CST1.2025.4.1

CST1
COMPUTER SCIENCE TRIPOS Part IB

Monday 9 June 2025 13:30 to 16:30

COMPUTER SCIENCE Paper 4
Answer five questions.
Submit the answers in five separate bundles, each with its own cover sheet. On each

cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Script paper Approved calculator permitted
Blue cover sheets

Tags

CST1.2025.4.2

1 Compiler Construction

Here is a fragment of a lexer specification for a programming language:

int = INT the type name int
[a-z]+ = IDENT a user-defined identifier
type = TYPE the keyword type

[\nl+ = skip whitespace

The lexing rules map regular expressions to tokens or to the special action skip.

(a)

The specification is ambiguous: multiple lexing rules match the same string.

(i) Give an example of ambiguity that is resolved by the first match rule.
[1 mark]

(7) Give an example of ambiguity that is resolved by the longest match rule.
[1 mark]

(7ii) Identify an ineffectual lexing rule in the specification. [1 mark]

Convert the specification to a tagged deterministic finite automaton (DFA).
[7 marks|

Give a new lexing rule that skips over comments. Comments start with the
two-character sequence {- and end with the two-character sequence -}, and can
contain any characters except the closing sequence -}.

You can use standard operators (0, c, €, r1|re, r17r2, 7%, r+) and positive and
negative character sets such as [a-z] and ["a-z]. [3 marks]

One way of constructing lexer DFAs is to use derivatives. The derivative of a
regular expression r with respect to a character ¢ is another regular expression
0. r that matches s if r matches cs.

(i) Define 0, for sequencing 775, intersection r1&ry and negation —r.
[3 marks|

(i) Give a set of derivatives that can be used to construct a DFA for the lexer
specification, including the lexing rule for comments from part (¢). Omit
cases that produce (). You do not need to actually construct the DFA.

[4 marks|

CST1.2025.4.3

2 Compiler Construction

A library for a Slang-like language supports explicit lazy evaluation via a type lazy
and functions delay and force:

type 'a cell = let delay f = ref (Lazy f)

| Val of 'a let force r = match !r with

| Exn of exn | Val v > v

| Lazy of (unit -> 'a) | Exn e -> raise e

type 'a lazy = | Lazy £ -> try (let v = f () in r := Val v; v)
('a cell) ref with e -=> r := Exn e; raise e

You decide to incorporate similar support for lazy evaluation into the language,

adding built-in constructs delay e and force e, where e is an expression.

(a)

(b)

Outline the benefits and drawbacks of implementing laziness in the compiler
rather than in a library. [4 marks]

Give new Jargon VM instructions that can implement delay and force and
describe their behaviour. [6 marks]

Give the translation of the delay and force constructs into your extended
instruction set. [6 marks]

You now consider adding an optimization that evaluates the argument of delay
eagerly rather than creating a delayed computation.

(i) Give an expression e for which the transformation is valid (that is,
behaviour-preserving) and always an optimization. [1 mark]

(i) Give an expression e for which the transformation is valid and only
sometimes an optimization. [1 mark]

(74i) Give an expression e for which the compiler cannot ascertain whether the
transformation is valid. [1 mark]

(7v) Give an expression e for which the transformation is not valid. [1 mark]

3 (TURN OVER)

CST1.2025.4.4

3 Semantics of Programming Languages

Consider the following syntax of an assembly language. It is similar to RV32 except
that each memory location holds a 32-bit word, from a set u32 = {0,...,23% —1}. Tt
has instructions to load, store, add, branch-on-equal, and jump-and-link.

register_name, r, vd, 1S, 18q, 7$q = x1|x2|x3
instruction, i == lwrd,rsy, imm | swrsy, rsq, imm | addi rd, rs;, imm | beq sy, rse, imm
| jalr rd, rsi, imm

A machine state is a tuple (pc, R, M) of a PC value pc € u32, a register state
R : register_.name — u32, and a partial memory state M : u32 — u32, not
necessarily defined for the whole address space. Assume there is a partial function
decode : u32 — wnstruction, then the semantics of the load instruction can be defined
by:

M (pc) defined

decode (M (pc)) = lwrd, rsy, imm

n = R(rs1) + imm

M (n)defined

M(n)=n'

(pc, R, M) — (pc+ 1, R+ {rd — n'}, M)

LW

(a) Give operational semantics rules for the other instructions. Comment briefly on
any choices you had to make. [8 marks]

From now on, consider just the load, store, and add instructions. We want to impose a
type discipline that distinguishes between integer and pointer values, both in registers
and in memory, with types T that are either uint for integer values, or T'* for pointers
to values of type T'. Suppose that no pointer arithmetic is allowed. Let I' range over
finite partial functions from register names and addresses to types.

(b) Define a judgement I' = (R, M) that checks that the register state R and
memory state M are consistent with I', with every pointer-typed value being

dereferenceable with a value of the appropriate type. Explain your definition
briefly. [4 marks|

(¢) Define a typing judgement I' F ¢ 4 I” for instructions 7 where I' is the type
environment before i executes and I” is the type environment that can be
assumed by the following instruction. Explain your definition briefly.

Your definition should be sound with respect to the operational semantics: if
I' -4 41" assuming I' = (R, M) for some I' before the instruction executes,
with M (pc)defined and decode (M (pc)) = 4, then (1) there should exist
some transition (pc, R, M) — (pc’, R, M'), and (2) for any such transition,
I+ (R', M"). You should not prove this. [8 marks]

CST1.2025.4.5

4 Prolog

This question concerns a two-player game (white pieces vs. black pieces) played on
an 8x8 game board represented as an 8-element list for the rows, each row being a
list of eight values for the contents of squares on that row. The board columns/rows
are numbered 1 ... 8 starting at bottom/left from the white player perspective. Both
players have one type of piece, attacking one or more squares diagonally up and to
the right. An empty square is represented by the atom e, a white piece by w and a
black piece by b. So the empty board is,

[[e,e,e,e,e,e,e,e]
e,e,e,e,e,e,e,e |
e,e,e,e,e,e,e,e |
e,e,e,e,e,e,e,e],
e,e,e,e,e,e,e,e |
e,e,e,e,e,e,e,e |
e,e,e,e,e,e,e,e],
e,e,e,e,e,e,e,e]]

e

In your answers ensure each relation has a comment giving a declarative reading of its
behaviour. Avoid unnecessary use of cut or other extra-logical relations. The library
relations \= and is may be used. Other library relations should not be assumed.

(a) Write a relation set/4 which, if given a board, square location
and a piece, will place that piece on that square. For example
set (Boardl,sq(3,2) ,Piece,Board2) will succeed with Board2 having the
same contents as Boardl except that the square on the 3rd column from left
and 2nd row from bottom contains the given piece. [4 marks]

(b) Write a relation contains(Board,sq(Column,Row),S) which, if given a board
and square position, will succeed with S being the content of that square.
[5 marks]

(c) Write a relation white move(sq(Column,Row),sq(Columnl,Rowl)) which
given a starting position for a white piece at sq(Column,Row) will generate in
sq(Columnl,Rowl) each position that could be reached on an empty board by
moving diagonally up and to the right from the starting position. [4 marks]

(d) Assuming a board populated with pieces from both sides, write a relation
white attack(Board,sq(Col,Row),sq(Coll,Rowl)) which, given the current
board state and sq(Col,Row) containing a white piece, will succeed with
sq(Coll,Rowl) containing the location of an enemy piece that can be
successfully attacked, if one exists. An attack on an enemy piece would be
blocked by a piece of either colour earlier on the same diagonal. [7 marks]

5 (TURN OVER)

CST1.2025.4.6

5 Programming in C and C++

A handheld device uses a rotary encoder with a circle of LED indicators around

it.

All behaviour is implemented in permanent C code running on an internal

micro-controller.

(a)

(b)

For the C code running in the device, what is the minimum support needed (if
any) from an operating system or run-time system? [4 marks]

Can C code in the device or in general operate without a heap? Would it then
have no pointers? [4 marks]

The following code turns two adjacent LEDs on. Explain four features of the
code.

#define IO0_BASE 0xEO00O
((volatile unsigned char *)I0_BASE) [4] = 0x60;

[4 marks]

The rotary encoder has two output bits (as in the ECAD classes) that advance
through the following infinitely repeating pattern in the low two bits read at
offset 8 from the I0_BASE when rotating clockwise, ...0132013... The sequence
is reversed when the encoder is turned the other way. Define a C subroutine
poll() that is to be repeatedly called at a suitable rate (eg 1 kHz). The outcome
should be that a single LED is lit at any time, with which one being suitably
adjusted by the encoder. [8 marks|

CST1.2025.4.7

6 Programming in C and C++

(a) You are building a complex-number library where the expression R = R* A* B
is coded roughly like

struct cpx { double re, im; };
extern cpx A, B; cpx R ={ 1.0, 1.0 };
mul (R, R, mul(A, B));

The outer call to mul returns its result using pass-by-reference in its first
argument: the other two arguments are the operands.

(i) Give a complete implementation of the multiply function (and any overloads
needed) and an example of using it, using C++ where all arguments to mul
are references. There might not be any deviations from the original coding
style, but if there are, justify changes with a brief comment. [4 marks]

(7i) Likewise, give a complete C implementation, including the caller and callee,
where all arguments are pointers. To achieve overloading in C, variations
on the method name can be used. [4 marks]

(74i) Explain how the passing of R to mul twice (aliasing) can cause an incorrect
result in some simple implementations and suggest a fix if either of your
implementations might fail. [2 marks]

(b) You have no access to the standard library and must code a flexible C++
reference counter class refct<T>. It will automatically delete a heap object
when its reference count reaches zero.

ptr
count

ptr
count

count
foo

ptr
count

foo

foo

[
[]
[]
ptr) .
count Left Middle Right
(i) Briefly assess each of the above three design sketches. [2 marks]

(77) Write a C++ implementation of the middle design so that it would behave
sensibly under the following (far from ideal) artificial use pattern:

foo *copyl = new foo(); // An object to be managed. [marks]

refct<foo> rcf(copyl); // Add management to the first reference.
foo *copy2 = rcf.new_user(); // Create a second reference to it.

rcf.drop(Q); // Drop one of the references.
rcf.dropQ); // Drop the last one, causing foo to be deleted.

(731) Criticise the inclusion of the drop() method, suggesting an improvement
to the overall design that follows the RAII (Resource Acquisition Is
Initialization) programming idiom. [3 marks]

7 (TURN OVER)

CST1.2025.4.8

7 Cybersecurity

A web application uses an SQL database that contains a student table with fields id,
studentName, pwdHash (all varchar) and studentGrade (integer). The pwdHash
field contains the unsalted SHA-256 hash of the user’s password, encoded in Base 32
(A-Z and 2-7) with b32enc (). [Note: In this question, SQL statements are written
over several lines for greater legibility, but assume there are no newlines.|

(a) A web form of that application has input fields for id and password. On

submission, it displays the corresponding studentGrade, obtained by running
the following SQL query, where the items inside the single quotes are replaced
by the content of the corresponding form fields. Describe an attack that displays
the grade of student abc78, whose password you do not know. First write out
the SQL resulting from your attack, then what to type in the fields. [3 marks]

SELECT studentGrade
FROM student
WHERE id = 'id' AND pwdHash = b32enc(sha256('password'));

Another web form of the same application lets you change your own display
name and password: you must supply fields studentID, newStudentName,
oldPassword, newPassword. On submission, the form sends the following SQL
statement to the database, with the items inside the single quotes replaced by the
content of the corresponding form fields. Describe an attack to change the grade
of existing student zzz666 to 100 but without changing this student’s name or
password, neither of which you know. First explain your strategy, then write
out the resulting SQL, then what to type in the fields. Assume the database is
configured to parse only one SQL statement per supplied string. [10 marks]

UPDATE student
SET studentName = 'newStudentName',
pwdHash = b32enc(sha256('newPassword'))
WHERE id = 'id' AND pwdHash = b32enc(sha256('oldPassword'));

The developer augments all forms with code that removes every non-
alphanumeric character from the fields before inserting them in the SQL
statement. Describe the main advantages and drawbacks of this approach.

[4 marks]

(d) Describe a better approach than the one in Part (¢) and justify why it is better.

[3 marks|

CST1.2025.4.9

8 Cybersecurity

For the purpose of this question, assume that you are working on a 32-bit x86
system, that strcpy() is the C standard library function and that all the other
named functions were invented for this question.

(a) You discovered a buffer overflow vulnerability in a program. You wish to execute

some shellcode you prepared, which is 48 bytes long. During the execution of the
vulnerable function, the ebp is at Oxbffff3e4 and the 32-byte vulnerable buffer
starts at 0xbff££3c0. The badstuff you supply gets copied into the vulnerable
buffer via strcpy (), provided it does not exceed 512 bytes in length.

You prepare the following badstuff input. ..

’ 16 copies of 0xbfff£400 ; 32 bytes of nop sled ; 48 bytes of shellcode

... but your shellcode does not get executed.

(i) Assuming badstuff has just been copied into the buffer, give hex addresses
for: the start of the nop sled; the start of the shellcode; the location of the
return address; the first location not overwritten by badstuff. [4 marks]

(i) Clearly explain why your shellcode did not run. [2 marks]

(74i) Fix the attack by changing some of the numbers, with clear justification,
but without altering the structure or length of badstuff. [4 marks]

(iv) Construct, with explanation, the shortest possible badstuff that still
executes your shellcode payload. Give the lengths of your new badstuff
and of the original one. [4 marks]

The host system has been strengthened by making the stack not executable.
Nonetheless, you wish to exploit a buffer overflow vulnerability you discovered
in another program. Your input gets copied via strcpy() into a vulnerable
buffer in the stack frame of print (), at absolute memory position &buf. The
return address, during the execution of print (), is at &ret. With your attack,
you wish to invoke unlock(0), whose entry point is at &unlock. You may use
library function clear(p) (entry point &clear), which writes 0 into the word
at address p. You may not skip the functions’ prologues. You may crash the
program after exiting unlock(0).

Clearly explain how to construct the input, describing the evolution of the stack
throughout the attack. Your answer must provide the exact content of your
input, byte by byte, as in the example provided in Part (a), parametric in the
symbolic addresses above. [6 marks|

END OF PAPER

