COMPUTER SCIENCE TRIPOS Part II – 2025 – Paper 9

8 Machine Learning and Bayesian Inference (sbh11)

You have a two-class classification problem, with classes $\{c_+, c_-\}$. Rather than making a simple prediction of which class an example **x** falls into, you wish to make two kinds of judgement:

- (a) **x** is predicted to be in class c_i , where $i \in \{+, -\}$.
- (b) **x** is weakly predicted to be in class c_i , where $i \in \{+, -\}$.

Predicting class membership according to (a) results in a loss of 0 if the prediction is correct and a loss of 1 if in error. Weakly predicting class membership according to (b) results in a loss of θ_1 if correct and a loss of $1 - \theta_2$ if in error. We assume $0 \le \theta_i \le 1$ where $i \in \{1, 2\}$. Your aim is to design a *Bayes decision rule* for this problem.

- (a) Denoting by $\Pr(C|\mathbf{x})$ the conditional distribution of the class, give a definition of *conditional risk*. [3 marks]
- (b) Let $p = \Pr(c_+|\mathbf{x})$. Write down expressions for the *conditional risks* for the actions described. [4 marks]
- (c) What constraint should be placed on the values θ_1 and θ_2 such that the options for weak predictions will be relevant in applying the Bayes decision rule? [4 marks]
- (d) Derive the Bayes decision rule for this problem, assuming that the constraints derived in Part (c) are met. [4 marks]

You now wish to add a third possibility: 'I *decline* to make a prediction for **x**'. Declining to make a prediction always has a loss of θ_3 , where $0 \le \theta_3 \le 1$.

- (e) What additional constraint is needed on θ_3 such that it will be relevant in applying the Bayes decision rule? [2 marks]
- (f) What modification is necessary to your answer to Part (d) in order to include the option to decline in the Bayes decision rule? [3 marks]