COMPUTER SCIENCE TRIPOS Part II - 2023 - Paper 9

12 Randomised Algorithms (tms41)

Consider the following problem (P). We are given a directed graph $G=(V, E)$ with non-negative edge-weights $w_{i, j} \geq 0$ for each edge $(i, j) \in E$. The task is to partition V into two sets V_{1} and $V_{2}=V \backslash V_{1}$ so as to maximize the total weight of edges going from V_{1} and V_{2}, i.e.,

$$
\text { maximise } \sum_{(i, j) \in E: i \in V_{1}, j \in V_{2}} w_{i, j} .
$$

(a) Design a randomised approximation algorithm for (\mathbf{P}) with running time $O(V)$ and analyse its approximation ratio.
(b) In this part of the question, we additionally want that $\left|V_{1}\right|=\left|V_{2}\right|=n / 2$ (we assume for simplicity that $n=|V|$ is an even integer). Adjust the algorithm and analysis from (a).
(c) Consider the following integer program called (I):

$$
\begin{array}{lrr}
\text { maximise } & \sum_{(i, j) \in E} w_{i, j} z_{i, j} & \\
\text { subject to } & z_{i, j} \leq x_{i} & \text { for each }(i, j) \in E \\
z_{i, j} \leq 1-x_{j} & \text { for each }(i, j) \in E \\
x_{i} \in\{0,1\} & \text { for } i \in V \\
z_{i, j} \in[0,1] & \text { for each }(i, j) \in E
\end{array}
$$

(i) Prove that this integer program solves the problem (\mathbf{P}).
(ii) Consider the following randomised algorithm for (P). Let (\bar{z}, \bar{x}) be a solution to a linear program, which is identical to (I) but with $x_{i} \in\{0,1\}$ replaced by $x_{i} \in[0,1]$. We then put each vertex i into V_{1} with probability $1 / 4+\bar{x}_{i} / 2$, independently.
(A) Explain briefly why this algorithm can be implemented in polynomial time.
(B) Prove that the approximation ratio of this algorithm is 2.

