COMPUTER SCIENCE TRIPOS Part II — 2024 — Paper 8
6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C' consisting of the skip no-op
command, sequential composition C];C5, loops while B do C' for Boolean expres-
sions B, conditionals if B then (4 else (5, assignment X := F for program
variables X and arithmetic expressions F, heap allocation X := alloc(FEi,...,E,),
heap assignment [F;] := F,, heap dereference X := [E], and heap location
disposal dispose(F£). Assume null = 0, and predicates for lists and partial lists:

list(¢,[]) = (t = null) A emp

list(t,h :: @) = Jy.(t— h)*x ((t+ 1) = y) x list(y, )

plist(ty, [], t2) = (t1 = t2) Aemp

plist(t1,h :: a,ty) = y. (t1 — h) * ((t1 + 1) — y) * plist(y, a, t2)

In the following, all triples are linear separation logic triples. No proofs are required.

(a) Precisely describe a stack and a heap that satisfy X +— Y xY — X. Give a

(non-looping) command C' that satisfies the following triple.
{emp} C {X —» Y xY — X} [3 marks|

(b) Define and explain a partial correctness rule for a new command unseq(C,Cy),
which executes commands C and Cy in either order (C;; Cy or Cy;Ch). Maintain
soundness of the proof system, and ensure the rule accurately reflects the
behaviour of the new command. [3 marks|

(¢) Do the same for a new command add_to(FE;,E,). If expressions E; and FEj
evaluate to allocated, disjoint memory locations, it increments the value stored
at the first location by the value stored at the second. Otherwise it crashes.

[3 marks|

For each of the following triples, give a loop invariant that would prove it.

(d) This command duplicates each list element. As per precondition assume Y is
initially the head X; assume dup duplicates elements, e.g. dup [1,2] = [1, 1,2, 2].
{list(X,) N Y = X}
while Y#null do (V:=[Y]; N:=[Y+1]; D:=alloc(V,N); [Y+1]:=D; Y:=N)
{list(X,dup «)} [4 marks]

(e) This command removes all negative numbers in a list, assuming it starts with 0.
{list (X, [0]++)}
L:=X; Y:=[X+1];
while Y#null do (
V:=[Y]; N:=[Y+1];
(if V<0 (dispose(Y); dispose(Y+1)) else ([L+1]:=Y; L:=Y)); Y:=N
); [L+1]:=null
{list (X, [0]++(remove_negatives «))} [7 marks]



