COMPUTER SCIENCE TRIPOS Part IA – 2024 – Paper 2

8 Discrete Mathematics (mpf23)

(a) Let $R \subseteq A \times B$ be a relation from a set A to a set B. For a subset $X \subseteq A$, define the subset $C_R(X) \subseteq B$ as

$$C_R(X) = \{ b \in B \mid \forall a \in X. a R b \}$$

- (i) Prove that, for all $P \subseteq Q \subseteq A$, one has $C_R(Q) \subseteq C_R(P)$. [2 marks]
- Let $\mathcal{F} \subseteq \mathcal{P}(A)$ be a family of subsets of the set A.
- (*ii*) Define the big intersection $\bigcap \mathcal{F} \subseteq A$ of \mathcal{F} . [2 marks]
- (*iii*) Define the big union $\bigcup \mathcal{F} \subseteq A$ of \mathcal{F} . [2 marks]
- (*iv*) Prove that $C_R(\bigcup \mathcal{F}) = \bigcap \{ Y \subseteq B \mid \exists X \in \mathcal{F}. Y = C_R(X) \}$ [6 marks]
- (b) Let A^* be the set of strings over an alphabet A.

Consider the subset W of A^* inductively defined by the following axiom and rule

$$\frac{w}{\varepsilon} \qquad \frac{w}{w a} \ (a \in A)$$

- (i) State the rule-induction proof method to show $\forall w \in W. P(w)$ for a property P(w) of elements w of W. [2 marks]
- (*ii*) Prove that $\forall w \in W$. $(\forall u, v \in A^*. w u = w v \implies u = v)$ by the ruleinduction proof method. [6 marks]