Regular expressions are defined by the following grammar:

\[
\begin{align*}
 r &::= c & \text{Matches the single-character word } c \\
 &| \epsilon & \text{Matches the empty word} \\
 &| r_1 \circ r_2 & \text{Matches the concatenation of an } r_1\text{-word and an } r_2\text{-word} \\
 &| 0 & \text{Matches no words} \\
 &| r_1 + r_2 & \text{Matches any } r_1\text{-word or } r_2\text{-word} \\
 &| r* & \text{Matches the concatenation of a finite number of } r\text{-words}
\end{align*}
\]

(a) Give a set of inference rules defining a relation for when a word \(w \) is matched by a regular expression \(r \). Use the notation \(w \cdot w' \) to denote concatenation. [8 marks]

(b) (i) Using the matching relation defined above, define a suitable notion of semantic equivalence \(r_1 \simeq r_2 \) for regular expressions. [4 marks]

(ii) Use this definition to prove that \((r + r') \simeq (r' + r) \). You may use inversion lemmas without proof, as long as they are explicitly indicated. [4 marks]

(c) Define an inductive relation \(r \text{ null} \) characterizing the regular expressions \(r \) for which \(\epsilon \) in \(r \). [4 marks]