COMPUTER SCIENCE TRIPOS Part II – 2024 – Paper 8

4 Denotational Semantics (mgapb2)

In all parts of this question, you are allowed to use theorems from the course, provided you state them precisely beforehand.

Define the smash product $D \otimes E$ of two domains D and E to be the set

 $\{(x,y) \in D \times E \mid x \neq \bot_D \land y \neq \bot_E\} \cup \{\bot_{D \otimes E}\}$

where $\perp_{D\otimes E}$ is a new element which is not a pair. This set is equipped with the order $\sqsubseteq_{D\otimes E}$ such that $\perp_{D\otimes E} \sqsubseteq_{D\otimes E} z$ for any z, and $(x, y) \sqsubseteq_{D\otimes E} (x', y')$ if and only if $x \sqsubseteq_D x'$ and $y \sqsubseteq_E y'$.

- (a) Show that the smash product of two domains is a domain. [4 marks]
- (b) Given three domains D, E and F, we call a function $f \in D \times E \to F$ bistrict if for any $x \in D$ and $y \in E$, $f(\bot, y) = \bot$ and $f(x, \bot) = \bot$.

Show that not all strict functions are bistrict. [3 marks]

- (c) Let D, E and F be domains, and $f: D \times E \to F$ a function. Give a condition on the currying $cur(f): D \to (E \to F)$ of f that is necessary and sufficient for f to be bistrict. [4 marks]
- (d) We define the function smash as follows:

smash : $D \times E \rightarrow D \otimes E$ $(x,y) \mapsto (x,y) \text{ if } x \neq \bot \text{ and } y \neq \bot$ $(x,y) \mapsto \bot_{D \otimes E} \text{ otherwise}$

Show that if $f: D \times E \to F$ is continuous and bistrict, then there exists a unique $\tilde{f}: D \otimes E \to F$ that is strict and continuous and such that $f = \tilde{f} \circ \text{smash}$.

[4 marks]

(e) Give the definition of X_{\perp} , the flat domain on a set X. [1 mark]

Given two sets S and T, show that the domains $(S \times T)_{\perp}$ and $S_{\perp} \otimes T_{\perp}$ are isomorphic, *i.e.* that there exist strict continuous functions $f: (S \times T)_{\perp} \rightarrow S_{\perp} \otimes T_{\perp}$ and $g: S_{\perp} \otimes T_{\perp} \rightarrow (S \times T)_{\perp}$ such that $f \circ g = \text{id}$ and $g \circ f = \text{id}$. [4 marks]