COMPUTER SCIENCE TRIPOS Part II – 2023 – Paper 9

5 Denotational Semantics (mpf23)

- (a) Consider the following definitions:
 - For $L \in PCF_{nat}$ and $k \in \mathbb{N}$, $L \Vdash_0 k$ if, and only if, $L \Downarrow_{nat} \operatorname{succ}^k(\mathbf{0})$.
 - For $M \in \text{PCF}_{nat \to nat}$ and $f : \mathbb{N} \to \mathbb{N}$, $M \Vdash_1 f$ if, and only if, for all $i \in \mathbb{N}$, $M \operatorname{succ}^i(\mathbf{0}) \Downarrow_{nat} \operatorname{succ}^{f(i)}(\mathbf{0}).$
 - For $N \in \text{PCF}_{nat \to nat \to nat}$ and $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $N \Vdash_2 g$ if, and only if, for all $i, j \in \mathbb{N}$, $N \operatorname{succ}^i(\mathbf{0}) \operatorname{succ}^j(\mathbf{0}) \Downarrow_{nat} \operatorname{succ}^{g(i,j)}(\mathbf{0})$.
 - (i) Prove that $N \Vdash_2 g$ and $L \Vdash_0 k$ imply $N L \Vdash_1 \lambda x \in \mathbb{N}$. g(k, x). [6 marks]
 - (*ii*) Prove that there are $N \in \text{PCF}_{nat \to nat}$ and a bijection $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that $N \Vdash_2 g$. You may use standard results provided that you state them clearly. [6 marks]
- (b) (i) Say whether or not the following statement holds:

For all PCF types τ and all closed PCF terms M of type $\tau \to \tau \to \tau$, the closed PCF terms $\mathbf{fix}(\mathbf{fn} \ x : \tau, \mathbf{fix}(\mathbf{fn} \ y : \tau, M \ y \ x))$ and $\mathbf{fix}(\mathbf{fn} \ z : \tau, M \ z \ z)$ of type τ are contextually equivalent. [2 marks]

(*ii*) Either prove or disprove the above statement. [6 marks]