COMPUTER SCIENCE TRIPOS Part IA – 2025 – Paper 2

8 Discrete Mathematics (mpf23)

(a) (i) Prove that for all positive integers m and integers n,

$$gcd(n,m) = m \iff n \equiv 0 \pmod{m}$$

[2 marks]

(*ii*) Without using the Fundamental Theorem of Arithmetic, prove that for all prime numbers p and positive integers n,

$$gcd(n,p) = 1 \iff n^{(p^2-1)} \equiv 1 \pmod{p}$$

[6 marks]

- (b) Prove that the sum of the cubes of any three consecutive natural numbers is divisible by 9. [6 marks]
- (c) Let $\mathcal{U} \subseteq \mathcal{P}(U)$ be a family of subsets of a set U such that, for all $\mathcal{F} \subseteq \mathcal{U}$, the big intersection $\bigcap \mathcal{F}$ is in \mathcal{U} .

Prove that, for all $\mathcal{F} \subseteq \mathcal{U}$, there exists a smallest element $\widehat{\mathcal{F}}$ of \mathcal{U} that contains every element of \mathcal{F} as a subset; that is,

- (i) $\forall Y \in \mathcal{U}. (\forall X \in \mathcal{F}. X \subseteq Y) \implies \widehat{\mathcal{F}} \subseteq Y$
- (*ii*) $\forall Z \in \mathcal{F}. Z \subseteq \widehat{\mathcal{F}}$

[6 marks]