COMPUTER SCIENCE TRIPOS Part IA – 2024 – Paper 2

9 Discrete Mathematics (js2878)

- (a) Let $f: A \to B$ be a function.
 - (i) What does it mean for a function $s: B \to A$ to be a **section** of the function $f: A \to B$? [2 marks]
 - (*ii*) What does it mean for a function $r: B \to A$ to be a *retraction* of the function $f: A \to B$? [2 marks]
- (b) Let $f: A \to B$ be a function.
 - (i) Let $s: B \to A$ be a section of $f: A \to B$. Prove that any two sections $u, v: A \to B$ of $s: B \to A$ are equal. [2 marks]
 - (*ii*) Let $r: B \to A$ be a retraction of $f: A \to B$. Prove that any two retractions $u, v: A \to B$ of $r: B \to A$ are equal. [2 marks]
- (c) We shall refer to a given function $f: A \to B$ as **locally subsingleton** when for every $b \in B$, the inverse image $f^{-1}{b} \subseteq A$ has at most one element, *i.e.* for any $x, y \in f^{-1}{b}$ we have x = y. Prove that a function $f: A \to B$ is locally subsingleton if and only if it is *injective*. [4 marks]
- (d) We shall refer to a given function $f: A \to B$ as **locally singleton** when for every $b \in B$, the inverse image $f^{-1}{b} \subseteq A$ has exactly one element.
 - (i) Prove that any function $f: A \to B$ is *locally singleton* if and only if it is *bijective.* [4 marks]
 - (*ii*) Prove that the set of *bijective functions* from A to B is itself in bijection with the set of triples (f, g, h) with $f: A \to B$ and $g, h: B \to A$ such that g is a section of f and h is a retraction of f. You may use any standard results provided that you state them clearly. [4 marks]