theorem, namely the three assumptions above along
with the hypothesis that the signals mpc, mar, ir, arg, buf. memory, knob, button,

switches, pc, acc, idle and ready are in the relatlonshlp expressed by the predicate -

COMPUTER IMP.

|- buf(tl*i)v = DEST_TRI16 FLOAT16
|- memory(ti+1) = memory ti

27

|- mar(ti+1) = mar ti
|- pc(ti+1) = pc t1
|- ace(ti+1) = acc t1
{- ir(t1+1) = ir t1
|- arg(ti+1) = arg ti
|- mpc(ti+1) = #00110

From this state we can obtain the second state and subsequently the third state
at times ((t141)41) and (((t1+1)+1)+1), respectively. We can see that by the
end of the third cycle the target level instruction word addressed by the program
counter has been fetched and loaded into the instruction register.

|- buf ((t1+1)+1) = PAD13_16(pc t1)
|- memory((ti1+1)+1) = memory ti
.. |- mar((t1+1)+1) = pc t1
.. I- pc((t1+1)+1) = pc t1
|- acc((t1+1)+1) = acc %1
|- ir((ti+1)+1) = ir 1
|- arg((t1+1)+1) = arg t1
|- mpe((t1+1)+1) = #01000

|- buf (((t1+1)+1)+1) = FETCHi3(memory t1)(pc ti)
.+ |- memory(((t1+1)+1)+1) = memory t1
. |- mar(((t1+1)+1)+1) = pc t1 '

|- pe(((t1+1)+1)+1) = pc 1

|- acc(((t1+1)+1)+1) = acc t1

|- ir(((t1+1)+1)+1) = FETCH13(memory t1)(pc t1)

|- arg(((t1+1)+1)+1) = arg t1

|- mpc(((ti+1)+1)+1) #01001

Seven more iterations in this manner would complete the simulation of the
microcode instruction sequence implementing the ADD instruction. The final
state is shown below. °

= buf (CCCCCCCC(E1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =
INC16(PAD13_16(pc t1)) :

|- memory(CCCCCCC((E1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =
memory ti '

|- mar ((CCCCCCCCE1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =

9The states for each of the ten steps in this example are shown in Appendix C.

. 28

CUT16_1i3(FETCH13(memory t1)(pc t1))
- pc((((((((((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)
INC13(pc t1)
.- acc((((((((((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)
ADD16
(acc t1)
(FETCH13
(memory t1) (CUT16_13(FETCH13(memory t1)(pc t1))))
I- Ar(CCCCCCC((E1+1)+1)+1)+1)+1)+1)+1)+1)+1) +1) =
FETCH13(memory t1) (pc t1)
|- arg (CCCCCCCC(EL+1) +1) +1) +1) +1) +1) +1) +1) +1) +1)
acc ti
I= mpe (CCCCCCCC(EL+1) +1) +1)+1) +1)+1) +1) +1) +1) +1)
#00101

At the end of this sequence, the microcode program counter would hold the
value #00101, the state of the memory would be unchanged, and the program
counter would be incremented. Furthermore, the accumulator would hold the sum
of the previous value in the accumulator and the memory value addressed by the
address field of the target level instruction word. This value is denoted by:

ADD16
(acc t1)
(FETCH13 (memory t1) (CUT16_13(FETCH13(memory t1)(pc t1)))))

We record the results of the simulation for this particular execution path
in a single theorem. The theorem only records the final values of the signals
which are part of the target level specification, namely, memory, pc, acc and idle.
The theorem also records that the ready signal is true at both time t1 and time
(CCCCCC((t14+1)+1)4+1)+1)+1)+1)+1)+1)+1) but false at all times in between. The
value of the ready signal at these times is easily derived from the successive values
of the microcode program counter. :

COMPUTER_IMP
(mpec ,mar,ir,arg,buf)
(memory,knob,button,switches,pc.,acc,idle,ready),

mpc t1 = #00101,

button t1 = F,

VAL3(OPCODE(FETCH13(memory t1)(pc t1))) =

|- (memory (((CCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)

= memory t1) /\

29

(pc (CCCCCCCC(E1+1)+1)+1) +1) +1) +1) +1) +1) +1) +1)
= INC13(pc t1)) /\
(ace (CCCCCCCC(E1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =
ADD16 |
(acc t1) |
(FETCH13(memory t1) (CUT16_13(FETCH13(memory t1) (pc t1))))) /\
midle (CCCCCCCCEI+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) /\
ready ((CCCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) /\
“ready (((CC((((t1+1)+1)+1)+1)+1)+1)+1)+1)+1) /\
“ready ((((((((t1+1)+1)+1)+1)+1)+1)+1)+1) /\
“ready (((((((51+1)+1)+1)+1)+1)+1)+1) /\
“ready ((((((ti+1)+1)+1)+1)+1)+1) /\
-ready (((((t1+1)+1)+1)+1)+1) /\
“ready ((((t1+1)+1)+1)+1) /\
“ready (((t1+1)+1)+1) /\
“ready ((t1+1)+1) /\
“ready (t1+1) /\
ready ti

Similar theorems can be derived for each of the other fourteen possible execu-
tion paths using this simulation procedure. Collectively, these theorems capture
the behaviour of the implementation. The rest of the verification is really a matter
of refining these results and stitching them together into the desired correctness
statement. :

The next major step in the verification of Gordon’s computer removes all terms
of theform (...t1 ...+1) from the fifteen theorems obtained in the previous step.
The result will only contain t1 and t2 as terms denoting points in time.

At this point, we introduce one of the hypotheses in the correctness statement,
in particular, the hypothesis that t2 is the first time that the signal ready is true
after t1 which is expressed as NEXT (t1,t2) ready. '

The theorem obtained in the previous step records that the signal ready is true
at time t1 and then false until ((((((((({(t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1).
Using the NEXT_INC_LEMMA and NEXT_INC_INTERVAL.LEMMA we can
show: .

COMPUTER_IMP -

(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),

mpc t1 = #00101,

button t1 = F, :

VAL3 (OPCODE(FETCH13 (memory t1)(pc t1))) = 3

|- NEXT(t1,(CCCCCCCC(t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)) ready

30

Then by NEXT_IDENTITY_.LEMMA and the hypothesis NEXT (t1,t2)
ready, we can establish that ((((((((((t1+1)+1)+1)+1)-+1)+1)+1)+1)+1)+1) is
identical with t2. This allows us to replace occurrences of this term with t2 in the
theorem obtained in the previous step. Similarly for the other fourteen theorems,
the term denoting the time when the signal ready first becomes true after t1 can
be identified with and replaced by t2. :

For several of the execution paths, in particular those execution paths where

" the value of the knob or switches signals is used, the theorems obtained by the

simulation of the execution path will contain time terms in between t1 and t2.
By introducing hypotheses about the stability of the knob and switches signals
between t1 and t2, we can replace these intermediate time terms with t1.

The result of this step in the verification of Gordon’s computer is a simplifi-
cation of the fifteen theorems obtained in the previous step. The theorems are
simplified by eliminating all time terms except t1 and t2. The theorems are fur-
ther simplified by eliminating information about all signals except for memory, pc,
acc and idle. For example, the result of this simplification for the ADD execution
path is the following.

COMPUTER_IMP
(mpc,mar,ir,arg,buf) _
(memory,knob,button,switches,pc,acc,idle,ready),
NEXT(t1,t2)ready,
mpc t1 = #0010%,
button t1 = F,
VAL3(OPCODE(FETCHi3 (memory ti1)(pc t1))) = 3
|- (memory t2 = memory t1) /\
(pc t2 = INC13(pc t1)) /\
(acc t2 =
ADD16
(acc t1)
(FETCH13 (memory t1) (CUT16_13(FETCHi3(memory t1)(pc t1))))) /\
- “idle t2

The next step in the verification procedure is another refinement of the theo-
rems for each of the fifteen possible execution paths.

Each of the fifteen theorems from the previous step have as an assumption
either mpc t1 = #00000 or mpc t1 = #00101. This step in the verification pro-
cedure ‘trades in’ this assumption for assumptions about the signals idle and ready
at time t1. Using previously mentioned theorems, we can replace the assump-
tion mpc t1 = #00000 with the assumptions ready t1 and idle ti. Similarly,
we can replace the assumption mpc t1 = #00101 with the assumptions ready t1
and “idle t1. :

31

The second refinement in this stage of the proof is to restate each of the fifteen
theorems as an equation for the four-tuple, (memory t2, pc t2, acc t2, idle
t2). The result of these refinements for the theorem about the ADD execution
path is the following. Co

COMPUTER_IMP _
(mpc ,mar,ir,arg,buf)
(memory ,knob,button,switches,pc,acc,idle,ready),
NEXT(t1,t2)ready,
“idle t1,
ready ti,
button t1 = F,
VAL3(OPCODE(FETCH13 (memory t1)(pc t1))) =
|- memory t2, pc t2, acc t2, idle t2 =
memory ti, INC13(pc t1),.
ADD16
(ace t1)
(FETCH13 (memory t1) (CUT16_13(FETCH13(memory ti)(pc t1)))), F

With this refinement, we obtain fifteen theorems which state, for each of the
fifteen possible execution paths, the behaviour expressed by the correctness state-
ment on page 18. The fifteen theorems are listed in Appendix D.

At this point, this correctness statement may be easily proved by a case analysis
on the possible values of the signals idle, ready and knob at time t1 and on the
seven possible values of the 3-bit opcode field in the instruction word addressed by
the program counter at t1. This result concludes the first part of the verification
of Gordon s computer.

7 An Improved Statement of Correctness

In many respects, the proof of the correctness statement on page 18 is a a.ccept-
able verification of the register-transfer implementation of Gordon’s computer.
The correctness statement states that the implementation has a behaviour which
matches our specification of the computer as a register-transfer device. Neverthe-
less, the correctness statement on page 18 is not entirely satisfactory because the
target level specification of the computer is stated as if we intended to use the
computer as a register-transfer device. However, our informal description of the
computer is clearly aimed at a level above the execution of microcode instructions
at the register-transfer level. The target level description is stated in terms of
assembler language instructions such as ADD. Moreover, the execution of a target
level instruction is presented an event which occurs in a single time interval instead

32

of some number of microcycles. This distinction leads to the recognition of two
different but related time scales.

As we have seen, Gordon’s computer is implemented as a device consisting
of register-transfer level devices such as registers, combinational circuits, a knob,
a button, switches and memories. At the register-transfer level, the microcoded
computer has a behaviour which consists of fetching and executing microcode
instructions stored in the microcode store. The time scale at this level is defined
by the system-wide clocking of these devices. Each time interval corresponds to
the execution of one microcode instruction. We refer to this time scale as the
microcode time scale. A

A second time scale is the instruction set time scale. A target level view of
the behaviour of Gordon’s computer consists of the execution of one of the eight
instructions, HALT, JMP, JZR, ADD, SUB, LOAD, STORE, and SKIP in a single
interval of time. Because the execution of one of these instructions involves the
execution of several microcode instructions, the instruction set time scale is a
temporal abstraction of the microcode time scale. An illustrative view of these
two time scales during the execution of a short sequence of instructions is shown
below.

Instruction @~ Microcode Microcode Instruction Set
Program Counter Time Scale Time Scale

JMP . 5 0 0
6 1
8 2
9 3
11 4
ADD 5 5 1
6 6
8 7T
9 8
13 9
19 10
20 11
21 12
17 13
18 14
HALT 5 15 2
6 16
8 17
9 18
10 19
0. 20 3

33

Our goal is to prove a statement of correctness for a target level specification
which states the behaviour of the computer at the assembler language level, that
is, in terms of the tnstruction set time scale.

A target level specification of the computer stated in terms of the instruction
set time scale consists of assertions about signals defined at this time scale. Up
until this point in our discussion, all signals have been defined at the same time
scale, namely, the microcode time scale. However, there is no difficultly in defining
a second set of signals for a different time scale, in particular, the snstruction set
time scale. Just as we have treated signals defined for the microcode time secale as
mappings from numbers to primitive values in higher order logic, we shall likewise
treat signals defined for the snstruction set time scale as mappings from numbers
to primitive values. Nevertheless, we shall be careful not to confuse these two
time scales, and for this reason we adopt the convention of using the suffix ‘_abs’
to denote a signal defined at the instruction set time scale.

Our final version of the target level specification of Gordon’s computer is shown
below. The important difference between the definition of COMPUTER .abs and
the earlier definition of COMPUTER is that t1 and t2 are no longer formal pa-
rameters which must be specified when the specification is used in a correctness
statement. Rather, COMPUTER _abs describes a relationship between the signals
memory_abs, knob_abs, button_abs, switches_abs, pc_abs, acc_abs and idle_abs over
adjacent points of time on the instruction set time scale.

|- COMPUTER_abs
(memory_abs,
knob_abs,button_abs,switches_abs,pc_abs,acc_abs,idle_abs) =
1t :num.
(memory_abs (t+1),pc_abs (t+1),acc_abs (t+1),idle_abs (t+1)) =
(idle_abs t =>
(button_abs t =>
((VAL2(knob_abs t) = 0) =>
(memory_abs t, CUT16_13(switches_abs t), acc_abs t, T) |
(VAL2(knob_abs t) = 1) => ‘ '
(memory_abs t, pc_abs t, switches_abs t, T) |
(VAL2(knob_abs t) = 2) =>
- (STORE13(pc_abs t)(acc_abs t)(memory_abs t).
pc_abs t, acc_abs t, T) |
(memory_abs t, pc_abs ¢, acc_abs t, F)) |
(memory_abs t, pc_abs t, acc_abs t, T)) |
(button_abs t =>
(memory_abs t, pc_abs t, acc_abs t, T) |
EXECUTE (memory_abs t, pc_abs t, acc_abs t)))

We now consider a statement of correctness for the computér implementation

34

which uses this new target level specification. The specification of the implemen-

tation describes a relationship between signals defined in terms of the miecrocode

time scale whereas the target level specification describes a relationship between -

signals defined in terms of the instruction set time scale. As we warned earlier,
these two sets of signals cannot be confused. Instead we must formally define a
relationship between these two sets of signals based on our suggestion that the
instruction set time scale is an abstraction of the microcode time scale. This rela-
tionship between the two sets of signals will form the necessary link between the
‘implementation level specification and the target level specification. .
(abs ready) 1° ! is a function which maps the nth point on the snstruction
set time scale to a point on the microcode time scale. The primitive recursive
definition of abs is shown below. !* Note that ‘@’ is the symbol used in the HOL
system for Hilbert’s epsilon operator which may be read as ‘the t such that ...".

|- abs signal O = @t. signal t /\ (!t’. t’ < t ==> “signal t*)
|- abs signal n+i =
Qet. ‘
signal t /\
(abs n signal) < ¢ /\
(!1t’. (abs n signal) < &’ < t ==> “gignal t’)

The function (abs ready) simply identifies points on the microcode time scale
when the signal ready is true. That is, (abs ready n) is the nth point on the
microcode time scale when the signal ready is true. For example, (abs ready 2)
= 15 for the execution sequence on page 33.

Once we have defined the instruction set time scale as a function of the mi-
crocode time scale, the next step is to introduce a set of signals defined at the
instruction set time scale which are simply the result of looking at memory, knob,
. button, switches, pc, acc and idle only when the signal ready is true. memory_abs.,
knob_abs, button_abs, switches_abs, pc_abs, acc_abs and idle_abs are easily defined
in terms of the function abs as shown below. For example, memory_abs is defined
as the instruction set time scale signal which maps n to the value of the microcode
time scale signal memory at the time (abs ready n), that is, the nth time ready is
true. The reader is reminded of our convention of denoting tnstruction set time
scale signals with the suffix ‘_abs’.

19The function abs and its definition were motivated by the research work of T.Melham [4].

1abs is a function of type :{num—s bool)— num— num and ready is a function of type :num—s bool
making (abs ready) a function of type :num—num.

127 typographical error in the definition of abs as it appeared in the original publication of
this report, ‘Research Report 85/208/21, Department of Computer Science, University of Calgary,
August 1985’, has been corrected here.

35

memory_abs n = memory (abs ready n)
knob_abs n = knob (abs ready n)
‘button_abs n = button (abs ready n)
switches_abs n = switches (abs ready n)
pc_abs n = pc (abs ready n)

acc_abs n = acc (abs ready n)

idle_abs n = idle (abs ready n)

Having defined the above instruction set time scale signals in terms of mi-
crocode time scale signals, we can present a correctness statement which relates
the register-transfer level implementation to our target level specification. The
following is our final version of the correctness statement for the register-transfer
implementation of Gordon’s computer.

|- COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready) /\
(!n. STABLE(abs ready n,abs ready (n+i))switches) /\
('n. STABLE(abs ready n,abs ready (n+1))knob) /\
(!n.
(m_abs n = m(abs ready n)) /\
(knob_abs n = knob(abs ready n)) /\
(button_abs n = button(abs ready n)) /\
(switches_abs n = switches(abs ready n)) /\
(pc_abs n = pc(abs ready n)) /\
(acc_abs n = acc(abs ready n)) /\
(idle_abs n = idle(abs ready n))) ==>
COMPUTER_abs
(memory_abs,
knob_abs.button_abs,switches_abs.pc_abs.acc_abs.idle_abé)

In this correctness statement we have assumptions about the stability of the
microcotle time scale signals switches and knob. While it is necessary to include
these assumptions, given the implementation described by Gordon, the need for
these assumptions points to what may be considered a design flaw in the imple-
mentation. We reserve further comment until later in this report.

1 Formal Verification - Part 2

We complete the verification of Gordon’s computer by proving the statement of
correctness given at the end of the previous section.

36

A preliminary step is to establish that the function (abs ready) is well-defined.
A theorem stating that this function is well-defined can be proven from an earlier
~result that the signal ready will be true infinitely often. This theorem is shown
below. '

|- 7¢.
ready t /\
(abs ready n) < t /\
(!t’. (abs ready n) < ¢’ /\ &' < t ==> “ready %t’)

At this point we outline our strategy for proving this correctness statement.
We start with the microcode time scale correctness statement shown on page 18
with t1 and t2 instantiated as (abs ready n) and (abs ready (n+1)). We then
prove the following two lemmas. ‘

|- ready (abs ready n)

|- NEXT ((abs ready n),(abs ready (n+1))) ready

Both of these lemmas follow immediately from the theorem that function (abs
ready) is well-defined. !®* These two lemmas, along with assumptions about the
stability of switches and knob, allows us to use the implementation level statement
of correctness, proved in the first part of the verification procedure, to obtain:

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
(!In. STABLE(abs ready n,abs ready (n+1))switches),
(!In. STABLE(abs ready n,abs ready (n+1))knob)
|- COMPUTER
((abs ready n),.(abs ready (n+1)))
(memory,knob,button,switches,pc,acc,idle)

Rewriting with the definition of COMPUTER, we then obtain a theorem with
a conclusion containing terms such as memory (abs ready n) and memory (abs
ready (n+1)).

13An axiom that ‘whenever there exists a number with some property, then there exists a least
number with that property’ was introduced at this point. This axiom will be proved as a theorem
in the future.

37

COMPUTER_IMP
(mpc .mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
(!n. STABLE(abs ready n,abs ready (n+1))switches),
('n. STABLE(abs ready n,abs ready (n+1))knob)
|- memory(abs ready (n+1)),
pc(abs ready (n+1)),
acc(abs ready (n+1)),
idle(abs ready (n+1)) =
| (idle(abs ready n) =>
i (button(abs ready n) =>
| ((VAL2(knob(abs ready n)) = 0) =>
| (memory(abs ready n),
CUT16_13(switches(abs ready n)).acc(abs ready n),T) |
((VAL2(knob(abs ready n)) = 1) =>
(memory(abs ready n),
pc(abs ready n),switches(abs ready n),T) |
((VAL2(knob(abs ready n)) = 2) =>
(STORE13
(pc(abs ready n))(acc(abs ready n))(memory(abs ready n)),
pc(abs ready n),acc(abs ready n),T) |
(memory(abs ready n),
pc(abs ready n),acc(abs ready n),F)))) |
(memory(abs ready n),pc(abs ready n),acc(abs ready n),T)) |
(button(abs ready n) =>

(memory(abs ready n),pc(abs ready n),acc(abs ready n),T) |
EXECUTE

(memory(abs ready n),pc(abs ready n),acc(abs ready n))))

We now rewrite with the definitions of the signals mémory-abs. knob_abs, but-
ton_abs, switches_abs. pc_abs. acc_abs and idle_abs to obtain:

COMPUTER_IMP

(mpc ,mar,ir,arg,buf) ,

(memory,knob,button,switches,pc,acc,idle,ready),
(!n. STABLE(abs ready n,abs ready (n+1))switches),
(!n. STABLE(abs ready n,abs ready (n+1))knob),
(!n. ' :

(m_abs n = m(abs ready n)) /\

(knob_abs n = knob(abs ready n)) /\

(button_abs n = button(abs ready n)) /\

£

38

(switches_abs n = switches(abs ready n)) /\
(pc_abs n = pc(abs ready n)) /\
(acc_abs n = acc(abs ready n)) /\
(idle_abs n = idle(abs ready n)))
|- memory_abs(n+1),pc_abs(n+1) ,acc_abs(n+1),idle_abs(n+1)
(idle_abs n =>
(button_abs n =>
((VAL2(knob_abs n) = Q) =>
(memory_abs n ,CUT16_13(switches_abs n),acc_abs n ,T) |
((VAL2(knob_abs n) = 1) =>
(memory_abs n ,pc_abs n ,switches_abs n ,T) |
((VAL2(knob_abs n) = 2) =>
(STORE13(pc_abs n)(acc_abs n)(memory_abs n),
pc_abs n ,acc_abs n ,T) |
(memory_abs n ,pc_abs n ,acc_abs n ,F)))) |
(memory_abs n ,pc_abs n ,acc_abs n ,T)) |
(button_abs n =>
(memory_abs n ,pc_abs n ,acc_abs n ,T) |
EXECUTE(memory_abs n ,pc_abs n ,acc_abs n)))

Generalizing for the free variable ‘n’ followed by alpha-converting ‘n’ to ‘t’
results in the definition of COMPUTER _abs, the target level specification of the
computer. Finally, we obtain the correctness statement on page 36 simply by
rewriting with the definition of COMPUTER _abs and discharging the premise set.
This concludes our verification of Gordon’s computer.

9 Discussion

Abstraction is a fundamental technique for managing complexity. In computer
science, examples of abstraction abound especially in the realm of software. As
software solutions are constantly adapted to hardware problems, abstraction will
. be an increasingly important technique for managing the complexity of computer
hardware. '

Perfection is reached not when there is no longer anything to add, but
when there is no longer anything to take away. [A. Saint-Exupery]

The concept of information hiding underlies abstraction. For instance, an ab-
stract data type presents a view of a specialized data object which allows the data
object to be fully manipula.ted by a programmer but hides details concerning the
implementation of the data object. Similarly, the target level description of Gor-
' don’s computer in terms of the eight instructions, HALT, JMP, JZR, ADD, SUB,
LOAD, STORE, and SKIP and the use of the button, knob, and switches on the

39

front panel of the computer constitutes an abstract view of the register-transfer
level behaviour of the device. This abstraction hides, for example, the implemen-
tation detail that the ADD instruction results in the execution of ten microcode
instructions. Aside from real-time applications, in which case this abstraction is
not appropriate, it should matter little how many microcode instructions are exe-

- cuted for any target level instruction. Nevertheless, the success of the abstraction

does not depend merely on the volume of detail hidden in the abstraction. A
successful abstraction presents a unified view without ‘gaps’. For example, if the
SKIP instruction was left out of the target level description of Gordon’s computer,
then what happens when opcode 7 is encountered would be a gap in the abstrac-
tion. If successful, the abstraction, as explanation of the behaviour of the machine,
should stand alone from register-transfer level details.

The first step in verifying Gordon’s computer results in the correctness state-
ment shown on page 18. This step is based on a structural abstraction where the
behaviour of a device is derived from the behaviour of its components. This is
the most common type of abstraction in hardware verification. A second type of
abstraction, temporal abstraction, attempts to recast the behaviour of a device in
terms of a coarser grain of time. The second part of the verification procedure
we have described for Gordon’s computer is based on a temporal abstraction. A
third type of abstraction, data abstraction, is not used in the computer example.
An example of data abstraction would be to prove the correctness of a register-
transfer implementation of a Lisp machine where the correctness statement makes
reference to (potentially infinite) data objects such as lists.

An obvious motivation for abstraction is to present a smphﬁed but never-
theless useful view of something complex. An instructor would never (hopefully)
introduce assembler language programming to first year students with an expla-
nation of the microcode behaviour of the machine. For similar reasons of clarity,
a statement of correctness for hardware designers should be as simple as possible
while still capturing the essential behaviour of the device.

A less obvious motivation for hardware abstractions is that abstractxon forms
the basis of hierarchical design. An hierarchical design is simply a series of nested
abstractions. For example, Gordon’s computer might be incorporated as a micro-

‘processor in a larger system. In verifying the correctness of the larger system, the

correctness statement on page 36 would serve as a specification of the micropro-
cessor as a primitive component in the larger system.

Yet another motivation for abstraction is that the failure to estabhsh a desired
abstraction may point out flaws in the design. In fact, the verification of Gordon’s
computer is a example of this. Earlier we observed that the correctness statement
on page 36 requires assumptions about the stability of the knob and switches
signals. Ideally, we desire a correctness statement which does not refer to events
between points on the instruction set time scale. However, these assumptions
about the stability of knob and switches do make reference to events between
points on the instruction set time scale. Therefore, the temporal abstraction we

40

have presented in this paper is in fact a failure. The abstraction fails because we
need to take into account events at the microcode time scale to make sense of the
correctness statement.

Nevertheless, the -origin of the failure lies not in the abstraction but in the de-
sign of the computer itself. Suppose, as we have already suggested, that Gordon’s
computer is used as a component in a larger system. Suppose further, that this
larger system is clocked by the ready signal of the computer, that is, the system
operates at the instruction set time scale. In particular, suppose that the signals
knob_abs and switches_abs are clocked by ready. This means that these signals
are not necessarily stable with respect to the microcode time scale between points
on the tnstruction set time scale. Hence, the computer could fail to behave as
expected. Fortunately, verification brings to light the possibility of this failure.

10 Summary

The entire specification and verification of Gordon’s computer consists of 3000 lines
of documented source text. The verification procedure requires approximately six
hours of running time on a lightly loaded, 14 megabyte VAX 11/780. The proof
required about two man-months of effort which included learning how to specify
and verify hardware in higher order logic and how to use the HOL proof assistant
system. ,

The main overhead of producing the initial specification and writing the ML
programs to do the necessary inferences need only be done once. Thereafter,
the finished proof could be easily modified to accommodate small changes in the
hardware. For example, two registers could be added to latch the values of the
knob and switches signals whenever the ready signal is true. This would eliminate
the need for assumptions about the stability of these signals. The correctness of
incremental changes to a design can be verified by editing the specification and

verification procedure, usually in a very minor way, and re-running the proof as a
batch job.

11 Epilogue

Since the original publication of this report an 8-bit version of Gordon’s computer
has been implemented as a 5,000 transistor CMOS microchip. The purpose of this
exercise was to study the role of formal specification in the design process; this
experience is reported in [5].

One of the most interesting discoveries of this exercise was that the formal
verification of the design missed a design error: there is no reset button to initialize
the microcode program counter (this is different from the function of the interrupt
button).

The HOL version of the computer example improves upon the original
LCF _LSM version by ensuring that for any initial state of the microcode program

41

counter, even an address into the ‘unused’ part of the microcode, the computer
will eventually reach the start of an execution cycle, ie. mpc = #00000 or mpc
= #00101. However, we incorrectly assumed that the mpc would power up to a
proper state and not some undefined value.

~ After the design was submitted for fabrication and long after its formal verifi-
cation, we decided to simulate the design using a switch-level simulator involving
a more accurate model of a signal value [6]. The design failed to simulate properly
because the initial state of the mpc signal was undefined and there was no way
to make it become defined. Fortunately, when the actual chips were returned and
tested we found that the mpc signal tended to #00000 due to electrical factors not
modelled at the switch-level and the chip worked correctly.

Why did formal verification fail to discover this design error ? Clearly, the
actual verification process, ie. formal deduction, was correct; instead, the source
of the problem was the incorrect assumption that the mpc signal was bi-stable.
This assumption was introduced by our behavioural specification of the MPC as
a primitive component. ’

Bi-stability is an abstract view of more complex forms of data in digital circuits,
eg. tri-state data, voltage values, etc. This abstraction is valid only under certain
conditions. For instance, we could prove that the output of a register such as the
MPC is bi-stable provided that the input to the register is bi-stable. In the formal
specification of the computer we simply assumed that the output of the MPC was
bi-stable. If instead we had been required to establish that the output of the MPC
was bi-stable by showing that the input to the MPC was bi-stable (following a
reset), then the need for a reset button would have inevitability been discovered.

More generally, verification failed here because our register-transfer level primi-
tives were not adequate models for reliable verification. Behaviours at the register-
transfer level should be derived from some lower level model such as a switch-level
model. Behavioural models of register-transfer level components derived from a
lower level model would clearly state the conditions under which the behaviour
is valid. A library of register-transfer component behaviours and their respective
validity conditions would serve as a basis for a hardware verification methodology
for VLSI design. ' o » '

42

Re_ferences

[1]

2]

[3]

(4]

(5]

(6]

Gordon, M., “LCF_LSM, A System for Specifying and Verifying Hardware”,
Technical Report No. 41, Computer Laboratory, The University of Cam-
bridge, September 1983.

Gordon, M., “Proving a Computer Correct using the LCF_LSM Hardware
Verification System”, Technical Report No. 42, Computer Laboratory, The
University of Cambridge, September 1983.

Gordon, M., “HOL: A Machine Oriented Formulation of Higher Order Logic”,
Technical Report No. 68, Computer Laboratory, The University of Cam-
brldge, July 1985.

Melham T., “Abstraction in Hardware Verification”, Progress Report and
Thesis Proposal Computer Laboratory, The Umversnty of Cambridge, Octo-
ber 1985.

Joyce, J., “Formal Verification and Implementation of a Microprocessor”,
Hardware Verification Workshop Proceedings, The University of Calgary, Jan-

~uary 1987.

Bryant, R., “An Algorithm for MOS Logic Simulation”, Lambda Magazine,
Fourth Quarter, 1980.

43

12 Appendix A

HOL Constants for ‘Built-in’ Operations

The constants EL, SEG, V, VAL<n>, WORD<n> and BITS<n> are built into
the HOL system. Each of these constants names an operation whose type is shown
- below along with a description of the operation.

EL :num—* list—* nth element of a list

SEG :num#num—* list—* list sublist of a list '

v :bool list—num number denoted by a bit list
VAL :word<n>—num ~number denoted by a word
WORD<n> :num—word<n> word representing a number
BITS<n> :word<n>—bool list list of bits in a WORD

For each of these constants, there is a built-in evaluation rule which evaluates
applications of the constant to primitive data object. These rules are implemented
as ML routines of type :thm—thm. For example, applying VAL_RULE to a theo-
rem containing an occurrence of VAL2 #11 would result in another theorem with
VAL2 #11 replaced by 3. In addition to VAL_RULE, these rules are EL_RULE,
SEG_RULE, WORD RULE and BITS_RULE.

44

13 Appendix B

‘Expanded Version of COMPUTER _IMP

The following is the result of expanding the definitions of COMPUTER _IMP with
the definitions of CONTROL and DATA and the definitions of primitive compo-
nents. To retain a measure of readability, the signal bus has not been hidden and
the expansion of CNTL_BIT, CNTL_FIELD, B.ADDR, A_ADDR, and TEST has
been suppressed.

This theorem captures the entire behaviour of the register-transfer level imple-
mentation.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf,bus)
(memory,knob,button,switches,pc,acc,idle,ready) =
I- (s,
buf(t + 1) =
((VAL2(CNTL_FIELD(16,17) (FETCH5S MICROCODE(mpc t))) = 0) =>
bus t |
((VAL2(CNTL_FIELD(16,17) (FETCHS MICROCODE(mpc t))) = 1) =>
INC16(bus t) |
((VAL2(CNTL_FIELD(16,17) (FETCH5 MICROCODE(mpc t))) = 2) =>
ADD16(arg t)(bus t) |
SUBiG(arg t)(bus t))))) /\
('t. -
memory(t + 1) =
((VAL2(CNTL_FIELD(25, 26)(FETCH5 MICROCODE(mpc t))) = 2) =>
STORE13(mar t) (bus t) (memory t) |
memory t)) /\
(1t.
mar(t + 1) =
(CNTL_BIT 27(FETCH5 MICROCODE(mpc t))
CUT16_13(bus t) | mar t)) /\
(1t
pc(t + 1) =
(CNTL_BIT 24(FETCH5 MICROCODE(mpc t))
CUT16_13(bus t) | pc t)) /\
(1t.
acc(t + 1) =
(CNTL_BIT 22(FETCH5 MICROCODE(mpc t)) => bus t | acc t)) /\
(tt.
ir(t + 1) = (CNTL_BIT 20(FETCHS MICROCODE(mpc t)) =>
bus t | ir t)) /\

]
v

i
v

45

(1%.
arg(t + 1) =
(CNTL_BIT 18(FETCH5 MICROCODE (mpc t)) => bus t | arg t)) /\
(1t.
bus t =
DEST_TRI16
(((VAL2(CNTL_FIELD(25,26) (FETCH5 MICRDCDDE(mpc £))) = 1) =
MK_TRI16(FETCH13(memory t)(mar t)) |
FLOAT16) U16
((CNTL_BIT. 28(FETCH5 MICROCODE(mpc t)) =>
MK_TRI16(switches t) |
FLOAT16) U16 '
((CNTL_BIT 23(FETCH5.MICRUCDDE(mpC %)) =>
MK_TRI16(PAD13_16(pc t)) |
FLOAT16) U16 |
((CNTL_BIT 21(FETCHS MICROCODE(mpc t)) =>
MK_TRI16(acc t) |
FLOAT16) Ui6
((CNTL_BIT 19(FETCHS5 MICROCODE(mpc t))
MK_TRIi6(ir t) |
FLOAT16) U16 .
(CNTL_BIT 16(FETCH5 MICRUCODE(mpc t))
MK_TRI16(buf t) |
FLUATiG))))))) /\

il
\4

[}
v

(1t.
mpc(t + 1) = »
(((TEST(FETCH5 MICROCODE(mpc t)) = 1) /\ button t) =>
B_ADDR(FETCH6 MICROCODE(mpc t)) |

(((TEST(FETCH5 MICROCODE(mpc t)) = 2) /\
(VAL16(acec t) = 0)) =

B_ADDR (FETCH5 MICROCODE(mpc t)) |

((TEST(FETCH5 MICROCODE(mpc t)) = 3) =>

WORD5((VAL2(knob t)) +
(VALS (A_ADDR(FETCHS MICROCODE(mpc t))))) |
((TEST(FETCH5 MICROCODE(mpc t)) = 4) =>
WORDS
((VAL3(OPCODE(ir t))) +
(VAL5(A_ADDR(FETCHS MICROCODE(mpc t))))) |
A_ADDR(FETCH5 MICROCODE(mpc t))))))) /\
(1%. ready t = CNTL_BIT 14(FETCHS MICROCODE(mpc t))) /\
(!'t. idle t = CNTL_BIT 13(FETCH5 MICROCODE(mpc t)))

46

14 Appendix C

Simulation of the Execution Path for ADD

The following is the sequence of machine states in the simulation of the execution
path for the target level instruction ADD. Each state is represented by eight
theorems. Each theorem describes the current value of one of the eight output
signals of the implementation. Theorems for the signals idle and ready are excluded
because the value of these signals can be obtained directly from the current value of
the microcode program counter. Note that the ”....” before theoremhood symbol
are the hypotheses shown below.

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
mpc t1 = #00101,
button t1 = F,
VAL3(OPCODE(FETCH13 (memory t1)(pc t1))) = 3

Beginning with the state at time (t1 + 1), the following ten states occur. The
final state occurs at ((((((((((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1).

State 1
|- buf(t1+1) = DEST_TRI16 FLOAT16
|- memory(ti+1) = memory ti
|- mar(ti+1) = mar t1
- pe(ti+1) = pc t1
|- acc(ti+l) = acc t1
|- ir(t1+1) = ir %1
|- arg(ti+1) = arg t1
|- mpe(ti+1) = #00110
State 2

|- buf ((t1+1)+1) = PAD13_16(pc t1)
|- memory((ti+1)+1) = memory ti

|- mar((t1+1)+1) = pc ti

- pc((t1+1)+1) = pc t1

|- acc((t1+1)+1) = acc ti

- ir((t1+1)+1) = ir %1

|- arg((t1+1)+1) = arg t1

47

. |- mpc((t1+1)+1) = #01000
State 3

oo |- buf (((t1+1)+1)+1) = FETCH13(memory t1)(pc t1)

... |- memory(((t1+1)+1)+1) = memory ti

.. |- mar(((t1+1)+1)+1) = pc t1

co 1= pe(((£1+1)+1)+1) = pc t1

.. |- ace(((t1+1)+1)+1) = acc t1

.o I= ir(((t1+1)+1)+1) = FETCH13(memory t1) (pc t1)
oo |- arg(((t1+1)+1)+1) = arg t1 '
. |- mpc(((t1+1)+1)+1) = #01001

<o« |- buf ((((t1+1)+1)+1)+1) = DEST_TRI16 FLOAT16
.. |- memory((((t1+1)+1)+1)+1) = memory ti
oo |- mar((((t1+1)+1)+1)+1) = pc 1 ;
vo 1= pe((((t1+1)+1)+1)+1) = pc &1
oo |- ace ((((£1+1)+1)+1)+1) = acc t1
oo = ir((((t1+1)+1)+1)+1) = FETCH13(memory ti)(pc t1)
coo |- arg((((t1+1)+1)+1)+1) = arg &1
. - mpc((((ti+1)+1)+1)+1) = #01101

coee |- buf (C(((t1+1)+1)+1)+1)+1) = acc &1
o+ |- memory(((((t1+1)+1)+1)+1)+1) = memory ti
coer |- mar(((((t1+1)+1)+1)+1)+1) = pc t1
coo 1= pe(CC((t1+41)+1)+1)+41)+1) = pc 1
oo |- ace(((((t1+1)+1)+1)+1)+1) = acc t1
oo 1= ir(((((t1+1)+1)+1)+1)+1) = FETCH13(memory t1) (pc t1)
.. |- arg(((((t1+1)+1)+1)+1)+1) = acc ti
. |- mpe (((((t1+1)+1)+1)+1)+1) = #10011

oo |- buf (CCC((t1+1)+1)+1)+1)+1)+1) = FETCH13(memory t1)(pc t1)
oo |- memory((((((t1+1)+1)+1)+1)+1)+1) = memory ti
o 1= mar(CCC((t1+1) +1)+1)+1)+1)+1) =
CUT16_13(FETCH13(memory t1) (pc t1))
o 1= pe(CC((E1+1)+1)+1)+1)+1)+1) = pc t1
o 1= ace ((((((t1+1)+1)+1)+1) +1)+1) = acc t1

48

State 7

State 8

State 9

ir((((((61+1)+1)+1)+1)+1)+1) = FETCH13(memory t1) (pc t1)
arg ((((((t1+1)+1)+1)+1)+1)+1) = acc t1
mpe ((((((£1+1)+1)+1)+1)+1)+1) = #10100

buf ((CC(((t1+1)+1)+1)+1)+1)+1)+1) =
ADD16
(acc t1)
(FETCH13
(memory t1) (CUT16_13(FETCH13(memory t1) (pc t1))))
memory (((((((t1+1)+1)+1)+1)+1)+1)+1) = memory ti
mar (((CC((t1+1)+1)+1)+1)+1)+1)+1) =
CUT16_13(FETCH13 (memory t1) (pc t1))
pe (((CC((t1+1)+1)+1)+1)+1)+1)+1) = pc t1
acc (((((((t1+1)+1)+1)+1)+1)+1)+1) = acc ti
ir(CCCC((t1+1)+1)+1)+1)+1)+1)+1) =
FETCH13(memory t1) (pc t1)
arg ((CC(((t1+1)+1)+1)+1)+1) +1)+1)
mpe (((((((t1+1)+1)+1)+1)+1)+1)+1)

acc ti
#10101

buf (CCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1) =
ADD16
(acc t1)
(FETCH13
(memory t1) (CUT16_13(FETCH13(memory t1)(pc t1))))
memory ((((((((t1+1)+1)+1)+1)+1)+1)+1)+1) = memory t1
mar (((CCC((t1+1)+1)+1)+1)+1)+1)+1)+1) =
CUT16_13(FETCH13(memory t1)(pc t1))
pe(CCCCC(((t1+1)+1)+1)+1)+1)+1)+1)+1) = pc t1
acc ((((CCC(E1+1)+1)+1)+1)+1)+1)+1)+1) =
ADD16 '
(acc t1)
(FETCH13
(memory t1) (CUT16_13(FETCH13(memory t1)(pc t1))))
ir(CCCCCC(EL+1)+1)+1) +1)+1) +1) +1)#1) =
'FETCH13(memory t1) (pc t1)
arg (((CCC((t1+1)+1)+1)+1)+1)+1)+1) +1)
mpe ((CCCC((E1+1)+1) +1)+1)+1)+1)+1) +1)

_,{4'

acc &1
#10001

49

State

10

buf ((CCCCC((61+1)+1)+1)+1)+1)+1)+1)+1)+1) =
INC16 (PAD13_16(pc t1))
memory (((((((((t1+1)+1)+1)+1)+1)+1)+1)+1)+1) = memory ti
mar ((CCCCCC(E1+1)+1)+1)+1)+1)+1)+1)+1)+1) = .
CUT16_13(FETCH13(memory t1) (pc t1))
pe(CCCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1)+1) = pc t1
acc (((CCCC((E1+1)+1)+1)+1)+1)+1)+1)+1)+1) =
ADD16
(acc t1)
(FETCH13
(memory t1)(CUT16_13(FETCH13(memory t1)(pc t1)))).
ir(CCCCCCCCEL+1) +1)+1) +1) +1) +1)+1) +1) +1) =
FETCH13(memory t1)(pc t1)
arg (C(CCCCC(E1+1)+1)+1)+1)+1)+1)+1)+1) +1)
mpe ((CCCCCC(E1+1) +1)+1)+1) +1) +1) +1)+1)+1)

acc ti
#10010

buf ((CCCCCC((E1+1)+1)+1)+1) +1)+1)+1)+1) +1)+1) =
INC16(PAD13_16(pc 1))
memory ((CCCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =
memory t1 '
mar (CCCCCCCC(E1+1)+1)+1)+1) +1)+1)+1)+1)+1)+1) =
CUT16_13(FETCHi3(memory t1) (pc t1))
pe(CCCCCCC((t1+1)+1)+1)+1)+1)+1)+1)+1)+1) +1) =
INC13(pc t1) ‘
acc ((CCCCCCC(E1+1)+1)+1)+1)+1)+1)+1)+1)+1)+1) =
ADD16 : ;
(acc t1)
(FETCH13 .
(memory t1)(CUT16_13(FETCH13(memory t1)(pc t1))))
ir(CCCCCCC((E1+1)+1) +1)+1)+1)+1)+1)+1)+1) +1) =
FETCH13 (memory t1)(pc t1) . '
arg ((CCCCCCC(EL+1)+1) +1)+1) +1) +1)+1) +1) +1) +1)
mpc ((CCCCCCC(E1+1)+1) +1)+1) +1) +1) +1) +1) +1) +1)

acc t1
#00101

50

15 Appendix D

Theorems for the Fifteen Possible Execution Paths

The following theorems state, for each of the fifteen possible execution paths, the
behaviour of the implementation expressed by the correctness statement on page
18. The correctness statement is proved by a case analysis based on these fifteen
theorems.

Case: idling, button pressed, knob = 0

COMPUTER_IMP

(mpc ,mar,ir,arg,buf)

(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
idle t1,
ready ti ,
button t1 =T,
VAL2 (knodb t1) = O

|- memory t2.pc t2,acc t2,idle %2

= memory t1,CUT16_13(switches t1),acc t1,T

Case: idling, button pressed, knob = 1

COMPUTER_IMP

(mpc ,mar,ir,arg,buf)

(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,%t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
idle 1,
ready ti,

“button t1 =T,
VAL2 (knob t1) =1
|- memory t2,pc t2,acc t2,idle t2
= memory t1,pc ti,switches t1,T

Case: 1idling, button pressed, knob = 2

: 4

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1i,t2) switches,
NEXT (t1,t2) ready,
idle t1,
ready t1,
button t1 =T,
VAL2 (knob t1) = 2
|- memory t2,pc t2,acc t2,idle t2 :
= STORE13(pc t1) (acc t1) (memory t1),pc t1,acc t1,T

Case: 1idling, button pressed, knob = 3

COMPUTER_IMP
(mpc.mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),

STABLE (t1,t2) knob,

STABLE (t1,t2) switches,

NEXT (t1,t2) ready,

idle t1,

ready ti,

button t1 = T,

VAL2 (knob t1) = 3

|- memory t2,pc t2,acc t2,idle t2

= memory ti,pc t1,acc ti.,F

Case: idling, button not pressed

COMPUTER_IMP
(mpc,mar,ir,arg,buf) .
(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob, |
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
idle ti,
ready ti,
button t1 = F
|- memory t2,pc t2,acc t2,idle t2
= memory ti,pc ti,acc ti1,T

52

Case: running, button pressed

COMPUTER_IMP
(mpe ,mar,ir,arg,buf)
(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,%2) ready,
“idle t1,
ready t1,
button t1 = T,
NEXT(t1,t2)ready, button ti1 = T,
COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
“idle t1, ready ti
|- ‘memory t2,pc t2,acc t2,idle t2
- = memory ti,pc ti,acc ti,T

Case: running, button not pressed, opcode = O

COMPUTER_IMP

(mpe ,mar,ir,arg,buf) :

(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1.t2) ready,
“idle t1i,
ready ti,
button t1 = F,
VAL3(OPCODE(FETCH13 (memory t1)(pc t1))) = 0O
|- memory t2,pc t2,acc t2,idle t2

= memory ti,pc t1,acc ¢1,T

Case: running, button not pressed, opcode = 1
COMPUTER_IMP

(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),

53

STABLE (t1,t2) knob,
STABLE (t1,t2) switches,

NEXT (t1,%2) ready.

“idle t1,
ready ti1,
button t1 = F,
VAL3(0PCODE(FETCH13 (memory t1)(pc t1))) =

|- memory t2,pc t2,acc t2,idle t2

= memory t1,CUT16_13(FETCH13(memory t1)(pc t1)),acc ti,F

Case: running, button not pressed, opcode = 2, ACC = 0

COMPUTER_IMP
(mpec ,mar,ir,arg,buf)
(memory.knob.button.switcheé.pc.acc.idle.ready).
STABLE (t1.t2) knob,
STABLE (t1,t2) switches,
NEXT (t1.t2) ready,
“idle t1,
ready t1,
button t1 = F,
VAL3(OPCODE(FETCH13 (memory t1)(pc t1))) = 2,
(VALi6(acc t1) = 0) =T '
|- memory t2,pc t2,acc t2,idle t2
= memory t1,CUT16_13(FETCH13(memory t1)(pc t1)),acc t1,F

Case: running, button not pressed, opcode = 2, not ACC = O

COMPUTER_IMP
(mpc,mar,ir,arg,buf) _
(memory ,knob,button,switches,pc,acc,idle,ready),
 STABLE (%1,t2) knob,
STABLE (ti,t2) switches,
NEXT (t1,t2) ready,
“idle t1,
ready ti,
button t1 = F,
VALS(OPCODE(FETCHIS(memory tl)(pc t1))) =
(VAL16(acc t1) = 0) = .
|- memory t2,pc t2,acc t2 idle t2
= memory t1,INC13(pc t1),acc ti,F

54

Case: running, button not pressed, opcode = 3

COMPUTER _IMP
(mpc ,mar,ir,arg,buf)
(memory ,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
“idle t1,
ready ti1,
button t1 = F, .
VAL3 (OPCODE(FETCH13 (memory t1)(pc t1))) = 3
|- memory t2,pc t2,acc t2,idle t2
= memory t1,INC13(pc t1),
~ ADD16
(acc t1)
(FETCH13
(memory t1)
(CUT16_13(FETCH13 (memory t1)(pc t1)))),F

Case: running, button not pressed, opcode = 4

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button,switches,pc,acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
“idle t1,
ready ti1,
button t1 = F,
VAL3 (OPCODE(FETCH13(memory t1)(pc t1))) = 4
|- memory t2,pc t2,acc t2,idle t2 =
memory t1,INC13(pc t1),
SUB16
(acc t1)
(FETCH13
(memory t1)
(CUT16_13(FETCH13(memory t1)(pc t1)))).F

55

Case: running, button not pressed, opcode = 5

COMPUTER_IMP

(mpc ,mar,ir,arg,buf)

(memory ,knob,button,switches,pc.acc,idle,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,%t2) ready,
“idle +1,
ready t1,
button t1 = F,

* VAL3(OPCODE(FETCH13 (memory ti)(pc t1))) =
|- memory t2.pc t2,acc t2,idle t2 =
memory t1,INC13(pc t1),
FETCHi3 (memory t1)(CUT16_13(FETCH13(memory t1)(pc t1i))).F

Case: running, button not pressed, opcode = 6

COMPUTER_IMP
(mpc ,mar,ir,arg,buf)
(memory,knob,button, switches,pc,acc,idle, ready)
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,
NEXT (t1,t2) ready,
“idle t1,
ready t1,
button t1 = F,
VAL3(OPCODE(FETCH13 (memory t1)(pc t1))) =
|- memory t2,pc t2,acc t2,idle t2 =
STORE13
(CUT16_ 13(FETCH13(memory t1) (pc tl)))(acc t1) (memory ti)
INC13(pc %1),acc t1,F

Case: running, button not pressed, opcode = 7

COMPUTER_IMP
 (mpc,mar,ir,arg,buf)
(memory,knob,button,switches,pc, acc, 1d1e ,ready),
STABLE (t1,t2) knob,
STABLE (t1,t2) switches,

56

NEXT (t1,t2) ready,
“idle +t1,
ready t1,
button t1 = F,
VAL3 (OPCODE(FETCH13 (memory t1)(pc t1))) =7
|- memory t2,pc t2,acc t2,idle t2 .
= memory t1,INC13(pc t1),acc ti,F

57

