A company produces a bundle of 20 USB sticks. Each USB stick is broken (i.e., malfunctioning) with probability 1/500, independently.

(a) Let \(Z \) be the number of broken USB sticks within one bundle. What is the distribution of \(Z \)? Also state the expectation and variance. [3 marks]

(b) Let \(p \) be the probability that there are at least two broken USB sticks in a bundle. Determine \(p \). [2 marks]

(c) Now let \(p \) be the probability that there are exactly five broken USB sticks in a bundle. Describe a suitable method for approximating the value of \(p \) and state the result. [3 marks]

(d) Consider a bundle of 20 sticks that has exactly 2 broken USB sticks. If someone takes out 3 different USB sticks chosen randomly, what is the probability that exactly one is broken? [3 marks]

(e) Suppose a retailer purchases a bundle and inspects each of the 20 USB sticks. If there are at least two broken USB sticks, the retailer asks the company for a new bundle which is delivered on the next day, and the process continues. What is the distribution of the number of days until the retailer has obtained a bundle with no broken USB sticks? Also state the expectation of that distribution. [3 marks]

Consider now two producers \(A \) and \(B \), each selling the same bundle but for different prices. For producer \(A \), the price is \(X \sim 2 + \text{Uni}(1, 2) \), and for producer \(B \), the price is \(Y \sim 3 + \text{Uni}(0, 1.5) \) (here \(\text{Uni}(a, b) \) refers to the uniform continuous random variable with range \([a, b]\)).

(f) What are \(E[X] \) and \(E[Y] \)? [2 marks]

(g) Assume that \(X \) and \(Y \) are independent random variables. What is \(P[X \leq Y] \)? (For full marks, complete your computation to obtain a specific numerical value.) [4 marks]