COMPUTER SCIENCE TRIPOS Part IB — 2025 — Paper 4
3 Semantics of Programming Languages (pes20)

Consider the following syntax of an assembly language. It is similar to RV32 except
that each memory location holds a 32-bit word, from a set u32 = {0,...,23% —1}. Tt
has instructions to load, store, add, branch-on-equal, and jump-and-link.

register_name, r, vd, 1S, 18q, 7Sq := x1|x2|=x3
instruction, i == lwrd,rsy, imm | swrsy, rsq, imm | addi rd, rs;, imm | beq sy, rse, imm
| jalr rd, rsi, imm

A machine state is a tuple (pc, R, M) of a PC value pc € u32, a register state
R : register_.name — u32, and a partial memory state M : u32 — u32, not
necessarily defined for the whole address space. Assume there is a partial function
decode : u32 — wnstruction, then the semantics of the load instruction can be defined
by:

M (pc) defined

decode (M (pc)) = lwrd, rsy, imm

n = R(rs1) + imm

M (n)defined

M(n)=n'

(pc, R, M) — (pc+ 1, R+ {rd — n'}, M)

LW

(a) Give operational semantics rules for the other instructions. Comment briefly on
any choices you had to make. [8 marks]

From now on, consider just the load, store, and add instructions. We want to impose a
type discipline that distinguishes between integer and pointer values, both in registers
and in memory, with types T that are either uint for integer values, or T'* for pointers
to values of type T'. Suppose that no pointer arithmetic is allowed. Let I' range over
finite partial functions from register names and addresses to types.

(b) Define a judgement I' = (R, M) that checks that the register state R and
memory state M are consistent with I', with every pointer-typed value being

dereferenceable with a value of the appropriate type. Explain your definition
briefly. [4 marks|

(¢) Define a typing judgement I' F ¢ 4 I” for instructions 7 where I' is the type
environment before i executes and I” is the type environment that can be
assumed by the following instruction. Explain your definition briefly.

Your definition should be sound with respect to the operational semantics: if
I' -4 41" assuming I' = (R, M) for some I' before the instruction executes,
with M (pc)defined and decode (M (pc)) = 4, then (1) there should exist
some transition (pc, R, M) — (pc’, R, M'), and (2) for any such transition,
I+ (R', M"). You should not prove this. [8 marks]

