13 Types (nk480)

(a) Derive the following entailments with the natural deduction system for classical logic.

(i) Show that $A \lor B; A \vdash B \text{ true.}$
[5 marks]
(ii) Show that $A \lor B; \neg A; \vdash B \text{ true.}$
[7 marks]

(b) Consider System F extended with existential types, products, and a natural number type.

(i) Give a Church encoding for an optional natural number type (corresponding to nat option in OCaml).
[2 marks]

(ii) Give an existential type corresponding to an abstract type of optional naturals, with constructors for Some and None, as well as a case analysis operation. It should correspond to the following OCaml module signature:

```
module type ONAT = sig
  type t
  val none : t
  val some : nat -> t
  val case : t -> 'a -> (nat -> 'a) -> 'a
end
```
[3 marks]

(iii) Give an implementation of this existential type.
[3 marks]