COMPUTER SCIENCE TRIPOS Part II – 2024 – Paper 8

6 Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op command, sequential composition C_1 ; C_2 , loops while B do C for Boolean expressions B, conditionals if B then C_1 else C_2 , assignment X := E for program variables X and arithmetic expressions E, heap allocation $X := \text{alloc}(E_1, \ldots, E_n)$, heap assignment $[E_1] := E_2$, heap dereference X := [E], and heap location dispose(E). Assume null = 0, and predicates for lists and partial lists:

> $list(t, []) = (t = null) \land emp$ $list(t, h :: \alpha) = \exists y.(t \mapsto h) * ((t+1) \mapsto y) * list(y, \alpha)$ $plist(t_1, [], t_2) = (t_1 = t_2) \land emp$ $plist(t_1, h :: \alpha, t_2) = \exists y. (t_1 \mapsto h) * ((t_1 + 1) \mapsto y) * plist(y, \alpha, t_2)$

In the following, all triples are linear separation logic triples. No proofs are required.

- (a) Precisely describe a stack and a heap that satisfy $X \mapsto Y * Y \mapsto X$. Give a (non-looping) command C that satisfies the following triple. $\{emp\} \ C \ \{X \mapsto Y * Y \mapsto X\}.$ [3 marks]
- (b) Define and explain a partial correctness rule for a new command $unseq(C_1, C_2)$, which executes commands C_1 and C_2 in either order $(C_1; C_2 \text{ or } C_2; C_1)$. Maintain soundness of the proof system, and ensure the rule accurately reflects the behaviour of the new command. [3 marks]
- (c) Do the same for a new command $add_to(E_1, E_2)$. If expressions E_1 and E_2 evaluate to allocated, disjoint memory locations, it increments the value stored at the first location by the value stored at the second. Otherwise it crashes.

[3 marks]

For each of the following triples, give a loop invariant that would prove it.

- (d) This command duplicates each list element. As per precondition assume Y is initially the head X; assume dup duplicates elements, e.g. dup [1,2] = [1,1,2,2]. {list(X, α) ∧ Y = X}
 while Y≠null do (V:=[Y]; N:=[Y+1]; D:=alloc(V,N); [Y+1]:=D; Y:=N) {list(X, dup α)}
- (e) This command removes all negative numbers in a list, assuming it starts with 0. {list($X, [0]++\alpha$)} L:=X; Y:=[X+1]; while Y \neq null do (V:=[Y]; N:=[Y+1]; (if V<0 (dispose(Y); dispose(Y+1)) else ([L+1]:=Y; L:=Y)); Y:=N); [L+1]:=null {list(X, [0]++(remove_negatives α))} [7 marks]