COMPUTER SCIENCE TRIPOS Part II – 2025 – Paper 9

6 Hoare Logic and Model Checking (cp526)

Consider the temporal logic CTL over atomic propositions $p \in AP$: $\psi \in \text{StateProp} ::= \bot | \top | \neg \psi | \psi_1 \land \psi_2 | \psi_1 \lor \psi_2 | \psi_1 \rightarrow \psi_2 | p | A \phi | E \phi$, $\phi \in \text{PathProp} ::= X \psi | F \psi | G \psi | \psi_1 U \psi_2$

- (a) Specify the following properties as CTL formulae over $AP = \{p, q\}$.
 - (i) If a state satisfying p can be reached, then there is a path along which q holds until p does. [2 marks]
 - (*ii*) All next states have a path that traverses only states from where q cannot be reached. [3 marks]
- (b) Consider a temporal model M over atomic propositions $AP = \{p, q, r\}$ with states 1, ..., 6, initial state 3 and transitions and state labelling as shown in the diagram (for example, in state 5, atomic propositions p and r hold).

$$\begin{array}{c} \downarrow \\ \bigcirc 1:\{r\} \longleftarrow 3:\{r\} \longrightarrow 5:\{p,r\} \\ \downarrow \\ \downarrow \\ 2:\{p,r\} \longrightarrow 4:\{p\} \longrightarrow 6:\{q\} \end{array}$$

Informally describe the meaning of each of the following CTL formulae over AP and explain whether or not they hold in the model.

(i) $AG((EXp) \to (AFp))$ [3 marks]

(*ii*)
$$\mathsf{E}(r\mathsf{U}(\mathsf{AX}(q \land \mathsf{AX}r)))$$
 [3 marks]

(c) Let M be the model from (b) over atomic propositions $AP = \{p, q, r\}$ and M' the temporal model over atomic propositions $AP' = \{q, r\}$ with states 11, 12, and 13, initial state 11, and transitions and labelling as shown below. Prove that M' simulates M, explaining your steps.

$$\underbrace{\longrightarrow}_{11:\{r\} \longrightarrow 12:\{\} \longrightarrow 13:\{q\}}$$
 [6 marks]

(d) Consider CTL* formula $\psi_1 = \mathsf{A}(\mathsf{G}p \lor \mathsf{F}q)$ and CTL formula $\psi_2 = \mathsf{A}\mathsf{G}(p \lor \mathsf{A}\mathsf{F}q)$, both over atomic propositions $AP = \{p, q\}$. Formally define a temporal model over AP that shows that ψ_1 and ψ_2 are not equivalent. Explain why your temporal model satisfies one of the formulae but not the other. [3 marks]