COMPUTER SCIENCE TRIPOS Part IB – 2025 – Paper 6

6 Data Science (djw1005)

This question concerns a machine for making widgets. The machine is unreliable, and the proportion of defective widgets varies from day to day. For a given day, let Θ be the probability that a given widget is defective, and assume that widgets that day are conditionally independent given Θ .

You may give either analytical or computational answers. If you give computational answers, you must provide clearly-commented pseudocode.

- (a) You sample n widgets, and find that x are defective. Find a posterior confidence interval for Θ , given the prior belief that $\Theta \sim \text{Beta}(\alpha, \beta)$. [4 marks]
- (b) An alternative sampling strategy is to keep sampling widgets until you find the first defective widget. Let x be the number of widgets you end up sampling. Find a posterior confidence interval for Θ , given the prior belief that $\Theta \sim \text{Beta}(\alpha, \beta)$. [3 marks]
- (c) For the sampling strategy in part (b), find the expected number of samples needed. Assume that α and β are positive integers with $\alpha > 1$; your answer should be a function of α and β . [4 marks]
- (d) An engineer tells you that on a given day, the machine is either healthy or cranky, each equally likely, and that $\Theta \sim \text{Beta}(\alpha_m, \beta_m)$ where $m \in \{h, c\}$ indicates whether the machine is healthy or cranky. Find the posterior probability that the machine is cranky, for each of the two sampling strategies above. [9 marks]

[*Note:* The Beta distribution has density $\Pr(x; \alpha, \beta) = x^{\alpha-1}(1-x)^{\beta-1}/B(\alpha, \beta)$ where, for integer α and β , $B(\alpha, \beta) = (\alpha - 1)!(\beta - 1)!/(\alpha + \beta - 1)!$]