COMPUTER SCIENCE TRIPOS Part IB – 2024 – Paper 6

10 Semantics of Programming Languages (nk480)

Regular expressions are defined by the following grammar:

r	::=	С	Matches the single-character word c
		ϵ	Matches the empty word
		$r_1 \circ r_2$	Matches the concatenation of an r_1 -word and an r_2 -word
		0	Matches no words
	İ	$r_1 + r_2$	Matches any r_1 -word or r_2 -word
	İ	r*	Matches the concatenation of a finite number of r -words

(a) Give a set of inference rules defining a relation for when a word w is matched by a regular expression r. Use the notation $w \cdot w'$ to denote concatenation.

[8 marks]

- (b) (i) Using the matching relation defined above, define a suitable notion of semantic equivalence $r_1 \simeq r_2$ for regular expressions. [4 marks]
 - (*ii*) Use this definition to prove that $(r + r') \simeq (r' + r)$. You may use inversion lemmas without proof, as long as they are explicitly indicated. [4 marks]
- (c) Define an inductive relation r null characterizing the regular expressions r for which ϵ in r. [4 marks]