
1

COMPUTER SCIENCE TRIPOS Part IB – 2025 – Paper 4

Compiler Construction (jdy22)

Here is a fragment of a lexer specification for a programming language:

int ⇒ INT the type name int
[a-z]+ ⇒ IDENT a user-defined identifier
type ⇒ TYPE the keyword type

[\n]+ ⇒ skip whitespace

The lexing rules map regular expressions to tokens or to the special action skip.

(a) The specification is ambiguous: multiple lexing rules match the same string.

(i) Give an example of ambiguity that is resolved by the first match rule.
[1 mark]

(ii) Give an example of ambiguity that is resolved by the longest match rule.
[1 mark]

(iii) Identify an ineffectual lexing rule in the specification. [1 mark]

(b) Convert the specification to a tagged deterministic finite automaton (DFA).
[7 marks]

(c) Give a new lexing rule that skips over comments. Comments start with the
two-character sequence {- and end with the two-character sequence -}, and can
contain any characters except the closing sequence -}.

You can use standard operators (∅, c, ϵ, r1|r2, r1r2, r∗, r+) and positive and
negative character sets such as [a-z] and [^a-z]. [3 marks]

(d) One way of constructing lexer DFAs is to use derivatives. The derivative of a
regular expression r with respect to a character c is another regular expression
∂c r that matches s if r matches cs.

(i) Define ∂c for sequencing r1r2, intersection r1&r2 and negation ¬r.
[3 marks]

(ii) Give a set of derivatives that can be used to construct a DFA for the lexer
specification, including the lexing rule for comments from part (c). Omit
cases that produce ∅. You do not need to actually construct the DFA.

[4 marks]

1

