
9

COMPUTER SCIENCE TRIPOS Part II – 2025 – Paper 9

Optimising Compilers (tmj32)

Consider the following abstract syntax for a language L whose types are integers and
functions:

e ::= x | λx.e | e1e2 | G(x) | G(x) := e | if e1 then e2 else e3 | let x = e1 in e2

where x ranges over variable names, G(x) reads from global variable x and G(x) := e
evaluates e, writes its result to global variable x and itself evaluates to the value of
e.

(a) Provide inference rules for a type-and-effect system for L, where effects are a
subset of {Rx,Wx | x is a global variable}. [7 marks]

(b) Show how the rules from part (a) assign a type and effect(s) to the following
expressions:

(i) G(y) := G(x) [1 mark]

(ii) let f = λx.G(y) := x in f G(x) [3 marks]

(iii) if G(x) then λx.G(y) := x else λx.x [3 marks]

(c) Each global variable has its own lock that needs to be taken before reading or
writing to it, which is achieved in L with a new construct:

e ::= synchronised e

that provides mutual exclusion by taking the locks required for the evaluation
of e before e is executed and unlocking them afterwards. The type-and-effect
system can be used to help identify which locks should be taken at each
synchronised expression. Extend your type-and-effect system with an inference
rule for this new construct that can help with this analysis and explain this
rule. [Note: you do not need to provide any inference rules for the locking and
unlocking operations themselves.] [4 marks]

(d) Discuss the relative merits of using effect sets compared to effect sequences when
generating code to take and release locks for the construct in part (c).

[2 marks]

1

