
CST1.2024.4.1

CST1
COMPUTER SCIENCE TRIPOS Part IB

Monday 3 June 2024 13:30 to 16:30

COMPUTER SCIENCE Paper 4

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted

CST1.2024.4.2

1 Compiler Construction

Here are two grammars for languages built from terminals a and b:

Grammar A:

S → C a C b A

A → B

A → S

B → ε
B → b

C → ε

Grammar B:

S → A b

A → ε
A → A a b

In both grammars S is the start symbol.

(a) The languages L(A) and L(B) for grammars A and B are not equal.

(i) Give an example of a string that is in L(A) but not in L(B).

(ii) Give an example of a string that is in L(B) but not in L(A).

[2 marks]

(b) Give regular expressions describing each of L(A) and L(B). [4 marks]

(c) Compute nullable, first sets and follow sets for each grammar.
[6 marks]

(d) State with justification whether each grammar is LL(1) and whether it is SLR(1).
[8 marks]

2

CST1.2024.4.3

2 Compiler Construction

You have acquired an old computer, and you would like to write programs for it in
C. Unfortunately, the computer has no executable C compiler: it has only a Lisp
compiler lispc.exe (an executable that uses the machine’s instruction set MIS):

MIS

Lisp MIS
lispc.exe

and the source code for a C compiler cc.c (written in C):

C

C MIS
cc.c

(a) You would like to get the C compiler running efficiently on your computer with
as little programming as possible. A useful first step is to write a quick-and-dirty
C-to-Lisp compiler in Lisp:

Lisp

C Lisp
c2l.lisp

What further steps are needed? Describe and illustrate each step using the same
illustration scheme as above.

[8 marks]

(b) You would like to extend the C compiler to support foreign function calls so that
your C programs can use libraries compiled by lispc.exe.

(i) What information from the Application Binary Interface might you need
to ensure that foreign calls work correctly? Comment on function calls, on
the stack, on object layout, and on any other relevant considerations.

[6 marks]

(ii) Programs written in Lisp use a garbage collector (GC) to reclaim
unreachable objects. Explain how the GC determines reachability, how
calls between C and Lisp might affect the reachability check, and what
changes are needed to make the check work in the presence of those calls.

[6 marks]

3 (TURN OVER)

CST1.2024.4.4

3 Concepts in Programming Languages

(a) (i) Explain what a monad is in the context of a structure in a program. Define
the two fundamental operations of a monad along with their types. You
may use syntax from any programming language in your answer, but Haskell
or OCaml are easiest. [2 marks]

(ii) Describe a particular monad and a program fragment that uses it when
coding in Haskell. [4 marks]

(iii) Discuss briefly why monadic style programming may not be as necessary
when coding in JavaScript or OCaml or Scala as it is in Haskell.

[2 marks]

(b) For each of the following OCaml declarations, if they pass the type checker give
their inferred types, or if not then give a program fragment using them that
would violate type safety:

(i) exception Exn of ’a [2 marks]

(ii) let rec even = function 0 -> true | v -> odd (v-1)

and odd = function 0 -> false | v -> even (v-1)

[2 marks]

(iii) fun a b -> a (a b) [2 marks]

(iv) fun a b -> b (a b) [3 marks]

(v) fun a b -> a b b [3 marks]

4

CST1.2024.4.5

4 Prolog

In your answers ensure each relation which you define has a comment giving
a declarative reading of its behaviour. Avoid unnecessary use of cut or other
extra-logical relations. The library relations \=, is, and atomic(X) may be used,
the last succeeding if X is a number or atom e.g. 42 or abc. Other relations should
not be assumed.

(a) Define a relation eval/2 to reduce arithmetic terms, so that e.g. eval(1+2*3,N)
succeeds with N=7. Atoms should reduce to themselves, so e.g. eval(a,Ans)
succeeds with Ans=a. [4 marks]

(b) Extend eval to allow function calls within arithmetic terms, such that
2 * apply(inc, [2+3]) reduces to 12. We will declare functions as Prolog
facts in a fun/2 relation, e.g. inc above will be specified by the fact
fun(apply(inc,[N]), N+1). Note the function arguments are held in a list,
[N] in this example, to support multi-argument functions. [6 marks]

(c) Extend relation eval to support a ==/2 operator, which reduces term A==B to
true if A and B reduce to the same number or atom and false otherwise. For
example eval(1+3==2+2,Ans) succeeds with Ans=true. [3 marks]

(d) Extend relation eval to support terms of the form if(Condition,Then,Else).
These if/3 terms should reduce to the reduction of either the Then term or the
Else term determined by Condition reducing to true or false. For example
eval(if(1+2==4+5,a,b),Ans) succeeds with Ans=b. Add a fact to the fun

relation specifying the factorial function such that eval(apply(fact,[5]),N)

succeeds with N=120. [7 marks]

5 (TURN OVER)

CST1.2024.4.6

5 Programming in C and C++

(a) Are C functions exactly the same as C++ functions? What is the difference
between a C function and C++ method? [3 marks]

(b) The C language is used on a range of microcontrollers where the number of bits
used for the char type might have any value between 8 and 16, but int always
uses 24 bits. Write a program that determines the number of bits present in a
char. [3 marks]

(c) On another computer, char variables are 8-bits in size, but it is not known if
they are signed and unsigned. Write a program to test which. [3 marks]

(d) C++ is object oriented.

(i) Can C++ upcasts and downcasts always be checked for type safety at
compile time? [3 marks]

(ii) Give an example of a C++ upcast that requires the object pointer to be
adjusted. [3 marks]

(iii) Give an example where a C++ downcast is checked for validity at run time.
What is needed for validity to be checked by the language runtime system?

[3 marks]

(e) Say why and whether you would expect the following fragment to work:

char *mys = "ab_de"; mys[2] = 'c';

[2 marks]

6

CST1.2024.4.7

6 Programming in C and C++

(a) A C programmer has an array of pointers to structs. They sort the array using
the built-in comparison operator, ‘<’. Describe one circumstance where this
will produce undefined behaviour and another situation where the behaviour is
defined. [2 marks]

(b) Give three reasons why is it helpful to separate the declaration and im-
plementation of classes in OO programming. The following code gives a
(possibly incorrect) C++ signature declaration for a collection type. Criticise
this definition and explain any difficulties that might arise with having the
implementation in a separate file. If all types entered in the collection inherit
from a common parent, can this make a difference? [8 marks]

template <typename T> class bucket

{ public:

bucket(int N); // Constructor: holds up to N items.

int push(T *item); // Add item or return non zero if full.

T pop(); // LIFO order pop most-recently added.

T *dequeue(); // FIFO order dequeue of oldest item.

};

(c) Instead of holding pointers to objects, a collection class can hold the objects
themselves. What changes in the bucket method types would be needed? What
are the advantages and disadvantages of this change? [4 marks]

(d) Returning to holding references in the collection, it is instead required that all
objects pushed must have a void foo() method that the bucket will invoke
for all members currently in the bucket on either removal operation. Define
how items might be stored inside the bucket and sketch suitable code for the
dequeue() method with this addition. Can the foo() method be invoked using
static or dynamic method invocation? [6 marks]

7 (TURN OVER)

CST1.2024.4.8

7 Cybersecurity

Some näıve teenagers want to attack a web application that does not salt its users’
passwords, but simply hashes them. Hoping they will someday obtain the file of
digests on the dark web, they want to precompute a compressed lookup table that
will let them quickly crack all lowercase alphanumeric passwords of up to 15 characters
once they get the file. They implement precomputed hash chains, but they ignore
the possibility of collisions because they do not understand the issue. Their table
must fit in their available disk space s. Each digest is 16 bytes long.

Please use the following symbol names and use sensible approximations where needed.

la length of alphabet (charset size) for targeted passwords 26 + 10 = 36
ld length of one digest, in bytes 16
lp length of password, in bytes (max len to be explored) 15
s storage space available for the compressed table, in bytes 8× 1012

th time to compute a hash on attackers’ CPU, in seconds 10−5

(a) Under the attackers’ incorrect assumption that hash collisions may be ignored:

(i) Derive formulae for the maximum number nc of chains in the table, and
for the minimum length lc (in passwords) of each chain. Also calculate
numerical values for these quantities. (4 results.) [4 marks]

(ii) Give a clear and full description of the algorithm for recovering the password
that is the preimage of a given digest d. Pseudocode is not required for full
marks, but will be rewarded if it adds clarity and precision. [5 marks]

(iii) Derive a formula for the minimum number nh of hashes to be computed to
build the compressed table, and calculate its numeric value. (2 results.)

[2 marks]

(iv) Use the nh value from Part (a)(iii) to calculate the time ts needed to
compute the whole table sequentially, assuming one hash computation takes
time th on the attackers’ CPU. Then imagine parallelising the work in
three ways: moving from CPU to GPU, using a bank of GPUs, or using
a distributed pool of collaborators. Give a reasonable speedup factor for
each. Compute how long it would take to build the compressed table if all
three speedups were adopted. (5 results.) [5 marks]

(b) Briefly explain what hash collisions are and why they matter. How would the
presence of collisions invalidate the answer to Part (a)(iii)? [4 marks]

8

CST1.2024.4.9

8 Cybersecurity

Consider the following hacking game. You are given access, as user player, to a
32-bit x86 machine. The C program challenge (setuid boss) accepts user input and
contains a buffer overflow vulnerability. The stack is executable, there are no stack
canaries in the binary and ASLR is turned off. When the challenge program is
running, the first byte of its vulnerable buffer (always word-aligned) may appear in
memory anywhere within a 32768 byte region starting at 0xffff6000. The vulnerable
buffer is 100 bytes long and the C function that contains it has only two more local
variables, both char. The challenge program truncates its input at 2048 bytes.

Your input to the challenge program, including a specific 50-byte payload, is built
by the following Python function. You supply five parameters to buildInput to
create an input and then the challenge program is run on the resulting input, but
doing so costs you $0.01 per byte of generated input plus $50 per run. You may
repeat this as needed. You win a large prize if you cause the payload to be executed
under userid boss. You seek a winning strategy that maximises your profit.

def buildInput(length, payloadOffset, retOffset, retAddress, retCopies):

payload = bytes(b"\x31...") # 50 bytes of evil x86 machine code

input = bytearray([0x90] * length) # prefill with nop

input[payloadOffset:payloadOffset+len(payload)] = payload

for j in range(retCopies): # stack spraying

input[retOffset+(j*4):retOffset+(j*4+1)] = \

retAddress.to_bytes(4, byteorder='little')

return input

(a) Explain whether you would favour more runs or longer inputs. [1 mark]

(b) Explain whether, in your input, you would put the nop sled and payload before
or after the stack spraying region. [3 marks]

(c) Explain whether you would favour a longer nop sled or a longer stack spraying
region. [3 marks]

(d) Outline, with justification, an efficient strategy for guaranteeing a win in
this game, detailing among other things how many runs (invocations of the
challenge program) it involves in the worst case. [5 marks]

(e) Give, with justification, the specific values of each of the five input parameters
your strategy will pass to buildInput() during run i, with runs numbered from
0 onwards. The values may be constant or parametric in i. [8 marks]

END OF PAPER

9

