
6

COMPUTER SCIENCE TRIPOS Part II – 2024 – Paper 8

Hoare Logic and Model Checking (cp526)

Consider a programming language with commands C consisting of the skip no-op
command, sequential composition C1;C2, loops while B do C for Boolean expres-
sions B, conditionals if B then C1 else C2, assignment X := E for program
variables X and arithmetic expressions E, heap allocation X := alloc(E1,. . . ,En),
heap assignment [E1] := E2, heap dereference X := [E], and heap location
disposal dispose(E). Assume null = 0, and predicates for lists and partial lists:

list(t, []) = (t = null) ∧ emp
list(t, h :: α) = ∃y.(t 7→ h) ∗ ((t+ 1) 7→ y) ∗ list(y, α)

plist(t1, [], t2) = (t1 = t2) ∧ emp
plist(t1, h :: α, t2) = ∃y. (t1 7→ h) ∗ ((t1 + 1) 7→ y) ∗ plist(y, α, t2)

In the following, all triples are linear separation logic triples. No proofs are required.

(a) Precisely describe a stack and a heap that satisfy X 7→ Y ∗ Y 7→ X. Give a
(non-looping) command C that satisfies the following triple.
{emp} C {X 7→ Y ∗ Y 7→ X}. [3 marks]

(b) Define and explain a partial correctness rule for a new command unseq(C1,C2),
which executes commands C1 and C2 in either order (C1;C2 or C2;C1). Maintain
soundness of the proof system, and ensure the rule accurately reflects the
behaviour of the new command. [3 marks]

(c) Do the same for a new command add to(E1,E2). If expressions E1 and E2

evaluate to allocated, disjoint memory locations, it increments the value stored
at the first location by the value stored at the second. Otherwise it crashes.

[3 marks]

For each of the following triples, give a loop invariant that would prove it.

(d) This command duplicates each list element. As per precondition assume Y is
initially the head X; assume dup duplicates elements, e.g. dup [1, 2] = [1, 1, 2, 2].
{list(X,α) ∧ Y = X}
while Y 6=null do (V:=[Y]; N:=[Y+1]; D:=alloc(V,N); [Y+1]:=D; Y:=N)

{list(X, dup α)} [4 marks]

(e) This command removes all negative numbers in a list, assuming it starts with 0.
{list(X, [0]++α)}
L:=X; Y:=[X+1];

while Y 6=null do (

V:=[Y]; N:=[Y+1];

(if V<0 (dispose(Y); dispose(Y+1)) else ([L+1]:=Y; L:=Y)); Y:=N

); [L+1]:=null

{list(X, [0]++(remove negatives α))} [7 marks]

1


