5 Concurrent and Distributed Systems (tlh20)

Distributed systems often use logical timestamps to capture the possible ordering between operations on different nodes.

(a) Three nodes $N_1 \ldots N_3$ communicate using point-to-point messages:

```
N_1 N_2 N_3
e_1 e_4 e_2
e_3 e_5
e_6 e_7
e_8 e_9
```

(i) Give Lamport timestamps for each of the events $e_1 \ldots e_9$, assuming clocks start from 0. [2 marks]

(ii) What is a necessary condition on Lamport timestamps for an event x to have happened before an event y? Is this a sufficient condition? Briefly justify your answer based on the events in the example. [2 marks]

(iii) Now give possible vector timestamps for each of the events $e_1 \ldots e_9$. [2 marks]

(iv) What is a necessary and sufficient condition on vector timestamps for an event x to have happened before an event y? [2 marks]

(b) An alternate form of vector timestamps can be used to build causal broadcast. That is, if the broadcast of one message happened before the broadcast of another message, then all nodes must deliver those two messages in that order.

(i) Write pseudo-code to implement causal broadcast, assuming access to an underlying reliable broadcast protocol. You should describe the local state held at each node along with the algorithm used to broadcast a message, and to decide when a message can be delivered locally. [8 marks]

(ii) A colleague suggests that the space required by vector timestamps makes this algorithm inefficient. They suggest basing the algorithm on Lamport timestamps instead. Do you agree with this suggestion? [4 marks]